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On commuting p-version projection-based interpolation on

tetrahedra (extended version)

J.M. Melenk∗ C. Rojik∗

February 1, 2018

Abstract

On the reference tetrahedron K̂, we define three projection-based interpolation operators on H2(K̂),

H
1(K̂, curl), and H

1(K̂,div). These operators are projections onto space of polynomials, they have the
commuting diagram property and feature the optimal convergence rate as the polynomial degree increases
in H1−s(K̂), H−s(K̂, curl), H−s(K̂,div) for 0 ≤ s ≤ 1.

1 Introduction

Operators that approximate a given function by a (piecewise) polynomial are fundamental tools in numerical
analysis. The case of scalar functions is rather well-understood and many such approximation operators
exist both for fixed order approximation where accuracy is achieved by refining the mesh, the so-called h-
version, and the p-version, where accuracy is obtained by increasing the polynomial degree p; for the p-version
in an H1-conforming setting we refer to [3, 5, 29] and references therein. For the approximation of vector-
valued functions, specifically, the approximation in the spaces H(curl) and H(div), the situation is less
developed since the approximation operators are typically required to satisfy, in addition to having certain
approximation properties, also the requirement to be projections and to have a commuting diagram property.
While various operators with all these desirable properties have been developed for the h-version, optimal
results in the p-version are missing in the literature. The present paper is devoted to the analysis of a p-
version projection-based interpolation operator that has the optimal polynomial approximation properties
under suitable regularity assumptions.
High order polynomial projection-based interpolation operators with the projection and commuting diagram
properties have been developed by L. Demkowicz and several coworkers, [11, 16–18]; a very nice and compre-
hensive presentation of these results can be found in [15], which will also be the basis for the present work. The
projection-based interpolation operators presented in [15] are a) projections, b) have the commuting diagram
property, and c) admit element-by-element construction. The last point means that the operators are defined
elementwise by specifying them on the reference element and that the appropriate interelement continuity is
ensured by defining the interpolant in terms of pertinent traces: for scalar functions, the projection-based
interpolant interpolates in the vertices and its restriction to an edge or a face is completely determined by
the restriction of the function to that edge or face; for the H(curl)-conforming interpolant, its tangential
component on an edge or face is completely determined by the tangential trace of the function on that edge or
face; for the H(div)-conforming interpolant, the normal component on a face is fully dictated by the normal
component of the function on that face. Such a construction is only possible under additional regularity as-
sumptions beyond the minimal one (which would be H1, H(curl) or H(div)). Indeed, in 3D, the construction
described in [15] requires the regularity H1+s with s > 1/2 for scalar functions, Hs(curl) with s > 1/2 and
Hs(div) with s > 0 for the vectorial ones. Under these regularity assumptions, it is shown in [15, Thm. 5.3]
that the projection-based interpolation operator has, up to logarithmic factors, the optimal algebraic conver-
gence properties (as p → ∞), for function with finite Sobolev regularity as measured by s. In this note, we
remove the logarithmic factors, i.e., show optimal rates of convergence, under the more stringent regularity
assumption s ≥ 1 (cf. Theorem 2.8 for the case of tetrahedra and Theorem 2.11 for the case of triangles).

∗(melenk@tuwien.ac.at, claudio.rojik@tuwien.ac.at), Institut für Analysis und Scientific Computing, Technische Univer-
sität Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.
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The projection-based interpolation operator analyzed in the present work is of the type studied in [15]. Corre-
spondingly, many tools used in [15] are also used here, most notably, the polynomial lifting operators developed
for tetrahedra in [19–21] and for the simpler case of triangles in [2]; we mention in passing that suitable poly-
nomial lifting operators are also available for the case of the cube [12]. Another tool that [15] uses are right
inverses of the gradient, curl and div operators (“Poincaré maps”). Here, we use a more recent and powerful
variant, namely, the regularized right inverses of [13]. This breakthrough paper [13] allows for stable decom-
positions of functions in H(curl) and H(div) with appropriate mapping properties in scales of Sobolev spaces
and is an essential component in the analysis of the p-version in H(curl), [6,8,23]. The distingushing technical
difference between [15] and the present work, which is responsible for the removal of the logarithmic factor, is
the treatment of the non-local norms on the boundary. Non-local norms on the boundary are written in [15]
(following [17]) as a sum of contributions over the boundary parts (that is, faces in 3D and edges in 2D);
in finite-dimensional spaces of piecewise polynomials, this localization procedure is possible at the price of
logarithmic factors. Instead of localizing a non-local norm, the approach taken here is to realize the non-local
norm by interpolating between two norms related to integer order Sobolev norms, which both can be localized,
i.e., written as sums of contributions over boundary parts. In turn, this requires to analyze the error of the
projection-based interpolation in two norms instead of a single one. The estimate in the stronger norm is
obtained by a best approximation argument as done in [15], the estimate in the weaker norm is obtained by
a duality argument.
The gradient operator ∇ for scalar functions u and the divergence operator div for Rd-valued functions u are
defined in the usual way: ∇u = (∂x1u, . . . , ∂xd

u)⊤ and divu =
∑d

i=1 ∂xiui. For d = 3 and R
3-valued functions

u the curl-operator is defined as curl u := (∂x2u3 − ∂x3u2,−(∂x1u3 − ∂x3u1), ∂x1u2 − ∂x2u1)
⊤. For d = 2

we distinguish between the scalar-valued and vector-valued curl operator: for a scalar function u, we defined
curl u := (∂x2u,−∂x1u)

⊤ and for an R
2-valued function u we set curlu := ∂x1u2 − ∂x2u1.

For Lipschitz domains ω ⊂ R
d (d ∈ {2, 3}) and scalar functions, we employ the usual Sobolev spaces Hs(ω),

s ≥ 0, as defined, e.g., in [1]. For s > 0 the space H̃−s(ω) := (Hs(ω))′ is the dual space of Hs(ω) characterized
by the norm

‖u‖H̃−s(ω) := sup
v∈Hs(ω)

(u, v)L2(ω)

‖v‖Hs(ω)
, (1.1)

where (·, ·)L2(ω) denotes the (extended) L2-scalar product. Vector-valued analogs Hs(ω) are defined to be
elements of Hs(ω) componentwise and also the dual norm ‖ · ‖

H̃−s(ω) is defined analogously to (1.1). For

s ≥ 0 and d = 3, we set Hs(ω, curl) = {u ∈ Hs(ω) | curl u ∈ Hs(ω)} and Hs(ω, div) = {u ∈ Hs(ω) | divu ∈
Hs(ω)}; for d = 2 we have Hs(ω, curl) = {u ∈ Hs(ω) | curlu ∈ Hs(ω)}. For s ≥ 0, we define

‖u‖2
H̃−s(ω,curl)

:= ‖u‖2
H̃−s(ω)

+ ‖ curl u‖2
H̃−s(ω)

and analogously the norms ‖u‖2
H̃−s(ω,div)

and ‖u‖2
H̃−s(ω,curl)

. The space H1/2(∂ω) will be understood as

the trace space of H1(ω) and H−1/2(∂ω) denotes its dual. The spaces H0(ω, curl) and H0(ω, div) are the
subspaces of H(ω, curl) and H(ω, div) with vanishing tangential or normal trace, defined as the closure of
(C∞

0 (ω))d under the norms ‖ · ‖H(ω,curl) and ‖ · ‖H(ω,div).

2 Projection based interpolation

K̂ ⊂ R
3 denotes the reference tetrahedron, which is taken to be the regular tetrahedron, i.e., its 4 faces

are equilateral triangles. The sets F(K̂), E(K̂) and V(K̂) denote the sets of faces, edges and vertices of K̂,

respectively. In the two-dimensional space, we use the notation f̂ for the reference triangle, which is taken
to be the equilateral triangle with interior angles π/3, and E(f̂) and V(f̂) for the set of edges and vertices of

f̂ . We also need the tangential trace and tangential component operators: For a sufficiently smooth function
u on K̂ we set Πτu := n × (u|∂K̂ × n) and γτu := u|∂K̂ × n, where n denotes the outer normal vector of

K̂. For a face f ∈ F(K̂) we will write Πτ,f for the (in-plane) tangential trace on ∂f , i.e., with the in-plane
exterior normal n∂f and sufficiently smooth tangential fields u we set Πτ,fu = u−n∂f (n∂f ·u). For sufficiently

smooth u, we have for each edge e ∈ E(K̂) Πτ,fu|e = u · te. Here, te is the tangential vector of the edge e; its
orientation is assumed to be fixed.
We have the integration by parts formula

(curl u,v)L2(K̂) = (curl v,u)L2(K̂) − 〈Πτu, γτv〉L2(∂K̂) ∀u,v ∈ H1(K̂), (2.1)
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which actually extends to u, v ∈ H(K̂, curl), [25, Thm. 3.29]. In 2D, we have the integration by parts formula
(Stokes formula) ∫

f̂

curl v ·F =

∫

f̂

v curlF−

∫

∂f̂

vF · t (2.2)

where the piecewise constant tangential vector t is oriented such that f̂ is “on the left”.
For each face f ∈ F(K̂) and s ≥ 0 we define the Sobolev spaces Hs(f), H̃−s(f) as well as Hs

T (f, curl) and

H̃−s
T (f, curl) by identifying the face f with a subset of R2 via an affine congruence map. The subscript T

indicates that tangential fields are considered. Also the spaces Hs(e) and H̃−s(e) on an edge e ∈ E(K̂) are
defined by such an identification.

2.0.1 Spaces on the reference element

On K̂ we introduce the classical Nédélec type I and Raviart-Thomas elements of degree p ≥ 0 (see, e.g., [25]):

Pp(K̂) := span{xα | |α| ≤ p}, (2.3)

N I
p(K̂) := {p(x) + x× q(x) |p,q ∈ (Pp(K̂))3}, (2.4)

RTp(K̂) := {p(x) + q(x)x |p ∈ (Pp(K̂))3, q ∈ Pp(K̂)}. (2.5)

Recall the exact sequences on the continuous level

R
id

−−−−→ H2(K̂)
∇

−−−−→ H1(K̂, curl)
curl

−−−−→ H1(K̂, div)
div

−−−−→ H1(K̂)
0

−−−−→ {0} (2.6)

and on the discrete level

R
id

−−−−→ Pp+1(K̂)
∇

−−−−→ N I
p(K̂)

curl
−−−−→ RTp(K̂)

div
−−−−→ Pp(K̂)

0
−−−−→ {0}. (2.7)

Using the notation

Wp+1(K̂) := Pp+1(K̂), Qp(K̂) := N
I
p(K̂), Vp(K̂) := RTp(K̂),

we present here projection operators Π̂grad,3d
p+1 , Π̂curl,3d

p , Π̂div,3d
p , Π̂L2

p that enjoy the commuting diagram property

R
id

−−−−→ H2(K̂)
∇

−−−−→ H1(K̂, curl)
curl

−−−−→ H1(K̂, div)
div

−−−−→ H1(K̂)
0

−−−−→ {0}
yΠ̂grad,3d

p+1

yΠ̂curl,3d
p

yΠ̂div,3d
p

yΠ̂L2

p

R
id

−−−−→ Wp+1(K̂)
∇

−−−−→ Qp(K̂)
curl

−−−−→ Vp(K̂)
div

−−−−→ Wp(K̂)
0

−−−−→ {0}

(2.8)

In the two-dimensional setting, the Nédélec type I elements are defined by

Qp(f̂) := N I
p(f̂) := {p(x) + q(x)(y,−x)T |p ∈ (Pp(f̂))

2, q ∈ P̃p(f̂)},

where P̃p(f̂) denotes the homogeneous polynomials of degree p. Here we have shorter exact sequences of the
forms

R
id

−−−−→ H3/2(f̂)
∇

−−−−→ H1/2(f̂ , curl)
curl

−−−−→ H1/2(f̂)
0

−−−−→ {0} (2.9)

on the continuous level and

R
id

−−−−→ Pp+1(f̂)
∇

−−−−→ N
I
p(f̂)

curl
−−−−→ Pp(f̂)

0
−−−−→ {0} (2.10)

one the discrete level. We then define projection operators Π̂grad,2d
p+1 , Π̂curl,2d

p , Π̂L2

p which satisfy the commuting
diagram property

R
id

−−−−→ H3/2(f̂)
∇

−−−−→ H1/2(f̂ , curl)
curl

−−−−→ H1/2(f̂)
0

−−−−→ {0}
yΠ̂grad,2d

p+1

yΠ̂curl,2d
p

yΠ̂L2

p

R
id

−−−−→ Wp+1(f̂)
∇

−−−−→ Qp(f̂)
curl

−−−−→ Wp(f̂)
0

−−−−→ {0}

(2.11)
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2.0.2 Trace spaces on the boundary

We will also need the traces of the spacesWp+1(K̂), Qp(K̂) and Vp(K̂) on various parts of the boundary. For

faces f ∈ F(K̂) the corresponding spaces are defined by trace operations:

Wp+1(f) :=Wp+1(K̂))|f , Qp(f) := (ΠτQp(K̂))|f , Vp(f) := Vp(K̂) · nf ,

where Πτ is the tangential component and nf the normal vector of f . These traces are well-known objects:

Identifying a face f with the reference triangle f̂ via the affine element map, the spaceWp+1(f) coincides with

the space Pp+1(R
2) of bivariate polynomials of (total) degree p+ 1; the space Qp(f) turns out to be N I

p(f),
the type-I Nédélec element on triangles; and Vp(f) is the space Pp(R

2). Lowering the dimension even further,

we introduce for each edge e ∈ E(K̂) the spaces

Wp+1(e) :=Wp+1(K̂))|e, Qp(e) := Qp(K̂) · te,

where te is the tangential vector of the edge e. Similar to the case of the faces, the space Wp+1(e) can be
identified with the univariate polynomials of degree p + 1 and Qp(e) with the univariate polynomimals of
degree p.
We also need subspaces of functions vanishing on the boundary in the appropriate sense. We set

W̊p+1(K̂) :=Wp+1(K̂) ∩H1
0 (K̂), Q̊p(K̂) := {u ∈ Qp(K̂) |Πτu = 0}, V̊p(K̂) := {u ∈ Vp(K̂) |n · u = 0}.

We also need W aver
p (K̂) := {u ∈Wp+1(K̂) |

∫
K̂
u = 0}. Corresponding spaces on lower-dimensional manifolds

are defined as follows:

W̊p+1(f) :=Wp+1(f) ∩H
1
0 (f), Q̊p(f) := {u ∈ Qp(f) |Πτ,fu = 0},

V̊p(f) := {u ∈ Vp(f) |

∫

f

u = 0}.

Finally, we set for edges e ∈ E(K̂)

W̊p+1(e) :=Wp+1(e) ∩H
1
0 (e), Q̊p(e) := {u ∈ Qp(e) |

∫

e

u = 0}.

By e.g., [15] or [23] (actually, [23] uses the tangential trace operator γτ instead of Πτ in the definition of
the spaces Qp(f) and correspondingly identifies the space Qp(f) with a Raviart-Thomas space instead of a

Nédélec space) we have the following diagrams for faces f ∈ F(K̂) and edges e ∈ E(K̂)

{0}
Id

−−−−→ W̊p+1(K̂)
∇

−−−−→ Q̊p(K̂)
curl

−−−−→ V̊p(K̂)
div

−−−−→ W aver
p (K̂)

0
−−−−→ {0}

{0}
Id

−−−−→ W̊p+1(f)
∇f

−−−−→ Q̊p(f)
curlf

−−−−→ V̊p(f)
0

−−−−→ {0}

{0}
Id

−−−−→ W̊p+1(e)
∇e−−−−→ Q̊p(e)

0
−−−−→ {0}

(2.12)

In this diagram (and in what follows), the operators ∇f , ∇e represent surface gradients on a face f and
tangential differentiation on an edge e, respectively. The operator curlf is the surface curl on face f .
In two dimensions, we set

W̊p+1(f̂) :=Wp+1(f̂) ∩H
1
0 (f̂), Q̊p(f̂) := {u ∈ Qp(f̂) |u · te = 0 ∀e ∈ E(f̂)}.

One again looks at shortened sequences, namely,

{0}
Id

−−−−→ W̊p+1(f̂)
∇

−−−−→ Q̊p(f̂)
curl

−−−−→ V̊p(f̂)
0

−−−−→ {0}

{0}
Id

−−−−→ W̊p+1(e)
∇e−−−−→ Q̊p(e)

0
−−−−→ {0}

(2.13)

2.1 Definition of the operators Π̂
grad,3d
p+1 , Π̂curl,3d

p , Π̂div,3d
p

The construction is similar to that in [15,17]. The difference is that all inner products are integer order inner
products.
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2.1.1 The operators in 3D

Definition 2.1 (Π̂grad,3d
p+1 ). The operator Π̂grad,3d

p+1 : H2(K̂) →Wp+1(K̂) is defined by

(∇(u − Π̂grad,3d
p+1 u),∇v)L2(K̂) = 0 ∀v ∈ W̊p+1(K̂), (2.14a)

(∇f (u − Π̂grad,3d
p+1 u),∇fv)L2(f) = 0 ∀v ∈ W̊p+1(f) ∀f ∈ F(K̂), (2.14b)

(∇e(u− Π̂grad,3d
p+1 u),∇ev)L2(e) = 0 ∀v ∈ W̊p+1(e) ∀e ∈ E(K̂), (2.14c)

u(V )− Π̂grad,3d
p+1 u(V ) = 0 ∀V ∈ V(K̂). (2.14d)

Definition 2.2 (Π̂curl,3d
p ). The operator Π̂curl,3d

p : H1(K̂, curl) → Qp(K̂) is defined by the following conditions

(curl(u− Π̂curl,3d
p u), curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂), (2.15a)

((u− Π̂curl,3d
p u),∇v)L2(K̂) = 0 ∀v ∈ W̊p+1(K̂), (2.15b)

(curlf Πτ (u− Π̂curl,3d
p u), curlf v)L2(f) = 0 ∀v ∈ Q̊p(f) ∀f ∈ F(K̂), (2.15c)

(Πτ (u− Π̂curl,3d
p u),∇fv)L2(f) = 0 ∀v ∈ W̊p+1(f) ∀f ∈ F(K̂), (2.15d)

(te · (u− Π̂curl,3d
p u),∇ev)L2(e) = 0 ∀v ∈ W̊p+1(e) ∀e ∈ E(K̂), (2.15e)

(te · (u− Π̂curl,3d
p u), 1)L2(e) = 0 ∀e ∈ E(K̂). (2.15f)

Definition 2.3 (Π̂div,3d
p ). The operator Π̂div,3d

p : H1/2(K̂, div) → Vp(K̂) is defined by the following conditions:

(div(u− Π̂div,3d
p u), div v)L2(K̂) = 0 ∀v ∈ V̊p(K̂), (2.16a)

((u− Π̂div,3d
p u), curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂), (2.16b)

(nf · (u− Π̂div,3d
p u), v)L2(f) = 0 ∀v ∈ V̊p(f) ∀f ∈ F(K̂), (2.16c)

(nf · (u− Π̂div,3d
p u), 1)L2(f) = 0 ∀f ∈ F(K̂). (2.16d)

Definition 2.4 (Π̂L2

p ). The operator Π̂L2

p : L2(K̂) →Wp(K̂) is defined by the conditions

(u− Π̂L2

p u, v)L2(K̂) = 0 ∀v ∈ Wp(K̂). (2.17)

2.1.2 The operators in 2D

We define the projection operators following the lines of Section 2.1.1. The operators are then well-defined
by the following equations, which can be shown by checking the numbers of conditions the same way as in
Section 2.1.1.

Definition 2.5 (Π̂grad,2d
p+1 ). The operator Π̂grad,2d

p+1 : H3/2(f̂) →Wp+1(f̂) is defined by

(∇(u− Π̂grad,2d
p+1 u),∇v)L2(f̂) = 0 ∀v ∈ W̊p+1(f̂), (2.18a)

(∇e(u− Π̂grad,2d
p+1 u),∇ev)L2(e) = 0 ∀v ∈ W̊p+1(e) ∀e ∈ E(f̂), (2.18b)

u(V )− Π̂grad,2d
p+1 u(V ) = 0 ∀V ∈ V(f̂). (2.18c)

Definition 2.6 (Π̂curl,2d
p ). The operator Π̂curl,2d

p : H1/2(f̂ , curl) → Qp(f̂) is defined by

(curl(u− Π̂curl,2d
p u), curlv)L2(f̂) = 0 ∀v ∈ Q̊p(f̂), (2.19a)

((u− Π̂curl,2d
p u),∇v)L2(f̂) = 0 ∀v ∈ W̊p+1(f̂), (2.19b)

(te · (u− Π̂curl,2d
p u),∇ev)L2(e) = 0 ∀v ∈ W̊p+1(e) ∀e ∈ E(f̂ ), (2.19c)

(te · (u− Π̂curl,2d
p u), 1)L2(e) = 0 ∀e ∈ E(f̂). (2.19d)
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Definition 2.7 (Π̂L2

p ). The operator Π̂L2

p : L2(f̂) →Wp(f̂) is defined by

(u− Π̂L2

p u, v)L2(f̂) = 0 ∀v ∈ Wp(f̂). (2.20)

It is worth pointing out that, up to identifying a face f ∈ F(K̂) with the reference triangle f̂ , the 2D operators

Π̂grad,2d
p+1 , Π̂curl,2d

p coincide with the restrictions to the face f of Π̂grad,3d
p+1 , Π̂curl,3d

p .

2.2 Main results

We can now formulate the main theorems. The proofs are postponed to the later sections.

Theorem 2.8 (Projection-based interpolation in 3D). There are constants Cs and Cs,k (depending only on
s and k) such that:

(i) The operators Π̂grad,3d
p+1 , Π̂curl,3d

p , Π̂div,3d
p , Π̂L2

p are well-defined, projections, and the diagram (2.8) com-
mutes.

(ii) For all ϕ ∈ H2(K̂) there holds

‖ϕ− Π̂grad,3d
p+1 ϕ‖H1−s(K̂) ≤ Csp

−(1+s) inf
v∈Wp+1(K̂)

‖ϕ− v‖H2(K̂), s ∈ [0, 1].

(iii) For all u ∈ H1(K̂, curl) there holds

‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) ≤ Csp
−(1+s) inf

v∈Qp(K̂)
‖u− v‖

H1(K̂,curl), s ∈ [0, 1].

(iv) For all k ≥ 1 and all u ∈ Hk(K̂) with curl u ∈ Vp(K̂) = RTp(K̂) ⊃ (Pp(K̂))3 there holds

‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂), s ∈ [0, 1]. (2.21)

If p ≥ k − 1, then the full norm ‖u‖
Hk(K̂) can be replaced with the seminorm |u|

Hk(K̂).

(v) For all u ∈ H1/2(K̂, div) there holds

‖u− Π̂div,3d
p u‖

H̃−s(K̂,div) ≤ Csp
−(1/2+s) inf

v∈V p(K̂)
‖u− v‖

H1/2(K̂,div), s ∈ [0, 1].

(vi) For all k ≥ 1 and all u ∈ Hk(K̂) with divu ∈ Pp(K̂) there holds

‖u− Π̂div,3d
p u‖

H̃−s(K̂,div) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂), s ∈ [0, 1]. (2.22)

If p ≥ k − 1, then the full norm ‖u‖
Hk(K̂) can be replaced with the seminorm |u|

Hk(K̂).

Proof. Statement (i) asserts that the pertinent traces are well-defined and in L2-based spaces. ThatH1(K̂, curl)-
functions have L2-traces on the edges is shown with the arguments given at the beginning of Lemma 4.11.
That H1/2(K̂, div)-functions have normal traces in L2 on the faces is shown in Lemma 5.16. The commuting
diagram property follows by arguments very similar to those given in [15]; details can be found in Section B.
For (ii) see Theorem 5.10. Item (iii) is shown Theorem 5.14 and (iv) in Lemma 5.15. Statement (v) is given
in Theorem 5.20, and statement (vi) is shown in Lemma 5.21.

The projection property of the operators Π̂grad,3d
p+1 , Π̂curl,3d

p , Π̂div,3d
p together with the best approximation

property of Lemma 4.1 implies:

Corollary 2.9. For k ≥ 1 and s ∈ [0, 1] there are constants Cs,k depending only on k, s such that

‖ϕ− Π̂grad,3d
p+1 ϕ‖H1−s(K̂) ≤ Cs,kp

−(k+s)‖ϕ‖Hk+1(K̂), (2.23)

‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂,curl) (2.24)

‖u− Π̂div,3d
p u‖

H̃−s(K̂,div) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂,div). (2.25)
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Proof. The estimate (2.23) follows directly from Theorem 2.8, (ii) and the best approximation result Lemma 4.1.
For the proof of the estimate (2.24) we use Theorem 2.8, (iii) and Lemma 4.1 in the following way: With
Lemma 5.5, we write u = ∇ϕ+ z with ‖ϕ‖Hk+1(K̂) . ‖u‖

Hk(K̂,curl) and ‖z‖
Hk+1(K̂) . ‖ curl u‖

Hk(K̂). From

Theorem 2.8, (iii) and Lemma 4.1 we infer

‖u− Π̂curl,3d
p u‖

H−s(K̂,curl) . p−(1+s) inf
v∈Wp(K̂),q∈Qp(K̂)

‖∇ϕ+ z− (∇v + q)‖
H1(K̂,curl)

. p−(1+s)

[
inf

v∈Wp(K̂)
‖ϕ− v‖H2(K̂) + inf

q∈Qp(K̂)
‖z− q‖

H2(K̂)

]

Lem. 4.1

. p−(1+s)−(k+1−2)
[
‖ϕ‖Hk+1(K̂) + ‖z‖

Hk+1(K̂)

]
. p−(s+k)‖u‖

Hk(K̂,curl).

The bound (2.25) is shown in a similar way, using, for u ∈ Hk(K̂, div) the decomposition u = curlϕ + z

with ‖ϕ‖
Hk+1(K̂) . ‖u‖

Hk(K̂,div) and ‖z‖
Hk+1(K̂) . ‖ divu‖Hk(K̂) given by Lemma 5.6 and arguing with

Theorem 2.8, (v) and Lemma 4.1, thus:

‖u− Π̂div,3d
p u‖

H−s(K̂,div) . p−(1/2+s) inf
q∈Qp(K̂),v∈Vp(K̂)

‖ curlϕ+ z− (curl q+ v)‖
H1/2(K̂,div)

. p−(1/2+s)

[
inf

q∈Qp(K̂)
‖ϕ− q‖

H3/2(K̂) + inf
v∈Vp(K̂)

‖z− v‖
H3/2(K̂)

]

Lem. 4.1

. p−(s+k)‖u‖
Hk(K̂,div).

Remark 2.10. The operators Π̂grad,3d
p+1 , Π̂curl,3d

p , Π̂div,3d
p , Π̂L2

p admit element-by-element constructions as in

Definition C.1. The global operators Πgrad
p+1 , Π

curl
p , Πdiv

p , ΠL2

p obtained from the operators Π̂grad,3d
p+1 , Π̂curl,3d

p ,

Π̂div,3d
p , Π̂L2

p by an element-by-element construction are also linear projection operators with the commuting
diagram property

R
id

−−−−→ H2(Ω)
∇

−−−−→ H1(Ω, curl)
curl

−−−−→ H1(Ω, div)
div

−−−−→ H1(Ω)
0

−−−−→ {0}
yΠgrad

p+1

yΠcurl
p

yΠdiv
p

yΠL2

p

R
id

−−−−→ Wp+1(T )
∇

−−−−→ Qp(T )
curl

−−−−→ Vp(T )
div

−−−−→ Wp(T )
0

−−−−→ {0}

. (2.26)

This is a direct consequence of Theorem 2.8, (i) and the fact that the operators are constructed element by
element.

Theorem 2.11 (Projection-based interpolation in 2D). There are constants Cs,k depending only on s, k such
that the following holds:

(i) The operators Π̂grad,2d
p+1 , Π̂curl,2d

p , Π̂L2

p are well-defined, projections, and the diagram (2.11) commutes.

(ii) For all ϕ ∈ H3/2(f̂) there holds

‖ϕ− Π̂grad,2d
p+1 ϕ‖H1−s(f̂) ≤ Cs,kp

−(1/2+s) inf
v∈Wp+1(f̂)

‖ϕ− v‖H3/2(f̂), s ∈ [0, 1]

‖ϕ− Π̂grad,2d
p+1 ϕ‖H̃1−s(f̂) ≤ Cs,kp

−(1/2+s) inf
v∈Wp+1(f̂)

‖ϕ− v‖H3/2(f̂), s ∈ [1, 3).

(iii) For all u ∈ H1/2(f̂ , curl) there holds

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) ≤ Cs,kp
−(1/2+s) inf

v∈Qp(f̂)
‖u− v‖

H1/2(f̂ ,curl), s ∈ [0, 3).

(iv) For all k ≥ 1 and all u ∈ Hk(f̂) with curlu ∈ Pp(f̂) there holds

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(f̂), s ∈ [0, 3). (2.27)

If p ≥ k − 1, then the full norm ‖u‖
Hk(f̂) can be replaced with the seminorm |u|

Hk(f̂).
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Proof. The proof of (i) follows by arguments very similar to those given in [15]; details can be found in
Section B. Item (ii) is shown in Theorem 4.8 and item (iii) in Lemma 4.13. For statement (iv), see Lemma 4.14.

The following corollary is the two-dimensional analog of Corollary 2.9:

Corollary 2.12. For k ≥ 1,

‖ϕ− Π̂grad,2d
p+1 ϕ‖H1−s(f̂) ≤ Cs,kp

−(k+s)‖ϕ‖Hk+1(f̂), s ∈ [0, 1], (2.28)

‖ϕ− Π̂grad,2d
p+1 ϕ‖H̃1−s(f̂) ≤ Cs,kp

−(k+s)‖ϕ‖Hk+1(f̂), s ∈ [1, 3), (2.29)

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(f̂ ,curl), s ∈ [0, 3). (2.30)

Proof. The proof follows as in Corollary 2.9, relying on Lemma 4.5 for the proof of (2.30).

3 Stability of the projection operators in one space dimension

In the one-dimensional space, the following result holds true.

Lemma 3.1. Let ê = (−1, 1). Let Π̂grad,1d
p : H1(ê) → Pp be defined by

((u− Π̂grad,1d
p u)′, v′)L2(ê) = 0 ∀v ∈ Pp ∩H

1
0 (ê),

u(±1) = (Π̂grad,1d
p u)(±1).

(3.1)

Then for every s ≥ 0 there is Cs such that

‖u− Π̂grad,1d
p u‖H1−s(ê) ≤ Csp

−s inf
v∈Pp(ê)

‖u− v‖H1(ê), if s ∈ [0, 1] (3.2a)

‖u− Π̂grad,1d
p u‖H̃1−s(ê) ≤ Csp

−s inf
v∈Pp(ê)

‖u− v‖H1(ê), if s ≥ 1. (3.2b)

Proof. The case s = 0 in (3.2a) reflects the well-known best approximation property of Π̂grad,1d
p . For s ≥ 1,

one proceeds by a standard duality argument. We set ẽ := u − Π̂grad,1d
p u and t = −(1 − s) ≥ 0. We need an

estimate for

‖ẽ‖H̃−t(ê) = sup
v∈Ht(ê)

(ẽ, v)L2(ê)

‖v‖Ht(ê)
.

For every v ∈ Ht(ê), there exists a unique solution z ∈ Ht+2(ê) ∩H1
0 (ê) of the problem

−z′′ = v on ê, z = 0 on ∂ê

satisfying ‖z‖Ht+2(ê) . ‖v‖Ht(ê). Thus, we obtain using integration by parts, the orthogonality condition (3.1)
and the estimate for s = 0

|(ẽ, v)L2(ê)| = |(ẽ′, z′)L2(ê)| ≤ ‖ẽ′‖L2(ê) inf
π∈Pp∩H1

0 (ê)
‖z′ − π′‖L2(ê)

. ‖ẽ′‖L2(ê)p
−(t+1)‖z‖Ht+2(ê)

(3.2a) with s = 0

. p−(t+1) inf
v∈Pp(ê)

‖u− v‖H1(ê)‖v‖Ht(ê),

which implies (3.2b) for s ≥ 1. Noting that H̃0(ê) = L2(ê) = H0(ê), the remaining cases s ∈ (0, 1) follow by
interpolation.

4 Stability of the projection operators in two space dimensions

4.1 Preliminaries

We recall the following unconstrained approximation results:
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Lemma 4.1. Let K be the reference tetrahedron K̂ or the reference triangle f̂ . Fix 0 ≤ r and d ∈ N. Then
there are approximation operators Jp : Hr(K) → (Pp)

d such that

‖u− Jpu‖Hs(K) ≤ C(p+ 1)−(r−s)‖u‖Hr(K), ∀p ∈ N0, 0 ≤ s ≤ r.

Proof. The scalar case d = 1 is well-known, a proof can be found, e.g., in [24, Thm. 5.1]. The case d > 1
follows from a componentwise application of the case d = 1.

Lemma 4.2 ([15]). Let P grad,2du ∈Wp+1(f̂) be defined by the conditions

(∇(u− P grad,2du),∇v)L2(f̂) = 0 ∀v ∈ Wp+1(f̂), (4.1a)

(u − P grad,2du, 1)L2(f̂) = 0. (4.1b)

Then, for r > 1, there holds ‖u− P grad,2du‖H1(f̂) ≤ Crp
−(r−1)‖u‖Hr(f̂).

Lemma 4.3 ([15]). Let P curl,2du ∈ Qp(f̂) be defined by the conditions

(curl(u− P curl,2du), curlv)L2(f̂) = 0 ∀v ∈ Qp(f̂), (4.2a)

(u− P curl,2du,∇v)L2(f̂) = 0 ∀v ∈ Wp+1(f̂). (4.2b)

Then, for r > 0 there holds ‖u− P curl,2du‖
H(f̂ ,curl) ≤ Cp−r‖u‖

Hr(f̂ ,curl).

The next lemma provides right inverses for the differential operators ∇ and curl;

Lemma 4.4 ([13], [6, Sec. 2.3]). Let B ⊂ f̂ be a ball. Let θ ∈ C∞
0 (B) with

∫
B
θ = 1. Define the operators

Rgradu(x) :=

∫

a∈B

θ(a)

∫ 1

t=0

u(a+ t(x− a)) dt · (x− a) da,

Rcurlu(x) :=

∫

a∈B

θ(a)

∫ 1

t=0

tu(a+ t(x − a)) dt

(
−(x2 − a2)
x1 − a1

)
da.

Then:

(i) For u ∈ L2(f̂), there holds curlRcurlu = u.

(ii) For u with curl u = 0, there holds ∇Rgradu = u.

(iii) If u ∈ Qp(f̂), then R
gradu ∈Wp+1(f̂).

(iv) If u ∈ Vp(f̂), then Rcurlu ∈ Qp(f̂).

(v) For every k ≥ 0, the operators Rgrad and Rcurl are bounded linear operators Hk(f̂) → Hk+1(f̂) and

Hk(f̂) → Hk+1(f̂), respectively.

Lemma 4.4 can now be used to construct regular Helmholtz-like decompositions.

Lemma 4.5. Let s ≥ 0. Then each u ∈ Hs(f̂ , curl) can be written as u = ∇ϕ + z with ϕ ∈ Hs+1(f̂),

z ∈ Hs+1(f̂).

Proof. With the aid of the operators Rcurl, Rgrad of Lemma 4.4, we write u = ∇Rgrad(u −Rcurl(curlu)) +
Rcurl(curlu). The mapping properties of Rcurl and Rgrad of Lemma 4.4 then imply the result.

Lemma 4.6 (discrete Friedrichs inequality in 2D). There exists C > 0 independent of p and u such that

‖u‖L2(f̂) ≤ C‖ curlu‖L2(f̂) (4.3)

in the following two cases:

(i) u ∈ Qp(f̂) satisfies (u,∇v)L2(f̂) = 0 for all v ∈Wp+1(f̂).
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(ii) u ∈ Q̊p(f̂) satisfies (u,∇v)L2(f̂) = 0 for all v ∈ W̊p+1(f̂).

Proof. Statement (i) is proved in [17, Lemma 6] or [15, Lemma 4.1]. Statement (ii) is shown with similar

techniques. Let Rgrad and Rcurl be the operators of Lemma 4.4. We decompose u ∈ Q̊p(f̂) as

u = ∇ψ +Rcurl(curlu), ψ := Rgrad(u−Rcurl(curlu)).

Since u ∈ Q(f̂) we have ψ ∈ Wp+1(f̂). The property u ∈ Q̊p(f̂) implies with the tangential vector t on the

boundary ∂f̂
t · ∇ψ = −t ·Rcurl(curlu).

Since ψ is continuous at the vertices of f̂ , we infer

|ψ|H1/2(∂f̂) . |ψ|H1(∂f̂) = ‖t ·Rcurl(curlu)‖L2(∂f̂) ≤ |Rcurl(curlu)|L2(∂f̂)

. ‖Rcurl(curlu)‖H1/2(∂f̂) . ‖Rcurl(curlu)‖H1(f̂) . ‖ curlu‖L2(f̂).

Next, we decompose ψ = ψ0 + L(ψ|∂f̂ ), where L : H1/2(∂f̂) → H1(f̂) is the lifting operator of [4]. Since L

produces a polynomial and ψ ∈ Wp+1(f̂), we get that ψ0 ∈ W̊p+1(f̂) and estimate

‖u‖2
L2(f̂)

= (u,∇ψ0 +∇L(ψ|∂f̂ ) +Rcurl(curlu))L2(f̂) = (u,∇L(ψ|∂f̂ ) +Rcurl(curlu))L2(f̂)

≤ ‖u‖L2(f̂)

{
‖∇L(ψ|∂f̂ )‖L2(f̂) + ‖Rcurl(curlu)‖L2(f̂)

}

≤ ‖u‖L2(f̂)

{
‖ψ‖H1/2(∂f̂) + ‖Rcurl(curlu)‖|L2(f̂)

}
. ‖u‖L2(f̂)‖ curlu‖L2(f̂).

Recall that the reference triangle f̂ is the equilateral triangle with interior angles π/3. Thus we have the
following well-known shift theorem for the Laplacian.

Lemma 4.7. For every s ∈ [0, 2) there is Cs > 0 such that the following shift theorems are true:

(i) For every v ∈ Hs(f̂) the solution z of the problem

−∆z = v on f̂ , z = 0 on ∂f̂ ,

satisfies z ∈ Hs+2(f̂) ∩H1
0 (f̂) with the estimate ‖z‖Hs+2(f̂) ≤ Cs‖v‖Hs(f̂).

(ii) For every v ∈ Hs(f̂) and data g ∈ L2(∂f̂) with g|e ∈ Hs+1/2(e), e ∈ E(f̂) that satisfies additionally the
compatibility condition

∫
f̂ v +

∫
∂f̂ g = 0, the solution z of the problem

−∆z = v on f̂ , ∂nz = g on ∂f̂ ,

∫

f̂

z = 0,

satisfies z ∈ Hs+2(f̂) together with ‖z‖Hs+2(f̂) ≤ Cs

[
‖v‖Hs(f̂) +

∑
e∈E(f̂) ‖g‖Hs+1/2(e)

]
.

Proof. 1. step: It follows from [14,22] that both regularity assertions are satisfied for the case of homogeneous
Dirichlet and Neumann conditions (i.e., g = 0). The key observation is that the leading corner singularities
for both the homogeneous Dirichlet and Neumann problem are in H4−ε for every ε > 0, since they are of
the form O(r3 log r), where r measures the distance from the vertex (with which the singularity function is
associated).

2. step: For the case of inhomogeneous Neumann conditions g 6= 0, one constructs a vector field σ ∈ Hs+1(f̂)

such that σ · n = g on ∂f̂ . It is easy to construct such a vector field away from the vertices, and near the
vertices, an affine coordinate change reduces the construction to one in a quarter plane, where each component
of σ can be constructed separately by lifting from one of the coordinate axes. Next, one solves the two problems

−∆z0 = v + divσ in f̂ , ∂nz0 = 0 on ∂f̂ ,

−∆z̃0 = curlσ in f̂ , z̃0 = 0 on ∂f̂ .

From step 1, one has that z0, z̃0 ∈ Hs+2(f̂). It remains to see that ∇z = σ + curl z̃0 + ∇z0. This follows
from the observation that the difference δ := ∇z − (σ + curl z̃0 +∇z0) satisfies div δ = 0 = curlδ as well as

δ · n = 0 on ∂f̂ .
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4.2 Stability of the operator Π̂
grad,2d
p+1

Theorem 4.8. For every s ∈ [0, 3) there is Cs such that

‖u− Π̂grad,2d
p+1 u‖H1−s(f̂) ≤ Csp

−(1/2+s) inf
v∈Pp(f̂)

‖u− v‖H3/2(f̂) if s ∈ [0, 1], (4.4a)

‖u− Π̂grad,2d
p+1 u‖H̃1−s(f̂) ≤ Csp

−(1/2+s) inf
v∈Pp(f̂)

‖u− v‖H3/2(f̂) if s ∈ [1, 3). (4.4b)

Proof. The first observation is that it suffices to show the estimates (4.4a), (4.4b) for the special case v = 0 in

the infimum by the projection property of Π̂grad,2d
p+1 . We will therefore show in a first step (4.4a) for the case

s = 0. In a second step, we show (4.4b) for the cases s ∈ [1, 3). The remaining cases s ∈ (0, 1) are obtained
by interpolating between the case s = 0 and the case s = 1 (for which (4.4a) and (4.4b) coincide).

We note that the trace theorem gives u ∈ H1(e) for each edge e ∈ E(f̂) with ‖u‖H1(e) . ‖u‖H3/2(f̂). By

Lemma 3.1, we have for every edge e ∈ E(f̂)

‖u− Π̂grad,2d
p+1 u‖H1−s(e) ≤ Cp−s‖u‖H3/2(f̂), s ∈ [0, 1]. (4.5)

Since Π̂grad,2d
p+1 u is piecewise polynomial and continuous on ∂f̂ , we infer in particular for s = 0 and s = 1 the

bounds
‖u− Π̂grad,2d

p+1 u‖H1−s(∂f̂) ≤ Cp−s‖u‖H3/2(f̂), (4.6)

and then, by interpolation, also for the intermediate s ∈ (0, 1). Next, we show (4.4a) for s = 0. In view of

the existence of a polynomial preserving lifting of [4] that is continuous H1/2(∂f̂) → H1(f̂) and the fact that

P grad,2du− Π̂grad,2d
p+1 u is discrete harmonic, i.e.,

(∇(P grad,2du− Π̂grad,2d
p+1 u),∇v)L2(f̂) = 0 ∀v ∈ W̊p+1(f̂), (4.7)

we infer from Lemma 4.2 and (4.6) for the seminorm | · |H1(f̂)

|u− Π̂grad,2d
p+1 u|H1(f̂) ≤ |u− P grad,2du|H1(f̂) + |P grad,2du− Π̂grad,2d

p+1 u|H1(f̂)

. p−1/2‖u‖H3/2(f̂) + ‖P grad,2du− Π̂grad,2d
p+1 u‖H1/2(∂f̂)

. p−1/2‖u‖H3/2(f̂) + ‖u− P grad,2du‖H1(f̂) . p−1/2‖u‖H3/2(f̂),

(4.8)

which is (4.4a) for s = 0. We next show the estimate (4.4b) for s ∈ [1, 3) by a duality argument. Let

ẽ = u− Π̂grad,2d
p+1 u, and set t = −(1− s). To estimate

‖ẽ‖H̃−t(f̂) = sup
v∈Ht(f̂)

(ẽ, v)L2(f̂)

‖v‖Ht(f̂)

(4.9)

let v ∈ Ht(f̂) and z ∈ Ht+2(f̂) ∩H1
0 (f̂) solve (cf. Lemma 4.7)

−∆z = v in f̂ , z|∂f̂ = 0.

Note the a priori estimate ‖z‖Ht+2(f̂) ≤ C‖v‖Ht(f̂). Then, integration by parts yields

(ẽ, v)L2(f̂) =

∫

f̂

∇ẽ · ∇z −

∫

∂f̂

∂nzẽ. (4.10)

For the first term in (4.10) we get by the orthogonality properties satisfied by ẽ, Lemma 4.1 and (4.8)
∣∣∣∣
∫

f̂

∇z · ∇ẽ

∣∣∣∣ ≤ inf
π∈Pp∩H1

0 (f̂)
‖z − π‖H1(f̂)‖∇ẽ‖L2(f̂) . p−(t+1)‖z‖Ht+2(f̂)‖∇ẽ‖L2(f̂)

. p−(t+1)‖∇ẽ‖L2(f̂)‖v‖Ht(f̂)

(4.4a) with s = 0

. p−(1/2+s)‖u‖H3/2(f̂)‖v‖Ht(f̂).

(4.11)

For the second term in (4.10) we use Lemma 3.1 to obtain on each edge e ∈ E(f̂)

|(∂nz, ẽ)L2(e)| . ‖ẽ‖H̃−(t+1/2)(e)‖∂nz‖Ht+1/2(e) . p−(3/2+t)‖u‖H1(e)‖z‖Ht+2(f̂) . p−(1/2+s)‖u‖H3/2(f̂)‖v‖Ht(f̂).

(4.12)

Inserting (4.11) and (4.12) in (4.9) yields (4.4b) for s ∈ [1, 3). The estimate (4.4a) for s ∈ (0, 1) now follows
by interpolation between s = 0 and s = 1.
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4.3 Stability of the operator Π̂curl,2d
p

The following lemmata present the duality arguments that are needed later on to estimate negative Sobolev
norms.

Lemma 4.9. Let E ∈ H(f̂ , curl) satisfy the orthogonality conditions

(curlE, curlv)L2(f̂) = 0 ∀v ∈ Q̊p(f̂), (4.13a)

(E,∇ϕ)L2(f̂) = 0 ∀ϕ ∈ W̊p+1(f̂), (4.13b)

(E · te,∇eϕ)L2(e) = 0 ∀ϕ ∈ W̊p+1(e), ∀e ∈ E(f̂), (4.13c)

(E · te, 1)L2(e) = 0 ∀e ∈ E(f̂). (4.13d)

Then, for s ∈ [0, 3), there holds ‖E‖
H̃−s(f̂) ≤ Cp−s‖E‖

H(f̂ ,curl).

Proof. 1. step: We may restrict to the case s ≥ 1 as the case s = 0 is trivial and the remaining cases s ∈ [0, 1]
follow then by interpolation.
2. step: Any v ∈ Hs(f̂) can be decomposed as

v = ∇ϕ+ curl z, (4.14)

where ϕ, z ∈ Hs+1(f̂) are determined by the following equations:

−∆ϕ = − div v, ϕ = 0 on ∂f̂ , (4.15a)

−∆z = curlv, ∂nz = −t · curl z = −t · (v −∇ϕ) on ∂f̂ ,

∫

f̂

z = 0. (4.15b)

Here, t denotes the unit tangent vector on ∂f̂ oriented such that f̂ is “on the left”. We note that (4.15b)
is a Neumann problem; integration by parts shows that the solvability condition is satisfied. We have by
Lemma 4.7 the a priori estimates

‖ϕ‖Hs+1(f̂) . ‖ div v‖Hs−1(f̂), ‖z‖Hs+1(f̂) . ‖v‖
Hs(f̂). (4.16)

Together with integration by parts (cf. (2.2)) we compute

(E,v)L2(f̂) = (E,∇ϕ)L2(f̂) + (E, curl z)L2(f̂) = (E,∇ϕ)L2(f̂) + (curlE, z)L2(f̂) −

∫

∂f̂

zE · t. (4.17)

and estimate each of the three terms separately.
3. step: Using the orthogonalities satisfied by E and ϕ ∈ H1

0 (f̂) ∩ H
s+1(f̂) we obtain for the first term in

(4.17)

(E,∇ϕ)L2(f̂) = inf
w∈W̊p+1(f̂)

(E,∇(ϕ− w))L2(f̂) . p−s‖ div v‖Hs−1(f̂)‖E‖L2(f̂) . p−s‖v‖
Hs(f̂)‖E‖

H(f̂ ,curl).

4. step: The term (z,E · t)L2(∂f̂) in (4.17) can be treated using the orthogonalities satisfied by E: Using that

z ∈ Hs+1(f̂) so that z ∈ C(∂f̂) and z ∈ Hs+1/2(e) for each edge e ∈ E(f̂) and the orthogonality properties
(4.13c) and (4.13d), we get

∣∣∣∣
∫

∂f̂

E · tz

∣∣∣∣ = inf
w∈Wp(∂f̂)

∣∣∣∣
∫

∂f̂

E · t(z − w)

∣∣∣∣ . ‖E · t‖H−1/2(∂f̂) inf
w∈Wp(∂f̂)

‖z − w‖H1/2(∂f̂)

. p−s‖E · t‖H−1/2(∂f̂)‖z‖Hs+1(f̂) . p−s‖E‖
H(f̂ ,curl)‖v‖Hs(f̂),

where, in the final step, we used the continuity of the tangential trace map: ‖E · t‖H−1/2(∂f̂) . ‖E‖
H(f̂ ,curl).

(cf., e.g., [15, (eq. (154)]).
5. step: For the first term in (4.17) , we introduce an auxiliary function z with the following key properties:

curl z = z, z · t = 0

12



Such a function can be obtained as z = curl z̃, where z̃ solves the following Neumann problem (note that∫
f̂ z = 0, so the solvability condition is satisfied)

−∆z̃ = z in f̂ , ∂nz̃ = 0 on ∂f̂ .

We obtain

(curlE, z)L2(f̂) = (curlE, curl z)L2(f̂)

(4.13a)
= inf

w∈Q̊p(f̂)
(curlE, curl(z−w))L2(f̂)

. p−s‖ curlE‖L2(f̂)‖z‖Hs(f̂ ,curl)

Lem. 4.3

. p−s‖E‖
H(f̂ ,curl)‖v‖Hs(f̂).

Lemma 4.10. Let E ∈ H(f̂ , curl) satisfy (4.13a), (4.13d). Then, for s ∈ [0, 3), there holds ‖ curlE‖H̃−s(f̂) ≤

Csp
−s‖ curlE‖L2(f̂).

Proof. As in the proof of Lemma 4.9, we restrict to s ≥ 1 and argue by interpolation for s ∈ [0, 1]. Let

v ∈ Hs(f̂) and v := (
∫
f̂
v)/|f̂ | ∈ R be its average. Integration by parts yields

(curlE, v)L2(f̂) = (curlE, v − v)L2(f̂) + v(E · t, 1)L2(∂f̂)

(4.13d)
= (curlE, v − v)L2(f̂).

Next, we define the auxiliary function ϕ ∈ Hs+1(f̂) as the solution of

−∆ϕ = v − v in f̂ , ∂nϕ = 0 on ∂f̂

and set v := curlϕ. (Lemma 4.7 is applicable since s+1 < 4; for s < 2 Lemma 4.7 even asserts ϕ ∈ Hs+2(f̂).)

We note curlv = −∆ϕ = v − v in f̂ and t · v = −∂nϕ = 0 on ∂f̂ so that integration by parts gives

(curlE, v − v)L2(f̂) = (curlE, curlv)L2(f̂)

(4.13a)
= inf

w∈Q̊p(f̂)
(curlE, curl(v −w))L2(f̂)

Lem. 4.3

. p−s‖ curlE‖L2(f̂)‖v‖Hs(f̂ ,curl) . p−s‖ curlE‖L2(f̂)‖v‖Hs(f̂).

After the next lemma about approximation on edges e ∈ E(f̂), we can prove the stability results in 2D as
stated in Theorem 2.11.

Lemma 4.11. For each edge e ∈ E(f̂) we have for u ∈ H1/2(f̂ , curl) and s ≥ 0

‖(u− Π̂curl,2d
p u) · te‖H̃−s(e) ≤ Csp

−s inf
v∈Pp(e)

‖u · te − v‖L2(e). (4.18)

Proof. Note that u ∈ H1/2(f̂ , curl) ensures that u · te ∈ L2(e) since u ∈ H1/2(f̂ , curl) can be decomposed as

u = ∇ϕ+ z with ϕ ∈ H3/2(f̂), z ∈ H3/2(f̂).

We recall that on edges, the operator Π̂curl,2d
p is simply the L2-projection. Thus, (4.18) holds for s = 0.

For s > 0, (4.18) is shown by a standard duality argument. Let ẽ :=
(
u− Π̂curl,2d

p u
)
· te be the error and

v ∈ H1(e). Note that a function w ∈ Pp(R) can be decomposed into w(x) = w+
(∫ x

0
w − w

)′
, where w denotes

the average of w on e. Hence, (ẽ, w)L2(e) by (2.15e) and (2.15f), and we obtain

(ẽ, v)L2(e) = inf
w∈Pp

(ẽ, v − w)L2(e) ≤ ‖ẽ‖L2(e) inf
w∈Pp

‖v − w‖L2(e) . p−1‖ẽ‖L2(e)‖v‖H1(e).

Remark 4.12. For w ∈ L2(∂f̂), the estimate ‖w‖H−1/2(∂f̂) .
∑

e∈E(f̂)

‖w‖H̃−1/2(e) holds.

Lemma 4.13. For u ∈ H1/2(f̂ , curl) there holds

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) ≤ Csp
−(1/2+s) inf

v∈Qp(f̂)
‖u− v‖

H1/2(f̂ ,curl), s ∈ [0, 3).
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Proof. By the projection property of Π̂curl,2d
p , it suffices to show the bound with v = 0 in the infimum.

1. step: We recall the existence of a lifting from the boundary: As discussed in [15, Sec. 4.2] (which relies

on [2]) there is a polynomial-preserving lifting L
curl,2d : H−1/2(∂f̂) → H(f̂ , curl) that is uniformly (in p)

bounded.
2. step: Let P curl,2du be the polynomial best approximation of Lemma 4.3. Following the procedure suggested
in [15], we define

E := P curl,2du− Π̂curl,2d
p u.

Note that E ∈ Qp(f̂) and that E−Lcurl,2d(E · t) ∈ Q̊p(f̂). We get from the orthogonalities (2.15c) and (4.2)

(curl(E−Lcurl,2d(E · t)), curlE)L2(f̂) = 0. (4.19)

Hence,

‖ curlE‖2
L2(f̂)

=
(
curl(E−Lcurl,2d(E · t)), curlE

)
L2(f̂)

+
(
curlLcurl,2d(E · t), curlE

)
L2(f̂)

(4.19)

≤ ‖ curlLcurl,2d(E · t)‖L2(f̂)‖ curlE‖L2(f̂),

from which we obtain with the stability properties of the lifting operator Lcurl,2d

‖ curlE‖L2(f̂) . ‖E · t‖H−1/2(∂f̂). (4.20)

3. step: The discrete Friedrichs inequality of Lemma 4.6, (ii) then gives also

‖E‖L2(f̂) ≤ ‖E−Lcurl,2d(E · t)‖L2(f̂) + ‖Lcurl,2d(E · t)‖L2(f̂) (4.21)

. ‖ curl(E−Lcurl,2d(E · t))‖L2(f̂) + ‖Lcurl,2d(E · t)‖L2(f̂)

. ‖ curlE‖L2(f̂) + ‖Lcurl,2d(E · t)‖H(f̂ ,curl)

(4.20)

. ‖E · t‖H−1/2(∂f̂). (4.22)

4. step: With the triangle inequality and the approximation property of Lemma 4.3, we arrive at

‖u− Π̂curl,2d
p u‖

H(f̂ ,curl) . ‖u− P curl,2du‖
H(f̂ ,curl) + ‖E‖

H(f̂ ,curl)

(4.20),(4.22)

≤ ‖u− P curl,2du‖
H(f̂ ,curl) + ‖E · t‖H−1/2(∂f̂)

. ‖u− P curl,2du‖
H(f̂ ,curl) + ‖((u− Π̂curl,2d

p u) · t)‖H−1/2(∂f̂)

Lemma 4.3, Lemma 4.11

. p−1/2‖u‖
H1/2(f̂ ,curl). (4.23)

5. step: From Lemma 4.9 and Lemma 4.10 together with interpolation, it follows immediately

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) . p−s‖u− Π̂curl,2d
p u‖

H(f̂ ,curl)

(4.23)

. p−(1/2+s)‖u‖
H1/2(f̂ ,curl).

In the case of discrete curl, we get the following result.

Lemma 4.14. For all k ≥ 1 and all u ∈ Hk(f̂) with curlu ∈ Pp(f̂) there holds

‖u− Π̂curl,2d
p u‖

H̃−s(f̂ ,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(f̂), s ∈ [0, 3). (4.24)

If p ≥ k − 1, then the full norm ‖u‖
Hk(f̂) can be replaced with the seminorm |u|

Hk(f̂).

Proof. We employ the regularized right inverses of the operators∇ and curl and proceed as in [23, Lemma 5.8].
We write, using the decomposition of Lemma 4.5,

u = ∇Rgrad(u−Rcurl curlu) +Rcurl curlu =: ∇ϕ+ v

with ϕ ∈ Hk+1(f̂) and v ∈ Hk(f̂) together with

‖ϕ‖Hk+1(f̂) + ‖v‖
Hk(f̂) ≤ C

(
‖u‖

Hk(f̂) + ‖ curlu‖Hk−1(f̂)

)
≤ C‖u‖

Hk(f̂). (4.25)
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The assumption curlu ∈ Pp(f̂) and Lemma 4.4, (iv) imply v = Rcurl curlu ∈ Qp(f̂); furthermore, since

Π̂curl,2d
p is a projection, we conclude v− Π̂curl,2d

p v = 0. Thus, together with the commuting diagram property

∇Π̂grad,2d
p+1 = Π̂curl,2d

p ∇ and the bound (4.4) we get

‖(I − Π̂curl,2d
p )u‖

H̃−s(f̂ ,curl) = ‖(I − Π̂curl,2d
p )∇ϕ + (I − Π̂curl,2d

p )v
︸ ︷︷ ︸

=0

‖
H̃−s(f̂ ,curl)

= ‖∇(I − Π̂grad,2d
p+1 )ϕ‖

H̃−s(f̂) . p−(k+s)‖ϕ‖Hk+1(f̂).

The proof of (4.24) is complete in view of (4.25). Replacing ‖u‖
Hk(f̂) with |u|

Hk(f̂) follows from the observation

that the projector Π̂curl,2d
p reproduces polynomials of degree p.

5 Stability of the projection operators in three space dimensions

5.1 Preliminaries

For the approximation properties of Π̂grad,3d
p+1 , we need the following approximation results.

Lemma 5.1 ([15]). Let P grad,3du ∈Wp+1(K̂) be defined by the conditions

(∇(u− P grad,3du),∇v)L2(K̂) = 0 ∀v ∈ Wp+1(K̂), (5.1a)

(u − P grad,3du, 1)L2(K̂) = 0. (5.1b)

Then, for r > 1, there holds ‖u− P grad,3du‖H1(K̂) ≤ Crp
−(r−1)‖u‖Hr(K̂).

Lemma 5.2 ([15, 17]). Let P curl,3du ∈ Qp(K̂) be defined by the conditions

(curl(u− P curl,3du), curl v)L2(K̂) = 0 ∀v ∈ Qp(K̂), (5.2a)

(u− P curl,3du,∇v)L2(K̂) = 0 ∀v ∈ Wp+1(K̂). (5.2b)

Then, for r > 0, there holds ‖u− P curl,3du‖
H(K̂,curl) ≤ Crp

−r‖u‖
Hr(K̂,curl).

Lemma 5.3 ([15, Thm. 5.2]). Let P div,3du ∈ Vp(K̂) be defined by the conditions

(div(u− P div,3du), div v)L2(K̂) = 0 ∀v ∈ Vp(K̂), (5.3a)

(u− P div,3du, div v)L2(K̂) = 0 ∀v ∈ Qp(K̂). (5.3b)

Then, for r > 0, there holds ‖u− P div,3du‖
H(K̂,div) ≤ Crp

−r‖u‖
Hr(K̂,div).

In the next lemma, right inverses for the differential operators are defined and some properties are stated.

Lemma 5.4 ([13], see also [23, Sec. 2]). Let B ⊂ K̂ be a ball. Let θ ∈ C∞
0 (B) with

∫
B θ = 1. Define the

operators

Rgradu(x) :=

∫

a∈B

θ(a)

∫ 1

t=0

u(a+ t(x− a)) dt · (x − a) da,

Rcurlu(x) :=

∫

a∈B

θ(a)

∫ 1

t=0

tu(a+ t(x− a)) dt × (x− a) da,

Rdivu(x) :=

∫

a∈B

θ(a)

∫ 1

t=0

t2u(a+ t(x− a)) dt(x − a) da.

Then:

(i) For u with divu = 0, there holds curlRcurlu = u.

(ii) For u with curl u = 0, there holds ∇Rgradu = u.
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(iii) For u ∈ L2(K̂), there holds divRdivu = u.

(iv) If u ∈ Qp(K̂), then Rgradu ∈ Wp+1(K̂).

(v) If u ∈ Vp(K̂), then Rcurlu ∈ Qp(K̂).

(vi) If u ∈Wp(K̂), then Rdivu ∈ Vp(K̂).

(vii) For every k ≥ 0, the operators Rgrad, Rcurl and Rdiv are bounded linear operators Hk(K̂) → Hk+1(K̂),

Hk(K̂) → Hk+1(K̂) and Hk(K̂) → Hk+1(K̂), respectively.

The right inverses can now be used to construct regular Helmholtz-like decompositions of functions inHs(K̂, curl)

and Hs(K̂, div).

Lemma 5.5. Let s ≥ 0. Then each u ∈ Hs(K̂, curl) can be written as u = ∇ϕ + z with ϕ ∈ Hs+1(K̂),

z ∈ Hs+1(K̂) satisfying ‖ϕ‖Hs+1(K̂) . ‖u‖
Hs(K̂,curl) and ‖z‖

Hs+1(K̂) . ‖ curl u‖
Hs(K̂).

Proof. With the aid of the operators Rcurl, Rgrad of Lemma 5.4, we write u = ∇Rgrad(u −Rcurl(curl u)) +
Rcurl(curl u). The mapping properties of Rcurl and Rgrad of Lemma 5.4 then imply the result. For the desired
estimates, we use the stability properties of the operators Rcurl and Rgrad to get

‖ϕ‖2
Hs+1(K̂)

. ‖u−Rcurl(curl u)‖2
Hs(K̂)

. ‖u‖2
Hs(K̂)

+ ‖Rcurl(curl u)‖2
Hs+1(K̂)

. ‖u‖2
Hs(K̂)

+ ‖ curl u‖2
Hs(K̂)

= ‖u‖2
Hs(K̂,curl)

‖z‖
Hs+1(K̂) = ‖Rcurl(curl u)‖

Hs+1(K̂) . ‖ curl u‖
Hs(K̂).

Lemma 5.6. Let s ≥ 0. Then each u ∈ Hs(K̂, div) can be written as u = curlϕ + z with ϕ ∈ Hs+1(K̂),

z ∈ Hs+1(K̂) satisfying ‖ϕ‖
Hs+1(K̂) . ‖u‖

Hs(K̂,div) and ‖z‖
Hs+1(K̂) . ‖ divu‖Hs(K̂).

Proof. Using the operators Rcurl and Rdiv of Lemma 5.4, we write u = curlRcurl(u − Rdiv(div u)) +
Rdiv(divu). The mapping properties of Rcurl and Rdiv of Lemma 5.4 then imply the result. For the de-
sired estimates, we use the stability properties of Rcurl and Rdiv and get

‖ϕ‖2
Hs+1(K̂)

. ‖u−Rdiv(divu)‖2
Hs(K̂)

. ‖u‖2
Hs(K̂)

+ ‖Rdiv(divu)‖2
Hs+1(K̂)

. ‖u‖2
Hs(K̂)

+ ‖ divu‖2
Hs(K̂)

= ‖u‖2
Hs(K̂,div)

,

‖z‖
Hs+1(K̂) = ‖Rdiv(divu)‖

Hs+1(K̂) . ‖ divu‖Hs(K̂).

We now state the Friedrichs inequalities for the operators curl and div.

Lemma 5.7 (discrete Friedrichs inequality for H(curl) in 3D, [15, Lemma 5.1]). There exists C > 0 inde-
pendent of p and u such that

‖u‖L2(K̂) ≤ C‖ curl u‖L2(K̂) (5.4)

in the following two cases:

(i) u ∈ Qp(K̂) satisfies (u,∇v)L2(K̂) = 0 for all v ∈Wp+1(K̂),

(ii) u ∈ Q̊p,⊥(K̂) := {v ∈ Q̊p(K̂) : (v,∇ψ)L2(K̂) = 0 ∀ψ ∈ W̊p+1(K̂)}.

Lemma 5.8 (discrete Friedrichs inequality for H(div)). There exists C > 0 independent of p and u such that

‖u‖L2(K̂) ≤ C‖ divu‖L2(K̂) (5.5)

in the following two cases:

(i) u ∈ Vp(K̂) satisfies (u, curl v)L2(K̂) = 0 for all v ∈ Qp(K̂),

(ii) u ∈ V̊p(K̂) satisfies (u, curl v)L2(K̂) = 0 for all v ∈ Q̊p,⊥(K̂).

16



Proof. The statement (i) is taken from [15, Lemma 5.2]. It is also shown in [15, Lemma 5.2] that the Friedrichs
inequality (5.5) holds for all u satisfying

u ∈ V̊p(K̂) satisfies (u, curl v)L2(K̂) = 0 for all v ∈ Q̊p(K̂). (5.6)

To see that the condition (ii) in Lemma 5.8 suffices, assume that u satisfies the condition (ii) in Lemma 5.8

and write v ∈ Q̊p(K̂) as v = Π∇W̊p+1
v + (v − Π∇W̊p+1

v), where Π∇W̊p+1
denotes the L2-projection on

∇W̊p+1(K̂) ⊂ Q̊p(K̂). Then observe that v −Π∇W̊p+1
v ∈ Q̊p,⊥(K̂) so that

(u, curl v)L2(K̂) = (u, curl(Π∇W̊p+1
v

︸ ︷︷ ︸
=0

))L2(K̂) + (u, curl(v −Π∇W̊p+1
v))L2(K̂)︸ ︷︷ ︸

=0 since v − Π
∇W̊p+1

v ∈ Q̊p,⊥

= 0;

hence, u satisfies in fact (5.6). Thus, it satisfies the Friedrichs inequality (5.5).

Remark 5.9. The arguments of the proof of Lemma 5.8 also show that we have the equivalence of (5.7) and
(5.8):

u ∈ V̊p(K̂) satisfies (u, curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂) ⇐⇒ (5.7)

u ∈ V̊p(K̂) satisfies (u, curl v)L2(K̂) = 0 ∀v ∈ Q̊p,⊥(K̂). (5.8)

5.2 Stability of the operator Π̂
grad,3d
p+1

The three-dimensional analog of Theorem 4.8 is:

Theorem 5.10. For every s ∈ [0, 1] there is Cs > 0 such that

‖u− Π̂grad,3d
p+1 u‖H1−s(K̂) ≤ Csp

−(1+s) inf
v∈Wp+1(K̂)

‖u− v‖H2(K̂). (5.9)

Proof. The proof proceeds along the same lines as the 2D case. First, we observe from the projection property
of Π̂grad,3d

p+1 that it suffices to show (5.9) with v = 0 in the infimum. Next, from the trace theorem, we have

u|f ∈ H3/2(f) for every face f ∈ F(K̂). From Theorem 4.8 we get, for every face f ∈ F(K̂) and s ∈ [0, 1]

‖u− Π̂grad,3d
p+1 u‖H1−s(f) ≤ Cp−(1/2+s)‖u‖H2(K̂). (5.10)

Since u− Π̂grad,3d
p+1 u ∈ C(∂K̂), we conclude

‖u− Π̂grad,3d
p+1 u‖H1−s(∂K̂) ≤ Cp−(1/2+s)‖u‖H2(K̂) (5.11)

for s ∈ {0, 1} and then, by interpolation for all s ∈ [0, 1]. Next, we show (5.9) for s = 0. As in the 2D case,
we get from Lemma 5.1, the estimate (5.11), the existence of a polynomial preserving lifting (cf. [26]) and the

fact that P grad,3du− Π̂grad,3d
p+1 u is discrete harmonic the bound

|u− Π̂grad,3d
p+1 u|H1(K̂) ≤ |u− P grad,3du|H1(K̂) + |P grad,3du− Π̂grad,3d

p+1 u|H1(K̂)

. p−1‖u‖H2(K̂) + ‖P grad,3du− Π̂grad,3d
p+1 u‖H1/2(∂K̂)

. p−1‖u‖H2(K̂) + ‖u− P grad,3du‖H1(K̂) . p−1‖u‖H2(K̂).

(5.12)

To get the L2-estimate, we proceed by a duality argument: Let z ∈ H2(K̂) ∩H1
0 (K̂) by given by

−∆z = ẽ := u− Π̂grad,3d
p+1 u on K̂, z|∂K̂ = 0.

Integration by parts gives

‖ẽ‖2
L2(K̂)

=

∫

K̂

∇z · ∇ẽ−

∫

∂K̂

∂nzẽ. (5.13)
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For the first term in (5.13) we can use the orthogonality properties satisfied by ẽ and (5.12) to get

|(∇z,∇ẽ)L2(K̂)| ≤ inf
π∈W̊p+1(K̂)

‖z − π‖H1(K̂)‖∇ẽ‖L2(K̂) . p−1‖ẽ‖L2(K̂)‖∇ẽ‖L2(K̂). (5.14)

For the second term in (5.13), we use Theorem 4.8 to obtain on each face f ∈ F(K̂)

|(∂nz, ẽ)L2(f)| ≤ ‖∂nz‖H1/2(f)‖ẽ‖H̃−1/2(f) . p−2‖∂nz‖H1/2(f)‖u‖H3/2(f) . p−2‖ẽ‖L2(K̂)‖u‖H2(K̂). (5.15)

Inserting (5.14), (5.15) in (5.13) gives the desired estimate for s = 1. Interpolation gives the intermediate
values s ∈ (0, 1).

5.3 Stability of the operator Π̂curl,3d
p

As in the proof of Lemma 4.13, a key ingredient is the existence of a polynomial preserving lifting operator
from the boundary to the element with the appropriate mapping properties and an additional orthogonality
property. For H(K̂, curl), a lifting operator has been constructed in [20]. We formulate a simplified version
of their results and also explicitly modify that lifting to ensure a convenient orthogonality property.

Lemma 5.11. Introduce on the trace space ΠτH(K̂, curl) the norm

‖z‖X−1/2 := inf{‖v‖
H(K̂,curl) |Πτv = z}. (5.16)

There exists a lifting operator L
curl,3d : ΠτH(K̂, curl) → H(K̂, curl) with the following properties:

(i) L
curl,3dz ∈ Qp(K̂) if z ∈ ΠτH(K̂, curl) satisfies z|f ∈ Qp(f) for all f ∈ F(K̂).

(ii) There holds ‖Lcurl,3dz‖
H(K̂,curl) ≤ C‖z‖X−1/2 .

(iii) There holds the orthogonality (Lcurl,3dz,∇v)L2(K̂) = 0 for all v ∈ W̊p+1(K̂).

(iv) Let T := ΠτH
2(K̂). A function z ∈ T is in L2(∂K̂) and facewise in H3/2. Its surface curl, curl∂K̂ z, is

an L2(K̂)-function, which coincides with the facewise curl curlf z. Furthermore, there holds

‖z‖X−1/2 ≤ C
∑

f∈F(K̂)

[
‖z‖

H̃
−1/2
T (f)

+ ‖ curlf z‖H̃−1/2(f)

]
.

Here, we recall that H̃
−1/2
T (f) is the dual space of the space H

1/2
T (f) of tangential fields.

Proof. The lifting operator E
curl constructed in [20] has the desired polynomial preserving property (i) and

continuity property (ii), [20, Thm. 7.2]. Our goal is to define the desired lifting operator by Lcurl,3dz :=

Ecurlz−w0, where w0 is defined by the following saddle point problem: Find w0 ∈ Q̊p(K̂) and ϕ ∈ W̊p+1(K̂)
such that

(curlw0, curl q)L2(K̂) + (q,∇ϕ)L2(K̂) = (curl(Ecurlz), curl q)L2(K̂) ∀q ∈ Q̊p(K̂) (5.17a)

(w0,∇µ)L2(K̂) = (Ecurlz,∇µ)L2(K̂) ∀µ ∈ W̊p+1(K̂). (5.17b)

Problem (5.17) is uniquely solvable: Define the bilinear forms a(w,q) := (curlw, curl q)L2(K̂) and b(w, ϕ) :=

(w,∇ϕ)L2(K̂) for w,q ∈ Q̊p(K̂) and ϕ ∈ W̊p+1(K̂). Coercivity of a on the kernel of b with ker b = {q ∈

Q̊p(K̂) : (q,∇µ)L2(K̂) = 0 ∀µ ∈ W̊p+1} = Q̊p,⊥(K̂), follows from the Friedrichs inequality (Lemma 5.7) by

a(v,v) = ‖ curl v‖2
L2(K̂)

≥
1

2C2
‖v‖2

L2(K̂)
+

1

2
‖ curl v‖2

L2(K̂)
≥ min{

1

2C2
,
1

2
}‖v‖2

H(K̂,curl)

for all v ∈ ker b. Next, we show the inf-sup condition

inf
ϕ∈W̊p+1(K̂)

sup
w∈Q̊p(K̂)

b(w, ϕ)

‖w‖
H(K̂,curl)‖ϕ‖H1(K̂)

.
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Given ϕ ∈ W̊p+1(K̂), choose w = ∇ϕ ∈ Q̊p(K̂). Hence,

b(w, ϕ)

‖w‖
H(K̂,curl)‖ϕ‖H1(K̂)

=
‖∇ϕ‖2

L2(K̂)

‖∇ϕ‖L2(K̂)‖ϕ‖H1(K̂)

≥ C

by Poincaré’s inequality. Thus, the saddle point problem (5.17) has a unique solution (w0, ϕ) ∈ Q̊p(K̂) ×

W̊p+1(K̂). In fact, taking q = ∇ϕ in (5.17a) reveals ϕ = 0. The lifting operatorLcurl,3d now obviously satisfies
(i) and (iii) by construction. For (ii) note that the solutionw0 satisfies the estimate ‖w0‖H(K̂,curl) . ‖f‖+‖g‖,

where f(v) = (curl(Ecurlz), curl v)L2(K̂), g(v) = (Ecurlz,∇v)L2(K̂), and ‖·‖ denotes the operator norm. Thus,

‖f‖ = sup
‖v‖

H(K̂,curl)
≤1

|(curl(Ecurlz), curl v)L2(K̂)| ≤ ‖ curl(Ecurlz)‖L2(K̂) . ‖z‖X−1/2 .

The estimate ‖g‖ . ‖z‖X−1/2 is shown in a similar way. Hence, (ii) follows from

‖Lcurl,3dz‖
H(K̂,curl) ≤ ‖Ecurlz‖

H(K̂,curl) + ‖w0‖H(K̂,curl) . ‖z‖X−1/2 .

We now show (iv), proceeding several steps.

1. step: Clearly, z is in L2(∂K̂) and facewise in H
3/2
T . The surface curl, curl∂K̂ z, of z ∈ T is defined by

n ·curl z̃ ∈ H−1/2(∂K̂) for any lifting z̃ ∈ H(K̂, curl) of z. This definition is indeed independent of the lifting

since the difference δ of two liftings is in H0(K̂, curl) and by the deRham diagram (see, e.g., [25, eqn. (3.60)])

we then have curl δ ∈ H0(K̂, div). Furthermore, since an H2-lifting of z exists, curl∂K̂ z ∈ H−1/2(∂K̂) is

facewise in H
1/2
T and coincides facewise with curlf z.

2. step: We construct a particular lifting Z ∈ H(K̂, curl) of z ∈ X−1/2 and will use ‖z‖X−1/2 ≤ ‖Z‖
H(K̂,curl).

This lifting Z is taken to be the solution of the following (constrained) minimization problem:

Minimize ‖ curlY‖L2(K̂) under the constraints ΠτY = g and (Y,∇ϕ)L2(K̂) = 0 for all ϕ ∈ H1
0 (K̂). (5.18)

This minimization problem can be solved with the method of Lagrange multipliers as was done in (5.17).

Without repeating the arguments, one obtains, in strong form, the problem: Find (Z, ϕ) ∈ H(K̂, curl)×H1
0 (K̂)

such that
curl curl Z+∇ϕ = 0 in K̂, ΠτZ = z.

As was observed above, the Lagrange multiplier ϕ in fact vanishes so that we conclude that the minimizer Z
solves

curl curl Z = 0, divZ = 0, ΠτZ = g.

3. step: We bound w := curl Z. We have

curlw = 0, divw = 0, n ·w = curl∂K̂ z. (5.19)

From curlw = 0, we get that w is a gradient: w = ∇ψ. The second and third conditions in (5.19) show

−∆ψ = 0 ∂nψ = n ·w = curl∂K̂ z.

Noting that the integrability condition is satisfied since (n ·w, 1)L2(∂K̂) = (divw, 1)L2(K̂) = 0, we conclude by

standard a priori estimates for the Laplace problem

‖ curlZ‖L2(K̂) = ‖w‖L2(K̂) = ‖∇ψ‖L2(K̂) . ‖ curl∂K̂ g‖H−1/2(∂K̂). (5.20)

4. step: To bound Z, we write it with the operators Rcurl and Rgrad of Lemma 5.4 as

Z = ∇φ+ z̃, z̃ := Rcurl(curl Z), φ := Rgrad(Z−Rcurl(curl z̃)), (5.21)

with ‖z̃‖H1(K̂) . ‖ curlZ‖L2(K̂) . ‖ curl∂K̂ z‖H−1/2(∂K̂). (5.22)

For the control of φ, proceed by an integration by parts argument. Noting that divZ = 0, we have

∇φ+ z̃ = Z = curlRcurl(Z) = curlRcurl(∇φ) + curlRcurl(z̃).
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With the integration by parts formula (2.1) (which is actually valid for functions in H(K̂, curl) as shown
in [25, Thm. 3.29]) we get

(curl Z,v)L2(K̂)

(2.1)
= (Z, curl v)L2(K̂) − 〈z, γτv〉∂K̂ .

Selecting v = Rcurl(∇φ) ∈ H1(K̂)

(curl Z,Rcurl(∇φ))L2(K̂) = (∇φ+ z̃,∇φ+ z̃− curlRcurl(z̃))L2(K̂) + 〈z, γτR
curl(∇φ)〉∂K̂ .

In view of the mapping property Rcurl : L2(K̂) → H1(K̂)

‖∇φ‖2
L2(K̂)

. ‖ curl Z‖L2(K̂)‖∇φ‖L2(K̂) + ‖z̃‖L2(K̂)‖z̃− curlRcurlz̃‖L2(K̂) (5.23)

+ ‖z̃− curlRcurl(z̃)‖L2(K̂)‖∇φ‖L2(K̂) + ‖z̃‖L2(K̂)‖∇φ‖L2(K̂) +
∣∣〈z, γτRcurl(∇φ)〉∂K̂

∣∣ .

Combining (5.21), (5.22), (5.23) shows

‖Z‖
H(K̂,curl) . ‖z̃‖L2(K̂)+ ‖∇φ‖L2(K̂)+ ‖ curlZ‖L2(K̂) . sup

v∈H1(K̂)

〈z, γτv〉∂K̂
‖v‖

H1(K̂)

+ ‖ curl∂K̂ z‖H−1/2(∂K̂). (5.24)

5. step: Since z and curl∂K̂ z are actually L2-functions, the norm ‖ · ‖X−1/2 can be estimated in a localized

fashion: The continuity of the inclusions H1/2(∂K̂) ⊂
∏

f∈F(K̂)H
1/2(f) and γτH

1(K̂) ⊂
∏

f∈F(K̂) H
1/2(f)

implies

‖ curl∂K̂ z‖H−1/2(∂K̂) .
∑

f∈F(K̂)

‖ curlf z‖H̃−1/2(f), sup
v∈H1(K̂)

〈z, γτv〉∂K̂
‖v‖

H1(K̂)

.
∑

f∈F(K̂)

‖z‖
H̃−1/2(f). (5.25)

We finally obtain the desired estimate

‖z‖X−1/2 . ‖Z‖
H(K̂,curl)

(5.24), (5.25)

.
∑

f∈F(K̂)

‖z‖
H̃

−1/2
T (f)

+ ‖ curlf z‖H̃−1/2(f).

This concludes the proof. We mention that an alternative proof of the assertion (iv) could be based on the

intrinsic characterization of the trace spaces of H(K̂, curl) given in [9, 10].

Theorem 5.12. There exists C > 0 independent of p such that for all u ∈ H1(K̂, curl)

‖u− Π̂curl,3d
p u‖

H(K̂,curl) ≤ Cp−1 inf
v∈Qp(K̂)

‖u− v‖
H1(K̂,curl). (5.26)

Proof. 1. step: Since Π̂curl,3d
p is projection operator, it suffices to show the bound with v = 0 in the infimum.

2. step: Write, with the operators Rgrad, Rcurl of Lemma 5.4, the function u ∈ H1(K̂, curl) as u = ∇ϕ + v

with ϕ ∈ H2(K̂) and v ∈ H2(K̂). We have ‖ϕ‖H2(K̂) . ‖u‖
H1(K̂,curl) and ‖v‖

H2(K̂) . ‖ curl u‖
H1(K̂). From

the commuting diagram property, we readily get

‖∇ϕ− Π̂curl,3d
p ∇ϕ‖

H(K̂,curl) = ‖∇(ϕ− Π̂grad,3d
p+1 ϕ)‖

H(K̂,curl) = |ϕ− Π̂grad,3d
p+1 ϕ|H1(K̂)

Thm. 5.10

. p−1‖ϕ‖H2(K̂).

3. step: We claim
‖Πτ (v − Π̂curl,3d

p v)‖X−1/2 ≤ Cp−1‖v‖
H2(K̂). (5.27)

To see this, we note v ∈ H2(K̂) and estimate with Lemma 5.11

‖Πτ (v − Π̂curl,3d
p v)‖X−1/2 .

∑

f∈F(K̂)

‖Πτ (v − Π̂curl,3d
p v)‖

H̃
−1/2
T (f)

+ ‖ curlf (Πτ (v − Π̂curl,3d
p v))‖H̃−1/2(f).
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We consider each face f ∈ F(K̂) separately. Lemmas 4.9, 4.10, 4.13 imply with the aid of the continuity of

the trace Πτ : H2(K̂) → H
3/2
T (f) ⊂ H1/2(f, curl)

‖Πτ (v − Π̂curl,3d
p v)‖

H̃
−1/2
T (f)

. p−1/2‖Πτ (v − Π̂curl,3d
p v)‖H(f,curl)

. p−1/2−1/2(‖Πτv‖H1/2(f,curl) + ‖Πτv‖H1(f)) . p−1‖v‖
H2(K̂),

‖ curl(Πτ (v − Π̂curl,3d
p v))‖H̃−1/2(f) . p−1/2‖ curl(Πτ (v − Π̂curl,3d

p v))‖L2(f)

. p−1/2−1/2(‖Πτv‖H1/2(f,curl) + ‖Πτv‖H1(f)) . p−1‖v‖
H2(K̂).

4. step: Since v ∈ H2(K̂), the approximation P curl,3dv ∈ Qp(K̂) given by Lemma 5.2 satisfies

‖v − P curl,3dv‖
H(K̂,curl) ≤ Cp−1‖v‖

H2(K̂). (5.28)

We note

‖v − Π̂curl,3d
p v‖

H(K̂,curl) ≤ ‖v − P curl,3dv‖
H(K̂,curl) + ‖Π̂curl,3d

p v − P curl,3dv‖
H(K̂,curl)

≤ p−1‖v‖
H2(K̂) + ‖Π̂curl,3d

p v − P curl,3dv‖
H(K̂,curl).

For the term ‖Π̂curl,3d
p v−P curl,3dv‖

H(K̂,curl), we introduce the abbreviationE := Π̂curl,3d
p v−P curl,3dv ∈ Qp(K̂)

and observe that the orthogonality conditions (2.15a), (2.15b) satisfied by Π̂curl,3d
p v and the conditions (5.2a),

(5.2b) satisfied by P curl,3dv, lead to two orthogonalities:

(curl E, curlw)L2(K̂) = 0 ∀w ∈ Q̊p(K̂), (E,∇w)L2(K̂) = 0 ∀w ∈ W̊p+1(K̂). (5.29)

By Lemma 5.11, the orthogonality condition

(Lcurl,3dΠτE,∇w)L2(K̂) = 0 ∀w ∈ W̊p+1(K̂)

holds. Hence, the discrete Friedrichs inequality of Lemma 5.7 is applicable to E−Lcurl,3dE, and we get

‖E‖L2(K̂) ≤ ‖Lcurl,3dΠτE‖L2(K̂) + ‖E−Lcurl,3dΠτE‖L2(K̂)

. ‖Lcurl,3dΠτE‖L2(K̂) + ‖ curl(E−L
curl,3dΠτE)‖L2(K̂) . ‖Lcurl,3dΠτE‖

H(K̂,curl) + ‖ curlE‖L2(K̂)

. ‖ΠτE‖X−1/2 + ‖ curlE‖L2(K̂). (5.30)

Using again the lifting Lcurl,3d of Lemma 5.11 and the first orthogonality of (5.29), we get

‖ curlE‖L2(K̂) ≤ ‖ curlLcurl,3dΠτE‖L2(K̂) . ‖ΠτE‖X−1/2 . (5.31)

We conclude the proof by observing

‖v − Π̂curl,3d
p v‖

H(K̂,curl) ≤ ‖v− P curl,3dv‖
H(K̂,curl) + ‖E‖

H(K̂,curl)

(5.30),(5.31)

. ‖v− P curl,3dv‖
H(K̂,curl) + ‖ΠτE‖X−1/2

. ‖v − P curl,3dv‖
H(K̂,curl) + ‖Πτ (v − Π̂curl,3d

p v)‖X−1/2

(5.28),(5.27)

. p−1‖v‖
H2(K̂).

For negative norm estimates ‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) with s ≥ 0 we need Helmholtz decompositions:

Lemma 5.13 (Helmholtz decomposition). A function v ∈ H1(K̂) can be written as

v = ∇ϕ0 + curl curl z0, (5.32)

v = ∇ϕ1 + curl z1, (5.33)

where ϕ0 ∈ H2(K̂) ∩ H1
0 (K̂) and z0 ∈ H1(K̂, curl) ∩ H0(K̂, curl) and where ϕ1 ∈ H2(K̂) and z1 ∈

H1(K̂, curl) ∩H0(K̂, curl) together with the estimates

‖ϕ0‖H2(K̂) + ‖z0‖H1(K̂,curl) ≤ C‖v‖
H1(K̂),

‖ϕ1‖H2(K̂) + ‖z1‖H1(K̂,curl) ≤ C‖v‖
H1(K̂).
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Proof. Before proving these decompositions, we recall the continuous embeddings

H0(K̂, curl) ∩H(K̂, div) ⊂ H1(K̂) and H(K̂, curl) ∩H0(K̂, div) ⊂ H1(K̂), (5.34)

which hinge on the convexity of K̂ (see [7, 28] and the discussion in [25, Rem. 3.48]).

We construct the decomposition (5.33): We define ϕ1 ∈ H1(K̂) as the solution of

−∆ϕ1 = − div v in K̂, ∂nϕ1 = n · v on ∂K̂.

The contribution z1 is defined by the saddle point problem: Find (z1, ψ) ∈ H0(K̂, curl)×H1
0 (K̂) such that

(curl z1, curlw)L2(K̂) − (∇ψ,w)L2(K̂) = (curl v,w)L2(K̂) ∀w ∈ H0(K̂, curl),

(z1,∇q)L2(K̂) = 0 ∀q ∈ H1
0 (K̂).

This problem is uniquely solvable, we have ψ = 0 (since div curl v = 0) and the a priori estimate

‖z1‖H(curl,K̂) . ‖ curl v‖L2(K̂) . ‖v‖
H1(K̂).

(In the proof of Lemma 5.11, we considered a similar problem in a discrete setting; here, the appeal to the
discrete Friedrichs inequality of Lemma 5.7 needs to replaced with that to the continuous one, [25, Cor. 3.51])
From div z1 = 0 and (5.34), we furthermore infer ‖z1‖H1(K̂) . ‖v‖

H1(K̂). The representation (5.33) is obtained

from the observation that the difference δ := v−∇ϕ1−curl z1 satisfies, by construction, div δ = 0, curl δ = 0,
n · δ = (n · v − ∂nϕ1) − n · curl z1 = 0 − curl∂K̂ Πτz1 = 0 − 0 = 0 so that again (5.34) (specifically, in the

form [28, Thm. 4.1]) implies δ = 0. Finally, from v ∈ H1(K̂), ϕ1 ∈ H2(K̂) and the representation (5.33), we

infer curl z1 ∈ H1(K̂).

We construct the decomposition (5.32): We define ϕ0 ∈ H1
0 (K̂) as the solution of

−∆ϕ0 = − divv in K̂, ϕ0 = 0 on ∂K̂.

Next, we define (z0, ψ) ∈ H0(K̂, curl)×H1
0 (K̂) as the solution of the saddle point problem

(curl z0, curlw)L2(K̂) − (∇ψ,w)L2(K̂) = (v −∇ϕ0,w)L2(K̂) ∀w ∈ H0(K̂, curl),

(z0,∇q)L2(K̂) = 0 ∀q ∈ H1
0 (K̂).

Again, this problem is uniquely solvable and, in fact ψ = 0 (since div(v−∇ϕ0) = 0). We have ‖z0‖H(curl,K̂) .

‖v − ∇ϕ0‖L2(K̂) . ‖v‖L2(K̂). Since div z0 = 0, we get from (5.34) that ‖z0‖H1(K̂) . ‖v‖L2(K̂). Finally, an

integration by parts reveals
curl curl z0 = v −∇ϕ0,

which is representation (5.32).

We control the approximation error in negative Sobolev norms.

Theorem 5.14. For s ∈ [0, 1] and all u ∈ H1(K̂, curl) there holds the estimate

‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) ≤ Csp
−(1+s) inf

v∈Qp

‖u− v‖
H1(K̂,curl).

Proof. By the familiar argument that Π̂curl,3d
p is a projection, we may restrict the proof to the case v = 0 in

the infimum. The case s = 0 is covered by Theorem 5.12. In the remainder the proof, we will show the case
s = 1 as the case s ∈ (0, 1) then follows by interpolation.

We write E := u− Π̂curl,3d
p u for simplicity. By definition we have

‖E‖
H̃−1(K̂,curl) ∼ ‖E‖

H̃−1(K̂) + ‖ curlE‖
H̃−1(K̂) = sup

v∈H1(K̂)

(E,v)L2(K̂)

‖v‖
H1(K̂)

+ sup
v∈H1(K̂)

(curl E,v)L2(K̂)

‖v‖
H1(K̂)

(5.35)

We start with estimating the first supremum in (5.35). According to Lemma 5.13, any v ∈ H1(K̂) can be
decomposed as

v = ∇ϕ+ curl curl z
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with ϕ ∈ H2(K̂) ∩H1
0 (K̂) and z ∈ H1(K̂, curl) ∩H0(K̂, curl). We also observe curl z ∈ H1(K̂, curl), thus

by Lemma 5.5 we can further decompose curl z as

curl z = ∇ϕ2 + z2 (5.36)

with ϕ2 ∈ H2(K̂) and z2 ∈ H2(K̂). We estimate each term in the decomposition (E,v)L2(K̂) = (E,∇ϕ)L2(K̂)+

(E, curl curl z)L2(K̂) separately. Using the orthogonality condition (2.15b) and Theorem 5.12, we get

(E,∇ϕ)L2(K̂) = inf
w∈W̊p+1(K̂)

(E,∇(ϕ− w))L2(K̂) . p−1‖ϕ‖H2(K̂)‖E‖L2(K̂)

. p−1‖v‖H1(K̂)‖E‖
H(K̂,curl) . p−2‖v‖H1(K̂)‖u‖H1(K̂,curl).

(5.37)

Integration by parts and (5.36) give

(E, curl curl z)L2(K̂) = (E, curl z2)L2(K̂) = (curl E, z2)L2(K̂) + (ΠτE, γτz2)L2(∂K̂)

= (curlE, curl z)L2(K̂) − (curlE,∇ϕ2)L2(K̂) + (ΠτE, γτz2)L2(∂K̂)

= (curlE, curl z)L2(K̂) − (curl∂K̂ ΠτE, ϕ2)L2(K̂) + (ΠτE, γτz2)L2(∂K̂). (5.38)

We estimate these three terms separately. For the first term in (5.38), we use the orthogonality (2.15a) and
Theorem 5.12 to get

(curlE, curl z)L2(K̂) = inf
w∈Q̊p(K̂)

(curlE, curl(z−w))L2(K̂) . p−1‖ curlE‖L2(K̂)‖z‖H1(K̂,curl)

. p−1‖v‖H1(K̂)‖E‖
H(K̂,curl) . p−2‖v‖H1(K̂)‖u‖H1(K̂,curl).

(5.39)

For the second term in (5.38), we note that ΠτE is sufficiently regular on ∂K̂ to split the integral over ∂K̂
into a sum of face contributions. We get for each face contribution, using Lemmata 4.10 and 4.13,

∣∣(curlf ΠτE, ϕ2)L2(f)

∣∣ Lem. 4.10

. p−3/2‖ curlf ΠτE‖L2(f)‖ϕ2‖H3/2(f)

Lem. 4.13

. p−2‖Πτu‖H1/2(curl,f)‖ϕ2‖H2(K̂) . p−2‖u‖
H1(curl,K̂)‖v‖H1(K̂).

(5.40)

Finally, for the third term in (5.38) we infer with Lemmata 4.9, 4.13

(ΠτE, γτz2)L2(f)

Lem. 4.9

. p−3/2‖ΠτE‖H(f,curl)‖γτz2‖H3/2(f),

Lem. 4.13

. p−2‖Πτu‖H1/2(f,curl)‖z2‖H2(K̂) . p−2‖u‖
H1(K̂,curl)‖v‖H1(K̂). (5.41)

Adding (5.40) and (5.41) over all faces and taking note of (5.39) shows that we estimate the first supremum
(5.35) in the desired fashion.

We turn to estimating the second supremum in (5.35). We start with decomposing v ∈ H1(K̂) as

v = ∇ϕ+ curl z

with ϕ ∈ H2(K̂) and z ∈ H1(K̂, curl) ∩ H0(K̂, curl) according to Lemma 5.13. Thus we have to control
(curlE,v)L2(K̂) = (curlE, curl z)L2(K̂) + (curlE,∇ϕ)L2(K̂). Using the orthogonality condition (2.15a) and

Theorem 5.12, the first term is estimated by

(curlE, curl z)L2(K̂) = inf
w∈Q̊p(K̂)

(curlE, curl(z−w))L2(K̂) . p−1‖E‖
H(K̂,curl)‖z‖H1(K̂,curl)

. p−2‖u‖
H1(K̂,curl)‖v‖H1(K̂,curl).

Concerning the second term, an integration by parts yields in view of curlf ΠτE = n · curlE

(curl E,∇ϕ)L2(K̂) =
∑

f∈F(K̂)

(curlf ΠτE, ϕ)L2(f),

where the decomposition into face contributions is again permitted by the regularity of E and ϕ. We obtain

(curlf ΠτE, ϕ)L2(f) . p−3/2‖ΠτE‖H(f,curl)‖ϕ‖H3/2(f) . p−2‖u‖
H1(K̂,curl)‖v‖H1(K̂)

by Lemma 4.10 and Lemma 4.13, which finishes the proof.
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For functions u with discrete curl, we have the following result.

Lemma 5.15. For all k ≥ 1 and all u ∈ Hk(K̂) with curl u ∈ Vp(K̂) ⊃ (Pp(K̂))3 there holds

‖u− Π̂curl,3d
p u‖

H̃−s(K̂,curl) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂), s ∈ [0, 1]. (5.42)

If p ≥ k − 1, then the full norm ‖u‖
Hk(K̂) can be replaced with the seminorm |u|

Hk(K̂).

Proof. We employ the regularized right inverses of the operators ∇ and curl and proceed as in Lemma 4.14.
We write, using the decomposition of Lemma 5.5, u = ∇Rgrad(u − Rcurl curl u) + Rcurl curl u =: ∇ϕ + v

with ϕ ∈ Hk+1(K̂) and v ∈ Hk(K̂) together with

‖ϕ‖Hk+1(K̂) + ‖v‖
Hk(K̂) ≤ C

(
‖u‖

Hk(K̂) + ‖ curl u‖
Hk−1(K̂)

)
≤ C‖u‖

Hk(K̂). (5.43)

The assumption curl u ∈ Vp(K̂) and Lemma 5.4, (v) imply v = Rcurl curl u ∈ Qp(K̂); furthermore, since

Π̂curl,3d
p is a projection, we conclude v− Π̂curl,3d

p v = 0. Thus, together with the commuting diagram property

∇Π̂grad,3d
p+1 = Π̂curl,3d

p ∇ we get

‖(I − Π̂curl,3d
p )u‖

H̃−s(K̂,curl) = ‖(I − Π̂curl,3d
p )∇ϕ+ (I − Π̂curl,3d

p )v
︸ ︷︷ ︸

=0

‖
H̃−s(K̂,curl)

= ‖∇(I − Π̂grad,3d
p+1 )ϕ‖

H̃−s(K̂) . p−(k+s)‖ϕ‖Hk+1(K̂).

The proof of (5.42) is complete in view of (5.43). Replacing ‖u‖
Hk(K̂) with |u|

Hk(K̂) follows from the obser-

vation that the projector Π̂curl,3d
p reproduces polynomials of degree p.

5.4 Stability of the operator Π̂div,3d
p

Similar to Lemma 4.11, we state the following result:

Lemma 5.16. For each face f ∈ F(K̂) we have for u ∈ H1/2(K̂, div) and every s ≥ 0

‖(u− Π̂div,3d
p u) · nf‖H̃−s(f) ≤ Csp

−s inf
v∈Vp(f)

‖u · nf − v‖L2(f). (5.44)

Proof. We first show that, for u ∈ H1/2(K̂, div) the normal trace nf ·u ∈ L2(f) for each face f . To that end,

one writes with the aid of Lemma 5.6 u = curlϕ+ z with ϕ, z ∈ H3/2(K̂). We have nf · z ∈ H1(f). Noting
ϕ|f ∈ H1(f) and (nf · curlϕ)|f = curlf (Πτϕ)|f , we conclude that (nf · curlϕ)|f ∈ L2(f).

Note that (2.16c) and (2.16d) imply that on faces, the operator Π̂div,3d
p is the L2-projection onto Vp(f).

Thus, (5.44) holds for s = 0. The case s > 0 follows by a standard duality argument. To that end define

ẽ :=
(
u− Π̂div,3d

p u
)
·nf and let v ∈ Hs(f). Note that w ∈ Pp(R

2) can be written as w = w+ (w−w), where

w denotes the average of w on f . Since w − w ∈ V̊p(f), (2.16c) and (2.16d) imply (ẽ, w)L2(f) = 0. Thus we
have

(ẽ, v)L2(f) = inf
w∈Pp

(ẽ, v − w)L2(f) ≤ ‖ẽ‖L2(f) inf
w∈Pp

‖v − w‖L2(f) . p−s‖ẽ‖L2(f)‖v‖Hs(f).

Remark 5.17. Note that for u ∈ L2(∂K̂), we have

‖u‖H−1/2(∂K̂) ≤
∑

f∈F(K̂)

‖u‖H̃−1/2(f). (5.45)

As in the analysis of the operators in the previous sections, the existence of a polynomial preserving lifting
operator from the boundary ∂K̂ to K̂ with appropriate properties will play an important role. Such a lifting
operator has been constructed in [21]. We modify this lifting slightly to explicitly ensure an additional
orthogonality property.

Lemma 5.18. There exists a lifting operator Ldiv,3d with the following properties:
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(i) Ldiv,3dz ∈ Vp(K̂) if z|f ∈ Vp(f) for all faces f ∈ F(K̂).

(ii) There holds the extension property (Ldiv,3dz · nf )|f = z.

(iii) There holds ‖Ldiv,3dz‖
H(K̂,div) ≤ C‖z‖H̃−1/2(∂K̂).

(iv) There holds the orthogonality (Ldiv,3dz, curl v)L2(K̂) = 0 for all v ∈ Q̊p(K̂).

Proof. Recall the space Q̊p,⊥(K̂) = {q ∈ Q̊p(K̂) : (q,∇ψ)L2(K̂) = 0 ∀ψ ∈ W̊p+1(K̂)} defined in Lemma 5.7.

Let z ∈ H̃−1/2(∂K̂) be a function with the property z|f ∈ Vp(f) for all faces f ∈ F(K̂). The goal is to define

the lifting operator by Ldiv,3dz := Edivz −w0, where Ediv denotes the lifting operator from [21], and where

w0 is defined by the following saddle point problem: Find w0 ∈ V̊p(K̂) and ϕ ∈ Q̊p,⊥(K̂) such that

(divw0, divv)L2(K̂) + (v, curlϕ)L2(K̂) = (div(Edivz), divv)L2(K̂) ∀v ∈ V̊p(K̂) (5.46a)

(w0, curlµ)L2(K̂) = (Edivz, curlµ)L2(K̂) ∀µ ∈ Q̊p,⊥(K̂). (5.46b)

Unique solvability of Problem (5.46) is seen as follows: Define the bilinear forms a(w,q) := (divw, div q)L2(K̂)

and b(w,ϕ) := (w, curlϕ)L2(K̂) for w,q ∈ V̊p(K̂) and ϕ ∈ Q̊p,⊥(K̂). Coercivity of a on the kernel of b,

ker b = {v ∈ V̊p(K̂) : (v, curlµ)L2(K̂) = 0 ∀µ ∈ Q̊p,⊥(K̂)}, follows from the Friedrichs inequality for the

divergence operator (cf. Lemma 5.8). That is,

a(v,v) = ‖ divv‖2
L2(K̂)

≥
1

2C2
‖v‖2

L2(K̂)
+

1

2
‖ div v‖2

L2(K̂)
≥ min{

1

2C2
,
1

2
}‖v‖2

H(K̂,div)
∀v ∈ ker b.

Next, the inf-sup condition for b follows easily by considering, for given ϕ ∈ Q̊p,⊥(K̂), the function w =

curlϕ ∈ V̊p(K̂) in b(w,ϕ) and using the Friedrichs inequality for the curl (Lemma 5.7). That is,

b(w,ϕ)

‖w‖
H(K̂,div)‖ϕ‖H(K̂,curl)

=
‖ curlϕ‖2

L2(K̂)

‖ curlϕ‖L2(K̂)‖ϕ‖H(K̂,curl)

Lem. 5.7
≥ C.

Thus, the saddle point problem (5.46) has a unique solution (w0,ϕ) ∈ V̊p(K̂) × Q̊p,⊥(K̂). In fact, se-

lecting v = curlϕ in (5.46a) shows ϕ = 0. The lifting operator Ldiv,3d now obviously satisfies (i), (ii)
and (iv) by construction, cf. [21, Theorem 7.1] for the properties of the operator Ediv. For (iii) note that
the solution w0 satisfies the estimate ‖w0‖H(K̂,div) . ‖f‖ + ‖g‖, where f(v) = (div(Edivz), div v)L2(K̂),

g(v) = (Edivz, curl v)L2(K̂), and ‖ · ‖ denotes the operator norm. Thus,

‖f‖ = sup
‖v‖

H(K̂,div)
≤1

|(div(Edivz), divv)L2(K̂)| ≤ ‖ div(Edivz)‖L2(K̂) . ‖z‖H̃−1/2(∂K̂).

The estimate ‖g‖ . ‖z‖H̃−1/2(∂K̂) is shown in a similar way. Hence, (iii) follows from

‖Ldiv,3dz‖
H(K̂,div) ≤ ‖Edivz‖

H(K̂,div) + ‖w0‖H(K̂,div) . ‖z‖H̃−1/2(∂K̂).

Theorem 5.19. There exists C > 0 independent of p such that for all u ∈ H1/2(K̂, div)

‖u− Π̂div,3d
p u‖

H(K̂,div) ≤ Cp−1/2 inf
v∈Vp(K̂)

‖u− v‖
H1/2(K̂,div). (5.47)

Proof. 1. step: By the projection property of Π̂div,3d
p , it suffices to show (5.47) for v = 0.

2. step: As shown in Lemma 5.16, u · nf ∈ L2(f) on each face f ∈ F(K̂). Thus we get from Lemma 5.16

‖(u− Π̂div,3d
p u) · nf‖H̃−1/2(f) . p−1/2‖u · nf‖L2(f) . p−1/2‖u‖

H1/2(K̂,div). (5.48)

3. step: The volume error u− Π̂div,3d
p u is estimated using the approximation P div,3du of Lemma 5.3. We ab-

breviate E := Π̂div,3d
p u−P div,3du ∈ Vp(K̂) and note that, since Π̂div,3d

p u satisfies the orthogonality conditions
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(2.16a) and (2.16b), and P div,3du satisfies the conditions (5.3a) and (5.3b), we have the two orthogonality
conditions

(divE, div v)L2(K̂) = 0 ∀v ∈ V̊p(K̂), (E, curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂). (5.49)

By Lemma 5.18, the orthogonality condition

(Ldiv,3d(E · n), curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂)

holds; hence the discrete Friedrichs inequality (Lemma 5.8, (ii)) can be applied to E−Ldiv,3d(E ·n) ∈ V̊p(K̂).
Thus, we obtain

‖E‖L2(K̂) ≤ ‖Ldiv,3d(E · n)‖L2(K̂) + ‖E−Ldiv,3d(E · n)‖L2(K̂)

. ‖E · n‖H−1/2(∂K̂) + ‖ div(E−L
div,3d(E · n))‖L2(K̂)

. ‖E · n‖H−1/2(∂K̂) + ‖ divE‖L2(K̂).

(5.50)

4. step: Using the first part of (5.49), we get

‖ divE‖2
L2(K̂)

= (divE, divLdiv,3d(E · n))L2(K̂) ≤ ‖ divE‖L2(K̂)‖E · n‖H−1/2(∂K̂). (5.51)

Combining (5.50), (5.51) we arrive at

‖E‖
H(K̂,div) . ‖E · n‖H−1/2(∂K̂). (5.52)

5. step: With the triangle inequality and the continuity of the normal trace operator

‖u− Π̂div,3d
p u‖

H(K̂,div) ≤ ‖u− P div,3du‖
H(K̂,div) + ‖E‖

H(K̂,div)

(5.52)

. ‖u− P div,3du‖
H(K̂,div) + ‖E · n‖H−1/2(∂K̂)

. ‖u− P div,3du‖
H(K̂,div) +

∑

f∈F(K̂)

‖(u− Π̂div,3d
p u) · nf‖H̃−1/2(f)

(5.48),Lem. 5.3

. p−1/2‖u‖
H1/2(K̂,div),

Considering the approximation error in negative Sobolev norms is the next step.

Theorem 5.20. For s ∈ [0, 1] and for all u ∈ H1/2(K̂, div) there holds the estimate

‖u− Π̂div,3d
p u‖

H̃−s(K̂,div) ≤ Csp
−1/2−s inf

v∈Vp(K̂)
‖u− v‖

H1/2(K̂,div).

Proof. In view of the projection property of Π̂div,3d
p , we restrict to showing the estimate with v = 0. The case

s = 0 is shown in Theorem 5.19. We will therefore merely focus on the case s = 1 as the cases s ∈ (0, 1) follow
by interpolation.
We write E := u− Π̂div,3d

p u for simplicity. By definition we have

‖E‖
H̃−1(K̂,div) ∼ ‖E‖

H̃−1(K̂) + ‖ divE‖H̃−1(K̂) = sup
v∈H1(K̂)

(E,v)L2(K̂)

‖v‖
H1(K̂)

+ sup
v∈H1(K̂)

(divE, v)L2(K̂)

‖v‖H1(K̂)

. (5.53)

We start with estimating the first supremum in (5.53). We decompose v ∈ H1(K̂) as

v = ∇ϕ+ curl z

with ϕ ∈ H2(K̂) and z ∈ H1(K̂, curl) ∩H0(K̂, curl) according to Lemma 5.13 and have to bound the two
terms in (E,v)L2(K̂) = (E, curl z)L2(K̂) + (E,∇ϕ)L2(K̂). For the first term, by Theorem 5.19, the estimate

(E, curl z)L2(K̂) = inf
w∈Q̊p(K̂)

(E, curl(z−w))L2(K̂) . p−1‖E‖L2(K̂)‖z‖H1(K̂,curl)

. p−3/2‖u‖
H1/2(K̂,div)‖v‖H1(K̂)

26



holds. For the second term, we employ integration by parts to get

(E,∇ϕ)L2(K̂) = −(divE, ϕ)L2(K̂) +
∑

f∈F(K̂)

(E · n, ϕ)L2(f) (5.54)

Denote by ϕ := (
∫
K̂
ϕ)/|K̂| the average of ϕ. Now the integration by parts formula gives

(divE, ϕ)L2(K̂) = (divE, ϕ− ϕ)L2(K̂) + ϕ(E · n, 1)L2(∂K̂)

(2.16d)
= (divE, ϕ− ϕ)L2(K̂). (5.55)

We then define the auxiliary function ψ by

∆ψ = ϕ− ϕ, ∂nψ = 0 on ∂K̂

and set Φ := ∇ψ. Since divΦ = ∆ψ = ϕ− ϕ, we get

∣∣∣(divE, ϕ− ϕ)L2(K̂)

∣∣∣ =
∣∣∣(divE, divΦ)L2(K̂)

∣∣∣ (2.16a)
=

∣∣∣∣∣ inf
w∈V̊p(K̂)

(divE, div(Φ−w))L2(K̂)

∣∣∣∣∣ (5.56)

. p−1‖E‖
H(K̂,div)‖Φ‖H1(K̂,div) . p−3/2‖u‖

H1/2(K̂,div)‖ϕ‖H1(K̂) (5.57)

. p−3/2‖u‖
H1/2(K̂,div)‖v‖H1(K̂). (5.58)

Thus, only estimates for the boundary terms in (5.54) are missing. The orthogonality properties (2.16c) and
(2.16d) as well as Lemma 5.16 lead to

(E · n, ϕ)L2(f) = inf
w∈Vp(f)

(E · n, ϕ− w)L2(f) . p−1‖E · n‖H̃−1/2(f)‖ϕ‖H3/2(f)

Lem. 5.16

. p−3/2‖u · n‖L2(f)‖ϕ‖H2(K̂) . p−3/2‖u‖
H1/2(K̂,div)‖v‖H1(K̂).

Thus, we have estimated the first term of (5.53).
We now handle the second supremum in (5.53). Such estimates have already been derived in (5.55) and (5.56);

we merely have to note that the function ϕ in these lines satisfied ϕ ∈ H2(K̂), but H1(K̂)-regularity is indeed
sufficient as is visible in (5.57).

If we assume discrete divergence, we get a result similar to Lemma 5.15.

Lemma 5.21. For all k ≥ 1, all s ∈ [0, 1] and all u ∈ Hk(K̂) with divu ∈ Pp(K̂) there holds

‖u− Π̂div,3d
p u‖

H̃−s(K̂,div) ≤ Cs,kp
−(k+s)‖u‖

Hk(K̂). (5.59)

If p ≥ k − 1, then the full norm ‖u‖
Hk(K̂) can be replaced with the seminorm |u|

Hk(K̂).

Proof. We write, using the decomposition of Lemma 5.6, u = curlRcurl(u − Rdiv divu) + Rdiv divu =:

curlϕ+ z with ϕ ∈ Hk+1(K̂) and z ∈ Hk(K̂) together with

‖ϕ‖
Hk+1(K̂) + ‖z‖

Hk(K̂) . ‖u‖
Hk(K̂) + ‖ divu‖Hk−1(K̂) ≤ C‖u‖

Hk(K̂). (5.60)

The assumption divu ∈ Pp(K̂) and Lemma 5.4, (vi) imply z = Rdiv divu ∈ Vp(K̂); furthermore, since Π̂div,3d
p

is a projection, we conclude z− Π̂div,3d
p z = 0. Thus, we get from the commuting diagram and Corollary 2.9

‖(I − Π̂div,3d
p )u‖

H̃−s(K̂,div) = ‖(I − Π̂div,3d
p ) curlϕ+ (I − Π̂div,3d

p )z
︸ ︷︷ ︸

=0

‖
H̃−s(K̂,div)

. ‖(I − Π̂curl,3d
p )ϕ‖

H̃−s(K̂,curl) . p−(k+s)‖ϕ‖
Hk(K̂,curl) . p−(k+s)‖u‖

Hk(K̂).

Replacing ‖u‖
Hk(K̂) with |u|

Hk(K̂) follows from the observation that the projector Π̂div,3d
p reproduces polyno-

mials of degree p.
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A Equivalence of X−1/2 and ‖ · ‖H−1/2 + ‖ curl ·‖H−1/2

Lemma A.1. Let K̂ be the reference tetrahedron. Then, for g ∈ X−1/2 (defined in Lemma 5.11) we have

‖g‖X−1/2 ∼
[
‖g‖

H
−1/2
T (∂K̂)

+ ‖ curl∂K̂ g‖H−1/2(∂K̂)

]
, ‖v‖

H
−1/2
T (∂K̂)

:= sup
u∈H1(K̂)

〈v, γτu〉∂K̂
‖u‖

H(K̂,curl)

, (A.1)

with constant depending solely on K̂. Here, 〈·, ·〉∂K̂ denotes a duality pairing introduced in the proof below.

The surface curl, curl∂K̂ g, is defined as n · curl z for any lifting z ∈ H(K̂, curl) of g ∈ X−1/2.

Proof. The workhorse is the integration by parts formula

〈Πτu, γτv〉∂K̂ = (curl v,u)L2(K̂) − (curl u,v)L2(K̂) ∀u,v ∈ H(K̂, curl), (A.2)

which also defines the duality pairing. To give a few more details, one defines the rangeY−1/2 := γτH(K̂, curl)
endowed with the quotient norm ‖g‖Y−1/2 := inf{‖v‖

H(K̂,curl) | γτv = g}. By [25, Thm. 3.31], the trace

operator Πτ maps into
(
Y−1/2

)′
via (A.2), which therefore defines 〈·, ·〉∂K̂ on X−1/2 ×Y−1/2.

Proof of the bound ‖g‖X−1/2 & ‖ curl∂K̂ g‖H−1/2(∂K̂) + ‖g‖
H

−1/2
T (∂K̂)

:

Let z ∈ H(K̂, curl) and set g := Πτz. Then (A.2) yields ‖g‖
H

−1/2
T (∂K̂)

. ‖z‖
H(K̂,curl). To control curl∂K̂ g,

we first note div curl z = 0 so that n · curl z ∈ H−1/2(∂K̂) is well-defined and is taken as the definition of

curl∂K̂ g. Indeed, this definition is independent of the lifting z: The difference δ := z1 − z2 ∈ H0(K̂, curl) of

two liftings of g satisfies curl δ ∈ H0(K̂, div) by the deRham diagram property (see, e.g., [25, eqn. (3.60)]).

Next, we estimate for arbitrary ϕ ∈ H1(K̂)

|〈curl∂K̂ g, ϕ〉∂K̂ |
by def.
= |(n · curl z, ϕ)L2(∂K̂)| = |(curl z,∇ϕ)L2(K̂)| ≤ ‖z‖

H(curl,K̂)‖∇ϕ‖H(K̂,curl).

Proof of the bound ‖g‖X−1/2 . ‖ curl∂K̂ g‖H−1/2(∂K̂) + ‖g‖
H

−1/2
T (∂K̂)

:

Since the norm ‖ ·‖X−1/2 is defined by the minimum norm extension, we merely need to construct a lifting Z ∈

H(K̂, curl) with a good bound on Z. We define Z as the solution of the following (constrained) minimization
problem:

Minimize ‖ curlY‖L2(K̂) under the constraints ΠτY = g and (Y,∇ϕ)L2(K̂) = 0 for all ϕ ∈ H1
0 (K̂). (A.3)

This minimization problem can be solved with the method of Lagrange multipliers as discussed in [15, Sec. 4.4]
(in the discrete setting) and the proof of Lemma 5.11. One obtains, in strong form, the problem: Find

(Z, ϕ) ∈ H(K̂, curl)×H1
0 (K̂) such that

curl curl Z+∇ϕ = 0 in K̂, ΠτZ = g.

It can be checked (this is observed, for example, in [15, Sec. 4.4] and also the case in the proof of Lemma 5.11)
that the Lagrange multiplier ϕ vanishes. Therefore, Z solves

curl curl Z = 0, divZ = 0, ΠτZ = g.

Let us focus on w := curl Z. We have

curlw = 0, divw = 0, n ·w = curl∂K̂ g.

From curlw = 0, we get that w is a gradient: w = ∇ψ. The second and third conditions show

−∆ψ = 0 ∂nψ = n ·w = curl∂K̂ g.

Noting that the integrability condition is satisfied since (n ·w, 1)L2(∂K̂) = (divw, 1)L2(K̂) = 0, we conclude by

standard a priori estimates for the Laplace problem

‖w‖L2(K̂) = ‖∇ψ‖L2(K̂) . ‖ curl∂K̂ g‖H−1/2(∂K̂).
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Hence, ‖ curl Z‖L2(K̂) . ‖ curl∂K̂ g‖H−1/2(∂K̂). To get more information about Z, we write it as

Z = ∇φ+ z, z := Rcurl(curl Z), φ = Rgrad(Z−Rcurl(curl z)) (A.4)

with, by Lemma 5.4,
‖z‖H1(K̂) . ‖ curl Z‖L2(K̂) . ‖ curl∂K̂ g‖H−1/2(∂K̂). (A.5)

For the control of φ, proceed by an integration by parts argument. Noting that divZ = 0, we have

∇φ+ z = Z = curlRcurl(Z) = curlRcurl(∇φ) + curlRcurl(z).

Next, we employ the integration by parts formula (A.2)

(curl Z,v)L2(K̂)

(A.2)
= (Z, curl v)L2(K̂) − 〈g, γτv〉∂K̂ .

Selecting v = Rcurl(∇φ) ∈ H1(K̂)

(curl Z,Rcurl(∇φ))L2(K̂) = (∇φ + z,∇φ+ z− curlRcurl(z))L2(K̂) + 〈g, γτR
curl(∇φ)〉∂K̂ .

In view of the mapping property Rcurl : L2(K̂) → H1(K̂)

‖∇φ‖2
L2(K̂)

. ‖ curlZ‖L2(K̂)‖∇φ‖L2(K̂) + ‖z‖L2(K̂)‖z− curlRcurlz‖L2(K̂) (A.6)

+ ‖z− curlRcurl(z)‖L2(K̂)‖∇φ‖L2(K̂) + ‖z‖L2(K̂)‖∇φ‖L2(K̂) + ‖g‖
H

−1/2
T (∂K̂)

‖∇φ‖L2(K̂).

Combining (A.4), (A.5), (A.6), we infer ‖Z‖
H(K̂,curl) . ‖g‖

H
−1/2
T (∂K̂)

+‖ curl∂K̂ g‖H−1/2(∂K̂), which concludes

the proof.

Remark A.2. We include an alternative proof of Lemma 5.11, (iv), which is based on the intrinsic charac-
terization of the trace norm ‖ · ‖X−1/2 :
The norm ‖z‖X−1/2 can be estimated using the characterization of the trace spaces given in [9,10]. Specifically,

using the notation of [9,10], one has by [9, Thm. 4.6] that the mapping Πτ : H(K̂, curl) → H
−1/2
⊥ (∂K̂, curl)

is linear, continuous, and surjective, where the associated norm is

‖z‖2
H

−1/2
⊥

(curl,∂K̂)
= ‖z‖2

H
−1/2
⊥

(∂K̂)
+ ‖ curl z‖2

H
−1/2
⊥

(∂K̂)
.

Here, the norm ‖ · ‖
H

−1/2
⊥

(∂K̂)
is the dual norm (with pivot space L2

t (∂K̂)) of H
1/2
⊥ (∂K̂); analogously the norm

‖ · ‖
H

−1/2
⊥

(∂K̂)
is the dual norm (with pivot space L2

t (∂K̂)) of H
1/2
⊥ (∂K̂). The precise characterization of these

two latter spaces in [10] gives the continuous embeddings H
1/2
⊥ (∂K̂) ⊂

∏
f∈F(K̂) H

1/2(f) and H
1/2
⊥ (∂K̂) ⊂

∏
f∈F(K̂)H

1/2(f). In turn, this implies the estimates

‖z‖
H

−1/2
⊥

(∂K̂)
≤ C

∑

f∈F(K̂)

‖z‖H̃−1/2(f), ‖z‖
H

−1/2
⊥

(∂K̂)
≤ C

∑

f∈F(K̂)

‖z‖
H̃−1/2(f).

It remains to see that curl z in the above formula can be interpreted facewise. This is the case because z ∈ T is
facewise sufficiently smooth (it is in H3/2(f)) and satisfies appropriate continuity conditions across the edges

of K̂ (by the assumption that T = ΠτH
2(K̂)).

B Well-definedness of the projection operators and commuting di-

agram property

Lemma B.1. The operator Π̂grad,3d
p+1 is well-defined.
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Proof. One needs to check that the traces of u ∈ H2(K̂) on the edges are in H1. This follows from the trace

theorem: a two-fold trace estimate (from K̂ to the faces and then from the faces to the edges) shows for an

edge e that the trace operator maps H2+ε(K̂) → H1+ε(e) for sufficiently small ε > 0 and ε < 0. The mapping

property H2(K̂) → H1(e) then follows by interpolation.
We check the number of conditions in (2.14):

dimWp+1(K̂) =
1

6
(p+ 4)(p+ 3)(p+ 2),

number of conditions =
1

6
p(p− 1)(p− 2) + 4

(p− 1)p

2
+ 6p+ 4 = dimWp+1(K̂).

Hence, the defining equations (2.14) represent a square linear system. For u = 0 (2.14d) shows Π̂grad,3d
p+1 u(V ) =

0 for all vertices V ∈ V(K̂). The conditions (2.14c) then imply that Π̂grad,3d
p+1 u = 0 on all edges of K̂; next

(2.14b) leads to Π̂grad,3d
p+1 u = 0 vanishing on all faces of K̂ and finally next (2.14a) shows Π̂grad,3d

p+1 u = 0. Thus,

Π̂grad,3d
p+1 is well-defined.

Lemma B.2. The operator Π̂curl,3d
p is well-defined.

Proof. First, one needs to check that for a u ∈ H1(K̂, curl) the face traces (Πτu)|f and edge traces te · u are
in L2. The trace theorem gives, for each face f , Πτu ∈ H1/2(f, curlf ). The argument at the outset of the
proof of Lemma 4.11 then shows that te · u ∈ L2(e).
We check the number of conditions in (2.15). With the notation

kercurl = {q ∈ Q̊p(K̂) : curl q = 0},

we have

dim Q̊p(K̂) = dim curl Q̊p(K̂) + dimker curl = dim curl Q̊p(K̂) + dim∇W̊p+1(K̂)

in view of the exactness of the sequence (2.12). Hence,

the number of conditions in (2.15a), (2.15b) = dim Q̊p(K̂).

Analogously, we argue with the exactness of the second sequence in (2.12) that

the number of conditions in (2.15c), (2.15d) = dim Q̊p(f), ∀ faces f ∈ F(K̂).

Finally, we check

the number of conditions in (2.15e) = p− 1, ∀ edges e ∈ E(K̂),

the number of conditions in (2.15f) = 6.

In total, the number of conditions in (2.15) coincides with dimQp. We conclude that (2.15) represents a

square system of equations. As in the case of Lemma B.1, see that u = 0 implies Π̂curl,3d
p u = 0 in the following

way: (2.15e), (2.15f) imply that the tangential component of Π̂curl,3d
p u vanishes on all edges of K̂. From

that, (2.15c), (2.15d) together with the exact sequence property (2.13) gives that the tangential component

Πτ Π̂
curl,3d
p u vanishes on all faces of K̂. Finally, (2.15a), (2.15b) together with again the exact sequence

property (2.12) yields Π̂curl,3d
p u = 0.

Lemma B.3. The operator Π̂div,3d
p is well-defined.

Proof. We first show that, for u ∈ H1/2(K̂, div) the normal trace nf ·u ∈ L2(f) for each face f . To that end,

one write with the aid of Lemma 5.6 u = curlϕ+ z with ϕ, z ∈ H3/2(K̂). We have nf · z ∈ H1(f). Noting
ϕ|f ∈ H1(f) and (nf · curlϕ)|f = curlf (Πτϕ)|f , we conclude that (nf · curlϕ)|f ∈ L2(f).
We check the number of conditions in (2.16). In view of the exactness of the sequence in (2.12) we get, using
the notation

ker div = {v ∈ V̊p(K̂) : div v = 0},
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the equality
dim V̊p(K) = dimdiv V̊p + dimker div = dimdiv V̊p + dim curl Q̊p

so that
number of conditions in (2.16a), (2.16b) = dim V̊p(K).

Furthermore, we have
number of conditions in (2.16c), (2.16d) = 4 dimWp(f)

and

dim V̊p(K) + 4 dimWp(f) =
1

2
(p+ 2)(p+ 1)p+ 4

(p+ 1)(p+ 2)

2
= dimVp

We check that u = 0 implies Π̂div,3d
p u = 0: Conditions (2.16c), (2.16d) produce nf · Π̂div,3d

p u = 0 for all faces

f ∈ F(K̂). The exact sequence property (2.12) and conditions (2.16a), (2.16b) then imply Π̂div,3d
p u = 0.

Theorem B.4. The diagrams (2.8) and (2.11) commute.

Proof. Proof of ∇Π̂grad,3d
p+1 = Π̂curl,3d

p ∇: Let u = ∇ϕ for some ϕ ∈ H2(K̂). We first claim that

Π̂curl,3d
p ∇ϕ = ∇ϕp for some ϕp ∈Wp+1(K̂). (B.1)

For each edge e with endpoints V1, V2, we compute
∫
e
u · te = ϕ(V1) − ϕ(V2), so that we get from (2.15f) for

each face f (and orienting the tangential vectors of the edges e ∈ E(f) so that f is always “on the left”)

∫

∂f

Πτ,f Π̂
curl,3d
p u =

∑

e⊂∂f

∫

e

u · te = 0. (B.2)

We conclude with integration by parts in view of curlf Πτu = curlf Πτ∇ϕ = 0

∫

f

curlf Πτ Π̂
curl,3d
p u =

∫

∂f

Πτ,f Π̂
curl,3d
p u

(B.2)
= 0. (B.3)

Furthermore, the exact sequence property (2.12) gives us curlf Q̊p(f) = V̊p(f) so that (2.15c) gives

curlf Πτ Π̂
curl,3d
p u = const . (B.4)

(B.3) and (B.4) together imply curlf Πτ Π̂
curl,3d
p u = 0 so that on each face (Πτ Π̂

curl,3d
p u)|f is a gradient of a

polynomial: (Πτ Π̂
curl,3d
p u)|f = ∇ϕp,f for some ϕp,f ∈ Wp+1(f) for each face f ∈ F(K̂).

We claim that this piecewise polynomial can be chosen to be continuous on ∂K̂. Fix a vertex V ∈ V(K̂).
By fixing the constant of the polynomials ϕp,f we may assume that ϕp,f (V ) = 0 for each face f that has V
as a vertex. From (2.15e), (2.15f) we conclude that ϕp,f is continuous across all edges e that have V as an

endpoint. Hence, the piecewise polynomial ϕp given by ϕp|f = ϕp,f is continuous in all vertices of K̂. We

conclude that ϕp is continuous on ∂K̂. This continuous, piecewise polynomial ϕp has, by [19,26], a polynomial

lifting to K̂ (again denoted ϕp ∈ Wp+1(K̂)). We note

Π̂curl,3d
p u−∇ϕp ∈ Q̊p(K̂)

so that (2.15a) with test function v = Π̂curl,3d
p u−∇ϕp ∈ Q̊p(K̂) implies

curl Π̂curl,3d
p u = 0. (B.5)

Since the second line of (2.8) expresses an exact sequency property, we conclude that (B.1) holds.

We now show that Π̂curl,3d
p ∇ϕ = ∇Π̂grad,3d

p+1 ϕ. From (B.1) we get Π̂curl,3d
p ∇ϕ = ∇ϕp for some ϕp ∈ Wp+1(K̂).

We fix the constant in the function ϕp by stipulating ϕp(V ) = ϕ(V ) for one selected vertex V ∈ V(K̂).

From (2.15f), we then get ϕ(V ′) = ϕp(V
′) for all vertices V ′ ∈ V(K̂). Next, (2.15e) and (2.14c) imply

Π̂grad,3d
p+1 ϕ = ϕp on all edges e ∈ E(K̂). Comparing (2.15d) and (2.14b) reveals ∇f Π̂

grad,3d
p+1 ϕ = Πτ Π̂

curl,3d
p ∇ϕ

on each face f ∈ F(K̂). Finally, comparing (2.15b) with (2.14a) shows Π̂curl,3d
p ∇ϕ = ∇Π̂grad,3d

p+1 ϕ.
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Proof of curl Π̂curl,3d
p = Π̂div,3d

p curl: First, we show

div Π̂div,3d
p curl u = 0. (B.6)

To see this, we note from the second line of (2.8) that div Π̂div,3d
p curl u ∈Wp(K̂). Additionally,

∫

∂K̂

n · Π̂div,3d
p curl u

(2.16d)
=

∫

∂K̂

n · curl u =

∫

K̂

div curl u = 0. (B.7)

Finally, the exact sequence property of the first line of (2.12) informs us that div V̊p(K̂) → W aver
p (K̂) is

surjective. Hence, we get from (2.16a) that div Π̂div,3d
p curl u = 0, i.e., indeed the claim (B.6) holds. Next,

(B.6) and the exact sequence property of (2.8) imply

Π̂div,3d
p curl u = curl up (B.8)

for some up ∈ Qp(K̂).

We next claim Π̂div,3d
p curl u = curl Π̂curl,3d

p u. To that end, we check that v := curl Π̂curl,3d
p u ∈ Vp(K̂)

satisfies the equations (2.16) for Π̂div,3d
p curl u. That is, we check:

(div(curl u− curl Π̂curl,3d
p u), div v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂), (B.9a)

(curl u− curl Π̂curl,3d
p u), curl v)L2(K̂) = 0 ∀v ∈ Q̊p(K̂), (B.9b)

(nf · (curl u− curl Π̂curl,3d
p u), v)L2(f) = 0 ∀v ∈ V̊p(f) ∀f ∈ F(K̂), (B.9c)

(nf · (curl u− curl Π̂curl,3d
p u), 1)L2(f) = 0 ∀f ∈ F(K̂). (B.9d)

(B.9a) is obviously satisfied and (B.9b) is a rephrasing of (2.15a). Noting nf · curl = curlf Πτ , we rephrase
(B.9c) as

(curlf Πτ (u− Π̂curl,3d
p u), v)L2(f) = 0 ∀v ∈ V̊p(f). (B.10)

In view of the exact sequence property of (2.12), the space V̊p(f) is the image of curlf Q̊p(f) so that (2.15c)
implies (B.10). Finally, for (B.9d) we perform an integration by parts to get

(curlf Πτ (u− Π̂curl,3d
p u), 1)L2(f) =

∑

e⊂∂f

(Πτ (u− Π̂curl,3d
p u), te)L2(e)

(2.15f)
= 0.

Proof of div Π̂div,3d
p = Π̂L2

p div: Again, this follows from the exact sequence property (2.12). We check that

v := div Π̂div,3d
p u satisfies (2.17). To that end, we note

(divu− v, 1)L2(K̂) = (divu− div Π̂div,3d
p u, 1)L2(K̂) =

∫

∂K̂

n · (u− Π̂div,3d
p u)

(2.16d)
= 0. (B.11)

Furthermore, from the exact sequence property (2.12), we have that every w ∈ W aver
p (K̂) has the form

w = divw for some w ∈ V̊p(K̂). We therefore conclude for every w ∈ W aver
p (K̂)

(divu− v, w)L2(K̂) = (div u− v, divw)L2(K̂)

(2.16a)
= 0.

This concludes the proof of the commutativity of (2.8) in the three-dimensional setting. The commuting
digram (2.11) in 2D is shown by very similar arguments.

C Meshes and spaces

The classical example of curl-conforming and div-conforming FE spaces are the (type I) Nédélec [27] and
Raviart-Thomas elements. These spaces are based on a regular, shape-regular triangulation T of Ω ⊂ R

3.
That is, T satisfies:

(i) The (open) elements K ∈ T cover Ω, i.e., Ω = ∪K∈TK.
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(ii) Associated with each element K is the element map, a C1-diffeomorphism FK : K̂ → K. The set K̂ is
the reference tetrahedron.

(iii) Denoting hK = diamK, there holds, with some shape-regularity constant γ,

h−1
K ‖F ′

K‖L∞(K̂) + hK‖(F ′
K)−1‖L∞(K̂) ≤ γ.

(iv) The elements K ∈ Th cover Ω. Their intersection is only empty, a vertex, an edge, a face, or they coincide
(here, vertices, edges, and faces are the images of the corresponding entities on the reference tetrahedron

K̂). The parametrization of common edges or faces are compatible. That is, if two elements K, K ′ share

an edge (i.e., FK(e) = FK(e′) for edges e, e′ of K̂) or a face (i.e., FK(f) = FK(f ′) for faces f , f ′ of K̂),
then F−1

K ◦ FK′ : f ′ → f is an affine isomorphism.

The global finite element spaces Sp+1(T ), N
I
p(T ), RTp(T ) on Ω are defined as in [25, (3.76), (3.77)] by

transforming covariantly N
I
p(K̂) and RTp(K̂) with the aid of the Piola transform:

Sp+1(T ) := {u ∈ H1(Ω) |u|K ◦ FK ∈ Pp+1(K̂)}, (C.1a)

N
I
p(T ) := {u ∈ H(Ω, curl) | (F ′

K)Tu|K ◦ FK ∈ N
I
p(K̂)}, (C.1b)

RTp(T ) := {u ∈ H(Ω, div) | (detF ′
K)(F ′

K)−1u|K ◦ FK ∈ RTp(K̂)}, (C.1c)

We restrict our attention to approximation operators that are constructed element-by-element.

Definition C.1 (element-by-element construction). An operator Π̂grad : H2(K̂) → Pp+1 is said to ad-
mit element-by-element construction if the operator Πgrad : H1(Ω) ∩

∏
K∈T H

2(K) defined elementwise by

(Πgradu)|K := (Π̂grad(u ◦ FK)) ◦ F−1
K maps into the conforming subspace Sp+1(T ) ⊂ H1(Ω).

An operator Π̂curl : H1(K̂, curl) → N I
p(K̂) is said to admit element-by-element construction if the operator

Πcurl : H(Ω, curl) ∩
∏

K∈T H1(K, curl) defined elementwise by (Πcurlu)|K := (F ′
K)−T (Π̂curl((F ′

K)Tu ◦ FK)) ◦

F−1
K maps into the conforming subspace N I

p(T ) ⊂ H(Ω, curl).

An operator Π̂div : H1(K̂, div) → RTp(K̂) is said to admit element-by-element construction if the operator
Πdiv : H(Ω, div) ∩

∏
K∈T H1(K, div) defined elementwise by

(Πdivu)|K := (det(F ′
K))−1F ′

K(Π̂div(detF ′
K)(F ′

K)−1u ◦ FK)) ◦ F−1
K

maps into the conforming subspace RTp(T ) ⊂ H(Ω, div).
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JMM is grateful to his colleague Joachim Schöberl (TU Wien) for inspiring discussions on the topic of the
paper and, in particular, for pointing out the arguments of Theorem 4.8.

References

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics
(Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.

[2] Mark Ainsworth and Leszek Demkowicz. Explicit polynomial preserving trace liftings on a triangle. Math.
Nachr., 282(5):640–658, 2009.

[3] T. Apel and J.M. Melenk. Interpolation and quasi-interpolation in h- and hp-version finite element spaces.
In E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics. 2017.
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