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On commuting p-version projection-based interpolation on
tetrahedra (extended version)

J.M. Melenk* C. Rojik*
February 1, 2018

Abstract

On the reference tetrahedron K , we define three projection-based interpolation operators on H? (I? ),
H'(K,curl), and H'(K,div). These operators are projections onto space of polynomials, they have the

commuting diagram property and feature the optimal convergence rate as the polynomial degree increases
in H'7%(K), H*(K, curl), H*(K,div) for 0 < s < 1.

1 Introduction

Operators that approximate a given function by a (piecewise) polynomial are fundamental tools in numerical
analysis. The case of scalar functions is rather well-understood and many such approximation operators
exist both for fixed order approximation where accuracy is achieved by refining the mesh, the so-called h-
version, and the p-version, where accuracy is obtained by increasing the polynomial degree p; for the p-version
in an H'-conforming setting we refer to [3,5,29] and references therein. For the approximation of vector-
valued functions, specifically, the approximation in the spaces H(curl) and H(div), the situation is less
developed since the approximation operators are typically required to satisfy, in addition to having certain
approximation properties, also the requirement to be projections and to have a commuting diagram property.
While various operators with all these desirable properties have been developed for the h-version, optimal
results in the p-version are missing in the literature. The present paper is devoted to the analysis of a p-
version projection-based interpolation operator that has the optimal polynomial approximation properties
under suitable regularity assumptions.

High order polynomial projection-based interpolation operators with the projection and commuting diagram
properties have been developed by L. Demkowicz and several coworkers, [11,16-18]; a very nice and compre-
hensive presentation of these results can be found in [15], which will also be the basis for the present work. The
projection-based interpolation operators presented in [15] are a) projections, b) have the commuting diagram
property, and ¢) admit element-by-element construction. The last point means that the operators are defined
elementwise by specifying them on the reference element and that the appropriate interelement continuity is
ensured by defining the interpolant in terms of pertinent traces: for scalar functions, the projection-based
interpolant interpolates in the vertices and its restriction to an edge or a face is completely determined by
the restriction of the function to that edge or face; for the H(curl)-conforming interpolant, its tangential
component on an edge or face is completely determined by the tangential trace of the function on that edge or
face; for the H(div)-conforming interpolant, the normal component on a face is fully dictated by the normal
component of the function on that face. Such a construction is only possible under additional regularity as-
sumptions beyond the minimal one (which would be H*, H(curl) or H(div)). Indeed, in 3D, the construction
described in [15] requires the regularity H'™* with s > 1/2 for scalar functions, H*(curl) with s > 1/2 and
H#(div) with s > 0 for the vectorial ones. Under these regularity assumptions, it is shown in [15, Thm. 5.3]
that the projection-based interpolation operator has, up to logarithmic factors, the optimal algebraic conver-
gence properties (as p — 00), for function with finite Sobolev regularity as measured by s. In this note, we
remove the logarithmic factors, i.e., show optimal rates of convergence, under the more stringent regularity
assumption s > 1 (cf. Theorem 2.8 for the case of tetrahedra and Theorem 2.11 for the case of triangles).

*(melenk@tuwien.ac.at, claudio.rojik@tuwien.ac.at), Institut fiir Analysis und Scientific Computing, Technische Univer-
sitat Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.



The projection-based interpolation operator analyzed in the present work is of the type studied in [15]. Corre-
spondingly, many tools used in [15] are also used here, most notably, the polynomial lifting operators developed
for tetrahedra in [19-21] and for the simpler case of triangles in [2]; we mention in passing that suitable poly-
nomial lifting operators are also available for the case of the cube [12]. Another tool that [15] uses are right
inverses of the gradient, curl and div operators (“Poincaré maps”). Here, we use a more recent and powerful
variant, namely, the regularized right inverses of [13]. This breakthrough paper [13] allows for stable decom-
positions of functions in H(curl) and H (div) with appropriate mapping properties in scales of Sobolev spaces
and is an essential component in the analysis of the p-version in H(curl), [6,8,23]. The distingushing technical
difference between [15] and the present work, which is responsible for the removal of the logarithmic factor, is
the treatment of the non-local norms on the boundary. Non-local norms on the boundary are written in [15]
(following [17]) as a sum of contributions over the boundary parts (that is, faces in 3D and edges in 2D);
in finite-dimensional spaces of piecewise polynomials, this localization procedure is possible at the price of
logarithmic factors. Instead of localizing a non-local norm, the approach taken here is to realize the non-local
norm by interpolating between two norms related to integer order Sobolev norms, which both can be localized,
i.e., written as sums of contributions over boundary parts. In turn, this requires to analyze the error of the
projection-based interpolation in two norms instead of a single one. The estimate in the stronger norm is
obtained by a best approximation argument as done in [15], the estimate in the weaker norm is obtained by
a duality argument.
The gradient operator V for scalar functions u and the divergence operator div for R%-valued functions u are
defined in the usual way: Vu = (0,1, ..., 0,,u) " and divu = 2?21 Oz, u;. For d = 3 and R3-valued functions
u the curl-operator is defined as curlu := (9,,u3 — Oz u2, —(0z,ug — Oz 1), Oy U — &Czul)T. For d = 2
we distinguish between the scalar-valued and vector-valued curl operator: for a scalar function u, we defined
curlwy := (0,,u, —0z,u) " and for an R?-valued function u we set curlu := 9,,uy — J,,u;.
For Lipschitz domains w C R? (d € {2,3}) and scalar functions, we employ the usual Sobolev spaces H*(w),
s >0, as defined, e.g., in [1]. For s > 0 the space H~*(w) := (H*(w))’ is the dual space of H*(w) characterized
by the norm

full sy = sup S

A= @) ey Il

(1.1)

where (-,+)z2(,) denotes the (extended) L*-scalar product. Vector-valued analogs H*(w) are defined to be
elements of H*(w) componentwise and also the dual norm || - [|g-., is defined analogously to (1.1). For
s >0 and d = 3, we set H*(w, curl) = {u € H¥(w) | curlu € H*(w)} and H*(w,div) = {u € H%(w) | divu €
H?(w)}; for d = 2 we have H*(w, curl) = {u € H*(w) | curlu € H*(w)}. For s > 0, we define

[[ull = [l

%I*S(w,curl) : | + H CllI'lU.H%I

2
H-¢(w) (W)

2 1/2 :
o (w.div) o (w,curl)’ The space H'/?(0w) will be understood as

the trace space of H'(w) and H~'/?(dw) denotes its dual. The spaces Ho(w, curl) and Hy(w,div) are the
subspaces of H(w, curl) and H(w, div) with vanishing tangential or normal trace, defined as the closure of
(Cgo(w))d under the norms H ' ||H(w,curl) and || ' ||H(w,div)-

and analogously the norms |ul% and |Jul|

2 Projection based interpolation

K C R3 denotes the reference tetrahedron, which is taken to be the regular tetrahedron, i.e., its 4 faces
are equilateral triangles. The sets F(K), £(K) and V(K) denote the sets of faces, edges and vertices of K,
respectively. In the two-dimensional space, we use the notation f for the reference triangle, which is taken
to be the equilateral triangle with interior angles 7/3, and £(f) and V(f) for the set of edges and vertices of
J?. We also need the tangential trace and tangential component operators: For a sufficiently smooth function
u on K we set Il;u := n x (u[yz x n) and v,u := ul,z x n, where n denotes the outer normal vector of
K. For a face fe }“(IA() we will write IL; ¢ for the (in-plane) tangential trace on Of, i.e., with the in-plane
exterior normal nyy and sufficiently smooth tangential fields u we set I, ju = u—ngs(ngy-u). For sufficiently
smooth u, we have for each edge e € S(IA() II. sul. = u- t.. Here, t. is the tangential vector of the edge e; its
orientation is assumed to be fixed.

We have the integration by parts formula

(curlu,v) . gy = (curlv,u) oy — (I, 72 V) 12 57y Vu,v € HY(K), (2.1)



which actually extends to u, v € H(IA(, curl), [25, Thm. 3.29]. In 2D, we have the integration by parts formula

(Stokes formula)
/Acurlv-F:/AvcurlF—/AvF-t (2.2)
! ! of

where the piecewise constant tangential vector t is oriented such that fis “on the left”.
For each face f € F(K) and s > 0 we define the Sobolev spaces H*(f), H*(f) as well as H5.(f, curl) and

ﬁ;s( f,curl) by identifying the face f with a subset of R? via an affine congruence map. The subscript T

indicates that tangential fields are considered. Also the spaces H*(e) and H=*(e) on an edge e € £(K) are
defined by such an identification.

2.0.1 Spaces on the reference element

On K we introduce the classical Nédélec type I and Raviart-Thomas elements of degree p > 0 (see, e.g., [25]):

P, (IA() = span{z® | |a| < p}, (2.3)
N (K) = {p(x) + x x q(x) | p,q € (P,(K))*}, (24)
RT,(K) := {p(x) + q(x)x|p € (Py(K))*,q € P,(K)}. (2.5)

Recall the exact sequences on the continuous level

R —4 s g2(K) —Y HYEK,curl) - HY(K,div) — HYK) —2— {0} (2.6)
and on the discrete level
R —9 Pi(K) —— NIK) 2L RT,(K) — Py(K) —2— {0} (2.7)

Using the notation
~ ~ PN . —~
Woi(K) = Ppi(K),  Qu(K) :i=N(K),  V,(K):=RT,(K),
we present here projection operators ﬁf)ff? ’3d, ﬁ;“rl’3d, ﬁgi"’?’d, ﬁf that enjoy the commuting diagram property

curl

R —4y HXK) —Y HY(K,curl) - HY(K,div) - HY(K) —2— {0}

J{Hirld 3d lﬁ;url,Sd J{ 2v3d lﬁL2 (28)
R — Wppi(K) ——  Qu(K) % Vy(K) — W,(K) —— {0}

In the two-dimensional setting, the Nédélec type I elements are defined by

Qu(f) == Ny (f) == {p(x) + ax)(y,—2)" | p € (P(F)% 0 € Pp(H)},
where ﬁp(A) denotes the homogeneous polynomials of degree p. Here we have shorter exact sequences of the
forms

o~ ~

R —4y H3/2(F) —Y HY2(f, curl) -2 HY2(F) —2 {0} (2.9)

on the continuous level and

~ o~

R — Pr(f) —— N(F) =5

curl

Po(f) —— {0} (2.10)

one the discrete level. We then define projection operators Hiff 2d HC“rl 2d HL which satisfy the commuting
diagram property

o~

R — m32(f) —T HV3(feml) —h HY2(f) — {0}

lﬁif?,zd lﬁ;urlﬂd lﬁf (2.11)
id “~ N url N
R —"= Wpu(f) ——  Qf) —= W,(f) —— {0}



2.0.2 Trace spaces on the boundary

We will also need the traces of the spaces WpH(IA( )s Qp(IA( ) and Vp(IA( ) on various parts of the boundary. For
faces f € F(K) the corresponding spaces are defined by trace operations:

Wp1(f) == Wpra (K))[r, - Qp(f) i= (I Qp(K))[f,  Vi(f) := Vp(K) - ny,
where II; is the tangential component and ny the normal vector of f. These traces are well-known objects:
Identifying a face f with the reference triangle f via the affine element map, the space W11 (f) coincides with

the space P,+1(R?) of bivariate polynomials of (total) degree p + 1; the space Q,(f) turns out to be ./\f;(f),
the type-I Nédélec element on triangles; and V,(f) is the space P,(R?). Lowering the dimension even further,

we introduce for each edge e € £(K) the spaces

Wir1(€) := Wpra(K))le,  Qple) = Qp(K) - te,

where t. is the tangential vector of the edge e. Similar to the case of the faces, the space Wy41(e) can be
identified with the univariate polynomials of degree p + 1 and @Q,(e) with the univariate polynomimals of
degree p.

We also need subspaces of functions vanishing on the boundary in the appropriate sense. We set

W1 (K) i= Wysr (K) N HY(K), Qp(K) = {u € Q,(K) [TL,u = 0}, V,(K) := {u € V,(K)[n-u=0}.

We also need We" (K) := {u € Wpyi (K)| J7# u = 0}. Corresponding spaces on lower-dimensional manifolds
are defined as follows:

Wit (£) = Wy (F) N Hg (£), Qp(f) = {u € Qp(f) | Tlrpu = 0},
)= e ot fu=op
Finally, we set for edges e € £(K)
Wps1(€) = Wosr(©) N HE(e),  Qple) = {u e Qple)]| / u=0}.
By e.g., [15] or [23] (actually, [23] uses the tangential trace operator v, instead of II; in the definition of

the spaces Q,(f) and correspondingly identifies the space Q,(f) with a Raviart-Thomas space instead of a
Nédélec space) we have the following diagrams for faces f € F(K) and edges e € E(K)

1d s = v AT rl o 5 div aver { T 0
{0} —— W (K) —— Qp(K) == V,(K) —— Waver(K) —— {0}
Id Curlf o 0

{0y — Wi (f) —— Q(f) V(f) —2— {0} (2.12)

0}y 4 Woi(e) —2 Qple) —2— {0}

In this diagram (and in what follows), the operators Vy, V. represent surface gradients on a face f and
tangential differentiation on an edge e, respectively. The operator curl; is the surface curl on face f.
In two dimensions, we set

o~ o~ o~

Woir(F) == Word (NN H3 (), Qu(f) = fu € Qp(f) |u-t. = 0Ve € E(f)}.

One again looks at shortened sequences, namely,

{0} X Wp-l—l(f) . Q (2.13)
{0} — Wpsile) — Q

. ~dag o o
2.1 Definition of the operators II5"" 38, [1gel3d, Trdiv.3d

The construction is similar to that in [15,17]. The difference is that all inner products are integer order inner
products.



2.1.1 The operators in 3D
Definition 2.1 (ﬁzg)ff’3d). The operator ﬁzg)ff’gd : H2(K) — Wp+1(f?) is defined by

K),
(Vi(u— T3 0), Vo) oy =0 Yo € Wpaa () Vf € F(K),

(V(u = T 0), Vo) gy = 0 Vo € Wy (K
(

(Ve(u —TEX3 ) Vev) 2y =0 Yo € Wyrile) Ve € E(K),
K).

p+1
w(V) = I8 (V) =0 vV e V(K

Definition 2.2 (ﬁg“rl’gd). The operator ﬁgurl*gd : Hl(I?, curl) — Qp(f() 1s defined by the following conditions

(curl(u — ﬁ;‘“l’gdu) curlv),, 2y =0 Vve Qp(f(),
((u— ﬁ;‘"l’?’du)7 Vu)pagy =0 Vo e Wi K),

(
(curly L (u — O3 40) curly v) 2y = 0 Vv € Qu(f) Vf € F(K),
(I, (u — TI"30), Vo) papy = 0 Yo € Wpar(f)  Vf € F(K),
ev) (
1)

(te . ( N ﬁcurl,3d )

(te - (u— T34 1) 12 = 0 Ve € E(K).

LZ(e):O V’UEWerl 6) VGGE(I/E,

Definition 2.3 (ﬁgi"’3d). The operator Hd“’ 3. HY2(K,div) > V »(K K) is defined by the following conditions:

(div(u — T3 5), divv) o 2y = 0 Vv € Vy(K),
((u— ﬁgiv’gdu),curlv 2y =0 Vve Qp( ),
(ny - (u—TV3a) 0) ey =0 Vo e Vp(f) Vf e F(K),
(ng - (u—T8V300) 1) 25 = 0 Vf € F(K).

)
)

Definition 2.4 (ﬁgz) The operator ﬁ£2 : L2(K) — Wp(f?) is defined by the conditions

~7r2

(u —TIE

v u,v)Lz(f()zo Vv € W, (K).

2.1.2 The operators in 2D

(2.17)

We define the projection operators following the lines of Section 2.1.1. The operators are then well-defined
by the following equations, which can be shown by checking the numbers of conditions the same way as in

Section 2.1.1.

o~ o~

Definition 2.5 (Hiff 2y The operator ﬁlg,ff’Qd S H32(f) — Wyyi(f) is defined by

(V(u— T2 0), Vo) o5y = 0 Yo € Wypa (),

(Ve(u — TP M0), Vev) 12 = 0 Yo € Wpyile) Ve € E(F),
w(V) = IEH* (V) =0 vV e V(f).

o~

Definition 2.6 (ﬁ;“rl’Qd). The operator ﬁ;““’Qd cHY2(f, curl) — Q,(f) is defined by

(curl(u — ﬁ;‘“l’mu) curlv) 5 =0 Vv e Q,(/),
(0 =T 2M), Vo) oy = 0 Yo € Wy ( P,
(te - (u— ﬁ;“rl’Qdu), Vev)r2@e) =0 Vv e Wyii(e) Vee (),
(te - (u—T240) 1) 12y = 0 Ve € E(f).

(2.18a)



~ ~

Definition 2.7 (ﬁf) The operator ﬁf : L2(f) — W,(f) is defined by

S =0 YoeW,()). (2.20)

~r2
(u— 11} u,v)LQ()

It is worth pointing out that, up to identifying a face f € F (IA( ) with the reference triangle f, the 2D operators

H]ggff 2d HC“rl 2d coincide with the restrictions to the face f of H%ff ,3d HC“rl 3d,

2.2 Main results
We can now formulate the main theorems. The proofs are postponed to the later sections.

Theorem 2.8 (Projection-based interpolation in 3D). There are constants Cs and Cs ) (depending only on
s and k) such that:

(i) The operators ﬁzg)ff’gd, ﬁgurl’gd, ﬁ;}iv*gd, ﬁ£2 are well-defined, projections, and the diagram (2.8) com-
mutes.

(ii) For all o € H2(K) there holds

rygrad,3d — s .
HSD - Hzg)-lfl s SDHHI—S(I?) S Cép 1+ ) lnf . HSD - UHHQ(I?)’ S € [0, 1]
vEWp41(K)

(iii) For all u € HY(K, curl) there holds

Tycurl,3d
Hp

lu— < Cp~(+9)  inf - 0 = Vil (7 cur> s € [0,1].

uHH S(K curl) — veQ, (R
P

(iv) For all k > 1 and all u € H¥(K) with curlu € V,(K) = RT,(K) D (P,(K))? there holds

Tycurl,3d
HP

[Ju — llg— (% ourty < Csep™ I lullgu(zy,  s€100,1]. (2.21)

If p =k —1, then the full norm |[ullg. gy can be replaced with the seminorm [u|gp. -

(v) For all u € HY2(K div) there holds

ydiv,3d —(1/2+s .
fid Cp=(/2+9) iy

ve p(

u— u”ﬁfs(f(,div) < ||U-_VHH1/2(K div)> s €[0,1].

(vi) For all k > 1 and all u € H¥(K) with divu € P, (K K) there holds

= 3| e ) € Con™ O ullgys s € 0,1 (2.22)

5(K,div)

If p >k —1, then the full norm |[ullg. gy can be replaced with the seminorm [u|g. -

Proof. Statement (i) asserts that the pertinent traces are well-defined and in L2-based spaces. That H! (K, curl)-
functions have L2-traces on the edges is shown with the arguments given at the beginning of Lemma 4.11.
That H!/? (K div)-functions have normal traces in L? on the faces is shown in Lemma 5.16. The commuting
diagram property follows by arguments very similar to those given in [15]; details can be found in Section B.
For (ii) see Theorem 5.10. Ttem (iii) is shown Theorem 5.14 and (iv) in Lemma 5.15. Statement (v) is given
in Theorem 5.20, and statement (vi) is shown in Lemma 5.21. O

The projection property of the operators H%ff 3d HC“rl 3d ﬁgivvgd together with the best approximation
property of Lemma 4.1 implies:

Corollary 2.9. For k> 1 and s € [0, 1] there are constants Cs j depending only on k, s such that

rad,3d _ s
lo = T2 e ) < Cond™ F 10l i 2y (2.23)
= 3l g€ Cn™ ) e o (2.24)
||u _ Hgiv,3du||ﬁ75(f(7div) S Cs,kp_(k-i-s) ||uHHk(IA(,diV)' (225)



Proof. The estimate (2.23) follows directly from Theorem 2.8, (ii) and the best approximation result Lemma 4.1.
For the proof of the estimate (2.24) we use Theorem 2.8, (iii) and Lemma 4.1 in the following way: With
Lemma 5.5, we write u = Vi + z with H‘PHHkH(;?) S ”uHHk(f(,curl) and HZHHk+1(;?) < curluHHk(f(). From
Theorem 2.8, (iii) and Lemma 4.1 we infer

ﬁcurl,Sd —(1+s)
p

lu — inf Vo +2z— (Vv+q)||H1(K curl)

101 S
||H (K ,curl) ~ P vEW,(K),aeQ,(K)
<p ) | inf (o — o + Inf_ iz —dllge g
< in ¢ =0l g mi |2 — qf[gge
l W, (R) 1) equit) e
Lem. 4.1

e T ||Z||Hk+1(K)] S g 2 -

The bound (2.25) is shown in a similar way, using, for u € Hk(lA(,diV) the decomposition u = curlp + z
with [|@llgesr () S HuHHk(f(,div) and ||Z||Hk+1(f() < HdiVU-HHk-(f() given by Lemma 5.6 and arguing with
Theorem 2.8, (v) and Lemma 4.1, thus:

lu— ﬁc;iv,Bdu”H7 —(1/2+s) _inf ||curlp +z — (curlq + V)||H1/2(K div)

—~ <
s iv ~P
(K.div) a€Qy (K) veV, (R)

< p~(1/2+9) inf [l —qllgezgy + Inf 2= Vlgse g
qup(m )

vEV,
Lem. 4.1 ( +k)
S
S op ”uHHk(f(,diV)-

O

Remark 2.10. The operators ﬁgwd’w ﬁc‘”l 3d ﬁdiv 3d ﬁL2 admit element-by-element constructions as in

Definition C.1. The global operators Hpr_f?, HC‘"1 Hd‘V HL obtained from the operators Hif? ,3d HC‘”1 3d

, Hzf by an element-by-element construction are also linear projection operators with the commuting
diagram property

Tydiv,3d
HP

R —4s H2Q) —— HYQcurl) <20 HY(Q,div) — HY(Q) —>— {0}
lnif? ln(;)url lngiv lnf . (2.26)
R —= Wput(T) ——  Q(T) — Vi (T) —= Wy(T) —— {0}

This is a direct consequence of Theorem 2.8, (i) and the fact that the operators are constructed element by
element. u

Theorem 2.11 (Projection-based interpolation in 2D). There are constants Cs i, depending only on s, k such
that the following holds:

(i) The operators H}g,ff 2d chrl 2d HL are well-defined, projections, and the diagram (2.11) commutes.

(ii) For all o € H32(f) there holds

o — TER20] o < Corp™ W2 inf o=l o, 5€0,1]
p+1 H==(f) veWpir () H3/2(f)
frerad,2d — s
lle — H;g)Jrl 80”1?11—5(]?) < Cskp (1/2+5) inf lle — U”Hz/z(f)a s € [1,3).
UEWp+1(f)

(iii) For allu € H1/2(f/’\7 curl) there holds

la— ngrl,?duHﬁis(ﬁcurl) < Cs,kp’(l/”S) in Ju— VHHl/z(f curl)? se0,3).

Qr(f)

(iv) For all k > 1 and all u € HF(f) with curlu € Pp(]?) there holds

lu = T2 g f oy < Conp™ 9 ullygi sy, s €[0,3). (2.27)

If p > k — 1, then the full norm Hu||Hk(f) can be replaced with the seminorm |u|Hk(f)'



Proof. The proof of (i) follows by arguments very similar to those given in [15]; details can be found in
Section B. Ttem (ii) is shown in Theorem 4.8 and item (iii) in Lemma 4.13. For statement (iv), see Lemma 4.14.

O
The following corollary is the two-dimensional analog of Corollary 2.9:
Corollary 2.12. For k> 1,
rad,2d s
le = TR0 oy < Cod™ ® 0l a5 € 10,1], (2.28)
rad,2d s
e = T2l g1 7y < Cond™ " @l gpsr iy s € [1,3), (2:29)
= B2 o € Coid™ Dl oy S € [0.3). (2:30)
Proof. The proof follows as in Corollary 2.9, relying on Lemma 4.5 for the proof of (2.30). O
3 Stability of the projection operators in one space dimension
In the one-dimensional space, the following result holds true.
Lemma 3.1. Let ¢ = (—1,1). Let ngad . qH1(8) — P, be defined by
((u— ﬁgrad’ldu)',vl) L2 =0 Yv € P, N Hy(e), (3.1)
u(1) = (IS ) (£1).
Then for every s > 0 there is Cy such that
[ — TE2 My | g1y ) < Cop™ Jnf [ = 0| 1 2 if s €[0,1] (3.2a)
Huiﬁirad,ldu”ﬁlfs(g) S Csp_sv inf e ||’ll,*’()||£{1(e)7 ZfS Z 1. (32b)

Proof. The case s = 0 in (3.2a) reflects the well-known best approximation property of ﬁ%mdvld. For s > 1,

one proceeds by a standard duality argument. We set € := u — ﬁ%rad’ldu and t = —(1 —s) > 0. We need an
estimate for

[ sup M
Hob@) ~ vert@ lvlare

For every v € H'(€), there exists a unique solution z € H'*2(e) N H}(€) of the problem

" ~ A~
—z"=wv on g€, z=0on Je

satisfying [|z|| ge+2(e) S [|[v]|mee)- Thus, we obtain using integration by parts, the orthogonality condition (3.1)
and the estimate for s =0

(€, V)20 = (€, 2)r2e)| < [1€']l220) UL 12" = 7'll 22
D 0
o, 1) (3.2a) with s =0 1)
SIEN2@p™ V2l e S MY b jlu—vlme e,

p(A
which implies (3.2b) for s > 1. Noting that H°(€) = L?(¢) = H°(é), the remaining cases s € (0, 1) follow by
interpolation. [l

4 Stability of the projection operators in two space dimensions

4.1 Preliminaries

We recall the following unconstrained approximation results:



Lemma 4.1. Let K be the reference tetrahedron K or the reference triangle J? Fiz 0 <7 and d € N. Then
there are approzimation operators J, : H"(K) — (P,)? such that

lu— Jpulla:x) < Clp+ 1)_(T_S)Hu||Hr(K), VpeNy, 0<s<r.

Proof. The scalar case d = 1 is well-known, a proof can be found, e.g., in [24, Thm. 5.1]. The case d > 1
follows from a componentwise application of the case d = 1. O

Lemma 4.2 ([15]). Let Perad2dy ¢ Wp+1(f) be defined by the conditions

(V(u— PE20) Vo) 5 = Yo € Wit (f), (4.1a)

0
(u — perad2dy, 1) 27 = 0. (4.1b)

~—

Then, for r > 1, there holds |ju — Pgwd’QduHHl(f) < Crp_(r_l)HuHHr(f).
Lemma 4.3 ([15]). Let P"2du ¢ Q,(f) be defined by the conditions

(curl(u — Peurb2dy), curlv)LQ(f)

(u _ Pcurl’Qdu, VU)LQ("

VV S QP(.]?))

=0
=0 Yve W, (4.2b)

~—

Then, for r > 0 there holds |ju — Pcurl’QduHH(ﬁcurl) < C’piTHuHHr(ﬁcml).

The next lemma provides right inverses for the differential operators V and curl;

Lemma 4.4 ([13], [6, Sec. 2.3]). Let B C fbe aball Letf € C§°(B) with [0 = 1. Define the operators

REvu) i [

a

Ry (x) = /aEB (9(:11)/161 tu(a -+ t(x — a)) dt < ~(x2 —25) ) da.

=0 X1 —ap

. 0(a) /t_O u(a+t(x—a))dt- (x —a)da,

Then:

i) Foru e L? £), there holds curl Ry = 4.
(i) (f),

(i) For u with curlu = 0, there holds VR#*u = u.

~ ~

(i) If u € Qu(f), then R&*u € W41 (f).

() Ifu € Vp(f), then Ry € Qp(f).

o~ ~

(v) For every k > 0, the operators Rre2d gnd R gre bounded linear operators Hk(f) — Hk+1(f) and
H*(f) — HFL(f), respectively.

Lemma 4.4 can now be used to construct regular Helmholtz-like decompositions.

o~

Lemma 4.5. Let s > 0. Then each u € H‘S(f, curl) can be written as u = Vo + z with o € H*TL(f),

o~

z € HSTL(f).

Proof. With the aid of the operators R°™!, Red of Lemma 4.4, we write u = VR (u — R (curlu)) +
R"!(curlu). The mapping properties of R and R#'? of Lemma 4.4 then imply the result. O

Lemma 4.6 (discrete Friedrichs inequality in 2D). There exists C' > 0 independent of p and u such that
[all 27 < Cllcurlul| 5 7 (4.3)

in the following two cases:

~

(i) ue Qp(f) satisfies (u, VU)LQ(]?) =0 for allv e Wpia(f).



(ii) u e Qp(f) satisfies (0, V), 2y = 0 for all v e Wp+1(f)

Proof. Statement (i) is proved in [17, Lemma 6] or [15, Lemma 4.1]. Statement (ii) is shown with similar
techniques. Let R&'*d and R be the operators of Lemma 4.4. We decompose u € Q,(f) as

u = V¢ + R (curlu), Y= R&*(u — R (curlu)).

Since u € Q(fA) we have 1) € WpH(fA). The property u € Qp(fA) implies with the tangential vector t on the

boundary 8f
t-Vy = —t - R (curlu).

Since 1 is continuous at the vertices of f, we infer

|¢|H1/2(af) S |1/’|H1(af) =t Rcurl(curlu)Hm(af) < |Rcurl(cur1u)|L2(af)
S HRCHII(CUHU)HHlm(af) < IR (curl u)”Hl(f) Sl CurluHLz(f)

Next, we decompose ¢ = g + L(¢|,7), where L : HY2(8f) — H'(f) is the lifting operator of [4]. Since £
produces a polynomial and 1) € Wp+1(f), we get that v € p+1(f) and estimate

||u|\iZ(A) = (u, Voo + Vﬁ(wa) + Rcurl(curlu))Lz(f = (u, Vﬁ(¢|6f) + Rcurl(curlu))Lz(A)
< ull gy {IV L@ a7y + IR curlw) | 7 }
< Jull oy {10l ago + IR curtwll o 5 } S 1l ol curlull s O
Recall that the reference triangle ]? is the equilateral triangle with interior angles m/3. Thus we have the

following well-known shift theorem for the Laplacian.

Lemma 4.7. For every s € [0,2) there is Cs > 0 such that the following shift theorems are true:

(i) For every v € H*(f) the solution z of the problem
—Az=w onf, z=0 onﬁﬁ
satisfies z € HSV2(f) N HE(f) with the estimate 2l ez 7y < Csllvll o7y

(i) For every v € Hs(f) and data g € LQ(af) with gl. € H¥ /2 (e), e € E(f) that satisfies additionally the
compatibility condition ff” + fafg =0, the solution z of the problem

—Az:vonf, anz:gonaf, /Az:0,
f

satisfies z € HV2(f) together with 21l o2 7y < Cs [HUHHs(f) T2 eee(d H9||Hs+1/2(e)]

Proof. 1. step: Tt follows from [14,22] that both regularity assertions are satisfied for the case of homogeneous
Dirichlet and Neumann conditions (i.e., g = 0). The key observation is that the leading corner singularities
for both the homogeneous Dirichlet and Neumann problem are in H*~¢ for every ¢ > 0, since they are of
the form O(r®logr), where r measures the distance from the vertex (with which the singularity function is
associated).

2. step: For the case of inhomogeneous Neumann conditions g # 0, one constructs a vector field o € HS+1(f)
such that o -n = g on 8J?. It is easy to construct such a vector field away from the vertices, and near the
vertices, an affine coordinate change reduces the construction to one in a quarter plane, where each component
of o can be constructed separately by lifting from one of the coordinate axes. Next, one solves the two problems

—Azpg=v+dive in f, Onz0=0 on 8]?,
—AZy =curloe in fA’, Zo=0 on 8?.
From step 1, one has that zg, zg € HS+2(fA). It remains to see that Vz = o + curl zg + Vzy. This follows

from the observation that the difference § := Vz — (o + curl Zy + Vz) satisfies divd = 0 = curl d as well as
d-n=0onadf. (|
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4.2 Stability of the operator Tjerad,2d

pt1
Theorem 4.8. For every s € [0,3) there is Cs such that
lu = T ull o 7y < Cop™ W25 inf_lu =]l oo 7 if s €[0,1], (4.4a)
vEPL(f)
lu = T2 o 7y < Cop™2F) i Ju =0 gy if s €[1,3). (4.4D)
vEPL(f)
Proof. The first observation is that it suffices to show the estimates (4.4a), (4.4b) for the special case v = 0 in

the infimum by the projection property of ﬁ%f? 24 We will therefore show in a first step (4.4a) for the case

s = 0. In a second step, we show (4.4b) for the cases s € [1,3). The remaining cases s € (0,1) are obtained
by interpolating between the case s = 0 and the case s = 1 (for which (4.4a) and (4.4b) coincide).

We note that the trace theorem gives u € H'(e) for each edge e € £(f) with lull ey S HuHHs/Q(f). By

Lemma 3.1, we have for every edge e € £(f)

Trerad,2d —
= T2 oy < o ull oy, 5 € [0,1] (15)
Since ﬁ]ggff 24y, is piecewise polynomial and continuous on df, we infer in particular for s = 0 and s = 1 the
bounds
rygrad,2d —
l[u— H;g)-fl u”ﬂl—s(af) <Cp s||u||H3/2(f)a (4.6)

and then, by interpolation, also for the intermediate s € (0,1). Next, we show (4.4a) for s = 0. In view of
the existence of a polynomial preserving lifting of [4] that is continuous H'/2(0f) — H'(f) and the fact that
perad2dy, Hif?’2du is discrete harmonic, i.e.,

(V(PEed2hy — TE ), Vo) o 5y =0 Yo € Wi (), (4.7)

we infer from Lemma 4.2 and (4.6) for the seminorm | - |H1(f)

u — fjerad.2d

N _ pegrad,2d R grad,2d, _ Tyerad,2d
i1 u|H1(f)§|u r u|H1(f)+|P u—1II

pr1 Ul

B ~orad,2d
S22 ullgrasagpy + 1P = T ul 2 o )

Pgrad,2d

< p71/2||u||H3/2(f) + Hu - U”Hl(f) §p71/2||u||H3/2(f)7

which is (4.4a) for s = 0. We next show the estimate (4.4b) for s € [1,3) by a duality argument. Let

€=u— ﬁ%ff’Qdu, and set t = —(1 — s). To estimate
(gﬂ ’U) 7
Elg .= sup ~ ) (4.9)
(f) LA HUH LA
vEH!(f) H(f)
let v € H'(f) and z € H'™*2(f) N HL(f) solve (cf. Lemma 4.7)
—Az=v inf, Z|6f: .
Note the a priori estimate Hz||Ht+2(f) < C||v|\Ht(f). Then, integration by parts yields
('ev,v)Lz(fA) = /AV'€~ Vz— | Onze (4.10)
! of
For the first term in (4.10) we get by the orthogonality properties satisfied by €, Lemma 4.1 and (4.8)
’/sz -Ve| < inf LA Iz — 7THH1(f)vaHL2(f) < p_(t+1)||Z|‘Ht+2(f)||vg”L2(f)
7 reP,NHL(F) (4.11)
i1 _ (4.4a) with s =0 1/2
51’7( + )I\Velle(f)llvHHt(f) s pi( / JrS)HUHHSM(fA)”vHHt(f)-

o~

For the second term in (4.10) we use Lemma 3.1 to obtain on each edge e € £(f)

|(Onz,€)r2(e)] S |\€Hﬁ,(t+1/2)(e)||8nz||Ht+1/2(e) 5P_(S/QH)H“HHl(e)HZHHtH(f) S _(1/2+S)H“HH3/2(]?)||UHHt(f)-

(4.12)
Inserting (4.11) and (4.12) in (4.9) yields (4.4b) for s € [1,3). The estimate (4.4a) for s € (0,1) now follows
by interpolation between s = 0 and s = 1. (|
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4.3 Stability of the operator ﬁ;urh?d

The following lemmata present the duality arguments that are needed later on to estimate negative Sobolev
norms.

Lemma 4.9. Let E € H(f, curl) satisfy the orthogonality conditions

(curl E, curl V)L Vv e Qp(f), (4.13a)
(E, V) 27 Vo € Wyra (f), (4.13b)
(E-t.,V @)L2(e) =0 VYo Wyle), Yee&(f), (4.13¢)
(B-te, )20 =0  Vee&(f). (4.13d)
Then, for s €[0,3), there holds ||E| - () < C’p75||EHH(fA7curl).

Proof. 1. step: We may restrict to the case s > 1 as the case s = 0 is trivial and the remaining cases s € [0, 1]
follow then by interpolation.
2. step: Any v € H*(f) can be decomposed as

v = Vg +curl 2, (4.14)
where ¢,z € H S‘H(f) are determined by the following equations:
—Ap = —divv, ©=0 ondf, (4.15a)
—Az = curlv, Opz=—t-curlz=—t-(v—Vy) on aF, /Az = 0. (4.15b)
!
Here, t denotes the unit tangent vector on 8]? oriented such that f is “on the left”. We note that (4.15b)

is a Neumann problem; integration by parts shows that the solvability condition is satisfied. We have by
Lemma 4.7 the a priori estimates

||50||Hs+1(f | divvl| .- L(Fy HZ”HsH(f ||VHH5 - (4.16)

Together with integration by parts (cf. (2.2)) we compute
(E,V)Lz(]?) = (E, Vo) + (B curlz) ;5 = (E,V@)L2(f) + (curlE,z)Lz(f) - /6sz -t. (4.17)

and estimate each of the three terms separately. R R
3. step: Using the orthogonalities satisfied by E and ¢ € Hg(f) N H¥1(f) we obtain for the first term in
(4.17)

(E VQO)LZ(f) = inf (Ea V(‘P - w))L2(f) < pis” diVVHHsfl(f) ”EHLz(f“) S pis”VHHs(f) ||EHH(f7Curl)'

weEW,11(f)

4. step: The term (z,E - t)LQ(af) in (4.17) can be treated using the orthogonalities satisfied by E: Using that

z € H* () so that z € C(Of) and z € H*1/2(e) for each edge e € £(f) and the orthogonality properties
(4.13c¢) and (4.13d), we get

E-tz|= inf E~t(zw)‘ <S|E -t ~ inf ||z — || A
/31? weW,(95) f I weW,(9f) D
SpE- tHH—l/Z(af) ||Z|‘Hs+1(f) S p_sHEHH(ﬁcurl)HVHHs(f)

where, in the final step, we used the continuity of the tangential trace map: ||E - t”H*l/?(BfA) < |\E||H(fcml).
(cf., e.g., [15, (eq. (154)]).
5. step: For the first term in (4.17) , we introduce an auxiliary function z with the following key properties:

curlz=2, z-t=0

12



Such a function can be obtained as z = curlz, where Z solves the following Neumann problem (note that
J 72 =0, so the solvability condition is satisfied)

~AZ=z inf, 9,7=0 ondf.

We obtain
(4.13a) .
(curlE, 2),,, 7~ = (curlE curlz),, » = inf (curlE,curl(z — w)), . #
L2(f) L2(f) wed, () L2(f)

S P70l cwrl B ~

Lem. 4.
(f)HZHHs(ﬁcuﬂ) S P EHH(fcuﬂ)HVHHs(f)

Lemma 4.10. Let E € H(f, curl) satisfy (4.15a), (4.13d). Then, for s € [0,3), there holds | cur1E||ﬁ,S(f) <
Cop™*[lcwrl B 1z 7.

Proof. As in the proof of Lemma 4.9, we restrict to s > 1 and argue by interpolation for s € [0,1]. Let
ve H(f)and T := (ffv)/|f| € R be its average. Integration by parts yields

4.13d
(curlE,v)Lz(A) = (curl E, v fi)Lz(A) +7(E - t, 1)L2(6f) (130 (curl E, v — )Lz(f)

Next, we define the auxiliary function ¢ € H*+1(f) as the solution of
—Ap=v—-7 inf, Onp =0 onaf

o~

and set v := curl . (Lemma 4.7 is apphcable since s+1 < 4; for s < 2 Lemma 4.7 even asserts ¢ € H**2(f).)

We note curlv = —Ap =v —7 in f andt-v=—-0,p=0o0n 8f so that integration by parts gives
_ (4.13a)
(curlE, v — ’U)LQ(]’;) = (curl E, curlv) .5 = wegf(A)(curlE, curl(v — W) 12 (7)
Lem. 4.3 s
N ||Cu1"1E||L2(f)||VHH Freurl) Sp HCurlEHL?(f)”UHHS(f)' O

o~

After the next lemma about approximation on edges e € £(f), we can prove the stability results in 2D as
stated in Theorem 2.11.

Lemma 4.11. For each edge e € E(f) we have for u € H1/2(]‘A’7 curl) and s > 0

[(u— T2y ¢ 7 < Cop™  inf ||u te — vl L2(0)- (4.18)

(e) = vEP (e

Proof. Note that u € HY/2(f, curl) ensures that u - t, € L2(e) since u € HY/2(f, curl) can be decomposed as
u = Vo +z with o € H¥?(f), z € H32(f).

We recall that on edges, the operator ngrl&d is simply the L2-projection. Thus, (4.18) holds for s = 0.
For s > 0, (4.18) is shown by a standard duality argument. Let ¢ := (u — ﬁg‘“udu) - t. be the error and

v € H'(e). Note that a function w € P,(R) can be decomposed into w(x) = w+ ([ w — E)/, where W denotes
the average of w on e. Hence, (¢, w)r2() by (2.15e) and (2.15f), and we obtain

I

(g,’U)Lz(e) = wiél%p(g, v — ’LU)Lz(e) S HgHLQ(e) wiél{;p ||U — wHLZ(e) 5 p_ gHLZ(e)HUHHl(e)-

O
Remark 4.12. For w € L2(0f), the estimate ||wHH,1/2(af) < Z ||w|\ﬁ,1/2(e) holds. .
c€&(f)
Lemma 4.13. For u € HY2(f, curl) there holds
ha = T2 g gy < Cop™ 2 inf u =Vl 7oy 8 € 10,3):

VEQp(f)
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Proof. By the projection property of ﬁgurl’2d, it suffices to show the bound with v = 0 in the infimum.

1. step: We recall the existence of a lifting from the boundary: As discussed in [15, Sec. 4.2] (which relies
on [2]) there is a polynomial-preserving lifting £°¢ : H=1/2(9f) — H(f,curl) that is uniformly (in p)
bounded.
2. step: Let P12y be the polynomial best approximation of Lemma 4.3. Following the procedure suggested
in [15], we define

E = Pcurl,?du o ﬁ;:)url,2du.

o~ o~

Note that E € Q,(f) and that E — L*""?4(E - t) € Qp(f). We get from the orthogonalities (2.15¢) and (4.2)
(curl(E — LY?YE - t)), cwl E) 1, 5 = 0. (4.19)
Hence,
2 _ o curl,2d . curl,2d .
| ewl BJ12, 5 = (curl(E covr2d(g t)),curlE) et (curlL (E - t), curl E)Lz(f)
(4.19)

< | curl ﬁcurl’Qd(E ‘ t)HLZ(f) | curlEHLz(]?),

from which we obtain with the stability properties of the lifting operator £"2¢
I curlEHLZ(f) < ”E'tHH*l/Z(Bf)' (4.20)

3. step: The discrete Friedrichs inequality of Lemma 4.6, (ii) then gives also

IEll 27y < IE = L2UE - )] 27y + (1L HE - 1)]] 25 (4.21)
url,2d url,2d
< Jlewl(E — LB - 0) |, + 17 2HE - )]
Lod (4.20)
< el Ell o gy + 1L E Oy oy S B 6ls20p, (1.22)
4. step: With the triangle inequality and the approximation property of Lemma 4.3, we arrive at
fycurl,2d = _ url,2d . =
Hll - H;f? uHH(f,curl) 5 Hll pe u”H(f,curl) + ||EHH(f,curl)
(4.20),(4.22) Lo
S Huip ’ u”H(]/‘\,curl) + HE't”H*l/Q(af)
S Ju= Pl gy gy (0 = T2 00) - )] o7
Lemma 4.3, Lemma 4.11 —1/2
S P21l 172 7w (4.23)
5. step: From Lemma 4.9 and Lemma 4.10 together with interpolation, it follows immediately
Tycurl,2d - Tycurl,2d 29 —(1/2+s)
||u - H;ur ' ullﬁfs(]?,curl) 5 p S”u - H;)ur ' u”H(]?,Curl) 5 p ° ||uHH1/2(]?,Curl)' 0
In the case of discrete curl, we get the following result.
Lemma 4.14. For all k > 1 and all u € H*(f) with curlu € Pp(A) there holds
[ =T g foneny < Copp™ " ullyge s s €100,3). (4.24)

If p > k — 1, then the full norm Hu||Hk(f) can be replaced with the seminorm |u|Hk(f)'

Proof. We employ the regularized right inverses of the operators V and curl and proceed as in [23, Lemma 5.8].
We write, using the decomposition of Lemma 4.5,

u = VR (u — R curlu) + R curlu =: Vp + v

with ¢ € H¥+1(f) and v € H*(f) together with
12l s 7y + IV py < € (Il + lewrlull s gy ) < Cllulg - (4.25)
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The assumption curlu € Pp(]?) and Lemma 4.4, (iv) imply v = R curlu € Qp(f); furthermore, since
ngrl&d is a projection, we conclude v — H;“rmdv = 0. Thus, together with the commuting diagram property

Vﬁzg)ff’Qd = ﬁgurlﬂdv and the bound (4.4) we get

” (I o H;C)ur172d)u||ﬁ—s(f,cm1) _ H (I o Hzc)url,2d)v<p + (I o Hzc)url,2d)v Hﬁ*s(ﬁcurl)
—_——
=0

Trerad,2d — s
=V - H;§+1 )‘PHﬁ—s(f) Sp (et )H@HHkJrl(f)'

The proof of (4.24) is complete in view of (4.25). Replacing Hu||Hk(f) with |u|Hk(f) follows from the observation

that the projector ﬁ}c@urlzd reproduces polynomials of degree p. O

5 Stability of the projection operators in three space dimensions

5.1 Preliminaries

grad,3d
p+1

Lemma 5.1 ([15]). Let Prad:3dy e W, (K) be defined by the conditions

For the approximation properties of i , we need the following approximation results.

(V(u— perad3dy) wo),,

(u o Pgrad,3du’ 1)

@ =0 YveWy(K), (5.1a)
L2R) = 0. (5.1b)
Then, for r > 1, there holds |ju — Pgrad’gduHHl(f() < C’Tpf(rfl)HuHHT(fQ.

Lemma 5.2 ([15,17]). Let P*"34u € Q,(K) be defined by the conditions

Vv € Q,(K), (5.2a)

(curl(u — P34y), curl V)Lz( =0
=0 Yve W, (K). (5.2b)

K)
(u o Pcurl’3du, V'U)Lz 7

(

NS

Then, for r > 0, there holds ||lu — Pcurl’gduHH(f( curl) < Crpf’””uHHr(f( curl)-
Lemma 5.3 ([15, Thm. 5.2]). Let P4v:3dy ¢ Vp(I?) be defined by the conditions

(div(u — P4V34n), divy) 5, 2

L2(®) Vv € V,(K), (5.3a)

0
0  WveQK). (5.3b)

(u — P34y div V)LZ(IA()

Then, for r > 0, there holds ||lu — Pdiv’?’duHH(f( div) < Crp_THuHHT(f( div)-
In the next lemma, right inverses for the differential operators are defined and some properties are stated.

Lemma 5.4 ([13], see also [23, Sec. 2]). Let B C K be a ball. Let 6 € C§°(B) with [50 = 1. Define the
operators

REr ) /

a

. 0(a) /t_O u(a+t(x —a))dt-(x — a)da,
R (x) = /EB 0(a) /t:O tu(a+t(x —a))dt x (x —a)da,

RYVy(x) := /GB 0(a) /t_O t?u(a+t(x —a)) dt(x — a) da.
Then:

(i) For u with divu = 0, there holds curl R°"u = u.

(ii) For u with curlu = 0, there holds VR#*u = u.
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(iii) For u € L*(K), there holds div R4y = u.
(iv) If u e Qy(K), then R&*u e W, (K).
(v) Ifue Vp(IA(), then Rl € Qp(IA().

(vi) If u € Wy(K), then Ry € V,(K).

(vii) For every k > 0, the operators R&®d, R™ and RYY are bounded linear operators H*(K) — H*1(K),
HF(K) — HFY(K) and H*(K) — HFY(K), respectively.

The right inverses can now be used to construct regular Helmholtz-like decompositions of functions in H® (IA( ,curl)
and H*(K, div).

Lemma 5.5. Let s > 0. Then each u € H*(K, curl) can be written as u = Vi + z with ¢ € H* Y(K),

z € H*H'(K) satisfying ||<P||Hs+1(f() S ||U-||Hs(f(,cur1) and ||Z||Hs+1(f() S CurluHHs(}?)-

Proof. With the aid of the operators R°"!, Re™d of Lemma 5.4, we write u = VR®* (u — R (curlu)) +
RC“rl(curl u). The mapping properties of R°"! and R84 of Lemma 5.4 then imply the result. For the desired
estimates, we use the stability properties of the operators R®"! and R84 to get

6120y S = R eurT w2, o) S [l ) + IR curlw
S ||11H2 s(K) + | curluHQ S(K) Hu”fls(l?,curl)
||Z||Hs+1(f() = ||Rcurl(curlu)||Hs+1(f() Sl curluHHs(f(). O

Lemma 5.6. Let s > 0. Then each u € H*(K,div) can be written as u = curl g + z with ¢ € H* 1 (K),
z € H*M'(K) satisfying H('p”Herl(f() < HuHHs(f(,diV) and ||Z||Hs+1(f() Sl diVU—HHs(f()'
Proof. Using the operators R and RYY of Lemma 5.4, we write u = curl R®!(u — R4 (divu)) +

Rdiv(div u). The mapping properties of R and R4 of Lemma 5.4 then imply the result. For the de-
sired estimates, we use the stability properties of R and R4 and get

1120 2 ) <l — RO (vl o) S i,z + IR (@iva) 2, .z,
< 2 . 2 _ 2
<l + ldival, o = 2 2
||Z||Hs+1(f() = ||Rd“’(divu)|\Hs+1(f<) S diVUHHs(f()- O

We now state the Friedrichs inequalities for the operators curl and div.

Lemma 5.7 (discrete Friedrichs inequality for H(curl) in 3D, [15, Lemma 5.1]). There exists C > 0 inde-
pendent of p and u such that
lall 2%y < Cll curlul| 2z, (5.4)

in the following two cases:
(i) u e Qp(f?) satisfies (u, Vv)p(f() =0 for allv e Wp+1(f?),
(i) ue Q1 (K) = {veQyK): (v,V¥).z) =0 Vi € Wi (K)}.
Lemma 5.8 (discrete Friedrichs inequality for H(div)). There exists C > 0 independent of p and u such that
||UHL2(}?) <] diV“Hm(f() (5.5)
in the following two cases:
(i) ue V,,(IA() satisfies (u, curlv) . ) =0 for all v e Qp(IA(),

(i) u € Vp(IA() satisfies (u, curl V)LZ(IA() =0 forallv e QPJ_(I?).
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Proof. The statement (i) is taken from [15, Lemma 5.2]. Tt is also shown in [15, Lemma 5.2] that the Friedrichs
inequality (5.5) holds for all u satisfying

uc Vp(IA() satisfies (u,curlv);, z) =0 forall v e Qp(IA() (5.6)

To see that the condition (ii) in Lemma 5.8 suffices, assume that u satisfies the condition (ii) in Lemma 5.8
and write v € Qu(K) as v = gy, ., v+ (v — HVWP+1V)7 where Tlgy;, - denotes the L?-projection on

Vﬁ/pﬂ(f() C QP(IA() Then observe that v — g, v € QP,J_(IA() so that

(u,curlv), g = (0, curl(Ilgy,  v))po ) + (0, curl(v —Ilgy V) oz = 0;

=0

=0 since v — HVWP+1V €Qyp, 1

hence, u satisfies in fact (5.6). Thus, it satisfies the Friedrichs inequality (5.5). O

Remark 5.9. The arquments of the proof of Lemma 5.8 also show that we have the equivalence of (5.7) and
(5.8):
ue V,,(IA() satisfies (u,curlv) , oy =0 Vv € QP(IA() = (5.7)
uc€ Vp(IA() satisfies (u,curlv) . oy =0 Vv e prJ_(IA(). (5.8)

5.2 Stability of the operator ﬁ;fff’gd

The three-dimensional analog of Theorem 4.8 is:

Theorem 5.10. For every s € [0,1] there is Cs > 0 such that

ﬁgrad,Sd

”u - Hpr uHHl—s(f() < Cspi(lJrS)

inf  JJu—v 25 (5.9)
vEW,41(K) HA(K)

Proof. The proof proceeds along the same lines as the 2D case. First, we observe from the projection property

of ﬁ%ff’gd that it suffices to show (5.9) with v = 0 in the infimum. Next, from the trace theorem, we have

u|p € H3/2(f) for every face f € F(K). From Theorem 4.8 we get, for every face f € F(K) and s € [0,1]
“erad,3d - s
o~ B e ) < ™ (5.10)

Since u — ﬁ}g,ff’gdu € C(0K), we conclude

Tyerad,3d _ s
”u - Hzg)-‘fl UHHFS(BIA() <Cp (1/2+ )HUHH2(1’€) (5.11)

for s € {0,1} and then, by interpolation for all s € [0, 1]. Next, we show (5.9) for s = 0. As in the 2D case,
we get from Lemma 5.1, the estimate (5.11), the existence of a polynomial preserving lifting (cf. [26]) and the
fact that perad3dy, — Hzg)ff 34y, is discrete harmonic the bound

Syerad,3d d,3d ad,3d ryerad,3d
lu — T3 U|H1(f() < |u — perad3 ’U/|H1(f() 4 | perad:3dy, ey “|H1(f<)
- Serad,3d
5 p IHUHHZ(]?) + HPgrad,3du - ng,fl uHHl/Q(aI?) (512)

5 pilHuHHZ(]?) + H’LL - Pgradﬁd“”}]l(i&) 5 p71||u||H2(f<)

To get the L2-estimate, we proceed by a duality argument: Let z € HQ(IA() N H&(IA() by given by

—Az:g::ufﬁif?’gdu on K, zlyg = 0.
Integration by parts gives
€3, » = / Vz Ve - On z€. (5.13)
LK) g oR
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For the first term in (5.13) we can use the orthogonality properties satisfied by € and (5.12) to get

|(V2avg)L2(f<)| < if ]z - 7THH1(1?)||V5HL2(1?) 5P_1||5||L2(1?)||V5HL2(1?)- (5.14)
TEWp11(K)

For the second term in (5.13), we use Theorem 4.8 to obtain on each face f € F(K)
|00z, 8)12(n)| < 0nzll szl g-1s2cp) S 221002l mrvacpllull vy S P2NEN 2y Ml o)y (5-15)

Inserting (5.14), (5.15) in (5.13) gives the desired estimate for s = 1. Interpolation gives the intermediate
values s € (0,1). O

5.3 Stability of the operator ﬁ;url,fid

As in the proof of Lemma 4.13, a key ingredient is the existence of a polynomial preserving lifting operator
from the boundary to the element with the appropriate mapping properties and an additional orthogonality
property. For H(K, curl), a lifting operator has been constructed in [20]. We formulate a simplified version
of their results and also explicitly modify that lifting to ensure a convenient orthogonality property.

Lemma 5.11. Introduce on the trace space HTH(IA(, curl) the norm
2]l -1/2 := W {|[ V] 7 eurn) [TV = 2} (5.16)
There exists a lifting operator L3 HTH(IA(7 curl) — H(IA(, curl) with the following properties:
(i) L3 e QP(IA() if z € IL,H(K, curl) satisfies z|p € Qp(f) forall f € F(K).
(i) There holds ||£Curl’3dz|\H(Kcur1) < Cz|lx-1/2-
(iii) There holds the orthogonality (L°""3¢z, V) oy =0 for all v € VGVPH(IA().

(iv) Let T := I, H2(K). A function z € T is in L*(0K) and facewise in H3/2. Its surface curl, curlyz 2, is
an L*(K)-function, which coincides with the facewise curl curly z. Furthermore, there holds

lzlxz <€ 37 [llallge g + el zlzuag)| -
fEF(ER)

Here, we recall that ﬁ;l/Q(f) is the dual space of the space HlT/2 (f) of tangential fields.

Proof. The lifting operator £ constructed in [20] has the desired polynomial preserving property (i) and
continuity property (i), [20, Thm. 7.2]. Our goal is to define the desired lifting operator by L34z :=
£y — wy, where wy is defined by the following saddle point problem: Find wq € Qp(K) and ¢ € Wy 1 (K)
such that

(curl wo, curla) . z) + (4. Vo) 2 z) = (curl(E'z), curla) o) Va € Qu(K) (5.17a)
(W0, Vi) oty = (€2, Vi) ooy V1 € Wi (K), (5.17b)

Problem (5.17) is uniquely solvable: Define the bilinear forms a(w, q) := (curl w, curl q)LQ(f() and b(w, p) :=
(w, ch)LQ(f() for w,q € Qp(IA() and ¢ € ﬁ/pﬂ(f(). Coercivity of a on the kernel of b with kerb = {q €

o

Qp(IA(): (9, Vi) o gy =0Vp € Wyii} = prJ_([?), follows from the Friedrichs inequality (Lemma 5.7) by

1 1

1 2 . 2
+ 5” Curlv”[p(f&) 2 mln{ 202’ i}HVHH(I’%,curl)

1
a(v,v) = H Curlv”iz(f() 2 2—Cg|‘vlli2([?)

for all v € kerb. Next, we show the inf-sup condition

of b(w, ¢)
inf  sup .
PEWp11(K) we(i)p([?) ||W||H(I?,cur1) ||80||H1 (I?)
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Given ¢ € Wp+1(f(), choose w = Vi € QP(IA() Hence,

2

||W||H(f<7¢ur1) ||‘P||H1(f() ||V<PHL2(1A<) ||‘P||H1(f<)

by Poincaré’s inequality. Thus, the saddle point problem (5.17) has a unique solution (wg,¢) € QP(IA( ) X

W1 (K). In fact, taking q = Vi in (5.17a) reveals ¢ = 0. The lifting operator £°"3¢ now obviously satisfies
(i) and (iii) by construction. For (ii) note that the solution wy satisfies the estimate HWOHH(}?,curl) S I+ lglls

where f(v) = (curl(£°"'z), curl V) 25y 9(0) = (Eg, V) 2 () and ||-]| denotes the operator norm. Thus,

I fll = sup |(cur1(8c‘"lz),curlv)LZ(f()| < curl(SC“rlz)HLZ(f() Szl x-1/0-

Hv”H(f(\,curl)Sl

The estimate ||g]] < ||z]|x—1/2 is shown in a similar way. Hence, (ii) follows from

1,3d 1
Hﬁcur 3 ZHH(}?,curl) S ||‘€Cur Z”H(I?,curl) + HWOHH(I?,Curl) 5 ||Z||X*1/2‘

We now show (iv), proceeding several steps.

1. step: Clearly, z is in L2(0K) and facewise in H3T/2. The surface curl, curl,z z, of z € T is defined by
n-curlz € HY/2(9K) for any lifting z € H(K, curl) of z. This definition is indeed independent of the lifting
since the difference & of two liftings is in Ho(K, curl) and by the deRham diagram (see, e.g., [25, eqn. (3.60)])
we then have curld € Hy(K,div). Furthermore, since an H2lifting of z exists, curl, »z € H-Y2(0K) is
facewise in HlT/ * and coincides facewise with curl 7z

2. step: We construct a particular lifting Z € H(K, curl) of z € X~1/2 and will use ||z]x_1/2 < 12l g % curn)-
This lifting Z is taken to be the solution of the following (constrained) minimization problem:

Minimize || curl Y|, ) under the constraints Il Y = g and (Y, V). ) =0 for all ¢ € H}(K). (5.18)

This minimization problem can be solved with the method of Lagrange multipliers as was done in (5.17).
Without repeating the arguments, one obtains, in strong form, the problem: Find (Z, ) € H(IA(, curl)x H} (IA()
such that R

curlcurlZ +Vp =0 in K, II,Z = z.

As was observed above, the Lagrange multiplier ¢ in fact vanishes so that we conclude that the minimizer Z
solves

curlcurlZ =0, divZ =0, 1I,Z=g.
3. step: We bound w := curl Z. We have
curlw = 0, divw = 0, n-w = curlyz z. (5.19)
From curlw = 0, we get that w is a gradient: w = V. The second and third conditions in (5.19) show
—AYp =0 Oph =n-w = curly z.

Noting that the integrability condition is satisfied since (n-w, 1)L2(6f() = (divw, 1)L2(}?) = 0, we conclude by
standard a priori estimates for the Laplace problem

I eurl 2 ey = 9] 1o ey = IV oty S lleurloe 8l vogore (520)
4. step: To bound Z, we write it with the operators R°™! and R&™4 of Lemma 5.4 as

Z=V¢+z,  z:=R"curlZ), ¢:=R"*Z R (curlz)), (5.21)
with [|Z]| ;1 ) S [l eurl Z]| 2 7y S [l ewlyz 2l o1z o5)- (5.22)

For the control of ¢, proceed by an integration by parts argument. Noting that divZ = 0, we have

V¢ +z =17 = curl R°(Z) = curl R™"(V¢) + curl R (2).
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With the integration by parts formula (2.1) (which is actually valid for functions in H(K,curl) as shown
in [25, Thm. 3.29]) we get

(2.1)

(curlZ,v) =" (Z,curlv) ., gy — (2,7 V)

L2(K)
Selecting v = R®"(V¢) € HY(K)
(url Z, R(V6)) ) = (Vo + 5, V6 + 7 — carl RVIE)) L ) + (o 7 ROV o0
In view of the mapping property R : L2(K) — H!(K)
190124, S lleurl Zl ) V6 oz + 1] e 3 — curl RIE] L 7 (5.29)
$ 15— cur R IVl a2y + 17 a0y [V ) + |61 Rz

Combining (5.21), (5.22), (5.23) shows

~ (z,77v)
12 cumty S VBl 190y + | eurl 2l oy S sup ST eunly al ooy (5:20)
veH!(K) H(K)
5. step: Since z and curlyz z are actually L2-functions, the norm || - [|x-1/2 can be estlmated in a localized

fashion: The continuity of the inclusions H'/2(0K) C er}.(K) HY2(f) and v,H (K) C ierm H'/2(f)
implies

(z, 7 V)or
lourlyz 2l g1 0r) S leurdszlg oo, sup AR < 2l oy (5:25)
(0K) ) HVH i’ ()
JEF(R) ver () TR per(iy
We finally obtain the desired estimate

(5.24), (5.25)
lzllx-12 S 12l cury S ZA 12l g2 gy + T ewly 2l 5o -
feF(K)

This concludes the proof. We mention that an alternative proof of the assertion (iv) could be based on the
intrinsic characterization of the trace spaces of H(K, curl) given in [9,10]. O

Theorem 5.12. There exists C' > 0 independent of p such that for all u € Hl(IA(, curl)

fycurl,3d .
||U_ - H;u u”H(K curl) < Cp inf . ||U. - VHHl(f(,curl)- (526)
veEQ,(K)
Proof. 1. step: Since ﬁg‘“l’gd is projection operator, it suffices to show the bound with v = 0 in the infimum.

2. step: Write with the operators Rerad Rewl of Lemma 5.4, the function u € Hl(IA(, curl) asu=Vep+v
with ¢ € H%(K) and v € H2(K). We have ol 2 ) S Nllg (% curny 204 [[VIg2(z) S [eurlullg ). From
the commuting diagram property, we readily get

Tycurl,3d Sgrad,3d ~orad,3d Thm. 5.10 )
url, R o B , R B - 1 - B R
IV = IV ollgg 7 cury = IV — IOz cury = 0 —Wpit ™ 0lmz) S P 10lln2w)-

3. step: We claim N
L (v = 20 172 < Cp™ [Vl (- (5.27)

To see this, we note v € H2(K) and estimate with Lemma 5.11

[T (v — TS | -1z S Z [TL- (v — H;““’3dV)IIﬁ;/2( p T lFeurls (T (v — I3ty f-12(f)-
feF(E)
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We consider each face f € F (IA( ) separately. Lemmas 4.9, 4.10, 4.13 imply with the aid of the continuity of
the trace IT, : H2(K) — HY/?(f) ¢ HY2(f, curl)

HHT (V - H}C)url,?)dv) _1/2”1_[7' (V - H;f)ur]’3dv)|‘H(f,curl)

Hﬁ;l/Z(f) p
S PRV e (owny + TVl () S 27 Ve )
[l eurl(TL, (v = T 5)) [ 1 gy S 272 eurl(TL (v = TE299) ) 2 )
Sp PRI e (pewny + TV I () S 27 IVIgez i)

4. step: Since v € HQ(K) the approximation P13y € Q, (K ) given by Lemma 5.2 satisfies

v = PN g curty < CP7 IVIlge ) (5.28)

We note

HV . ﬁzc)url,?)d _ peurl,3d

V”H(K curl) = <|v—port 3dVHH(K curl) T ||1'[Curl 3dy

< P 1HV||H2([?) + ||H}c7ur1,3dv . Pcurl,Sd

VHH(I?,curl)
VHH(I?,curl)'

For the term || T3y — Py ||y o oy, we introduce the abbreviation B := I3y — ety € Q,(K)

and observe that the orthogonality conditions (2.15a), (2.15b) satisfied by ﬁg“rl’?’dv and the conditions (5.2a),
(5.2b) satisfied by P39y lead to two orthogonalities:

(curlE,curlw) , z) =0 Vwe QP(IA(), (E,Vw) 2y =0 Vwe Wit (K K). (5.29)
By Lemma 5.11, the orthogonality condition

url,3d _ T 7>
(LYLE, V) oz =0 Vw € Wy (K)
holds. Hence, the discrete Friedrichs inequality of Lemma 5.7 is applicable to E — LYBYE and we get
url,3d url,3d
1Bl 2y < LB o ) + B — £ B )
url,3d url,3d url,3d
SNEP L E gy + [l eurl(E = £ TLE)| gy S L™ T Bl 2 curn + | €0rlE| 2 2
S TLElx-1/2 + || cur1E||L2(f(). (5.30)
Using again the lifting £°""3¢ of Lemma 5.11 and the first orthogonality of (5.29), we get
url,3d
[curlE| ;> ) < [ curl L E|| 2 2y S ITLE|x-1/2. (5.31)
We conclude the proof by observing

1,3d
V”H(I?,curl) < ||V7 pe ’

(5.30),(5.31) .
< v o Py o LB s

Seurl,3d
HV - H;‘" VHH(I?,curl) + ||EHH(I?,CUI‘1)

g ~ url.3d (5.28),(5.27) L
5 HV — perh V”H I?,curl) + HHT(V — H}C,ur’ V)fol/z < p HV”HQ(I?) O

~

For negative norm estimates ||lu — HC“rl Shullg-. with s > 0 we need Helmholtz decompositions:

s (K ,curl)

Lemma 5.13 (Helmholtz decomposition). A function v € H(K) can be written as

v = Vg + curlcurl z, (5.32)
v = V1 + curl z, (5.33)

-~

where oo € H?( )QH&(IA() and zo € HY(K, curl) N Hy(K, curl) and where ¢, € H2(K) and z, €
H!'(K, curl) N Hy(K, curl) together with the estimates

H‘POHH?([A() + HZOHHl K,curl) = CHVHHI

o1l 12y + 120l (% curn) < C”VHHl(f()-
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Proof. Before proving these decompositions, we recall the continuous embeddings
Hy(K,curl) "H(K,div) c H'(K) and H(K,curl) NHy(K,div) ¢ H'(K), (5.34)

which hinge on the convexity of K (see [7,28] and the discussion in [25, Rem. 3.48]).
We construct the decomposition (5.33): We define 1 € H*(K) as the solution of

—Ap; = —divv inIA(, Onp1 =M -V on OK.
The contribution z; is defined by the saddle point problem: Find (z1,) € HO(IA(, curl) x Hol(f() such that

(curlzl,curlw)L2 — (Vip,w )L2(f() = (curlv,w),, 2 Yw € Hy(K, curl),

K)
(zlan>L2(f€) =0 V(IGILIO(I?>
This problem is uniquely solvable, we have ¥ = 0 (since div curl v = 0) and the a priori estimate

||Z1HH(cur1f() Sl cur1v||L2(f() S ||V||H1(f()-

(In the proof of Lemma 5.11, we considered a similar problem in a discrete setting; here, the appeal to the
discrete Friedrichs inequality of Lemma 5.7 needs to replaced with that to the continuous one, [25, Cor. 3.51])
From divz; = 0 and (5.34), we furthermore infer ||z1 [l ) < V[l () The representation (5.33) is obtained
from the observation that the difference  := v— V1 — curl z; satisfies, by construction, divéd = 0, curl § = 0,
n-0=Mmn-v-—0,p1)—n-curlz; =0 —curlyzIl;z; =0 —0 = 0 so that again (5.34) (specifically, in the
form [28, Thm. 4.1]) implies 6 = 0. Finally, from v € HY(K), ¢; € H2(K) and the representation (5.33), we
infer curlz, € HY(K).

We construct the decomposition (5.32): We define ¢ € Hol(f( ) as the solution of
—Apy = —divv inlA(7 wo =20 on OK.
Next, we define (zo, 1) € Ho(K, curl) x H&(IA() as the solution of the saddle point problem

(curlzo, curlw) ., gy — (Vw,W)Lz(f() = (v = Vo, W) 27 Vw € Hy(K, curl),
(20, V) oy =0 Vg€ Hy(K).

Again, this problem is uniquely solvable and, in fact ¢» = 0 (since div(v—Vpo) = 0). We have ||z0HH(Cur1f() <
v = Veollp2zy S IIVIIp2z)- Since divze = 0, we get from (5.34) that [|Zo|lg () < [Vl2(5)- Finally, an
integration by parts reveals

curlcurlzy = v — Vo,

which is representation (5.32). O

We control the approximation error in negative Sobolev norms.
Theorem 5.14. For s € [0,1] and all u € H' (K, curl) there holds the estimate

Tycurl,3d —(1+s)
Hp

Ju -

Ul (% curny < OsP 1€n(£p [u = vl

(K ,curl)”
Proof. By the familiar argument that ﬁ;‘“l’gd is a projection, we may restrict the proof to the case v =0 in
the infimum. The case s = 0 is covered by Theorem 5.12. In the remainder the proof, we will show the case

s =1 as the case s € (0,1) then follows by interpolation.
We write E :=u — ngrl*3du for simplicity. By definition we have

(E,v) (curlE,v)

L2(R) L2(K)

||EHﬁ—1(f(7cur1) ~ HE”ﬁ—l(f() + |l CurlEHﬁ—l(f{) = sup_ H”iA +osup [ _ (5.35)
veH (k) IVllHI(R)  veH!(E) V||H1(K)

We start with estimating the first supremum in (5.35). According to Lemma 5.13, any v € H(K) can be

decomposed as

v = Vp+ curlcurlz
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with ¢ € H2(K) N H} (K) and z € HY (K, curl) N Hy(K, curl). We also observe curlz € H!(K, curl), thus
by Lemma 5.5 we can further decompose curlz as

curlz = Vi, + 75

(5.36)
with o € H2(K) and z, € H2(K). We estimate each term in the decomposition (E, Vi) = (B, Vo) 12y +
(E, curl curl z) L2(R) separately. Using the orthogonality condition (2.15b) and Theorem 5.12, we get

(E, V‘P)p(}?) = inf (E,V(p- w))L2(f() < P71||90||H2(}?)HE||L2(}?)

weWp11(K)

(5.37)
~1 —2
Sp ||VHH1(1?)||EHH(I?,cur1) Sp HVHHl(}?)||uHH1(f(7cur1)-
Integration by parts and (5.36) give

(E, curl curlz)Lz(f() = (E, curl ZQ)LZ(IA() = (curlE,ZQ)Lz(f() + (HTE,’YTZQ)LQ((?IA()
= (curl E, curlz)Lz(f() — (curl E, chg)Lz(f() + (HTE,'yTzQ)N(af()

= (curlE, curlz)LQ(f() — (curly I, E, gag)LQ(f() + (HTE,VTZQ)LQ(MA(). (5.38)
We estimate these three terms separately. For the first term in (5.38), we use the orthogonality (2.15a) and
Theorem 5.12 to get

(curl E, curl Z)L2(f() = inf

I (f{)(curl E,curl(z —w)) 2 %) p Y curl Bl 1o ) [12]l g1 (% cur)
wep

(5.39)
For the second term in (5.38), we note that II,E is sufficiently regular on oK to split the integral over 0K
into a sum of face contributions. We get for each face contribution, using Lemmata 4.10 and 4.13,
Lem. 4.10
’(curlf HTE)()DQ)L2(f)‘ <

~

Spt ||V||H1(f() ||EHH(1?,cur1) S P72||V||H1(f() ||uHH1(f(7cur1)-

p—3/2|| CuI‘lf H.,-E”Lz(f) ||(102HH3/2(f)
Lem. 4.13
<

~

(5.40)
p_2HHTu||H1/2(curl,f)||902HH2(;?) 5p_QHullHl(curlf()HV”Hl(}?)-
Finally, for the third term in (5.38) we infer with Lemmata 4.9, 4.13

Lem. 4.9 73/2
(HTEa'Y'rZ2>L2(f) NI |

~

|HTE||H(f,Cur1) v+ 22 HH3/2(f)a
Lem. 4.13

S p72||HTu||H1/2(f,curl)HZZHHZ(]?) S p72Hu||H1(f(7¢ur1)||VHH1(1”<)- (5.41)
Adding (5.40) and (5.41) over all faces and taking note of (5.39) shows that we estimate the first supremum
(5.35) in the desired fashion.

We turn to estimating the second supremum in (5.35). We start with decomposing v € Hl(f() as
v =Vy+curlz
with ¢ € H2(IA() and z € Hl(IA(,curl) N HO(IA(,curl) according to Lemma 5.13. Thus we have to control
(curlE, V)Lz(f() = (curlE, curlz)Lz(f() + (curl E, V(p)w(f(). Using the orthogonality condition (2.15a) and
Theorem 5.12, the first term is estimated by
(curlE,curlz)Lz(f() = inf _
weQy,(K)

(curl E, curl(z — W))LZ(}?) s pil”EHH(KCUH)HZHHl(}?pUM)
Sp

—2
HullHl(f(,curl) HVHHl(I?,curl)'

Concerning the second term, an integration by parts yields in view of curly II, E =n - curl E
(curl E, ch)LQ(f() = Z (curly ILE, 0) 125,
fEF(K)
where the decomposition into face contributions is again permitted by the regularity of E and ¢. We obtain

(curly TLE, 0) (1) < /2T Blsxp.cunn el o2y S 0210l 2 ey IV 510 (29
by Lemma 4.10 and Lemma 4.13, which finishes the proof.
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For functions u with discrete curl, we have the following result.

Lemma 5.15. For all k > 1 and all u € H*(K) with curlu € V,(K) > (P,(K))? there holds

|lu— Hzc,“rl’?’duﬂﬁ,s(g’curl) < Cs,kp_(k"rs)”uHHk(f(), s €[0,1]. (5.42)

If p > k — 1, then the full norm Hu||Hk(f() can be replaced with the seminorm [ulg. -

Proof. We employ the regularized right inverses of the operators V and curl and proceed as in Lemma 4.14.
We write, using the decomposition of Lemma 5.5, u = VR®*(u — R curlu) + R curlu =: Vy + v
with p € H¥*1(K) and v € H*(K) together with

12l s () + IV leze ey < € (1l ey + lewrlullgge s g)) < Cllullgez- (5.43)

The assumption curlu € Vp(IA() and Lemma 5.4, (v) imply v = R curlu € Qp(IA(); furthermore, since
Hg‘”wd is a projection, we conclude v — H}C,“rl’?’dv = 0. Thus, together with the commuting diagram property

~orad.3d ~
VHIg;fl 3d ngrl,de we get

||(I _ H;urlﬁd)uuﬁfs(f(’cur]) — H(I _ H;url,?)d)v(p + (I o H}c)url,?)d)v HI‘:I*
—
=0

Tyerad,3d — s
= HV(I* H;g)f1 )‘PHﬁ—s(f() Sp (k+ )||80||Hk+1(f().

S(I?,curl)

The proof of (5.42) is complete in view of (5.43). Replacing ||uHHk(f<) with |u|Hk(f<) follows from the obser-

vation that the projector ﬁ}c@url,Bd reproduces polynomials of degree p. [l

5.4 Stability of the operator ﬁgiv,sd

Similar to Lemma 4.11, we state the following result:

Lemma 5.16. For each face f € .7:(?() we have for u € H1/2(I?, div) and every s >0

||(U_ — H(;iv,Bdu) . l’lfllﬁ,s(f) S Cspis vei\glf&f) ||U. Ny — 'UHLZ(f)- (544)

Proof. We first show that, for u € H/2(K, div) the normal trace ns-u € L?(f) for each face f. To that end,
one writes with the aid of Lemma 5.6 u = curl  + z with ¢, z € H32(K). We have n; -z € H!(f). Noting
|y € HY(f) and (nf - curlp)|s = curls(IL, )|, we conclude that (ns - curl)|s € L2(f).

Note that (2.16¢) and (2.16d) imply that on faces, the operator ﬁgivvgd is the L2-projection onto V,(f).
Thus, (5.44) holds for s = 0. The case s > 0 follows by a standard duality argument. To that end define
€= (u - ﬁgivvgdu) -ny and let v € H*(f). Note that w € P,(R?) can be written as w = W+ (w — W), where

w denotes the average of w on f. Since w —w € I}p(f), (2.16¢) and (2.16d) imply (&, w)r2(s) = 0. Thus we
have
°l

(é,’U)Lz(f) = inf (é,’U — ’LU)Lz(f) S HéHLZ(f) w1é17£ H’U — ’LU||L2(f) 5[)7 éHLZ(f)HUHHS(f)-

wePy

Remark 5.17. Note that for u € LQ(QIA(), we have
||U||H—1/2(af() < Z ||U||1§—1/2(f)- (5.45)
feF(K)

As in the analysis of the operators in the previous sections, the existence of a polynomial preserving lifting
operator from the boundary 0K to K with appropriate properties will play an important role. Such a lifting
operator has been constructed in [21]. We modify this lifting slightly to explicitly ensure an additional
orthogonality property.

Lemma 5.18. There exists a lifting operator £33 with the following properties:
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(i) L9345 ¢ Vp(f() if z|p € Vu(f) for all faces f € F(K).

Edlv,Bd

(i) There holds the extension property ( z-nyg)|p = z.

(iii) There holds ||Ldiv’3dz|\H(Kdiv) < C||z|\ﬁ,1/2(6f<).

w ere holds the orthogonality v, z,eurlv),, =~ =0 for all v e 2, (K).
w) There holds the orth lity (L3 V) 12y = 0 for all v € Qu(K

Proof. Recall the space Qpﬁj_([?) ={qc¢€ Qp(f(): (a, V7/))L2(f() =0Vy € VT/pH(IA()} defined in Lemma 5.7.
Let z € H~/2(9K) be a function with the property z|; € V,(f) for all faces f € F(K). The goal is to define
the lifting operator by £4V3%; .= €1V, — w, where £4 denotes the lifting operator from [21], and where
wo is defined by the following saddle point problem: Find wg € \c/'p(K ) and ¢ € Qp, 1 (K) such that

(divwo,divv) . ) + (v,curl ) o ) = (div(E9V2), div V) L2(R) Vv € V,(K) (5.46a)
(wo,curlp) > gy = (EM 2, curl B) 2R Vp e Qi (K). (5.46D)

Unique solvability of Problem (5.46) is seen as follows: Define the bilinear forms a(w,q) := (divw, diva) 2z,
and b(w, ) := (w,curl ®) 2y for w,q € V,(K) and ¢ € Q, 1 (K). Coercivity of a on the kernel of b,
kerb = {v € V,(K) : (v,curl ;L)Lz(f() = 0Vp € Q, 1 (K)}, follows from the Friedrichs inequality for the
divergence operator (cf. Lemma 5.8). That is,

1, 11
_ > -
+ 2|| d1VVHL2(K) > mm{—QCQ’ 2}||VH Vv € kerb.

. 1
a(v,v) - ” dlvv”iz(f() = Q—CQHV”iQ(I?) H(K,div)

Next, the inf-sup condition for b follows easily by considering, for given ¢ € Qp, J_(I? ), the function w =
curly € V,(K) in b(w, ¢) and using the Friedrichs inequality for the curl (Lemma 5.7). That is,

2
b(W, (p) || curl CPHLZ(I?) Lem. 5.7

||W||H(f<7div) ||90||H([?7cur1) H curl ‘P”L?(f()H‘PHH(fgcurl)

Thus, the saddle point problem (5.46) has a unique solution (wq,p) € Vp(IA() X Qpﬁj_([?). In fact, se-
lecting v = curlg in (5.46a) shows ¢ = 0. The lifting operator £4V*? now obviously satisfies (i), (ii)
and (iv) by construction, cf. [21, Theorem 7.1] for the properties of the operator £V, For (iii) note that

the solutio.n wq satisfies the estimate HWOHH(}?,div) < fI+ llgll, where f(v) = (div(Sdivz),divv)Lz(lA{),
g(v) = (€92, curl V)27, and || - || denotes the operator norm. Thus,
Ifll= sup  |(div(E™2),divv) o gyl < I divE™2) ] p2z) S 2l -1/207)-

V1117 aivy <1

The estimate ||g|| < ||z|\ﬁ,1/2(6f() is shown in a similar way. Hence, (iii) follows from

div,3d di
[Font Zlle(z aiv) < 1€ 2llm & ai) T W0l iy S 1215172 07)-

Theorem 5.19. There exists C' > 0 independent of p such that for all u € H1/2(I?, div)

lu = ™l iy < Op72 ik 0=Vl g i (5.47)

- veEV,
Proof. 1. step: By the projection property of ﬁgi"vgd, it suffices to show (5.47) for v = 0.
2. step: As shown in Lemma 5.16, u-ny € L?(f) on each face f € F(K). Thus we get from Lemma 5.16

—1/2

0w = T 3m) gl ey S 272 m ey S 07 e iy (5.48)

3. step: The volume error u — ﬁgiv’?’du is estimated using the approximation P1V:3¢u of Lemma 5.3. We ab-

breviate E := ﬁ;}i"ﬁduf pdiv:3dy ¢ Vp(IA() and note that, since ﬁgi"vgdu satisfies the orthogonality conditions
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(2.16a) and (2.16b), and P4V:3du satisfies the conditions (5.3a) and (5.3b), we have the two orthogonality
conditions

(HVE,divv) 5 =0  WeV,(K), (Becurlv),z =0 VveQ,K). (5.49)
By Lemma 5.18, the orthogonality condition

(ﬁdiv,Bd(E ‘1), curl V)Lz(f() =0 Vv € Qp(f()

holds; hence the discrete Friedrichs inequality (Lemma 5.8, (ii)) can be applied to E — £33 (E.n) € \D/'p(f( ).
Thus, we obtain

||EHL2(1”<) < LSYE - n)”p(f{) + B - £ME. n)HLz(f()
SIE-nllyi2p5) + 1 div(E — LT(E -0))l| 2z, (5.50)
SIE-nly 1op + | AvElL ).
4. step: Using the first part of (5.49), we get

| div E|| divE, div L UE - n)) 15 z) < | AVE| 2z 1B -0l 1oz (5.51)

2 —
LQ(I?) - (
Combining (5.50), (5.51) we arrive at
HE”H(}?,diV) SIE- nHH—l/Z(af()- (5.52)
5. step: With the triangle inequality and the continuity of the normal trace operator
Hu o ﬁgiv,Sd < ”u - Pdiv,Bd

(5.52 )
S fu— Pdw’gduHH(f(,div) +[E- n”H*l/?(alA()

Sllu— Pdiv’3duHH(R,diV) + Z [[(u— Hgiv’?’du) 'anF]—l/z(f)
fEF(K)

uHH(f{,div) uHH(f{,div) + HE”H(I?,div)

(5.48),Lem. 5.3

5 p—1/2

||uHH1/2([?1div)a O
Considering the approximation error in negative Sobolev norms is the next step.
Theorem 5.20. For s € [0,1] and for all u € HY2(K div) there holds the estimate

—1/2=s  gpf

Ju— St s O
p H-s(K,div) S VEVP(IA()

= Vllge (% divy-

Proof. In view of the projection property of ﬁgivvgd, we restrict to showing the estimate with v = 0. The case
s =0 is shown in Theorem 5.19. We will therefore merely focus on the case s = 1 as the cases s € (0,1) follow
by interpolation.

We write E := u — II3"*%u for simplicity. By definition we have

(EaV)Lz(f() (div E’U)Lz(f()

||EHﬁ—1(f(7div) ~ HE”ﬁ—l(f() + |l diVE”ﬁ—l(f{) = sup — +  sup_ ~ (5.53)
veH! (K) ||VHH1(K) veEH(K) ||”HH1(K)
We start with estimating the first supremum in (5.53). We decompose v € H(K) as

v =Vy+curlz

with ¢ € H2(K) and z € H'(K, curl) N Hy(K, curl) according to Lemma 5.13 and have to bound the two
terms in (E, V)Lz(f() = (E, curl z)LQ(f() + (E, V@) For the first term, by Theorem 5.19, the estimate

(E, curl Z)L2(f() = inf (E,curl(z— W))LQ(IA() < p_lllEHLZ(f()HZ”Hl(f(,curl)
weQ, (K)
5 p_3/2||uHH1/2(f(7div)”VHHl(f()
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holds. For the second term, we employ integration by parts to get

fEF(K)

Denote by @ := ([% ¢)/ |K| the average of ¢. Now the integration by parts formula gives

. . _ _ (2.164)
(divE, @)LQ(IA() = (divE, ¢ — ‘P)L2(f() +(E - n, 1)L2(8f() (divE, p — ‘P)LZ(K)' (5.55)

We then define the auxiliary function 1 by
AYp=p—7,  O,p=0o0ndK

and set ® := V1. Since div® = Ay = p — P, we get

(2.16a) . . .
(divE, p — @)LQ )LZ(K)’ = inf (divE,div(® — W))L2(f() (5.56)
weV, (K)
<p*mwmg®y@mp@mﬂsp*“mmmmmﬂywmmg> (5.57)
S pig/QHu”Hl/z(fgdiv)HV”Hl(f()- (5.58)

Thus, only estimates for the boundary terms in (5.54) are missing. The orthogonality properties (2.16¢) and
(2.16d) as well as Lemma 5.16 lead to

(E-n,¢)rzp = inf (E-np—w)eg Sp 1E-nllg e lelmeg

weVp(f)
Lem. 5.16
S 7Pl nlla el gy S PP ke g 1V 0 ()

Thus, we have estimated the first term of (5.53).
We now handle the second supremum in (5.53). Such estimates have already been derived in (5.55) and (5.56);

we merely have to note that the function ¢ in these lines satisfied p € H?(K), but H 1(K )-regularity is indeed
sufficient as is visible in (5.57). O

If we assume discrete divergence, we get a result similar to Lemma 5.15.

Lemma 5.21. For all k> 1, all s € [0,1] and all u € H*(K) with divu € P (K K) there holds
lu — Hﬁiv,Sdu||ﬁ75(§7div) < C&kp*(’““) |\11||Hk(f()- (5.59)
If p > k — 1, then the full norm Hu||Hk(f() can be replaced with the seminorm Uy, -

Proof. We write, using the decomposition of Lemma 5.6, u = curl Rcur](u — R%Wdivu) + R divu =:
curl ¢ + z with ¢ € H**!(K) and z € H*(K) together with

||‘P||Hk+1(f() + ||Z||Hk(f<) S Hu”Hk(f() + || diVUHHk—l(f() < C”uHHk(f()- (5.60)

The assumption divu € Pp(f() and Lemma 5.4, (vi) imply z = R4 divu € Vp(f(); furthermore, since ﬁgiV’Bd

is a projection, we conclude z — ﬁgiv’3dz = 0. Thus, we get from the commuting diagram and Corollary 2.9

107 =T * D ull g g gy = 17 = M) eurl @ 4 (1= Tz g g i)
N—_—————

=0

5 H(I - qur]ﬁd)‘ionﬁfs(l?,curl) Sp_(k-i_S)H('pHHk(I?,curl) Sp_(k-i_S)Hu”Hk(f()

Replacing ||u| g () With |u|Hk i) follows from the observation that the projector Hd“’ 3d yeproduces polyno-
mials of degree p. O
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1/2

A Equivalence of X7/% and || - ||g-12 + || curl-|| g1,

Lemma A.1. Let K be the reference tetrahedron. Then, for g € X~1/2 (defined in Lemma 5.11) we have

(V, 7 )5z
lgllx-1/2 ~ HgIIH;m(a;{ﬁIICurlagglleuz(agJ, Vllez22 o) = sup_ LK (A1)

ueH!(K) ||uHH(I?,curl)

with constant depending solely on K. Here, (-,-)55 denotes a duality pairing introduced in the proof below.

The surface curl, curlyy g, is defined as n - curlz for any lifting z € H(K,curl) of g € X~1/2.
Proof. The workhorse is the integration by parts formula
(Il;u, v, v) 5z = (curlv, u)L2(f() — (curlu, V)L2(f() vu,v € H(K, curl), (A.2)

which also defines the duality pairing. To give a few more details, one defines the range Y ~1/2 := %H(IA( ,curl)
endowed with the quotient norm [|g|ly-1/2 = f{||[Vllg7 curry [7-V = &} By [25, Thm. 3.31], the trace

operator II, maps into (Y_1/2)/ via (A.2), which therefore defines (-, ),z on X~1/2 x Y~1/2,

Proof of theAbound Igllx-1/2 2 Il curlyz gll yr-1/2 07y + Hg||H;1/2(6f<) :

Let z € H(K, curl) and set g := II,z. Then (A.2) yields Hg”H;l/Q(af() S HzHH(Kcurl). oR &
we first note divcurlz = 0 so that n- curlz € H~1/2 (0K) is well-defined and is taken as the definition of
curly g. Indeed, this definition is independent of the lifting z: The difference d := z; — z2 € Ho(K, curl) of

To control curl

two liftings of g satisfies curld € HO(IA(, div) by the deRham diagram property (see, e.g., [25, eqn. (3.60)]).
Next, we estimate for arbitrary ¢ € HY(K)

by def.
[(curly 8, 9)pr| = " |(n-curl Zv‘P)L2(af?)| = |(curlz, v‘P)L2(1?)| < ||Z||H(cur17}?)||V<PHH(}?7CM1)-

Proof of the bound |[g||x-1/2 < || curlyz gll ;-1/2 05 + Hg”H;l/Q(af():

Since the norm || - ||x 1,2 is defined by the minimum norm extension, we merely need to construct a lifting Z €
H(K, curl) with a good bound on Z. We define Z as the solution of the following (constrained) minimization
problem:

Minimize || curlY||L2(f() under the constraints IL,Y = g and (Y, V‘P>L2(f<) =0 for all p € H} (K). (A.3)

This minimization problem can be solved with the method of Lagrange multipliers as discussed in [15, Sec. 4.4]
(in the discrete setting) and the proof of Lemma 5.11. One obtains, in strong form, the problem: Find
(Z,¢) € H(K,curl) x H}(K) such that

curlcurlZ+ Ve =0 in IA(, 1I,Z=g.

It can be checked (this is observed, for example, in [15, Sec. 4.4] and also the case in the proof of Lemma 5.11)
that the Lagrange multiplier ¢ vanishes. Therefore, Z solves

curlcurlZ =0, divZ =0, II,Z=g.
Let us focus on w := curl Z. We have
curlw = 0, divw = 0, n-w=curlyz g.
From curlw = 0, we get that w is a gradient: w = V1. The second and third conditions show
Ay =0 Opp =n-w=curlyp g.

Noting that the integrability condition is satisfied since (n - w, 1>L2(af() = (divw, 1)L2(f() = 0, we conclude by
standard a priori estimates for the Laplace problem

||W||L2(f() = ||vw||L2(}?) S llewrlyz g||H71/2(af()-
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Hence, || curl ZHLZ(IA() S |leurlyz gHH,l/Z(af(). To get more information about Z, we write it as

Z=Vo+z,  z:=R™(curlZ), ¢=R&*YZ - R (curlz)) (A.4)
with, by Lemma 5.4,
HZHHl(f() Sl CurlZHL2(f<) S [leurlyz gHH—l/Z(af()- (A.5)

For the control of ¢, proceed by an integration by parts argument. Noting that divZ = 0, we have
V¢ +z =17 = curl R°Y(Z) = curl R®"(V¢) + curl R (z).
Next, we employ the integration by parts formula (A.2)

(A2)

(curlZ,v)LZ(f() = (Z,curlv)LQ(f()7<g,'yTv>af(.

Selecting v = R®(V¢) € H!(K)
(curl Z, R(V9)) 12 z) = (V¢ +2, Vo + 2 — curl R™(2)) 12 ) + (8,7 R (V) -
In view of the mapping property Re™! : L2(K) — H!(K)
||V¢||2L2(f() S Cur1Z||L2(1?)||V¢||L2(}?) + HZHLZ(I?)”Z — curl RCHrlZ”ﬂ(f{) (A.6)
+ ||z — curl RC“TI(Z)HLz(f()HV¢HL2(1?) izl 2 &) VOl 2y + 8l 20 VOl L2 (R)-

Combining (A.4), (A.5), (A.6), we infer |Z||;3 % cury S ”gHH;l/Z(af() +1lcurlyz 8l yr-1/2(p ), Which concludes
the proof. [l

Remark A.2. We include an alternative proof of Lemma 5.11, (iv), which is based on the intrinsic charac-
terization of the trace norm || - ||x-1/2:
The norm ||z||x—1/2 can be estimated using the characterization of the trace spaces given in [9,10]. Specifically,

using the notation of [9,10], one has by [9, Thm. 4.6] that the mapping 11, : H(K, curl) — H11/2(6IA(, curl)
is linear, continuous, and surjective, where the associated norm is

HZHilil/Z(curl,ai?) - HZH?{j/Z(af() +l Curlz”?{f”(af?)'

Here, the norm || - ”H’l”(af() is the dual norm (with pivot space L2(9K)) of Hi/2 (0K); analogously the norm
£
II- HH—l/Z(afe) is the dual norm (with pivot space L?(0K)) of Hi/Q(aK). The precise characterization of these
L

two latter spaces in [10] gives the continuous embeddings Hll/2(3f?) C erf(f() HY2(f) and Hi/Q(af() -
erj_.(f() HY2(f). In turn, this implies the estimates

lelg-202y) SC D Wzl Melg-oomy SC D lllg-usg):
feF(K) feF(R)

It remains to see that curlz in the above formula can be interpreted facewise. This is the case because z € T is
facewise sufficiently smooth (it is in H3/2 (f)) and satisfies appropriate continuity conditions across the edges
of K (by the assumption that T = 1L, H?(K)). .

B Well-definedness of the projection operators and commuting di-
agram property

Lemma B.1. The operator ﬁ%ff’gd is well-defined.
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Proof. One needs to check that the traces of u € H? (IA( ) on the edges are in H'. This follows from the trace
theorem: a two-fold trace estimate (from K to the faces and then from the faces to the edges) shows for an
edge e that the trace operator maps H2+¢ (IA() — H'*¢(e) for sufficiently small ¢ > 0 and € < 0. The mapping
property H? (IA( ) — H'(e) then follows by interpolation.

We check the number of conditions in (2.14):

dim W, 1 () = %(p +4)(p+3)(p+2),

(r-1
2

1 ~
number of conditions = gp(p -1p—-2)+4 Py 6p +4 =dim Wy, (K).

Hence, the defining equations (2.14) represent a square linear system. For u = 0 (2.14d) shows II8"03%, (V) =

p+1
0 for all vertices V € V(K). The conditions (2.14c) then imply that H}g,ff’gdu = 0 on all edges of K; next
(2.14b) leads to ﬁffff’sdu = 0 vanishing on all faces of K and finally next (2.14a) shows ﬁfjff’sdu = 0. Thus,
18703 s well-defined. O

p+1

Lemma B.2. The operator ﬁzc,“rl’?’d is well-defined.

Proof. First, one needs to check that for a u € HY (K, curl) the face traces (IT;u)| and edge traces t. - u are
in L2. The trace theorem gives, for each face f, Il,u € HY2(f, curl;). The argument at the outset of the
proof of Lemma 4.11 then shows that t. - u € L?(e).

We check the number of conditions in (2.15). With the notation

kercurl = {q € Q,(K) : curlq = 0},

we have

dim Q,,(K) = dim curl Q,(K) + dim ker curl = dim curl Q,(K) + dim VW, (K)
in view of the exactness of the sequence (2.12). Hence,

the number of conditions in (2.15a), (2.15b) = dim QP(IA()

Analogously, we argue with the exactness of the second sequence in (2.12) that

the number of conditions in (2.15¢), (2.15d) = dim Q,(f), VY faces f € F(K).
Finally, we check

the number of conditions in (2.15¢) = p — 1, V edges e € £(K),
the number of conditions in (2.15f) = 6.

In total, the number of conditions in (2.15) coincides with dim Q,. We conclude that (2.15) represents a
square system of equations. As in the case of Lemma B.1, see that u = 0 implies ﬁ;‘“l’?’du = 0 in the following
way: (2.15e), (2.15f) imply that the tangential component of ﬁfgurl’?’du vanishes on all edges of K. From
that, (2.15¢), (2.15d) together with the exact sequence property (2.13) gives that the tangential component
HTﬁ;“r1’3du vanishes on all faces of K. Finally, (2.15a), (2.15b) together with again the exact sequence
property (2.12) yields ﬁgurlvgdu = 0. O

Lemma B.3. The operator ﬁgi"’gd is well-defined.

Proof. We first show that, for u € H'/2(K, div) the normal trace ns - u € L2(f) for each face f. To that end,

one write with the aid of Lemma 5.6 u = curl  + z with ¢, z € H¥2(K). We have n; -z € H'(f). Noting
¢lr € HY(f) and (ns - curlp)|s = curls(IL )|, we conclude that (ny - curlp)|s € L2(f).

We check the number of conditions in (2.16). In view of the exactness of the sequence in (2.12) we get, using
the notation

kerdiv = {v € Vp(IA() :divv = 0},
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the equality ) ) ) )
dimV,(K) = dimdivV, + dimker div = dim div V,, + dim curl Q,

so that )
number of conditions in (2.16a), (2.16b) = dim V,(K).

Furthermore, we have
number of conditions in (2.16¢), (2.16d) = 4 dim W,,(f)
and

dim V,,(K) + 4 dim W, (f) = %(p +2)(p+1)p+ 4%

We check that u = 0 implies ﬁgiv’3du = 0: Conditions (2.16¢), (2.16d) produce ny - ﬁgi"’3du = 0 for all faces
f € F(K). The exact sequence property (2.12) and conditions (2.16a), (2.16b) then imply ﬁgiv*3du =0. O

=dimV,

Theorem B.4. The diagrams (2.8) and (2.11) commute.

Proof. Proof of Vﬁfjffﬁd = ﬁ;uﬂv?’dv.- Let u = Vo for some ¢ € HQ(IA() We first claim that
ﬁ;“rl’nggp =V, for some ¢, € WPH(IA(). (B.1)

For each edge e with endpoints V1, Va, we compute [ u-t. = ¢(Vi) — ¢(V2), so that we get from (2.15f) for
each face f (and orienting the tangential vectors of the edges e € £(f) so that f is always “on the left”)

/ Hﬂfﬁ;url,fidu — Z /u-te =0. (B.2)
of e

eCOf
We conclude with integration by parts in view of curly IT,u = curl; IL; Vi = 0

(B.2)

/ curly T34 = / L, 1o 3dy V= 0, (B.3)
! of

Furthermore, the exact sequence property (2.12) gives us curly Q,(f) = V,(f) so that (2.15¢) gives
curly HTﬁ;“rl’Sdu = const . (B.4)

(B.3) and (B.4) together imply curly Hfﬁfg‘”wdu = 0 so that on each face (HTﬁ}C,““’?’duﬂf is a gradient of a
polynomial: (HTﬁ;‘“l’gduﬂf = Vi, s for some ¢, r € Wyy1(f) for each face f € F(K).
We claim that this piecewise polynomial can be chosen to be continuous on OK. Fix a vertex V € V(IA( ).

By fixing the constant of the polynomials ¢, ; we may assume that ¢, (V) = 0 for each face f that has V
as a vertex. From (2.15¢), (2.15f) we conclude that ¢,  is continuous across all edges e that have V as an

endpoint. Hence, the piecewise polynomial ¢, given by ¢,|f = ¢p s is continuous in all vertices of K. We
conclude that ¢, is continuous on K. This continuous, piecewise polynomial ¢, has, by [19,26], a polynomial
lifting to K (again denoted ¢, € Wy11(K)). We note

H;“rl’gdu — Vo, € QP(K)
so that (2.15a) with test function v = ﬁ;“r1*3du — Vo, € Q,(K) implies

curl ﬁ;‘“l’gdu =0. (B.5)

Since the second line of (2.8) expresses an exact sequency property, we conclude that (B.1) holds.

We now show that ﬁzc,“rl’3dVg0 = Vﬁzg)ff’gd@. From (B.1) we get ﬁzc,“rl’?’dVgo = Vi, for some ¢, € W1 (K).

We fix the constant in the function ¢, by stipulating ¢,(V) = ¢(V) for one selected vertex V € V(IA()
From (2.15f), we then get ¢(V’) = ¢,(V’) for all vertices V' € V(K). Next, (2.15e) and (2.14c) imply

ﬁiff’gdgo = ¢, on all edges e € £(K). Comparing (2.15d) and (2.14b) reveals Vfﬁiff’gdgo = HTﬁfgurl’?’dVgo

on each face f € F(K). Finally, comparing (2.15b) with (2.14a) shows ﬁg‘“l*ngga = Vﬁiff’gdcp.
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Proof of curl ﬁg‘"l’?’d = ﬁgiv’?’d curl: First, we show
div ﬁﬁiv’gd curlu = 0. (B.6)

To see this, we note from the second line of (2.8) that div ﬁgi"vgd curlu € Wp(f{). Additionally,

/ n- ﬁgiv’3d curlu *2Y / n-curlu= / divcurlu = 0. (B.7)
oK oK K
Finally, the exact sequence property of the first line of (2.12) informs us that div \Q/p(f( ) — W];“’”(IA( ) is

surjective. Hence, we get from (2.16a) that div ﬁ;}i"ﬁd curlu = 0, i.e., indeed the claim (B.6) holds. Next,
(B.6) and the exact sequence property of (2.8) imply

ﬁgiv’gd curlu = curlu, (B.8)
for some u, € QP(IA().
We next claim Hgi"’3d curlu = curl H;“rl’gdu. To that end, we check that v := curl H;“r1’3du € V,(K)

satisfies the equations (2.16) for ﬁgi"*3d curlu. That is, we check:

(div(curlu — curl ﬁgurl’3du), divv) . gy =0 Vve Q,(K), (B.9a)
(curlu — curl ﬁ;‘“l’gdu), curlv) o oy =0 Vv e Qp(f(), (B.9b)
(ns - (curlu — curl f[;“rl’3‘7lu)7 V)2 =0 Yo e Vo(f) VfeF(K), (B.9¢)
(ns - (curlu — curl ﬁ;‘“l’?’du)7 D2y =0 Vfe F(K). (B.9d)

(B.9a) is obviously satisfied and (B.9b) is a rephrasing of (2.15a). Noting ny - curl = curl; II., we rephrase
(B.9¢) as
(curly IT, (u — TIE"H3%), v) 125y = 0 Vo € Vp(f). (B.10)

In view of the exact sequence property of (2.12), the space V;)(f) is the image of curly Qp(f) so that (2.15¢)
implies (B.10). Finally, for (B.9d) we perform an integration by parts to get

=~ cur ~ur (2.15f)
(curly I, (u — 1T, L3dy), D2 = Z (I, (u — 11}, l’gdu),te)Lz(e) ="0.

eCOf

Proof of iiiv ﬁgi"’&i = ﬁf div: Again, this follows from the exact sequence property (2.12). We check that
v := div IIJ"3%u satisfies (2.17). To that end, we note

(2.164) o

(divu — v, ey = (divu — div ﬁgiv’wu, 1)L2(f() = /M? n-(u-— ﬁgi"’wu) (B.11)

~

Furthermore, from the exact sequence property (2.12), we have that every w € W;}””(K ) has the form

w = divw for some w € Vp(IA() We therefore conclude for every w € We" (K)

' ) ) 2.16a
(dlvufv,w)LQ(f() = (dlvu—v,dlvw)LQ(f() (2.16a)

This concludes the proof of the commutativity of (2.8) in the three-dimensional setting. The commuting
digram (2.11) in 2D is shown by very similar arguments. O
C Meshes and spaces

The classical example of curl-conforming and div-conforming FE spaces are the (type I) Nédélec [27] and
Raviart-Thomas elements. These spaces are based on a regular, shape-regular triangulation 7 of Q C R3.
That is, T satisfies:

(i) The (open) elements K € T cover €, i.e., Q = UgeT K.
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(ii) Associated with each element K is the element map, a C'-diffeomorphism Fj : K — K. The set K is
the reference tetrahedron.

(iii) Denoting hx = diam K, there holds, with some shape-reqularity constant v,
B Fiell e i) + Bl (Bl ™ e ) < 7

(iv) The elements K € Ty, cover €. Their intersection is only empty, a vertex, an edge, a face, or they coincide
(here, vertices, edges, and faces are the images of the corresponding entities on the reference tetrahedron
K ). The parametrization of common edges or faces are compatible. That is, if two elements K, K’ share
an edge (i.e., Fi(e) = Fi(e') for edges e, ¢’ of K) or a face (i.e., Fi(f) = Fx(f') for faces f, f' of K),

then Fgl o Fgr: f' — f is an affine isomorphism.

The global finite element spaces Sp41(7), NL(T), RT,(7) on Q are defined as in [25, (3.76), (3.77)] by
transforming covariantly N ;(IA( ) and RTp(IA( ) with the aid of the Piola transform:

Sp+1(T) = {uE HI(Q)|U|KOFK E’Perl(I?)}, (Cla)
NUT) = {u e H(Q, curl) | (Ff)"ulx o Fx € N (K)}, (C.1b)
RT,(T) := {u € H(Q,div) | (det Fj)(F) ‘u|x o Fx € RT,(K)}, (C.1¢)

We restrict our attention to approximation operators that are constructed element-by-element.

Definition C.1 (element-by-element construction). An operator [erad . f 2(IA( ) — Ppt1 is said to ad-
mit element-by-element construction if the operator II1Ed + HY(Q) N ] xc7 H2(K) defined elementwise by
(erady)| i = (I8 (w0 Fi)) o Fic' maps into the conforming subspace SPYH(T) C H'(Q).

An operator [lewt Hl(IA( ,curl) - N ;(IA( ) is said to admit element-by-element construction if the operator
et s H(Q, curl) N [[eer HY(K, curl) defined elementwise by (I1°"'u)| g = (F;()_T(ﬁc‘"l((Fl'()Tu oFk))o
Fit maps into the conforming subspace N;(T) C H(Q, curl).

An operator v . Hl(IA(,div) — RTp(I?) s said to admit element-by-element construction if the operator
Y - H(Q, div) N [] e HY (K, div) defined elementwise by

(Hdivu)|K — (det(FI/())_lFll((ﬁdiV(det F;()(F;()_luo Fg)) OF}?l

maps into the conforming subspace RT,(T) C H(Q,div).
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