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Wavenumber-explicit hp-FEM analysis for Maxwell’s equations with
transparent boundary conditions

J.M. Melenk* S.A. Sauter!
March 5, 2018

Abstract

The time-harmonic Maxwell equations at high wavenumber k are discretized by edge elements of degree
p on a mesh of width h. For the case of a ball and exact, transparent boundary conditions, we show quasi-
optimality of the Galerkin method under the k-explicit scale resolution condition that a) kh/p is sufficient
small and b) p/logk is sufficiently large.
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Glossary and Notation

general

k>1>0 wavenumber

i imaginary unit v/—1

A<B A < CB for some C independent of k, h, p, and functions
that appear in A and B; see Rem. 1.2

geometry

B1(0) unit ball in R3

B half-balls in R3

§) domain in R3 or unit ball B1(0) in R3

o+ R3\ O

=090 boundary of Q2

n unit normal vector on I" pointing into QT

n* constant extension of n into tubular neighborhood of T’

spaces

X :=H(Q, curl)

Xo := Hp (9, curl)
H(Q, curl), H(Q, div)
12(0)

H:(Q), H*(T)

H: (0)

L7.(I), Hy(T)

(2.8)

(4.7)

(2.8), (2.11)

space of vector-valued L2-functions

scalar-valued Sobolev spaces on Q, T', Sec. 2.3.1, (2.18)
vector-valued Sobolev spaces on €2

Sobolev space of tangential fields on T', (2.12), (2.20)

H,,./(I) (2.24)
~1/2
H, 1 (T) (2:24)
Vo, V§ spaces of divergence-free functions, see (4.21), (4.22)
A(Ck®,7,D), A=(Ck®, v, D),
A(Ck>,~,T) classes of analytic fcts., Def. 2.5; C, =, a are independent of k
functions
E H Et H electric and magnetic fields in © and in QF
Y, A eigenfunctions of Laplace-Beltrami, (2.17);
Y," analytic extension of Y™ into tubular neighborhood U of T, (5.11)

m . m
T} = curlrY,
Ly

9k
Gy

sesquilinear forms, norms

for T' = 9B1(0), the spherical harmonics

T}, VrY;" are L3(I)-orthgonal basis, cf. [47, Thm. 2.4.8]
index set of indices for eigenvalue Ay, (2.17);

for the unit sphere, 1p = {—¢,—(+1,...,£—1,¢}
Helmholtz fundamental solution, (7.9)

Maxwell fundamental solution, (7.9)

(., .), (.7 ')F

ag, Ag, bg
ow 1.high

b, b,

()

('a ')curl,ﬂ,k

I ll=1/2,cumtes - [1=1/2,dive

L?(Q)-inner prod. and L?(T')-inner prod. (or duality pairing)
sesquilinear forms associated with

Maxwell’s equations, (2.28), (4.3)

low- and high-frequency parts of bilinear form by, (4.11)
() = K2(, ) pago) +ikbe(()Y, (1))

= k2(~, ')LZ(Q) +ik(Tk(~)T, (')T)F; see (41)

(curl-, curl-) + k2(-,-); see (2.9)

norms on H_ /*(T"), on H,/*(T"), (2.24)

curl



- lleurt,,k,n
I 7,0

<'7'>7
/
R,p> NRypyq’
M/

R,p> “"Rp,q Hpp

discrete spaces, meshes

see (5.52)
- 1B = IV - 12200 + 21 172
Euclidean scalar prod. with complex conjugation in second argument (cf. (2.10))

seminorms to control high order derivatives, (D.21), (D.2.1), (D.38)

K reference tetrahedron
Th, Fr, Fi, Ax triangulation, element maps, Sec. 3.2, Ass. 3.1
Sh (discrete) subspace of H'(Q);
we require V.S, C X, and exact seq. property (1.8), (3.2)
X (discrete) subspace of H(£2, curl)
h, hi, p global and local meshwidth (Thm. 4.17, (3.3)), polyn. deg. p
P, Py space of R-valued and R3-valued polynomials of degree p, (3.4)
N é(ff ) Nédélec type I space on reference tetrahedron K, (3.5)
RT,(K) Raviart-Thomas elements on reference tetrahedron K, (3.6)
SP+1(77L)7 N{a(’ﬁl)a
RT,(Tw), Z,(Tr) polyn. spaces on Tp,: H*(Q)-, H(curl, Q)-, H(div, Q)-, and L?*(Q2)-conforming
operators
curl, div 3D curl and divergence operators
curlp, divp 2D scalar curl and divergence operators on the surface T, (2.14)
curlp, Vr, 2D vectorial curl and surface gradient operators on I', (2.13)
Ar surface Laplace-Beltrami operator, (2.15)
Ty (Maxwell) capacity operator
Thow, T,il igh low- and high-frequency part of capacity operator, (4.11)
Ecurl, Ediv, lifting operators (see Thm. 2.4)
Ur, ILE, yr, v trace operators for Q and QF, (2.3), Thm. 2.4
()7 subscript T indicates tangential trace: ur = Il;u
(.)high, (.)low Vhigh — HQV, Vlow — LQV
()Y gradient part of functions on T', (2.21)
(-)eurt curl part of functions on I', (2.21)
[lors [ir jump operators across ', (2.4)

LQ) HQ :I_LQ)
Ly, Hr =1-Lr

Hh
S
—k
Ta
m
Hh
lzzc)uri,c
curl,c
ggurl,s
P

~
chrl,s

p
ngad,c
p+1

v V,* v V%
v, mv-+, Iy, Iy,
vV 1qV.*
ITy ,IHh 1
C curl,
TIcur ) TIcur
curl curl,*
Ipee, I,

high and low frequency operators with

cut-off parameter A > 1, Def. 4.2, (4.9)

for the case Q = B1(0), one has || Lo|lcuor < 1, and ||[Hollculor < 2, (5.27)
Helmholtz single layer operator, (7.11)

Helmholtz Newton potential, (7.12)

Maxwell single layer operator, (7.14)

Laplace Dirichlet-to-Neumann operator for By (0); Sec. 7.1.2
abstract form of Hg“”vc

abstract form of IT4%-

H(curl)-conf. commuting diagram projector (matches Hgfld’c)
the operator Hg“rl’c on the reference tetrahedron
H(curl)-conforming approx. operator,

optimal p-rates simultaneously in L? and H(curl)

the operator ngl,s on the reference tetrahedron

H'-conf. commuting diagram projector (matches I15*7-¢)
projection onto VH(Q) or V w.r.t. ((-,-)) (Lemma 4.7)
projection onto V Sy, w.r.t. ((+,-)) (Lemma 4.7)

I-IIY and I —IIV'*, see Def. 4.9

I-TIY and T—1I)"*, see Def. 4.9



[comp,* .— LQ + chrl’*HQ
comp,* ,__ curl,
Hh = Lo + Hh Hq

constants

see Def. 4.9
see Def. 4.9

Cafﬁnev Cmetric
Cr

L.Q ~HQ
¢, Oy

V,high
Cb,k

curl,high
CVb k

CoeN,k

Ccont,k
high
Ccont,k

high
Cb,k

Ca,k

Ci

Cr,k

Ci ke

Cyst i

g, C.A,ja YA,j5
Cb; Cl;a

Chy

Crough

dual problems and

constants measuring the quality of the mesh (Assumption 3.1)
continuity of tangential trace operator (2.26)

(bounded uniformly in k)

I Lol cur, 0.k [[Hallcur, 0.k, see (4.6);

for general domains, C,f’Q, le’ﬂ = O(k);

for Q = By, CE,C = 0(1) (cf. Cor. 5.13)

continuity of constant of bzigh, see (4.12a);

for Q = By: Cp;"" = O(1) by Cor. 5.13

continuity const. of bi“rl’high, see (4.12a);

for Q = By: Cy """ = O(1) by Cor. 5.13

norm of capacity operator Ty, (4.13);

for Q = By: Cpin ik = O(k?) by Cor. 5.13

cont. const. of Ay and of ((-,-)), see (4.6);

cont. const. of Ai(Hq-, ") , see (4.16);

for Q = By: Ceontr = O(k3) by Cor. 5.13

cont. const. of ((-, Hq-)) and ((Hq-,-)) , see (4.15);

for Q = By: C#" = O(1) by Cor. 5.13

the embedding constant Vo C H (), see (4.32);

for @ = B1(0), Cq,r = 1 by Lemma B.1

constant in fundamental approximation result, (4.43), (4.44)

see (6.2),

see (6.2),

see (6.15),

constants characterizing k-dependence in analyticity classes, (4.61)
O(1) constants related to the bilinear form by; see Props. 5.7, 5.8
O(1) continuity constant of ((-,-)) for B1(0),

if one argument is a high frequency function of form Hqv, cf. Prop. 5.12
an O(1) constant associated with adjoint solution operator Na, Prop. 7.2

approximation

properties

N (4.39), (7.15)

NA solution of an adjoint problem with analytic data, (4.40)
T approximation property related to N7t, (4.41)

Na adjoint sol. operator, right-hand sides finite regularity (4.50)
Nit, N, adjoint sol. operator, analytic data, (4.51), (4.52)

~alg ~exp _alg exp
N > M M 5N

see (4.53)—(4.58), (4.65)—(4.70),
a tilde indicates that an adjoint sol. operator A is involved;
n without a tilde indicates a pure approximation property,

superscript “exp” indicates that exponential convergence of hp-FEM is expected;
superscript “alg” indicates that algebraic convergence of hp-FEM is expected



1 Introduction

High-frequency electromagnetic scattering problems are often modelled by the time-harmonic Maxwell equa-
tions (2.1), and the high-frequency case is characterized by a large wavenumber k > 0. The solution is then
highly oscillatory, and its numerical resolution requires fine meshes. Besides this natural condition on the dis-
cretization, a second, more subtle issue arises in the high-frequency regime, namely, the difficulty of Galerkin
discretizations to control dispersion errors. That is, in fixed order methods the discrepancy between the best
approximation from the discrete space and the Galerkin error widens as the wavenumber k increases. It is
the purpose of the present paper to show for a model problem that high order methods are able to control
these dispersion errors and can lead to quasi-optimality for a fixed (but sufficiently large) number of degrees
of freedom per wavelength.
For the related, simpler case of high-frequency acoustic scattering, which is modelled by the Helmholtz equa-
tion, substantial progress in the understanding of the dispersive properties of low order and high order methods
has been made in the last decades. We mention the dispersion analyses on regular grids for fixed order Galerkin
methods [7,27-29], the works [2,5, 6], for high order methods and [4] for a non-conforming discretization and
refer the reader to [21,42] for a more detailed discussion. These analyses on regular grids give strong argu-
ments for the numerical observation that high order discretizations are much better suited to control dispersion
errors than low-order methods. For general meshes, a rigorous argument in favor of high order (conforming
and non-conforming) methods is put forward in the works [21, 34, 38,41,42], where stability and convergence
analyses that are explicit in the mesh size h, the approximation order p, and the wavenumber k£ are provided
for several classes of Helmholtz problems. The underlying principles in these works are not restricted to FEM
discretizations; indeed, [31] applies these techniques in a Helmholtz BEM context.
The numerical analysis focussing on the dispersive properties of high order methods for the time-harmonic
Maxwell equations is to date significantly less developed. An analysis on regular grids that is explicit in the
polynomial degree p is available in [3]. A convergence analysis for a Maxwell problem on general grids that
is explicit in the mesh size h, the polynomial degree p, and the wavenumber k is the purpose of the present
work. To fix ideas we consider as a model problem the time-harmonic Maxwell equations (2.1) in full space
R3. Since a (high order) finite element method (FEM) is our goal, we consider the equivalent reformulation
of the full space problem as a problem in the unit ball = B;(0) complemented with transparent boundary
conditions on I' = 99 (cf. (2.7)). As we study conforming Galerkin discretizations, the starting point for the
discretization is the variational formulation (2.28). For this model problem, our main result is Theorem 4.17,
which establishes quasi-optimality of the Galerkin method based on Nédélec type I elements of degree p under
the scale resolution conditions

kh/p <c and p>Clogk (1.1)

for some constants ¢, C' > 0 independent of h, k, and p.

We focus here on a conforming Galerkin discretization, which will require the scale resolution condition (1.1)
to ensure existence of the discrete solution. It is worth pointing out that alternatives to conforming Galerkin
methods have been proposed in the literature. Without attempting completeness and restricting ourselves to
approaches based on higher order polynomials, we mention stabilized methods for Helmholtz [22,23, 25, 53]
and Maxwell [24, 32] problems; hybridizable methods [14]; least-squares type methods [15] and Discontinous
Petrov Galerkin methods, [20,49]. In convex domains, H!-conforming discretizations for Maxwell problems
can be employed instead of H(curl)-conforming ones; a k-explicit regularity theory in convex polyhedra with
subsequent fixed-order H!-conforming convergence analysis is given in [48].

We close this introduction by emphasizing that, as in the case of the Helmholtz equation, the techniques
employed in the present work are not restricted to the model problem under consideration here; in the
forthcoming [40], we apply the techniques developed here to Maxwell’s equations equipped with impedance
boundary conditions. Finally, a general note on notation is warranted: as we aim at a k-explicit theory, we
indicate constants that (possibly) depend on the wavenumber k by a subscript k.

1.1 Road Map: Setting

Our k-explicit convergence analysis of high order FEM for Maxwell’s equations requires a variety of tools
including compactness arguments, k-explicit regularity based on decomposing the solution into parts with
finite regularity and analytic parts as developed for the Helmholtz equation, and commuting diagram operators
that are explicit in the polynomial degree p. It may therefore be useful to provide here an outline of the key
steps.



The reformulation of the original full space problem (2.1) as the problem (2.7) in a bounded domain Q C R?
uses transparent boundary conditions, which are expressed in terms of the capacity operator Ty, (see Section 2.2
and (5.7) for its explicit series representation in the case of the unit ball @ = B;(0)). The pertinent sesquilinear
form that we consider in this work is then

Ap(u,v) = (curlu, curl v) — k*(u,v) — i k(Tyur, vr)r.

Here, (-,-) is the L?(Q2) inner product and (-,-)r the L?(T') inner product with I' = 9. The subscript T
indicates that the tangential component of the trace is considered. For 2 = B;(0), our analysis will be explicit
in the wavenumber k and we therefore focus on this case in this introduction.

1.2 Road Map: the Maxwell Aspect

Let us first discuss the key issues that are specific to discretizations of Maxwell’s equations; in the following
Section 1.3, we will focus on the additional difficulties arising from making the error analysis explicit in k. The
arguments that we highlight in the current Section 1.2 are essentially those of [8,12,26,44] and [43, Sec. 7.2].
To understand the Galerkin error for Maxwell’s equations, it is imperative to decompose the various fields in
gradient fields and solenoidal fields, both in 2 and on the surface I'. The tangential field ur is decomposed
as a gradient part uV and a (surface) divergence-free part u“*!. The decomposition uz = u" +u"! leads to
the decomposition of the sesquilinear form Ay as (cf. (4.3))

Ap(u,v) = (curlu, cwrlv) — ik (Tpu™, vcurl)F — (K* (u,v) +ik (T)uV, VV)F)

=:((u,v))

By [47, Thm. 5.3.6], we have for = B;(0) sign properties of the expressions i k(Tu!, u®"™")r and ((u,u)).
Furthermore, the curl-part u®"! of the tangential trace ur vanishes for gradient fields u = Vo, ¢ € H' ().
Collecting these observations, we have:

(I) Re ((curlu, curlu) — i k(Tpu™™, u™hp) > [ curluf? Vu € X := H(Q, curl),
(cf. [47, Thm. 5.3.6], Lemma 5.2);
(I) Re ((Ve, V) = (K|Vol)* Vo€ H'(Q), (cf. (4.20));
(III) Agx(u, V) = —((u,Vy) Vo€ HY(Q), ue H(Q,curl), (cf. (4.3) in conjunction with Rem. 2.3).

Let u € X = H(Q, curl) and up, € X;, C X be its Galerkin approximation. Then, for arbitrary wy € X, we
get for the Galerkin error e, :=u — u,

lenl|Zu 0.k := || curlen|® + k*[len]|* < Re Ax(en, en) + 2 Re ((en, en)) (1.2)
= Re Ai(en,u— wp) + 2Re((en,u — wy)) + 2Re ((en, wr — up))

Re((en, v
< Re (4 (ep,u—wy) +2((en,u—wp))+2 sup M
vrex\{0} IVhllcurto,k
=T <llenlleust o,k +u=wnllcur, 0,k

(1.3)

||uh - Wh”curl,ﬂ,k

Assuming continuity of Ay and ((-,-)) with respect to the norm || - ||cur,0,x (defined in (1.2)) this analysis shows
that quasi-optimality of the Galerkin method can be achieved provided one can ensure

2 sup Re ((en, vi)) <1 (1.4)

viex\{0} [Vallcurnokllen]lcur,o.

It is tempting to treat this term by a duality argument. However, the duality argument cannot be applied
directly since the map X > v — ((,v)) € X' is not necessarily compact. In the numerical analysis of
Maxwell’s equations, this lack of compactness is addressed by suitable “continuous” and “discrete” Helmholtz
decompositions, thereby exploiting that vy is from the discrete space Xy. Specifically, we decompose v, €
Xy in two ways (“continuous Helmholtz decomposition” and “discrete Helmholtz decomposition”) into a
divergence-free part and a gradient part:

v, = Oy, 4TIV "y, (with “continuous” II°“*v;, € X, TIV*v;, € X N VHY(Q); see (IV)), (1.5)



v = Hfl“rl’*vh + Hhv’*vh (with “discrete” qurl’*vh € Xy, Hhv’*vh € X, NVHL(Q); see (V). (1.6)

Since, by construction, Hhv’*vh € X}, is a gradient, the Galerkin orthogonality and the observation (III) imply
((eh, HX’*vh)) = 0. Hence, we can write using both decompositions (1.5), (1.6)

((eh, Vh)) = ((eh,chrl’*Vh)) + ((eh,HZurl’*Vh — chrl’*vh)) =:T5 + 1T5. (17)

The convergence analysis based on this decomposition then relies on a) the fact that the term 75 = ((eh, chrl’*vh))

can be estimated with a duality argument and b) that TIeurl sy, — qurl’*vh is shown to be small.
The continuous and continuous and discrete Helmholtz decompositions (1.5), (1.6) are defined as follows:

(IV) (decomposition in gradient part and divergence-free part) The gradient part [IV-*v € VH' (Q) is defined
by the “orthogonality” condition

(Vo, IV*v)) = (Vo,v) Yo € HY(Q),

which is well posed by (II). We set I1¢U* := I — ITV* and denote its range by V. We note that the
operators ITV>* and I1°""! effect a stable decomposition of the direct sum X = Vi@ VH! (). The above
mentioned duality argument for 75 relies on the compactness of X 3 v — ((, HC‘“L*V)) € X’ which is
shown in Lemma 4.12 and ultimately relies on the embedding Vi C H(Q).

(V) (decomposition of discrete functions in gradient part and discrete divergence-free part) Let S, C H'(Q)
be defined by the requirement that the following (discrete) ezact sequence property holds:

v

curl

Sh X curl X, (1.8)

(cf. (3.8) for the specific example of hp-FEM). We define the discrete version HZ’* : X — VS of IIV>*
by the “orthogonality” condition

(Ve v)) = (Ve.v) Ve es,

1
and set II;""" := T — Hhv’*.

While the term T3 in (1.7) is treated by a duality argument, control of the term 75 in (1.7) relies on the existence
of an interpolating projector II¥ (and a companion operator ITf') with a commuting diagram property:

(VI) (commuting diagram projector) Define Vg, := {v € V(| curlv € curl Xj,}. We require the existence
of an operator Hf : Vo, + Xp — X, with the following properties:

(a) IIZ is a projector.

(b) There is a companion operator IIF" defined on curlX;, with the commuting diagram property
curle = Hﬁ curl.

(c) II¥ has some approximation properties in L?(£2):
Bllv = TV < % Vilewon WV € Vi, (1.9)

where the parameter nglg quantifies certain the approximation properties of X;, (e.g., in terms of
the mesh size h and polynomial degree p).

Remark 1.1 In the case of hp-FEM, the operators Hf and Hg will be constructed in an element-by-element
fashion (cf. Def. 8.1) from the operators ﬁfg‘“l’c and ﬁgiv’c (cf. Theorem 8.3) that are defined on the reference
tetrahedron K. In the hp-FEM setting, the quantity nglg in (1.9) is estimated via Lemma 8.6, (iii) by'
nle < kh/p; see (4.77). .

LA < B is shorthand for A < CB for some C > 0 that is independent of the wavenumber k, the mesh size h, the polynomial
degree p, as well as functions appearing in A and B.




Remark 1.2 Various approximation properties ng will appear in our analysis, which depend on the subspace
Xp. In the context of hp-finite elements, these quantities 1y will depend on the mesh width h, the polynomial
order p of approrimation, and the reqularity of the functions involved. Given that we focus on high order FEM
with the potential of exponential convergence, we employ the following notational convention: If some 1, is
(generically) algebraically small in p, we employ the superscript “alg” while we use the superscript “exp” if
the quantity is exponentially small. .

The use of the properties of HE required in (VI) become apparent if we observe the following arguments for
estimating T3:

(i) The definition of TI°">* and TI™"* implies the “orthogonality”
((V{/;ha (HC““’* - HZ““’*) vh)) =0 Vi €S (1.10)

(i) From curl 1™ = curl "™ = curl on X}, by (1.5), (1.6) we get for any v;, € X,

(VIb)

1 1
curl (HZ‘” Fvh — Hfﬂcurl’*vh) curl (HZ‘H ’*vh) —T1 curl (chrl’*vh) = curlv;, — I} curlvy,

(V;b) curl vy, — curlevh (\ga) curl (Vh —vp) =0. (1'11)

(iii) By the exact sequence property, the observation (1.11) implies that qurl’*vh —IIPIIeu*y, is the gradient
of an element of Sy, i.e., Hchurl’*vh — TIETICwh*y), = Wy, for some 9y, € Sh.

(iv) Combining (IT), (iii), (1.10) yields

2 curl,* curl,* 2 (D curl, x curl,* curl, * curl,x
g2 (et =< e ( (e I v, (W T v ))

(1.102 (111) Re (((I _ HE) chrl7*vh, (chrl,* _ HZUI‘I,*) Vh)) ) (112)

(v) The continuity of ((-, ")) (cf. (4.14), Prop. 5.12) and using curl ((I — IIF) II*"*v;, ) = 0 = curl (HC““’* - Hchurl’*) Vi

(as a consequence of the above calculation), gives H (I — HE) ey, || =k H (I - Hf) ey, H

curl,Q,k
so that we may continue the estimate (1.12):

2
s < o <

curl,Q,k H (I B HE) HCUTL*V}LHCUH,Q,]@

= Coontye (k|| (Tt = 15 ) wi| | ) () (1 = 117) T )

Here, the constant Ceone, i could depend on k.

(vi) The final step in treating T3 uses the continuity of ((,-)), the above steps, and the stability of the map
v = chrl**vh:

= o 7))

< Crllenlleun,on (k|| (I = TE) 1wy, ||) < Cun®[len]leurt, 0. [|[TT°* v |

< Ceont,k|l€h]lcurt, 0.k H (chrl’* - Hchurl’*) Vi,

curl,2,k
curl,Q,k

< Cknglgnehncurl,(z,k||Vh||curl,ﬂ,k-

Here, the constant Cj may depend on k (and is, of course, different in each occurrence). Recalling our
starting point (1.4), we discover that the approximation space Xy, and the operator Hf should be such

that 73'® can be made sufficiently small (see (4.77)).

A few more comments concerning the above procedure are in order:



Remark 1.3 (a) The basic estimate (1.3) is formulated in such a way that one is led to study ((en,Vn))
with v, € Xy, in the discrete space Xy. This seemingly innocuous choice has far reaching ramifica-
tions. First, one has curl I®"*v;, = curlv,, = curl qurl’*vh, which allows one to replace the stronger

|- lleurl,.k morm by the weaker L?-norm in the estimates of Step (v): H (ch“’* — HZ‘"I’*) Vh,

curl,Q,k
k H (chrl’* — HZ‘"I’*) vh‘ and H (I - HE) chrlﬁ*vthurl,Q,k =k H (I - HE) chrl’*vhH. Second, the com-

muting diagram property of Hf and the (discrete) exact sequence property (1.8) are responsible for the
“orthogonality” (1.10) (cf. Steps (i)—(iii)).

(b) The L*-approzimation properties of HE stipulated in (VIc) can be met because of the special structure
of the space Vg, first, as we discovered in (IV), functions from Vg are in fact in HY(Q). Second, for
functions v € V§ ., one has that curl v € curl X, is a discrete object. For the specific case of Nédélec Type
I elements of degree p, an operator Hf is constructed on the reference tetrahedron in Theorem 8.3 (called
ﬁ;‘"l’c there) that exploits these properties and leads to the quantitative estimate nglg = O(hk/p). We

flag at this point that, while the space V§ is a space of divergence-free functions, the operator ﬁ;‘“l’c 18
additionally defined for (elementwise) smooth (actually, elementwise H(curl)) functions. This property
will be needed in Section 1.3 below to argue the benefits of high order methods. .

1.3 Road Map: k-explicit Estimates

The argument outlined above does not take into account how the wavenumber k enters the estimates, which
occurs in various places, for example, in the continuity of Ay and ((, ), the stability of the map I1°"""* and the
regularity properties of the solution z of the dual problem A(-,z) = ((, HC‘“L*vh)). Indeed, care is required
as we only have the k-dependent continuity bounds (cf. Cor. 5.13)

(v, W) + Ak (v, w)| < CB*|[v][curt. k[ Wllewr 0.k (1.13)

1.3.1 Continuity of A, ((-,-)) and Treatment of T}

The fundamental ingredient for k-explicit bounds that are useful for the analysis of high-order FEM is the
ability to decompose functions u € X into “high-frequency” parts Hou and “low-frequency” parts Lou. An
overaching theme of the present work is that the high-frequency component Hqu leads to estimates uniform
in k in the expected Sobolev norms; the low-frequency component Lqu involves k-dependencies, but is smooth
(even analytic), which can be exploited by high order approximation spaces. We note that such decompositions
u = Hqou + Lgu of functions entail corresponding decompositions of sesquilinear forms such as Ay and ((, -)).
The frequency splitting operators Lg and Hq are motivated by an analysis of the k-dependence of the continu-
ity constants of Ay and ((, ), e.g., in the bound |Ay (u, v)| < Ceont, k|||l curl, 2,k V]| cur, 0,5 One discovers that
it is the capacity operator T} that introduces a k-dependence in Cgont, k. Inspection of the series expansion of
Ty in (5.7) (see in particular Lemma 5.3, which gives sharp bounds for the symbol of the operator T}) shows
that the k-dependence is due to the low-frequency parts of ur. Having identified these components as the
culprits for unfavorable k-dependencies, we introduce in Definition 4.2 the low-frequency operator Lg : X — X
and the high-frequency operator Hq = I — Lg that have, for the case Q = B;(0) considered here, the following
properties:

(VII) (StablhtY) HLQuncurl,Q,k S Hu”curl,fl,k and ||HQuchrl,Q,k S 2||uchrl,Q,k (Cf (527))

(VIII) (smoothness) Lqu is analytic. Specifically, there are C, «, v > 0 independent of k¥ and u such that
Lou € A(Ck*||ul|cur,0,k, 7, ) with the analyticity class A given by Def. 2.5 (cf. Theorem 5.9).

(IX) (k-uniform continuity at the expense of a compact perturbation) For some C' > 0 independent of k
(cf. Prop. 5.12 and Lemma 4.6 in conjunction with Cor. 5.13):

[(Haou, v))| + (v, How))| < Clullcurt, k| V] curt,o.k; (1.14)
| Ak (Hou, v)| + | Ak (v, Hou)| < C||ullcur,o, x| V]| curl,, k- (1.15)

The refined continuity properties of Ay and ((-,-)) given in (IX) allow us to estimate the terms T3 in the basic
error estimate (1.3) explicitly in k. Abbreviating v := u—wj, and decomposing viow .= Lov and vhish .= Hov
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we write

T = Re(Ak(en,v) + 2 ((en,v))) = Re (Ax(en, Hov) + 2 ((en, Hov))) + Re (Ak(en, Lav) + 2 ((en, Lav)))
= Re (Ax(en, Hov) + 2 (e, Hov)) ) + Re(curl ep, curl Lov) + Re(— ik (Tkegyﬂ, (LQV)C““) + (len, LQV))) .

::Tl,l :5T1,2

=:T1 3(ep,Lav)

The sesquilinear forms in 7 ; and 77 5 have good continuity properties (cf. (IX) and (VII) respectively) and can
be estimated with k-independent constants. The term T} 3 is amenable to a treatment by a duality argument:
Let ¥ € X solve Ay (-, %) = T13 (-, Lav). By Galerkin orthogonality satisfied by e, and the stability estimate
(1.13), one arrives at

IT13 (La (en),u— wy)| = [Ax(en, )] < Ck3||eh||cur1,n,k¢inf 1% — P llcurt,o,k- (1.16)

nE€Xn

Since Lo(u — wp,) is an analytic function by (VIII) and the geometry I' = 9B1(0) is analytic so is the dual
solution 7. As discussed in Proposition 7.5, one has the following analytic regularity assertion:

(X) Given r € X, the solutions 1, ¥y € X of Agx(-,9;) = T13(-, Lar) and Ax(,,9y) = (-, Lar)) are
analytic in  and satisfy v, ¥y € A(Ck®||r|lcurl,0,k,7y) for some C, 7, @ > 0 independent of k and r.
The analyticity classes A are introduced in Def. 2.5.

Since, by (X), the solution % in (1.16) is analytic, exponential approximation properties of hp-FEM spaces
will be able to offset the algebraic factor &% in (1.16). Indeed, we will show in Lemma 8.5, (ii) for Nédélec
elements of degree p that the infimum in (1.16) decays exponentially in p (provided that kh/p is sufficient
small).

1.3.2 Treatment of Th: the k-explicit Duality Argument for II°"*v,,

The analysis of the terms T = ((en, 1°"*v;)) and T3 = ((eh,HC“rl’*vh — qurl’*vh)) and arising in (1.7)

curl,*

requires us to make the decompositions v, = II¢"*v, + IV v, = I, vy + HZ’*vh in a more careful,
k-dependent way. The stability property (IX) implies ||HVV*HQVHcmLQJC < CllHavVllcurt,or < Cl|Vileur,o.k
with C > 0 independent of k so that

||HCUY17*HQVchrl,Q,k S CHV”curl,Q,k; (117)

again with C' > 0 independent of k (cf. also (4.24b)). These favorable estimates for Hqv instead of v directly
suggest that we should study, for v;, € X}, the following decompositions instead of (1.5) (1.6):

vy, = [OP*y, 4 TIV*Hovy,  with  TIOMP* .= Lo + I H, (1.18)
v, = I vy, + 10 " Hovy, with TP = Lo 4+ 15" Ho. (1.19)

The duality argument for Ty = ((ep, I°™P*v,)) = ((en, Lavy)) + ((eh, HC‘“L*Hth)) is split into two duality
arguments. For the first term, one observes again that Lqvy, is analytic and so will be the appropriate dual
solution by (X), which in turn means that exponential approximability of hp-FEM space can be brought to
bear. For the second term, the duality argument requires much more care since II°*"* Hovy, has only finite
regularity. We have (cf. Prop. 7.2):

(XI) The solution % of Ag(:, 1) = ((-,I°""*Hqv})) can be decomposed as 1 = 12 + 9 4 with k2[|ap 2 || +
1V mella2 ) < CllHava|curor < CllVallcur,or and ¥ 4 € A(CE®||HoValcurt,o,k, 7, ) for some C, 7,
a > 0 independent of k (cf. Def. 2.5 for the definition of the analyticity class A).

The decomposition of (XI) into a part ;> with finite regularity in conjunction with k-uniform control of the
second derivatives and an analytic part 1 4 is shown in Section 7.2; it relies on a solution formula based on
Green’s function for the Helmholtz equation and the decomposition is then inferred from the one developed
in [41].
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1.3.3 Treatment of T5: Estimating (Hcomp’* - Hzomp’*) v,

For the final term, T3 = ((ep,, (II°™P* — II;°™™™) v;,)), a new type of duality argument appears. We start by

writing

Ty = ((en, (MmP™ = TLP) vi)) = ((en, Lo (TP = TLZY) vi)) + ((en, Ho (TP — I7P7) vy)
=131 +T3.

Exploiting the analyticity of Lg (II°™P* — IT;*™P) v}, the first term, T 1 can be treated by a duality argu-
ment as in Section 1.3.1. For the second term, T3 2, we use (IX) to estimate

(1.14)
ITsal = |((en, Ho (T — TP v, )| < Cllenllenrnoni ]l (IO — ™) v eust s
= Cllenlcur o, (k|| (TP —ILTP7) v [)

where, in the last step, we used curl (II°™P* — II;*"P*) vj, = 0. The term k || (TI°™P* — II,""P™) v || is
estimated by

(b | (o 5oy ) Re (1072 IG7) vy, (07— T vy)
((

—_ =

I — HE) l—Icornp,*Vh7 (l—Icomp,a< o Hzomp7*) Vh))
= Re ((HQ (I _ Hg) HCOmp,*V}“ (Hcomp,* _ H(]Zlomp7*) Vh))
+Re ((Lq (I — TIf) TPy, (TIOMP* — TP vy)) =2 Ty g + T o

From (1.14) in (IX), we get |[Ty1| < C (k| (IT0™P* — II,7"P ") vy, ||) (k|| (I — IIF) °™P*v4|[). We remark
that the above argument glossed over a minor point: In view of the modified definition of the decomposition
(1.18), (1.19), we have to require that the operator IT” is additionally defined on the space of smooth functions
(in (VI), the operator II7 is only defined on Vi, + Xn) and satisfy some appropriate stability properties.
The term H (I —11F) Hcomp’*vhH can be estimated as follows in view of the definition (1.18):

(I — 1) TPy || < |[(1 — T0F) Laval|| + ||(I — 7)) T Hovy || =: Ts,1 + Ts 2.

For Nédélec elements of degree p, Theorem 8.3 provides an operator HE (its restriction to the reference element
K is denoted there ﬁg‘"l’c) that is also defined on (elementwise) smooth functions and has good polynomial
approximation properties. In particular, by the analyticity of Lovy, the term T5; is exponentially small in
the polynomial degree p for Nédélec elements. The term T5 5 can be controlled by the assumption (VIc) and
the stability bound (1.17) as

VI .
Tso < ng°|II Hovplleuor < 16 °CllVhllcur,o,k-

The term Ty o requires a duality argument that exploits the orthogonality property (1.10). Specifically, the
dual problem is to find ¢ € H'(2) such that

((w;, v{/?)) - ((LQ (I — IIP) Treompy, v@) Vi € HY(Q). (1.20)

Solvability is ensured by (II). The analyticity of Lq (I —1IF ) T1eomp*yy and 0f) give that 1 is analytic; we
have by Proposition 7.4 (problem (1.20) is of Type 2 discussed in Sec. 7.1):

(XII) The solution 1 of the problem (1.20) belongs to an analyticity class ¢ € A(Ck*||vh|lcuro.k,7,2) for
some C, a, v > 0 independent of k

We obtain, noting that (II°°™P* —II;°™*)v;, satisfies the same orthogonality condition (1.10) as the difference
chrl,* o HCUTL*
( no )Vh

)

Taz = (9, (1 I yw)) B2 it (900 = ) (I T2,

(1.13) '
< Ck? wnéfs V(¥ — ¥n) || curt, o,k || (TT™P* — TP v, || cur, 0,k
h h
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= Ck® inf (k[V(¢ — vn)|) (k]| (TP — I v, |]);
Y €Sh
a more detailed argument can be found in the proof of Prop. 6.1.

The main result of the present work is quasi-optimality of the H(€2, curl)-conforming discretization: In Theo-
rem 4.15, we present a fairly abstract convergence result (which is not fully explicit in k). In Theorem 4.17 we
consider high order Nédélec elements and the specific situation of the unit ball B;(0) and show quasi-optimality
of the Galerkin discretization under the scale resolution condition (1.1).

2 Maxwell’s Equations

In Sections 2.1 and 2.2 we introduce the strong form of the Maxwell problem first in the full domain and then
in an equivalent way on a bounded domain. At this stage we are vague concerning the precise function spaces
and mapping properties of trace operators. The variational formulation of the problem in a bounded domain
is given in Section 2.4, where also the appropriate function spaces are introduced.

2.1 Maxwell’s Equations in the Full Space R3

We consider the solution of the Maxwell equations in the full space R? with Silver-Miiller radiation conditions
at infinity. The angular frequency is denoted by w, the electric permittivity by €, and the magnetic permeability
by u. We formulate the problem in terms of the wavenumber k = w,/ep, the scaled magnetic field H= \/gH,
and the scaled electric charge density j= wu/ej: Find the electric field E and the scaled magnetic field H
such that _ _ _
cwrlE —ikH=0 and curlH+ikE=j inR?3,
~ X c X = c (2.1)
’E—Hx—’§—2 and ‘Ex—+H‘§—2 for r = ||x|| = o0
r r r r

is satisfied in a weak sense. Throughout the paper we assume that the dataj satisfies the following Assump-
tion 2.1a) which is sufficient to prove quasi-optimality of the Galerkin discretization (cf. Theorems 4.15, 4.17)
while further assumptions on j are needed to prove convergence rates (cf. Corollary 4.18).

Assumption 2.1 a) The scaled electric charge densityj is a compactly supported distribution (functional on
the space Hioc (curl, R3) defined in Section 2.3) in the sense that there exists a bounded, smooth Lipschitz
domain Q C R with simply connected boundary T' := O that satisfies suppj C Q. We denote by n the unit
normal vector on the boundary T oriented such that it points into the unbounded exterior QF := R3\Q.

b) The wavenumber k is considered as a real parameter in the range?

k> 1. (2.2)

2.2 Reformulation on a Bounded Domain

Assumption 2.1 allows us to formulate problem (2.1) in an equivalent way as a transmission problem. For this
we have to introduce in (2.3) the trace operators IIz and 47, which map sufficiently smooth functions u in €
to tangential fields on the surface I' while the trace operators H} and 7;5 denote the corresponding traces for
function u™ in the exterior domain Q+:

IIr :u—nx (ur xn), vr :u ulr X n,

+iut = ut|r xn.

I} :ut —nx (uf|p xn), ~f (2.3)

This allows us to define the jumps for a sufficiently smooth functions w in the interior and w* in the exterior
domain:

[(W,W-’_)]O,F = yrw—yfw, [(W,W"’)]LF = yr curl w—vF curl w. (2.4)

2The condition k& > 1 can be replaced by k > kg > 0. Our estimates remain valid for all choices of kg > 0. The constants in
the estimates are uniform for all k > ko while they depend continuously on kg and, possibly, become large as kg — 0. We use
(2.2) simply to reduce technicalities.
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With this notation, the problem (2.1) takes the form: Find E, E*, H, H* such that
curlEfikIjI:O, cur1ﬁ+ikE:j in €,

(2.5a)
curlET —ikHY =0, curl HY +ikET =0 in QF, (2.5b)
[(E’ E+)]0,F =0, [(E’ E+)]1,F =0, (2.5¢)
L oEe L X c X = c
’E s x—‘g—Q, ’E « XA ‘g—Q for r = ||x| — oo. (2.5d)
r r r r

The key role for formulating this problem as an equation on the bounded domain 2 is played by the capacity
operator Tj,. This operator associates to gr € H_ /2 (T') the value of v} HT on T' where (E*, ﬁ+) solves the

curl
homogeneous Maxwell problem in the exterior domain Q7 with Silver-Miiller radiation conditions at oo (i.e.,
(2.5b), (2.5d)) together with Dirichlet boundary conditions y7E* = gr x n. That is, Tygr := v HT.
Remark 2.2 From [47, Lemma 5.4.3, Thm. 5.4.6P we conclude that the exterior homogeneous Mazwell

equations with given Dirichlet data g € Hgii/Q (), i.e., '}/}FEJr = g on I', for the electric field has a weak
solution ET € Hoe (curl, Q1), which is unique and satisfies

Jr
HE chrl,BR(o)msz+,1 <Cra Hg”H;i/Z(r) J

where Br (0) is a ball with radius R centered at 0 such that Q C B (0) and Crq is a constant which only
depends on () and R.

This implies that the capacity operator T}, : H;ulr{Q ) — H;ii/ 2 (T) is continuous. .
The Maxwell equations on the bounded domain are given by

curlE —ikH = 0, curlH+ikE=j inQ,

yrcurl E —i kTR II7E =0 onlI.

Eliminating H from these equations we arrive at the Maxwell equations for the electric field on a bounded

domain 2 _
curlcurl E — k?E = i kj in Q,

yrcurl E — i kTR IIrE =0 onT. (2.7)

2.3 Sobolev Spaces in (2 and on I

We introduce the pertinent function spaces.

2.3.1 Sobolev Spaces in ()

By H* () we denote the usual Sobolev spaces of index s > 0 with norm ||| ;7. (q). The closure of Cg® (£2)
functions with respect to [|-|| () is denoted by Hg (€2). For s > 0, the dual space of Hj () is denoted by

H=7(9Q). If the functions are vector-valued we indicate this by writing H* (), H§ (2). For details we refer
to [1].
The energy space for the electric field is given by

X :=H(Q,cul) := {u € L*(Q) | curlu € L* ()} (2.8)
equipped with the indexed scalar product and norm
(£, 8)curt.cr == (carlf,curlg) + &% (F,)  and  ||fl| o = (£, H)elia (2.9)

where (-, -) denotes the L? (Q)-scalar product

(F.g) = / (£.5). (2.10)

Here, (-,-) is the Euclidean scalar product in C3 (with complex conjugation in the second argument). We also
introduce the space

H (Q,div) := {u e L*(Q) |divue L* (Q)}. (2.11)
For unbounded domains D C R3 we denote Hj. (D, curl) the space of all distributions f with the property
that of € H (D, curl) for all smooth, compactly supported functions ¢ € C§°(R3).

3The function spaces appearing in these statements will be introduced in Section 2.3.
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2.3.2 Sobolev Spaces on I'

The Sobolev spaces on the boundary I' are denoted by H?® (') for scalar-valued functions and by H?® (") for
vector-valued functions. A formal definition may be found in [33]; however, below and throughout this work,
we will use the characterization in terms of expansions via eigenfunctions of the Laplace-Beltrami operator.
We will need the space LZ(I") of tangential vector fields given by

LZ(T) :={veL*T)|(n,v) =0on T} (2.12)

For a sufficiently smooth scalar-valued function v and vector-valued function v on I', the constant (along the
normal direction) extensions into a sufficiently small three-dimensional neighborhood U of T" is denoted by u*

—
and v*. The surface gradient Vr, the tangential curl curlp, and the surface divergence divr are defined by
(cf., e.g., [47], [9])

Vru:= (Vu*)|p, cwrlpu:=Vreuxn, and divpv = (divv")|p onT. (2.13)

—
The scalar counterpart of the tangential curl, curly, is the surface curl

curlp v := ((curl v*) |, n) on T (2.14)
The composition of the surface divergence and surface gradient leads to the scalar Laplace-Beltrami operator
Aru = divr Vru. (2.15)

From [47, (2.5.197)] we have the relation
divp (v x n) = curlp v. (2.16)

The operator Ar is self-adjoint with respect to the L? (I') scalar product (-, ) and positive semidefinite. It
admits a countable sequence of eigenfunctions in L? (T') denoted by Y™ such that

—ArY" =AY, for £=0,1,....and m € . (2.17)

Here, ¢y is a finite index set whose cardinality equals the multiplicity of the eigenvalue A;, and we always
assume that the eigenvalues Ay are distinct and ordered increasingly. We have A\g = 0 and for £ > 1, they are
real and positive and accumulate at infinity. By Assumption 2.1 the surface I' is simply connected so that
Ao = 0 is a simple eigenvalue. From [47, Sec. 5.4] we know that any distribution w, defined on the surface T,
can formally be expanded with respect to the basis Y™ as

o0

w:Z Z wytY,".

=0 meuvy

The space H® (T') can be characterized by

7 (T) = {w € (€= @) wllfrery = D Geo+2e)" Y 'l < 00} (2.18)

=0 mely

with Kronecker’s dm ¢. A norm on H* (I') is given by |- = py-
Next, we define spaces of vector-valued functions. By [47, Sec. 5.4.1], every function vy € L2 (I') can be
written in the form

> —
ve=> Y (v;”curlp}f;” + Vg”vpif;”) , (2.19)

=1 m€Euy

where the coefficients satisfy 33,2, Ae >, ¢, (|v}”|2 + |ng|2) < co. We set

Vel oy = DX Y (o + vl (2.20)
=1

mety

A tangential vector field vy can be decomposed into a surface gradient and a surface curl part:

-y
vV = Z;’;l Zme” V/*VvrY,” and yeurl . — Z;’;l Zmeu vgteurlp Y, "
(2.21)
so that vy = vewrl 4 vV,
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Remark 2.3 For gradient fields Vo we have (V)" =0 and (V)Y = Vre. .

The decomposition (2.21) allows us to express the operators curlp and divr and the corresponding norms in
terms of the Fourier coefficients: for a tangential field v of the form (2.19), the surface divergence and surface
gradient are defined (formally) as in [47, (5.4.18)-(5.4.21)]

divp vy = Z)\g Z V'Y," and curlpvy = Z)\g Z v Y, (2.22)
=1 =1

meEtlyg meEly

The H* (T") norm (cf. (2.18)) of curly () and divp (-) can accordingly be expressed in terms of the Fourier
expansions:

2 s m2 . 2 s m |2
[|curlp VTHHS(F) = Z)‘e+2 Z lvp*|”  and [[divr VTHHS(F) = Z)‘e+2 Z 17 (2.23)
(=1 metyg (=1 meuyg
We define
2 1/2 m2 m)2
VT o curte = DA D2 (L4 M) P+ V) (2.24a)
£=1 metly
2 1/2 m |2 m|2
Vel s aier = DA D0 (108 + (L4 M) V). (2.24)
{=1 metg
The spaces H;ulr{Q (") and H;ii/ 2 (T") allow for orthogonal decompositions on the surface I'. From [47, (5.4.20),

(5.4.21)] we conclude that

vr € Hy/* (1)
vy € H_ /2 (I') <= vr is of the form (2.19) and [[vr[[_; /5 cpp < 0

curl

<= v is of the form (2.19) and |[vr[|_; /5 gy < 00,

—
holds. The system {VFYZm,curleZm} forms an orthogonal basis in L2 (') (cf. [47, § after (5.4.12)]) so that

v curl)

(vV,v =0 VWeli (). (2.25)

L7(T)

The following theorem shows that H~/2(divy, T') and H~'/?(curlp, I') are the correct spaces to define contin-
uous trace operators.

Theorem 2.4 The trace mappings
M X — H_ (1), yr: X — HZ/? (D)

curl

. L . ) - —1/2
are continuous and surjective. Moreover, there exist continuous liftings Ecurl,: chr{ (T) — X and Egivy:

Hgii/ 2 (T') = X for these trace spaces which are divergence-free.

For a proof we refer to [13], [47, Thm. 5.4.2]. For a vector field u € X, we will employ frequently the notation
ur := II7u. The continuity constant of Il is

HTV _
Cp = sup H || 1/2,curlp

(2.26)
veX\{0} HV||cur1,Q,1

2.3.3 The Analyticity Classes A

We introduce classes of analytic functions whose growth of the derivatives (as the order of differentiation grows)
is controlled explicitly in terms of the wavenumber k. For smooth tensor-valued functions u = (u;)ijer on a
subset w C R?, where I is a suitable finite index set and using the usual multi-index conventions o = (as)jzl,
we set |a] = a1 + ... + a4, and abbreviate

va@l = 5 % (1) 100 @)

aend iel
|a|=n

b ' |’
agl---ag!

n n! o s o
2 ( )27 DX =905 ... 954, (2.27)

We then define:
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Definition 2.5 For an open set w C R? and constants Cy, v1 > 0, and wavenumber k > 1 (cf. (2.2)), we set

A(Crym,w) = {u € L?(w) | V™l 12,y < C177 max {n +1, k}Y" Vn e NO} ,

A* (C1,m,w) = {u €L (w) | V"l poc(py < Crrf'n! Vn € NO} .
For the unit sphere T in R® and constants C1, 1, and the wavenumber k > 1, we set
A(Cy,m,T) = {f c L2 (I) | IVEEl p2ry < Cio7 max {n + 1,k}" Vn € NO} :
where Vr denotes the surface gradient as in (2.18) and the application of V} to £ is defined componentwise.

Membership in the analyticity class A is invariant under analytic changes of variables and multiplication by
analytic functions:

Lemma 2.6 Let d € N and wy, wo C R? be bounded, open sets. Let g : wi — wy be a bijection and analytic
on the closure wy: there are constants Cy, Cyiny, Vg Such that

9 € A% (Cq,7g,w1)  and  [[(9) "z (i) < Coiin-

Let f be analytic on the closure W3, i.e., f € A>®(Cy,vr,wa) for some Cy, vr. Let u € A(Cy,Yu,w2) for some
Cu, Yu. Then there are constants C', v > 0 depending solely on Cy, Vg, Cginv, Yu, Vf, and d, such that
u:=f-(uog) satisfies u € A(C'CyCy,7 ,w1) .

Proof. The case d = 2 is proved in [35, Lemma 4.3.1]. Inspection of the proof shows, as was already observed
in [41, Lemma C.1], that it generalizes to arbitrary d € N. =

2.4 Variational Formulation of the Electric Maxwell Equations

We formulate (2.7) as a variational problem. We introduce the sesquilinear forms ay, b, A : X x X — C by

a (u,v) := (curlu,curlv) — k% (0,v), by (ur,vr) = (Tyur, vr)p, (2.28a)

Ak (,) = agk (-,-)—ikbk (HT-,HT-). ’
Then, the weak form of the electric Maxwell equations on a bounded domain  C R® with transparent
boundary conditions reads:

given F € X’ find E € X such that Ag (E,v) = F(v) Vv e X. (2.28Db)
Note that the strong formulation (2.7) corresponds to the choice F' (v) = (i kj, v) in (2.28b).

Theorem 2.7 Let Assumption 2.1 be satisfied. Let Ay have the form (2.28a). Then, for every F € X/,
problem (2.28b) has a unique solution.

Proof. Let Bg (0) denote a ball centered at the origin with sufficiently large radius R such that Q C Bg (0).
We consider the electric Maxwell equation in Bg (0) of the form: Find Eg € H (Bg (0) , curl) such that for all
v € H(BR(0), curl)

(Curl EpR, curl V)LZ(BR(O)) > (ER7 V)LZ(BR(O)) —ik (Tk,RER,T7 VT)LQ(BBR(O)) = Fgr (V) s (229)
where T}, g is the capacity operator for the exterior domain R?*\Bg (0) and Fp is the extension of F' by zero,
ie., Fr(v):=F(v|g). In [47, Lem. 5.4.4 (with T" = () therein)] an ansatz Er= ur + Vpg is employed, where
up and pr are the solutions of a variational saddle point problem. In [47, Thm. 5.4.6], an inf-sup condition
is proved for this saddle point problem which implies the well-posedness of (2.29). The construction implies
that E := Eg|, then satisfies (2.28b). On the other hand, every solution E of (2.28b) can be extended to a
solution of (2.29) by employing the well-posedness of the exterior Dirichlet problem, [47, Thm. 5.4.6]. Since
(2.29) has a unique solution also the solution of (2.28b) is unique. m
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3 Discretization

3.1 Abstract Galerkin Discretization

Let X;, C X denote a finite dimensional subspace. The Galerkin discretization of (2.28) reads: Find Ep, € X,
such that
Ay, (Eh,Vh) =F (Vh) Vv € Xp. (31)

For the error analysis we will impose an assumption (Assumption 4.14) on the space X by requiring the
existence of a suitable projection onto the space Xj. Also for the error analysis we will make use of a space
Sp, such that the following exact sequence property holds:

Sy —Y o X, = el X, (3.2)

In the next section we will introduce the Nédélec space N 1{(’771); for the choice X;, = N’ II, (T1), we will perform
the error analysis explicitly in the wavenumber k, the mesh width A and the polynomial degree p.

3.2 Curl-Conforming hp-Finite Element Spaces

The classical example of curl-conforming FE spaces are the Nédélec elements, [46]. We restrict our attention
here to so-called “type I” elements (sometimes also referred to as the Nédélec-Raviart-Thomas element) on
tetrahedra. These spaces are based on a regular, shape-regular triangulation 7;, of @ C R3. That is, 7
satisfies:

(i) The (open) elements K € Tj, cover Q, i.e., Q = UgeT, K.

(ii) Associated with each element K is the element map, a C'-diffeomorphism F : K — K. The set K is
the reference tetrahedron.

(iii) Denoting hy = diam K, there holds, with some shape-regularity constant -,
B IFiel ey + Al (FR) ™ iy < 7 (3.3)

(iv) The intersection of two elements is only empty, a vertex, an edge, a face, or they coincide (here, vertices,
edges, and faces are the images of the corresponding entities on the reference tetrahedron K ). The
parametrization of common edges or faces are compatible. That is, if two elements K, K ! share an edge
(i.e., Fx(e) = Fi(€') for edges e, €’ of K) or a face (i.e., Fx(f) = Fx(f’) for faces f, f’ of K), then
FitoFgo: f/ — fis an affine isomorphism.

The following assumption assumes that the element map Fx can be decomposed as a composition of an affine
scaling with an h-independent mapping. We adopt the setting of [41, Sec. 5] and assume that the element
maps Fx of the regular, y-shape regular triangulation 7}, satisfy the following additional requirements:

Assumption 3.1 (normalizable regular triangulation) Each element map Fix can be written as Fx =
Ry o Ak, where Ak is an affine map and the maps Rx and Ak satisfy for constants Catine, Cmetric, 7 > 0
independent of K :

|l ) < Cattinehics (%) e ) < Catinehis

H(RIK)_IHLoc(f() < Cmetric; ||vnRKHLoc(f() < Cmetric'Ynn! Vn € Np.

Here, K = Ag(K) and hx > 0 is the element diameter.

Remark 3.2 A prime example of meshes that satisfy Assumption 3.1 are those patchwise structured meshes
as described, for example, in [41, Ex. 5.1] or [35, Sec. 3.3.2]. These meshes are obtained by first fixing a
macrotriangulation of ); the actual triangulation is then obtained as images of affine triangulations of the
reference element. .
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On the reference tetrahedron X we introduce the classical Nédélec type I and Raviart-Thomas elements of
degree p > 0 (see, e.g., [43]):

Py(K) := spanfa® | |a] < p}, (3.4)
NYR) = {p(@) + = x a(x) | p,a € (Py(R))*}, (3.5)
RT,(K) = {p(x) + 2q(x) | p € (P,(K))*.q € P(K))}. (3.6)

The spaces Sp+1(7r), ./\f;(ﬁ), RT,(7:), and Z,(7y) are then defined as in [43, (3.76), (3.77)] by transforming
covariantly N ;(IA( ) and RTp(IA( ) with the aid of the Piola transform:

Sp1(Th) == {u € H'(Q) |u|x o Fx € Ppya(K)}, (3.7a)
N(Th) = {u e H(Q, cul) | (Ff)Tulk o Fx € N (K)}, (3.7b)
RT,(T) := {u € H(Q,div) | (det Fi)(Fj) 'u|x o Fx € RT,(K)}, (3.7¢)
Zy(Th) = {u € L*(Q) | u|x o Fx € Py(K)}. (3.7d)

A key property of these spaces is that we have the following exact sequence:

R —— Spp1(Th) —— NU(T) — RT,(T,) — s Z,(Th) (38)

4 Stability and Error Analysis

4.1 The Basic Error Estimate
4.1.1 Preliminaries

The basic error estimates for curl-conforming Galerkin discretization involve some k-dependent sesquilinear
forms and corresponding k-dependent norms which, in turn, are based on Helmholtz decompositions on the sur-
face I'. With start this section with these preliminaries. For the proof of the basic error estimate (Thm. 4.13),
we introduce the sesquilinear form ((-, ")) : X x X — C by

(0, v)) := &k (0, v) +ikby (u¥,vV). (4.1)

We need some definiteness assumptions for the sesquilinear form by (+,-). Throughout the paper, we will
assume:

Assumption 4.1 The sesquilinear form b, : X x X — C of (2.28a) satisfies

Im by, (uv, uv) <0 and Imby (uc‘“l, uC“rl) >0 VuelX,

Rebi (v, vr) > 0 vv € X\ {0} (4.22)

and
by (uv, VC““) = by (ucurl,vv) =0 Yu,v € X. (4.2b)

For Q being the unit ball, the statements in Assumption 4.1 are proved in [47, Sec. 5.3.2]. Assumption (4.2)
implies in particular:

A (u,v) = (curlu, curl v) — i kbg (u™, ve™) — ((u,v)), (4.3)
Ap(a, Vo) = — ((u, Vi) Yue X, ¢e HY(Q). (4.4)

The stability and convergence analysis of the Galerkin discretization (3.1) involve a) some frequency splittings
on the surface I' and in the domain € as well as b), some Helmholtz decomposition for the space X. These
splittings will be defined next while their analysis (for the case of the unit ball) is postponed to Section 5.

Definition 4.2 (frequency splittings) Let A > 1 be a parameter. For a tangential field with an expansion
of the form (2.19), the low-frequency operator Lr and high-frequency operator Hr are given by

—
Lovei= 3 0 (fewltYy” + Vy"VrY")  and Hpi=1I- Lr,

1<0<Ak mEeg
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The mapping Lq : X — X is the solution operator of the minimization problem:

HLQu”Curl,Q,k = min HVchrl,Q,k . (45)
veX
IIrv=Lrur

Set Hq := I — Lq. We introduce the notation

HLQuHCurl,Q,k ||HQuHCurl,Q,k

C,f’g = and C,?’Q = sup ————— (4.6)
uex\{0}  [llewnor uex\(0}  Mllcuri o
Remark 4.3 Since
Xo:={w e X |IIrw = 0}. (4.7)
is a Hilbert space with respect to || - ||curl .k, the operator Lo : X — X is well-defined and bounded and

linear (see also [51] and [52, Lemma 3.3]). The function Lou can be characterized equivalently to (4.5) as the
solution of the following variational problem: Find Lou € X with Il Lou = Lrur such that

(curl Lou, curl w) + k? (Lou, w) = 0 vw € Xo. (4.8)

Selecting gradients as test functions i.e., w = Vi for o € H}(Q) yields the equation div Lou = 0. The strong
formulation of (4.8) is thus

curl curl Lou + k*Lou = 0 in Q, (4.9a)
divLou =0 in Q, (4.9b)
IIrLou = Lrur on 0N. (4.9¢)

[ ]
Clearly the following commuting properties are valid
HTLQ = LFHT and HTHQ = HT - LFHT = (I - LF) HT = HFHT. (410)

Remark 4.4 For the special case of a ball @ = By (0), we will derive in Section 5.8 k-independent estimates
for the continuity constants C,CL’Q and C,f’Q. In the general case, one can show estimates of the form CkL’Q <
Ck and C,f’g < 14-Ck for some C > 0 independent of k by the following argument based on the (k-independent)
lifting operator Ecup : H;ulr{Q(F) — H(Q, curl) provided by Theorem 2.4: The ansatz Lou = U — Uqy with
U =&y Lrur leads to the equation

curl curl Uy + k?Ug = curlcurl U + kU in Q, 117Uy =0 on 09Q.
Hence,
HUOchrl,Q,k < ||U||curl,ﬂ,k < Ck ||LFuTH71/2,curlr < Ck ||uT||71/2,cur1r < CCFk ||u||cur1,ﬂ,1 < CCFI{/’ Huchrl,Q,k
from which we get || Loull, g or < Ok 0lewian i€ C,f’Q < Ck. The triangle inequality gives C’f’g <
1+ C,lj’(z. =

The operators Lr and Lo map into low frequency modes which correspond to smooth functions and, hence,
can be approximated well by hp finite elements. We also use the operators Lr and Hr to define the high- and
low frequency parts of the sesquilinear form by.

Definition 4.5 The low- and high-frequency parts of the capacity operator and the sesquilinear form by are
given by

low .__ high | __
el L, 7 T (4.11)
bk (,> = b (';LF'>; bk (,> = by, (';HF'>-
The continuity constants of the high-frequency parts of by are given by
) max {‘bk (uv, (HQV)V)’ , ‘bk ((HQu)V ,vv) ’}
CV,hlgh =k Su 4.12
bk - P , (4.12a)
’ u,veX\{0} ||uchrl,Q,k HVchrl,Q,k
_ kb (ue, (Hav) ™)
Cbcf;crl’h‘gh = sup . (4.12Db)

u,veX\{0} Huchrl,Q,kHVHCurLQ,k
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Lemma 4.6 The capacity operator T : H;ulr{Q T) — H(;if/ 2 (T) is continuous with continuity constant

Coin g = || Tk < 00. (4.13)

b2y cm 2o
The sesquilinear form Ay : X x X — C is continuous. For all u,v € X it holds

max {| Ak (0, V)], [((@ V)1 < Ceontk [ lewr 0 [Vllewrnan with Ceont i = k* + CRCpix bk, (4.14)

high , high H,Q ¥ ,high
max {|((u, Hov))| , [(Hou, v))[} < Cb,lf Huchrl,(z,k H"chrl,n,k with Cb,lf =0+ G &, (4.15)

max{| A (How, V)|, | Aw(a, Hov)l} < O lallean al1Veur o (4.16)
with C?;rgl}tlk = O 4 Cg};crl,high n Clyéhigh.

Proof. The continuity of T} : H;ulr{Q T) — H;ii/ *(I) is asserted in Remark 2.2. For the sesquilinear form
Ay we employ

|Ax (u, V) < [l ey o VIlewrnor + 10k (ur, vr)l.

For the last term, we obtain
kb (ur, vr)| =k |[(Tear, vr)p| < k| Tearll_y s give V7121 /2 curlr
< Coenyik lurll—y o oy VTl 21 /2 curir < ) CRCoen ik [[l| gy 01 1V | eurn. 01 - (4.17)
For the continuity bound of the sesquilinear form ((-,)) we obtain similarly as before

|, V)| < & [ull* v]” + Cou ik [|u
(2

v v

H—l/Q,Curlp ||V H—I/Q,Curlp
.25) 9 9
< kQ ||u|| HV” + CDtN7kk ||uT||71/2,curlp ||VT||71/2,cur1r
< Ccont,k ||u||cur1,Q,1 ||V||Cur1,Q,1 :

For the high frequency estimate of ((-,-)) we employ

(o, Hev))| < (k [[ull) ((k 1 Hav]) + & [be (u¥, (Hav)Y )|
Ry’ Jhi
< () G ¥l + G Il 0 1V lewrt

H,Q V,high
< (Ck + Cb,k ® ) ||u||cur1,£z,k ||V||cur1,sz,k-

The estimates with interchanged arguments follow along the same lines. The bound (4.16) follows similarly.
]

Next, we introduce frequency-dependent Helmholtz decompositions for the space X. Let V C H! () be a
closed subspace (the choice V = H! () is allowed). Note that this implies VV C X. Consider the problems

Given w € X, find lyw € VV st ([Iyw,§)) = (w,§)  VEeVV. (4.18)
Given w € X, find IV *w € VV  s.t. ((g,n&*w)) = (€&, w) VEEVV. (4.19)

Lemma 4.7 Let assumption (4.2a) be satisfied. Let V.C H' () be a closed subspace. Then, problems (4.18)
and (4.19) are both uniquely solvable. Thus, the operators I, and Hg’* are well defined.

Proof. The definiteness of Tm by, ((-)v , (-)v) (cf. (4.2a)) leads to

Re (V¢, V8) = (k [VEN)* ~ kImby (V6T (VO)Y) = (kIVEI)*  ¥¢ € H'(Q). (4.20)

From (414) we furthermore get |((W7 V&)” < Ccont,k||W||cur1,§2,1||V§chrl,ﬂ,1 = Ccont,k||W||cur1,§2,1(k||v§”);
which shows the well-posedness of II},. The well-posedness of H‘Y’* is shown analogously. m

For V = S}, we write short II) for IT§, and I, " for Hg};* while, for V' = H'! (Q) we use the shorthands 1TV
for Hzl(ﬂ) and IIV>* for HZ’I*(Q).
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A central role of the analysis is played by the spaces (cf. [47, p.220])

Vo={ueX|(,ve)=0 veeH (@)} fueX |40V =0 veeH(Q)},  (421)
Vi={ueX|(VeEw) =0 veeH' (@)} ) fueX |4 (Ve u) =0 vee H(Q)). (4.22)
These spaces of divergence-free functions are the ranges of the operators II°"! and II°":* given by
et .— 7Y, ewls .= Ve (4.23)
Lemma 4.8 Let Assumption 4.1 be satisfied. For any v € X

high
HHV,*HQchurLQJC S Cb,ll;g HVchrl,Q,k’ (4243.)

H,Q ¥, high
0 Ho|| o < (887 + CT) IV e (4.24b)

Proof. We employ (4.20) to obtain

(4.15) .
(k HHV’*HQVH)Q < Re (T Hov,IIV* Hov)) = Re (IV* Hov, Hov)) < Clﬁj‘,fhk [TV Hov || 119l curt.o -

Since curl IV:* Hovhieh = 0, the estimate (4.24a) follows. Estimate (4.24b) is obtained from (4.24a) and the
triangle inequality using II1¢Wh* = J — IIV*:

Hchrl,*HQVH

||HQVchrl,Q,k + HHV%HQVH (425) (C’HvQ

V,high
curl, .k = curl,Q,k ko Oy ® ) ”"chrl,Q,k

]
It is finally convenient to introduce the discrete counterparts of these operators:

qurl =] — Hhvv qurl,* — ] _ HZ,*' (425)

The operators ITV and II°""! (analogously ITV>* and IT°"'*) can be used to define a Helmholtz decomposition
of u € X into a gradient part and a divergence-free part. Since favorable stability properties of IIV (and
thus also of II°*!) will only be available for high-frequency functions, the decomposition (4.26) below involves
additionally the frequency-splitting operators Hg and Lgq.

Definition 4.9 (Helmholtz decompositions) For u, v € X we set
u = [Py + TIV Hou  with TI°°™P := Lq + 1" Hg, (4.26a)
The adjoint splitting is based on the operator IIV* and given by
v = II"P*y - TIV* Hov - with TIO™P* := Lq 4 TI°Wh* Hg, (4.26b)
The discrete counterparts of these splittings are

u= Hzompu + HXHQU. with H'}:lomp = LQ + qurlHQ,

v =1Ly + HZ’*HQV with TP = Lo + qurl’*HQ. (4.27)
The next lemma characterizes the spaces Vi and V§ in terms of the capacity operator T}:
Lemma 4.10 Let Assumption 4.1 be satisfied. Then: u € Vq if and only if
divu=0 in L?>(Q) Aik(u,n)+divp Tpllpu =0 in H-Y2(T). (4.28)
Furthermore, v € V§ if and only if 4
divv=0 inL?>(Q)Aik(v,n)+divp T_;IIpv =0 in H /2(T), (4.29)
where T) : H_M2(T) — Hy/*() is defined by
(Ti )e = (. Ti)r Vb € H (D). (4.30)
41t holds (i kTy)* = —ikT; = —ikT_. This follows by representing Ty by trace operators and boundary /volume potentials

for the electric Maxwell equation as, e.g., explained in [10], and by applying the rules for computing the adjoint of composite
operators.
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Proof. We only show the equivalence (4.29), since (4.28) follows by the same reasoning. Integration by parts
applied to the condition ((V€,v)) = 0 yields, for all £ € H! (),

0= (V€,v) = k2 (VE,v) +ikby, ((vg)v ,vV) = k2 (&, divv) + K2 (&, (v,n))p + ik (Tk (VE)q, vr)p

= —k* (& divv) + k% (& (v,n)p +ik (VE)p, Tivr)p
= —k? (&, divv) + ik (&,1k (v,n) +divp Ty V)

This is equivalent to (4.29). m

Corollary 4.11 Let the right-hand side in (2.28b) be defined by F (v) = (i kj, V) for some j € H (Q,div)
with divj =0andf-n=0 onT. Then the solution E satisfies E € V.

Proof.

Next, we will prove that the spaces Vo and V{ are subspaces of H! (Q). For the special case of I' being the
unit sphere, the constants in the norm equivalences can be determined explicitly — these details can be found
in Lemma B.1.

Lemma 4.12 Let Vo, V{ be defined as in (4.1.1). Then,
VoU Vi Cc H' (Q). (4.31)
There exists a constant Cq j > 0 such that
[ullgio) < Cokllullcunor  Yue VoUVg. (4.32)

Moreover, for any v € Vi andug € Vo, the mappings X 3 u +— ((HC‘"lu, )) eX,andX 3 v ((, HC‘"L*V))
are compact.

Proof. Let u € Vy. The function TjIIru is computed by first solving the exterior problem (cf. Remark 2.2)

curlcurlut — k2ut =0 in QF,

[(u,ut)]y o = 0 on T (4.33)

with Silver-Miiller radiation conditions and then setting TjIIru :ﬁv}' curlut. Since the tangential compo-
nents of u and u™ coincide on I, the function U : R* — C defined by U|, = u and Ulg, = ut (and I'
considered as a set of measure zero) is in Hioc (curl, R?). Then, for all v € C§° (R?) it holds

(curl U, curl v) o g\ ry — k* (U, V)pe(rsy = @k (W, V) + (curlu™, curl V)LZ(Qﬂ —k* (ut,v) L2(0+)

= ai, (u,v) + (cuwrlcurlut — k*u™, V)LZ(Q+) — (yr curl u*,v)r

a (u,v) — (fyT curlu™, V)r

ag (u, V) — lk (TkuT, VT)F = ak (u, V) — lkbk (uT, VT) . (434)

If we test with gradients v = Vo for ¢ € C§° (Rg) we obtain

(curl U, curl Vo)y » a1y — k* (U, V)12 sy = —k* (U, Vo)1 mps) = k? (div U, P)r2(r3) 5

(4.34)

. . Rem. 2.
(curl U, curl V)y o gary — k* (U, Vo)emsy = ax(u, Vo) —ikb (ar, (Ve)r) L 23 (u, Vo)) .

Since u € Vj implies ((u, Vy)) = 0, the combination of the previous two equations leads to divU = 0 in R3.
Hence
U € Hio. (R?,div) N Hoe (R?, curl) . (4.35)

Let Bg (0) denote the ball with radius 0 < R < oo and centered at 0 such that Q C Bg (0). We use (4.35) to
conclude from [16, p. 157] that U € H! (B (0)) and that there exists a constant Cr > 0 such that

HuHHl(Q) < ”U”Hl(BR(O)) < Cr (HCHﬂUchrl,BR(o)J + HdiVUHLZ(BR(o))) :
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We already know that div U = 0 in R? so that

||u||H1(Q) S CR (”uchrl,Q,l + ||U+||Curl,Q+ﬂBR(0)71) . (436)
An inspection of the proof of [47, Thm. 5.4.6] implies that

(4.33) .
||u+||cur1,9+nBR(0),1 < Cy H'Y;rmrHH;i/z(r) =" Ck HFYTUHH;},”(F) < G ||uchr1,Q,1 .

The combination with (4.36) leads to (4.32) for u € V| with a constant Cq i, possibly depending on Q and
k. The inclusion Vi C H! (Q) in (4.31) and (4.32) for u € V{ follow by the same reasoning.
Next we prove that the mapping X 3 u — ((chrlu, )) € X' is compact. The L2 () part of this mapping is

compact since II°"lu € Vo € H! (Q) ‘5" L2 (Q). Hence, it remains to prove the compactness of

Xsur (T ()7, ()7) eX. (4.37)

We set ug := [I°""u and write [I7ug =: u§"™! + uy according to (2.21). We observe

(TkHTuo,vv)F = (Tkuov,vv)r.

From
divr Tyuy = divr TiIlrug U429 g, (ug,n) € HY2(T).

we conclude that Tpuy € H;i/VQ (T"). For any v € X we write v = v®"! 4 Vg for some ¢ € H'/2(T'). Then

(Tiuy . vY) = (Trug, Vrp) . = — (dive Trug , @) ¢ = (ik (o,n) , )p < & [[{ao, 0) [l g2y 1] -1z -

Since ¢ € HY/2(T") ‘5" H=1/2(T") the compactness of the mapping (4.37) follows.
The compactness of the mapping X 3 v — ((-)v ST (ch“’*v)v) € X’ follows analogously. m
r

4.1.2 Abstract Error Estimate

We have collected all ingredients to prove the quasi-optimal error estimate for the Galerkin solution in the
following Theorem 4.13. It is the “Maxwell generalization” of the Galerkin convergence theory for sesquilinear
forms satisfying a Garding inequality, going back to [44]; various generalizations of this technique can be found
in [8,26]. We follow [43, Sec. 7.2]. For wj, € X;,\ {0} we introduce the quantity

S (wp) = sup (2 Re (W, v)) ) . (4.38)

vexX,\{0} ||Wthur1,(z,k Vil cur, o,k

We need an adjoint approximation property 7, defined via the following dual problem: For given w, h € X,
find N (w,h) € X such that

Ay (v,ﬁ(w,h)) = ((v,W)) — i kb, (v b)Yy e X. (4.39)

In (7.15) we will present an explicit solution formula for this problem which directly implies existence of a
solution. The operator Ni* : X — X then is given by N7 (w) := N (Low, Low), i.c.,

Ay (v, Niw) = (v, Law)) — i kby, (vcu“, (LQW)C‘“‘) Vv € X. (4.40)
The adjoint approximation property 7j;"" is defined by

- Zh”curl,fl,k

[Vitw
P =n7P(Xy) ;= sup inf

(4.41)
weX\{0} 2n€Xn lelcurl,ﬂ,k
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Theorem 4.13 Let (4.2) be satisfied. Let E € X and Ej, € X}, satisfy
Ap (E—Ep,vp) =0 Vv € Xp,. (4.42)
Assume that 0y (er) < 1 for e, := E — Ep. Then, ey, satisfies, for all wy € Xy, the quasi-optimal error
estimate C}v i (o)
||eh||cur1,(z,k = m IE— Wthuﬂ,Q,k (4.43)

with
Ch =1+ CpE™ + Coy MM 4 Coone piiy ™ (4.44)

Proof. The assumed sign conditions of T} (cf. (4.2a)) imply

HehH(Q:url,Q,k < (curley, curley) + k? (en, en) — kTm by, (ehv, eg) +k Im by, (eﬁ‘”l,effﬂ)

= Re A, (en,en) + 2Re((en, ep)) .
We employ Galerkin orthogonality for the first term to obtain for any wy € X,

2
lenllcuor < Re Ay (en, E —wp) +2Re((en, E —wn)) + 0k (en) lenllcuor  1EBr — Wallowrox

<lenlleurt, 0,6 TIE=Whllcur, 0,k
We write Ay, in the form (4.3) so that

(1= 8k (en) lenlFu.c < [(curlen, curl (E = wi))| + Re { ((en, B = w) — i kby (5, (B — wi)™™) }
(4.45)

+ 0k (en) llenlcuron 1B = Whall 0.k -

It turns out that the sesquilinear forms in {...} allow for good continuity constants when applied to high
frequency functions while these constants grow with k£ when being applied to low frequency functions. For a
function v € X we introduce the splitting into a high-frequency and low-frequency part v = vhish 4 ylow .—
Hqv + Lgv and get by using (4.40)

((eh; V)) —ikby, (e;burl7 chrl): ((e]“ Vhigh)) —ikby (e%url, (Vhigh)curl) + ((eh, Vlow)) —ikby (ezurl7 (Vlow)curl)

: : curl
= ((en, v™51) — kb (5, (vIE) ) + 4y (e, ATY) (4.46)
We employ the continuity estimate of (4.12a) to get

(e v )] < (r llenl) ( [v2522 ) + kg (&, (v2i50) )]

V., high
Cb,k

high
< ”eh”curl,ﬂ,k ||HQVchr1,Q,k + Hethurl,Q,k H"chrl,a,k < Cb,lkg ”eh”curl,ﬂ,k ”Vchrl,Q,k .

For the second term in (4.46) we use (4.12b) and obtain in a similar fashion

i curl 1,high
‘kbk (ezurl’ (Vhlgh) )‘ < le,l;cr ® Hethurl,Q,k HV”curl,Q,k .

For the last term in (4.46), the combination of Galerkin orthogonality, the continuity estimate (4.14) and the
definition of 77™" in (4.41) gives

‘Ak (ehaNiAV)‘ = wlnf ‘Ak (ehaNiAV - Wh)| S ﬁixpCCOthk ||ethurl,Q,k ”Vchrl,Q,k .
hEXp

Thus
[((ens V) —ikbe (e, v ) | < (O™ + 3™ 4+ 0 Coonta ) lenlleurt ot [Vl curt e

This allows us to continue the error estimation in (4.45) resulting in

(1= 8 (en) lenlleun e < (14 CLIE" + G + 8t (en) + 17 Ceont) 1B = Willewrs 1
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]

This theorem implies that quasi-optimality of the Galerkin method is ensured if d(ep) < 1. As will be shown
in Theorem 4.15 below, this condition also implies existence and uniqueness of the Galerkin approximation
E;. In the following, we will focus on estimating d(ey,), heavily exploiting the Galerkin orthogonality (4.42).
For the case Q = B1(0) we will derive k-explicit estimates for the constants in (4.43) in Corollary 5.13. In this

case, the constants C}; ikgh, lefl’high are independent of k; Ceont,k = O(k3) grows algebraically in k, which can

~exp

be offset by controlling 7y

4.2 Splittings of v, and a basic estimate for J(ey,)

It remains to estimate d(ep) in (4.38). In this section, we will introduce some frequency-dependent Helmholtz
decompositions for a splitting of the term (e, vy)).
For v € X we introduce two decompositions according to Definition 4.9. Let vI°V := Lov and vPe&h .= Hqv.
Then,

v =[PP %y + I * vl with TP as in (4.27),

. 4.47
v = [[eomP*y [TV vhish - with TI°°™P* as in (4.26b). (4.47)

An important point to note is that for v, € X, we have II;""""v;, € X}, and, for any v € X, we have
HZ’*Vhigh € VS, C X},. However, I1°°™Py, and valﬁigh areonly in X and VH*(€). From curl (Hhv’*v}ﬁigh) =

0 and Galerkin orthogonality we conclude that

((eh,HX’*V}ﬁigh)) (4.3), Rem. 2.3 _A, (eh’Hz,*vlﬁigh) —0 (4.48)
since Hhv’*vzigh € VS;, C X;,. We employ the splitting

vy, = [P %y, 4 (H;:lOmp,* _ Hcomp,*) Vi + Hhv,*v}ﬁigh

and arrive via (4.48) at our main splitting

(o) = (fen. (TP = TP v,) + (@1, T, ) (1.490)
_ ((eh; (Hzomp,*vh . Hcomp,*vh)high)) n ((eh; (Hzomp,*vh . Hcomp,*vh)low)) (449]2))
+ ((en, V™)) + ((eh, HC““’*vzigh)) : (4.49¢)

4.3 Adjoint Approximation Properties

The error analysis involve solution operators for some adjoint problems and we introduce here corresponding
approximation properties which measure how well these adjoint solutions can be approximated by functions
in the Galerkin space X} and its companion space S;. One of these approximation properties involve the
existence of an interpolating projector which will also be introduced in this section.

Recall the definition of V§ of (4.22). We set

Von :={veVgy|curlv € curl X, } .
The following assumption stipulates the existence of a projector HE : Vot Range(Lq) + Xp, — X

Assumption 4.14 There exists a linear operator Hf A Range(Lq) + X, — Xy, with the following
properties:

a. 1I¥ is a projection, i.e., the restriction I1F 1s the identity on Xp,.

Xhn
b. There exists a companion operator 11} : curl X;, — curl X, with the property curl 117 = III curl.

Now we formulate the arising adjoint problems along their solution operators: We introduce the solution
operators Ny, N for the following adjoint problems

A (W, Nar) = ((w, 1)) Yw e X, Vre Vg, (4.50)
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Ap (W,N§'r) = (w,Laor))  VYweX, VreX, (4.51)

ie.,

~

Nor:= N (r,0) and Ni'r := N (Lor) =N (Lgr, 0) .
The solution operator Ny* : X — H' (2) /R is related to some Poisson problem and explicitly given by

— AN, vE) " (YN, VE) = (Lar, VE)  Vee HL(Q). (4.52)

We introduce the adjoint approximation properties®

||N2VO - Wph ||curl,(2,k

~alg  __ ~alg — ;
Ty o =15 ° (Xp):= sup in , (4.53)
2 2 voeVE\{0} WhEXn HVO”curl,Q,k
Ni'r — wy,
Mg P =157 (Xp):= sup inf H i chrl’Q’k, (4.54)
reX\{0} Wh€Xn HI‘chrl,sz,k
V (Nfr—v
My’ =17y " (Sp):= sup inf [V (N h)H, (4.55)
reX\{0} vn€Sn Hrchrl,Q,l
Laor — wp ||
s =15 (Xp) := sup inf ” lew L (4.56)
rexX\{0} wneXp Hr||curl,Q,k
kllw—TIPw
1 1
ne® = ng® (Xp,JIF) == sup —H” ” ) H, (4.57)
weVi\{0}: Wila ()
curl wecurl X,
kl|Lor — IELor
PP = i (Xp, IIF) = sup [Lor = i Lar], (4.58)
rex\{o} ||r||cur1,n,k

In Section 6 we will derive the following estimates for the terms in (4.49¢). Let r := II;""P"v), — [I°™P*vy,.
Then

. Prop. 6.1 hich
|((eha rhlgh))‘ S Cb,ll;g CT7k Hethurl,Q,k ||Vh||curl,ﬂ,k ’
. Prop. 6.2 . 5 N
‘((eh, chrl,*vglgh))‘ < Cusn (C##,k n Cg:;:l’hlgh I Ccont,kng)(p) nglg ”eh”curl,Q,k thchrLQ,k :
Prop. 6.3

l((en, Lox))| + [(en, Lava))l < Ceont ity ~ (1 + Crk) lenllcurnar 1Villcwrnon -

We combine this together with (4.49) and (4.38) to obtain

Sk (en) < & =2 (C;ithcnk + Ctek (C##,k + Gyt 4 Ccont,kﬁgxp) 5% + Ceont, k75 7 (1+ Cr,k)) :
(4.59)

Theorem 4.15 Let Assumption 2.1 be satisfied and let E be the solution of Mazwell’s equations (2.28b).
Assume that 8% in (4.59) is smaller than 1. Then the discrete problem (5.1) has a unique solution Ej,, which
satisfies the quasi-optimal error estimate

Cl 4+ 61
EXCkE nf B — Wallouo - (4.60)

lenllcun,or < T8 wiik,

Proof. The proof uses the same arguments as the proof of [31, Thm. 3.9]. Under the assumption that a
solution exists, the quasi-optimal error estimate (4.60) follows from (4.43) and the assumption % < 1. Next,
we will prove uniqueness of problem (3.1). We show that if E;, solves

Ay (Eh,Vh) =0 Vv, € Xy,

5We write 7, for an approximation property which involves a solution operator and n, for a “pure” approximation property
for a given space/set of functions.
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then Ej, = 0. This is the Galerkin discretization of the continuous problem: Find E € X such that Ay (E,v) =
0 for all v € X. Theorem 2.7 implies that E. = 0 is the unique solution. Hence e, = E — E;, = —Ej, satisfies
the error estimate

ClL + 0%
B0k IE = Whllcuor =0

||Ethurl,Q,k = ||eh||curl,ﬂ,k - 1-= 5]1€ wiEX),

since E = 0. Hence E;, = 0. Since (3.1) is finite dimensional, uniqueness implies existence. m

4.4 k-explicit hp-FEM

In this section, we show that the choice (Xj, Sy) := (./\f; (Th) , Sp+1 (T)) for properly chosen mesh size h and

k-dependent polynomial degree p > 1 leads to a k-independent quasi-optimality constant in (4.43). We adopt
the setting described in Section 3.2. That is, we let 7}, be a mesh satisfying the assumptions of Section 3.2 and
Assumption 3.1. We have postponed the definition of the operators II¥ and I}’ whose existence is required
in Section 3.1 to Sections 8-8.3 (and chosen to be Hg‘“l’c and Hgi"’c; cf. Theorem 8.3).

4.4.1 Applications to the Case 2 = B;(0)

The adjoint approximation properties ﬁ?lg, 7, ¥ involve solution operators whose regularity are investigated

in Sections 5.3 and 7 for the unit ball Q = B1(0). In particular, we show in Proposition 7.2 that the solution
operator N3 allows for a stable additive splitting Mo = N3°"8" + N5A, where NV5* maps into some analyticity

class and N3°"8" ; Vi — H? (Q) satisfies the estimate H/\/goughVOHHz(Q)

and Propositions 7.2, 7.3, 7.4, 7.5 we show that all other solution operators map into some analyticity class,
more precisely, for all r € X and vy € V3§, it holds® with a; =3, an =3, a3 =3, ay = 5/2, a5 = 3/2

< Croughk [[Vol|cyr1 - I Theorem 5.9

Ni'r € A(Cagh™ Il g 740 2) s 3= 13, (4.61)
Nitvo € A(Caak® Vol cum 7142, 2) (4.62)
VN € A(Caak™ el 00140, 2) (4.63)

Lor€ A (CAysk“f’ Il oucor s VA5 Q) : (4.64)

This allows us to estimate those adjoint approximations that involve solution operators by simpler approxi-
mation properties, which we will introduce next. We set

nixp (7) Xh) = Sup inf HZ - Wh”curl,(z,k ’ (465)
ZEA(1,7,Q) WhEXn

1 .
77; & (Xh) = sup inf ||Z - Wh”curl,(z,k ) (466)
zeH2(Q) Wn€Xn
1zl g2 (o) <k

ne (v, 8h) == sup  inf [[V(z—wn)l, (4.67)
VzEA(1,7,Q) UnESh
N7 (v, Xp) =k sup |z 17z, (4.68)
z€A(1,7,Q)

and obtain

?zzp < CA,1k°‘177zip (74,1, Xn) T:IZ(g < Croughnglgeg(xh> + Ca2k®n7™® (va,2,Xn)
5" < Cask®n™ (vas3,Xn), " < Caak®ny™ (Ya,4,Sh), (4.69)
75" < Cask®nT™® (vas: Xn), 770 < Cask®ns™® (va5,Xn) .

Corollary 4.16 Let Q = B1(0) and recall the definition of g before (4.4.1). Define

X X al 1
772 b= MaxXje(1.2,3,5} Ca ™ (va, Xn), Ugg = Croughg;g (Xn), (4.70)
Ny " = Caang (Y4, 5h), Ny P = Casng” (Va5 Xn) -

SFor the last relation, we have estimated [|*||cyr1.0.1 < |'lleurt.a.x i (5.29) (using (2.2)) to simplify technicalities.
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For 0 < 7 < 1 sufficiently small but independent of k, and any 0 < ey < 7, £ € {1,2,4,6,7}, select the mesh
size h and the polynomial degree p for the hp-finite element space Xy, such that Xy and its companion space
Sh (cf. (3.2)) satisfy Assumption 4.14 and the approximation properties:

RestSpSP <o) pplE <oy, RSP < gy né‘lg <eg, kN7 <er (4.71)

Then, the quantity & in (4.59), (4.60) can be estimated by 0}, < 1/2, and the discrete problem (3.1) has a
unique solution By, which satisfies the quasi-optimal error estimate

||eh||cur1,9,k < Cwig(h |E— Wh”curl,Q,k (4.72)

for a constant C' independent of k.

Proof. We estimate 6} of (4.59) termwise by using (4.69), (4.70), and the values of aj. From Corollary 5.13,
we deduce that the constants Cy 1, Cu% 1 in (6.2) and (6.15) are in fact bounded uniformly in k. Hence

an <C (66 + 57)

for a constant C' independent of k. Again from Corollary 5.13 and (4.69), it follows that
5 <C (56 +er 4 (1+E*HnP) (U;lg + ka%ﬁ){p) + EOTIPP (1 4 g6 + 57))

for a constant C' independent of k. We use ag + 3 > max{a; + 3,a5 + 3, a2} and the conditions in (4.71)
along with €y < 7 < 1 to obtain ~
6, <Cl(e1+er+es+er)<Cr

. -1
for a constant C' independent of k. Hence, the condition 0 < 7 < (20) implies §} < 1/2 and existence and

uniqueness of the discrete solution follow from Theorem 4.15.

To prove that the quasi-optimality constant C' in (4.72) is independent of & we use (4.60) so that it remains
to prove that Ci in (4.60) (cf. (4.44)) is bounded independently of k. This, in turn, is a direct consequence of
Corollary 5.13 and

o exp Cor- 513 o o (4.69) T a3, exp (4.71)
cont, k71 < Ck T < Ck ™ <Ck ™ < Ceu<Cr<C

independent of k. m

4.4.2 hp-FEM: Results

Theorem 4.17 Let Q = By (0) be the unit ball and let E denote the exact solution of (2.28b). Let the mesh
Trn satisfy Assumption 3.1 and set h := maxge7 hix. Let Sy, = Sp41(Tr) and X, = N;(ﬁ) Then there
exist constants c1, co, C > 0 depending solely on the constants Cagfine, Cmetric, ¥ 0f Assumption 3.1 such the
following holds: If k > 1, p > 1, h > 0 satisfy

kh
— <c¢ and p>cylogk, (4.73)
p

then the Galerkin approzimation Ey, € Xy, (cf. (3.1)) exists and satisfies

|E— Eh”n,curl,k <C inf [E- WhHQ,curl,k . (4.74)
wpEeXy

Proof. The proof consists in checking the conditions of Corollary 4.16.The infima in 738, n; ", 5 € {1,4} are
estimated with the aid the specific approximation operator II°""¢ analyzed in Lemma 8.5:

Lemma 85, (i) /}, B2 kh kh\ 2
7 < sup |z H;mLSZH 1,9,k < (_ + _zk) k=—+ (_) ‘ (4.75)
z€H2(Q) curLEs P p D D
||ZHH2(Q)§k
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The terms 75", j € {1,4} involve the approximation of analytic functions: The term 77" involves the approx-

imation from X; = N 117 (7r) and is estimated with Lemma 8.5, (ii); the term 7, " involves the approximation
from Sp, = Sp4+1(7Tr) and is taken from the proof of [41, Thm. 5.5]:

ho\? Eh\? BN kNPT
pr< T JE— . 4
2 N(thU) +k(0p) +k{(h+0) +(Up) (L76)

Jje{1,4}

The terms nglg, 17" involve the operator IIS"™¢. These are estimated in Lemma 8.6. Specifically, nglg is

exp

controlled with Lemma 8.6, (iii) and ;™ is controlled with Lemma 8.6, (ii) after the observation (4.61) that
Lqv is in an analyticity class:

A hk
s (4.77)

hK p+1 th p+1
P <k R —_— . 4.78

In total, we observe that an exponential convergence in p can absorb algebraic growth in k, which concludes
the proof. m

Corollary 4.18 Let Assumption 2.1 be satisfied, and let the right-hand side in (2.28b) be defined by F (v) =
(i kj, v) for some j € {uel?(Q)|divu=0A (ul.,n) =0}. Let the assumptions of Theorem 4.17 be satis-
fied. Then under the scale resolution condition (4.73), the Galerkin approximation Ey € Xy, (cf. (3.1)) exists
and satisfies

kh ||+
o e ] (4.79)

L2(Q)
Proof. Under the assumption of this corollary the solution E is the restriction of the electric field of the full
space problem (2.1) (with right-hand side defined as the extension of j to R3 by zero). In Section 7.1, we will
derive a solution formula (7.15) for an adjoint Maxwell problem which can be easily adapted to the original
Maxwell problem and to our assumption on the data 5 We obtain

E&%ﬂﬁé%ﬂk—yMHW%fver

where gy is the fundamental solution of the Helmholtz equation (7.9). From [41, Lemma 3.5], we know that

there exist constants ¢, C > 0 independent of k and j such that, for every u > 1, there exists a u- and
k-dependent splitting E = Ep2 + E 4 with

1 m—1 ||z

HWEmumnch+;rﬁ)wm i vim € {0,1,2}, (4.80a)

IVPEallL2) < Cp (k) il 2y ¥p € No. (4.80Db)

L2(Q)

As in (4.75) and (4.76) we obtain constants C, ¢ > 0 independent of k, h, p, and j

|Ef2 — T E e |

kh |+
curl,Q,k < C? HJ’

£2(Q)’

ho\? kh\" hoNPTY O ERNTTNY 1=
E _chrl,sE < _ —_— H"
H A 14 Achrl,Q,k_C<(h+o—) +k(o’p) +k(h,+0’) +(Up) J

Suitably choosing ¢, ¢g in condition (4.73) implies the result. m

L2(Q)

5 k-explicit Analysis of Operators for (2 = B;(0)
A key ingredient of wavenumber-explicit estimates for the terms in the splitting (4.49b,c) of ((en,vy)) are

k-explicit estimates of the capacity operator T} for the low- and high-frequency parts of the arguments as
these, in turn, allow for a k-explicit analysis of the continuity properties of the sesquilinear form ((-,-)), the
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operators IIV-*, TI°®mP* and Aj. Our analysis of the operator T} is based on the explicit knowledge of the
Fourier coeflicients and hence we restrict in this section to the case that @ = B; (0) is the ball with radius 1
centered at the origin. These estimates will be derived in Section 6 and applied to the different terms of the
splitting of ((ep, vp)) in Sections 6.1-6.3.

We also analyze in the present section the operator Lq and show that it maps into an analyticity class. The
fact that we consider 2 = B1(0) here implies the a priori bound || Lovlcur,ox < [|V]lcur,o,x Which, in turn,
leads to the quantitative assertion Lov € .A(Ck3/2|\v||cur17g,1, ~,§) in Theorem 5.9.

5.1 The Capacity Operator 7, on the Sphere

We restrict to the case that QF := R3\Q, where Q = By (0) is the open unit ball with boundary I'. Let T} :
-2 T — H;i/Q (T") be the capacity operator which was introduced in the paragraph before Remark 2.2.

curl
In the case of the sphere the eigenfunctions of the negative Laplace-Beltrami operator “—Arp” are given by
the spherical harmonics Y;™ (cf. [47, Sec. 2.4.1]) with eigenvalues A\, = ¢ (£ + 1). In this case, the index set ¢,

in (2.17) is given by

w={-0—0+1,....0—1,0}. (5.1)
We introduce the decomposition of E7 according to (2.21) (cf. [47, (5.3.87)])
Er = E°' +EV, (5.2a)
where - -
E =" N Ty and EY =Vrp with p:=)_ > U/Y" (5.2b)
(=1 meug (=1 meug

—
with the vectorial spherical harmonics T3 := curlpY,™ (cf. [47, (2.4.152), (2.4.173)]). This implies divp E$"! =
0.

Remark 5.1 For the expansion of a tangential field, e.g., Ep the summation starts with £ = 1 since Ty =
vrYy =0, ie.,

Er=>» > Ty +U/VY™). (5.3)

=1 meuy

Lemma 5.2 Let Ep € H_'/? (T") be decomposed as in (5.2). Then

curl
dive E*' =0 and (B EY), =b, (B EY) = b (EV,E) = 0. (5.4)
Furthermore, we have the definiteness relations: For all E € X it holds
Imby, (E™E™) >0 and Imb, (EV,EY) <0. (5.5)

Proof. It follows from [47, (5.3.87) and (5.3.91)] that the first term in (5.4) is zero. Integration by parts to
the second term in (5.4) and using divp E®""' = 0 shows that the second term vanishes. The third term in
(5.4) vanishes as a consequence of divp E°! = 0 and [47, (5.3.109)]. The last term is zero since TR EV is a
linear combination of VpY;™ (cf. [47, (5.3.87) and (5.3.88)]) and (VrY,”,E®") = (V" divp E®™) = 0.
The first inequality in (5.5) follows from [47, (5.3.107)] and the second one is a consequence of [47, (5.3.106)].
|

Any tangential vector field ur € H;ulr{Q (T") can be expanded in terms of surface gradients of spherical har-
monics Y™ and vectorial spherical harmonics T}* via

ur = w4 uV (5.6)
with
uew! = Z Z uy'Ty"  and uV :=Vrp with p:= Z Z uly,".

=1 mecuy =1 m€uvy

The application of the capacity operator T} to ur has the explicit form (cf. [47, (5.3.88)])

=z (k) +1 L N~ ik e
Tyur = Z T Z Uy TZ + Z m Z UZ VF}Q s (57)
=1

=1 meEtlyg meEtlyg
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where

B (hél))/(r) e (sz) ' r
ze(r) =7 O () w2 o qe (r=2)’

(5.8)

with the spherical Hankel functions hﬁl)

(2.6.19)-(2.6.22)]).

, and py, ge are polynomials of degree ¢ with real coefficients (cf. [47,

Lemma 5.3 Let A\g > 1 arbitrary but fixed. Then there exists Cy depending only on Ao such that for any
A Z )\0 M

2\/5]6 Vn € Ny,
k k
— <l 22+ +1 > k2, 5.9
ERGESTER TGS Aol (5:9)
Corty n > k.
It holds o () + 1]
Zn + n
LRV N B [ Ry 5.10
. <1+4 (5.10)

Estimate (5.10) follows from [47, (5.3.95)]. The proof of (5.9) is rather technical and postponed to the
Appendix A.

Remark 5.4 From (5.5), (5.7), and (5.8) we conclude that Assumption 4.1 is satisfied for the sphere. .

5.2 Analysis of Frequency Splittings Lr, Hr on the Surface of the Sphere
5.2.1 Analyticity of Lp
Lemma 5.5 Let Q = B1(0).

(i) There exists a fixed tubular neighborhood Ur of T and constants Ca, v independent of k (but dependent
on ', X) such that for each u € H(curl, Q) there is an extension U € A(02k3/2”llllcur1,g71,’72,?/[{‘) of
LFuT to Z/{F.

(i) The function LrIlpu belongs to the class A (Clk3/2 HuHCMLQ1 VY1, F), where C1, y1 are constants which

are independent of k and u. In particular, | LrTzull g1z < C1E?|[ullcurno,1-

Proof. Before proving Lemma 5.5, we mention that the algebraic growth rates with respect to k are likely
suboptimal. However, sharper estimates would require more technicalities. We start by noting that the
analyticity of I' provides that the eigenfunctions Y,;” of the Laplace-Beltrami operator have analytic extensions
57[‘ to a tubular neighborhood Ur of T'. A quantitative bound in terms of the eigenvalue ), is given in [37,
Lemma C.1]

v

) <Cg max{m,n} v Vn € Ny (5.11)

for some Cyg, 75 depending solely on I'. We recall specifically that the eigenvalues Ay of the Laplace-Beltrami
operator on the sphere are \; = £(¢ + 1).
Proof of (i): Let ur denote a tangential field on the sphere with the representation (cf. (5.3))

= —
ur = Z Z (u' T + UV Y, ™), T = curlpYy" = VrY,”™ x n.
/=1 m&Euy

With the extension n* of the normal vector n that is constant in normal direction, we may define the extension
U of Lrur as

U= > > up'VY" xn" + U"VY;".

1<0< Ak mEig

By the analyticity of n* we get from Lemma 2.6 and (5.11) that, for some C’, ¥ > 0 depending solely on T,

an(vf/ém X n*)HLZ(Z/lr) + an(vffém)HLZ(Z/{p) S CI\/ )\g ,?n max{\/ )\g,n}" Vn S NO. (5.12)
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We take ¢ < Ak into account (and writing A\, = £(£ + 1)) which allows us to estimate U by

L2(ur)>

1<0< Ak mEig

14
1 37 max{VAnn} AN ST (g + 07))

+ Um an-l-lf/m‘
ey T 1UF ;

<
1<0<Ak m=—1
, 1/2 , 1/2

~n 1/ 1/2 m m|\2

Nl Z Z maX{V)‘fv”} Vi Z Z A2 (g + 107 )
1<0< Nk m——2 1<0< Ak m——2

(2.242) 3/2 .

SOk + 1) max{Ak +1,n}" || Lrur|| g o el - (5.13)

Since || Lrur||—1/2,con,r < ur||=1/2,c0mr S [[0llcurn,o,1, the proof of (i) is complete.

Proof of (i1): An application of the multiplicative trace inequality would allow us to infer from (i) the assertion
Lrllru € A(Cik?||ullcur.1,71, L) for suitable Cy, 7;. The sharper statement follows by repeating the
arguments of (i) starting with the assertion of [37, Lemma C.1] that

HVFS/EWHLQ(F) < Cs’yg max{\/ )\g,n}" Vn € Ny. (514)

5.2.2 Estimates for High and Low Frequency Parts of the Capacity Operator

In this section we derive continuity estimates for the sesquilinear form b;. The k-dependence is different for the
low- and high-frequency parts of the tangential fields and for the summands in the splitting up = u"!' +uV.
In Proposition 5.7 we derive such estimates for the tangential fields while these estimates are lifted to the
space X and some subspaces thereof in Proposition 5.8.

Remark 5.6 IfI' is the surface of the unit ball there holds for all ur, vy € H_'/? ()

curl

Def. 4.5 Def. 4.2

(Tyur, Hrve)p =" (HrTyur,vr)p

Def. 4.5 i
ef:4 (T]?lghU.T, VT)
I

bl;igh (uT s VT)

(7 (TwHrur, vr)p

Analogous relations hold for the low frequency part blkow. .

Proposition 5.7 With the frequency filters Lr, Hr of Definition 4.2 given by a cut-off parameter X > Aoy > 1
the sesquilinear form by can be written as

b (up, vy) = by (uc‘"l, chrl) + b};gh (u¥,vY) + blow (u¥,vY) Vur,vre H_/? (1), (5.15)

curl

and there is C, > 0 depending solely on Ay such that the following holds:
b (ucur! chrl)} <C 1 |lcurlr urp|] |lcurlr v ||
k ) > Gp L ULP UT || r—1/2(y [[CULT VT || gr—1/2(1)

+ (14 A) [leurly Lrur || - () [[eurlp LFVT||H—1(F)) ;
i cur cur 1
‘b}lz gh (u 17V 1)‘ < CbE chrlp uTHHfl/Z(F) chrlp VTHH,l/g(F) s (516)
0 (Y, vY)| < CoAPRPH [ dive Leug || gy [AVE LoVe | sy
for0<p<2. Ifdivpuy € HP* (T') and divvy € HP2 (T) for some p1 + p2 + 3 > 0 we have

i k , .
o (¥, vY)| < Co s 10 el o) 1AVE VT g ) (5.17)
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Proof. The equality (5.15) follows from Lemma 5.2.
By using the orthogonality relations of T} and VrY,", the representations in [47, Sec. 5.3.2] give us

5 () e,

(=1 m=—/{
o L
OGR! ( <’2+1) S wp

m=—/{
Z (t+1) ( g) > upvp

mety

‘bk (ucurl’ chrl) ’ _

47, (2 4.155)]

(— Jeurle ur ;172 e leurle vl vsy
1 HCU.I‘lF LFU-THH 1(T) ||CU.I‘1F LFVTHH 1(F))

This leads to the first estimate in (5.16). In a similar way we obtain for the high-frequency part

‘bhlgh( curl chrl ’< Z[ €+1 (1+ ) Z’ue Ué

L> Nk metly
2 - m m
<=3 ) Y fupl o]
£> Nk mety
(2.23)

2
< % [eurlr Hrur || 172y [leurle Hove || -z

so that the second estimate in (5.16) follows. For the third one and (5.17) we obtain

B (Y vV =i Y (e+1) > (W%UFW) ,

1<<k meu,
i . k myrm
£>Mk mete ¢

By using (5.3) and (5.9) we get for any 0 < p <2

v (¥, vY)| < 2vaE Y e+ Y o v

1<e<M\k mety
<AV2E(AR) Y TN U |V
1<e<\k meEly
<16V2VRTE ST 2+ o v
1<0<Ak mEuvg

(2.23) L )
< 16V2NPEPTY || dive Lrur|| g1 pye [|dive Lrug|| oo -

For p1 + p2 + 3 > 0 we get from (5.9)

‘bzigh ’ < Cok Y 0N v

L>Ak meu,
Cok 4+p1+p2 m v
< W grreTe Z U V"]
>Nk meEtlyg
(2.23) k . i
< O s Ve ur o oy I19Ve vl on )
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Proposition 5.8 There is a constant C; > 0 depending solely on Ao such that the following holds:
Let u,v € X. Then:

‘bk (uv’ Vv)’ < Cl/)kQ Huchrl,Q,l ”V”curl,ﬂ,l . (518)
Letug € Vg and v € X. Then:
; k
high
‘kbk ¢ (uov’vv)‘ < CIQX HuOchrl,Q,l Hvllcurl,ﬂ,l ’ (5193.)
|k3b}€°W (uov,vv)‘ < CINE3 || divr LFuO,THH*S/Z(F) ||divp LFVTHH*3/2(F) ) (5.19b)
Foru € X and vo € V§ it holds
high k
k0 (07, vE) | < G Ileurnt IV llcars s (5.200)
|kb10w (u , Vo )‘ < CbAkg |divp LFuT”H 3/2(T) ||divr Lrvo THH 3/2(T) - (5.20b)

For ug € Vo, vo € V§ and p,q € H' (Q) it holds

. C/
high v
‘kbk ’ ( ) ‘ Tb 10 llcurn,0,1 1VPleur,on - (5.21a)
high cy
’kb ¢ ( vp ' Vo )‘ 7 |vp||curl,ﬂ,k ||V0chrl,(271’ (521b)
high v
‘kb ¢ ((vp )‘ 1/7 ||VP||curlﬂk ||Vchurl Qk (521(3)
Foruy € Vg and v € Vg it holds
‘kbhigh (ug,vo) ‘S 2 HuO”curl a1 Vol w1 - (5.22a)
|kb10w (uv Ov)| < Cb)\k3 ||u0chrl Q,1 ||VOchr1 Q1 (522b)
For u,v € H' (Q) and w € X, it holds
high
ke (w7 v7)| < S HuHHlm) R (5.230)
high
R (% )| < O e ¥ (5.23b)

Proof. Proof of (5.18): We combine the last estimate in (5.16) (for p = 1 and A = Ag) with (5.17) (for
p1 = p2 = —3/2 and A = \g) and obtain

i (07 )] < P () 4 [ (7))
< Cy (Mok? [dive Lrwr|| ;s ry I1dive Levrl g -os )

i /s oy VeVl )
< C(1+ Aok) k||dive ur|| sz [ dive voll g-s/z
< C 1+ Xok) kllurll gy Vol -2y (5.24)
<O L+ Xok) kllullcwrnon 1Vleurna.1 -

Proof of (5.19), (5.20), (5.23b): Let u € H! () and v € X. Choose p; = —1/2 and py = —3/2 in (5.17) to
obtain
B (0 )| < O dive wr o ldive vr oy

< O s gy oy v g1/

k
< CX ||u||H1(Q) ||V||curl,ﬂ,1 : (525)
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This shows (up to interchanging the roles of u and v) the estimate (5.23b). Since Vo C H! (£2), we may apply
estimate (5.25) to u € Vg and v € X. Lemma B.1 implies the estimate ||ug1 (o) < [Juflcur,0,1 so that (5.19a)
follows. For the low frequency part we get from (5.16) for p = 1 the estimate

k0 (ug,vY)| < CoAR? [[dive Lrvo,r || a2y 1dive Leve |l sz

which is (5.19b). For u € X and v¢ € V§, estimates (5.20) follow by the same arguments and interchanging
the roles of u and v.
Proof of (5.21): For ug € Vg and p € H' (Q) we employ (5.19a) with v = Vp and curl Vp = 0 so that

i k c
i v
‘kbz e (uOv? (Vp) )‘ < CX ||u0chrl,Q,1 ||Vp||curl,ﬂ,1 = X ||u0||cur1,Q,1 (k vaH)

< X HuOchrl,Q,l vachrlQ,k )

which shows (5.21a). The proof of (5.21b) is just a repetition of the previous arguments while the proof of
(5.21c) uses (5.17) for p1 = p2 = —3/2:
‘kb}lsigh ((VP)V ) (VQ)V)‘ < Cyk? [[divr (VP)THH*S/Q(F) [divp (V‘J)THH—S/Z(F)
< Ck? vachrl,Q,l ||Vq||cur1,ﬂ,1
= Ck2 vaH qu| =C vachrl,Q,k HVq”curl,Q,k ’

where the second step uses the same arguments as in (5.24).
Proof of (5.22), (5.23a): For any u,v € H! (Q) we may choose p; = ps = —1/2 in (5.17) to obtain

A

i Cp . :
’kb}: gh (uv7vv)’ < )\—; HleF uT|‘H71/2(F) HleF VT||H71/2(1—\) (526)
C
< 2 ||uTHH1/2(F) HVTHHl/z(r) < 2 HuHHl(Q) HVHHl(Q) :

This proves (5.23a). If we assume in addition uy € Vo and v € V§ we can appeal to Lemma B.1 to get

. C
high
‘kbklg (UOV’VOV)‘ < F ||u0||curl,ﬂ,1 Hvollcurl,Q,l ’

i.e., (5.22a). For (5.22b) we employ the last equation in (5.16) for p = 1 and proceed as for (5.22a). m

5.3 Analysis of Frequency Splittings Lq, Hg for the Case Q2 = By (0)

The operator Lg is defined in Definition 4.2 as the minimum norm extension from the boundary with respect
to the norm || - |curl,0,k- From Lemma C.1 we have the following stability estimate for the case Q = B1(0):

HLQuHCurl,Q,k S ||uchr1,Q,k . (5273“)
By the triangle inequality we infer that also Hgq is stable
HHQuchrl,Q,k < 2 Huchrl,Q,k . (527b)
For the present case of analytic I' we have the following result.
Theorem 5.9 Let Q = B1(0). Then the low-frequency part Lou satisfies
||LQu||Cur17Q,k < Hu||cur1,g7k and div Lgu = 0. (5.28)
Furthermore, Lou € A(Ca5Cl, YA 5,) with
C’L/J,/ - k3/2 ||uchr1,Q,1 . (529)

The constants C45, Ya,5 are independent of k and u but depend on I' and the choice of cut-off parameter
A.  Furthermore, there exists a tubular neighborhood Ur of T' such that Lou is analytic on Q U Up with
Lou € .A(C:475CZ, ’}/14,5, QuU UF)
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Proof. 1. step (interior regularity): Using the vector identity
curlcurl = —A + Vdiv (5.30)

we infer from (4.9) that —ALqu+k*Lou = 0 in Q. Interior regularity in the form [35, Prop. 5.5.1] then gives
Lou € A(Crk™Y|Loul|lcur,o.k, YR, Br) for any ball Br C €, where the constants Cg, yr are independent of
k and u (but depend on R). Noting (5.27) shows the desired analyticity assertion for the interior of .

2. step (smoothness up to the boundary and H'-estimates): Let the tubular neighborhood Ur of I' and the
extension U € A(Ck*/?||u|cur1.0.1, 72, Ur) of Lrur be given by Lemma 5.5 and write Lou = U 4 u. By the
triangle inequality we have

kl[llre @) < I1Zoullearon + U leurrze k < CE?ulcuro.n, (5.3a)
|| Curlﬁ”LZ(Up) < ||LQuchrl,Q,k + ||Uchrl,Z/lp,k < Ck5/2Hu||curl,Q,1- (53b)

In view of (4.9) u satisfies

curlcurlt + k%t = f := —curleurl U — £*U  in Upr N Q, (5.3a)
diva=G:=—-divU inlUrnQ, (5.3b)
IIru=0 onT. (5.3¢)

We have (suitably adjusting the constants 73)
fe A(Ck:7/2||u|\cur179,1, ’}/Q,UF M Q), G e A(Ck5/2||u|‘cur17g,1, ’YQ,Z/{F M Q) (531)

The analyticity of U, Lemma D.1, and a simple induction argument (to deal with the presence of the lower
order term k1) shows that u is in C°(Ur N Q). Additionally, by suitably localizing, Lemma D.1, (i) gives
for a suitable subset U’ C Ur

N N N L (5.3).(5.30)
Hu||H1(uf) <C [HuHL2(Ur) —+ || CurluHLz(QmuF) —+ || div u||L2(QﬁuF)} < Ck5/2”u||curl,(2,1- (532)

For notational convenience, we will henceforth denote U/ again by Up.

3. step (analytic regularity of U): Quantitative bounds for higher derivatives of U are obtained by locally
flattening the boundary. By the analyticity of I' and the compactness of I' there are Ry, Cy, 7y, > 0 such that
for each x¢ € I' we can find a parametrization xx, € A (Cy, Yy, Br,(0)) with the following properties”:

L Xop(0) = o and, for Bjy, == {R € Bp,(0)[%s > 0} and L', = {X € Bio(0)|x3 = 0}, we have
on = XXO(BE()) C Q as WGH as XXU (fRO) C F

2. For X € I'p, the vectors ti, = Oixxo(X), i € {1,2}, span the tangent plane of I at yx,(X) and
n(x) := —05Xx,(X) is the outward normal vector.

3. The Jacobian Dyx,(0) € R3*3 is orthogonal, i.e., (Dxx,(0))T (Dxx,(0)) = L.

The transformation of the system (5.3) on Vi, to the half-ball BEO is effected with a covariant transformation
of the dependent variable 1 by setting T := (Dxx,)TU0 Xx,- We recall the formula (see, e.g., [43, Cor. 3.58])

1

T (D) curlw™ = fcurlw) o

and introduce the two pointwise symmetric positive definite matrices

= GeriD) D) T(Dxo ). B = (det(Do)) (Do) ™ (Do) ™ (5.33)

note that A, B € A>(C’,~/, B;{Fo) for some constants C’, v that depend solely on I'. We also note that, since
Dxx,(0) is assumed to be orthogonal, we have

A(0) =B(0) =1 R**3, (5.34)

"The third condition is not essential but leads to a significant simplification as the ensuing (5.34) effects a decoupling of the
elliptic system (5.3) into three scalar problems at 0.
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From (5.3a) we obtain for all V € C§°(B},)

1 T{Ccov Ty Ccov - - )
[, (G (D) o5, (D ennl V) et Do) 1 (5, (D)™ (D) V) ) = [
0

with f := det(Dxxq ) (DXxo) " 1f 0 Xx,- The strong form of this equation is
curl (A curla®™) + k?Bu®™ = f in B;{O. (5.3a)
The transformation of the divergence condition (5.3b) to BEO is:
div (BU®) = G := det(Dxx,)G 0 xx, in B,. (5.3b)
The covariant transformation leaves the homogeneous tangential trace (5.3¢) invariant:
I =0  on g, (5.3¢)

We rewrite the equations (5.3) in the form (D.2). To that end, we note that the solution U is smooth (up
to the boundary T R,) by Step 2 so that the manipulations are admissible; we also note A(0) = B(0) =1 by
(5.34). Adding the gradient of equation (5.3b) to equation (5.3a) and taking the trace of (5.3b) on I'g, as
well as taking note of (5.3¢) gives a system of the following form:

3 3 3
C S 0 (A0) 3 B+ 3 (€U B R~ 406, on B - 1,28
j=1

a,B,j=1 J,B=1
(5.35)
" =0 onTlg,, i=1,2, 5.36)
3 2 2
055 =G — () 0Bis)us™ — Y Bisdiis™ — Y Bg;051 — (Bgs — Dus™.  on I, (5.37)
i=1 i=1 j=1

The tensors (Agﬁ)i,j,a,,@, (B;j)i,jﬁ, and (C¥); ; are analytic on Bf; and, with constants C”', 4", depending

solely on I', we have (A;jﬁ)iﬁjyaﬁg, (B;j)i,jyg, (CY); ; € A=(C",~", BEO). Additionally, we have the structural
property (cf. (5.30) and (5.34))

AY(0) = 0i0ap,  Bjs(0) =Bs;(0)=0 for j € {1,2,3}. (5.38)

Lemma 2.6 and (5.31) imply, for suitable constants C, ~s3,

f e ACCK|[ul|eun 01,9, BE,), G € ACCK?||ulleuno1,7s, BE, ), (5.39)
~cov ~cov (5.30),(5.32) 5/2
k[la HL2 Bty T [a HHl Bt < CE”=|lullcur,0,1- (5.40)
(Brgy) (BRy)

Dividing (5.3) by k% makes Theorem D.5 applicable with e = k~! and the constants C¢, C there of the form
Cy = O(K*?||ullcur,0.1) and Cg = O(k%/?||ul|cur1.0.1). Theorem D.5 yields a R > 0 (depending only on T')
and constants C, v such that for B} := {X € Bg(0) | X3 > 0} we have u° € A(Cy,v, B};), where

Cu = k2|l cur2,1-

Transforming back using again Lemma 2.6 gives for Vi = xx, (B;g) the analytic regularity assertion u €
A(CCy,~, Vg) for suitable constants C, 7. A covering argument completes the estimate of W on Up. m
The normal trace (Lov,n) is also analytic. We have:

Lemma 5.10 Let Q = B1(0). There is a tubular neighborhood Ur of T' and there are constants CAr, YAr,
C;‘yp, ’y;‘yp, Cﬁ‘yp, 'V:éll,l“’ b > 0 depending only on I' and choice of cut-off parameter A such that for any
v € H(curl, Q) the normal trace (Lqv,n) on T satisfies the following:

(i) g1 := (Lqv,n) has an analytic extension gi to Ur with gi € A(C_Aﬁrkg/2||V|‘cur]1(271,’)/Ayp,ul‘).
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(ZZ) <LQV,1'I> S A(C_AJ‘I{?QHVchrl,Q,laIY.A,FaF)'

(i1i) The expansion coefficients kj* of
(o]

(Lav,n) =Y > kY (5.41)
=1 m€Euvy
satisfy

1 if 0 <~ ok
W] < Ok [Vlewion 4, TESTAr (5.42)

' et if &> rk.
Z Z |K;n| < C:;Ik*l/Q”Vchrl,Q,ly (543)

égkny;"r metly

SN IR+ DY < O ek o+ D V]amen Y200 (5.44)

Z>k7:4,1" mely

Proof. Proof of (i): From Theorem 5.9 we infer for suitable C, v that Lqv is in fact analytic on Q UUpr and
satisfies there
Lav € A(CE?|| V| curo,1,7, QU UT) (5.45)

The extension g7 of g1 = (Lqov,n) into Ur is taken as g} := (Lgv,n*) where n* (x) := x/ ||x]| is the extension
of the normal vector n to Ur. By the analyticity of n* and (5.45) we may apply Lemma 2.6 to get with
suitable constants C, 4 independent of k and v,

g; € ‘A (ék3/2 Hvllcurl,ﬂ,l ,’?,Ur) . (546)

Proof of (ii): Since for smooth w we have the pointwise bound |Vrw| < |(Vw)|r|, we get from a multiplicative
trace inequality (see, e.g., [36, Thm. A.2])

1/2
IVEg1le < € (1901 ey IV "9 liy) ¥ € No

so that g1 € A (Clkz2 IV cur1 s Y1 1") for suitable C1, 71; this is the second statement.

Proof of (i3): 1. step: By [47, (2.5.212)], the Laplace-Beltrami operator can be expressed in terms of differential
operators in ambient space: Au = Aru+2H0d,u+0%u, where H = 1 is the mean curvature of the unit sphere.
Applying this to u = g7 implies for some C, v > 0 independent of k and j again with the trace inequality

AL g1 || L2y < CR2{[V]|eurt,0,175” max{k, 2}, (5.47)

2. step: By orthonormality of the Y;”, the expansion coefficients x}* are given by k;* = (¢1,Y;/")r. By
orthonormality of Y, we have

o 1/2
(Z Z |H2"|2> = lg1llr2@y < CE?(V|curL (5.48)

=1 meuy

3. step: The minimum of x +— x% is attained at 1/e with value e='/¢ < 1. Hence, there are ¢ € (0,1) and
0 > 0 such that

¥ <g<1 Ve e[l/e—0,1/e+0]. (5.49)
4. step: There is y3 > 0 independent of k such that the following implication holds:
) . . 2472
0>k = j:= 5 e satisfies j > k  and 7 € [1/e—d,1/e+d]. (5.50)
Y2

5. step: Given £ > 73k we select j as in (5.50). Using the orthonormality of the Y, with the eigenvalues
Ao =40+ 1) of —Ar, we compute

. ) . . (5.47) . . .
|’i;n| = /\;j }(917 (*AF)jYKm)F} = )‘2] }((*AF)]QD Yém)r| < Ck2||Vchrl,Q,l'Y§](£(£ + 1))7] max{k, 2j}2]

39



£/~2 (5.50),(5.49)
) <

< ORIVl cun,173 (600 + 1)) 77 (2§)* < CR?|[V]lcunt, 1 ((23'72/5)2”2“ CR||Vlurt 1472,

This shows the bound (5.43) for k}".
6. step: We show (5.44). Recall that by (5.1) we have cardt, = 2¢ + 1 and that, by (5.28), ||Lov||a(div,) =
HLQVHLz(Q) < k_2||LQVchr],Q7k < k/’_QHVchrl,Q,k- We estimate

1/2 1/2

DDA B I DA O e SN N S l@avin) gk

L<ky!y p MELL <K'y p MELL <K'y p MELL

< k3/2||LQV||H(div,sz) S EV2)V | a0k
7. step: We show (5.42). We start with the observation

supz®e”? < a%e™® Yo > 0. (5.51)
>0

Then,

(5.43)
SO IEE+D) < ChrkPVilemar Y, (C+ 1) 20+ 1)

ZZk'yZA,F metyg €>k’y_’A’F
o0
' 2 1 . —b(f+1
S CA,Fk [vllcurt, 0,1 E (¢ + 1)a+ e VL)
(=1
Upon writing
(5.51)

o+l a+1 a+1
(0 4+ 1)t eb(EHD) — ((5—1—21)5) o b(E+1)/2 (%) ebeD/2 U (o 4 pyett (%) o b(t+1)/2

we see that the infinite sum can be controlled in the desired fashion. m

5.4 Helmholtz Decomposition

The stability properties of the operators IT¢°™P, IV, I1,°™P, IIY and the splittings induced by them in
Definition 4.9 are characterized in Lemma 4.8 in terms of the constants C’;ikgh, C’If’Q, CZ,;high. For the
case of the unit ball B;(0) we show in Lemma 5.11 that these constants can be bounded uniformly in k. We
furthermore track the dependence of these constants on the cut-off parameter A > 1 that enters the definition

of Lg and Hgq (cf. Definition 4.2). We track the A-dependence with the aid of the norm

1/2
2, 1 2
ol o= (520l + 3 et ul?) (5.52)

Lemma 5.11 (Stability of the splitting) Let Q@ = B1(0) and A > Ao > 1. Then there exists C > 0
depending solely on Ay such that the following holds: The decomposition of u, v € X as

u = I1e°™Py + HVHQU _ (ulow + chrluhigh) + HVuhigh,

v = [[ComP:*y, + HV,*HQV — (vlow 4 chrl,*vhlgh) 4 HV,*vhlgh’

where oY = Laqu, uhigh .— Hqu, viow — Lqv, and vhigh .— Flov satisfies:
I | U < O C G112
||cur1 (chrluhigh) || = chrl uhith <2 ||u||Cur1,Q7k , chrl (Hvuhigh) || =0, (5.11b)
||chr1uhigh||H1(Q) < CHuchrl,Q,k- (511C)

Analogous estimates hold for TICW*yhigh gng ITV:*yhigh,
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Proof. For u € X, choose p € H' () /R such that [IVueh = Vp, and uy := MIubieh € V. We first
collect some simple facts about this splitting.

1) The definition of the space V{§ implies 0 = (Vp, vo)) = ((u"e" — ug, vq)) for all vy € V5.

2) In the Appendix, Lemma B.1, we will prove for the unit ball

ol o) < lollcur,n - (5.53)

3) curl Vp = 0 implies .
curl uMe" = curl . (5.54)

The combination with (5.27) leads to the first relation in (5.11b).
4) From Lemma 5.2) we have

Re (1o, ug)) = Re ((ug, u™=")) — Re ((wo, Vp)) = Re ((uo, u™e")) . (5.55)
5) Finally, we estimate the weighted L? (2)-norm of ug via
(5.5) .
k2 uo? £ k2 [[uol® — Tm Kby, (uy, uY) = Re (w0, ug) "2 Re (g, ue)) (5.56)
— Re (k:2 (uo, uhigh) ik (b}cow (uov’ (uhigh)v) n bl];igh (uov, (uhigh)V)))

b (uS. (@) )+ R[22 (3. @)Y 55

IN

1 1 .
5 (Elluol)? 5 (k [u= )"+ &

From (4.10), we conclude that (uhig]“)v = Y iork Somer, U VY™ and it follows from the definition of ™
(4.11) that b* (Y, (u"ieh)¥) = 0.

Next, we estimate the last term in (5.57). Our decomposition uP#® = uy + Vp leads to
k ‘bzigh (uov, (uhigh)v)’ <k ’bzigh (uy, uov)‘ +k ’bzigh (uy, Vrp)’ ) (5.58)

The first term can be estimated by using (5.23a):

. ! (5.53) O C! -
high 2 2 2 i
Rl (ufoud)| < S2 fuolfoge) < 52 luolfunan = 5o (luoll® + [Jeurtut|*). (5.59)

For the second term in the right-hand side of (5.58) we assume first that p € C* (ﬁ) while the result for
general p € H! (Q2) follows by a density argument. We obtain

(5.53)

; (5.23b) (1 curt vp=0) O ; 1/2
k| (08 Vep)| S VPl ol = Sk IVPI (ol + [fent = ) (5.60)
Cy ; ;
= Tb (K [lu™™ || + & fluoll) (lluol + [[eurlu™=R][).

Inserting (5.59), (5.60) into (5.58) and employing Cauchy-Schwarz inequalities with 1 > 0 leads to

. 2
i igh\V 3 1 i 2 347" curl u"e?
ke (uf (@) )| < o (—MQ+E+5)<k:|uo|>2+(eruhth) +( 5 )(” ) ”

We combine this estimate with (5.56) and absorb the first term on the right-hand side of (5.57) into the
left-hand side of (5.56) to obtain

. 2
2 5 0 1 i 9 3407t curl ubish

We first consider the case £ > max {1, 205{’} and choose n = % This leads to

7.
b

2
B ol < Cuk? [t P S2 fleurtwen (5.61)

41



1 3+ 4C
with Cj := <§ +CI;> , Cy:= Cl; ( +2 b> .
This and the stability of the frequency splitting (5.27) yields the first estimate in (5.11).

For 1 < k < max {1, 20/\Cé }, we estimate the term & ’b};gh (uov, (uhigh)v) in (5.57) by using (5.19a) and n > 0

. R, k i
[y (u . (0") )| < G5 ol ||uh‘gh||m o
k
< Cl;ﬁ <77 HuOngrl,Q,l + - || hlgh”curlQ 1>

(5.54) k ;
< C{)ﬁ (77|U'0||2 + (77+ 5) Huh gthurl Q 1) :

This allows us to estimate the right-hand side in (5.56) from above. Recall Ak > 1. The choice n =
to

20, leads

; k
K [laoll* < 2 (k )" + £ (14 4(C7)?) [Ju="|; (5.62)

curl,Q,1°

K [luol* < € ||uh‘gh||cmm e S CllullEyn g

The L? estimate for Vp follows by a triangle inequality:

(5.27), (5.61)

R e Y (3 T e [ N Y A < 05 [ullcun .k

curl,Q,k,\

The estimates for vy and Vg are derived by repeating the arguments above. m
By similar techniques we will prove next that if one argument in ((-,-)) has only high-frequency components
then we get k-independent continuity estimates (cf. also (4.15) for the general case):

Proposition 5.12 Let Q = B1(0) and A > Ao > 1. Then there exists 5;, > 0 depending solely on Ay such
that for all u, v.e X

[(Form, )] + 1@, Hav)] < o lulluumopn ¥t (563)
|((u’ V))| < CCOHtJC ||u||curl,ﬂ,1 ||Vchrl,Q,1 ’ (564)
where Coont k < ébkg.

Proof. For u, v € X, write u"8" := Hqu, vP&? .= Hov. Choose p, ¢ € H' () such that [IVublish = Vp,
V*vhigh = Vg and set up = uh#h — Vp, vy = vhish — Vq. Since Il Hg = Hrllz (cf. (4.10)) we have

(P )] < (k) vl + [ () v,
For the boundary term, we get
’kbgigh ((uhigh)v ,vV)’ ’kbh‘gh (uy, vy ’ ‘kb‘“gh ((vp) vy )’

+ [y (S, () 7) | + [k ((99)7, (7)7))

(5.21), (5 22a) C’ C]
— )\2 ||u0HCurl Q,1 ||VOH(:ur1 Q,1 + )\b (k va”) HVOHCurl,Q,l

Cl
+ 5 10l ewn 00 & Vel + G (k[ Vpl) (k[ Val)

(5.11) -
< Cb Hullcurl,fl,k,)\ HVchrl,Q,k,A . (565)

The estimate for ((u, vh&h)) follows from the same arguments.
It remains to prove estimate (5.64). We choose A = Ao = O (1) in all splittings and estimates and start with

(Law, V)| < K |(Lau, V)] + kb (Law) T, v )| < (k |Laull) (K [Iv]) + kb (u¥,v7)]
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We employ (5.16) with p = +1 to obtain with Lemma 5.5, (ii)

‘b}cow (uV, vv)| < Cpk? ||divy Lrur|| a2 (py [dive Leve|| sz r

Lem. 5.5, (ii)
< Ck* HLFuT”H*l/?(F) HLFVTHHfl/z(r) < Ck® ||uchrl,Q,1 HVchrl,sm : (5.66)
Combining (5.65) and (5.66) leads to

vV .V
’k/’bk (u vV )‘ <C Huchrl,(z,k,)\ H"chrl,sz,k,A + CK’ Huchrl,Q,l ||V||cur1,sz,1

< Ckg ||uH(:ur1,Q,1 HV”curl,Q,l .
Taking into account the L? (2) part in ((-, ) results in the estimate (5.64). m

Corollary 5.13 For 2 = By (0), the constants in (4.13), (4.14), (4.12), (4.6), and (4.15) can be estimated
by

Cpinye < CK%, Ceont < Cuk?, CZ;;high < Gy, C’g:;:l’high <GCE oMt <o, Caikgh <2+ Cy (5.67)
with k-independent constants C, Cy (cf. Prop. 5.7), Cy (cf. Prop. 5.12), and Cr.

Proof. The estimate of Cpyn ; follows by combining (5.16) and (5.24). Proposition 5.12 implies the bound
for Ceont k- Estimate (5.65) implies the estimate of Cy ;"8" as in (4.12a). For C;'"""8" we use (5.16) to obtain

i rl i r r
k ‘bk (ucurl, (Vhlgh)cu )‘ _ ‘blz gh (ucu 1, Ve 1)‘ < Cy |Jeurly uT||H,1/2(F) [|curlp VTHH,l/g(F)
S CbCI%Hu”curl,Q,l||Vchrl,Q,1
so that the estimate for Cg};;l’high is shown. Finally, le’ﬂ < 2 is proved in (5.27b) and the estimate of

Cl];] igh _ C,?’Q + CZ ,;high follows by combining the previous estimates. m

6 Estimating the Terms in the Splitting (4.49b,c) of (e, vp))

6.1 Estimate of ((eh, (I — Hcomp’*)vh)high» in (4.49b,c)
In this section, we will prove the following Proposition 6.1. Recall the definition of 775", nZlg, 77" in (4.55),
(4.57), (4.58), which involve the operator II¥ as in Assumption 4.14.

Proposition 6.1 Let e, = E—E;, denote the Galerkin error and for vy, € Xy, let IL7P " TIO™P* be defined
as in Definition 4.9. Let Assumption 4.1/4 be satisfied. Then

comp, * comp,* high high
[((en (oo — 1150 ) vi) ™)) | < G o len w0 ¥ a0 (6.)
with
i C. n ~ex ~ex F i
Crp = (Cz}f,kgh + szt’kni p) (77? "+ C#,knglg) and  Cy = (szm + Cpt gh) Ca k- (6.2)

The constant C;ikgh is as in (4.15), Ceont,k as in (4.14), and Cqy as in (4.32).
For the case Q = By (0) we have Ceong i < Ck® while Caikgh, Crx, and Cy 1, are bounded independently of k.

Proof. From (4.47) we conclude that

curl I1;°"P* v = curl II°™P*y = curl v

* X. .
and, in turn, curl qurl’ Hov = curl I Hov = curl Hov } Vv € (6.3)

Let r := (II°mP* — I1;°"P") v, and let q := (I — IIf) II°°™P-*v,,. First we prove some curl-free properties. It
holds

(4.47), A. 4.14
Jva =

curl (Hfﬂcomp’* — I ") v curl (Hf - I) Lovy, + (Hf curl TI°"™* — curl qurl’*) Hqvy,

(6.4)
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= curl (Hf — I) Lovy + Hf curl Hovy, — curl Hovy,
= curl (IIf —I) Lovy, + curl (IIf — I) Hovy, = curl (I} — 1) vy,

A 41402) curl (v, —vp) =0,

and also

curlr & 0, (6.5)

(6.3) (6.4)

curl g = curl (TI°°™P* — TIFTI™P*) vy, "= curl (IT7P"P — TIFTIO™P) vy, = 0. (6.6)

We start our estimate with a continuity bound for the sesquilinear form ((-, Hg)) and employ (4.15) to get

. hieh (6-3) ~high
‘((eharhlgh))’ <C lg ||eh||curlﬂk||r”curlﬂk - C lg Hethurlﬂk(k)HrH (67)

The coercivity of ((-,)) in the form (4.20) leads to
(k|lr))* < Re ((r,1r) = Re (@, 1)) + Re (((LLZTIe0mP* — TI5°"P%) vy, 1)) . (6.8)

We use the definition of TIV:*, TI¢Uh* TI©™P* and its discrete versions as in (4.19) and Definition 4.9 to get
((Wh, I')) = ((Wh, (chr]’* — qurl’*) HQVh)) =0 Vwy, eVS,. (6.9)

From (6.4) and the exact sequence property (3.2) we conclude that (IIPIICO™P* —IL°"P™) v;, = Vi, for
some p, € Sp. The combination of this with (6.9) for wj, = Vi), implies that the last term in (6.8) vanishes.
Hence,

(k[x[l)* < Re ((q,r)) = Re (Haq,1)) + Re ((Lag, 1)) (6.10)
For the high-frequency part on the right-hand side we employ again (4.15) and obtain

2O (k flall) (& ) (6.11)

high
Re ((Hqu I')) < C g ||churl Q,k Hr”curl Q,k
The term ||q|| can be estimated by using the definition of II°®™P* ag in Definition 4.9
kllall < k|[(I=117) Lova|| + k|| (I — TIF) T Ho vy |

~ al
< n’?xp thllcurl,Q k + e 6" HHCUTI *HthHHl ()

Lem. 4.12 _ al
— 77$XP ||Vthur1 Q.k + CQ k6 6" HHCUTI *HQVthurl,Q,l
Lem. 4.8
< (1 + Coan®) Ivlleurne (6.12)

To estimate the low frequency part in (6.10) we observe that ¢ := IIY Loq = VN q (cf. (4.52)) satisfies
(€. 8) = (Loa.§) VE€ VH' (Q).

By choosing & = r we can use a Galerkin orthogonality in the form (6.9) to obtain for any w;, € X

Re ((Loq, 1)) = Re (¢, 1)) = Re (({ — Wp, 1)) < Ceont,k ||r||cur1,sz,1 ¢ — Wthurl,sz,l :
The last factor can be estimated by using (4.55), (6.12), and the definition of ¢:

(6.1) _exp I

. A _ . A ~exX 0.
v;ggh HV(N4 q_vh)chrl,Q,l _vigg HV(N4 q_Uh)H S 774 quchrl,Q,l - 774 qH
(6. 12) P
= k ( + C# knﬁ ) ||Vthurl,Q,k : (613)
Finally, we combine this estimate with (6.10), (6.11), (6.12) to bound the last factor in (6.7)
kel < Crk [1vallcur,o. - (6.14)

We insert (6.14) into (6.7) and arrive at the assertion.
The bounds for the constants are stated in Corollary 5.13. m
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6.2 Estimate of ((eh, chrlv*vﬁigh)) in (4.49b,c)
In this section, we investigate the second term in the right-hand side in (4.49c¢).

Proposition 6.2 Let e, = E — Ej, denote the Galerkin error with splitting of vi, € Xy as in (4.47). Recall
the definition of the adjoint solution operators (cf. (4.3)). Let Assumption 4.14 be satisfied. Then

‘((eh, chrl,*vl};igh))‘ < Cypp (C##,k I Cg:;:l’high 4 Ccont,kﬁgxp) ﬁglg Heh”curl,ﬁ,k th”curl,Q,k (6.15)

with Cuu 1 = C’f’g + Cai,f;h. For Q = By (0), it holds Ceont,k; < Ck® while all other constants are bounded
independently of k.

Proof. Note that s := I_IC‘JYIV*‘V],“Ligh € V§. We consider the adjoint problem (cf. (4.50)) with solution operator
N3 and set z := Nss. Galerkin orthogonality with arbitrary z, € X, gives

((en,s)) = Ai (en,z) = Ai (en,z —zp) = Ai (en, Hq (2 — z1)) + Ak (en, Lo (z — 2p)) . (6.16)
For the first term we obtain
| (ens Ho (2 — 20))| < llcurlen | |Jcurl (Ha (2~ 2)) |+ |((en, He (2 = 2))| + [kbi (€5, (Ha (2 = 2)) ") .
The three terms on the right-hand side can be estimated by using the constants in (4.12), (4.6), (4.15):
[carl (Ho(z — zp))|| < [Ha (2 — 20) | curon < le’Q 12 = Zn |l curt. 0.1 -
kb (&5, (e (2= 20))™" )| < TR e o 12 = Za e .1
((ens Ha (2 = 2n)| < G llenlcur. 12 = Znlcun e

This leads to
1,high
| Ay, (en, Ha (z — z3))| < (C##,k +C ) lenllcura.x 12 = 2Zallcun.ar -

For the second term in (6.16) we obtain for arbitrary z, € Xy,

| Ak (en, Lo (2 — zn))| < [Ak (en, Lo (2 — z1) —Z4)|
(4.14) }
< Ccont,k Hethurl,Q,l ||l’Q (Z - Zh) - Zh”curl,ﬂ,l ' (617)

This leads to the estimate

L,high ~
|((eh’ S))' < (C##ak + le,l;cr ® ) ||eh||curl,ﬂ,k ||Z - Zh”curl,fl,k + Ccont,k ||eh||curl,ﬂ,1 ||l/Q (Z - Zh) - Zh”curl,fl,l :

(6.18)
With the definition of the adjoint approximation properties (cf. Sec. 4.3) we arrive at
(4.53) )
inf ||z —z < ey 6.19
2,€X) I h||cur1,9,k > N curl Ok ( )
infinf I L - 426) FEXD i g (629) ~alg ~exp chrL* high 6.20
infinf |Lo (2 — 2n) — Znllenor < 75 02 = Znllemor < 72 75 v . (6.20)
B Zh curl,Q,k

The combination of these estimates with Lemma 4.8 leads to (6.15).
The estimates of the constants for the case Q@ = By (0) are stated in Corollary 5.13. m

6.3 Estimate of ((ey, Lo (I, """ v}, — 11" *v},))) and ((es, Lovy)) in (4.49b,c)
Next, we investigate the first and last term of the right-hand side in (4.49c¢).

Proposition 6.3 Let e, = E — Ej, denote the Galerkin error with splitting of vi, € Xy, as in (4.47) and let
Assumption 4.14 be satisfied. Then:

|(en, Lax))| + |((en, Lava))| < Ceont ki~ (14 Crk) l1€nllcurn.an VAl ewo. (6.21)

with r := II;""P vy, — P *vy, and Crp, as in (6.2).
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Proof. Recall the definition of the solution operator Ni* from (4.51) satisfying for given s € X
A (W, N3's) = (w, Los) Vw e X.

For the first term in (6.21) we get in a similar fashion as in (6.17)

(4.14)
((en, La9))| = inf |Ag (en,N5's —zn)| < Ceontr llenllouoy inf [[N5's —

Al
zE€X), z5€X), curl,2,1

(4.54) exp
< Ccont,kng Hethurl,Q,k Hchurl,Q,k :

This leads directly to the estimate of the second term in (6.21) by choosing s = vj,. For the choice s = r, we
combine (6.5) with (6.14) to get||r(|.. 0.5 = kTl < Crk[[Villcun o - ®

7 Analysis of the Dual Problems

For the stability and convergence analysis, we have introduced various adjoint approximation properties in
Sec. 4.3. In this section, we analyze the regularity of the adjoint solutions in Sec. 7.2 based on a solution
formula which we will derive in Sec. 7.1. The quantitative convergence rates require interpolation operators
for hp finite element spaces that will be presented in Sections 8.3.

7.1 Solution Formulae

In this section, we will develop a regularity theory to estimate the solutions of the dual problems which have
been introduced in Section 4.3. They belong to one of the following two types.
Type 1:

Given v e H(Q,div), g,heX findze X s.t.
Ay (w,z) = k* (w,v) +ik (bk (wv, gv) — ikby (WC““, hc‘“l)) Yw € X. (7.1)

This is problem (4.50) with v: = g:=r and h: = 0, problem (4.51) with v := g := Lor and h := 0, and
problem (4.40) with v="h =g := Low.
Type 2:

Givenr € X find Z € H' (Q) /Rst.  ((VZ,VE) = (Lar, V&) Ve e HY(Q). (7.2)
This is problem (4.52).
7.1.1 Solution Formula for Problems of Type 1
Integration by parts in the sesquilinear form Ay (-, -) gives

Ay, (w,2z) = (curlw, curl z) — k% (w, z) — ik (Tpywr, Z7)p
— (w, curlcurlz — k2z) — (yrw, Oy curlz)p + (wr, 1 kT z7)p

= (w,curleurlz — k°z) + (wp, yr curlz)p + (wr, 1 kT g2z7)p - (7.3)
In a similar way, we can express the right-hand side in (7.1) by

rhs. = k2 (w,v)+ik ((Tkvvv7 gv)r _ (Tkwcurl, hcurl)r)
= k2 (w,v) + (WV7 @i ka)* gV)F _ (W.curl7 (i ka)* hcur])F
= k2 (W, V) =+ (WT, 7ikT,k (gV — hcurl))r . (74)

The right-hand sides in (7.3) and (7.4) must be equal which leads to

curlcurlz — k?z = k?v in Q,
yreurlz +ikT_gzr = —ikT_y (gv — hc‘”l) on I
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In the next step, we eliminate the capacity operator T_j by considering a full space problem with transmission
—1/2
curl

condition. Note that for any given qr € H (T") the adjoint capacity operator T_rqr is computed by first

solving the exterior problem
—ikzt 4+ curlH = 0 in R3\Q,
ikH + curlzt =0 in R3\Q,

vzt =qr xn on T,
2+ ()] < c/r (7.6)
\H(X)\ <c/r as = ||x|| = oo

’zJF—I:IxE <c/r?
T

so that fy;f H= T_rqr. In the following we always choose qr = IIrz in (7.6) with z being the solution of
(7.1).
From the third equation in (7.6) we obtain [(z,2z")], » = 0 and from the second equation in (7.6)

vfcurlzt = —iky H = —1kT_pz7. (7.7)

Hence,
2.4 + (7.5), (1.7)

[(z,z*)] LT (24 v curl z—vf curl z = —1kT g (gv — hC“rl) .
Let Vyero denote the extension of v to the full space by 0 and define Z € Hi,. (R3, curl) by Z|, = z and
Z|o+ = z". The combination with the second equation in (7.5) leads to (see [47, (5.2.22)] for the radiation
condition)

curlcurlZ — k2Z = k*Vyer0 in R3\T,
[(z,z+)]0 r =0,
[(Z, ZJF)]LF _ lkT,k (gV o hcurl) , (7'8)

|0y2T (x) +ikzt (x)| <c/r? as r = ||x|| — oc.

We first construct a particular solution for the corresponding full space problem by ignoring the transmission
conditions. Then we adjust this solution to satisfy the transmission condition.
For this purpose we need the fundamental solution for the electric part of the Maxwell problem in the full
space:
curlcurl G, — kG, =41 in R3,
10,G (x) —ikGg (x)] <c/r? asr=|x| — cc.

We eliminate in [47, (5.2.1)] the magnetic field to get the equations

curlcurlE — k2E =61  in R3,
|0,E (x) —ikE(x)| <c¢/r? asr=|x| — oco.

Hence, the fundamental solution is obtained by dividing the one in [47, (5.2.8)] by (iwu) to obtain

1 . ei kr
G (x) = g (IxIN T+ 5 VVTor (Ix]l)  with gy () :
The second term in the sum is understood as a distribution, i.e., the convolution with a function f €
c (R3, (C3) is defined by

comp

== (7.9)

1 .
(Gr xf) (z) = /}RS gk ([|l= —yl)) £ (y) dy + EV/RS gk ([[x = y[)) div £ (y) dy. (7.10)
From (7.10) we conclude that
o = [ ok (- =y v(y)dy + ¥ / gk (I = 1) (div V,ero) (y)dy in R?
2 R3

solves the differential equation (first line in (7.8)) in R*\I" and the radiation condition. The function v,e;, has
a jump across I' and it is easy to verify that the distributional divergence is given by

(divgs Vaero) (1) = /

Q

(divv)y — /F (v,n) ¢ Vb € Coomp (Rg) .
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Hence,
zZ, = I{/’QNEI;}; (V) + VNEI}; (le V) - VSEI}; ((V, 1’1>) =17Z1,1 + Z1,2 + 713

with acoustic single layer potential

st i= [ g~y 6 () dry (7.11)
I
and the acoustic Newton potential
N0 = [ (- =yl ) ary, (7.12)
2

We assumed v € H (Q, div). Well-known mapping properties of SI™ and M (cf. [50]) imply that
711 € HY, (R3) so that [z11], =0 and [z1.1];  =0.

By the same reasoning we know that z; 5 € HJ (R?’) and also curlz; s = 0. Hence (21 2], = [21,2], » = 0.

Since (v,n) € H~/2(I') we know that SH2 ((v,n)) € HL_ (R?) and curl VSH2 ((v,n)) = 0 so that [Z13], 1 =

0. Since v,V is a tangential differential operator its jump vanishes on functions in H} (R3). This implies

loc
that
[Z1]op =0 and [z1], . = 0. (7.13)

To obtain the full solution we introduce the single layer operator for the Maxwell problem (cf. [11, (3.11)]) by
w 1 .
S (@) = St () + 15 VS (dive ¢). (7.14)

From [47, (5.5.29)] we get that
[Sllcww(b]LF =9

The combination of this, the third equation in (7.8), and (7.13) show that
7o = SMY (ikT_y (g¥ — h™))

satisfies curlcurl zo — k?z2 = 0 in R3\T', the transmission condition (2nd and 3rd equation in (7.8)), and the
Silver-Miiller radiation conditions for the dual problem. Next we give a formula for the full solution of (7.8)

z=kz2/Qg_k<||-—y|\>v<y>dy+v/gg_k<n-—y||><cuvv> (v)dy
v / g (I = y1) (v.m) (3) dy (7.15)
: v 1 1 : v
+(08) [ g (- =y T (67 1) (vl = 9 [ g (1 = yl) dive T (v) .

where we used divy T_zh®®! = 0 (cf. (2.22)).
Theorem 7.1
1. Forv € Vi, g =v, and h = 0, the solution of (7.1) is given by
z= k2/ngk (- =yl v (y) dy +ik/ gk (|- =yl T-xvY (y) dTy. (7.16)
r
2. For v =0, formula (7.15) simplifies to a combined layer potential
ik

2 =ik / gk (| —yI) Tk (&7 — ™) (y) dTy — =V / g (I —yl) dive T_ig¥ (y)dTy. (7.17)
T T

Proof. For the choices as in (7.16), the properties (4.29) allow us to simplify (7.15) and to obtain (7.16).
Formula (7.17) follows simply by setting v =0 in (7.15). m
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7.1.2 Solution Formula for Type 2 Problems in the Unit Ball B;(0)

The problem of Type 2 (cf. (7.2)) is a Poisson-type problem. Integration by parts leads to its strong formula-
tion. We recall div Lor = 0 by (4.9b) so that

-AZ =0 in €,

92 _ 1divp T,VrZ = (Lor,n) — + divp T)*"rr  on I.

(7.18)
To analyze problem, we introduce the Dirichlet-to-Neumann operator Ta : H'/?(I') — H~'/2(T") that maps
g € H/2(T) to 0,u, where u is the (weak) solution of

Au =0, u=g¢g onl.

This allows us to formulate (7.18) as follows (with L as in Def. 4.2)

“AZ=0 in Q, (7.19)
TaZ — 4 divp TyVr Z = (Lor,n) — + dive T°"rp  on T '
We employ expansions of (Lor,n) and rp in the forms
(Lor,n) Z STRPY™ and rr=Y > (1T + Rp'VrY") (7.20)
/=0 m€Euvy /=1 m€uvy
so that the right-hand side in the second equation of (7.19) is
(Lor,n) — %divr TP ey = Z Z ( d1vr TEY (r T + RZLVFYZ"))
{=0 meEry
[47, (2.4.173), (5.3.93)] m €+1) ym

C>XNk mEryg L<Ak mEuy

Note that Y = \/%—W is constant and hence k) = ((Lm‘,n),YOO)F = (divLQr, \/+4_7r)9 = 0. Hence the

summation index for the second sum in (7.21) can be restricted to 1 < £ < Ak. The representation (7.21)
motivates the ansatz for the trace of Z

2o =33 2
£=0 meEvy

The left-hand side in the second equation of (7.19) becomes

TAZ — z divp T, VrZ = Z Z Zy (TAYZ % dive T, VrYy )

£=0meEuy
G e 1

[47, (2.5.9), 5393]Z£< + ) N zeve, (7.22)
=1 mety

The right-hand sides in (7.21) and (7.22) must be equal. Thus

1z (k) +1 041

7= 7 ————R <)k
- ( (k) - ) am)—ct TS

" =
‘ [OULEES ( )+ K7 £> Nk.
14 g 20 4

(7.23)
2 (k) —C *ﬁ

Hence, the solution Z of (7.19) is the solution of the following Laplace equation with non-homogeneous
Dirichlet boundary conditions

~AZ=0 in 0,
Z =gp on I,
o0 (7.24)
with gpi= 3 SV S S ey
L<AEmEL, >XkmeEry
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7.2 Regularity of the Dual Problems
7.2.1 The High-Frequency Case

We consider the regularity of the solution in (4.50) for a right-hand side r « v{{ € V. Recall the definition
of VP in (2.27).

Proposition 7.2 Let vo € V§ and z = Navy with Ny given by (4.50). There exists a k-dependent splitting
Ny = N3 4 N such that

HNmugh H < Croughk [[vollcur, k- (7.25)
HVPNAVOH < Cak®yaz (max {p+1,k})" [Volleyon VP € No,
where Crough, CAa2, Y42 > 0 are constants independent of k and v.
Proof. The solution of the dual problem (4.50) is given (cf. (7.16), (4.2b)) by
z=(—1kz1 +22)ik
with 2y := /Qg—k (- =ylvo(y)dy and zs:= /Fg—k (I =y T-rvg (v)dTy.
From the decomposition lemma in [41, Lemma 3.5] we get a k-dependent additive splitting z; := = rough +zf
such that
vz | < orm=vell wm e {0,1,2}, (7.26)
[VPzdt|| < CkP='|voll VpeNg

for a constant C' independent of k and v¢. For the function z; we employ the splitting

voVJOW = Lr (vy) and V()V’high = Hr (vq)

and define zy% ;= SHh (T, Y low) and z2'8" .= z, — 2", From [37, Lem. 3.4, Thm. 5.3] we conclude that

v ,high

high _ groush | 74 such that, for w := T v ,

there exists a splitting z,

Ym=0,1,2,
Vp € Np.

va routh <C ||W||H1/2(F)

7.27
|VPzs'| < CAPmax{p+1,k}""! HWHHfz/z (7.27)

()

Here the constants C, C, 7 are independent of k and w. This motivates the definition of the operator
N3OUER - VE - H2(Q) by

/\/—Qrough Zl{ough + Z;ough. (728)
To estimate the norms of w in (7.27) we employ the third estimate in Lemma 5.3 for s < 3/2 (we also use
that (5.8) gives z¢ (—k) = z¢ (k) and ):

Wl < Y D> €E+1)™

0>Xk mEwy

<ot Y Y e ) e L o aive v e
>XkmeEuy

k| _|_&
ze(—k)+1 ze(k)+1

|Vm| <CR YD ST e+ 0P+ 0P v
£>XMk mEvy

zo (k) +1

< O VT
T

™) ™

div vo=0
. 2 — 2
<CR* Mvollay = CF* 7 Ivollouna. - (7.29)

We set s = 1/2 in (7.29) to derive
HWHH1T/2(F) < Clvollewrno - (7.30)

The combination of the first lines in (7.26) and (7.27) with (7.30) leads to the first estimate in (7.25).
To estimate HWHH73/2(F) we employ (7.29) for s = —3/2 and obtain
T

19 lgg-572(0) < Ok V0 01 - (7.31)
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Taking into account the second estimate in (7.27) results in

-1
[VP25'|| < CyP max{p+1,k}" ™" Vol curo1 -
The term z5V is defined as the acoustic single layer potential applied to the function T,kvov dow - The analysis
of such a term will be carried out in Section 7.2.2 and it follows from (7.40) (where the function ¢ corresponds
to z¥") that

A € A(CF Vol 7:2) (7.32)
where C and vy are positive constants independent of k and vy. The combination of the second estimates in
(7.26), (7.27) with (7.31) and (7.32) leads to the second estimate in (7.25). m
7.2.2 The Low-Frequency Cases

First, we study the regularity of the solution operator NV3* as in (4.51) which is of Type 1 with r = g = Lov
and h = 0. Since Lqov is, in general, not in V{ we have to employ the solution formula (7.15), where the
second summand can be dropped due to div Lov = 0 (cf. (4.9b)). We set

a =N (Lov), b:=SU ((Lgv,n)),
._ QHh \4 ._ GQHh [ 3; v (7.33)
C = ka (T,k (LQV) ) , d:= S,k (leF T,k (LQV) ) .
so that )
z = Ni'vy, = k*a — Vb +ike + %Vd. (7.34)

Proposition 7.3 For any v € X There exist positive constants C 4,3 and y.4,3 independent of k such that for
any v € X

N§4V cA (CA,BkB ||VHCur1,Q7k y VA3, Q) .

Proof. We determine the analyticity classes for the functions in the splitting (7.34), distinguishing between
the terms related to the acoustic Newton potential N l{,ﬁ‘ and the acoustic single layer operator.

@Newton potential. We start by writing a function ¢ = N (g) as a solution of a transmission problem:
Let

B o ) 5 ) _J g inQ, _
Aq —k*q = gzero in R \F with  gzero := { 0 in R3\Q
9q
= 5], -0
94 +ikgl=o (||XH_1) as x| — oc.
or

Next, we will determine the class of analyticity for the function ¢ by using the results in [37]. For this, we
have to investigate the analyticity class of g = Lqgv. From Theorem 5.9 we conclude with C7, 7; independent
of k and v

Lov € A(Cy1,7,9Q)  with Cyy o= Cik*? ||| i s - (7.35)

This allows us to use [37, Thm. B.4] to deduce
NEI/? (LQV)‘Q S A (CV,27 73, Q) B

with

Cuni= Cs (K2Cun + K7 [N () |y )

here, Bg(0) is an (arbitrarily chosen) ball containing Q. From [41, Lemma 3.5], we get |V (Lov
C'||Lqv]| so that

)||’H,BR(O) S

CV,Q < CVC‘3 (k_2CV,1 + k_l ||LQVH) < CVC‘3 (Clk—l/Q ||V||curl,ﬂ,k + k_2 Hvllcurl,ﬂ,k) < C4k—1/2 HV”curl,Q,k :
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Hence
Ka € A(CY [V 0078, 2) - (7.36)

@Single layer potential: We write a function ¢ = SEI}C‘ (g9) as a solution of a transmission problem: Let
Yo denote the standard, one-sided trace operator for I' from the interior and fyar the one from the exterior.
The one-sided normal trace (from the interior) is denoted by v1 := 9/dn and by v; from the exterior. The
respective jumps are [u]. = ¢ u — you and (U] = 7 u — y1u. The well-known jump relations for the single
layer potential yield for the potential ¢ = S™E (g)

—Aq—k?q=0in R3\T,
[q]r‘ =0 and [Q]n,f‘ =9,

dq
‘8r+1 4

-1
—o(IIxI™") as [l - oo.

The essential part of the regularity estimates are those near the boundary/interface I', where the analyticity
of the jump g and the geometry I' come into play. We follow the standard procedure of locally flattening I' so
that [35, Thm. 5.5.4] becomes applicable. In view of (7.33) we have to analyze the transmission problem for
3 different choices of ¢:

g€{g1,92,83} with gi:=(Lqv,n), go:=diveT s (Lav)", gs3:=T_j(Lav)® . (7.37)

1. step (analyticity classes of g): In the following Ur is a sufficiently small neighborhood of T" whose size
depends solely on I'. Lemma 5.10 directly implies the existence of an extension g of g into Ur

g; € A (ék3/2 ||v||curl,ﬂ,k ”?’MF) : (738)

To define extensions of go, g3 we repeat the arguments of Lemma 5.5. From the expansion

= —
v = Z Z (v}"curlee’" + V["VFYZ”)

(=1 meuyy

we get

(5.7) ik
=T (Lov)Y = — VY
g3 k (Lav) Z (Zg(k)-i—l) Z ¢ Vrig,

1<0<Ak meu,

. 2.22 ike(t+1)
go = leF T_k (LQV)V ( = ) Z ( ) Z mem

1<0<Ak ¢ (k) merg

Recall the analytic extension }7[” of Y, with the property (5.11) from the proof of Lemma 5.5. We define the
analytic extensions of go, g3 by

. m¢e+1 . . ik mgirm
i 3 (Trer) ST md g 3 () Xoween
1<0<Ak meLe 1<e<xk L meLe
We obtain by using Cauchy-Schwarz inequalities

V"5l 2y <

(5.9), (2 24a)

1k€£+1 ) |
'ZIVeIHV |

k7/2’}/n max {k, n}” HVTH—l/Q,Curlr ,

1<0<)k L
1 N
IVl < 3 u(kz)ﬂ‘%'f' il .

< Cy"Mhmax {k,n+1}" Y VO +1) Y [V

1<e<\k metLy
< é’?nk5/2 max {ka n+ 1}" ||VTH71/2,cur1r .
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We combine this with Theorem 2.4 and have proved that the extensions g7, g5, g3 belong to the analyticity
classes

gr €A (Clk3/2 HV”curl,Q,k 37151/{1") ) g; €A (02k7/2 Hvllcurl,ﬂ,l ’WQ’UF) ’ g§ €A (03k5/2 HVchrl,Q,l ’73’1/{1—‘) ’

where C}, v; are independent of k£ and v. _
2. step (a priori bounds for potential q): Note that, for an (arbitrary) fixed ball Bg(0) with Q C Br(0) [37,
Lemma 3.3, Thm. 5.3] imply

ST < Ok |lgsllgg-s/2

g3 HH Br(0) = 2321 and HSHI}; (gi)HH,BR(O) < Ck2 ||giHH*3/2(F) ) 1= 172 (739)

The |[-[| fy-3/2(r) norm of g; can be estimated as follows:

Qg :
H<L9Van>||H*3/2(F <C ||<L9Van>||H*1/2(F) <cC HLQVHH(Q,div)
(4.9b) C _
C HL H < Z HLQV”curl,Q,k < Ck ! HV”curl,Q,k '
Qg5 :
(2.18) 1k:€ E + 1)
2 3/2 m
lgoll sy < D (CE+1)7 Z v
1<k mely
(5.9)
< CR Y ()P P < ORIV -
1<U<\Ek metly
@gg :
(2.20) B ik .
lesligoey = D0 R+ ) s
1<0< Ak =

SOR 30 e+ 3 VP < OF IVIEinaa

1<U<AEk meEty
The combination with (7.39) leads to

(S ) S Ok Vllcunanr (IS5 )< CE v Is=k ¢ < CF [Vl cup 01

g1 HH Br(0 92 HH Br(0 curl,Q,1 g3 HH ,Br(0)

3. step (analyticity of potential q): The above steps and [35, Thm. 5.5.4] give

1
Vb€ A(CK [Vl 7:2) ke € A(CK IV o007 2) s VA € A(CK2 [V]00:7:9)

(7.40)
From the decomposition (7.34) and (7.36), (7.40) we conclude that

N§4V cA (CABk3 HVchrl,Q,k ) VA3, Q)

for constants C 4 3, 74,3 independent of k and v. m
Next, we analyze the regularity of the solution operator Nj* of (4.52).

Proposition 7.4 Let Q2 = By(0). There exist positive constants C a4 and ya,4 depending only on T’ and the
cut-off parameter \ such that for any r € X

VN € A (CA,41<:5/2 Il ouncor s VA Q) .

Proof. We first analyze gp of (7.24) (in Steps 1-3) and subsequently the solution Z of (7.24) in Step 4. As
in the proof of Proposition 7.3, we let Ur be a sufficiently small neighborhood of T'.
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1. step (analyticity class of g} ): With the analytic extensions Y;™ of the eigenfunctions Y;™ (cf. (5.11)) we
extend gp to Ur by

> e o(k) +
sh= Y Xz Y S (B - S e
=1 m&cuyy =1 mGL[ L<Ak mEuy

where x}* and R} are given by (7.20). We note that the coefficients x}* are controlled by Lemma 5.10. For
the coefficients )" we estimate

1/2
(2.24a)
D D ARPISKEN D STARPE ) S K el e SE o (74D)
L<Ak mEvy <Ak mEwly
2. step (symbol estimates): We have
O —
EXz BT\ L IRe (20 (k) — 42 + [ 2 (k)

[47, (2.6.23)] 1 1 Lem. 5.3 1 ! < Mk
< 2 + < C .
= (ul |ze<k>+1|) - {w £> Nk

‘ ¢ 0 0< Nk
< < _ ’
Zg(k)ﬁ‘_ 2¢ (k) + 1] —C{ 1 0>\

3. step (analyticity classes of g},): We claim: there are C, v’ > 0 independent of k and r such that

and

gp € A(CK?||r||cur,1,7, Ur) (7.42)

Using (5.11), the symbol estimates of Step 2 we estimate with the abbreviation A\ = £(£ + 1)

bl 9 5 X Irimax {Vann} ¢ 3 ¥ gl max (VA ()

é<k'yA7 metly Z>k'yAF’ITL€L[
n
+ Z €|R;”|max{\/)\g,n} } =: 7"{- - }
<2k

We estimate the expression {-} in curly braces further with Lemma 5.10 :

{}5 B oon + > > €+1| " |[ ”/2+n"} (7.44)

>ky)y p mELe

YA R ETES SD D BN A PVl (7.45)
>kyly pmELe
S K2 elleun .1 + B30 01 (7.46)

for suitable 4 > 0; in the last step, we employed (5.42) once with o« = n and once with a = 0. We also note

(7.42)
lgpllmremy Sllagpllmay S k2 (IFllcanon (7.47)

3. step (interior reqularity): Given r € X, the function z = Nj'r solves (7.24). First, interior regularity as
derived in [35, Prop. 5.5.1] gives

IV"Z| L2 vue) < C" (n+ )" IVZI < Cy" (n 4+ 1) [lgpllgareqy  Yn € No, (7.48)

This is the desired bound away from I' in view of (7.47).
4. step: For the behavior of Z near I', we write Z = Zy — g7,. Near I', the function Z; satisfies

~AZy=—Agp inUr and Zo|r = 0. (7.49)
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From (7.42) we get Ag; € A(CK7/2,~,Ur) for suitably adjusted constants C, v > 0. Also we have

(7.47)
IV Zoll 2 @iy < IVZI+ IV9D N L2 ey S 9D llirzy + CF 2 Itlleunan S K Iellcano,n- (7.50)

One concludes with the aid of Theorem E.2 (and suitable localization as well as flattening of the boundary)
that Zy in (7.49) satisfies

VZO €A (Ck5/2 Hrchrl,Q,l ,'7,2/{1") ’
again with adjusted constants C, v. This in turn implies VZ|,, € A (Ck5/2 [E P ,'y,Z/lp). ]

Proposition 7.5 Let Q = B;1(0). There exist positive constants C a1 and ya,1 depending only on T' and and
the cut-off parameter A such that for any v € X

N € A (Catk? IVl cunp 7140, 2)

Proof. For given v € X, the solution z := N7'v can be split into
z=Ni\v+z
with the solution z € X of
Ay (W,2) = — ikby (wwﬂ, (LQv)Cu“) vw € X.

From (7.15) we get the following representation of the solution
i=—ik [ goull =y T (o)) (v) .
r

Fourier expansion of (Lpvy)™ leads to (cf. (5.7))
curl 24 (k) +1 mmm
po=T o (Lav)™ = 3 <T STy
1<e<Ak meue
An extension of p* is given by
* 2L (k) +1 mrpm
Beo= Z (T Z Ve L
1<e<Ak meve

where T9* := VY;" x n* with n* (x) := x/||x| and ¥;" as in (5.11). Now we proceed as in the proof of
Proposition 7.3. First, we derive the estimates

Zl(k)+12 m|2
2L S

mety

_ 0\ .
S w0y (14 5) X P Cvelapn < CMEna

1<U<AEk meEry

Ilgormgy = D, €@+
1<0<X\k

Lem. 5.3
<

and

anﬂ*||L2(uF) < Z

1<0<Ak

(5.12) n V4 ~ n ~
< Cmax{k,n+1} tyn Z <1+—> Z || < Ck*max {k,n + 1}" 4" VIl currc0.1 -
1<U<Ak k mete o

(57| 3 et o

L2
meey (Z/lr)

The application of SHI' to p can then be estimated by

our 7.39)
ks (i (Lav)™) || < CF bllgg-r2ry < CF IVl cun

.
H

and kSHE (T,k (LQV)CHH) e A (Ck2 IVl ewrn0p 7> Q) The combination with Proposition 7.3 leads to the

assertion. m
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R —— HYQ) —Y— H(Q,cwl) — H(Q,div) —2 L2(Q)

[ E [ [ [
R —— Sp-}-l(ﬁl) L> N;I)(ﬁz) Lﬂ) RTP(WL) L Zp(ﬁl)

Figure 1: Continuous and discrete exact sequences.

8 Approximation Operators for S,;:(7,) and N;(ﬁz)

The relevant hp finite element spaces have been introduced in Section 3.2. A key property of these spaces is
that both lines in the diagram in Fig. 1 are exact sequences, [26,43,46]. In particular, therefore, (3.2) is satisfied
for the pair (Sp, Xp) = (SpH(’ﬁz),N}D(ﬁ)). The operators I17 and II} of Assumption 4.14 are constructed
to satisfy the stronger “commuting diagram property” that make the diagram in Fig. 2 commute. In that
case, the operator TI}7 is defined on the space [y o7 H' (K, curl) N X D {u € H(Q) | curlu € curl X, }.

8.1 Optimal Simultaneous hp-Approximation in L? and H(curl)

We restrict our attention to approximation operators that are constructed element-by-element.

Definition 8.1 (element-by-element construction) An operator 1184 : H2(K) — Ppt1 is said to ad-
mit element-by-Aelement construction if the operator 11824 : HY(Q) N [ker, H*(K) defined elementwise by
(T84 | je := (118" (u o Fic)) o Fie' maps into the conforming subspace SPY1(T;) € H ().

An operator 11! : HY (K, curl) — N;ID(K) is said to admit element-by-element construction if the operator
moewt s H(Q, curl) N [ker, H' (K, curl) defined elementwise by (T | ¢ = (F}()_T(ﬁcurl((FI’()Tu o Fg))o
Fi* maps into the conforming subspace ./\f;(ﬁ) C H(Q, curl).

An operator IV : HY(K, div) — RT,(K) is said to admit element-by-element construction if the operator
4 . H(Q, div) N [ker, H!(K,div) defined elementwise by

(Hdivu)|K — (det(FI/())leI/((ﬁdiv(det F}()(F;()*luo FK)) OFI;I

maps into the conforming subspace RT,(Ty,) C H(Q, div). Finally, any operator L’ . LQ(IA() — ’Pp(IA() leads
to a globally defined L?(Q)-conforming operator by the following element-by-element construction: (HL2u)|K =
(I (o F)) o Fit

As it is typical, we will construct such operators on the reference tetrahedron K in such a way that the value of
the operator restricted to a lower-dimensional entity (i.e., a vertex, an edge, or a face) is completely determined
by the value of the function on that entity. For scalar functions the operator I, of [41, Def. 5.3, Thm. B.4] is
an example that we will build on; it can be viewed as a variant of the projection-based interpolation technique
of [18] that also underlies the construction of the operator II¥. Important features of the construction of II,,
are: (IL,u)(V) = u(V) for all vertices V; it has the property that (IL,u)|. is the projection of u|. onto a space
of polynomials of degree p on each edge e under the constraint that II,u has already been fixed in the vertices;
it has the property that (II,u)|f is the (constrained) projection of u|; onto a space of polynomials of degree p
on each face f under the constraint that II,u has already been fixed on edges. We note that the fact that II,
is a (constrained) projection on polynomial spaces for the edges and faces makes the definition independent
of the parametrization of the edges and faces of the reference tetrahedron.

We need approximation operators suitable for the approximation in the norm || - ||cur,0,%5- Such an operator
can be defined in an element-by-element fashion on the reference tetrahedron:

Lemma 8.2 Let s > 3/2. There exist operators ﬁ;‘“l’s (HS(K) — N;ID(IA() with the following properties:

(1) ﬁg‘“l’s admits an element-by-element construction as in Definition 8.1.

(i) Forp > s—1 we have

(p+1Dfu- H;url’suHLZ(f() + [lu— H;CaurLsuHHl(f() < Cp_(s_1)|u|Hs(f(). (8.1)
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(iii) Let u satisfy, for some Cy, 7, h >0, and K > 1
IV*allpz ) < Cu(Yh)" max{n, x}" VneN, n>2. (8.2)

Assume furthermore B
h+kh/p<C. (8.3)

Then there exist constants C, o > 0 depending solely on C and 7 such that

@

Proof. Let II, : H¥(K ) — Pp, s > 3/2, be the scalar polynomial approximation operator® of [41, Def. 5.3,
Thm. B.4]. A key property of II, is that, as described above, one has that the restriction of Il,u to a
vertex, edge, or face is completely determined by wu restricted to that entity. We write, e.g., for a face

f: 10, <u|f) = (Ilpu)|;. We define the operator ﬁ;‘“lﬁs : HY(K) — (P,)° C NL(IA() by componentwise

||U. _ ﬁ;C)urLsuHWZ,oc([?) S CCU_

application to u = (ui)le, ie.,

mewlsy .= (Hpui)le .
1. step: We show that ﬁ;‘“l’s admits an element-by-element construction. We show this by asserting that the
tangential component HTﬁ;‘"l’su depends solely on the tangential component IIru. Fix a face f of K with
normal ny. Note that ny is constant on f. The tangential component of Iewhsy on f is

(1 () [, = (W)l )| znj

f

Using that (IT,u)|s is completely determined by the values of u on f and using that the normal vector n is
constant on f, we infer with the understanding that II, acts componentwise on a vector-valued object

(I (")) |, =TI, (uly) =TI, (- ulp) n) =TI, (uf; — (0 uly)n)) = O,IIru)]y,

which is the desired claim.
2. step: Estimate (8.1) then follows from [41, Thm. B.4].
3. step: From [41, Lemma C.2], we conclude that (8.4) holds. m

8.2 Projection Operators with Commuting Diagram Property

The operator Hg‘“lvs, which is obtained by an elementwise use of ﬁg‘“l’s of Lemma 8.2 (cf. Definition 8.1
for the transformation rule) has (p-optimal) approximation properties in || - |lcur,0,x as it has simultaneously
p-optimal approximation properties in L? and H'. However, it is not a projection and does not have the
commuting diagram property. We therefore present a second operator, Tieurl, ¢, in Theorem 8.3 with this
property. The construction is given in [39] and similar to that in [18,19]. We point out that the difference
between Theorem 8.3 from [39] and the works [18,19] is that, by assuming H2(K)- and H! (K, curl)-regularity,
Theorem 8.3 features the optimal p-dependence, thus avo1d1ng the factors of log p present in [18,19].

Theorem 8.3 ([39]) There are linear projection operators ngad ¢ 1'[‘3‘"1 ¢ Hd‘V ¢ HL such that the following
holds:

(i) The diagram in Fig. 2 commutes.

(i) The operators [ierade HC‘”1 ‘ Hd‘V ‘ HL admit element-by-element constructions as in Definition 8.1.

p+1
The global operators Hif? € HC“rl ¢ Hd“’ ¢ HL obtained from the operators H%T? € chrl c Hdlv c HLZ
by an element-by-element constructwn are also linear projection operators and the dmgmm mn Fzg 3

commutes.

8In [41, Def. 5.3, Thm. B.4] the element-by-element construction of the polynomial approximation on the reference element

only fixes I, on OK. The operator II, is fully determined by adding a final minimization step to fix the interior degrees of
freedom on the reference element.
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R —— H2(K) —Y— HYK,cul) - HY(EK,div) —s HY(K)

l lﬁirldc J{ﬁ;url,c J{ﬁ;ﬂjiv,c l 52
> v I/ 7> curl = div
R —— Ppri(K) —— WN(K) —— RT,(K) —— Py(K)

=

=)

Figure 2: Commuting diagram on reference element K.

curl div

R —— H2(Q) —Y— HYQ,curl) - HYQ, div) —2 HLY(Q)

grad,c rl,c div,c L2
l lnp+1 ln}?u ¢ lnp v lnp

R —— Sp1(Th) —— N — RT(Th) — Z,(Th)

Figure 3: Commuting diagram on mesh 7,

(iii) For all o € H2(K) there holds

ﬁgrad,c —1—(1-s)

o =I5V 0l e () < Csp inf _ flo—vllyzg), s€[01].

’UEPP+1(K)

(iv) For allu € H'(K,curl) there holds

||u B H;urlycu”H(f(,curl) < Cp71 inf

u—Vv = .
VENL(R) = Vil (& oy

(v) For allk > 1 and allu € Hk(IA() with curlu € Py, there holds
Hu - Hzcyur17cu|‘L2(I?) < Ckp_klluHHk(;?)- (8.5)

If p >k —1, then the full norm |[ullg. gy can be replaced with the seminorm |u|g. -

8.3 hp-FEM Approximation

Our hp-FEM convergence result will be formulated for the specific class of meshes which have been introduced
in Section 3.2. For such meshes, we can formulate approximation results for both, the operators Hg‘“l*s
and H;‘“LC. In both cases, we will need to relate functions defined on K to their pull-back to the reference

tetrahedron K. The appropriate transformations are described in Definition 3.1: For scalar functions ¢ defined
on K and vector-valued functions u defined on K, we let

p=¢oFx, U= (Fg) (uoFg). (8.6)
Lemma 8.4 Let the reqular mesh Ty, satisfy Assumption 3.1.

(i) With implied constants depending only on Cagine, Cimetric, 7 there holds for all K € Ty,

—~ —3/2 . ~ 2—-3/2

1Bl )y ~ 1Pl ey €401}, 1Blgery S hi el (8.7)

~ 1-3/2 ~ 2—-3/2 ~ 3—-3/2

[l () ~ Pic 2 ulleey s llowl g gy ~ b llewlullga gy [l gy S R Il o).
(8.8)

(i) Let 5 > 0. Then there exist v/, C > 0 depending only on 7 and the constants of Assumption 3.1 such
that

[V*¢llLz(r) < Cp¥" max{n,k}" Vn€eNy = |[V"l2g) < C'C'Wh;(g/2 (hiy")" max{n,k}" Vn € N,

(8.9)

V™ ullLz (k) < Cuy"max{n, k}" VneNo = [Vl g, < Chi32Cy (hiy')" max{n, k}™ Vn € No.

(8.10)
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Proof. We will not show (8.7). For (8.8), the first and third estimate in (8.8) follow by inspection, the second
equivalence follows from (cf., e.g., [43, Cor. 3.58])

Fj curlu = (det Fj;)(curlu) o F.

The implications (8.9), (8.10) are obtained by similar arguments. We will therefore focus on (8.10). Recalling
that the element map Fi has the form Fx = Ri o Ak, we introduce the function u := (R’K)Tu o Ry, which
is defined on K := AK(IA(). Using [35, Lemma 4.3.1] (and noting as in the proof [41, Lemma C.1] that the
original 2d arguments extends to 3d), we get the existence of C, 7, which depends solely on the constants of
Assumption 3.1 and on 7, such that

anﬁ”m(f() < CCu(¥)" max{n,k}" Vn € Ny.
Next, we observe U = (A% )"t o Ax. Using that Ak is affine, it is easy to deduce
IVl 22y < CCumax{n, k}" (hicy))" ¥ € N,
which is the desired estimate. m

Lemma 8.5 Let Ty, be a reqular mesh satisfying Assumption 3.1 and assume p > 1.

(1)

u = Tl ey + B~ curl(u — T ) ey S Wi llulless (-

(i) Let C > 0 be given. If u satisfies (8.10), then there exist C, o > 0 depending only on C and 7 and the
constants of Assumption 3.1 such that under the side constraint

khi  ~
hi + TK <C (8.11)

the following approzimation result holds:
| L . hK p+1 th p+1
||u—HIC)‘" ’SUHLZ(K) +th ||curl(u—ngr’éu)HLz(K) 5 (m) + (O'—p) . (812)

Proof. Proof of (i): From Lemma 8.2 with s = 2 we have on the reference tetrahedron
plia— A ) + 18— B8 ) S 2 e i
Hence, using (8.8) we infer
1-3/2 2-3/2 3-3/2 _
phic ™= Tl + b ™ eurl(u = Tl o) S ™ ullsre -

Proof of (ii): We proceed as above. The transformation rules of Lemma 8.4 and Lemma 8.2 give

Hﬁi ﬁcurl,sﬁH <oC h1—3/2 hiK r + k.h_K o (8 13)
P waee(R) — K hix +0 op ' '

Since the norm ||||W2<>o(f() is stronger than ”HLZ(f{) and ||cur1~|\H1(f<) the result follows by transforming

back to K using Lemma 8.4. m
For the operator Hg‘“l’c we have the following approximation results:

Lemma 8.6 Let Ty, be a reqular mesh satisfying Assumption 8.1. Then for p > 1:

(i)
h;(lﬂu — qurl’cuHL2(K) + H CU.I'l(ll — H;url’cu)HLz(K) S ChK(p + 1)_1Hu||H2(K). (814)

(i) Assume the hypotheses of Lemma 8.5, (ii). Then

-1 curl,e curl,c < hK P k th P
hicw =Tl ey + | ewrl(u — TG0 leee S\ {725 ) 505, ) )
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(iii) For u € H(K, curl) with curlt € (Pp(f())?’ there holds

Hu — ngrl’cuH]y(K) < C’th71||uHH1(K).
Proof. Proof of (i): Using Lemma 8.4, we get from Theorem 8.3 and the assumption p > 1

_ —243/2 )~ & ~
hKlﬂu — ngrl’CuHLz(K) + || curl(u — H;“rl’cu)HLz(K) ~ h +3/ [la— H;“rl’CuHH(Kcurl)

< p_lh;(2+3/2

~

—1,—243/2
lhK+/

inf 8 Vilggs (& o) <P [l ) S P hcllullre )
vePy

Proof of (ii): We start as above. The novel aspect is that infve/\/;(f() [0 = Vg1 (7 cury can be estimated as
in the proof of Lemma 8.5

—1 curl,c
hy Hu —1I;

s ) L2(K) ~

(8.13) p P
< ea((mis) 5 (%))
hkg +o p\ op

Proof of (ii): With Lemma 8.4 and Theorem 8.3, (v) we estimate

o flewrt (w =T | o S P T 018 = Ve (2 )
1

u— ngrl,cuHLQ(K) ~ h71+3/2Hﬁ _ ﬁlc)url,ca”y(g) < h71+3/2p71|ﬁ|H1(lA{ < h71+3/2p71h§<—3/2Hu”Hl(K)7

)

which completes the proof. m

A  Proof of Lemma 5.3
In this appendix we prove Lemma 5.3. The first two estimates in (5.9) are proved in the following lemma.
Lemma A.1 For any A\ > 1 there holds

i 22k n € No,

< k
= 2v2(3+1 AR2.
|2n (k) + 1] V2(3+ )(n+1) n >

Proof. We follow the reasoning in [47, Thm. 2.6.1]. The coefficient z,, (k) can be expressed by

zn (k) :—ankL

m3, m2’
where
n O (1 n o (1)
m?2 = kQEn)’ (m%)/ — Z (m+1) kQEn ’
n= (2n+1)2 and m=0 (2 )' =
. m)! ) 3 i L
Sm (1) ()2 on ™ ((2n+1) ) Y (1) 71;[1 (u (25— 1) )
Define » |
Amn = O ((2n+ 1)2) _ 7721)- (n+m)! -
(m!)”4m (n —m)!
With the function
< amn
Z k2m
o)1= a (A.1)
(m+1) 75



we estimate

k km?2 p=(2n+1)? —
S S NG TR (A2)
k + Zm k2m
m=1
ansatz k2 +
< 2V2kp, (k) < 2V2k | ——7+— ). A3
< 2V, () "2 2 (s ) (A3)
The ansatz (A.3) is equivalent to
2
k+0n5mz; < +6mz;0m+1 e
which, by multiplying out and rearranging terms, is equivalent to
n—1 1 a
k2a07n + Z (aerl,n + Cnﬂam,n) ka + Cnﬂ kZ:
m=0
n—1 1
< kQGJO’n =+ ((m + 2) Am+1,n + ﬂ (m + 1) amﬁn) k2—m + ,8 (TL + 1) 1{32n
m=0
Hence, we have to stipulate
(am—i-l,n + Cnﬁam,n) < ((m + 2) Am+1,n + 6 (m + 1) am,n) ) m = O, RN
Cp<n-+1.

We select C), := (n + 1) and insert this in the left-hand side of the first condition to obtain
0<(m+1amyin+B(m+1—(n+1))amn.
Inserting the definitions of a,, , leads to

2m+2)! (n+m+1)! B+ 1—(n+1)) (2m)! (n + m)!

0<(m+1) (m+ D))Z4m+1 (n — (m+ 1))! (m!)*4m (n — m)!"

This implies

B(n—m) (27;L)!(ﬂ+m)! < (m+1) (2m+22)!(n+m+1)!
(mh)* 4™ (n —m)! ((m+ D" 4m+ (n — (m 4 1))!
and in turn
2m+1)2m+2)(n+m+1) 1 B
B<(m+1) (1’4 < <m+§) (n+m+1), m=0,...,m.

We select 5 = ”T“, which finally leads to

2 2v/2k Vn € Ny
k <2\/§k< 25 +n+12> S .
|2 (K) | 2k2 4+ (n+1) (X+ )(n—i-l)’ n+l> :

|
The proof of the third estimate in (5.9) is more technical and the assertion of the next lemma.

Lemma A.2 For every Ag > 1 there is Cy > 0 depending only on \g such that

n+1

- < Yn > k.
EXOET T
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Proof. Recall the definition of the function p, as in (A.1). We will prove

(n+1) pn (k) < Cy Vn > Aok

from which the statement (cf. (A.2)) follows.
Step 1: We claim that p,, is monotone increasing with respect to k. To see this, we compute
n

(o) (Sempn )+ 32 (552) X om 1) g

m=0 m=0 =0
n 2
Am,n
(Sonig)
m=0

Thus, it is sufficient to prove that the numerator (denoted by d,, (k)) is positive. We write

. g nm,n
k)=2) % €(t—m) iy

m=0¢=0

py (k) =

We now exploit the fact that the coefficients a,, are non-negative. The double sum on the right-hand side
can be interpreted as a quadratic form. Note that we have, for vectors x and matrices B,

2x™Bx =xT(BT+B)x >0

if the vector x has non-negative entries and the symmetric part 1/2(BT+B) of the matrix B has non-negative
entries. For By ., := ¢ ({ —m) we compute

Bg_’m + Bmyg = (f — m)2 > 0.
Step 2: The monotonicity of p, shown in Step 1 implies for n > Aok
> (2)°
pn (k) < pn (n/X0) = = =: p,. (A4)
2m
Z m+1)amn (%)
m=0

We next show that the dominant contribution to the sums in (A.4) arises from few coefficients with index m

close to n4/1 — Ay 2. To that end, we analyze the coefficients Gy, n With Stirling’s formula in the form

o (L) T (2) 2= v ()

Upon setting C; := 2mexp(1/6) and Cy := (21)~3/2 exp(—1/4), we get

n+m

(2m)! (n + m)! <C\/n+m+1\/2m—|—1 (n+m)

Am,n = > — A5
7 (m!)* 4™ (n — m)! Vn—m+1 m+1 (n—m)" ™ e2m (4.5)
<920 M (A.6)
> 1(n—m)n7m 62m7 .
2m + 1 T e
G 202\/ m+1vn+m+1 (n+m) (A7)

(m+1vn—m+1 (n—m)" ™e2m

The dominant contribution of @y, »(Ao/n)*™ is

e (3)

bm,n = n—m T
(n—m)

e2m n
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The maximum of m + by, ,, in the interval [0,n] C R is attained at m = nug with po = /1 — A\;? and value

- 1 14+po )\ 2p0
bn = CZO Wlth CMO = % (—O) .
— Ho) e
We also introduce the factor
f __\/n+m+1\/2m+1

vn—m+1 m+1"~

2m . .
)‘0) ~ fm,nbm,n uniformly in m, n.

so as to be able to describe ay, (7
Case 1: We consider the range

2 2 M

) T »C5 1,

L—po po poco )

where the parameter ¢ is given by Lemma A.3 (with A = Ay there) and ¢ is defined in (A.14); both constants
depend solely on Ag. This is a finite set so

0 <n < max{

sup (n+1)p}, =1 C1 < 0

22
2 2 o .
0<n<max{ T=po ' o Ho <o ,C5}

depends solely on .

Case 2: We assume
2 A2

1—po po” pioco’
We split the summations Y _, in the representation of p}, (cf. (A.4)) as S}, + SI' with

mon Ao\ mn Ao\
sim X e (D)L e X fme(R)

n

cs). (A.8)

n > max{

ndpo<m<n 0<m<nédo

where ~
S0 i= pp. (A.9)
In view of . -
min{m—i—l :mZnéO} > 1+ ndo
we have . "
A< ntoh _ou
(1 + n(so) St

2 ~
In order to estimate the terms SL, SII we have to investigate the behavior of a, ,, (%) ™ /b, depending on
1

the distance of m to m. We write m = npug (1 + ) for some € € R that satisfies 0 < g (1 4 ¢) < 1. This gives

a & 2m
Cofmm (g ()" < 22 C2) 961 1, 00" (A.10)

n

(1o 0 0 ) ()
(1 — o (1 + E))l*#O(l“rE) (1 + ,LL())lJrHU e .

with vy, (€) :=

Estimate of S.: The dominant contribution in pll is SL, for which we therefore need a lower bound. Our

strategy is to estimate this sum by a single summand, namely, the summand corresponding to an integer m
close to m = nug. For m € {[nuo] , [nuo]} we have

M — Nty = NYigEm With e € {_nﬂo — [npo] : [npo] — nuo} _
o o

For these two values of m (in fact, we will only need the one with m < ugn), we have m = nuo(1 + £,,) with
lem| < (npo)~t and (cf. (A.8))

1
%ngnuo—lgmgnuo—i—l < +2'u0n, (A.11)
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2

A
A len,| < 2% < ¢ A12
§leml < T8 <o (A12)

The estimate (A.11) makes Lemma A.3 applicable, which gives

1> 7 (Em) 21— 20262 > 1 — cacolem| > 1— 8 with ¢g = 22 (A.13)
n Ho
The estimate (A.11) leads to two-sided bounds for f, »:
n>1
fm,n < 2ntl i 6\/5 n71/2 = C77’L71/27
npio/2v/n(1 — po) /2 pov/'1 — po
f > 1 ¥ pony/Hon =: Csn71/2
= m— pon(1 + po)n
Define ¢5 > 0 such that
1
n>c = (1—cg/n)" > B e ‘. (A.14)
This leads to 1
SL > Co fonm (Tao (€m))™ > Cocgn™1/? (1 - %6) > 50208 e %12, (A.15)

Estimate of S): Let ¢y € (0,1) be the constant in Lemma A.3 (note that we may assume, without loss of
generally, ¢y < 1). Upon writing m € {0,..., |ndo]} in the form m = pon(1 +&,,), we find in view of dp =
that |em| > Ay 2. Hence, the monotonicity properties of the function vy, of Lemma A.3 imply

Yoo (Em) <1 — Z—z/\JQ. (A.16)

We therefore get

2m n n
si= Y P (%) <20 Y <1Z—2A52> <20, (n+1) (12_%52) (A.17)
n 0

- ~ 0
0<m<|don] 0<m<|don]|

The combination of (A.17) and (A.15) shows S. + SII < CS! for some constant C' > 0 that depends solely on
Xo. This concludes the proof. m

Lemma A.3 For A > 1 and p:= /1 — A~2 introduce the function

(1 +p+e)t ) @ (é)
(1= p(+e) 70 (L) e/

(Lt =1)3emm(e) =

Let Ay > 1. Then there are constants co, c1, ca > 0 depending solely on Ao such that the following holds for
every A > \g: For every e satisfying
le] A% < e (A.18)

the function -y, satisfies
1—cM\%e2 < a(e) <1-— coN2e2. (A.19)

Furthermore, the function vy is monotone increasing on (—1,0) and monotone decreasing on (0,u=* —1). In
particular, therefore,

0<m(e) <1— 3222 Wee (—Lu ' —1)\ (—coh"2, oA 72). (A.20)
Co
Proof. Define the function
gx(e) :=In ((1 21+ 5)2) )\2) (A.21)
and observe
l1+e 1+ p2(e+1)°
G =—2r— LT = g T ERD (A.22)

(1 21 +5)2)2
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Ya=1mgn, = gk +95) . W = (BP9 + Bugagh + gh) - (A.23)

Step 1: (monotonicity properties of v5) The function 7y is defined in the interval (=1, =% —1).

Claim: =y is strictly increasing on (—1,0), strictly decreasing on (0, z~! —1), and thus has a proper maximum
at ¢ = 0. To see the monotonicity properties, we note that v, > 0 and that gx(g) < 0 for £ < 0 and gx(g) > 0
for € > 0. We calculate

nO) =1, AA(0)=0,  A(0) = —2(\* = 1)*2A7". (A.24)
Step 2: Use p = v/1 — A~2 to write
(1—p1+e)) N =1—- (N —-1)(2e+£%). (A.25)

Fix ¢ € (0,1) and consider ¢ satisfying
O<u(l+e)<1l and (N —-1)2e+e?<g< 1. (A.26)
From (A.25) and (A.26) we infer
(1=@A? <1-p*(1+e) <(1+gA>%
This, together with 0 < (1 +¢) <1 and p € (0,1) implies

)] < max{[ a1 =) (1 + 0} AE) < 7o A < g

Taylor’s theorem now implies for every e satisfying (A.26) the existence of an &’ in the interval (0,¢) with
endpoints 0 and € such that

(A.27)

1 1
VY (0)e* + 573”(5')53 =120\ —1)32\"1e2 4 57&”(5')53. (A.28)

1

a(e) = 12(0) + 74 (0)e + 5

The remainder term v}’ (¢’) is estimated using (A.27) as follows (note that vy > 0 and has maximum 1) as

VA’ (e")] < max{In(1 +¢), | In(1 - g)|}* + 6A? max{In(1 +¢), | In(1 — @)[}(1 — ¢) 7" +4X(1 — ¢) 72 < C1\*

for a constant C; that depends solely on Ay > 1 and the chosen ¢. Finally, there are constants Cy, C3 > 0
depending solely on Ay > 1 such that

CoA2 <202 —1)%2071 < C302. (A.29)

We conclude for ¢ satisfying (A.26)
1— CoN%e? — %)\453 <a(e) <1 —C3A%e? + %)\453.

The two-sided bound (A.19) now follows if we assume (A.18) for ¢ sufficiently small so that the terms A\%e?
are small compared to the terms involving A2, We note that the condition (A.18) for sufficiently small ¢o
also implies (A.26). Finally, the estimate (A.20) is a consequence of (A.19) and the monotonicity properties
of Y. W

B Equivalence of ||-[|1q) and ||| 10, in Vo and V§

The spaces Vo and V§ as in (4.1.1) involve the capacity operator (cf. Lemma 4.10). For the case that I" is the
surface of the ball, they are subspaces of H! () as shown in the following lemma. In contrast to Lemma 4.12
we obtain k-independent explicit bounds for the norm estimates.

Lemma B.1 Let Q = B1(0) and let Vo, V§ be defined as in (4.1.1). Then, Vo UV C H (Q) and
[l ) < lullcwnor  Yu e VoU Vg, (B.1)

i.e., the constant Cq i in Lemma 4.12 equals 1 for Q = By (0).
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Proof. The inclusion VoUV C H! (Q2) follows from Lemma 4.12 and it remains to prove the norm estimates.
Let u € V. Then, from [47, (2.5.151), (2.5.152), Lemma 5.4.2] we have

(Vu, Vv) — (curlu, curlv) — (divu, divv)

= (diVF ur, <Va n))I‘ - ((ua 1’1) ,divp VT)F -2 (<ua 1’1) ) <V7 n>)F - (U-Ta VT)F :

We choose v = u and employ (4.28) to obtain after rearranging terms

2 2 . 2 2
IVul|” = fewrlul|” — 2Re (divr ur, (w,n))r = 2{|(u, n) || —[luzl
4.28 2 . .
“29 ) curl u]|? + - Im (divr Tiur, dive ur)p = 2w, 0|7~ [[ur |
2
< |lcurlul® + z Im (divy Tpur, dive ur)p . (B.2)

From [47, (5.3.91), (5.3.93)] we conclude that

((diVF TkuT) leF uT Z Z 162 64’ 1 |Ugn|2
=1 me&uy

k
ze (k) +1

Since

)

i Im (i (ze—(kz)—i— 1)) Re (z¢ (k) + 1) 47, (2.6.23)]
Im( <kz>+1) e (B)+1F |Ze(2)+1|2 =0

the second summand in (B.2) is non-positive so that||Vu|| < |curlu| . This implies the first estimate in (B.1)
while the statement about u € Vj is simply a repetition of these arguments. m

C Vector Spherical Harmonics

For x € R, r = |x||, and % := x/r we introduce the vectorial spherical harmonics (VSH) as in [30, Thm. 2.46]
(with a different scaling)

Y7 (%) = RV (R), UPR) = VoY (%), Vi) = VoY (%) x &.
From [30, Thm. 5.36] we conclude that any u € X has an expansion of the form

S ST G )Y ) o () UP () () VE (R)). (1)

£=0 merg

We use the relations (cf. [30, p.271])°

curl (' (1) Y7 () = L OV (8), cunl 0 () U (8) =+ (o (1)) VE* (%),

ewl (uf’ (1) VY (%)) = © (ru* (1) U (8) + () L Dy ),
so that curlu is given by
curlu (r%) Z Z — (rog® (r))') VI (R) + (rwl () U (R) +wl* (1) L0+ 1) Y (%)) .

£=0 mGLz
Using the orthogonality relations of the vectorial spherical harmonics we get

Jul? ZZ / g () + £+ 1) (Jor (0 + i (7)) ) ar, (C2)

=0 meee

curlul? = Z/ e+1< |u2"(7")(TU}"(T))/|2+|(Tw2"(r))/‘2+€(€+1)|w2”(7’)|2>dr. (C.3)
£=0

mety

9There is a sign error in the second last relation on [30, p.271].
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For a > 0, we introduce an operator LYS? : X — X and HYS" : X — X for a function u as in (C.1) b

Y= 3 S @ ()Y ®) 4o () UP R+ wf () VP (R), HYMu=u- LY (C4)

£:0<t<ame€Ery
From (C.2), (C.3) we conclude the stability of the splitting

| LYSHu|| < |, ||curl LYSMul| < ||curlul,
|HYSHu|| < [, ||curl HYSMu|| < [[curlul .

In addition the splitting is orthogonal
(L(\I/SHu, H;/SHu) = (curl LY, curl H(YSHu) =0.

Note that on the unit sphere, it holds

) XX) = =% x VrY¥," (%) = T,
where T} is as in [47, (2.4.173)]. Hence, the application of the trace map IIp yields

ur =Illyu = Z Z v VY, +wi"T), (C.6)

(=0 m€rg

where v}" = vf* (1), wj* := wy* (1). A key observation for the case of the unit sphere is that for any u € X,
the function L}/SH LYSHy = LrIlpu, where Lr was introduced in Definition 4.2.

o u satisfies I Ly,
Lemma C.1 Let Q = B1(0) and Lg be as in Definition 4.2. Then: HTLVSH LrIlr and
[Loull i or < lallcurok Vu e X.
. A A LQ H,Q
Furthermore, the stability constants in (4.6) satisfy C,)”" <1 and C,)"" < 2.

Proof. Since Lq is the minimum norm extension (cf. Definition 4.2) the bound (C.5) lead to

IZaulZ om0 < 1L ulZun o r = FILYE ) + [ ewl LYE a]® < B (lu)l? + || curlul| < |[u)Zu 0.k

D Analytic regularity of Maxwell and Maxwell-like Problems

D.1 Local Smoothness

Consider for a bounded Lipschitz domain w C R?

curl (A(z) curlu) =f  inw, (D.1a)
div(B(z)u) =g inw, (D.1b)
[Iru=0 on dw. (D.1c)

We have smoothness of u under regularity assumptions on the right-hand sides:

Lemma D.1 Let Ow be a smooth bounded Lipschitz domain that is star-shaped with respect to a ball. Let A,
B € C*(w) be pointwise symmetric positive definite. Then:

(i) If u € Ho(w, curl) and div(Bu) € L?(w), then u € HY(w) with

Hu||H1(w) S C [” div(Bu)HLz(w) —+ || curluHL2(w)} .
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(ii) If u € Ho(w, curl) satisfies (D.1) for some f € H*(w), g € H*"1(w), s € Ny, then u € H**2(w) and
[ullesaw)y < Cs [0 @) + Ngllm=+1(] -

Proof. We use the right inverse R of the curl-operator and use its mapping properties due to [17] as
formulated in [39, Lemma 5.4]; specifically, we employ R°"! : H*(w) — H**1(w) for any s € Ng. We will also
repeatedly use decompositions formulated in [39, Lemma 5.5], i.e., for s € Ny and v € H*(w, curl) there is
¢ € H¥1(w) such that

v = Vo + R (curl v). (D.1)

Proof of (i): Using (D.1), we write
u = Vi + R (curlu). (D.2)

The mapping property R°%! : L?(w) — H!(w) implies R°*!(curlu) € H'(w). Using Il7u = 0, we infer

Vowp = —r R (curlu) € HlT/2(8w) so that, by the smoothness of dw, we have gp := p|a, € H>/?(0w).
Multiplying (D.2) by B and applying the divergence reveals that ¢ solves

g = div (Bu) = div (BV¢) + div (BR“"(curlu))  inw, ¢=gp on Jdw. (D.3)
This is a standard Poisson problem for ¢, and the smoothness of dw and B then imply ¢ € H?(w) with
el 2w S llg = div (BR™ (curlw)) || n2(w) + 90l 13200y S N9l2200) + [l curlul g2 ). (D.4)
Proof of (ii): We set w := curlu and note
divw = 0, n-w =n-curlu = curly, [Iru = 0. (D.5)
1. step: From (D.1) we see that we can we write, for some ¢ € H*(w),

Aw = Vo + R (curl(Aw)) P2 v 4 Rewl(£). (D.6)

Hence, w = A~ (R°™(f) + V) and we get from (D.5) that ¢ satisfies
—div (A7!'Vyp) =div (AT'R™(f))  in w, n-A7'Vo=-—n-A'R(f) on dw. (D.7)

The mapping properties of R°"! : H*(w) — H*T!(w) give R (f) € H**!(w) so that the scalar shift theorem
for Poisson problems gives in fact ¢ € H*"?(w) with [|¢||ge+2(w) < C||f||fe(w)- Inserting this regularity
information in (D.6) provides w € H**1(w) with

[wllezs 2wy < Cliflleew)- (D.8)

2. step: From (i) we have u € H'(w) and from the first step we get curlu € H**!(w). In particular,
u € H'(w, curl). Hence, (D.1) allows us to write, for some ¢ € H?(w)

u=Ve+ R™( curlu ). (D.9)
€Hs+1(w)

3. step: An equation for ¢ is obtained in two steps: using II;u = 0, we see again that
Vowp = —IIp R (curlu) € H7/2(dw),

where we used the trace estimate and the mapping properties of R°™!. We conclude gp = ¢|a., € H*5/2(0w).
Multiplying (D.9) with B and applying the divergence operator reveals a Poisson problem for ¢:

g = divBu = div (BVy) + div (BR*(cwrlu))  in w, ¢=gp on Jdw. (D.10)
By standard elliptic regularity in view of the smoothness of dw and B, we get ¢ € H*3(w) with

el a3y S llg = div (BR™ (curlw)) || g+1(w) + 90l 457200y S N9l e+ (w) + | curlullgesr o)
S gllaer(wy + 1€ lles ) - (D.11)

4. step: Inserting the information (D.11) in (D.9) implies u € H**2(w) together with [|u|gsr2(w) S |9l me+1(0)+

I1£ 1| s () -
n
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D.2 Local Analytic Regularity

We show analytic regularity of solutions of elliptic systems of the form (D.2) on half-balls Bf := {x =
(x1,22,23) € R3] |x| < r,z3 > 0}. We denote I'r := {x € Bg(0) |x3 = 0}.
On B;g with R <1 we consider smooth functions u that satisfy the following equations for some ¢ > 0:

3 3 3
—e2 Y O (A00w;) +e Y BYOpw > Cuy = £, i=1,2,3, (D.12)
o,B,i=1 8,5=1 j=1
u=u=0 onlg, (D.13)
2 2
Jsug = 671(G+bU3)+ZdjajU3 +Z€j83u]' on I'g. (D14)
Jj=1 Jj=1

We assume that the coefficients are analytic, i.e., (cf. Def. 2.5)

(Afyjﬁ)i,j,a,ﬁ S AOO(CAa’VAa B]Jg)v (ng)i,j,ﬁ S AOO(CB/-YB) B]Jg)v (Cij)i,j S AOO(CCa’VCa B]Jg)v (D15)
bGAOO(Cb,%,BE), (dj)j GAOO(Cd,’yd,BE), (ej)j E.AOO(Ce,’ye,Bg) (D.16)

here, we have written, e.g., (d;); to emphasize that the objects are tensor-valued and the multiindex notation

is understood as in (2.27). Concerning the tensor Agﬂ and the coefficients d;, e; we will furthermore make
the following structural assumption:

AZ,(0) = 6ij0ap,  dj(0)=0,  ¢;(0)=0.

This structural assumption implies that the leading order differential operator in (D.2) reduces to a block
Laplace operator at the origin and that the boundary conditions for the third component ug reduce to Neumann
boundary conditions. In other words: the system decouples at the origin.

Remark D.2 The structural assumption on Agﬁ implies the “very strong ellipticity” /Legendre condition for
the leading order differential operator (near the origin). No sign conditions are imposed on the coefficients
BY, C%, b;, dj, which could even by complex. The condition € > 0 can always be enforced by a scaling so that
mutatis mutandis the ensuing theory is also valid for complex €. "

It is convenient to introduce £ € (0,1] by

Eli="=+ + = +1, (D.17)
€ € €
which implies the estimates
C C C
—Z<et, ZLcegt, et (D.18)
€ € €

We will make the following assumptions on the right-hand sides

IVPE| L2(g) < Cpyymax{p/R,E7'}  Vp e Ny, (D.19)
VPG| 12(Br) < Covbmax{p/R,E~'}  Vpe No. (D.20)
Given the special role of the variable x3, we will interchangeably use the notation x = (z,y) with x = (x1,x2)
and y = x3. Analytic regularity of the solution of (D.2) will be characterized in Theorem D.5 by the following

seminorms:

j37p7q(v) = (R - r)p+q+2|\0§+2V§U||L2(BT+), p>0,qg>—2. (D.21)

p+q]! R/§2?<R
Our procedure to control Ng, ., (u) is the standard one by first controlling tangential derivatives and then using
the differential equation to control normal derivatives. We follow [35, Sec. 5.5]. In the proofs, we implicitly
assume that the solution u € COO(BE). This could be proved by carefully arguing with the difference quotient
method or, alternatively, by asserting the smoothness of the solution by a separate argument (this is how we
proceed in the present application of Theorem D.5).
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D.2.1 Control of Tangential Derivatives

We introduce the following auxiliary notation suitable for controlling tangential derivatives (cf. [35, Sec. 5.5])

[p] := max{1, p}, (D.22)
1
Mp,(v) == sup  (R—r)P*2|Vho[| L2 51, (D.23)
P R/2<r<R

1
— sup (R-— T)p+2||V2V§v||L2(BT+) itp>0

!
N, (v) = { P Ri2sr<R (D.24)
R,p sup (R*T)IH_QHVQ—H)”HLZ(B*) ifp=-2,-1,
R/2<r<R "
1 R—r
- _ +1
Hpp(v) = P R/§2?<R(R r)PHIVEY oty + B IVEVOl o py | - (D.25)

Lemma D.3 There exists a universal constant Ct > 0 such that for f, G sufficiently smooth, there holds:
(i) Letu solve —Au = f on B}, and u|r, = 0.
Npp(u) < Cr [Mp,(f) + Nppo1(w) + Ny o(uw)]  Vp>0. (D.26)
For p =0, we have the sharper estimate N o(u) < Cr [Mp o(f) + N 1 (u)].
(ii) Let u solve —Au = f on B} and dyulr, = G. Then
N (6) < Cr [ My () + Hrp(G) + Nig oy () + Ny o)) ¥p 0. (D.27)
For p =0, we have the sharper estimate N, o(u) < Cp [Mp o(f) + Hro(G) + N _1(u)].

Proof. For the proof of (i), see [35, Lemma 5.5.15] or [45, Lemma 5.7.3’]. Statement (ii) is essentially taken
from [35, Lemma 5.5.23]. The special cases p = 0 follow from the general case and the first Poincaré inequality
in the case (i) and the second Poincaré inequality in the case (ii). m

Lemma D.4 Let u satisfy (D.2) with coefficients and data satisfying (D.2) and (D.2). Let C be given by
Lemma D.3. Let R <1 be such that

1
3Cr (Cava + Cava+ Ceye) R < 5. (D.28)
Then there is K > 1 depending only on the constants appearing in (D.2) and on ¢, ya such that
p+2
Nigy(w) < Curt2 2 BED T sy (D.29)
: !
Cy =min{1, R/E}(1 + 5CA7A)5I\VHHL2(B;) +min{1, R/E}*(E/e)? |Cf + CC||u|\L2(B;)}
+ Co(1 + ) min{1, R/E}(E/2)
+Cy(1+ wR) min{1, R/EY(E /)|l o1y + Co min{1, R/EY(E/e)E | Vul| o5,
+ (Cd'YdR + Ce'YeR) min{la R/g}‘c"”quL?(BZg)
Proof. We start with the observation
min{1, R/€} max{1, R/E} = R/E. (D.30)

The proof will be by induction on p and we will employ Lemma D.3. To that end, recall Agﬁ(O) = 0qp9;; from
(5.38) we write (D.2) as

3 3 3
—Au = e Y Oy - T BYogwy + > (A, - AT,(0)) 0a0pw, (D.2.1a)
j=1 B.i=1 aBij=1 T~
::Azﬂ
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uy=u=0 onl, (D.2.1b)
2 2
Ozug = 571(G + bIIg,) + Z dj(?jllg + Z 6]‘8311]' on I, (D21C)
j=1 j=1

where the coefficient
3
BY .= BY + EZ O (A — AL(0)) = BY +2 " 0a A1,
a=1

is again an analytic function with (Egj)i,ng € A>*(Cgz,v5, B) with Cg := Cp + Cayac and 75 1= V5 + 274

(note: Cp% + eCay5™ (p + 1) < Cy% + eCava(274)P). The system (D.2.1) is of the form analyzed in
Lemma D.3. We therefore get

3
Nip(w) < Cr[e7 My (6) 4 3" M, (7 D €y 467 30 BYouy + Y- Adyondsuy) (D.31)

J B3 a,B,j
2
+e ' Hpy(G) + ¢ " Hpyp(bug) + Hpp (D djOus) + HR,p(Z e;03u;) + Np,_1(u) + Nﬁz,p_z(u)} :
j=1 j=1

1. step: For p = —1, the assertion (D.29) follows directly from K > 1, the definition of Cy, and (D.30).
2. step: For p = 0, we employ the sharpened versions of Lemma D.3 which leads to (D.31) for p = 0 where
the last term, Np_2(u), is dropped:

Npo(w) < Ci[e™2 My of +ZMRO( *QZC% te 123]6[311] + 3 AL y0a05w;)

a,B,j
2 2

+ [—jleR’o(G) + EilHRyo (bU3) =+ HR70 (Z dj(?jllg) + HR’O(Z ejagu]') + N}/%7_1(11):|
j=1 j=1

< 3C [(R/Q )220y + (R/2) 25*200Hu||L2(B+) + C~(R/2)25*1”Vu”L2(B;) + CayARNg o (u)
+Cg/2Re™ + Cova(R/2)*¢ ' max{1/R, 7'}

Cy Cy o _
+ 7(1 +wR)ReHlull 2 gy + _R2 NVl 2y

+ QCdVdR2HVUHL2(B;) + CavaRNR o(u) + Ce%R2HquL2(B;) +2CeYeRNp o(u) + Nfz,q(u)}

1 1
< 3Cr| 7(R/E)*(E/2)* {Cy + Collull sy p + 7(RIECH(E/)ENVU 12y + CavaRNp o(w)
(Bx) 4 (BR)

CGR/S(E/ ) + %ng/S(E/s)max{l R/E}

- %(1 FWRIRIEEI Nl gy + S (RIEVE/ENTul o,

+2CavaR(R/E)E|V | 2 gt + CdVdRNR,o( u) + 2Cey R(R/E)EVull 12 )
+ Ceve RN o(u) + N 4 (u)|.

Using (D.30) for R/€ = min{1, R/€} max{1, R/}, inserting the definition of Cy, using the condition (D.28),

and assuming that K is sufficiently large shows the case p = 0.

3. step: For p > 1, we proceed by induction, assuming that (D.29) is valid up to p — 1, i.e.,

max{p + 3, R/e}PT2
p!

NI/Lpfq(u) S Cqu+27q 9 q= 17 Y % + 1 (D32)

We need to estimate the terms in (D.31). To bound the terms Mp (>, 5 Egjagu) in terms of N , . (u),
it is useful to note the simple facts (cf. also [45, (5.7.19)])

|VVEu? < |V2Ve—tul?, p>1, |VVEu|* = |Vu?, p=0. (D.33)
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To estimate these terms, we compute (cf. [35, Lemma 5.5.13] for similar calculations)

_ ” C. & R\? (R 2[p—qu]!
€ 2Mg7P<ZCJuj) SI(Z_Z()(%E) (;) " Np o, ga(W),

(p—q)!

_ =i Cs ¢ R\'R[p—q—1]
e 1M}/%7P<Z Bﬂjaﬁu]) S TBZ (’}/E?) ZﬁN}%’p_q_l(u),
3,8 q=0

1 Cy R[p] <~ (wR\ [p—q — 2!
g1 sup (R—r)p+1||V§(bu3)||L2(Bj) < bﬁz (%—) MN}MF _o(u3),

[p*l]' R/2<r<R 7 g 7=0 2 (p—q)' q—2
1
_ Cy R(p+1) & (%R)q p—q—1]1
1 +2 ,
€ su R—1r)? VZVbu < -7 o7 £ NG (as),
ol S50 (R = ) IV (sl € 5 g 7 ) g o (@)

2 p q
1 R
sup (R— )9S didyus) o s SCd’YdRNfz,p1(u3)+CdZ<7d—> P (),
q=1

[p—1]! rja<r<r = 2 [P —4q

2 p+1 q
1 YaR p+1 ,
—  sup (Rfr)erQHVZV( d;o;us)|| +y < CgRygNg (u3) + Cy (—) ———Np__.(u3),
[Pl' ry2<r<r ; R for q:Zl 2 p—q+1) fre
1 2

[f] N;%,p—q—l(u)v

p q
Vel
' sup (R — r)erl va (Z eja?’uj)”L?(Bi) < Ce’}/eRN;z7p_1(u) + C, qz:; <—2 > q]

[p - 1] R/2<r<R

[p

j=1

=

2 p+1 q
Yel? p+1
sup (R= P IVEY(Y 0o < CotreNiy )+ G 3 (250 2w
g=1

! _
]! Rj2<r<r = q+1]

We choose
K >max{1,77/2,76/2,74/2,v5/2:7¢/2,W/2,7d/2, Ve / 2}

such that the expression in brackets [- - -] in (D.37) is smaller than 1/(6C7) (and, of course, such that the case
p = 01is proved). The calculation in [35, p. 206, bottom] for Mp_(f) and similar calculations for Hg,,(G) give

—2q 1 . 2 o ppromax{p + 3, R/e}PT21 7y \P
e2Mp,(F) < Cpmin{1, R/E}X(E /e)*KP . K (ﬁ) , (D.34)
— . 3 R/E}p+2 _ Yo \P 1 YG p+1
1 < p+2max{p + ) 2 - -
e~ Hn,p(G) < Comin{1, R/e}(€/e)K i K2 (J2) + 52 (3%) (D.35)

We use the induction assumption (D.32), recall (D.18) as well as (D.30) (to deal with the cases where N _,(u)
is involved) to estimate

CCR2E_2 [p —q— 2]' N;% 2(11) <C Kp+2—q—2 max{p + 3’ R/E}p+2
P—q— —u

) q:()"",p7
(r—q) p!
i p=—g—10 _,_imax{p+ 3, R/e}P+?
CpRe IE%;%jﬁTLA%@q1(u)§<1414CAVA€ﬂ(p” o1 Ax{p ) e} , q=0,...,p
p—q-2', 9 q_omax{p+3, R/e}P*?
CylplR /e Npp_g_o(u) < CuKPH271 , q=0,...,p,
p—qt 1 p!
—_a—1 _,_ymax{p+ 3, R/c}P+?
Cb(p—i—l)R/zs%N}%’pql(u) < O KPt2—a-! {p . /e} ’ g=0,... p+1,
[p] / o_g_1max{p+3, R/e}Pt?
N . (u) < C,KPt2-4 ’ , g=1,...,p,
[p_q] R,p—q 1( ) p!
1 P+
[p+ ] N/ (u) < Cqu+2fqmaX{p+3aR/€} , q= 1,. 7p+ 1’

[p—q+1] e p!
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Inserting all of the above in (D.31) yields'® together with the geometric series

3, R/e}Pt?
Npy(0) < 3C; (CanaR + CavaR + CoyeR) Np () + O i+ 20t 3. BJe)

p!
L rr\P o (e\P, 1 1 1 1+ Cayac
— == 2K — K D.
30| 1 (55) + (k) * e ey T8 TR ery (P30
CavaR 1 n 1 1 n 1 1
2K 1-7aR/(2K) ' 2K21-wR/(2K) ' 2K 1— wR/(2K)
QCd'ydR 1 QCe’yeR 1 -1 _92
K+ K7 D.37
TR T-wR/K) T T K 1-wRrieK) 0T (D-37)
By the choice of K, the expression in brackets, [---], is smaller than 1/(6Cy) and by (D.28) the expression
3C1(CayaR + CyvaR) < 1/2. Hence, the induction step is completed. m
D.2.2 Control of Normal Derivatives
Define )
Mp, (V)= ——= sup (R—7r)PTI20IVv| o gt D.38
) = gl S0 (R =P RO (D.38)

Theorem D.5 Let u satisfy (D.2) with coefficients and data satisfying (D.2) and (D.2). Let R < 1 be such
that, with the universal constant C; given by Lemma D.3,

(BC1 +6) (Caya + Cyva+ Ceve) R <

N~

Then there are K1, Ko > 1 depending only on the constants appearing in (D.2) and on v¢, va such that with
Cy given by (D.29)

Nppq(w) < CuKPPPKI™ max{R/e,p+ q + 3}PH+2 Vp > 0,q > —2 with (p,q) # (0,—2). (D.39)
Proof. With K given by Lemma D.4, we select K1 = K. We select

Ky > max{1,77/2,v4/2,75/2,vc/2}

such that the expression in brackets, [- - -], in (D.45) is smaller than 1/12. The proof is by induction on ¢. For
g € {—2,—1,0} and all p € Ny (with the exception of the excluded case (q,p) = (—2,0)) the result follows
directly from Lemma D.4. Let us assume that (D.39) holds (for all p € Ng) up to ¢ — 1 for some ¢ > 1.
Starting point is the observation that for a smooth solution u of

~0%u=Au+f onBj (D.40)

we have by the definition of the seminorms N }2 M 1’2%5 the estimate

Nie g (0) <2 [Np oo @) + My ()], p 20,020 (D.41)

The system (D.2.1) is of the form (D.40) with

3
fi - Z A?g@;u] + 572fi — 572 Z Cijuj — 571 Z ngﬁguj + Z Azﬂaaaguj'. (D42)
j=1 J 3,8 g,
(e, 8)#(3,3)
We estimate
p+q max{p +q+3, R/g}p+q+2
[p+ 4! ’

Othe factor 3 in 3CT is due to the summation over i and likely suboptimal

2 Mpo(t) < Liese7 ()
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p q
_ iq _ p q r+s slr! —s —r
M (D ) < Cee S (U) (D (R 0V g

(p+ ) rj2<r<r

<y (1) () (57) g e

5355 () 2) (HE) S e+t

JrouB8
(e, 8)#(3,3)

C ii P\ a4\ (aR\" sirlp+ g — 7 — 3! v, W)+ N ]
! UVAAN 2 (p+q)! R.p+2-rq—s—2 R,p+1-r,g—s—1 )

r=0 s=0

Mp (O~ ALd3u;);) < CavaRNp, 4 (0)+

J

r+s
»\ (¢ YaR slrllp+q—r—3s]' ,
Ca Z <r> <s> < 92 ) (p i q)! [NR,p+2—T7q—s—2(u) + NR,p+1—T7q—s—1(u)} :

(r,5)#(0,0)

We introduce the abbreviation
Myp.q = max{p + q+ 3, R/E}PTIT2, (D.43)

so that, for ¢’ < ¢ — 1 the induction hypothesis reads [p’ + ¢,/ ,(u) < Cqu/HKg/Hmp/,q/. We have

C+(& 2 p q
Mg l) < | Dty (5 ) () | mrvemye e
P AK?K3 \2K:) \ K (p+q)
We recall the elementary estimates

(p)r! <p, 0<r<p. (D.44)

r
Recalling (D.18) we get from the induction hypothesis

_ y Ce 2\ (a\ [(veR\ " rls(R/e)? o o
2 7, T+ s
£ M;%,p,q(z c Juj) <Cu=p )] (T) (S 5 gl KKy my g2

J

1 ’YCR [ —r+2 —s Mp,
<aq X (%57)  mremye e

e Mpyyy (329587

0B
r4+s
AW gl rlslR/e —r42 g rq—s+1 —r+3 1-q—s
< CuCy E (T) (S) ( z ) P [Kf K et + KPR m 1 ases

r+s
1R —r s My, _ _
scu(1+cAvAe)Z<—§ > KPR [pf;], [K;' + KKy 7],

M;Lpﬁq( 3 Agﬁaaaﬂuj)
J,o,B
(. 8)A(3.3)

r+s
p q yaR rls! —r+4 —s —r+3 —s+1
< CuCa gs <r> (8) ( 5 ) b+ [Kf K3 " mpio rgqs—2+ K{ K3 mp+1fr,qfsflj|

R r+s ., . m B B
<CuCa ) <—%‘; > KPR at? [pf;]! [KIK, % + KKy,

TS
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r+s
~ij AR —r —s My, _ _
M0 (32 A8, ) < CavaRNR (W) + CaCia Y (%) KRR T (KRG 4 K.
j = !
Inserting these estimates in (D.41) gives
m
Nppg() <6CayaRNE , (u) + Cqu+2Kg+2(pra;)|6{ (D.45)

1 v\ f T K2 1 1
4K2K2 \ 2K, K 4K21—vcR/(2K1) 1 —vcR/(2K>)

O Canae) 5+ K ) e s
+20a(KP K, + KaKG ) 1= 7,4}12/(21(1) - mé/(ﬂﬁ) + KiK5?
By the choice of K5, the expression in brackets, [- - -], is smaller than 1/12 and by assumption on R, the term
CavaR < 1/2. Hence, the induction step is completed. m
E Analytic regularity for Poisson Problems
We consider, on the half-ball B;g, solutions u of
—div (A(z)Vu) = f  in B}, ulr, = 0. (E.1)
Here, the matrix A is pointwise symmetric positive definite and satisfies
A€ A®(Ca,va,B}), A > Apin > 0. (E.2)
The data f is assumed to satisfy, for some ¢ € (0, 1]
192 iy < O max{p/R,e™'} ¥pe Ny, (£3)

Note that this problem has been considered in [35, Lemma 5.5.15] where a recursion for the tangential deriva-
tives, i.e., for the seminorm Np (u), is derived. We use this result here to derive the following estimate.

Lemma E.1 Assume (E.2) and (E.3) and R < 1. Then there exists K > 0 depending solely on Apin, Ca,

va, V¢ such that a solution u of (E.1) satisfies

smax{p+ 1, R/e}? N
p!

Np () < KP*? |CsR (p+ DR[Vul p2(p1) Vp > 0. (E.4)

Additionally, Nf%,_l(u) < R/QHVUHLZ(B;)'

Proof. The estimate Np _,(u) < R/2|\Vu||L2(BE) is a direct consequence of the definition. The case p =0
follows directly from [35, Lemma 5.5.15]. The case p = 1 follows from an inspection of the arguments below.
For p > 2, the proof is by induction on p, assuming that (E.4) holds for all p’ < p — 1 for some p > 2.
From [35, Lemma 5.5.15] we get

2 P max p pFl
Nigo) < Chlcs (5 ) (%) =B G can (B0) vh o) (8:5)
- (p+1)! yaR ! (p_q)! / / /
+CA¢;1 pri-g) ( 2 ) o Vi=g(t) + N () £ Ny ()]

The induction hypothesis gives for g =1,...,p

(p+1! (p—9)

smax{p+ 1, R/e}? N
(p+1-¢q) p

p!

Nhp o o(u) < KPH2-1 {ch (p+ 1)R||VU|L2(BE)] —. Kp2ip

P—4q

(0]



where B, abbreviates the expression in brackets, [ . } Inserting the above and the induction hypothesis in
(E.5) gives, assuming v4R/(2K) < 1,

1 Y \P _ YaR P vaR 1 _ _
N, <C’B[—(—) CaK— 2 £= Cpee————— + K14+ K72, E.6
(W) < CpBy | 7 (557) +Ca ok ) Y TRt T (E6)
Selecting K sufficiently large shows that the factor C;[- - -] can be made smaller than 1, which concludes the

induction argument. m

Theorem E.2 Assume (E.2) and (E.3) and R < 1. Then there exist K1, Ko > 1 depending solely on Apin,

Ca, va, v5 such that a solution u of (E.1) satisfies, for all p > 0, ¢ > —2 with (p,q) # (0, —2)

+q+3,R/e}PT
(p+9q)!

Proof. We control the normal derivatives as in the proof of Theorem D.5. Inspection of the arguments leading
to [35, (5.5.30)] shows that we have

N ) < KP2EG [0 p2 000

+ (P +a+3)RIVull 25+ | - (E.7)

~0%u= f+ AVu+ B : V?u, (E.8)

where, for C’, v > 0 depending solely on Apin, Ca, Y4, Yy
HVPJ?HN(B;) < C'CpyPmax{p/R,e" '}’ Vp € Ny, (E.9)
A,B e A®(C',~,B}), Bssz=0. (E.10)

We abbreviate

max{p+q+ 3, R/e}rT4
M, = [chQ { LY (o4 4 BRIVl o |

me (p+9)!
The proof is by induction on ¢, the cases ¢ € {—2,—1,0} being shown in Lemma E.1 if we select K; = K with
K given by Lemma E.1. Assume that (E.7) holds for all ¢/ < ¢ — 1 for some ¢ > 0 and all p. From (E.8) we
get

NppoW) < Mp o (F) + My, o (AVU) + M, ((BV?u), (E.11)
~ c’ ¥ p+q
Mppq(f) < (5) Mpq, (E.12)

where the estimate for Mllz,p,q(f) follows from a direct calculation. The terms M;%,p,q(;[vu) and My, , .(BV?u)
are treated as in the proof of Theorem D.5. First, we note that

—r —al!
T lp=r—aft is monotone decreasing for r € {0,...,p} and o > 0. (E.13)

(p—r)!
The induction hypothesis and (E.13) imply

P\ (q\sr!lp+q—r—s—1]! / —rt2 q—st2 M, —2 -1
N N < K? Kl P4 KK
(T) (S) (p+q) [Nip—rg—s—1(t) + Nipi1 g sa(u)] < Kj > p+g [+ K

so that we get, as in the treatment of the terms Mlgyp’q(égjaﬂuj) in the proof of Theorem D.5,

~ _ _ CIR 'YR T ’YR S
2 2
Mll%,p,q(Avu) < K{H— Kéﬁ_ Mp.q [K2 Lt KK, 2} p+q Z (2K1) (2K2) . (£14)

TS

Analogously, as in the treating of the term Mllz,p,q(Zj,a,ﬁ:(a,ﬁ);é(g,g) Zgﬁaaaﬂuj) in the proof of Theorem D.5
we get for M 1’2% q(B : V2u) by observing that the assumption Bz = 0 allows us to invoke the induction

hypothesis for all terms

M}%vpvq(

R\" [ +vR\"
B:V2u) < KTPKI M, [K2K; 2 + KoKy O <;_m> (;—KQ> . (E.15)

T,8

Hence, by selecting K> sufficiently large depending solely on C” and ~, the induction step is completed. m
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