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E. Weinmüller
Near critical, self-similar, blow-up solutions of the generalised Korteweg-de Vries
equation: asymptotics and computations

01/2019 G. Di Fratta. V. Slastikov, and A. Zarnescu
On a sharp Poincaré-type inequality
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Abstract

For the discretization of the integral fractional Laplacian (−∆)s, 0 < s < 1, based on piecewise

linear functions, we present and analyze a reliable weighted residual a posteriori error estimator.

In order to compensate for a lack of L2-regularity of the residual in the regime 3/4 < s < 1, this

weighted residual error estimator includes as an additional weight a power of the distance from the

mesh skeleton. We prove optimal convergence rates for an h-adaptive algorithm driven by this error

estimator. Key to the analysis of the adaptive algorithm are local inverse estimates for the fractional

Laplacian.

1 Introduction

Fractional differential operators such as the fractional Laplacian (−∆)s, 0 < s < 1, are an increasingly
important modeling tool in, e.g., physics, finance, or image processing. In contrast to classical (integer
order) differential operators, these fractional operators are nonlocal, which makes both the analysis and
the analysis of numerical methods challenging.

The numerical treatment of such non-local operators is currently a very active research field. A
variety of approaches for the different versions of the fractional Laplacian in multi-d, or, more generally,
fractional powers of differential operators are available: we mention Galerkin/finite element methods
(FEMs) (see, e.g., [NOS15, AB17, ABH18, BMN+19] and references therein), techniques that exploit
the connection of the fractional Laplacian with semigroup theory, [BP15, BP17], and techniques that
rely on the connection with eigenfunction expansions, [SXK17, AG18]; for more details, we refer the
reader to the recent surveys [BBN+18, LPG+18]. The vast majority of the numerical analysis literature
focuses on a priori error analyses, and few results on a posteriori error analysis are available in spite of
the fact that solutions to fractional differential equations typically have singularities (even for smooth
input data), which naturally calls for using locally refined meshes; work on a posteriori error estimation
in a Galerkin setting includes [NvPZ10, CNOS15, AG17, BBN+18, CNOS15] and on gradient recovery
[ZHCK17]. One challenge in devising a posteriori error estimators are poor properties of the residual,
namely, it is not necessarily in L2. One can overcome this lack of L2-regularity by measuring the residual
in appropriate Lp-spaces, [NvPZ10, BBN+18] (some restrictions on s apply); an alternative route, which
is taken in the present work, is to measure the residual in weighted L2-spaces, where the weight is given
by a power of the distance from the mesh skeleton. The resulting a posteriori error estimator is shown
to be reliable in Theorem 2.3 in the full range 0 < s < 1. This a posteriori error estimator is a basic
building block of the adaptive Algorithm 2.5 that we analyze. We show in Theorem 2.6 that it yields a
sequence of approximations that converge at the optimal algebraic rate (with respect to an appropriate
nonlinear approximation class). Such an optimal convergence result is well-known for adaptive FEMs
for linear second-order elliptic equations (see, e.g., [BDD04, Ste07, CKNS08, FFP14]) or the classical
BEM (see [Gan13, FKMP13, FFK+14, FFK+15]), and the present work extends these results to the
integral fractional Laplacian. Our convergence result is obtained using the abstract, general framework
of [CFPP14] for proving such optimal convergence results, which reduces the proof of optimal algebraic
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research program Taming complexity in PDE systems (grant SFB F65). Additionally, DP acknowledges support through
the FWF research project Optimal adaptivity for BEM and FEM-BEM coupling (grant P27005).
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convergence to verifying four properties (A1)—(A4) of the error estimator (cf. Proposition 3.1). A key
ingredient to establish the properties (A1)—(A4) in the case of the BEM are local inverse estimates for
the nonlocal boundary integral operators, [Gan13, FKMP13, AFF+17]. Also in the present case of the
fractional Laplacian underlying our analysis is the inverse estimate

∥∥∥h̃s
ℓ(−∆)svℓ

∥∥∥
L2(Ω)

≤ C ‖vℓ‖Hs(Ω) , (1.1)

where vℓ is a piecewise polynomial and h̃ℓ is the local mesh width function (modified by some additional
weight function for s ≥ 1/2; cf. (2.13)), and is essentially sufficient for proving optimal convergence of
the adaptive algorithm. In this work, such an inverse estimate for the nonlocal fractional Laplacian is
provided in Theorem 2.7. We highlight that such an inverse estimate proves useful in other applications
such as the analysis of multilevel preconditioning for the fractional Laplacian on locally refined meshes.

The present paper is structured as follows: In Section 2, we provide the continuous model problem
and its Galerkin discretization by piecewise linears. Moreover, both the classical weighted residual a
posteriori error indicators (for 0 < s < 1/2) and our modified weighted error estimator (for 1/2 ≤ s < 1)
are presented. The adaptive algorithm, the optimal convergence of the algorithm, as well as the inverse
inequality, which plays the key role in our proofs, are stated. In Section 3, the four essential properties
(A1)—(A4) of the error estimator from [CFPP14] are recalled and verified with the aid of the inverse
inequality. The inverse inequality is then proved in Section 4. Finally, Section 5 provides numerical
examples that illustrate the optimal convergence of the proposed adaptive method.

Concerning notation: For bounded, open sets ω ⊂ Rd integer order Sobolev spaces Ht(ω), t ∈ N0,
are defined in the usual way. For t ∈ (0, 1), fractional Sobolev spaces are given in terms of the seminorm
| · |Ht(ω) and the full norm ‖ · ‖Ht(ω) by

|v|2Ht(ω) =

∫

x∈ω

∫

y∈ω

|v(x) − v(y)|2

|x− y|d+2t
dx dy, ‖v‖2Ht(ω) = ‖v‖2L2(ω) + |v|2Ht(ω), (1.2)

where we denote the Euclidean distance in Rd by | · |. Moreover, for bounded Lipschitz domains Ω ⊂ Rd,
we define the spaces

H̃t(Ω) := {u ∈ Ht(Rd) : u ≡ 0 on R
d\Ω}

of Ht-functions with zero extension, equipped with the norm

‖v‖2H̃t(Ω) := ‖v‖2Ht(Ω) +
∥∥v/ρt

∥∥2
L2(Ω)

,

where ρ(x) is the distance of a point x ∈ Ω to the boundary ∂Ω.

2 Main Results

2.1 The fractional Laplacian and the Caffarelli-Silvestre extension

There are several different ways to define the fractional Laplacian (−∆)s. A classical definition on the full
space Rd is in terms of the Fourier transformation F , i.e., (F(−∆)su)(ξ) = |ξ|2s(Fu)(ξ). A consequence
of this definition is the mapping property, (see, e.g., [BBN+18])

(−∆)s : Ht(Rd) → Ht−2s(Rd), t ≥ s, (2.1)

where the Sobolev spaces Ht(Rd), t ∈ R, are defined in terms of the Fourier transformation, [McL00,
(3.21)]. Alternative, equivalent definitions of (−∆)s exist, e.g., via semi-group or operator theory, [Kwa17].
For our purposes, a convenient representation of the fractional Laplacian is as the principal value integral

(−∆)su(x) := C(d, s) P.V.

∫

Rd

u(x)− u(y)

|x− y|d+2s
dy with C(d, s) := −22s

Γ(s+ d/2)

πd/2Γ(−s)
, (2.2)
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where Γ(·) denotes the Gamma function. An important observation made in [CS07] is that the fractional
Laplacian can be understood as a Dirichlet-to-Neumann operator of a degenerate elliptic PDE, the so-
called extension problem on a half space. In order to describe this degenerated elliptic PDE, we need
weighted Sobolev spaces. For

α := 1− 2s ∈ (−1, 1) (2.3)

and measurable subsets ω ⊂ Rd × R+, we define the weighted L2-norm

‖U‖2L2
α(ω) :=

∫

ω

Yα |U(x,Y)|2 dx dY

and denote by L2
α(ω) the space of square-integrable functions with respect to the weight Yα. The

Caffarelli-Silvestre extension is conveniently described in terms of the Beppo-Levi space B1
α(R

d×R+) :=
{U ∈ D′(Rd × R+) | ∇U ∈ L2

α(R
d × R+)}. Elements of B1

α(R
d × R+) are in fact in L2

loc(R
d × R+) and

one can give meaning to their trace at Y = 0, which is denoted trU . Recalling α = 1 − 2s, one has in
fact trU ∈ Hs

loc(R
d) (see, e.g., [MK18]). The extension problem by Caffarelli-Silvestre [CS07] reads as

follows: For u ∈ H̃s(Ω) and α = 1− 2s, let U ∈ B1
α(R

d × R+) solve

div(Yα∇U) = 0 in R
d × (0,∞), (2.4a)

trU = u in R
d. (2.4b)

Then, the fractional Laplacian can be recovered as the Neumann data of the extension problem in the
sense of distributions, [CS14, Thm. 3.1]:

−ds lim
Y→0+

Yα∂YU(x,Y) = (−∆)su, ds = 21−2s |Γ(s)| /Γ(1− s). (2.5)

Remark 2.1. For u ∈ Hs(Rd), the extension U given by (2.4) can also be characterized as
U = argmin{V ∈ B1

α(R
d × R

+) : trV = u}.

2.2 The model problem

For a bounded Lipschitz domain Ω ⊂ Rd, we consider the problem

(−∆)su = f inΩ, (2.6a)

u = 0 inΩc := R
d × Ω, (2.6b)

where f is a given right-hand side. The fractional Laplacian (−∆)su is defined by formula (2.2) for

x ∈ Ω. The weak formulation of (2.6) reads as follows [Kwa17, Thm. 1.1 (e),(g)]: Find u ∈ H̃s(Ω) such
that

a(u, v) :=
C(d, s)

2

∫ ∫

Rd×Rd

(u(x)− u(y))(v(x) − v(y))

|x− y|d+2s
dx dy =

∫

Ω

fv dx for all v ∈ H̃s(Ω). (2.7)

Existence and uniqueness of u ∈ H̃s(Ω) follow from the Lax–Milgram lemma.

2.3 Discretization

Henceforth, we assume Ω to be polyhedral1. Let Tℓ be a regular (in the sense of Ciarlet) triangulation of Ω
consisting of open simplices that is γ-shape regular in the sense of maxT∈Tℓ

(
diam(T )/|T |1/d

)
≤ γ < ∞.

Here, diam(T ) := supx,y∈T |x− y| denotes the Euclidean diameter of T , whereas |T | is the d-dimensional
Lebesgue volume. To ease notation, we define the piecewise constant mesh size function hℓ ∈ L∞(Ω) by

hℓ|T := hℓ(T ) := |T |1/d for all T ∈ Tℓ. (2.8)

Moreover, for all elements T ∈ Tℓ, we define the element patch

Ωℓ(T ) := interior


 ⋃

T ′∈Tℓ(T )

T ′


 ⊆ Ω, where Tℓ(T ) :=

{
T ′ ∈ Tℓ : T ∩ T ′ 6= ∅

}
(2.9)

1This is not essential but allows us to work with affine elements.
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consists of T and all of its neighbors. Ωk
ℓ (T ) := interior

(⋃{
T ′ ∈ Tℓ : T ′ ∩ Ωk−1

ℓ (T ) 6= ∅
})

is the k-th
order patch of T (and Ω1

ℓ(T ) := Ωℓ(T )). Later on, the index ℓ ∈ N0 indicates the step of an adaptive
algorithm, where the triangulations Tℓ are obtained by local mesh refinement based on newest vertex
bisection (NVB). We refer, e.g., to [KPP13] for the NVB algorithm in d = 2 or to [Ste08] for d ≥ 2.

For T ⊆ Ω, let P1(T ) denote the space of all affine functions on T . We define spaces of Tℓ-piecewise
affine and globally continuous functions

S1,1(Tℓ) := {u ∈ H1(Ω) : u|T ∈ P1(T ) for all T ∈ Tℓ} and S1,1
0 (Tℓ) := S1,1(Tℓ) ∩H1

0 (Ω). (2.10)

For the discretization of (2.7), we consider the Galerkin method based on S1,1
0 (Tℓ). The Lax–Milgram

lemma provides existence and uniqueness of uℓ ∈ S1,1
0 (Tℓ) such that

a(uℓ, vℓ) =

∫

Ω

fvℓ dx for all vℓ ∈ S1,1
0 (Tℓ). (2.11)

Throughout the present work, we will need a weight function that measures the distance from the mesh
skeleton: For a mesh Tℓ we introduce

ωℓ(x) := inf
T∈Tℓ

dist(x, ∂T ) = inf
T∈Tℓ

inf
y∈∂T

|x− y| . (2.12)

2.4 A posteriori error estimation

Let vℓ ∈ S1,1
0 (Tℓ). For 0 < s < 3/4, due to the mapping properties of the fractional Laplacian given

in (2.1), we have (−∆)svℓ ∈ L2(Ω). For 3/4 < s < 1, the function (−∆)svℓ is (generically) no longer in
L2(Ω) as it has singularities at the mesh skeleton. Its blow-up can be measured in terms of the distance
from the mesh skeleton as has been noticed in [BBN+18] and is made precise in the following lemma,
which is proved in Section 4 below.

Lemma 2.2. Let ωℓ be given by (2.12). Given 0 < s < 1, fix β > 2s− 3/2, e.g., β := s− 1/2. For any

vℓ ∈ S1,1
0 (Tℓ), we then have ωβ

ℓ (−∆)svℓ ∈ L2(Ω).

To control the discretization error of (2.11), we study the weighted residual error estimator

ηℓ(vℓ) :=
∥∥∥h̃s

ℓ

(
f − (−∆)svℓ

)∥∥∥
L2(Ω)

, where h̃s
ℓ :=

{
hs
ℓ for 0 < s ≤ 1/2,

hs−β
ℓ ωβ

ℓ for 1/2 < s < 1 and β := s− 1/2.
(2.13)

Since the L2-norm is local, the error estimator can be written as a sum of local contributions

ηℓ(vℓ) =

(
∑

T∈Tℓ

ηℓ(T, vℓ)
2

)1/2

, where ηℓ(T, vℓ) :=
∥∥∥h̃s

ℓ

(
f − (−∆)svℓ

)∥∥∥
L2(T )

. (2.14)

If vℓ = uℓ is the solution of (2.11), we abbreviate ηℓ := ηℓ(uℓ) as well as ηℓ(T ) := ηℓ(T, uℓ) for all T ∈ Tℓ.

Theorem 2.3. For 0 < s < 1, the weighted residual error estimator (2.13) is reliable:

‖u− uℓ‖H̃s(Ω) ≤ Crel ηℓ. (2.15)

Moreover, for 0 < s ≤ 1/2 with s 6= 1/4 and u ∈ H1
0 (Ω), the estimator is efficient in the sense that

η2ℓ ≤ C2
eff

(
‖u− uℓ‖

2
H̃s(Ω) +

∑

T∈Tℓ

hℓ(T ) ‖u− uℓ‖
2
H1/2+s(Ω2

ℓ(T ))

)
. (2.16)

The constants Crel, Ceff > 0 depend only on Ω, d, s, and the γ-shape regularity of Tℓ.

Remark 2.4. The efficiency result (2.16) is weaker than classical efficiency, where the sum on the right-
hand side does not appear. However, as this term scales with the correct powers of the mesh width, there
is not a large gap between (2.16) and classical efficiency, as for discrete functions u the right-hand side
of (2.16) can be bounded by the energy norm with an inverse estimate.
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2.5 Adaptive mesh refinement

Based on the local contributions of the weighted residual error estimator (2.13), we consider the following
standard approach for adaptive mesh refinement of the type SOLVE – ESTIMATE – MARK – REFINE, where
the Dörfler criterion (2.17) from [Dör96] is used to select elements for refinement.

Algorithm 2.5. Input: Initial triangulation T0, adaptivity parameters 0 < θ ≤ 1, Cmark ≥ 1.
For all ℓ = 0, 1, 2, . . . , iterate the following steps (i)–(iv):

(i) Compute the solution uℓ ∈ S1,1
0 (Tℓ) of (2.11).

(ii) Compute refinement indicators ηℓ(T ) = ηℓ(T, uℓ) from (2.14) for all T ∈ Tℓ.

(iii) Determine a set Mℓ ⊆ Tℓ of, up to the multiplicative factor Cmark, minimal cardinality such that

θ
∑

T∈Tℓ

ηℓ(T )
2 ≤

∑

T∈Mℓ

ηℓ(T )
2. (2.17)

(iv) Generate the coarsest NVB refinement Tℓ+1 := refine(Tℓ,Mℓ) of Tℓ such that all marked elements
T ∈ Tℓ have been bisected.

Analogous to the works [Ste07, CKNS08, FFP14, CFPP14] for FEM and BEM, the following Theo-
rem 2.6 states linear convergence (2.18) of Algorithm 2.5 with optimal algebraic convergence rates (2.19).

Theorem 2.6. Let 0 < θ ≤ 1 and 1 ≤ Cmark ≤ ∞. Then, there exist constants 0 < qlin < 1 and Clin > 0
such that the sequence (uℓ)ℓ∈N generated by Algorithm 2.5 satisfies

ηℓ+n ≤ Clinq
n
lin ηℓ for all ℓ, n ∈ N0. (2.18)

Moreover, if 0 < θ ≪ 1 is sufficiently small and 1 ≤ Cmark < ∞, and if the initial triangulation T0
satisfies the admissibility condition [Ste08, Section 4] for d ≥ 3, then the error estimator converges with
the best possible algebraic rate: For each t > 0, there exist copt, Copt > 0 such that

coptAt(u) ≤ sup
ℓ∈N0

(#Tℓ)
t ηℓ ≤ Copt At(u), (2.19)

At(u) := sup
N∈N0

N t min
Topt∈{T ∈refine(T0) :#T −#T0≤N}

ηopt, (2.20)

where refine(T0) is the (infinite) set of all NVB refinements of the initial triangulation T0 and ηopt is the
weighted residual error estimator corresponding to the triangulation Topt.

2.6 Inverse estimates for the nonlocal operator (−∆)s

A key piece in the axiomatic approach of [CFPP14], which generalizes ideas and techniques developed
in [FKMP13, Gan13, FFK+14, FFK+15] for the convergence analysis of adaptive algorithms involving
nonlocal operators, are inverse inequalities for the pertinent operators. The following Theorem 2.7
establishes this inverse estimate for the fractional Laplacian. We mention that the case s = 1/2 for
the fractional Laplacian is closely related to the hyper-singular integral operator in the BEM [Gan13,
FFK+15], for which the appropriate inverse estimate is established in [AFF+17].

Theorem 2.7. (i) Let 0 < s ≤ 1/2 with s 6= 1/4. Then, there holds for v ∈ H̃2s(Ω)

‖hs
ℓ (−∆)sv‖L2(Ω) ≤ Cinv

(
‖v‖2H̃s(Ω) +

∑

T∈Tℓ

hℓ(T )
2s ‖v‖2H2s(Ωℓ(T ))

)1/2
. (2.21)

(ii) For 0 < s < 1 and all vℓ ∈ S1,1
0 (Tℓ), there holds

∥∥∥h̃s
ℓ (−∆)svℓ

∥∥∥
L2(Ω)

≤ Cinv ‖vℓ‖H̃s(Ω) . (2.22)

The constant Cinv > 0 depends only on Ω, d, s, and the γ-shape regularity of Tℓ.
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3 Proof of Theorem 2.3 and Theorem 2.6

3.1 Axioms of adaptivity

The following Proposition 3.1 yields validity of the axioms of adaptivity from [CFPP14], where we recall
that the present conforming discretization guarantees that S1,1

0 (T•) ⊆ S1,1
0 (T◦) if the triangulation T◦ is

a refinement of T• (i.e., T◦ is obtained from T• by finitely many steps of newest vertex bisection).

Proposition 3.1. There exist constants Cstab, Crel > 0 and 0 < qred < 1 depending solely on Ω, d, s,
and the γ-shape regularity of the initial triangulation T0 such that the following properties (A1)–(A4)
hold for any refinement T• of the initial triangulation T0 and any refinement T◦ of T•:

(A1) Stability: For all v◦ ∈ S1,1
0 (T◦), w• ∈ S1,1

0 (T•) and any U• ⊆ T• ∩ T◦, there holds
∣∣∣∣∣∣

(
∑

T∈U•

η◦(T, v◦)
2

)1/2

−

(
∑

T∈U•

η•(T,w•)
2

)1/2
∣∣∣∣∣∣
≤ Cstab ‖v◦ − w•‖H̃s(Ω) .

(A2) Reduction: For all v• ∈ S1,1(T•), there holds




∑

T∈T◦\T•

η◦(T, v•)
2




1/2

≤ qred




∑

T∈T•\T◦

η•(T, v•)
2




1/2

.

(A3) Discrete reliability: The Galerkin approximations u• ∈ S1,1
0 (T•) and u◦ ∈ S1,1

0 (T◦) satisfy that

‖u◦ − u•‖H̃s(Ω) ≤ Crel




∑

T∈T•\T◦

η•(T, u•)
2




1/2

.

(A4) Quasi-orthogonality: For all ℓ, N > 0 and ε > 0, it holds that

N∑

k=ℓ

(
‖uk+1 − uk‖

2
H̃s(Ω) − εη2k

)
≤ Corth(ε)η

2
ℓ .

Proof of (A4). The quasi-orthogonality follows directly from the fact that the bilinear form a(·, ·) of the
fractional Laplacian (2.7) is bilinear, elliptic, and symmetric; see [CFPP14, Section 3.6] for details.

Proof of (A1). Let ω := interior
(⋃

T∈U•

T
)
⊆ Ω. With Theorem 2.7, we obtain that

∣∣∣∣∣∣

(
∑

T∈U•

η◦(T, v◦)
2

)1/2

−

(
∑

T∈U•

η•(T,w•)
2

)1/2
∣∣∣∣∣∣
=

∣∣∣∣
∥∥∥h̃s

•

(
f − (−∆)sv◦

)∥∥∥
L2(ω)

−
∥∥∥h̃s

•

(
f − (−∆)sw•

)∥∥∥
L2(ω)

∣∣∣∣

≤
∥∥∥h̃s

•(−∆)s(v◦ − w•)
∥∥∥
L2(ω)

(2.22)

. ‖v◦ − w•‖H̃s(Ω) .

This proves (A1) with Cstab = Cinv.

Proof of (A2). Bisection ensures that |T ′| ≤ |T |/2 for all T ∈ T•\T◦ and its children/descendants T ′ ∈
T◦\T• with T ′ ⊂ T . Note that ω :=

⋃
T ′∈T◦\T•

T ′ =
⋃

T∈T•\T◦

T . For 0 < s ≤ 1/2, this proves (A2) with

qred = 2−s/d, since


 ∑

T∈T◦\T•

η◦(T, v•)
2




1/2

=


 ∑

T∈T◦\T•

|T |2s/d
∥∥(f − (−∆)sv•

)∥∥2
L2(T )




1/2

≤ 2−s/d




∑

T∈T•\T◦

|T |2s/d
∥∥(f − (−∆)sv•

)∥∥2
L2(T )




1/2

= 2−s/d




∑

T∈T•\T◦

η•(T, v•)
2




1/2

.
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For 1/2 < s < 1, we note that 0 < β = s − 1/2 < s and s − β > 0. Moreover, we have pointwise
ω◦(x) ≤ ω•(x). Hence, it follows that

hs−β
◦ ωβ

◦ ≤ 2−(s−β)/d hs−β
• ωβ

• pointwise on ω ⊆ Ω.

Arguing as before, we prove (A2) with qred = 2−(s−β)/d. This concludes the proof.

The proof of discrete reliability (A3) relies on the Scott–Zhang projection [SZ90] for quasi-interpolation

in H̃s(Ω). While the original work [SZ90] is concerned with the integer-order Sobolev space H1(Ω), the

approach is generalized in [AFF+15] to fractional-order Sobolev spaces H̃s(Ω) for 0 ≤ s ≤ 1. Since the
precise construction will matter, we briefly sketch it: Let N• be the set of all nodes of T• and let N int

•

be the set of nodes of T•, which lie inside Ω (and not on the boundary Γ). For each element T ∈ T•, let
{φ⋆

1,T , . . . , φ
⋆
d,T } ⊂ P1(T ) be the dual basis for the nodal basis of P1(T ) with respect to (·, ·)L2(T ). these

functions may be viewed as elements of S1,0(T•) by zero extension outside T . For each z ∈ N• choose
an arbitrary element Tz ∈ T• with z ∈ Tz. (This freedom will be exploited later on.) Let φz ∈ S1,1(T•)
denote the hat function associated with z. For the element Tz, let φ⋆

z ∈ {φ⋆
1,Tz

, . . . , φ⋆
d,Tz

} ⊂ P1(Tz) be

such that
∫
Tz

φ⋆
zφz′ dx = δzz′ for all z′ ∈ N•. Then, the Scott–Zhang projector J• : L2(Ω) → S1,1

0 (T•) is
defined by

J•v :=
∑

z∈N int
•

(∫

Tz

φ⋆
zv dx

)
φz .

Since the summation is over the interior nodes N int
• , we have J•v ∈ S1,1

0 (T•). The following lemma
collects some of its properties:

Lemma 3.2. For 0 < s < 1, there holds for some constant CSZ > 0 depending only on s and the γ-shape
regularity of T• and Ω:

(i) J•V• = V• as well as ‖J•v‖H̃s(Ω) ≤ CSZ ‖v‖H̃s(Ω) for all V• ∈ S1,1
0 (T•) and all v ∈ H̃s(Ω).

(ii) h•(T )
−1 ‖(1 − J•)v‖L2(T ) + ‖∇(1− J•)v‖L2(T ) ≤ CSZ ‖∇v‖L2(Ω•(T )) for all v ∈ H1

0 (Ω).

(iii)
∥∥∥h̃−s

• (1− J•)v
∥∥∥
L2(Ω)

≤ CSZ ‖v‖H̃s(Ω) for all v ∈ H̃s(Ω).

(iv) For each refinement T◦ of T•, the Scott-Zhang operator J• can be chosen such that additionally

(1− J•)v = 0 on ω :=
⋃

T∈T•∩T◦

T for all v ∈ S1,0(T◦). (3.1)

Proof. (i)–(ii) are proved in [AFF+15, Lemma 4]. With 1/h̃s
• replaced by h−s

• , (iii) is proved in [FFK+15,
Lemma 3.2], where the estimate

∥∥h−t
• (1− J•)v

∥∥
L2(Ω)

. ‖v‖H̃t(Ω) (3.2)

is established for any 0 < t < 1 as well. Hence, it only remains to prove (iii) for 1/2 < s < 1, where

h̃−s
• = hβ−s

• ω−β
• .

With T̂ being the reference element, let ωT̂ (x̂) := dist(x̂, ∂T̂ ) be the corresponding weight function.

Let ΦT : T̂ → T be an affine parametrization of T ∈ T•. For each x̂ ∈ T̂ , let x := ΦT (x̂). Let xmin ∈ ∂T
with |x− xmin| = dist(x, ∂T ). Then,

|x− xmin| ≤ |x− ΦT (x̂min)| . h•(T ) |x̂− x̂min| ≤ h•(T )
∣∣x̂− Φ−1

T (xmin)
∣∣ . |x− xmin|

and consequently

h•(T )ωT̂ ◦ΦT ≃ ω•|T pointwise for all T ∈ T•.
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According to [Gri85, Thm. 1.4.4.3], we have
∥∥∥ω−β

T̂
ŵ
∥∥∥
L2(T̂ )

. ‖ŵ‖Hβ(T̂ ) for all ŵ ∈ Hβ(T̂ ), since 0 < β <

1/2. Let w := (1− J•)v and ŵ := w ◦ ΦT . A scaling argument thus proves that

∥∥ω−β
• w

∥∥
L2(T )

≃ |T |1/2 h•(T )
−β
∥∥∥ω−β

T̂
ŵ
∥∥∥
L2(T̂ )

. |T |1/2 h•(T )
−β ‖ŵ‖Hβ(T̂ )

0<β<s

. |T |1/2 h•(T )
−β ‖ŵ‖Hs(T̂ )

. h•(T )
s−β |w|Hs(T ) + h•(T )

−β ‖w‖L2(T ) .

Hence, by summation over all elements

∥∥∥h̃−sw
∥∥∥
L2(Ω)

=
∥∥hβ−s

• ω−β
• w

∥∥
L2(Ω)

. |w|Hs(Ω) +
∥∥h−s

• w
∥∥
L2(Ω)

(3.2)

. |w|H̃s(Ω) + ‖v‖H̃s(Ω)

(i)

. ‖v‖H̃s(Ω) .

This concludes the proof of (iii).
We prove (iv). To ensure the additional property (3.1), we use the freedom still available in the

definition of the Scott-Zhang operator J•. To that end, let N•∩◦ be the nodes of the elements in T• ∩T◦.
For each z ∈ N•∩◦ ⊂ N•, select an element Tz ∈ T• ∩ T◦ such z is a node of Tz; for the remaining nodes
z ∈ N• \ N•∩◦, the element Tz ∈ T• merely needs to be such that z is a node of Tz. This defines the
Scott-Zhang operator J•. This particular choice ensures

(J•v)(z) = v(z) for all z ∈ N•∩◦ and all v ∈ S1,0(T◦), (3.3)

and (3.1) follows from (3.3).

Proof of (A3). Since a(·, ·) is elliptic on H̃s(Ω), we have

‖u◦ − u•‖
2
H̃s(Ω) . a(u◦ − u•, u◦ − u•) = a(u◦ − u•, (1− J•)(u◦ − u•))

=

∫

Ω

(
f − (−∆)su•

)
(1− J•)(u◦ − u•) dx.

In particular, the Cauchy–Schwarz inequality and Lemma 3.2 (iv) show with ω :=
⋃

T∈T•∩T◦

T

‖u◦ − u•‖
2
H̃s(Ω) .

∥∥∥h̃s
•

(
f − (−∆)su•

)∥∥∥
L2(Ω\ω)

∥∥∥h̃−s
• (1− J•)(u◦ − u•)

∥∥∥
L2(Ω\ω)

=




∑

T∈T•\T◦

η•(T, u•)
2




1/2 ∥∥∥h̃−s
• (1− J•)(u◦ − u•)

∥∥∥
L2(Ω\ω)

.

Lemma 3.2 (iii) proves that

∥∥∥h̃−s
• (1− J•)(u◦ − u•)

∥∥∥
L2(Ω)

. ‖u◦ − u•‖H̃s(Ω) .

The combination of the last two estimates concludes the proof.

3.2 Proof of Theorem 2.3

For reliability (2.15), we sketch the proof from [CFPP14, Section 3.3]. Let T• be a given triangulation.
Recall that uniform refinement leads to convergence. Given ε > 0, we may hence choose a refinement T◦
of T• such that ‖u− u◦‖H̃s(Ω) ≤ ε. Therefore, the triangle inequality and (A3) prove that

‖u− u•‖H̃s(Ω) ≤ ‖u− u◦‖H̃s(Ω) + ‖u◦ − u•‖H̃s(Ω)

(A3)

≤ ε+ Crel




∑

T∈T•\T◦

η•(T, u•)
2




1/2

≤ ε+ Crel η•.

As ε → 0, we prove (2.15).
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To prove the weak efficiency (2.16), we employ the inverse estimates (2.21)–(2.22) from Theorem 2.7.
Since 0 < s ≤ 1/2 with s 6= 1/4, this yields that

η2• =
∥∥hs

•

(
f − (−∆)su•

)∥∥2
L2(Ω)

= ‖hs
• (−∆)s(u− u•)‖

2
L2(Ω)

. ‖hs
• (−∆)sJ•(u− u•)‖

2
L2(Ω) + ‖hs

• (−∆)s(1− J•)(u − u•)‖
2
L2(Ω)

. ‖J•(u− u•)‖
2
H̃s(Ω) + ‖(1− J•)(u− u•)‖

2
H̃s(Ω) +

∑

T∈T•

h•(T )
2s ‖(1− J•)(u − u•)‖

2
H2s(Ω•(T )) .

First, Lemma 3.2 (i) guarantees that

‖J•(u− u•)‖H̃s(Ω) + ‖(1− J•)(u − u•)‖H̃s(Ω) . ‖u− u•‖H̃s(Ω) .

Next, we observe that 0 < 2s < 1 with 2s 6= 1/2. Lemma 3.2 (ii) and an interpolation argument yield
that

h•(T )
s ‖(1− J•)(u − u•)‖H2s(Ω•(T )) . h•(T )

1/2 ‖u− u•‖H1/2+s(Ω2
•
(T )) .

Since newest vertex bisection is used to generate T•, only a finite number of shapes of patches can occur.
In particular, the hidden constant in the last estimate does not depend on T•, but only on T0. This
concludes the proof.

3.3 Proof of Theorem 2.6

We note that reduction from [CFPP14] is a consequence of conformity and (A1)–(A2), since


 ∑

T∈T◦\T•

η◦(T, v◦)
2




1/2

(A1)

≤


 ∑

T∈T◦\T•

η◦(T, v•)
2




1/2

+ Cstab ‖v◦ − v•‖H̃s(Ω)

(A2)

≤ qred


 ∑

T∈T•\T◦

η•(T, v•)
2




1/2

+ Cstab ‖v◦ − v•‖H̃s(Ω) .

Therefore, Theorem 2.6 immediately follows from [CFPP14, Theorem 4.1].

4 Proof of Theorem 2.7

4.1 Proof of Lemma 2.2

For x ∈ T , we split the fractional Laplacian into a principal value part and a smoother, integrable part

C(d, s)−1(−∆)suℓ(x) = P.V.

∫

Bdist(x,∂T )(x)

uℓ(x) − uℓ(y)

|x− y|d+2s
dy +

∫

Rd\Bdist(x,∂T )(x)

uℓ(x)− uℓ(y)

|x− y|d+2s
dy. (4.1)

Using polar coordinates y = x + rν, ν ∈ Sd−1, where Sd−1 is the (d − 1)-dimensional unit sphere, and
exploiting that uℓ|T ∈ P1(T ), we may compute the principal value part

P.V.

∫

Bdist(x,∂T )(x)

uℓ(x) − uℓ(y)

|x− y|d+2s
dy = lim

ε→0

∫

Bdist(x,∂T )(x)\Bε(x)

uℓ(x)− uℓ(y)

|x− y|d+2s
dy

= lim
ε→0

∇uℓ|T ·

∫

Bdist(x,∂T )(x)\Bε(x)

x− y

|x− y|d+2s
dy

= lim
ε→0

∇uℓ|T ·

∫

ν∈Sd−1

∫ dist(x,∂T )

r=ǫ

r−2sν drdν = 0, (4.2)
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where the last equality follows from interchanging the integration in ν and r. For the second part in the
decomposition of (−∆)suℓ in (4.1) a similar computation using the Lipschitz continuity of uℓ provides

∣∣∣∣∣

∫

Rd\Bdist(x,∂T )(x)

uℓ(x) − uℓ(y)

|x− y|d+2s
dy

∣∣∣∣∣ . ‖uℓ‖W 1,∞(Ω)

∫

Bdist(x,∂T )(x)c

|x− y|

|x− y|d+2s
dy

= ‖uℓ‖W 1,∞(Ω)

∫

ν∈Sd−1

∫ diamΩ

r=dist(x,∂T )

r−2sdrdν

. ‖uℓ‖W 1,∞(Ω) (1 + dist(x, ∂T )1−2s). (4.3)

Since dist(x, ∂T )β+1−2s = (ωℓ|T )
β+1−2s is square-integrable in view of β > 2s− 3/2, Lemma 2.2 follows.

4.2 Proof of Theorem 2.7

As in [AFF+17], which provides inverse estimates for the classical boundary integral operators, the main
idea of the proof of Theorem 2.7 is a splitting of the operator into a smoother far-field part and a lo-
calized near-field part. The near-field and the far-field are treated separately in the following subsections.

The proofs for both statements (2.21)–(2.22) are fairly similar and only differ in the use of the inverse
inequality of Lemma 4.2 below.

Let v ∈ H̃2s(Ω). We start by a localization and a splitting into near-field and far-field. The L2-norm
in the error estimator can be written as a sum over all elements

∥∥∥h̃s
ℓ(−∆)sv

∥∥∥
2

L2(Ω)
=
∑

T∈Tℓ

∥∥∥h̃s
ℓ(−∆)sv

∥∥∥
2

L2(T )
.

For any constant cT ∈ R, we have that (−∆)scT ≡ 0, which implies (−∆)sv = (−∆)s(v − cT ).
Due to the nonlocality of the fractional Laplacian, we need to split the operator into two contributions,

a localized near-field part and a smoother far-field part. To this end, we select, for each element T ∈ Tℓ,
a cut-off function χT ∈ C∞

0 (Rd) with the following properties: i) suppχT ⊂ Ωℓ(T ), where Ωℓ(T ) is
the patch of T defined in (2.9); ii) there is a set B′ with T ⊂ B′ ⊂ Ωℓ(T ) and dist(T, ∂B′) ∼ hℓ(T );
iii) χT ≡ 1 in B′; iv) ‖χT ‖W 1,∞(Ωℓ(T )) ≤ Chℓ(T )

−1 as well as dist(suppχT , ∂Ωℓ(T )) > chℓ(T ) with
constants C, c > 0 depending only on the γ-shape regularity of Tℓ and d.

Then, for each element T ∈ Tℓ, we have the splitting (−∆)s(v − cT ) = (−∆)s(χT (v − cT )) +
(−∆)s((1− χT )(v − cT )) into the near-field vTnear and a far-field vTfar given by

vTnear := (−∆)s(χT (v − cT )), (4.4)

vTfar := (−∆)s((1 − χT )(v − cT )). (4.5)

We choose

cT :=

{
0 if T ∩ ∂Ω 6= ∅,

1
|Ωℓ(T )|

∫
Ωℓ(T ) v otherwise.

(4.6)

If v = vℓ ∈ S1,1
0 (Tℓ), we write vTnear,ℓ, v

T
near,ℓ for the near-field and far-field to emphasize that the fields

are related to discrete functions. For the near-field for v ∈ H̃2s(Ω) with 0 < s ≤ 1/2 and s 6= 1/4,
Lemma 4.2 below provides the estimate

∑

T∈Tℓ

∥∥hs
ℓv

T
near

∥∥2
L2(T )

. ‖v‖2Hs(Ω) +
∑

T∈Tℓ

hℓ(T )
2s ‖v‖2H2s(Ωℓ(T )) , (4.7)

and for discrete vℓ ∈ S1,1
0 (Tℓ) and 0 < s < 1

∑

T∈Tℓ

∥∥∥h̃s
ℓv

T
near,ℓ

∥∥∥
2

L2(T )
. ‖vℓ‖

2
Hs(Ω) . (4.8)
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For any v ∈ H̃s(Ω), Lemma 4.4 gives

∑

T∈Tℓ

∥∥∥h̃s
ℓv

T
far

∥∥∥
2

L2(T )
. ‖v‖2H̃s(Ω) . (4.9)

Combining (4.7), (4.9), we prove the inverse inequality (2.21); the estimate (2.22) is obtained from (4.8)
and (4.9).

4.2.1 The near-field

In this subsection, we treat the near-field vTnear := (−∆)s(χT (v−cT )). We start with a Poincaré inequality:

Lemma 4.1. Let cT be given by (4.6) and v ∈ H̃s(Ω). Then, for a constant C > 0 depending solely on
Ω, s, the γ-shape regularity of T , and the fact that NVB is used, we have

‖v − cT ‖L2(Ωℓ(T )) ≤ Chℓ(T )
s‖v‖Hs(Ωℓ(T )). (4.10)

Proof. If T ∩∂Ω = ∅, then the Poincaré inequality (4.10) is shown in [AFF+17, Lemma 5.1] and [AB17].
For elements at the boundary, we have chosen cT = 0. Due to the boundary condition satisfied by
v, we have the Poincaré inequality hℓ(T )

−2s ‖v‖2L2(Ωℓ(T )) . |v|2Hs(Ωℓ(T )). To see this, one makes four

observations: a) the power h−2s
ℓ is obtained by scaling; b) T ∩ ∂Ω 6= ∅ implies that at least one face of

∂Ωℓ(T ) lies on ∂Ω; c) only finitely many shapes are possible for Ωℓ(T ) since the meshes are created by
NVB; d) the Poincaré inequality for the patch Ωℓ(T ) scaled to size 1 holds with constant O(1) by the
compactness of the embedding of Hs in L2.

Lemma 4.2. There is a constant C > 0 depending only on Ω, d, s, and the γ-shape regularity of Tℓ
such that the following holds:

(i) For v ∈ H̃2s(Ω) with 0 < s ≤ 1/2 and s 6= 1/4, let the near-field vTnear be given by (4.4). Then,

∑

T∈Tℓ

∥∥hs
ℓv

T
near

∥∥2
L2(T )

≤ C
(
‖v‖2H̃s(Ω) +

∑

T∈Tℓ

hℓ(T )
2s ‖v‖2H2s(Ωℓ(T ))

)
. (4.11)

(ii) For vℓ ∈ S1,1
0 (Tℓ) and arbitrary 0 < s < 1, the near-field vTnear,ℓ satisfies that

∑

T∈Tℓ

∥∥∥h̃s
ℓ v

T
near,ℓ

∥∥∥
2

L2(T )
≤ C ‖vℓ‖

2
H̃s(Ω) .

Proof. Before proving this lemma, we point out that we will frequently use in sums the shorthand
T ′ ∈ Ωℓ(T ) to mean that the summation is over all T ′ ∈ Tℓ satisfying T ′ ⊂ Ωℓ(T ).

Proof of (i): The mapping properties (2.1) of the fractional Laplacian as a pseudo-differential operator

of order 2s as well as the additional assumption v ∈ H̃2s(Ω) ⊂ H2s(Rd) imply

hℓ(T )
2s
∥∥vTnear

∥∥2
L2(T )

. hℓ(T )
2s‖χT (v − cT )‖

2
H̃2s(Ω)

. hℓ(T )
2s ‖χT (v − cT )‖

2
H2s(Ω) , (4.12)

where the last inequality follows from a Hardy inequality that is valid provided that s 6= 1/4, see, e.g.,
[Gri85, Thm. 1.4.4.4].

For s = 1/2, we have the local H1-norm on the right-hand side of (4.11), and we can directly

estimate this by ‖v‖2H1(Ωℓ(T )). We note that this case coincides with the result for the hypersingular

integral operator in the boundary element method, [AFF+17].
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The H2s-norm is nonlocal for s 6= 1/2, but it has a localized upper-bound, cf. [Fae00, Fae02],

‖χT (v − cT )‖
2
H2s(Ω)

≤
∑

T ′∈Tℓ

∫

T ′

∫

Ωℓ(T ′)

|χT (x)(v(x) − cT )− χT (y)(v(y) − cT )|
2

|x− y|d+4s
dydx+

C

hℓ(T ′)2s
‖χT (v − cT )‖

2
L2(T ′)

.
∑

T ′∈Tℓ

∫

T ′

∫

Ωℓ(T ′)

|χT (x)(v(x) − v(y))|2

|x− y|d+4s
dydx+

|(χT (y)− χT (x))(v(y) − cT )|
2

|x− y|d+4s
dydx

+
1

hℓ(T ′)2s
‖χT (v − cT )‖

2
L2(T ′) =: S1 + S2 + S3. (4.13)

Step 1: (Estimate of S3) As suppχT ⊂ Ωℓ(T ), the last term sums up to a L2-norm on the patch Ωℓ(T ).
Since the size of neighboring elements differ only by a constant multiplicative factor, we can estimate
hℓ(T

′)−2s . hℓ(T )
−2s for all T ′ ∈ Ωℓ(T ). The Poincaré inequality on the patch Ωℓ(T ) given in Lemma 4.1

then gives

S3 =
∑

T ′∈Tℓ

hℓ(T
′)−2s ‖χT (v − cT )‖

2
L2(T ′) . hℓ(T )

−2s ‖v − cT ‖
2
L2(Ωℓ(T )) . ‖v‖2Hs(Ωℓ(T )) .

Step 2: (Estimate of S1) To estimate S1, we use that suppχT ⊂ Ωℓ(T ). Therefore, only elements
T ′ ∈ Ωℓ(T ) appear. With a hidden constant depending on the γ-shape regularity of Tℓ, this leads to

S1 .

∫

Ωℓ(T )

∫

Ωℓ(T )

(v(x) − v(y))2

|x− y|d+4s
dydx+

∑

T ′∈Ωℓ(T )\T

∫

T ′

χT (x)
2

∫

Ωℓ(T ′)\Ωℓ(T )

(v(x) − v(y))2

|x− y|d+4s
dydx.

(4.14)

The first term is just the Hs(Ωℓ(T ))-seminorm so that we may concentrate on the second term. Since
dist(suppχT , ∂Ωℓ(T )) > chℓ(T ), the denominator in the second integrand can be directly estimated by
powers of hℓ(T ). For arbitrary T ′ ∈ Ωℓ(T )\T , this immediately leads to

∫

T ′

χT (x)
2

∫

Ωℓ(T ′)\Ωℓ(T )

(v(x) − v(y))2

|x− y|d+4s
dydx .

∫

T ′

χT (x)
2

∫

Ωℓ(T ′)\Ωℓ(T )

(v(x) − v(y))2hℓ(T )
−d−4sdydx

. hℓ(T )
−d−4s

(∫

T ′

χT (x)
2

∫

Ωℓ(T ′)\Ωℓ(T )

(v(x) − cT )
2dydx+

∫

T ′

χT (x)
2

∫

Ωℓ(T ′)\Ωℓ(T )

(v(y) − cT )
2dydx

)

. hℓ(T )
−4s ‖χT (v − cT )‖

2
L2(T ′) + hℓ(T )

−4s ‖v − cT ‖
2
L2(Ωℓ(T ′)\Ωℓ(T )) . (4.15)

After summation over T ′, the desired estimate follows from the Poincaré inequality of Lemma 4.1.
Step 3: (Estimate of S2) Since the integrand vanishes if T ′ /∈ Ωℓ(T ), we may split the sum as in

Step 2 into a smooth part and a part defined on the patch Ωℓ(T ), i.e.,

S2 .

∫

Ωℓ(T )

∫

Ωℓ(T )

(v(y)− cT )
2(χT (x) − χT (y))

2

|x− y|d+4s
dydx

+
∑

T ′∈Ωℓ(T )\T

∫

T ′

∫

Ωℓ(T ′)\Ωℓ(T )

(v(y)− cT )
2(χT (x) − χT (y))

2

|x− y|d+4s
dydx =: S2,1 + S2,2. (4.16)

Using the Lipschitz continuity of χT , we obtain

S2,1 . ‖∇χT ‖
2
L∞(Rd)

∫

Ωℓ(T )

∫

Ωℓ(T )

(v(y)− cT )
2

|x− y|d+4s−2
dydx

. hℓ(T )
−2

∫

Ωℓ(T )

(v(y) − cT )
2

∫

Ωℓ(T )

1

|x− y|d+4s−2
dxdy

Lem. 4.1

. hℓ(T )
−2+2s‖v‖2Hs(Ωℓ(T )) sup

y∈Ωℓ(T )

∫

Ωℓ(T )

1

|x− y|d+4s−2
dx.

12



Since we assume s < 1/2, a direct calculation reveals

∫

Ωℓ(T )

1

|x− y|d+4s−2
dx .

∫ chℓ(T )

0

r−4s+1dr . hℓ(T )
−4s+2,

so that S2,1 can be estimate in the required way. To estimate S2,2 one uses again the Lipschitz continuity
of χT , the observation dist(suppχT , ∂Ωℓ(T )) > chℓ(T ), as well as a Poincaré inequality of Lemma 4.1 so
that S2,2 can be estimated using the same arguments as in (4.15). Putting the estimates for S1, S2, and
S3 into (4.12) and summing over all elements using the γ-shape regularity of Tℓ, we obtain

∑

T∈Tℓ

hℓ(T )
2s
∥∥vTnear

∥∥2
L2(T )

. ‖v‖2H̃s(Ω) +
∑

T∈Tℓ

hℓ(T )
2s ‖v‖2H2s(Ωℓ(T )) .

Proof of (ii) in the case 0 < s ≤ 1/2: For 2s ≤ 1 and vℓ ∈ S1,1
0 (Tℓ) we have the classical inverse

estimate (e.g., [SS11, Thm. 4.4.2])

‖vℓ‖H2s(Ωℓ(T )) . hℓ(T )
−s ‖vℓ‖Hs(Ωℓ(T )) . (4.17)

Hence, for s ∈ (0, 1/2] \ {1/4} and a vℓ ∈ S1,1
0 (Tℓ), we may directly combine the result of (i) with the

inverse estimate (4.17) to get the desired estimate. To obtain the case s = 1/4, we note that in the above
proof of (i), the assumption s 6= 1/4 entered only through the estimate (4.12). However, the bound
‖χT (vℓ − cT )‖H̃2s(Ω) . ‖χT (vℓ − cT )‖H2s(Ω) is still valid for vℓ ∈ S1,1

0 (Tℓ).

Proof of (ii) in the case 1/2 < s < 1: Here, we cannot use the mapping properties of the fractional
Laplacian since vℓ may not be in H2s(Ω) for s ≥ 3/4. However, we can directly estimate the fractional
Laplacian using that due to s > 1/2 the function r−2s+1 vanishes at infinity, which does not hold for the
case s < 1/2. We write

∑

T∈Tℓ

∥∥∥h̃s
ℓ v

T
near,ℓ

∥∥∥
2

L2(T )
=
∑

T∈Tℓ

hℓ(T )
2s−2β

∥∥∥ωβ
ℓ (−∆)s((vℓ − cT )χT )

∥∥∥
2

L2(T )
.

The definition of the fractional Laplace leads to

∥∥∥ωβ
ℓ (−∆)s((vℓ − cT )χT )

∥∥∥
2

L2(T )
=

∫

T

ωℓ(x)
2β

(
P.V.

∫

Rd

(vℓ(x)− cT )χT (x)− (vℓ(y)− cT )χT (y)

|x− y|d+2s
dy

)2

dx

.

∫

T

ωℓ(x)
2β(vℓ(x) − cT )

2

(
P.V.

∫

Rd

χT (x) − χT (y)

|x− y|d+2s
dy

)2

dx

+

∫

T

ωℓ(x)
2β

(
P.V.

∫

Rd

χT (y)
vℓ(x)− vℓ(y)

|x− y|d+2s
dy

)2

dx =: S4 + S5.

(4.18)

We treat the integrals S4, S5 on the right-hand side separately, starting with S5. We split the integral
S5 further into two parts, a principal value integral containing the singularity and a smoother, integrable
part:

S5 .

∫

T

ωℓ(x)
2β

(
P.V.

∫

Bdist(x,∂T )(x)

χT (y)
vℓ(x) − vℓ(y)

|x− y|d+2s
dy

)2

dx

+

∫

T

ωℓ(x)
2β

(∫

Bdist(x,∂T )(x)c
χT (y)

vℓ(x) − vℓ(y)

|x− y|d+2s
dy

)2

dx =: S5,1 + S5,2.

In fact, S5,1 = 0. To see this, we use that, for x, y ∈ T , we have vℓ(x) − vℓ(y) = ∇vℓ|T · (x − y),
where ∇vℓ|T ∈ Rd is constant. Using polar coordinates, the principal value integral can be computed
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and is equal to zero as in (4.2). To bound S5,2 we note that our assumption s > 1/2 implies that r−2s+1

vanishes at infinity. With the Lipschitz continuity of vℓ, we estimate S5,2 as in (4.3) as

S5,2 . ‖∇vℓ‖
2
L∞(Ωℓ(T ))

∫

T

ωℓ(x)
2β

(∫

Bdist(x,∂T )(x)c

1

|x− y|d+2s−1
dy

)2

dx

. ‖∇vℓ‖
2
L∞(Ωℓ(T ))

∫

T

ωℓ(x)
2β

(∫ ∞

dist(x,∂T )

1

r2s
dy

)2

dx

= ‖∇vℓ‖
2
L∞(Ωℓ(T ))

∫

T

ωℓ(x)
2β−4s+2dx . hℓ(T )

2β−4s+2+d ‖∇vℓ‖
2
L∞(Ωℓ(T ))

. hℓ(T )
2β−2s ‖vℓ‖

2
Hs(Ωℓ(T )) , (4.19)

where the last two estimates follow from a direct computation of the integral over the distance function
and an inverse inequality, where we used that the ratio of neighboring elements is bounded by a constant.

It remains to estimate S4 in (4.18), which is similar to the integral above. Since χT ≡ 1 on T , we get

∫

T

ωℓ(x)
2β(vℓ(x)− cT )

2

(
P.V.

∫

Rd

χT (x)− χT (y)

|x− y|d+2s
dy

)2

dx

=

∫

T

ωℓ(x)
2β(vℓ(x)− cT )

2

(∫

Bdist(x,∂T )(x)c

χT (x) − χT (y)

|x− y|d+2s
dy

)2

dx.

Using the Lipschitz continuity of χT , polar coordinates, and the Poincaré inequality, we therefore
may estimate as in (4.19)

∫

T

ωℓ(x)
2β(vℓ(x)− cT )

2

(∫

Bdist(x,∂T )(x)c

χT (x)− χT (y)

|x− y|d+2s
dy

)2

dx

. ‖∇χT ‖
2
L∞(Rd)

∫

T

ωℓ(x)
2β(vℓ(x) − cT )

2

(∫

Bdist(x,∂T )(x)c

1

|x− y|d+2s−1
dy

)2

dx

. hℓ(T )
−2

∫

T

ωℓ(x)
2β−4s+2(vℓ(x)− cT )

2dx . hℓ(T )
2β−2s ‖vℓ‖

2
Hs(Ωℓ(T )) .

Putting the bounds for S4 and S5 together and summing over all elements, leads to the claimed inverse
estimate.

4.2.2 The far-field

In order to treat the far-field part in the proof of the inverse estimate of Theorem 2.7, we utilize the
interpretation of the fractional Laplacian as the Dirichlet-to-Neumann map for the extension problem
(2.4). This leads us to the problem of controlling second derivatives of the solution to the extension
problem. This is done in the following Lemma 4.3, which is proved with the techniques of tangential
difference quotients, typical for elliptic PDEs, see, e.g., [Eva98].

Lemma 4.3. Let ζ ∈ C∞
0 (Rd+1) and B ⊂ B′ ⊂ Rd ×R+ with ζ|B ≡ 1 and supp ζ ∩Rd ×R+ ⊂ B′. Let

U ∈ B1
α(R

d × R+) satisfy (2.4a) and tr(Uζ) = 0. Then,

‖Dx(∇U)‖L2
α(B) ≤ 2‖∇ζ‖L∞(Rd+1) ‖∇U‖L2

α(B′) . (4.20)

Proof. With the unit-vector exj in the j-th coordinate and τ > 0, we define the difference quotient

Dτ
xj
w(x) :=

w(x+ τexj )− w(x)

τ
.
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We use the test-function V = D−τ
xj

(ζ2Dτ
xj
U) in the weak formulation of (2.4). Noting that V |∂(Ω×R+) = 0

due to the assumption tr(Uζ) = 0, we therefore obtain

0 =

∫

Ω×R+

Yα∇U · ∇V dY dx =

∫

B′

Dτ
xj
(Yα∇U) · ∇(ζ2Dτ

xj
U) dY dx

=

∫

B′

YαDτ
xj
(∇U) ·

(
ζ2∇Dτ

xj
U + 2ζ∇ζDτ

xj
U
)
dY dx

=

∫

B′

Yαζ2Dτ
xj
(∇U) ·Dτ

xj
(∇U) dY dx+

∫

B′

2Yαζ∇ζ ·Dτ
xj
(∇U)Dτ

xj
U dY dx.

Therefore, with Young’s inequality, we have the estimate

∥∥∥ζDτ
xj
(∇U)

∥∥∥
2

L2
α(B′)

≤ 2

∣∣∣∣
∫

B′

Yαζ∇ζ ·Dτ
xj
(∇U)Dτ

xj
UdY dx

∣∣∣∣

≤
1

2

∥∥∥ζDτ
xj
(∇U)

∥∥∥
2

L2
α(B

′)
+ 2 ‖∇ζ‖2L∞(B′)

∥∥∥Dτ
xj
U
∥∥∥
2

L2
α(B′)

.

Absorbing the first term and taking the limit τ → 0, we obtain the sought inequality for all second
derivatives in x.

The following Lemma 4.4 provides the required estimate for the far-field.

Lemma 4.4. Let v ∈ H̃s(Ω) and the far-field vTfar be given by (4.5). Let β = 0 for 0 < s < 1/2 and
β = s− 1/2 for 1/2 < s < 1. Then, the estimate

∑

T∈Tℓ

∥∥∥h̃s
ℓ v

T
far

∥∥∥
2

L2(T )
≤ C ‖v‖2H̃s(Ω) (4.21)

holds with a constant depending only on Ω, d, s, and the γ-shape regularity of Tℓ.

Proof. Since β ≥ 0, we have h̃s . hs so that it suffices to show the estimate (4.21) with h̃s replaced with
hs.

Since the fractional Laplacian is the Dirichlet-to-Neumann map for the extension problem (2.4), we
need to control the Neumann data of the extension problem, i.e., the trace of z(x,Y) := Yα∂YU(x,Y)
at Y = 0, where U is the solution of (2.4) with boundary data u = (1− χT )v + χT cT . We note that the
definition of the cut-off function χT and the constant cT (in particular: cT = 0 if T ∩ ∂Ω 6= ∅) imply

v ∈ H̃s. Moreover, (−∆)scT ≡ 0 implies that vTfar = (−∆)su.
Given T ∈ Tℓ, the γ-shape regularity of Tℓ implies the existence of sets T ⊂ B0 ⊂ B′

0 ⊂ Ωℓ(T ) with
dist(B0, ∂B

′
0) ∼ hℓ(T ) and implied constant depending solely on the γ-shape regularity. Additionally, we

may require that B′
0 ⊂ {χT ≡ 1}. Setting B := B0 × (0, hℓ(T )), B

′ := B′
0 × (0, 2hℓ(T )), we may select a

cut-off function ζ ∈ C∞
0 (Rd+1) with ζ ≡ 1 on B, supp ζ ∩ Rd × R+ ⊂ B′ and ‖∇ζ‖L∞(Rd+1) . hℓ(T )

−1,
where again the implied constant depends solely on the γ-shape regularity of Tℓ. The multiplicative trace
inequality from [MK18, Lemma 3.7] applied with −α provides

‖z(·, 0)‖L2(T ) = ‖ζ(·, 0)z(·, 0)‖L2(T ) . ‖ζz‖L2
−α(B) + ‖ζz‖

(1+α)/2

L2
−α(B)

‖∂Y(ζz)‖
(1−α)/2

L2
−α(B)

. hℓ(T )
−(1−α)/2 ‖z‖L2

−α(B) + ‖z‖
(1+α)/2

L2
−α(B)

‖∂Yz‖
(1−α)/2

L2
−α(B)

.

The equation − div(Yα∇U) = 0 implies that −∂Yz = Yα∆xU , so we obtain with s = (1− α)/2

‖z(·, 0)‖L2(T ) . hℓ(T )
−s ‖Yα∂YU‖L2

−α(B) + ‖Yα∂YU‖
(1+α)/2

L2
−α(B)

‖Yα∆xU‖
(1−α)/2

L2
−α(B)

= hℓ(T )
−s ‖∂YU‖L2

α(B) + ‖∂YU‖
(1+α)/2
L2

α(B) ‖∆xU‖
(1−α)/2
L2

α(B) .

It remains to control ∆xU in the weighted L2-norm. This is done with Lemma 4.3, and we get

‖z(·, 0)‖L2(T ) . hℓ(T )
−s ‖∂YU‖L2

α(B) + hℓ(T )
−s ‖∂YU‖

(1−α)/2
L2

α(B) ‖∇U‖
(1+α)/2
L2

α(B)

. hℓ(T )
−s ‖∇U‖L2

α(Ωℓ(T )×(0,hℓ(T ))) .
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With a standard a priori estimate, the energy norm on the right-hand side can be estimated by the
Dirichlet data (1− χT )v + χT cT , and this finally implies

∑

T∈Tℓ

hℓ(T )
2s
∥∥vTfar

∥∥2
L2(T )

. ‖∇U‖2L2
α(Ω×R+)

. ‖(1 − χT )v + χT cT ‖
2
H̃s(Ω) . ‖v‖2H̃s(Ω) + ‖χT (v − cT )‖

2
H̃s(Ω) . ‖v‖2H̃s(Ω) ,

where the last estimate can be found in the proof of Lemma 4.2. This proves the estimate for the
far-field.

5 Numerics

We illustrate our theoretical results of the previous sections with some numerical examples in two di-
mensions. For more numerical examples about adaptive methods for fractional diffusion, we refer to
[AG17].

5.1 Implementational Issues

We implement the crucial steps SOLVE (step (i)) and ESTIMATE (step (ii)) in Algorithm 2.5 in MAT-
LAB R2018a as follows:

• SOLVE: To obtain the lowest-order discrete solution uℓ ∈ S1,1
0 (Tℓ), we use the existing MATLAB-

code from [ABB17], where the unbounded domain Rd is replaced by a (large) circle around the
computational domain Ω. The integrals of the system matrix are computed with high precision
quadrature rules. For domains Ω with curved boundary ∂Ω, the boundary is approximated by a
piecewise linear interpolant, which introduces a variational crime. Nevertheless, this approximation
improves as the mesh size near ∂Ω is reduced.

• ESTIMATE: For the error estimator, we need to compute the local contributions

ηℓ(T ) =
∥∥∥hs−β

ℓ ωβ
ℓ ((−∆)suℓ − f)

∥∥∥
L2(T )

,

with β = 0 for 0 < s ≤ 1/2 and β = s − 1/2 for 1/2 < s < 1. In Section 2, we noted that
(−∆)suℓ(x) may blow up as x tends to the mesh skeleton. The integral on the triangle T is
transformed to an integral on a square by means of the Duffy transformation. There, the integral
is approximated by a quadrature on a tensor product composite Gauss rule on meshes that are
refined geometrically towards the edges of the square. Evaluating the residual requires evaluating
the fractional Laplacian applied to the discrete solution in each quadrature point. For x ∈ T , this
is done with the pointwise evaluation formula from [AG17, Lemma 4]

(−∆)su(x)

C(d, s)
=

1

d+ 2s− 2

∫

∂T

∇u|T · ny

|x− y|d+2s−2
dy −

u(x)

2s

∫

∂T

(x− y) · ny

|x− y|d+2s
dy

+
∑

T ′ 6=T

(
1

2s(d+ 2s− 2)

∫

∂T ′

∇u|T ′ · ny

|x− y|d+2s−2
dy −

1

2s

∫

∂T ′

u(y)
(x− y) · ny

|x− y|d+2s
dy

)
,

(5.1)

Here, only integrals over the boundary of each element appear, which are approximated using the
standard 1D-MATLAB quadrature function.

As two contributions ηℓ(T1), ηℓ(T2) are independent for T1 6= T2, the computation of the error
estimator is easily parallelized, which leads to considerable speed-up in the computations.

Remark 5.1. The computation of the error estimator is fairly expensive due to the need for an accurate
quadrature rule for the residual. One way to circumvent this is to use a different error estimator inspired
by the near-field and far-field splitting from Section 4, as well as the observation that the near-field
behaves like a power of the distance to the skeleton. We illustrate our ideas in the one dimensional case:
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As in formula (4.2), the principal value integral over one element T = [x0, x1] can be computed exactly
for x ∈ T as

P.V.

∫

T

uℓ(x) − uℓ(y)

|x− y|1+2s dy =
u′
ℓ|T

1− 2s

(
(x− x0)

1−2s − (x1 − x)1−2s
)
.

For all other elements T ′ ∈ Tℓ\{T } a similar computation can be made. However, only elements in the
patch of T are truly of interest, since the integrand is smooth for all other elements. For the elements in
the patch, again, only the terms containing x0, x1 are relevant, which leads to the splitting

rnear(x) :=
1

1− 2s

∑

T ′∈Ωℓ(T )\T

dist(x, ∂T )1−2s[u′
ℓ]T,T ′

rfar(x) :=
∑

T̃ /∈Ωℓ(T )

(
1

2s(2s− 1)

∫

∂T̃

u′
ℓ|T̃ · ny

|x− y|2s−1 dy −
1

2s

∫

∂T̃

uℓ(y)
(x− y) · ny

|x− y|1+2s dy

)
− f,

where [u′
ℓ]T,T ′ denotes the jump of the derivative across the elements T and T ′. Similarly as in Theo-

rem 2.3, the residual can then be bounded by

‖rℓ‖H−s(Ω) . ‖hs
ℓrfar‖L2(Ω) +

∑

T∈Tℓ

∑

T ′∈Ωℓ(T )\T

|[u′
ℓ]T,T ′ |hℓ(T )

3/2−s.

The advantage of this approach is that the far-field, written in terms of formula (5.1), can be cheaply
computed using standard Gaussian quadrature and for the near-field only the jumps across the elements
need to be computed.

We present convergence plots in the energy norm, where we use that — due to the Galerkin orthog-
onality and symmetry of a(·, ·) — the error can be computed as

‖u− uℓ‖
2
H̃s(Ω) = 〈f, u〉L2(Ω) − 〈f, uℓ〉L2(Ω) . (5.2)

5.2 Example 1 – Circle

We start with an example on the unit circle Ω = B1(0) and choose a constant right-hand side f =
22sΓ(1 + s)2 with exact solution given by (see, e.g., [AG17, BBN+18])

u(x) = (1 − |x|2)s+ with g+ = max{g, 0}.

Using polar coordinates, we can easily compute the exact energy as

a(u, u) =

∫

B1(0)

fu dx = 22sΓ(1 + s)2
2π

2s+ 2
.

The exact solution is smooth inside the unit circle, but non-smooth towards the whole boundary, which
is typical for solutions of our model problem (2.6). Therefore, we expect that the adaptive algorithm
refines the mesh towards the whole boundary, which is indeed the case as shown in Figure 1.

Figure 2 shows the values of the error estimator (2.13) (brown triangles, blue squares) as well as
the error (black diamonds, red stars) in the energy norm for uniform and adaptive mesh refinement by
Algorithm 2.5 steered by the estimator (2.13) for s = 0.25 (with θ = 0.3) and s = 0.75 (with θ = 0.5).

As expected, uniform mesh refinement leads to a reduced rate of N−1/4 due to the singularity of the
solution at the boundary of the circle. However, adaptive refinement restores the optimal algebraic rate
of N−1/2 both for the error and the estimator as predicted by Theorem 2.6.

In Figure 3, we vary the adaptivity parameter θ ∈ (0, 1] for fixed s = 0.25. The dashed lines indicate
the values of the error estimator and the solid ones the true errors in the energy norm. We observe optimal
algebraic rates for all choices θ = 0.3, 0.5, 0.7 that are smaller than 1. θ = 1 leads to uniform refinement
and therefore non-optimal convergence. As the error and estimator curves are not distinguishable for
θ < 1, this experiment suggests, that the condition θ ≪ 1 in Theorem 2.6 is not necessary.

17



-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Adaptively generated meshes (s = 0.25, θ = 0.3), left: coarse grid on the circle; middle:
adaptively refined mesh on circle; right: L-shaped domain.
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Figure 2: Error and error estimator on the unit circle with constant right-hand side for uniform and
adaptive refinement; left: s = 0.25, θ = 0.3; right: s = 0.75, θ = 0.5.

5.3 Example 2 – L-shaped domain

As a second example, we consider the L-shaped domain Ω = (−1, 1)2\[0, 1)2 depicted in Figure 1. We
prescribe a constant right-hand side f ≡ 1. As the exact solution is unknown, we extrapolate the energy
from the computed discrete energy.

Again, the adaptive algorithm refines the meshes towards the whole boundary due to the singularity
of the solution at the whole boundary. This is in contrast to the known results for the integer Laplacian
(s = 1), where only refinement towards the reentrant corner is observed.

Figure 4 shows the convergence of the error estimator and the error for the cases s = 0.25 (θ = 0.3)
and s = 0.75 (θ = 0.5). We observe optimal convergence rates for the adaptive method and reduced
rates for uniform refinement just as in Example 1.

5.4 Example 3 - Circle, discontinuous right-hand side

As a final example, we again consider the unit circle Ω = B1(0), but choose a discontinuous right-hand
side

f(x, y) = χ{x>0}(x, y) =

{
1 forx > 0
0 otherwise

.

For this problem, again an exact solution is known, see, e.g., [AG17]. The energy of this solution can be
computed using the Meijer G-function as

〈f, u〉L2(Ω) = 2−2s

(
π

4(s+ 1)Γ(s+ 1)2
−

1

π
G3,2

4,4

( 1, 1 + s/2, 5/2 + s, 5/2 + s
2, 1/2, 1/2, 2 + s/2

∣∣∣− 1
))

.

In Figure 5, an adaptively generated mesh and the discrete solution are plotted. In contrast to the
previous examples, the adaptive algorithm does not only refine the mesh at the boundary, but also along
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Figure 3: Dependence on the adaptivity parameter θ for s = 0.25 on the unit circle with constant
right-hand side.
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Figure 4: Error and error estimator on the L-shaped domain for uniform and adaptive refinement; left:
s = 0.25, θ = 0.3; right: s = 0.75, θ = 0.5.

the discontinuity of f at the line x = 0. However, the refinement towards the boundary tends to be
stronger than towards the singularity of the right-hand side.

In Figure 5, convergence rates for the error estimator and the error are depicted. The empirical
results are the same as for the previous two examples.
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Figure 5: Adaptively generated mesh (s = 0.25, θ = 0.3) for problem with discontinuous right-hand side
(left) and computed Galerkin solution (right).
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Figure 6: Error and error estimator with discontinuous right-hand side on the unit circle for uniform
and adaptive refinement; left: s = 0.25, θ = 0.3; right: s = 0.75, θ = 0.5.
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