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hp-FEM for the fractional heat equation

Jens Markus Melenk* Alexander Rieder!

April 12, 2019

We consider a time dependent problem generated by a nonlocal operator in space.
Applying a discretization scheme based on hp-Finite Elements and a Caffarelli-
Silvestre extension we obtain a semidiscrete semigroup. The discretization in time
is carried out by using hp-Discontinuous Galerkin based timestepping. We prove
exponential convergence for such a method in an abstract framework for the dis-
cretization in the original domain ).

1. Introduction

For stationary fractional diffusion, numerical techniques have recently been proposed that pro-
vide exponential convergence of the error with respect to the computational effort, [BMNT18,
BMS19]. The construction is based on hp-Finite Elements on appropriate geometric meshes.
The purpose of the present article is to generalize these techniques to the time dependent setting.
We consider the discretization of the time dependent problem (2.1), generated by a fractional
power of an elliptic operator. The spatial discretization of the nonlocal operator is based on a
reformulation using the Caffarelli-Silvestre extension, for which an hp-finite element discretiza-
tion (FEM) is employed. The discretization in time is then carried out by a Discontinuous
Galerkin method in the spirit of [SS00] of either fixed order or in its hp version. Our analysis
hinges on two conditions, one related to stable liftings of the initial condition and the second
one related to the ability to approximate solutions of singularly perturbed problems.

After establishing an abstract framework, we work out the case of hp-FEM in one spatial
dimension and for a special case of constant coefficients in full detail. The reduction of scope to
1D mainly is done to keep the presentation to a reasonable length; we expect that it is possible
to establish the assumptions of the abstract framework also for the case @ C R? d > 1. We
point out how and where our proofs would need modifications. Discretization schemes for the
same model problem have already appeared in the literature. In [BLP17], the approximation is
done by applying numerical quadrature to the Dunford-Taylor representation of the solution and
using a low-order finite element method in space. The idea of treating the extension problem via
finite elements is already well established for the case of elliptic problems, e.g. [NOS15] for the
low-order FEM or [MPSV 18] as well as [BMN 18] for using hp-based discretizations. The use
of an extension problem in order to discretize a time-dependent problem was used in [NOS16],
focusing on low order finite elements and time-stepping schemes, but allowing also for fractional
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time derivatives. In the context of wave equations, such a discretization was recently analyzed
in [BO18].

When dealing with parabolic problems, it is well-known that, if the initial condition does not
satisfy certain compatibility conditions, so called startup singularities form. They need to be
accounted for in the numerical method. We rigorously prove that, as long as the meshes are
designed in a proper way, our discretization scheme delivers exponential convergence rate for the
spatial discretization and optimal convergence rate in time, i.e., optimal order for fixed order
timestepping like implicit Euler and exponential convergence for the hp-DG based method.

The paper is structured as follows: Section 2 presents the model problem and the functional
analytic setting. In Section 3, we then perform a first discretization step with respect to the
spatial variables. This yields a continuous in time/discrete in space approximation. In order to
prove exponential convergence for this discretization, we take a small detour in Section 3.1 to
analyze an auxiliary elliptic problem. This problem will allow us to lift a representation formula
from the domain  to the extended cylinder 2 x Ry while allowing to reuse the techniques
developed in [BMNT18]. These preparations then allow us to prove exponential convergence
for their space discretization in Section 3.2. The discretization in time is then carried out
in Section 4 yielding a fully discrete scheme. This scheme was implemented and Section 5
confirms the exponential convergence. The appendices provide results that could not readily be
cited from the literature: Appendix B generalizes results on Ap-FEM for singularly perturbed
problems to the case of complex perturbation parameters. Appendix C is concerned with the
lifting of polynomials in €2 to piecewise polynomials on the cylinder €2 x R, in a stable way.

We also would like to point out that using the Caffarelli-Silvestre extension is not the only
approach to discretize the nonlocal operator which is able to yield an exponentially convergent
scheme. We mention schemes based on sinc-quadrature and the Balakrishnan or Riesz-Taylor
formulations of the fractional Laplacian (see [BLP17]). We expect that it is possible to combine
such a scheme with hp-FEM in the space discretization and by combining [BLP17] with the
techniques laid out in this paper it should be possible to show exponential convergence.

We close with a remark on notation. We write A < B to mean there exists a constant C' > 0,
which is independent of the main quantities of interest, i.e., mesh size or polynomial degree
used, etc., such that A < CB. We write A ~ B to mean A < B and B S A. The exact
dependencies of the implied constant is specified in the context.

2. Model problem

Let © C R? be a bounded Lipschitz domain. We consider the following model problem for
s€(0,1):

w(t) + L3u(t) = f(t) in Q, vt >0 (2.1a)
u(-,t) =0 onI', vVt >0 (2.1b)

with initial condition u(0) = g and right-hand side f : 2 x Ry — R. We assume that the initial
condition and right-hand side are analytic but do not require any compatibility or boundary
conditions.

The operator Lu := — div(AVu) + cu is a linear, elliptic and self-adjoint differential operator,
where we assume that A € L*°(Q,R%*9) is uniformly SPD in Q and ¢ € L>(Q) satisfies ¢ > 0.



The fractional power L£° is defined using the spectral decomposition
b

o0

Lou = ZH?(U,%)LQ(Q)@L (2.2)
=0

where (15, ¢j)jen, are eigenvalues and eigenfunctions of the operator £ with homogeneous
Dirichlet boundary conditions.

Using the Caffarelli-Silvestre extension one can localize the nonlocal operator £® and rewrite
(2.1) in the following form with o :=1 — 2s:

—div (y*AV% ) + y*c% =0 on C x (0,7), (2.3a)
detr % + 0CU = d,f on Q x {0} x (0,7), (2.3b)
U =0 on 0r.C x (0, 7). (2.3c)

Here C denotes the cylinder 2 x Ry, ds := 2°T'(1 — s)/I'(s). The lateral boundary is defined
as Or,C := 002 x Ry and

Oy« = — lim y*0,% (-, y), and tr % =%(-,0)

y—0t

is the conormal derivative and boundary trace at y = 0 respectively. The connection to u is
then given by tr 7 (t) = u(t).
In order to treat this extended problem, we introduce the following weighted Sobolev spaces:

H'(y*, D)= {w € L*(y*, D) : |Vuw| € L*(y*, D)}, (2.4)
H'(y*, D) := {w e H' (y*,D) :u=0o0n 9;C} . (2.5)
The space ﬁl(ya,C) is equipped with the norm H%Hi}l(ya 0 = /yo‘ |V52/\2.
’ C

We also define the bilinear form corresponding to the weak form of (2.3a) as:

A, V) = /yo‘(AV%) NV +y“cuV.
C

Throughout this paper, we will make use of fractional Sobolev and interpolation spaces. We
define for two Banach spaces X; C X and 0 € (0, 1):

2 R 2 dt
Jolfy = [ (i o= ol + el ) %
(X0, X1]gg = {u € Xo : lull o xa)pa < oo} .

For the endpoints we set [Xo, X1]o2 := Xo and [Xo, X1]1,2 := X;. Fractional Sobolev spaces
are defined as

H5(Q) := [L*(Q), H'(Q)]

s,27

and the spaces with zero boundary conditions are defined as

H*(Q) == [L*(Q), Hy()], ,



The boundary condition in (2.1) is understood in the sense of u(t) € H*(Q) for all ¢ > 0. That
is, for s < 1/2 no boundary condition is imposed, while for s > 1/2 it is imposed in the sense
of traces. For s = 1/2 the boundary condition is imposed as membership in the Lions-Magenes

space, often also denoted HSéQ(Q).
Sometimes it is useful to work with a different scale of spaces, characterized using the eigen-
decomposition of L, as

B () = u € L2(Q) > pr3|(u,07) ooy |* < o0
§=0

For s € [0, 1], the spaces coincide, i.e., I;'S(Q) = H*(Q) with equivalent norms.
We consider the discretization in two separate steps. We semidiscretize in space and subse-
quently discretize in time, i.e.,

1. discretize in space using tensor product hp-FEM in € and the artificial variable y,

2. discretize in time by a discontinuous Galerkin method.

3. Discretization in space — the semidiscrete scheme

In this section we investigate the convergence of a semidiscrete semigroup to the solution of (2.1).
We consider finite dimensional subspaces Vi C H{(Q2) and {0} # VY C H'(y* R,), and set
VhX’y =V¥® V?; CH L(y®,C) as our approximation space. We will keep most of our analysis
as general as possible, but will provide concrete examples on how to implement these spaces in
Sections 3.1.1 and 3.1.2. Throughout the paper, we will write

Ng :=dim(VyY)  and  Ng:=dim(Vy).

While we will give a detailed construction of V?Lj later on, for now we just assume that there
exists v € V% with v(0) = 1 in order to be able to solve Dirichlet problems.
We define the Galerkin approximation Lj : Vf — Vf to the operator £° via the relation:

1
(Lu,v) 2y = d—A(.Zhu, L), (3.1)

where %, : Vi¥ — th,y denotes the solution to the following “lifting problem”:

A(Lpu, ¥,) =0 VY, € VhX’y s.t. tr¥, =0, (3.2a)
tr Lu = u. (3.2b)

We also introduce the notation .Z for the solution to

A(Lu,¥)=0 V¥ e H'(y*,C)st. tr¥ =0, (3.3a)
tr Lu = u. (3.3b)

Remark 3.1. We note that by [NOS15, Proposition 2.5] and the ellipticity of A, the operator
Z is bounded with respect to the I;TS(Q) — HY(y™,C)-norm. It is non-trivial to show that %,
is is bounded, especially for anisotropic meshes. See Appendix C for this result in a simplified
setting. See also [MKR18] for a related problem.



Theorem 3.2. The operator —L3 is the generator of an analytic semigroup on (Vﬁ, H'HLQ(Q)>.

Proof. The operator L; is symmetric due to the symmetry of A. By [Paz83, Section 2.5,
Theorem 5.2], it remains to show the estimate

<M g
2@ = 1+ A IO

(YA

for Re(A) > 0 and a constant M, independent of u and A. It is easy to see that (Al + L';‘;)_l f=
tr %, where %\ € th,y solves

(Ads tr %, tr 10) 1oy + A% Th) = (dsf 8 ) a2y VIH € VY.

Existence of the inverse follows from the coercivity of the bilinear form on the left-hand side.
The a priori estimate follows by testing with ¥} := % to get:

A [[tr 2N + A%, ) < ds || fll 2o 1t 20l 2 -

Since A(%y, %)) is non-negative this concludes the proof for A # 0. For A = 0 we use the
continuity of the trace operator [[ull 2y S 1%l g1(ye ¢y S [1f1L2(0)- O

Lemma 3.3. If we equip the space fo with the norm
||u||Vf = ”ghuHﬁl(ya’c) ) (34)
the operator L3 is elliptic, i.e.,
2 2
e lull < (Chuw) oy < e [l
We also have the following estimate of the I:TS(Q)—norm:
2
c3 ”uHﬁs(Q) < (ﬁiuvu)LQ(Q) :
The constants c; are independent of the spaces V%j and V% and depend only on ), a, and L.
Proof. By the trace estimate [NOS15, Proposition 2.5, we get
2 2
[l Gy S 120ull o o) S ALy, Zhu) = ds (LRu, w) g2 (g -
On the other hand we get:
_ 2 2
(Lhuw) gy = 5 AL, L) S (Ll gy =l s
The operator L gives rise to the semidiscrete problem posed in VhX :

Up + Lyup, =12 f, (3.5a)
up(0) = up.p, (3.5b)

where II;2 : L2(Q) — Vf denotes the L?-orthogonal projection and Upo € Vf denotes some
approximation to the initial condition.



By Duhamel’s principle, u and uj can be written as

u(t) = E(t)up + /0 E(Mf(t—7)dr and wup(t) = Ep(t)up + /0 En(T)f(t—T)dT,

where € : Ry — Z(L%(2), L*(Q)) and &, : Ry — B(V¥, V) are the semigroups generated by
—L% and —L7 respectively.

When considering the discrete flow for initial conditions without compatibility conditions,
the right spaces will be the following;:

Definition 3.4. Let 8 € (0,1). Recall that the space Vi is equipped with the norm ||u||Vf =
HDS,”huHI;»Il(ya c)- We define the interpolation spaces

W= [V M)« (78 o)

We employ the convention H-vao = [l 2y and ”'val = HHVf for the endpoints.

B2

Throughout this paper, we will work with abstract spaces VhX . Exponential convergence of
the numerical method relies on the following Assumptions 3.5, 3.9:

Assumption 3.5. There exist constants 8, b, u > 0, such that for all ug that are analytic on
a fized neighborhood € of Q, there exists a function upo € Vf and a constant C > 0 such that

_ H
Huh,oHfoﬁ < Clluoll sy and [luo — Uh,oﬂLz(Q) < Ce o,

where Nq = dim (Vf)

When considering the Riesz-Dunford representation of u, the contour lies in the set of values
for which £ — z is elliptic. Therefore we consider the set of complex numbers up to a cone
containing the part of the positive real axis for which £ — z is no longer elliptic.

2
Definition 3.6. With the Poincaré constant Cp of Q and fized 0 < ¢ < zp < min (ﬁ, 1) ,

we define
S =C\ [{ZO + 2 |Arg(2)| < g,Re(z) > o} U BEO(O)] .

Remark 3.7. The set . is chosen in such a way that it contains the contour C used in the
proof of Theorem 3.23. Namely, it contains the rays re'™*, re=i"/* qs well as the circular arc
20€? connecting the two rays. The ball B.(0) is removed in order to avoid problems at 0 when
dividing by z. See Figure 3.1.
Definition 3.8. A function f:[0,T] — L*(Q) is said to be uniformly analytic if:

(i) For allt € [0,T], f(t) is analytic in a fized neighborhood Q of Q,

(ii) there exist constants C'¢,~vs > 0, the analyticity constants of f, such that for allt € [0,T]
and p € Ny,

”vpf(t)HLoo(Q) < Cf’)/pp!‘



C1 N

Figure 3.1: Geometric configuration of Definition 3.6

The second assumption we have to make is that for a certain class of singularly perturbed
elliptic problems, the solution can be approximated exponentially well. We formalize this as
follows.

Assumption 3.9. A function space Vf is said to resolve the scale € > 0 if for all z € & with

\z|71/2 > ¢ and for all f € L*(Q) that are analytic on a fived neighborhood Q of Q, the solutions
to the elliptic problem

2 Yutu=f

can be approzimated exponentially well from it. That is, there exist constants C(f), b and p > 0
such that

inf 2|7 | Vu = Vol 22y + llu — vHiz(Q)] < O(f)e N,

~Y
Uh,EVh

where N 1= dim(Vf). The constant C(f) may depend only on SN), the analyticity constants of

f, on A, ¢, Q, zg and g9, while the constants b and p depend only on A, ¢, 2, Q, zy and g
Most notably the constants are independent of z, € and Ngq.

For simplicity of notation, we assume that the constants b and p in Assumption 3.5 and 3.9
coincide. All our results will hold for general spaces V5, as long as they resolve specific scales.
We will later provide a concrete example of constructing such spaces in 1D, see also [BMNT 18]
and [BMS19].

The next lemma collects some facts about the time evolution. These results are well known
for the case of the heat equation, and their proof easily carries over to our setting.

Lemma 3.10. The following statements hold for the continuous and the semidiscrete problems:



(i) The maps t — u(t) and t — up(t) are in C([0,00), L*(12)).

(ii) For allt >0 and ¢ € Ny, § € (0,1) and v € [0,1] such that 20+~ — 3 >0,

4B
€Oz < lwoll oy and  |EQul @) <47 Juoll sy
provided that the right-hand side is finite.
(iii) In the discrete setting, these estimates read as
4B
€ Duolzzqey < lollae)  and  [EnOul @), < ol

provided that the right-hand side is finite.

(iv) Set wy, := fg En(T)2f(t — 7)dr. Then the following estimates hold:
2 ! 2 ! 2 ! 2
lwn(O)lz2(q) S t/o M2 f(7)|[ 20 T and /0 [on(T) |2 () d7 5/0 M2 f ()72 () dT-

Proof. Statement (i) is one of the defining properties of a Cy-semigroup. Thus it follows from
Theorem 3.2.

Proof of (ii): Using the representation (2.2), we write u(t) = >, e (ug, ©) 2 @5 This
allows us to estimate:

2 s 2
@ (¢ H — 5,280 ,—2pst ‘ )
H“ ®) F1(Q) ;“J Hie (o0, ¢5) p2(q)
< p—20+B— - s\20—B+v _—2ust sB 2 —20+8—~ 2
St > (e 5 (w0, 09) o | < w0l gy

=0

where, in the last step, we used sup,.q 2P e72" < o0 as long as 20 — S+ > 0. The
L?-estimate of (ii) is just a special case with £ = 3 = = 0.

For the semidiscrete semigroup T}, in (iii), the same calculation can be done. We use a basis
of eigenvectors of the operator Lj, denoted by (¢;)jen,, instead of (¢;)jen,, and replace uj
with the eigenvalue ;. What needs to be shown is the final norm equivalence

[e's) s N 9 )
S0 |0, @) ey | S ol -
j=0 ’
The case 8 = 0 is clear. In the case § = 1, we get
‘2

i (0, 8) 20| = (Litio, w0) 2y < ol
=0

where in the last step we used Lemma 3.3. The general case then follows by interpolation.
Proof of (iv): We use an energy argument. The function wy, solves wy, + Ljw;, = f with
wp(0) = 0. Testing this equation with wy, gives:

== lwon (17 2() + (Lhwn(t), w(t) 2q) = (L2 (), wh (D) 2(q) -



Integrating and using the fact that £j is nonnegative then gives the first estimate after applying
Gronwall’s Lemma. For the second estimate, we test with w, and get due to the symmetry of

L3:

1d

. 2
lonllz2) + 52

(Ehwh,’wh)LQ( Q) = (Hf(t)a wh)LZ(Q) ’

or, after integrating and applying Cauchy-Schwarz:
1/2 " 1/2
[ ey a3 o)y < ([ M0 £ sy ar) ([ lnrlEe o)
Again using the fact that £7 is non-negative concludes the proof. O
Corresponding to the operator £, we define the Ritz approximation IIj, : dom(L*) — VhX via
(LT, v) 20y = (L5u,0) 2y Vo € VY. (3.6)

(Note: unlike in the heat equation case, the operator I, is not a projection). Since the bilinear
form on the left-hand side is elliptic by Lemma 3.3 and (L%u, v) £2(Q) is a linear functional in v,

ITju exists and is well defined. (Since Vf is finite dimensional we do not have to worry about
the norms involved.)

Lemma 3.11. Let u solve (2.1), and uy solve (3.5). Define p :=u — IIpu and 0 := Ipu — uy,.
Then 6 satisfies the following semidiscrete equation for allt > 0:

O(t) + L30(t) = p(t),  0(0) = u0 — upp. (3.7)

Proof. We compute for vy € Vf , ignoring the dependence on ¢ in the notation:

d .. . s
<dt (Thu) Uh) + (L3I, vn) p2(q) = (Hpt — @, vp) p2(q) + (@, VR) p2(q) + (L7 Vi) 12(q)
12(9)

=—(p, Uh)L2(Q) + (f, Uh)L2(Q) .
Since vy, € V¥, we can replace f with II;2f. Subtracting this from (3.5) then gives (3.7). [
The following proposition holds:

Proposition 3.12. Let u solve (2.1), and uy, solve (3.5). Define p := u—IIpu and 0 := Ipu—uy,.
Then the following estimates hold for all t > 0:

/uewp dr S tlluo — unolZaoy + /npuyh - (3.8)

tl!9(t)|!izm)+/ 101 0y 47 S tlluo — unollfzq) + /0 7 p() 2 + P70y d7
2
+ sup (T T ,
mmxumnm@)
(3.9)

Proof. These estimates are well known for the case of the heat equation. Similar results and
techniques can be found, for example, in [Tho06, Chapter 3|. The use of the backward parabolic
problem goes back at least to [LR82]. For completeness, we provide a proof in Appendix A. [



The previous results mean that it is sufficient to analyze the behavior of the Ritz approxi-
mation when applied to u. We start this endeavor by showing that the Ritz approximation is
quasi-optimal.

Lemma 3.13. Let u € dom(L®), and let Lu denotes its lifting to H'(y*,C) defined in (3.3).
Then the following estimate holds:

lv = Mhull gy S b L% = Tl g o ey -
@)~ Sy 11(y°.0)

Proof. We set up := Iju, and show Galerkin orthogonality A(Zu — Zup, ) = 0 for all
Y, € Vf’y. We first note that A(Zu, ;) and A(ZLyup, ¥4) depend only on the trace of ¥;,. By

the definition of the liftings (see (3.2a) and (3.3a) respectively), we have for #}, € Vf’y with
tr #, = tr V,:

A(Lu, Y, — #,) =0 and A(Lpun, ¥ — #1) = 0.
Therefore, we get by inserting the definition of uj, = ITpu and (3.6):

A(Luw — Lrup, 1) = ALy — Lrup, Ly tr V)
= A(Lu, Ltr V) — A(Lu, Ltr ¥3,) = 0.

The approximation result then follows easily from the boundedness of the trace operator and
the ellipticity of A. O

The combination of Proposition 3.12 and Lemma 3.13 shows that we need to study the best
approximation of % (t) = Z[u(t)] in the space fo’y. This will be done in the next sections.

3.1. A related elliptic problem

In this section, we analyze a family of elliptic problems that will allow us to pass from the
function u € H*(Q) to U € H'(y*,C).

Instead of using the more intuitive lifting .%},, we use one in the form of a Neumann problem.
This is done so as to be able to reuse the techniques developed in [BMNT18] instead of having
to analyze a Dirichlet problem from scratch.

Definition 3.14. Let A\ > 0 be fized. For f € L*(Q), we define the solution operator G f by:

—div(y*AVG ) + y®cG f = 0 in C,
d A trGMNf + 096G f = d f on Q x {0},
GMf=0 on 0;C.

Lemma 3.15. The following stability estimate holds:
A —-1/2
A P S 1 P (3.10)

The implied constant depends only on ¢, A, and § but is independent of \ and f.

10



Proof. We note that

1] S A@ LGN S A@ LG ) + 42 (161,06

Hl(yoC L2(Q)

Inserting the definition of G* gives:

AG .G ) +d (0@ 0 @) =y (frGM)

L2(Q)

1/2
<ATY2 ||f||L2(Q) [A(gAf’ GMT) + Ads (tr Gt g/\f) LQ(Q)] . :

L2()

Remark 3.16. This “damping property” of the factor A=Y/ in (3.10) is the main motivation
for considering such operators, compared to the more intuitive A = 0 case, which is the operator
analyzed in [BMNT18]. It will allow us to better control the behavior of % for small times t
by choosing \ ~ 1/t, see Section 3.2. It is also the operator which needs to be inverted when
discretizing using a implicit Euler timestepping scheme, where A\~! is the timestep size, see
Section 4. We also point out the strong relation of the operator G to the resolvent (A + L)1,
see the proof of Theorem 3.2.

3.1.1. Discretization of the extended variable y

hp-fem in 1d: In this section, we introduce the basics of hp-Finite Elements in 1D. This will
provide us with the discretization scheme for the extended variable y. Additionally, it will serve
as a model construction for satisfying Assumptions 3.5 and 3.9.

We introduce the notion of a geometrically refined mesh. For a grading factor 0 < o < 1

and L € N layers, the geometric mesh on the domain (—1,1) refined towards —1, denoted by

7251,1) = (ﬂiz‘)iL:JBl is given by

zo:i=—1, z;:=—1+0" " =1, L, zp1 =1

Analogously we define the geometric mesh refined towards 1 and denote it by 7E£ 11y and the

mesh geometrically refined towards both endpoints 72": with nodes at

1,1)
g :=—1, x;:=—1 —I—O'L_H_l, 1=1,...L,
T; :zl—ai_L,i:L—i—l,...QL, Tor+1 = 1.
In general, triangulations on (a,b), for example denoted by ﬁg}b) are obtained by an affine
mapping of 7{5171) etc.

Let T be a triangulation of a domain €. For a polynomial degree distribution r € N'Tl, we
define the space of piecewise polynomials

S™(T) :={u € C(Q): ulg, is a polynomial of degree r; VK; € T}.
For the discontinuous case, we define:
S™(T) :={u:Q — R, u|g, is a polynomial of degree r; VK; € T}.

To simplify the notation, we write SP*(7) := S®»+P):1(T) for the case of constant polynomial
degree p, and analogously for SP°(T).
We also need to impose Dirichlet conditions on parts of the boundary. We write

SPNT) == {u e S¥YT) : ulsq = 0}.

11



The space V,Jj : We now give the precise construction for the space V?j . It is based on an
hp-FEM on a graded mesh. The details are laid out in the next definition.

Definition 3.17. Fiz Y > 0. Let 72{; ) be a geometric mesh on (0,)), refined towards 0 with

L levels and a grading factor o € (0,1), i.e., given by the nodes {0,Y o |i =0,...,L}. Assume

that Y ~ L. Let V%; = Sr’l(ﬁ{;’y)) N{u:u(Y) =0} be the space of piecewise polynomials with

degree distribution vector r which vanish at the endpoint Y.

Using the eigenpairs (p;, )32 from (2.2), we have the following representation of % := G f:
- . s\ —1
Uw,y) =Y ujpi(e)ily)  with  wyi= (A+p5) " (f,05) 1200 -
5=0

Here 1); are the functions from [BMNT18, Formula (4.2)]. They satisfy the differential equation:

- %w} — ;=0 in (0,00),
$i(0) =1, lim 1;(y) =0.
Lemma 3.18. The coefficients u; satisfy the follwing a priori estimate:
‘Uj|2 SA, @j)m(g)‘Q and ’%"2 SAH(, %‘)p(g)’z
Proof. From the definition, we get by multiplying with u;:
Mug? + 58 fug1* = (F,07) 20y Wi < 1(Fo05) 2oyl 1wl

which implies X |u;| < [(f, ©5) 2 (Q)|. Inserting this knowledge gives:

145 |“j’2 <AH(f, (pj)LQ(Q)’)‘ luj| < A, ¢j)i2(g) : 0

Lemma 3.19. Let IIy denote the Galerkin projection onto the space H&(Q) ® V?j. Then the
following estimate holds for all f € L*(Q):

T P e Py

Proof. We follow the argument of [BMN118]. By Galerkin orthogonality, we are only con-
cerned with proving an estimate for the best approximation to G* f. The functions ; all decay
exponentially for y — oo. We can bound

ey S 0 S st ORIV
]:

where A\; > 0 denotes the smallest eigenvalue of the operator £ on 2, see [NOS15, Lemma 3.3]
for details, the proof can be taken verbatim, just replacing the definition of the coefficients u;.
It is thus sufficient to study the approximation on the finite cylinder © x (0,)).

We define the weights wg , 1= yPe?, and the weighted L?-norms

Hgkf(y) _ ycutoft

V12200, - ) == Wi () |o(x,y)|? da dy.
By 0 Q
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We note that the function G u satisfies the following a priori estimates:

H%HQVH SATERE A DU fll 2y VL € No,

L2 (wa+2€7c)

HvxaflgAfHLQ( SATVZE 4 1| fllpaqy V€ No.

wa+2(2+1)7c)
Again, this follows [BMN'18, Theorem 4.7] verbatim, only plugging in the stronger estimate
for the coefficients u; to regain the factor A~Y2. This in turn implies that G*f is in some
Banach-space valued countably normed spaces. Invoking the interpolation operator HZ o)
from [BMNT18, Section 5.5.1] then shows the stated result. O

3.1.2. Discretization in z

In this section, we study the discretization error due to the choice of space Vf . We will show
that the requirement that Vf resolve appropriate scales (see Assumption 3.9) suffices to show
exponential convergence.

Before we prove an approximation result for G*, we need the following result on the solution
of singularly perturbed problems, generalizing the theory developed in, e.g., [Mel97, Mel02] (for
real singular perturbation parameters) to the case where the right hand side is itself the solution
to a singularly perturbed problem:

Lemma 3.20. Let ¢ > 0 and z € .% with Re(z) > 0. Assume that the space Vi resolves the

scale € and |z|71/2, as defined in Assumption 3.9.
Let u, € H}(Q) denote the solution to (L — 2)u, = 2 f, where f € L*(Q) is analytic on Q.
Let u € HY(Q) solve

e2Lu+u = u,. (3.11)
Then the following best approximation result holds:

inf e ||Vu — V’Uh”iQ(Q) + ||u — vhH%Q(Q) < Ce e,

Up, EVh

The implied constant depends on ., the constants of ellipticity of f, and the constants from
Assumption 8.9 but not on € or z.

Proof. We make the ansatz u = au, — w, for a € C and some function w € Hg(Q). Plugging

this decomposition into (3.11) and using the PDE for u,, we get the conditions o = ﬁ and
w solves )
9 ez
e Lw—+w= .
+ 14¢e22 !

Since we assumed Re(z) > 0, the coefficient « is bounded independently of € and z. We also
compute
11+ 822‘2 = (14 e2Re(2))? + *Tm(2)? > &* |27,

which shows that 1_‘2:522 is also uniformly bounded.
4

Since we assumed that the mesh resolves the scale £, we can apply Assumption 3.9 to w to
get the estimate:

inf |2 |V = Von|Faq + I = vnllfaey | < Ce™b,

UhEVh
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—-1/2

We also assumed that the mesh resolves the scale |z| . Thus we get an exponential ap-

proximation property for w, in the ]z\_l/ 2 weighted norm. In order to get the estimate in the

—1/2 —-1/2

e-weighted norm, we note that for € < |z| we get the estimate trivially. For ¢ > |z|

note that
2 1/2 2 —1 2 2 —1 2
e aVu|Fzq) < (el2V? @) 2|7 VUl fz) S (€2121)° 2] VU] 72

-1 2
S 27 I Vusllr2

we

This means we can approximate au, in the e-weighted norm at an exponential rate, which
concludes the proof. O

We now repeat the construction in [BMN*18]. Let (v;)®, C V) denote a basis with the
following properties:

Yy Yy
dsAv;(0)v;(0) + / Y@ v = 4;5 and / y* viv; = Kidij,
0 0

for coefficients k; > 0. Since the bilinear forms are SPD, such a basis exists. On 2, we define
the bilinear forms

a,w (U, V) = HZ‘ |:(VU, VV)LQ(Q) + C (U, V)LZ(Q):| + (U7 V)L2(Q) 9 (312)

and note that the following norm equivalence holds on H}(Q) ® V%f for all ¥ := Zz/'\;to Yivg:
M
2 2
Mot gy + 17 gy ~ 3 5 4, (3.13)

(3.13) shows that estimates in the H'(y®,C) norm can also be obtained from bounds on each
component in the corresponding r;-weighted H'-norm.
The bilinear forms a,, correspond to singularly perturbed problems. We want to apply
Assumption 3.9. For this we need bounds for ; as well as v;(0).
Lemma 3.21. Let hpin > 0 denote the smallest element size in 7E6 ) and p the mazximal
polynomial degree used for V%L]. Then following estimates hold for j =0,..., M:
1P 2 2\—1
A‘%gmgcy (1—a%)", (3.14)
[0 (0)] < A7V/2, (3.15)

Proof. By definition we have 1 = dsAv;(0)% + [ y*vi]? = k7" [ y*|vil%, or k; = foy Y v |2
By [BMNT18, Lemma B.2] we can estimate

2 — 2 _
oillZ2¢ye 0. S Y20 = )7 [vil[ 2 gya 03y S V(A=)

On the other hand, the inverse estimate from [BMNT18, Lemma B.3|, gives:
a0y S (1+AC) {H” HL2 oy T i HL2 (v, (0, y))}

-2
i 2
S Ml o, -

Aoi(O)* + [0 72,

To see (3.15), we calculate:

00> < A7 [Ady 0O + (|04l o oy | = A7 O

0,))
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Lemma 3.22. Let u € L?(Q) be either holomorphic in Q2 or solution to the singularly perturbed
problem —z"'Lu +u = f for holomorphic f € L*(Q) and z € . with Re(z) > 0. Assume that
V¥ resolves the scales 12|72 and Vi foralli=0,..., M.

Then the following best approrimation result holds:

inf HgAu — 7/hH . < A1/2 <e_bN5 + e_bVNy> .
HY(y>,C)

eV

where [ is the exponent for Vf in Assumption 3.29.

Proof. By Lemma 3.19, it is sufficient to consider a semidiscrete functions OZ/yh = IyGMf €
H(Q) ® V%: and their approximation in VhX’y . Using the basis (vj)j/\io, the function %yh =:
ngo U;v; from Lemma 3.19 solves:

ay; (Ui, V) = dsvi(0) (u, V) 12 YV € Hi(Q).

This is just the weak formulation of the singularly perturbed problems from Assumption 3.9,
with € = \/K;. Since we assumed that the scales are resolved, we can apply Lemma 3.20 to get
the following estimate for the best approximations I1U; € VhX :

_ _ [
i |V [Us = 1032 + |Us = 11032y < C(FA e,

the norm equivalence (3.13) then concludes the proof. O

3.2. Returning to the semidiscretization

We are now in a position to show exponential convergence for the best approximation (and thus
also the Ritz approximation) of the exact solution %. We first consider positive times ¢t bounded
away from 0. In this regime, our finite element mesh is assumed to resolve the pertinent scales.
The smaller times, for which the scales are not resolved, are treated separately later on.

Theorem 3.23. Let t > to > 0 be fized. Let ug be analytic on a fived neighborhood Q-0 (but
we do not assume boundary conditions, i.e., ug ¢ H*(Q) is allowed), and assume homogeneous

right-hand side, i.e., f = 0. Also assume that Vf resolves the scales Z;f1/2 for a fixed “high

frequency” cutoff zny > 2o > 0. Then, for each £ € Ny, there exists a function ¥},(t) € Vf’y
such that the following estimate holds:

H%(é) (t) — %(t)“ﬁl(ya 0 < =120 max (1, - log(t)l_min(g’l)) (6_b1N5 + etV Ny + e_%zifto) .
(3.16)

The implied constant depends on 2, s, the constants of analyticity of ug, zo, and the constants
from Assumption 3.9, but is independent of t and ty. The rate by also depends on the mesh
grading for y. by in addition depends on the constants from Assumption 3.9. v can be chosen
to depend on s only.

Proof. Since we assumed homogeneous right hand side, we only need to investigate % = E(t)uy.
We use the representation of £(t)u via the Riesz-Dunford calculus (following what is done in
[BLP17, Section 2]), to write:

1 s _1 Z s
E(t)ug = 37 s e (2 — L) g dz, (E(t)u())(z) = <27m) /C 257 (2 — L) g dz,
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where C is the following contour consisting of three segments:

Cri={z(r) = re”'i | 1€ (ro, 00) }
Co:={2(0) :==roe” | 6€(—n/4,7/4)}
Cy:={z(r) := re’i | r e (ro, 00) }

and z® := e*1°8(2) with the logarithm defined with the branch cut along the negative real axis.
The parameter 9 € (0, zp) is fixed such that the whole path lies in the domain of ellipticity .,
as defined in Definition 3.6; see Figure 3.1.

By adding the term %ds tr % to both sides of (2.3b), we get that % solves

—div (y*AVY) + y*c% =0 on C x Ry,
%tr%—i—@ﬁ‘%:%tr%—dstr% on w x {0} x (0,7),
% =0 on 9;C.

Using the operator gt/ ¢ we can therefore write the function % as
. 1
U =GV v U + Zgl/ttr%,

or using the Riesz-Dunford calculus:
1 s 11 s
U (t) = ~5= Ce—tz 25GL/t E _‘C]fl ug dz + S5 Ceftz G/t [z — ﬁ]fluO dz.

For the derivatives, a similar formula holds:

0 _1\¢+1 1\ _
i%(t) _ ( 1) : /e—tzsz(f—‘,—l)sgl/t [Z _ E]_l uo dZ—Fl( 1) /e—tzszﬂsgl/t [Z _ £]_1 o dz.
C C

dtt 2mi t 2mi
Hence, we have to study integrals of the form
1 s
Ip = — [ e 275GV [z — £] g dz, m € Ny, (3.17)
21 I

and their best approximation, paying attention to the dependence on ¢.
If |2| < zns, the function @(z) := (I — z_lﬁ)_l up can be approximated exponentially well by
Assumption 3.9. By the results in Section 3.1 this implies for |z| € (g, znt):

Hgl/t (T—2L) " up— ﬁ(Z)HHI(ya o S 2 (0N etV NY) (3.18)

for some function "17;;(2) € Vf’y. On Ca, we can therefore estimate:

The more interesting case are the paths C; and C3. We focus on Ci, and consider two cases,

namely, |z| < zpe and |z]| > zp. In the first case, the mesh resolves the underlying scales of
1/2

< Ctl/Q(efblNg + e*bzw//\/y)‘

/ e t2° yms—1gl/t [(I — zilﬁ)_l ug — "I//\(z)] dz
Co

|z|77/* and we can apply Lemma 3.22. Setting v := cos(m s/4) we estimate:

I,ln::|

/ o tz® yms—1 (gl/t (2 — ,C)fl (zup) — %L(z)) dz
Clﬂ|z|§2hf

HY(y>.C)
Znf s
5 t1/2 (efblj\f(’; + ebm/Ny)\/ ef'ytr 7qmsfldrl

T0
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Making the substitution vt r® =: y, we get:
z ytz;
/ " e trtpms=lay — sltmfym/ " e Yy L dr.
0 ytrg

We need to consider the case m = 0 separately, as the integrand then has a singularity at
r = 0. Splitting the integration we get:

Wtzif 1 ) 1 9]
s~ 10 / e Yymlar < / e Yy tdr+ / e Yy Ldr < / y tdr+ / e Ydr
ytrg yirg 1 ytrg 1

< —log(vytrg) + e lal— log(trg).

For m > 0, we do not get the logarithmic growth for small times, since:
Y1 o]
*y_ms_lt_m/ e Yymlar < t_m/ e Yy Ldr = t7™(m).
Yo 0
Overall, this gives the estimate:
Il < /2= max (1, - log(t)lfmi“(m’l)) (eiblNg + e b2y Ny).

In the case r > zp¢, we set 77;1 := 0 and use the stability estimate (3.10) and the uniform stability
of the operator (z — £) "'z (see Lemma B.2). For m > 0, we estimate :

_ — — _ _ —
H/ e tzszms lgl/t [Z*,C] I(ZUO) dZH ) SHUOHLQ(Q) t1/26 2tzflf/ e rytrs/2rms L dr
C1N|z|>znt H(y>.C) T>2nt

oz7c

oo
< uoll 2 g /26 45 ¢ / ey dr < luol 2y e 37 127 D(m).
0

For m = 0, the same calculation can be done, but picking up an extra logarithmic term from
the integral where y = zp ¢ S L

The same argument can be repeated for C3. The stated estimates then follow easily by setting
m = 0 and m = 1 to estimate % (this term involves the logarithmic contributions) and m = ¢
and m = £ + 1 to estimate higher derivatives. O

For small ¢ < 3, we cannot hope to retain exponential convergence, as it would require our
mesh to resolve infinitely small scales. Instead, we rely on on our ability to control the behavior
of the solution near ¢ = 0 using some smoothness of wyg.

Lemma 3.24. Let ug € HY(Q) for 0 < 0 < 1/2, and assume homogeneous right hand-side, i.e.,
f=0. For all ¢ € Ny, the following estimate holds for t > 0:

—{— min (%
|70 4y oy < D Tl (3.19)

The constant depends on §2, 0, s and the coefficients A, c.

Proof. For simplicity we assume additionally 6 < 2s. We note that for 6 € (0,1/2), the
spaces H?(Q) and HY() coincide with equivalent norms (see [Tri06, Section 1.11.6] or [McLO0O0,
Theorem 3.33, Theorem B.9, Theorem 3.40]).
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Hence, we get ug € fle(Q). By Lemma 3.10, this implies for ¢ € Ny:

() —t+L-1/2
[ gy S 722 ol o (3.20)
We write % (t) = Zu(t) using the lifting operator from (3.3). Since the lifting on the
continuous level is bounded (see Remark 3.1), we can estimate:
—p+ 0
|7 Ow| SEHE T ugllyeqy . O

o = [#40O g = [+

H (y~, H(y>C H# ()

As a final step before showing convergence of the semidiscrete approximation, we remove the
restriction to homogeneous right-hand sides f. This is a simple consequence of the previous
results and Duhamel’s principle.

Corollary 3.25. Let ty > 0 and § > 0 be fized. Let ug be analytic on Q and assume that f is ¢
times continuously differentiable with respect to t such that the functions f9), j =0,...,¢ are
uniformly analytic in the sense of Definition 3.8.

Assume that fo resolves the scales z}:]cl/2 for a fized “high frequency” cutoff zns > 29 > 0.
Then, for each £ € Ny, there exists a function ¥,(t) € VhX’y such that the following estimates

holds for allt € (0,T):

KEIOREA0] St 2 max (1, ~ log(1) (77 4 eV 4 3o

H(y>,C)

—¢—1/2+min(7-—6,1)

+ 1, (3.21)

The implied constant depends on the end time T, the data ug, the constants of analyticity of f),
0, and the implied constants in Lemma 3.22, e.g., the mesh grading factor. It is independent of
t, to, No or Ny. For £ =0 and ¢ =1 we can explicitly give C(T) < max(1,T).

Proof. For f =0, this is just a collection of Lemma 3.23 and 3.24. For f # 0 we write
t
Ut =% [E(t)uo + / E(r)f(t—7) d7':| ,
0

Ut)=% [(S(t)uo)' + E(t)f(0) + /0 Et—1)f(1) dT:|

(see [Paz83, Section 4.2, Corollary 2.5] for the derivative of Duhamel’s formula). The terms
involving only £(t) are already covered by the results for the homogeneous problem. For fixed
7 € (0,t), the integrand in the last term corresponds to solving the homogeneous problem
with initial condition f(t — 7) (or f(t — 7) in the case of %). This means we can also apply
Lemmas 3.23 and 3.24, only picking up an extra power of ¢t due to the additional integration in
7. This gives the stated estimate for £ =0 and ¢ = 1.

For higher derivatives, we proceed by induction and see that we can write % ©) as

-1 d L—j—1 ' t
200 =2 |E0w®+ Y (5) 0001+ [ ee-nrOwar

All the terms can be estimated as before, where we estimate ¢t~/ < C(T')t~* and only keep the
dominant terms. O
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Theorem 3.26. Assume that ug is analytic and f is uniformly analytic on a fixed neighborhood
Q> Q. Let Vy be given by Definition 8.17. Fixtg >0, 6 > 0, and set zpp:= 1, /SLI/S, where L
1s the number of layers used for constructing the geometric mesh Vy Let the space V resolve
the scales up to

. Pmin —
€min = NN <\/% 2 ’zhf’ 1/2>7 (322)

where hmin and p are the minimum element size and mazimal polynomial degree of V , and let
Assumption 3.5 hold for the initial condition. Then the following estimate holds:

t
() = un() 2y dr
0
mln(

< max(1, %) <t0 "V 4 log(to) |2 max(log(t /o), 0) [e*blNS + ewaﬂD .

Proof. We just collect all the previous results, most notably Proposition 3.12 and Corollary 3.25.
Since we only need the best approximation estimate on % and %, we keep the dependence on
the time ¢ explicit. The error due to the different initial conditions is exponentially small by
assumption. O

We can also obtain estimates in the energy norm or pointwise in time:
Theorem 3.27. Assume that ug is analytic, f (mdf are uniformly analytic on a neighborhood
Q1D Q, and that upg € Viﬁ s as in Assumption 3.5.

Let L denote the number of layers used for V,Jj, set to := e L, and 2pp = tgl/sLl/S and
assume that the space V¥ resolves the scales up to (3.22).

Set M := min(L, dim(V;¥)*) with u > 0 from Assumptions 3.5 and 3.9.

Then there exists a constant b, independent of L, p and the specific choice ofV , G.e. de-
pending only on the constants from Assumptions 3.5 and 3.9 such that the following estimate
holds:

t
M@—w@@@+AWM%%WM%mMSMMM%mmfw-

Proof. Without loss of generality, we may assume (s < 1/2. Fix ¢t; > 0 to be chosen later.
We consider two regimes, ¢ € (0,¢1) and t > t;. For t < t;, we use the stability estimates of
Lemma 3.10 (ii) and (iii), together with the insight that ug € HP$(Q) for Bs < 1/2 which was
already used in Lemma 3.24.

We start with the energy norm estimate and use Lemma 3.10 to get:

/wb w>msm-/wurm lun () g 4
t
< -148 2 2 < 4P 2 2
NAT (ol gy + Nunolise ) 7 12 (ltolae gy + lmolle ).

For the pointwise estimate, we can write u(t) = ug + fo 7)dr and up(t) = upo + fg u(r)dr
and obtain:

t
[u(T) = un(T)ll22(0) S llwo = unoll 20 +/ [a(T)l 20 + llan (Tl 20 d7

h,B).

B
S lluo = unoll o0y + 472 (1ol gasq
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For larger times t > t;, we can establish the following bound by using (3.9) and plugging in
the results on the best approximation from Corollary 3.25.

t
tu(t) = wn Oy | 7 () = (). dr S max(1, 2 Jog()e "t o — ol

t1

Or, since 7 > t1:

-1 2 —b'M 2
Jout) —un (1) 220y /wL WG dr S 7 max(1, 1og(0) (e + uo — w03 0.
Setting ¢ ~ e~ M e get the stated exponential convergence with rate b := —b'3/2 after using
Assumption 3.5 to estimate the error due to approximating the initial condition. ]

3.3. A simpler model problem and example of a space Vy: hp-FEM in 1d

In this section, we verify that in the case of a simpler model problem in 1D, using an hp FEM for
constructing Vf meets our requirements. In other words, Vf satisfies Assumptions 3.5 and 3.9.

Assumption 3.28. d=1, Q:=(—1,1), A:=1, and ¢ = const.
We start with the fact that we can resolve certain scales:

Theorem 3.29. Let T 1) be a mesh on Q) that is geometrically refined towards both end points
with grading factor 0 < o < 1 and L layers. Let p ~ L, and consider the space

Vi = 5571(7251,1))'

Then Vf resolves the scales up to o, i.e. there exist constants C,b > 0, such that for z € .

with ]z|71/2 > ol and every f which is analytic on a neighborhood Q of Q, the solution u, to
(L — 2)u= zf can be approzimated by v, € VX satisfying

Els HVu—VvhH%z + ”U—UhHL2 < Ce n etV Ne,
The constant b depends only on o and Q. The constant C' also depends on the constants of
analyticity of f.
Proof. See Appendix B. O

The hp-FEM spaces can also approximate the initial conditions at an exponential rate. But
more importantly, they can do so in a way that is stable with respect to the non-standard Vi 3
norm. Since interpolation spaces between piecewise polynomials are non-trivial to handle, we
use a set of easier subspaces.

Lemma 3.30. Let P} () := span {2’ 0 <i <p} N H{(Q) denote the subspace of Vi¥ consist-
ing of global polynomials. We equip the space P () with the VhX norm. Assume that the
triangulation 7'(6 ) used for the discretization in y satisfies % < p~=2.

Fiz 8 € (0,1). Then for all u € P{(Q) the following estimate holds:

||u||Vfﬁ = HUHﬁsB(Q) .
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Proof. For § = 0 there is nothing to do. We consider the case § = 1. We first note that for any
function ¥ € VhX’y with tr ¥ = u, we can estimate HUHVf < H7/||If11(ya ¢)- This follows from the

fact that Z,u is the “minimum energy” lifting of u. We compute for # € th,y with tr # = 0:

ALy =W, Lou— W) = A(Lu, Lhu) — 2A(CLu, W)+ AW, W)
= AL, L) + AW, W) > A(Lhu, L),
where we used A(Lu,#) = 0 for W € Vf’y with tr 7 = 0 by the definition of the lifting.
Setting # := £ju — ¥ then shows the estimate Hquf < H”//Hgl(ya,c).

Constructing a lifting #° which is stable in the sense that ||7/Hﬁ11(ya,0) < ||u|]ﬁs(ﬂ) is the
content of Appendix C. The precise construction is carried out in Lemma C.3. This shows the
case f = 1.

The general case follows by interpolation. We note the fact that by Proposition C.2 we can
identify

(P Hlz2)) - (PR Imyee) ], = (PEE): Izz0(ey) -

(Note: in 2d for piecewise polynomials on shape regular meshes the analogous result is shown
in [MKR18]).
Using the reiteration theorem [Tar07, Theorem 26.3], we further calculate

[(7’6’(9), H'HL2(Q)) ) (PS(Q), H'HﬁS(Q))}BQ
= | (P8 o) [(PHO Vo) (P M), |

= [(PE@ 1 2oy - (PR W lyy) ], = (PR 2000

equality to be understood in the sense of equivalent norms. This concludes the proof by inter-
polating the identity operator I: [P§(Q), H'Hﬁ“(ﬂ)] — V¥ for pp:= 0 and p = s. O

Lemma 3.31. Assume that the triangulation 7{{; y) used for the discretization in y satisfies

ol < p?, where p, denotes the (mazimal) polynomial degree used for V,)f.
Let ug be analytic in a neighborhood 0 D Q = [~1,1], and let 0 < B < 1 such that s < 1/2.
Then there exists a function up o € VhX such that

_blpx < e_bvx/ﬂ .

lluno v, S Mol gres o and luno = uoll 2q) < e

In other words Vf satisfies Assumption 3.5 in this case.

Proof. Since ug is analytic, we do not need to approximate any boundary layers or singularities.
We can therefore work with the space PJ(€).

Let Tl,g : H*%(Q) — PL(Q) be the orthogonal projection in the H*?(€)-inner product. Then
we calculate using Lemma 3.30:

Msguollyy, < [Msguoll gos ) < lwoll oo oy < luollzsqy

where in the last step we used that s3 < 1/2, and thus the H%?(€2) and H*?() spaces coincide
with equivalent norms (see [Tri06, Section 1.11.6] or [McL00, Theorem 3.40]).
The approximation estimate then follows from the best approximation property of Il;z in

HsP , and standard estimates for the approximation of analytic functions, e.g., [Sch98, Theorem
3.19], where we note that Ng ~ p2. O
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We can now give a more constructive characterization of how the triangulation of {2 must be
chosen when working in 1D to get exponential convergence of the semidiscretization.

Corollary 3.32. Let Q = (—1,1), assume that ug is analytic and f is uniformly analytic in
neighborhood Q>0 ForMeNando € (0,1), use a geometric mesh with M layers to
discretize in x, i.e., fo = Sp’l(ﬁ¥171)). For discretizing in y, use L layers and a degree vector
r with linear slope s, i.e., V,)IJ = Sr’l(ﬁ{;’y)). Assume that o™ < Y(sL)"203L/2 and up g is as
in Assumption 3.5.

Then there exist constants by,bs > 0 independent of L, M, and p such that the following
estimate holds:

t
/ Ju(r) — uh(T)”%z(Q) dr < max(1,t*log(t)) <e—b1p + e—sz) ‘
0
Most notably for M ~ %L and p ~ L, we get exponential convergence:
t
/ lu(r) — un(7)[[32(qy dr < max (1, 2log(t))e Am )",
0

Proof. We choose tg := o and 2z, = ol/sLYs in Theorem 3.26. Assumption 3.5 is met via
Lemma 3.31, since the condition 0% < p_?2 is easily verified for such meshes. The assumptions
on Vf also imply that the necessary scales get resolved and we get:

t
lu(r) = un(7)ll72(0) dr
0
< max(1, tZ)U(i_‘S)M + max(1, %) [log(to)|* max (log(t/to),0) [e*blp +e b2l el
The explicit estimate then follows from the fact that dim(V;¥) ~ dim(V}') ~ L? in this particular

construction. We absorb the logarithmic terms log(c”) ~ L into the exponential by slightly
reducing the rate b'. O

For the pointwise and energy errors, the corresponding concrete version reads:

Corollary 3.33. Assume that ug is analytic and f, f are uniformly analytic in a neighborhood
Q D Q, and that the meshes and spaces are as in Corollary 3.32. Let Up € Vh“"‘:ﬁ be as in
Assumption 8.5 for g > 0.

Then there exists a constant b, independent of L, M and p such that the following estimate
holds:

t
) = un(0) ey + [ () = (7). g S (1 2 o))~
Or in terms of degrees of freedom, we get

XY
h, )1/4'

t
[[u(t) — Uh(t)H%?(Q) +/0 Ju(r) — uh(T)H%s(Q) dr < max (1, % log(t))e ¥ dim(¥

Proof. Follows from the fact that using the given parameters, the space VhX satisfies the as-
sumptions of Theorem 3.27. The estimate in terms of degrees of freedom follows easily. O
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4. Discretization in ¢t — the fully discrete scheme

In this section, we consider the discretization with respect to the time variable . This can be
done using mostly standard techniques. We focus on the case of using a discontinuous Galerkin
type method. When applied in its hp-version, it will allow us to get an exponentially convergent
fully discrete scheme, and thus it nicely complements our previous investigations. We follow
the presentation in [SSOO].

Let Ty == {(tj-1,t )}M 1 be a partition of the time interval [0,7] into subintervals with
0<t;<tjy1 <T. We set k] :=t; —t;j—1 and define the one-sided limits
u;r = lin}}>0u(tj—|—h) for0<j<M-1,
w; = lim wu(t; —h) for1<j<M

J h—0,h>0

as well as the jump [u]; := uj — u; . We define the DG-bilinear and linear forms:

B, V) Z/tj (1), tr 4 (1)) oy s A 1), Y (1) di

M
Z2(tr%] 1,1}1"7 ) 2(9)+(tr%0+;tr7/0+)[12(9)7

F(¥) = Z/j (£t 7 () oyt + (w0, 95) 1o
j=1

Then the DG-approximation is given as the solution to the following problem:

Problem 4.1. Chooser; C Ny a polynomial degree distribution, and consider the space ST*° (TO )

of discontinuous piecewise polynomials. Set VX YT .= gm0 (7}07T))®V Y Find %hyt € VX y 7
such that

B(%}, 0 h) = F(74) V¥ € VX, (4.1)

Remark 4.2. Note that we used the initial condition ug instead of the discrete initial condition
up,0- This is due to the fact that we need assumptions on up o which make it non-computable in
practice. When we talk about “equivalence to time discretization of the semidiscrete problem”
we always mean “up to changing the initial condition”, which incurs an additional (but easily
treatable) error term.

Lemma 4.3. Problem 4.1 is equivalent to solving the “standard” DG-formulation for the
semidiscrete semigroup (3.5), i.e. if we define

Mooty
BEV) =Y [ (T@.V),,  + GUOV 00 d
j=17t

M
2 (WOL-1 V) g + O ) ey

J=2

F(v):= Z/tj (O, V) oy dt+ (10, Vi) -

j=17ti-1

23



Then up, j, = tr(?/why 1) € S™(Tom) ® Vi solves

B(upg,vn) = F(vp) Yo, € SY(Tor) ® Vi (4.2)

On the other hand, we can recover the extended function by @/ = Lhun ;-

Tyt T
Proof. We first show that £, uy  solves Problem 4.1.

Comparing the two formulations, the only interesting term is A(Zpupk, ?’). We note that
we can write:

A(Lnun i, ') = A(Lhun i, Y — Lhtr W) + A(Lhun e, L tr 1)
= A(Lhun g, L tr Vi) = (Lhunk, tr Vh) 12q) »

where we used that A(Zpup i, #4) = 0 vanishes for functions with tr %}, = 0 by the definition
of the lifting. Thus all the terms in the formulation directly correspond to each other.

We now show the other direction. Let %, h + be a solution to Problem 4.1. We pick a function
q, such that ¢(t) = 0 outside of a single mterval (tj—1,t;) on which ¢(t) is a polynomial. We
then test (4.1) with functions of the form ¥} (t) := q(t) %), where % € VhX’y satisfies tr 75 = 0.
This means that #;,(t) € th,y T and we get, since all the terms involving tr %, vanish:

J,

J

A myt %)()d 0.

Since %} 'y+(t) is a polynomial of degree r; in ¢, A(OZ/ny’t(t), %) also is such a polynomial. Since
the integral vanishes when tested with all similar polynomials, we get that A(% (t), “//h) =0 for
all t € (tj_1,t;) and all admissible %,. This means we can write %, oyt = Zh tr % oyt and we

can proceed as before to match all the terms in the formulation to their counterpart. O

Theorem 4.4 (h-version). Let up denote the semidiscrete solution to (3.5). Suppose that
Assumption 3.5 is fulfilled with 8 > 0. Let ry = r = const be a fized parameter. Choose T 1)

as a graded mesh with the grading function h(t) := t?7+3) Let N := dim(8"°(T(o.1)))-
Assume ug s analytic in 0 and that the right-hand side f satisfies

Hf<f>(t)HL2(m <CdT(+1) Vtel0,T],¢e N,

with constants C' and d independent of £ and t.
Then the following error estimate holds:

_ 1
\// [|un ( —uhk()HHs SN 4 oW,

The implied constant depends on ug, f, r, the terminal time T, and the constant from Assump-
tion 3.5.

Proof. We note that up o € V,f 5 by Assumption and also that the solution to DG-formulation
depends continuously on the initial condition. This last statement can be easily seen from
the coercivity of B as shown in [SS00, Lemma 2.7]. Thus, up to an additional error term
C(T) || z2up — ) We may use up as our initial condition. (This error term is expo-

nentially small by Assumption 3.5).
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We want to apply the results from [SS00] and translate our setting into their requirements.
They require separable Hilbert spaces X C H with continuous, dense and compact embedding
and a bilinear form a(-,-) : X x X — C, such that

a(w o) S ullx vl Re(a(ww) > cllul}k,  and a(u,v) = a(o,u)

for all u,v € X. We set H := (Vf, ||'||L2(Q))7 X = (fo, H||th> and a(u,v) = (Eflu,v)Lg(Q)
(extending the real valued bilinear form to a complex one in the canonical way). By Lemma 3.3
this bilinear form satisfies the boundedness and ellipticity conditions. The symmetry follows
from the definition and the symmetry of A(,-).

The stated result then is a consequence of [SS00, Theorem 5.10]. The main ingredient is the
fact that the initial condition is in the interpolation space V,f 3 by Assumption 3.5. Note that
[SS00, Theorem 5.10] gives an estimate in the fo-norm. In order to get to the more natural
H*(Q)-norm, we use Lemma 3.3. O

Remark 4.5. Forr := 1, the scheme in Theorem 4.4 is equivalent to the more common implicit
Euler discretization, except that the right hand side is slightly modified. See [Tho06, Page 205]
for details.

Theorem 4.6 (hp-version). Let uy denote the semidiscrete solution to (3.5). Consider Tio 1) :=
72]&1) U T4,,1) to be a mesh on (0,T) that is geometrically refined towards 0 and has constant

size for larger times (t1,T). We choose ry such that it is linearly increasing on the geometrically
refined part and constant afterwards. Let N := dim(Srf’O(ﬁo7T))).
Assume that ug is analytic in Q and that the right-hand side f satisfies

Hﬂ@(t)HLQ(Q) <CdT(+1) Vtel0,T],¢e N,

with constants C' and d independent of £ and t. Suppose that Assumption 3.5 is satisfied.
Then the following error estimate holds:

T
\/ / lun(®) = wn g (#) | ey S €N 4+ e
0

The implied constant depends on ug, f, u, the mesh grading and the terminal time T as well as
the constants from Assumption 3.5.

Proof. The proof is completely analogous to Theorem 4.4, except we now invoke [SS00, Section
5.1.2]. O

For the simplified model problem, we can give explicit bounds for the full discretization.

Corollary 4.7. Assume that we are in the simplified setting of Section 3.3 and let the spaces
for th,y be designed as in Corollary 3.33. Denote the number of layers used in V?Lj as M.
Assume that ug is analytic and f, f are uniformly analytic in a neighborhood Q- Q.

Let To,r) == ﬁg{h) UT,,7) be a mesh on (0,T) which is geometrically refined towards 0 wit
M layers and has constant size for larger times (t1,T). We chose ry such that it is linearly
increasing on the geometrically refined part and constant afterwards. We take M ~ L, where L
s the number of levels used for V%}.
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In addition, assume that the right-hand side f satisfies

Hf(a(t)‘ <CdT((+1)  Vtel0,T],¢ € Ny,

LX)

with constants C' and d independent of £ and t.
Then there exist constants C > 0, b > 0 such that the following error estimate holds:

g —b[dim(vEYT)]V°
\/ /0 lult) = un (Bl ) S €10

The implied constant depends on ug, f, end time T, the domain 2, ?2, the mesh grading o as
well as on s.

Proof. Follows from Theorem 4.6, Theorem 3.32 and the fact that dim(Vf’y ’T) ~ dim(V;}}’y) :
dim (8™9(To,1))) ~ M* - M2, O

4.1. Practical aspects

In order to efficiently implement the scheme presented, we combine the Schur-form based ap-
proach described in [SS00] with the ideas of [BMN™18] for dealing with the extended variable.

For each time-inteval, the Schur decomposition in time leads to a sequence of problems of the
form

T
k
> Tywj + g Lhwy =rhs, =0,
§=0

where T' € C"™" is an upper triangular matrix. These problems can be solved using a backward-
substitution, where in each step an operator of the form )\%Ei—i—l has to be inverted. Structurally

this is very similar to the operator G*, except that the parameter \ := Aj/k is complex valued.
Proceeding like in [BMNT18] would require simultaneous diagonalization of the matrices

)‘j I o

?vj(())vi(()) + (Uj, vi)LQ(Q)
Since the matrix A is not hermitean if Im(\;) # 0, it is unclear whether this diagonalization can
be done (in practice it appears to be the case). Instead we employ the generalized Schur-form
(or QZ-decomposition; see [GVLI6, Section 7.72]). It gives unitary matrices ) and Z, such that
QHAZ =: T and Q¥ BZ =: S are both upper triangular. Inserting this decomposition into the
definition of )\%E‘; + I and using a backward-substitution leads to a sequence of problems of the

Aij = and Bij = (Uj7/Ui)L2(Q) .

form
—KkpAwy +wyp = r.h.s.

for w € H}(Q) with xy € C.

Overall, Problem 4.1 can be solved by solving dim(S™ (7 1y)) X dim(St(ﬁg{y))) scalar prob-
lems posed on (2. For the case of the simplified model problem of Section 3.3 using the method
described in Corollary 4.7, this means that O(M*?) problems of size O(M?) need to be solved.

5. Numerical Results

In this section we test the theoretical findings of the previous sections by implementing them
using the finite element package NGSolve [Sch14, Sch17] for the discretization in €.
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Figure 5.1: Convergence rate in the case of non-matching initial condition

5.1. Smooth solution

In order to verify our implementation, we consider an example which has a known exact solution.
We work with the simplified model problem of Section 3.3. The initial condition is chosen as
up(z) := sin(2w x). As an eigenvalue of the Dirichlet-Laplacian this leads to the exact solution
u(z,t) :== e 2™’ sin(27 ). We use s = 0.5 and plot our findings, applying the hp-DG method.
As seen in Figure 5.2a, we get the predicted exponential convergence with respect to the number
of refinement layers.

5.2. Singular solution

In order to verify that our method handles startup singularities robustly, we stay in the simplified
setting of Section 3.3, but consider the initial condition ug = 1 and set s := 0.75. We use the
trivial right-hand side f = 0. Since the initial condition does not satisfy any compatibility
condition, we expect startup singularities. As the exact solution is unknown, we precompute a
numerical solution with high accuracy using the hp-DG method described in Corollary 4.7 with
M = 13 layers. We integrate up to the terminal time 7' = 1. Due to the predicted exponential
convergence, we expect a good match of the estimated error to the (unknown) true error.

We compare different time discretization schemes. For the implicit Euler based schemes we
chose a fixed polynomial degree for discretizing x and y to be p = 8. For the hp— DG scheme we
chose the same polynomial degree in each variable. As an indicator for comparing the numerical
cost, we use the number of systems N we need to solve involving the nonlocal operator £} . For
the implicit Euler, this is proportional to the number of timesteps. For the hp — DG approach it
is proportional to the number of layers M squared, i.e. N ~ M?. In Figure 5.1 we compare the
spacetime L2-error to the number of such systems that need solving. We see that, as predicted,
the implicit Euler method with a graded stepsize recovers the full convergence rate O(N~1!)
whereas a uniform approach only yields a reduced rate. It is important to point out that
practical considerations may still favor using a uniform grid, as in this case the corresponding
matrices can be factorized only once. This yields much faster solution times in each step. Since
the reduction of order is small, the uniform approach often outperforms the graded mesh in our
experience.

The best performance, as expected, is observed by the hp — DG based method. It provides
rapid exponential convergence of order (’)(e*b‘/ﬁ), confirming Theorem 4.6 and Corollary 4.7.
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Figure 5.2: Convergence for the 2d and smooth cases

5.3. A 2d example

Even though our theory does not yet fully cover the case of two spatial dimensions, we con-
sidered this problem for our numerical investigation. We chose Q := (0,1)2, ug = 1, f = 0,
A:=1 ¢=0and s := 1/4. Since no known analytic solution is avaliable, we computed the
approximation using M = 10 levels of refinement in time and used it as our reference solution.
All computations were done up to the terminal time T = 1 and using the Ap-DG method. For
the time discretization and discretization in y, we used a geometric grid with M layers. In
we used a geometrically refined grid of 3M /2 layers in accordance to Corollary 3.26.

In Figure 5.2b, we see that also in this case we get the exponential convergence with respect
to the number of layers in the hp-refinement. This suggests that our methods could also be
extended to cover this case.

A. Proof of Proposition 3.12

The following proof consists of condensed and restated results from [Tho06, Chapter 3]. We fix
to > 0 and consider the discrete backward problem

—Zh + [,fLZh = 9, in (0, to), and Zh(to) = 0. (Al)

For 7 € (0,ty), we get by testing (A.1) with # in the L2-inner product and using (3.7)
and (3.6):

1611Z2) = — (2 (1), 6(7)) L2y + (Lh2n(7),6(7)) L2

_ —% (2n (1), u(T) = un(7)) 12(0) + (P(T), 20(T)) L2(0)-
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For 0 < € <ty we get by integrating, since zp(tp) = 0:

1 t
| 10y dr < Grle) o) = un sy + [ N6 oy 2072y dr
) 8 to 1/2 to 1/2
< () ute) @y + [ 1oy ar) ([ 1l ar)
) ) (A.2)
In the limit ¢ — 0, the first term converges due to Lemma 3.10 (i) to
(20 (2), 0e) — un()) gy = (2400 — wno) ooy -

The following stability estimate holds for z;, by Lemma 3.10 (iv):

to to
[ 1y dr + 5 OBy S [ 10y

Combining this estimate with (A.2) completes the proof of (3.8).
Proof of (3.9): For fixed t > 0, testing the equation (3.7) with v := ¢ 6(¢) and integrating over
Q gives:

%%(t 161721y )+ (L30(E), 0(8)) 12y = £ (A1), 0(F)) 120y + % 161172 -

We integrate in ¢ from € > 0 to ¢ and get:

3100wy ) + [ (€307, 60) 0y

1 t ) t 1 t
sw<e>uiz<m+\/ JRSLCI dT\/ [ 16 sy dm 5 [ 10y

We need to bound lim._,g e H@(s)”%g(ﬂ). Writing 6 = Iu — up, = p + u — up, we use the fact
that up, and u are bounded by Lemma 3.10 (i). This gives:

<

[\

lim & 10(e) 72y < limsupe [|p(e)[|72(q) + limsupe [[u(e) = un(e) |72y < sup 7 [p(7)|72(q)-
=0 e—0 e—0 it

By using Young’s inequality and (3.8), we easily obtain (3.9) from the fact that ||6(¢)
(L£30(1), H(t))LQ(Q) by Lemma 3.3.

2

B. Singularly perturbed problems in 1D

In this appendix we provide the details for singularly perturbed problems with a perturbation
parameter in the complex plane. We recall the definition of .% from Definition 3.6 as

S =C\ Hzo + 20 |Arg(2)] < g,Re(z) > 0} U BaO(O)] :

where zq is sufficiently small, and depends on the Poincaré constant of 2.
We consider the 1D problem

(L —2)uy = —ul + (c—2)u, = 2f (B.1)

for f € L?(Q), which is assumed to be analytic on a neighborhood Q> Qwith Q= (—1,1) and
uz(—1) = uy(1) = 0. We assume z € ., as defined in Definition 3.6 and ¢ > 0 is constant. This
is also the setting of Section 3.3.
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Remark B.1. Problem (B.1) does not look singularly perturbed the way it is written, but by
dwiding by ¢ — z we get to the more common form —&u” +u = ?f for & .= (c—2)"'. The way
the problem is written here is more convenient for our applications. This is also the reason for
the scaling on the right-hand side, since z€~1 ~ 1 for large z.

We define the differential operator L,u := (£ — z)u and associated sesquilinear form
a,(u,v) = / VuVv + (¢ — z)/ um,
Q Q

2 2 2
as well as energy norm ||-[|7, == [[V-|[72(q) + |2] [ I72(0)-

Lemma B.2. For all z € .7, the bilinear form a,(-,-) is bounded and elliptic in the energy
norm, i.e., there exists 0(§) € (—m,m) such that

w2 € Re (*Pacuw))  and sl o) < ull iy o]l
The implied constants do not depend on & or w. This implies for the solution u, to (B.1):
sl < C Ll 1 £l 22 - (B.2)
Proof. We start with the case |z| < 3zp. We calculate
Re (a(u,u)) = ||Vull72(q) + (¢ = Re(2)) ul 720

> (1= (1+¢2) 2| C}) IVulliz(q) + & 2] [[ull72(q)

> (1= 320[L + [e]C) IVull2a(qy + <2l ull32(e

2 min(L,e) (| Vulljz) + 2] [ulf2q))

as long as we choose ¢ sufficiently small (but only depending on zy and Cp).

We now assume z € . with |z] > 3zp. By making the angle of the cone slightly smaller, we
may neglect the shift by zp and assume that |( Arg)(z)| > 0 > 0 where ¢ only depends on z.
See Figure B.1. For a € C, we compute:

Re (aa:(u,u)) = Re(a) [|Vul72(q) — Re(az) [|ul72(q)

Thus it remains to show that we can choose a such that Re(a) > 0 and — Re(az) ~ |z|. For

T i T=

Arg(z) > 6 > 0, we can pick o := ¢ 2. For Arg(z) < -0 <Oweuse a:=e "z .
The estimate (B.2) follows from the simple calculation

|1, 0) 2y | < 1212 D oy 121 Mol gy S 1172 15 oy ol
for all v € H'(2) and the Lax-Milgram lemma. O

The previous lemma ensures existence and uniqueness of solutions u,. In the next one we
further prove that wu, is analytic with explicit bounds on the derivative with respect to the
parameter z.

Lemma B.3. Let u, solve (B.1), and let f be analytic on Q and satisfy
]

Then u. is analytic on Q and satisfies:

< C~Pp! Vp € Np. B.3
L) FYgP p € Ny (B.3)

ul®)

2@ < CKP? max(p, \/|z])? Vp € Np. (B.4)
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Proof. The proof can be taken verbatim from [Mel97]. We note that an induction argument
easily gives that u, is smooth since u, € H' = u! = —2zf + (2 — c)u, € H! etc. For simplicity
we assume |z| > ¢, the case for small z can be shown similarly but is not of interest here.

Fix K > max(1,~f) such that

2k72 [y (L) +1] <1 nen,

For p = 0, 1, the estimate (B.4) follows from the Lax-Milgram lemma and Lemma B.2, as
long as we choose C' > 0 sufficiently large. We now proceed by induction on p. Differentiating
the equation (B.1), we get:

ulPt? = zf®) 4 (2 — )ulP),

or for the norm by inserting (B.3), the induction assumption (B.4) and using the assumption
c < [€]:

[, 5 91 (1] 2] ] = 1 200 2 )
<22/ [Cppp? + K max (. V1€])']
< Clal K7 ma (p+ 1, VIEl) 2672 (0 () +1)
< Ok max (p+1,v/E) -

Lemma B.4. Assume that f is analytic on a fized neighborhood Q> Q and satisfies
]

Let u, denote the solution to Lyu, = zf with u,(£1) =0 for z € .7.
Then there exist C, v, b > 0 independent of z such that u, can be decomposed as

< Pp! Np.
L) S Cpvppt VpeNo

Uy :wz—l—qu—l—rz
with the following properties:

(i) ngp)HLw(Q) < CHPp! for all p € Ny,

(ii) [uBh(z)| < C+P max(p!, \z]p/z)efbp(x)m with p(z) :== max (|z — 1|, |z + 1]),
(i) |17l S C 12/ eV,
(iv) r.(£1) =0,

Proof. We first note that w.l.o.g we can assume that |z| > 2max(zg, ¢) as for small parameters
z we may chose w, := u,, U?NL :=r, := 0 by Lemma B.3.
We define £ :=c—z and f := ?f Then u, solves

1, r3

Leu, = =& uy +u, = f.
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Since |z| > 2¢, it is easy to check that |z| ~ |¢]| and Hf(p)H ~ Hf(p)H for all p € Ny and any norm

and thus we may exchange one for the other in estimates whenever it is convenient.
We follow [Mel02, Lemma 7.1.1] almost verbatim, the only difference is that we allow complex
parameters £. Let M € Ny be fixed, to be chosen later. We define the outer expansion as

M .~ .
war(w) =Y &7 f(a).
5=0

Direct calculation shows that the defect of wy, is small, i.e., it solves:
- Leuys = ¢ oM

We next construct the boundary layer function in order to fix the boundary conditions of wjy.
Defining u%} as the solution to

LR =0 in Q, ubF (1) = wy(£1),
this solution can be written as

ulbF(z) = A&ef(lﬂ)\/EJrA%f(lfx)\/E,
(We consider the branch of the square root satisfying Re(¢) > 0). The constants AE can be
directly computed from the boundary values by

A\ 1 —1 e 2VE\ (wy(—1)
() = e (e ) ()
Since for larger |z| > 2z, the set . does not contain the negative real axis, the parameter
€ =c—zfor z €. avoids the poles /€ = inm/2. We also have Re(y/€) > 0, for which e~ V¢
stays bounded. Thus, we can directly see that |A},| + |A},| < lwar[ oo (), With an implied
constant independent of £ and m.

We now need to show the exponential decay of u%}. For this we investigate Re(y/€), as it
determines the rate. Since we have assumed |z| > 2z9 and Arg(zg + z) ¢ (—7n/8,7/8), the
argument of —z is bounded away from 7 by some constant 6 > 0. Since ¢ > 0 is just an
additional shift to the right, this also holds for £ = ¢ — z.

Assume first that Arg(¢) € (0,7 — ). Then the square root satisfies Arg(v/€) € (0, 75°) and

Re(VE) = /[¢] cos(Arg(V/€) > /|€] cos (%75) This means

‘e—p@w&’ < e~ VIEleos(%38) < —bV/Ial,

See Figure B.1 for the geometric considerations. The case Arg(§) € (w + 0, 27) is analogous.
Taking derivatives and using the definition p(z) := max ( |z — 1|, |z + 1| ) we can bound:

B < €PNV oy

again with C independent of M and z. The remainder term is defined by ras := wys — uBML. It

solves the elliptic problem

Lery = & M) FRMED ) 0 ryp(£1) =0.

)
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By Lemma B.2, we get the bound

< |Z|1/2 |Z|—(M+1) Hf(QM-i—l)‘

(2M+2)
||7"M||\Z| ~ >

< 1/2 ~1/2 opf 49
oy S O #1172 (37 272 201 + 2)

We can also bound, using (25 + p)2*P < (25)PpPe?+P:

ngﬁ)HLw(Q) < CypPePS(M), with S(M f: (e’yf |§]1/2 2])) -

Jj=0

Overall we obtain the following estimates:

o, <O san,

’(u?})(p)‘ <C |z]p/2 e*bp(m)mS(M)a

_ (2M+2)
Irall, < Cy 2|1/ (’Yf 12|72 (2M + 2)) )

We now choose M in order to minimize these contributions, namely we fix M such that
1

ey

This gives e f [€]Y? (2M 4 2) < e~ and (2M +2) > b|z|*/? — 1. Thus

2M+2=[b2'?]  with b=

(es |22 (2M +2))2M+2 < = 2MH+2) < bVl

S(M) < Cp) e < ¢y

Jj=0

1—et’

These estimates show that the decomposition for this choice of M has all the properties stated
in the theorem. ]

Next, we recall a result on the approximation of solutions to singularly perturbed problems
on so-called minimal meshes.
Lemma B.5. Fiz z € . and let u, solve (B.1). For k > 0, we define the nodes
xo = —1, z1 := =14+ min(0.5, k), 2 :=1 — min(0.5,k), zg:=1

and define the minimal mesh T, = {(zo,x1), (x1,22) (x2,23)}.
Then there exist constants C, b, Ao > 0 such that for allp € N and X € (O, o)

inf 27w — wp|® + | — UhHLQ < Ce™®
vh63p1<7—>\p )

min

Proof. Follows verbatim to [Mel02, Proposition 2.2.5], see also [Mel97, Theorem 16]. The main
ingredients to go from the case of real parameter £ to the complex case are given by Lemmas
B.4 and B.3. O

We are now in a position to complete the proof of Theorem 3.29. As in [BMNT 18], we observe
that a geometrically refined mesh is a refinement of the three element mesh

{1 =1 A2 {1+ A2 1= A7), (= a7 ) )

for A := ]2\1/2 o’ and ¢ < L. Thus we can apply Lemma B.5 to get the stated estimate. Since
in one spatial dimension we have dim(Vy\') = dim (Sg l(T(E 1 1))) ~ p- L ~ L? this concludes
the proof.
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Figure B.1: The geometric situation in the proof of Lemma B.4 (for ¢ = 0)

C. Polynomial liftings and interpolation spaces

In this section, we investigate under which conditions we can lift discrete functions from Vf to
functions in th,y in a stable way. This question is deeply related to the theory of interpolation
of discrete polynomial spaces. This can be seen in the following proposition:

Proposition C.1 ([Tar07, Lemma 40.1]). Let Xy, X1 be Banach spaces with X1 C Xy contin-
uously embedded. For 6 € (0,1), denote the interpolation space by Xy := [Xo, X1]p2. Then the
following statements hold:

(1) If v is a Xo-valued function such that v(t) € X; and 0(t) € Xo for all t > 0 and
[0t x, € L (R, §), 70 o(t)llx, € L* (R, ) then v(0) € Xo with

o0
2 — . 2 2
oI, < [ 172 (10l + o, ] d
(ii) If vo € Xy, there exists a function v: Ry — X; such that v(0) = vo and
> 120 2 2 2
L ool + ol ] de < fuol,
Proof. This is just a special case of [Tar07, Lemma 40.1]. We note that in comparison to the
statement in the book we changed the roles of Xy and X;. But since
(X1, Xolg2 = [Xo, X1]1-0,2

by [Tar07, Lemma 25.4], the theorem holds in the stated form. O

The case of lifting a polynomial on [0,1] to the unit square was addressed in [BDMO7].
Namely, the following holds:

Proposition C.2 ([BDMO07]). Let Pj([0,1]) denote the space of polynomials u € PP([0,1]) with
u(0) = u(1) = 0. Then the following statements hold:
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(i) The interpolation norm coincides with the Sobolev norm, i.e., for all 6 € (0,1)

[(7)57 H'HL?([O,H)) ; (7’57 H'||H3([o,1])>}972 = (7’5)7 H‘Hﬁo([o,u))

with equivalent norms. The implied constant depends only on 6.

(ii) For allu € PY([0,1]), there exists a polynomial % € QP([0,1]?) := span{z’y’,0 < 1,5 < p}
such that tr % = u, % (-,y) € PY([0,1]) for all y € [0,1]. Fory > 1, % can be extended
by 0 to Ry such that H%Hﬁl(y%c) < HUHI?S([OJ])'

Proof. See Theorem 4.6 and Proposition 3.16 in [BDMO07]. O

The previous Proposition gives a lifting to the space of polynomials in the extended variable
y. Since we will be working with piecewise polynomials with a linear degree vector this is not
sufficient for our needs. We need the following variation of the previous result:

Lemma C.3. Letu € PY([0,1]). Assume that the triangulation 7{6 y) satisfies diam(Kp) < p~2,
where K is the element at 0. Then there exists a lifting U, € VhX’y such that

||%h|‘ﬁ1(ya,c) <C HuHﬁs(Q) and  tr %, = u.

The constant C' depends only on s and the mesh grading parameter o. The lifting can be chosen
to be piecewise linear with respect to y.

Proof. By Propositions C.1 and C.2, there exists a lifting % € C(R4, PH([0,1]) such that
H%Hf[l(ya,c) <C ||u”ﬁs(g) .

Inspecting the proof of Proposition C.1, as given in [Tar07], one can see that the lifting % is
piecewise linear on the grid (e”)n ¢z By asimple rescaling, we may choose U as piecewise linear

in y on the geometric mesh ¢” for n € Z. To get a function which is in the space S 1’1(7E6 y)),

we need to make two modifications: modify % on the element K, := (0,0%) to also be linear
and cut the function off at ). We define hg := diam(Ky) = o”.

We define %,(-,t) as the linear interpolation between u = % (0) and % (¢%) on Ky and
U, = % otherwise. We need to show:

/. 10,20 ey A S 1 sy (C.1)
/. IV ) 1 e (€.2)

We start with the first inequality. Since %}, is the linear interpolant of %, we can write
By Uy, = hyt [ 9,% () dr. This gives:

2

ho
/ v ||ay%h(y)”i2(9) dy 5 h02/ v </ 10y (7)l| 20 dT) W
Ko Ko 0

Y 2 ho 2
,S haQ/ ya </ Hay%(T)HLQ(Q) d7_> dy+ha2/ ya </ Hay%(T)HLQ(Q) dT) dy
Ko 0 Ko Yy
=:1

=:1s
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We first investigate the term I;. Using the fact that y < hg and therefore hy 2 <y 2 we get

ho 1 ) 2 ho 2
jlg/o Y- (y_ /o 10,2 (7)|| 12 dT> dyS/O y 10y % ()72 dy

by Hardy’s inequality(see [Gri85, page 28]).
When investigating I, we distinguish o > 0 and o < 0. For a > 0 we have y® < 7% for y < 7
and thus after applying Cauchy Schwarz to get the square into the integral:

ho
? [ o ([ 102 @ )
Ko Y

2 2

ho
dy < haQ/K </ e Hé?y%(T)HLQ(Q) d7'> dy
o \Vy

ho
</ T ||3yg2/(7)||i2(9) dr < H%H%Il(ya,c)'
Yy

For a <0, we have h§f < 7% and get:

2

. ho 2 9 ho _
h / o (/ 10y % (T)|| 12 (63 dT) dy < hg / y© / ho “T N0y (T)l 121 dT ) dy
Ko Ky 0

)
2 1 o ? 2
stgtngng™ ([ 102 Ol ) <12 e

which proves (C.1).
We now show (C.2). The proof relies on an inverse estimate and the fact that %4, approximates
7 . We estimate:

| v 1w v s [
Ko

Ko

VIVl (y) = Vol ()20 dy+/ YV (W) 720 dy

Ko

S /K VIV (y) = Vol ()72 dy + 1% || 11 o ) -
0

Since % (-, y) and % (-,y) are polynomials on [0, 1] for all fixed y, we can use an inverse esti-
mate [Sch98, Theorem 3.91] to get:

/K Y IV Zh(y) — Vo () 2oy dy S P /K YN y) — U ()22 dy
0 0

Since %, — % vanishes at y = 0, we can write it as %,(y) — % (y) = [, 0y, (7) — 0,% (1) dr
and further estimate:

y 2
|1 - 2l dr <ot [ v ([ 10200 + 10,20l i) dy
0 0

Y 2 y 2
<ot [ ([ 100N e ar) aysst [ v ([ 1020y o) .
KO 0 Ko 0

=:13 =:14

The term I3 is structurally analogous to the term (C.2) and can be estimated using the same
techniques. The extra integration in 7 gives an additional power of hZ, and we get

I3 < p4h% H%Hﬁll(ya’(}) .
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For the term I, we apply Hardy’s inequality and the estimate hy 2 <y 2 to get:

y 2 1 (Y 2
Iy :p4/ y° </ 18y ()| 12 dr) dy §p4h§/ y© (/ 10y % (T)|| 12 dT) dy
Ko 0 Ko YJo

S8 [ 0 10,2 () dy =R 1 s -
0

Overall, since we assumed hg < p~2, we get the stability of the modified lifting.

In order to get supp %, C [0,)], we pick the cutoff function ¢ € 51’1(7‘(673,)) such that
¢lg, =1on K; fori=0,..., \7'(6’3,)] — 1 and ¢()) = 0. We note that the element where ¢ is
non-constant has size O(1), and it can be easily checked that ¢ - %, is also a stable lifting of w.
In order to get a function in ™' (755, PI([0,1])) we interpolate the function in the grid points.
Since %}, - ¢ is a polynomial of degree at most 2, interpolating it down to degree 1 is stable in
the L? and H' norm (see [BM97, Rem. 13.5 and (13.27)]). Away from 0, the weighted norms
are equivalent to the standard ones. This shows that the “cutoff and interpolation”-procedure
is stable in H(y®,C). O

Remark C.4. In higher dimensions, Lemma C.3 could also be generalized to spaces SP'(Tq)
as long as Tq is a shape regular triangulation of 2. The main ingredient is the equivalence of
the discrete interpolation norm to the Sobolev norm. This is more involved than in the 1D single
element case and is part of the upcoming work [MKR18]. The requirement on 72{;73;) would then

read ho < p~2 hy where hy is the minimum mesh width in Tq.
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