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APPROXIMATING INVERSE FEM MATRICES

ON NON-UNIFORM MESHES WITH H-MATRICES

NIKLAS ANGLEITNER, MARKUS FAUSTMANN, JENS MARKUS MELENK

Abstract. We consider the approximation of the inverse of the finite element stiffness matrix in the data sparse
H-matrix format. For a large class of shape regular but possibly non-uniform meshes including graded meshes, we

prove that the inverse of the stiffness matrix can be approximated in the H-matrix format at an exponential rate in

the block rank. Since the storage complexity of the hierarchical matrix is logarithmic-linear and only grows linearly
in the block-rank, we obtain an efficient approximation that can be used, e.g., as an approximate direct solver or

preconditioner for iterative solvers.

1. Introduction

Discretizations of elliptic partial differential equations on a domain Ω ⊆ Rd using the classic finite element method
(FEM) usually produce sparse linear systems of equations Ax = b with storage requirements linear in the number
of unknowns and linear complexity for the matrix-vector multiplication. However, the direct solution of these
systems is computationally more expensive. Therefore, iterative solution methods (e.g., Krylov space methods) are
popular in applications, since they only need matrix-vector multiplications, which can be done in linear complexity.
A drawback of these methods is that convergence can be slow for matrices with large condition numbers unless
a suitable preconditioner is employed. These preconditioners have to be taylored to the problem at hand making
black box preconditioners that are based on (approximate) direct solvers particularly interesting. Moreover, if one is
interested in solving the same problem with (many) different right-hand sides, a direct solver may be computationally
advantageous.

Hierarchical matrices (H-matrices), introduced in [Hac99] and extensively studied in the monograph [Hac15], provide
a different solution approach to this problem that does not suffer from the drawbacks of classic direct and iterative
methods. H-matrices are blockwise low-rank matrices. For suitable block structures and block ranks, storing an
H-matrix is of logarithmic-linear complexity. Approximating a given matrix in the H-matrix format thus effects
a compression. A main difference to other compression methods such as multipole expansions, [Rok85, GR97],
or wavelet methods, [vPSS97, Sch98, TW03], is that the H-matrix format allows for an approximate arithmetic.
It is possible to add and multiply as well as compute inverses and LU -decompositions efficiently in the format,
[Gra01, GH03, Hac15]. Therefore, using an H-matrix approximation to the inverse A−1 gives an approximate
direct solution method of logarithmic linear complexity that can be applied efficiently to multiple right-hand sides.
Moreover, an LU -decomposition in the H-matrix format can be used as a black-box preconditioner in iterative
solvers, [Beb07, GHK08, GKLB08]. Nonetheless, we mention that the accuracy in terms of the maximal blockwise
rank of the computed approximations to A−1 (or the LU -decomposition) using H-matrix arithmetic is not fully
understood yet.

In order to explain the numerical success of these approximations, first observed in [Gra01], several works in the
literature provide existence results of approximations to the inverse matrices in theH-matrix format. For the inverses
of FEM matrices, e.g., see [BH03, Beb05, Bör10, FMP15] and for inverse BEM matrices, see [FMP16, FMP17].
These analyses are restricted to the case of (quasi)uniform meshes, i.e., all mesh elements have comparable size. In
a typical FEM scenario, however, locally refined meshes are employed with mesh elements varying greatly in size in
order to account for effects such as locally reduced regularity of the solution. A classic example are graded meshes
for the solution of elliptic problems in corner domains, [BKP79].
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In this article, we generalize the results of [FMP15] for quasiuniform meshes to meshes of so called locally bounded
cardinality (cf. D.2.4), which includes both uniform meshes and algebraically graded meshes. Our main result states
that the inverses of FEM matrices for such meshes can be approximated by hierarchical matrices such that the error
converges exponentially in the H-matrix block rank r. Given a clustering strategy suitable for non-uniform grids,
cf. [GHLB04], the storage complexity of the H-matrix approximant is of logarithmic linear complexity O(rN lnN).
Moreover, we develop an abstract framework that allows for more general FEM basis functions that do not need to
have local supports. In fact, locality is necessary only for a set of dual functions, which is a substantially weaker
assumption. Finally, we streamline some of the arguments made in [FMP15]. While not repeated in this article,
we mention that the (mostly algebraic) techniques of [FMP15, Section 5] can be employed in exactly the same way
to derive exponentially convergent approximate LU -decompositions in the H-matrix format.

The present paper is structured as follows: In Section 2 we introduce all necessary definitions and concepts and
state our main result, T.2.13. Section 3 is dedicated to the proof of the main result. The main technical contribution
is the discrete Caccioppoli-type estimate presented in L.3.28, which is of independent interest. For a certain class
of functions, it allows us to bound the H1-seminorm on a given subdomain by the L2-norm on a slightly larger
subdomain. Finally, Section 4 provides a numerical example that illustrates our main result.

Concerning notation: We write “a . b” iff there exists a constant C > 0 such that “a ≤ Cb”. The constant might
depend on the space dimension d, the domain Ω, the coefficients of the PDE, the shape regularity constant of
the mesh, and the polynomial degree of the discrete spline space, but it is independent of all critical parameters
such as the mesh width. We write a h b, if there hold both a . b and a & b. Matrices and vectors in linear
systems of equations are expressed in boldface letters, e.g., A ∈ RN×N and f ∈ RN . For all x ∈ Rd and ε > 0,
we write Ball2(x, r) := {y ∈ Rd | ‖y − x‖2 < ε} for the Euclidean ball of radius r centered at x. The norm of
the sequence spaces l1 and l2 is denoted by ‖ · ‖1 and ‖ · ‖2. For k ≥ 0, q ∈ [1,∞] and domains Ω ⊆ Rd, we
denote the Sobolev by W k,q(Ω). For a given mesh T , we denote by W k,q

pw (T ) the broken Sobolev space consisting of

elementwise functions from W k,q. For all v ∈ W k,q
pw (T ) and B ⊆ T , we set |v|Wk,q(B) := (

∑
T∈B |v|

q
Wk,q(T )

)1/q and

|v|Wk,∞(B) := maxT∈B |v|Wk,∞(T ). Similarly, C0
pw(T ) denotes the space of piecewise continuous functions. Finally,

it will facilitate notation on numerous occasions to define the (discrete) support of a function v ∈ L2(Ω) on a mesh
T by suppT (v) := {T ∈ T | v|T 6≡ 0}. In particular, we have suppT (v) ⊆ T and

⋃
suppT (v) ⊆ Rd, which slightly

differs from the usual definition of a support, namely, supp(v) := {x ∈ Ω | v(x) 6= 0} ⊆ Rd.

2. Main results

2.1. The model problem. We investigate the following model problem: Let d ≥ 1 and Ω ⊆ Rd be a bounded
polyhedral Lipschitz domain. Furthermore, let a1 ∈ L∞(Ω,Rd×d), a2 ∈ L∞(Ω,Rd) and a3 ∈ L∞(Ω,R) be given
coefficient functions and f ∈ L2(Ω) be a given right-hand side. We seek a weak solution u ∈ H1

0 (Ω) to the following
equations:

−div(a1 ·∇u) + a2 · ∇u+ a3u = f in Ω,
u = 0 on ∂Ω.

In the present work, we restrict ourselves to homogeneous Dirichlet conditions. For the treatment of Neumann and
Robin boundary conditions, the same arguments as in [FMP15] can be employed.

We assume that a1 is coercive in the sense 〈a1(x)y, y〉 ≥ α1‖y‖22 for all x ∈ Ω, y ∈ Rd and some constant
α1 > σ2

Pcr(‖a2‖L∞(Ω) + ‖a3‖L∞(Ω)) ≥ 0. Here, σPcr > 0 denotes the constant in the Poincaré inequality ‖ · ‖H1(Ω) ≤
σPcr| · |H1(Ω) on H1

0 (Ω).

Definition 2.1. We introduce the bilinear form:

∀u, v ∈ H1
0 (Ω) : a(u, v) := 〈a1∇u,∇v〉L2(Ω) + 〈a2 ·∇u, v〉L2(Ω) + 〈a3u, v〉L2(Ω).

The weak formulation of the model problem reads as follows: Find u ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω) : a(u, v) = 〈f, v〉L2(Ω).

The assumptions on the PDE coefficients imply that the bilinear form a(·, ·) is continuous and coercive, cf. L.3.7.
In particular, the well-known Lax-Milgram Lemma yields the existence of a unique solution u ∈ H1

0 (Ω).
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2.2. The mesh. Throughout the text, we consider regular, affine meshes in the following sense:

Definition 2.2 (Mesh). A finite set T ⊆ Pow(Ω) is a mesh if there exists an open simplex T̂ ⊆ Rd (the reference

element) such that every element T ∈ T is of the form T = FT (T̂ ), where FT : Rd −→ Rd is an affine diffeomor-
phism. Furthermore, the elements must be pairwise disjoint, i.e., |T ∩ S| = 0 for all T 6= S ∈ T , and constitute a
partition of Ω, i.e.,

⋃
T∈T T = Ω. Finally, a mesh must be regular in the sense of [Cia78].

We call a collection of mesh elements B ⊆ T a cluster. In the literature on hierarchical matrices, the word cluster
is typically reserved for collections of vector/matrix indices I ⊆ {1, . . . , N}. In the present work, however, we deal
with collections of mesh elements B ⊆ T much more frequently. We also note that both concepts are intimately
linked via D.2.8.

For every subset B ⊆ Rd, we call the set of neighboring mesh elements

T (B) := {T ∈ T |T ∩B 6= ∅} ⊆ T

the patch of B. Similarly, for every cluster B ⊆ T , we set T (B) :=
⋃
B∈B T (B) ⊆ T .

To measure the size of an element T ∈ T , we introduce the local mesh width hT := supx,y∈T ‖y − x‖2. The
corresponding aggregate mesh widths for a cluster B ⊆ T read hB := hmax,B := maxT∈B hT and hmin,B :=
minT∈B hT .

Finally, for every T ∈ T , we denote the center of the largest inscribable ball by xT ∈ T (the incenter). We assume
that T is part of a shape-regular family of meshes, i.e., there exists a constant σshp ≥ 1 such that

∀T ∈ T : Ball2(xT , σ
−1
shphT ) ⊆ T ⊆

⋃
T (T ) ⊆ Ball2(xT , σshphT ).

Definition 2.3. We define the mesh metric

∀T, S ∈ T : distT (T, S) := ‖xS − xT ‖2.

For all clusters A,B ⊆ T , we denote the corresponding diameters and distances by

diamT (A) := max
A1,A2∈A

distT (A1, A2), distT (A,B) := min
A∈A,
B∈B

distT (A,B).

If A or B contains only one element, e.g., A = {T}, we drop the enclosing braces and simply write distT (T,B) :=
distT ({T},B). Furthermore, diamT (T ) := diamT ({T}) = 0 by definition of the cluster diameter.

We refer to L.3.16 for some basic properties of the mesh metric.

Compared to [FMP15], we consider a more general class of meshes. Here, the crucial property is the so called locally
bounded cardinality defined in the following D.2.4. Note that both uniform and graded meshes have this property,
cf. Section 3.2.

Definition 2.4. A mesh T ⊆ Pow(Ω) has locally bounded cardinality, if there exists a constant σcard ≥ 1 such
that

hσcard

T . hmin,T , ∀B ⊆ T : #B .
(

1 +
diamT (B)

hB

)dσcard

.

2.3. The basis- and dual functions.

Definition 2.5 (Spline spaces). Let k ≥ 0 and p ≥ 0. We introduce the finite-dimensional spline spaces

Sp,k(T ) := {v ∈ Hk(Ω) | ∀T ∈ T : v ◦ FT ∈ Pp(T̂ )},
Sp,k0 (T ) := Sp,k(T ) ∩H1

0 (Ω),

where Pp(T̂ ) := span {T̂ 3 x 7→ xq | ‖q‖1 ≤ p} denotes the usual space of polynomials of (total) degree p on the
reference element.

The following definition introduces the bases of Sp,10 (T ) that we consider:
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Definition 2.6 (Basis with local dual functions). Let p ≥ 1 and N := dimSp,10 (T ). A basis {ϕ1, . . . , ϕN} ⊆ Sp,10 (T )
has a system of (local) dual functions {λ1, . . . , λN} ⊆ L2(Ω), if, for all n,m ∈ {1, . . . , N} and x ∈ RN , there hold
the relations

〈ϕn, λm〉L2(Ω) = δnm,

∥∥∥∥ N∑
m=1

xmλm

∥∥∥∥
L2(Ω)

. h−d/2min,T ‖x‖2.

The implied constant may only depend on d, p, and the shape regularity of the mesh T .

Remark 2.7. Note that we do not assume local basis functions ϕn, i.e., suppT (ϕn) = T is allowed. On the other
hand, the dual functions λn should have local supports in order to guarantee competitive memory requirements for

the H-matrices (cf. R.2.12). Furthermore, the specific exponent of h
−d/2
min,T in the stability bound is not crucial, as it

only affects the exponent of the prefactor Nσcard+2 in T.2.13.

The fundamental idea of the present work is to derive properties of matrices from properties of function spaces.
Naturally, one has to think about the connection between abstract matrix indices n ∈ {1, . . . , N} and corresponding
physical subdomains of Ω, which is captured in the following definition.

Definition 2.8 (Index patches). We define the index patches

∀I ⊆ {1, . . . , N} : T (I) :=
⋃
n∈I

suppT (λn) ⊆ T .

Recall from Section 2.2 that T (B) ⊆ T is the patch of a physical subdomain B ⊆ Rd and that T (B) ⊆ T is the
patch of a cluster B ⊆ T . Now, we also have patches T (I) ⊆ T for collections of matrix indices I ⊆ {1, . . . , N}.
Since all three types of patches follow a common idea, we chose the similarity in notation on purpose.

2.4. The system matrix. Let T ⊆ Pow(Ω) be a mesh and p ≥ 1 a fixed polynomial degree. Let Sp,10 (T ) ⊆ H1
0 (Ω)

be the corresponding spline space. We discretize the model problem from Section 2.1 by means of the spline space
and get the following discrete model problem: For given f ∈ L2(Ω), find u ∈ Sp,10 (T ) such that

∀v ∈ Sp,10 (T ) : a(u, v) = 〈f, v〉L2(Ω).

Again, existence and uniqueness of a solution u ∈ Sp,10 (T ) follow from L.3.7 and the Lax-Milgram Lemma.

As usual, given a basis of the discrete space, the discrete model problem can be rephrased as an equivalent linear
system of equations. The bilinear form a(·, ·) from D.2.1 and the basis functions ϕn ∈ Sp,10 (T ) from D.2.6 compose
the governing system matrix.

Definition 2.9. We define the system matrix

A := (a(ϕn, ϕm))Nm,n=1 ∈ RN×N .

Note that the unique solvability of the discrete model problem already ensures that the matrix A is invertible.

2.5. Hierarchical matrices.

Definition 2.10. A subset P ⊆ Pow({1, . . . , N})× Pow({1, . . . , N}) is called a block partition, if⋃̇
(I,J)∈P

I × J = {1, . . . , N} × {1, . . . , N}.

Let σadm, σsmall > 0. A block partition P is called admissible, if it can be split into parts

P = Padm ∪̇ Psmall

with

∀(I, J) ∈ Padm : 0 < diamT (T (I)) ≤ σadmdistT (T (I), T (J)),
∀(I, J) ∈ Psmall : min{#I,#J} ≤ σsmall.
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Typically, an admissible block partition P is constructed in two stages:

First, the indices Iroot := {1, . . . , N} are split up into a (hierarchical) cluster tree TN := (T(L)
N )L≥1. The first level

is T(1)
N := {Iroot}. Then, given the level T(L)

N , all I ∈ T(L)
N with #I > σsmall are split in the form I = I1∪̇I2 with

I1 6= ∅ 6= I2 via a predefined clustering strategy I 7→ (I1, I2). (See, e.g., [Hac15] for some examples of such clustering

strategies.) The combined set of all such children defines the next layer, T(L+1)
N . Clearly, this process stops after a

finite number of layers denoted by depth(TN ).

Second, the matrix indices Iroot × Iroot are split up into a (hierarchical) block cluster tree TN×N := (T(L)
N×N )L≥1.

Here, the first level is T(1)
N×N := {(Iroot, Iroot)}. Then, given the level T(L)

N×N , all (I, J) ∈ T(L)
N×N with diamT (T (I)) >

σadmdistT (T (I), T (J)) are split into the children (I1, J1), (I1, J2), (I2, J1), (I2, J2), where I = I1∪̇I2 and J = J1∪̇J2

as before. Again, all these children are collected in the layer T(L+1)
N×N . Finally, the block partition P is just the set of

all leaves of TN×N .

Definition 2.11. Let P be an admissible block partition and r ∈ N a given block rank bound. We define the set of
H-matrices by

H(P, r) := {B ∈ RN×N | ∀(I, J) ∈ Padm : ∃X ∈ RI×r,Y ∈ RJ×r : B|I×J = XY T }.

Remark 2.12. By [Hac15, Lemma 6.13], the memory requirements to store an H-matrix B ∈ H(P, r) can be
bounded by the quantity Csparse(TN×N )(σsmall + r)depth(TN )N , where Csparse(TN×N ) > 0 denotes the so-called
sparsity constant.

In [GHLB04], the authors present a geometrically balanced clustering strategy that guarantees the upper bounds
Csparse(TN×N ) . 1 and depth(TN ) . ln(h−1

min,T ). Using the relation hmin,T & hσcard

T from D. 2.4 for meshes

with locally bounded cardinality, we can conclude depth(TN ) . ln(N). In particular, we get an overall bound of
O(rN lnN) for the memory requirements to store the matrix B.

Note that this line of reasoning implicitly assumes that the dual functions λn ∈ L2(Ω) from D.2.6 have local supports.
More precisely, we need suppT (λn) ⊆ T (Tn) for some Tn ∈ T and have to ensure that these characteristic elements
Tn do not coincide too frequently, i.e. #{n |Tn = T} . 1 for all elements T ∈ T .

2.6. The main result. The following theorem is the main result of the present work. It states that inverses of FEM
matrices with meshes of locally bounded cardinality can be approximated at an exponential rate by hierarchical
matrices.

Theorem 2.13. Let T ⊆ Pow(Ω) be a mesh of locally bounded cardinality for some σcard ≥ 1 in the sense of D.2.4

and {ϕ1, . . . , ϕN} ⊆ Sp,10 (T ) a basis that has a system of local dual functions (see D.2.6). Let a(·, ·) be the elliptic
bilinear form from D.2.1 and A ∈ RN×N be the corresponding Galerkin stiffness matrix (D.2.9). Finally, let P be
an admissible block partition as in D.2.10. Then there exists a constant σexp > 0 such that, for every block rank
bound r ∈ N, there exists an H-matrix B ∈ H(P, r) with

‖A−1 −B‖2 . Nσcard+2 exp(−σexpr
1/(dσcard+1)).

Under additional assumptions on the block partition P, one can reduce the prefactor from Nσcard+2 to ln(N)Nσcard ,
see R.3.13. As shown in Section 3.2, uniform and algebraically graded meshes have locally bounded cardinality. In
particular, we immediately get the following corollary.

Corollary 2.14. Let T ⊆ Pow(Ω) be an algebraically graded mesh with grading exponent α ≥ 1 (see D.3.4). Then
T.2.13 holds verbatim with σcard = α.

3. Proof of main result

3.1. Overview. The techniques employed in the proof of our main result are similar to those developed in [FMP15]
for uniform meshes. However, some modifications are necessary to deal with the present case of non-uniform meshes
T and (possibly) global basis functions ϕn ∈ Sp,10 (T ). Additionally, we simplify several parts of the previous proof
considerably.

1) Before we begin the proof, we give a motivation for the assumptions made in D.2.4 and D.2.6. In Section 3.2, we
present two types of meshes with locally bounded cardinality, namely uniform and graded meshes. The fact that
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every uniform mesh has locally bounded cardinality will be used during our proof in T.3.32. The locally bounded
cardinality of graded meshes shows that T.2.13 is applicable for graded meshes in the sense of D.3.4.

Then, in Section 3.3, we present a practical choice for the dual functions λn ∈ L2(Ω) from D.2.6 for a common

choice of basis functions ϕn ∈ Sp,10 (T ). The results from this section guarantee that T.2.13 can be used for many
different types of finite element bases, including the classic hat functions.

2) The starting point for our proof is an explicit representation formula for A−1. Since A−1 represents the act
of solving the discretized model problem, it is only natural that the corresponding discrete solution operator ST :
L2(Ω) −→ Sp,10 (T ) will be involved. Additionally, this endeavor requires the dual functions λn ∈ L2(Ω) mentioned

earlier. We present the explicit formula for A−1 at the end of Section 3.4.

3) In Section 3.5 we use this formula to go from the “matrix level” to the “function level”: Initially, we reduce
the problem of approximating A−1 as a whole to the problem of approximating A−1|I×J for each admissible block
(I, J) ∈ Padm. (The small blocks Psmall are irrelevant in this matter.) As it turns out, this boils down to the
following question:

Given admissible clusters B,D ⊆ T and a free parameter L ∈ N, how can we construct a low-dimensional subspace
VB,D,L ⊆ L2(Ω) that contains a good approximant of (ST f)|B for every f ∈ L2(Ω) with suppT (f) ⊆ D? More
precisely, we want to achieve the bounds (for some fixed κ ≥ 1)

dimVB,D,L . L
κ, inf

v∈VB,D,L
‖ST f − v‖L2(B) . 2−L‖f‖L2(D).

The remaining sections will give an answer to this very question. Since the construction of VB,D,L is fairly technical
and by no means straightforward, the proof is split into further parts:

4) As the notation “VB,D,L” already suggests, the notion of locality plays a prominent role in almost all parts of
the proof. This is why we introduce so called inflated clusters, discrete cut-off functions, and the discrete cut-off
operator in Section 3.6.

5) In Section 3.7 we investigate an important class of functions for our analysis, the spaces of locally discrete harmonic

functions Sharm(B) ⊆ Sp,10 (T ). These subspaces have three important properties: First, for certain f ∈ L2(Ω), they
contain the image ST f . Second, they are invariant under the influence of their respective discrete cut-off operators.
Third, they allow for the discrete Caccioppoli inequality, a key ingredient in deriving the asserted error bounds for
VB,D,L.

6) Finally, in Section 3.8 we construct the single- and multi-step coarsening operators. For any given u ∈ Sharm(Bδ)
on the inflated cluster Bδ ⊇ B, the single-step coarsening operator QδB produces a “coarse” approximation QδBu ∈
Sharm(B) with a small approximation error on B. This is by far the most intricate part of the proof and puts all

the aforementioned concepts to use. Afterwards, the multi-step coarsening operator Qδ,LB is just a combination of
L ∈ N single-step coarsening operators.

7) In Section 3.9 we merely put all the pieces together and finish the proof of T.2.13.

3.2. Examples of meshes with locally bounded cardinality. In this subsection, we present two representatives
of meshes with locally bounded cardinality (cf. D.2.4): Uniform meshes and graded meshes. To verify the locally
bounded cardinality property for a given mesh, the following lemma is helpful.

Lemma 3.1. Let T ⊆ Pow(Ω) be a shape-regular mesh as in D.2.2. Then, there hold the bounds

1

hdT
. #T , ∀B ⊆ T : #B .

(
1 +

diamT (B)

hmin,B

)d
.

Proof. Both estimates follow from the relation
∑
T∈B h

d
T h

∑
T∈B |T | = |

⋃
B| with appropriate B ⊆ T . �

Definition 3.2. A mesh T ⊆ Pow(Ω) is called uniform, if there exists a constant σunif ≥ 1 such that

hmin,T ≤ hT ≤ σunifhmin,T .

Using L.3.1 we immediately get the following result:

Lemma 3.3. Every uniform mesh T ⊆ Pow(Ω) has locally bounded cardinality with σcard = 1.
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Definition 3.4 (Mesh graded towards Γ). Let T ⊆ Pow(Ω) be a mesh and Γ ⊆ Rd satisfy Γ ⊆ Rd\T for all T ∈ T .
Furthermore, let α ≥ 1 be a grading exponent and H > 0 a coarse mesh width. We say that T is graded towards
Γ with parameters α,H, if there holds

∀T ∈ T : hT h dist2(xT ,Γ)1−1/αH.

Here, xT denotes the incenter of the element T and dist2(xT ,Γ) = infγ∈Γ ‖xT − γ‖2 is the Euclidean distance
between a point and a set.

The set Γ towards which the mesh is graded is usually determined by the given problem. For example, reentrant
corners of the domain Ω or regions of non-smoothness of the data may entail a reduced regularity of the solution
u to the model problem from Section 2.1. This usually leads to reduced order of convergence of the finite element
approximation on quasiuniform meshes. Choosing the set Γ to contain all singularities of the solution as well as
choosing the parameter α correctly, one can regain the optimal order of convergence. To a large extent, the shape of
Γ is irrelevant for our analysis. We only require that the mesh resolve Γ, i.e., the mesh can only be graded towards
points/lines that are part of the mesh skeleton.

Lemma 3.5. Let T ⊆ Pow(Ω) be a mesh graded towards Γ with parameters α,H. Then, there hold the bounds
Hα . hmin,T ≤ hT . H. Furthermore, T has locally bounded cardinality with σcard = α.

Proof. We start with the bounds for hT and hmin,T : For every T ∈ T , we know from D.2.2 that Ball2(xT , σ
−1
shphT ) ⊆

T . Combining this with the assumption Γ ⊆ T c from D.3.4 yields dist2(xT ,Γ) ≥ hT /σshp. We conclude hT h
dist2(xT ,Γ)1−1/αH & h

1−1/α
T H and ultimately hmin,T & Hα. On the other hand, we have the bound hT h

dist2(xT ,Γ)1−1/αH ≤ supx∈Ω dist2(x,Γ)1−1/αH . H and thus hT . H.

It remains to prove the locally bounded cardinality: Let B ⊆ T arbitrary. We fix some element B ∈ B with
b := dist2(xB ,Γ) = minT∈B dist2(xT ,Γ) and abbreviate ∆b := diamT (B). Note that there holds the bound
hB h (maxT∈B dist2(xT ,Γ))1−1/αH . (b+ ∆b)1−1/αH.

In the case b ≤ ∆b we have the lower bound

hmin,B ≥ hmin,T & H
α &

hαB
(b+ ∆b)α−1

≥ hαB
(2∆b)α−1

.

In the remaining case b > ∆b we get

hmin,B h H

(
min
T∈B

dist2(xT ,Γ)

)1−1/α

= Hb1−1/α & hB

(
b

b+ ∆b

)1−1/α

≥ 21/α−1hB.

In particular, both cases lead to the estimate

#B
L.3.1

.

(
1 +

∆b

hmin,B

)d
.

(
1 +

∆b

hB

)dα
,

which concludes the proof. �

3.3. Examples of dual functions. In this subsection, we present a way to construct bases of Sp,10 (T ) that is
common in the finite element method. This scheme encompasses, in particular, the classic hat functions ϕn ∈
S1,1

0 (T ) as well as their generalization to p ≥ 1 (Lagrange elements). Then, we show explicitly how to find a dual
system {λ1, . . . , λN} ⊆ L2(Ω) in the sense of D.2.6.

Let p ≥ 1, L := dimPp(T̂ ) and N := dimSp,10 (T ). Let {ϕ1, . . . , ϕN} ⊆ Sp,10 (T ) be a basis such that:

1) Local supports: For every n ∈ {1, . . . , N}, there exists an element Tn ∈ T such that Tn ∈ suppT (ϕn) ⊆ T (Tn).

2) Simple structure: There exists a basis of shape functions {ϕ̂1, . . . , ϕ̂L} ⊆ Pp(T̂ ), which determines the shape
of the basis elements. More precisely, for every n ∈ {1, . . . , N} and every T ∈ suppT (ϕn), there exists an index
l(n, T ) ∈ {1, . . . , L} such that ϕn|T = ϕ̂l(n,T ) ◦ F−1

T .

3) Local distinctness: The basis functions are locally distinct in the following sense: For all n 6= m ∈ {1, . . . , N}
and all common T ∈ suppT (ϕn) ∩ suppT (ϕm), there holds l(n, T ) 6= l(m,T ).
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For each basis function ϕn we fix an element Tn ∈ T as in 1). Note that a standard scaling argument T ↔ T̂ readily
provides the following relation:

∀n ∈ {1, . . . , N} : ‖ϕn‖L2(Ω) h h
d/2
Tn
.

Now, for the construction of the dual functions λn ∈ L2(Ω), let {λ̂1, . . . , λ̂L} ⊆ Pp(T̂ ) be the unique set of dual

shape functions, i.e. 〈ϕ̂l, λ̂k〉L2(T̂ ) = δlk for all l, k ∈ {1, . . . , L}. Then, the dual function λn ∈ Sp,0(T ) ⊆ L2(Ω) is

defined in a piecewise manner: For every T 6= Tn, we set λn|T := 0, whereas

λn|Tn := |det∇FTn |−1 ·(λ̂l(n,Tn) ◦ F−1
Tn

).

Lemma 3.6. For all n,m ∈ {1, . . . , N} and x ∈ RN , there holds

〈ϕn, λm〉L2(Ω) = δnm,

∥∥∥∥ N∑
m=1

xmλm

∥∥∥∥
L2(Ω)

. h−d/2min,T ‖x‖2.

Proof. Let n,m ∈ {1, . . . , N}. If Tm /∈ suppT (ϕn), we have m 6= n and therefore 〈ϕn, λm〉L2(Ω) = 0 = δnm. In the
remaining case Tm ∈ suppT (ϕn) we get

〈ϕn, λm〉L2(Ω) = 〈ϕn, λm〉L2(Tm) = 〈ϕ̂l(n,Tm), λ̂l(m,Tm)〉L2(T̂ ) = δl(n,Tm)l(m,Tm) = δnm.

Next, recall that |T | h hdT for every element T in a shape-regular mesh T . For all m ∈ {1, . . . , N}, we compute

‖λm‖L2(Ω) = |det∇FTm |−1‖λ̂l(m,Tm) ◦ F−1
Tm
‖L2(Tm) = |T̂ |1/2|Tm|−1/2‖λ̂l(m,Tm)‖L2(T̂ ) h h

−d/2
Tm

.

Finally, for every T ∈ T , we consider the indices ms(T ) := {m |Tm = T}. Due to the duality formula from above,
the system {λ1, . . . , λN} ⊆ Sp,0(T ) is linearly independent. In particular, there must hold #ms(T ) . 1. Now, for
every x ∈ RN and every T ∈ T , we obtain∥∥∥∥ N∑

m=1

xmλm

∥∥∥∥2

L2(T )

=

∥∥∥∥ ∑
m∈ms(T )

xmλm

∥∥∥∥2

L2(T )

≤
( ∑
m∈ms(T )

‖λm‖2L2(Ω)

)( ∑
m∈ms(T )

x2
m

)
. h−dT

∑
m∈ms(T )

x2
m.

Summing over all elements T ∈ T then gives the asserted global stability bound. This concludes the proof. �

3.4. A representation formula for the inverse system matrix. In this subsection, we develop a representation
formula for A−1 in terms of three linear operators: Recall that A−1 represents the action of solving the discrete
model problem, so there must be a fundamental connection to the discrete solution operator ST : L2(Ω) −→ Sp,10 (T ).
Additionally, we need a way to turn coefficient vectors f ∈ RN into functions f ∈ L2(Ω) that can be plugged into
ST . For this purpose, we can use the dual functions λn ∈ L2(Ω) from D.2.6 and the corresponding coordinate

mapping Λ : RN −→ L2(Ω). Finally, the image ST Λf ∈ Sp,10 (T ) must be converted back to a vector in RN . A

straightforward approach would be to use the inverse Φ−1 of the coordinate mapping Φ : RN −→ Sp,10 (T ) associated

with the basis functions ϕn ∈ Sp,10 (T ). But, as it turns out, it is advantageous to use the Hilbert space transpose
ΛT : L2(Ω) −→ RN instead.

First, let us recall the following classic result:

Lemma 3.7. The bilinear form a from D.2.1 is coercive and continuous:

∀u, v ∈ H1
0 (Ω) : ‖u‖2H1(Ω) . a(u, u), a(u, v) . ‖u‖H1(Ω)‖v‖H1(Ω).

The precise definitions of ST , Φ, and Λ are given in the following D.3.8.

Definition 3.8. Let a : H1
0 (Ω) × H1

0 (Ω) −→ R the bilinear form from D.2.1. For every f ∈ L2(Ω), denote by

ST f ∈ Sp,10 (T ) the unique function satisfying the variational equality

∀v ∈ Sp,10 (T ) : a(ST f, v) = 〈f, v〉L2(Ω).

The linear mapping ST : L2(Ω) −→ Sp,10 (T ) is called discrete solution operator.

Recall from Section 2.4 that existence and uniqueness of ST f are provided by the Lax-Milgram Lemma. Addition-
ally, there holds the a priori bound ‖ST f‖H1(Ω) . ‖f‖L2(Ω).
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Definition 3.9. Let {ϕ1, . . . , ϕN} ⊆ Sp,10 (T ) be a basis and {λ1, . . . , λN} ⊆ L2(Ω) a dual system compliant with
D.2.6. We denote the corresponding coordinate mappings by

Φ :

{
RN −→ Sp,10 (T )

x 7−→
∑N
n=1 xnϕn

, Λ :

{
RN −→ L2(Ω)

x 7−→
∑N
n=1 xnλn

.

We summarize the most important properties of Φ and Λ in the following lemma. As usual, we use the notation
supp(x) := {n ∈ {1, . . . , N} |xn 6= 0} for the support of a vector x ∈ RN . Furthermore, recall from D.2.8 the
notation T (I) ⊆ T for all abstract matrix index sets I ⊆ {1, . . . , N}.

Lemma 3.10. The Hilbert space transpose of Λ is given by the operator

ΛT :

{
L2(Ω) −→ RN
v 7−→ (〈v, λn〉L2(Ω))

N
n=1

.

The restriction of ΛT to the subspace Sp,10 (T ) ⊆ L2(Ω) coincides with the inverse mapping Φ−1. More precisely, for

all x,y ∈ RN and all v ∈ Sp,10 (T ), there hold the duality/inversion formulae

〈Φx,Λy〉L2(Ω) = 〈x,y〉2, ΛTΦx = x, ΦΛT v = v.

Both Λ and ΛT preserve locality: For all x ∈ RN , v ∈ L2(Ω) and I ⊆ {1, . . . , N}, we have

suppT (Λx) ⊆ T (supp(x)), ‖ΛT v‖l2(I) ≤ ‖Λ‖‖v‖L2(T (I)).

Proof. The operator ΛT is indeed the Hilbert space transpose of Λ: For all v ∈ L2(Ω) and x ∈ RN , we compute

〈ΛT v,x〉2 =

N∑
n=1

〈v, λn〉L2(Ω)xn =

〈
v,

N∑
n=1

xnλn

〉
L2(Ω)

= 〈v,Λx〉L2(Ω).

The duality formula is a direct consequence of the duality property 〈ϕn, λm〉L2(Ω) = δnm from D.2.6: For all

x,y ∈ RN , we have

〈Φx,Λy〉L2(Ω) =
N∑

n,m=1

xnym〈ϕn, λm〉L2(Ω) =
N∑
n=1

xnyn = 〈x,y〉2.

From this, we immediately get the inversion formula ΛTΦx = x as well. On the other hand, for every v ∈ Sp,10 (T ),
there holds ΦΛT v = ΦΛTΦΦ−1v = ΦΦ−1v = v.

Next, we turn our attention to the preservation of locality by Λ:

∀x ∈ RN : suppT (Λx) = suppT

( ∑
n∈supp(x)

xnλn

)
⊆

⋃
n∈supp(x)

suppT (λn)
D.2.8

= T (supp(x)).

Finally, let v ∈ L2(Ω) and I ⊆ {1, . . . , N}. Let κ ∈ L∞(Ω) be a (discontinuous) cut-off function with κ|T (I) ≡ 1
and κ|T \T (I) ≡ 0. Then,

‖ΛT v‖l2(I) = ‖ΛT (κv)‖l2(I) ≤ ‖ΛT (κv)‖2 ≤ ‖ΛT ‖‖κv‖L2(Ω) = ‖Λ‖‖v‖L2(T (I)),

which finishes the proof. �

Lemma 3.11. The system matrix A ∈ RN×N from D.2.9, the discrete solution operator ST : L2(Ω) −→ Sp,10 (T )
from D.3.8, and the coordinate mapping Λ : RN −→ L2(Ω) from D.3.9 are related via the representation formula

∀f ∈ RN : A−1f = ΛTST Λf .

Proof. First, we establish a relationship between A and a by means of the coordinate mapping Φ:

∀x,y ∈ RN : 〈Ax,y〉2
D.2.9

=
N∑

n,m=1

a(ϕn, ϕm)xnym
D.3.9

= a(Φx,Φy).

Now, using the duality and inversion formulae from L.3.10, we get

∀f ,y ∈ RN : 〈AΛTST Λf ,y〉2 = a(ΦΛTST Λf ,Φy) = a(ST Λf ,Φy)
D.3.8

= 〈Λf ,Φy〉L2(Ω) = 〈f ,y〉2.
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This readily implies the stated representation formula. �

3.5. Reduction from matrix level to function level. In this subsection, we rephrase the original matrix
approximation problem as a function approximation problem. This will get rid of abstract matrix indices I ⊆
{1, . . . , N} in favor of element clusters B ⊆ T . The following lemma facilitates a reduction from the full matrix to
the individual matrix blocks.

Lemma 3.12. Let P ⊆ Pow({1, . . . , N})× Pow({1, . . . , N}) be a block partition. Then there holds the estimate

∀B ∈ RN×N : ‖B‖2 ≤ N2 · max
(I,J)∈P

‖B|I×J‖2.

Proof. The statement follows from

∀x ∈ RN : ‖Bx‖22 = 〈Bx,Bx〉2 =
∑

(I,J)∈P

〈B|I×Jx|J , (Bx)|I〉2 ≤
(

max
(I,J)∈P

‖B|I×J‖2
)

#P‖x‖2‖Bx‖2

and the bound #P ≤ N2, which is valid for any partition P of {1, . . . , N} × {1, . . . , N}. �

Remark 3.13. The constant O(N2) in the upper bound is far from optimal. If one assumes a block partition P
stemming from a hierarchical cluster tree TN , then it can be reduced to O(lnN): In [Hac15, Lemma 6.5.8], the author
showed the bound ‖B‖2 ≤ Csparse(TN×N )depth(TN ) max(I,J)∈P ‖B|I×J‖2 with the sparsity constant Csparse(TN×N )
and the depth of the cluster tree depth(TN ). Again, due to [GHLB04], one can achieve Csparse(TN×N ) . 1 and

depth(TN ) . ln(h−1
min,T ) . ln(N) with a geometrically balanced cluster tree on any mesh satisfying hmin,T & h

σcard

T .

The following lemma is the main step in shifting the original problem from matrices to function spaces. Note that
the representation formula for A−1 from L.3.11 plays a crucial role in its proof.

Lemma 3.14. Let (I, J) ∈ Padm and V ⊆ L2(Ω) be a finite-dimensional subspace. Then, there exist matrices
X ∈ RI×r and Y ∈ RJ×r of size r ≤ dimV , such that there holds the error bound

‖A−1|I×J −XY T ‖2 ≤ ‖Λ‖2 · sup
f∈L2(Ω):

suppT (f)⊆T (J)

‖f‖−1
L2(Ω) · inf

v∈V
‖ST f − v‖L2(T (I)).

Proof. We use the transposed coordinate mapping ΛT : L2(Ω) −→ RN from L.3.10 to define V := (ΛTV )|I ⊆ RI .
Note that r := dimV ≤ dimV . Next, let the columns of the matrix X ∈ RI×r be an l2(I)-orthonormal basis of

V . In particular, the product XXT ∈ RI×I represents the l2(I)-orthogonal projection from RI onto V . Finally,
set Y := (A−1|I×J)TX ∈ RJ×r.

Now, for every f ∈ RN with supp(f) ⊆ J , we get the bound

‖(A−1|I×J −XY T )f |J‖l2(I) = ‖(I −XXT )(A−1f)|I‖l2(I) = infv∈V ‖(A−1f)|I − v‖l2(I)

L.3.11
= infv∈V ‖ΛT (ST Λf − v)‖l2(I)

L.3.10
≤ ‖Λ‖ ·infv∈V ‖ST Λf − v‖L2(T (I)).

We can divide both sides by ‖f‖l2(J), take suprema and substitute f := Λf ∈ L2(Ω). Finally, we use suppT (f) =

suppT (Λf) ⊆ T (supp(f)) ⊆ T (J) and ‖f‖−1
l2(J) ≤ ‖Λ‖‖f‖

−1
L2(Ω) to get the desired result. �

A thorough understanding of the preceding lemma is absolutely fundamental for the subsequent sections. Therefore,
let us recall its interpretation from Section 3.1:

Let B,D ⊆ T with 0 < diamT (B) ≤ σadmdistT (B,D) and L ∈ N. How can we construct a subspace VB,D,L ⊆ L2(Ω)
of dimension dimVB,D,L . Lκ (for some fixed κ ≥ 1) that satisfies the error bound

inf
v∈VB,D,L

‖ST f − v‖L2(B) . 2−L‖f‖L2(D),

for all source functions f ∈ L2(Ω) with suppT (f) ⊆ D?
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3.6. The discrete cut-off operator. The notion of cluster inflation provides a means of enlarging a given cluster
by a predefined threshold with respect to the mesh metric distT (·, ·) from D.2.3. This is one of the core concepts
in our proof and will be used extensively. We acknowledge this fact with tight notation:

Definition 3.15. For every cluster B ⊆ T and every radius δ ≥ 0, we introduce the inflated cluster

Bδ := {T ∈ T |distT (T,B) ≤ δ}.

We summarize the most important facts about the mesh metric and inflated clusters in the subsequent lemma. We
omit the elementary proofs, as they follow directly from the respective definitions.

Lemma 3.16. The mesh metric distT (·, ·) from D.2.3 defines a metric on T . There holds the triangle type inequality

∀A,B, C ⊆ T : distT (A, C) ≤ distT (A,B) + diamT (B) + distT (B, C).

For every element T ∈ T and every neighbor S ∈ T (T ), the distance is bounded by distT (T, S) ≤ σshphT . On the

other hand, for every S ∈ T \{T}, we have the lower bound distT (T, S) ≥ σ−1
shp(hT + hS). Additionally, for every

cluster B ⊆ T , there holds hB ≤ max{hmin,B, σshpdiamT (B)}.

When dealing with a second mesh S ⊆ Pow(Ω), cluster diameters are essentially equivalent:

∀B ⊆ T : diamS(S(
⋃
B)) ≤ diamT (B) + 2hB + 2hS(

⋃
B).

Finally, consider clusters B ⊆ C ⊆ T and inflation radii δ, ε ≥ 0. Then, B ⊆ Bδ ⊆ (Bδ)ε ⊆ Bδ+ε ⊆ Cδ+ε.
For the cluster patch T (B) we have the inclusion T (B) ⊆ BσshphB . We conclude this summary with the bounds
diamT (Bδ) ≤ diamT (B) + 2δ and hBδ ≤ max{hB, σshpδ}.

For the construction of the cut-off function κδB in L.3.19 we will use a variant of the classic Clément operator, [Clé75].

Definition 3.17. Let N ⊆ Ω be the nodes of the mesh T and denote by {bN |N ∈ N} ⊆ S1,1(T ) the well-known
hat-functions, i.e. bN (M) = δNM . We write 〈v〉T := |T |−1

∫
T
v dx ∈ R for the mean value of a function v ∈ L2(Ω)

on an element T ∈ T . Now, the Clément operator JT : L2(Ω) −→ S1,1(T ) is defined in a nodewise fashion: For
every v ∈ L2(Ω), we set JT v :=

∑
N∈N βNbN , where the nodal value βN is given by

βN :=
1

#T (N)

∑
T∈T (N)

〈v〉T .

Lemma 3.18. The linear operator JT has a local projection property: Given a cluster B ⊆ T and a function
v ∈ L2(Ω) with v|T (B) ≡ const, there holds (JT v)|B = v|B. Furthermore, JT preserves discrete supports: For every

q ≥ 0 and every v ∈ Sq,0(T ), there holds suppT (JT v) ⊆ T (supp(v)). Moreover, JT preserves ranges: For every
v ∈ S1,0(T ) with 0 ≤ v ≤ 1 there also holds 0 ≤ JT v ≤ 1. Finally, we have the stability bound

∀v ∈ L2(Ω) : ∀T ∈ T : hT |JT v|W 1,∞(T ) . max
S∈T (T )

|〈v〉T − 〈v〉S |.

The discretized model problem a(u, v) = 〈f, v〉L2(Ω) was phrased in terms of global functions u, v ∈ Sp,10 (T ). But if
we plug in a function v with local support, e.g., suppT (v) ⊆ B for some prescribed cluster B ⊆ T , we can extract
local information about u on B. This motivates the usage of discrete cut-off functions.

Lemma 3.19. Let B ⊆ T and δ > 0 with 4σ3
shphB ≤ δ . 1. Then, there exists a discrete cut-off function κδB with

κδB ∈ S1,1(T ), suppT (κδB) ⊆ Bδ, κδB|B ≡ 1, 0 ≤ κδB ≤ 1, ‖κδB‖W 1,∞(Ω) .
1

δ
.

Proof. We abbreviate ε := δ/(4σ2
shp) > 0 and consider a step function κ ∈ S0,0(T ) defined by

∀T ∈ T : κ|T := max{0, 1− distT (T, T (B))/ε} ∈ R.

From the definition we immediately get suppT (κ) ⊆ T (B)
ε

and κ|T (B) ≡ 1 as well as 0 ≤ κ ≤ 1. (Recall that T (B)

are all patch elements of B and T (B)
ε

is the corresponding inflated cluster by a radius of ε.) Next, for every T ∈ T
and every neighbor S ∈ T (T ), we apply the triangle inequality from L.3.16 to the clusters {T}, {S}, T (B) and
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derive distT (T, T (B)) ≤ distT (T, S) + distT (S, T (B)). (Recall from D.2.3 that diamT (S) = 0, since {S} contains
only one element.) Exploiting the Lipschitz continuity of t 7→ max{0, t}, we get the error bound

|κ|T − κ|S | ≤
|distT (T, T (B))− distT (S, T (B))|

ε
≤ distT (T, S)

ε

L.3.16

.
hT
ε

h
hT
δ
.

We use the Clément operator JT : L2(Ω) −→ S1,1(T ) from D.3.17 to define κδB := JT κ ∈ S1,1(T ). For the support
of κδB we compute

suppT (κδB)
L.3.18
⊆ T (suppT (κ)) ⊆ T (T (B)

ε
)
L.3.16
⊆ B(1+σ2

shp)(σshphB+ε) ⊆ B2σ3
shphB+δ/2

δ&hB
⊆ Bδ.

From L.3.18 and κ|T (B) ≡ 1 we get κδB|B ≡ 1. Moreover, 0 ≤ κ ≤ 1 yields 0 ≤ κδB ≤ 1. This implies, in particular,

‖κδB‖L∞(Ω) ≤ 1 . δ−1, where we used the assumption δ . 1. The remaining bound |κδB|W 1,∞(Ω) . δ−1 follows from

∀T ∈ T : hT |κδB|W 1,∞(T )

L.3.18

. max
S∈T (T )

|κ|T − κ|S | .
hT
δ
.

This finishes the proof. �

Given a cluster B ⊆ T and a distance δ > 0, the discrete cut-off function κδB allows us to “restrict” a function
v ∈ Sp,1(T ) to the subdomain

⋃
Bδ ⊆ Ω while preserving continuity. This can be achieved by simply multiplying

v with κδB. Note that the product κδBv has polynomial degree p+ 1, rather than p. To mitigate this drawback, we
can simply re-interpolate the result with an operator of order p.

Definition 3.20. Let p ≥ 1 and denote by Îp : C0(T̂ ) −→ Pp(T̂ ) the (local) Lagrange interpolation operator on

the reference element T̂ . The (global) Lagrange interpolation operator IpT : C0
pw(T ) −→ Sp,0(T ) is defined in a

piecewise manner: For every v ∈ C0
pw(T ) and every T ∈ T , we set

(IpT v)|T := Îp(v ◦ FT ) ◦ F−1
T .

In order to derive a useful stability estimate for IpT , we use a standard inverse inequality (see, e.g., [DFG+01]).

Lemma 3.21. Let k ≥ l ≥ 0, q ∈ [1,∞] and p ≥ 0. Then, for all discrete functions v ∈ Sp,0(T ) and all elements
T ∈ T , there holds the inverse inequality

hkT |v|Wk,q(T ) . h
l
T |v|W l,q(T ).

The properties of the Lagrange interpolation operator IpT are very similar to those of the Clément operator JT from
D.3.17. For the sake of completeness, we include them in the following lemma.

Lemma 3.22. Let p ≥ 1. The linear operator IpT has a local projection property: Given a cluster B ⊆ T and
a function v ∈ C0

pw(T ) with v ∈ Sp,0(B), there holds (IpT v)|B = v|B. Furthermore, IpT preserves global continuity

and homogeneous boundary values: For every v ∈ C0(Ω), there holds IpT v ∈ Sp,1(T ). Similarly, if v ∈ C0(Ω) with

v|∂Ω ≡ 0, then IpT v ∈ Sp,10 (T ). Moreover, IpT preserves discrete supports: For every q ≥ 0 and every v ∈ Sq,0(T ),
we have suppT (IpT v) ⊆ suppT (v). Finally, for all q ≥ 0, v ∈ Sq,0(T ) and T ∈ T , there hold the following stability
and error estimates (with constants depending on q):

∀m ∈ {0, . . . , p+ 1} : |IpT v|Hm(T ) . |v|Hm(T ),∑p+1
l=0 h

l
T |(id− I

p
T )(v)|Hl(T ) . hp+1

T |v|Hp+1(T ).

Proof. We briefly sketch the proof of the stability and error bounds: The mapping v 7→ ‖Îpv‖L2(T̂ ) + |v|Hp+1(T̂ )

defines a norm on the finite-dimensional space Pq(T̂ ). Hence, by norm equivalence, ‖v‖Hp+1(T̂ ) . ‖Îpv‖L2(T̂ ) +

|v|Hp+1(T̂ ) for all v ∈ Pq(T̂ ). Inserting v := w−Îpw for arbitrary w ∈ Pq(T̂ ) results in the bound ‖w−Îpw‖Hp+1(T̂ ) .

|w|Hp+1(T̂ ). Finally, a standard scaling argument T̂ ↔ T yields the desired error estimate on T . As for the stability

bound, we perform a straightforward triangle inequality on T , reuse the already proven error bound and finish off
with the inverse inequality from L.3.21. �
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Remark 3.23. The fact that IpT preserves global continuity and homogeneous boundary values hinges on an implicit

assumption about the (local) interpolation points used by the local Lagrange interpolation operator Îp. Recall from

D.2.2 that the reference element T̂ ⊆ Rd is a simplex and thus delimited by d + 1 hyperplanes. The interpolation
points on each hyperplane Ê must be unisolvent for the space Pp(Ê). Then, in particular, every polynomial v ∈ Pp(T̂ )

vanishing at the interpolation points in Ê must already vanish everywhere on Ê. This property readily implies that
homogeneous boundary values are preserved by the global operator IpT . Finally, the distribution of interpolation points

on each hyperplane Ê must be “symmetric”. More precisely, if two elements T1, T2 ∈ T share a common hyperplane,
we require the corresponding interpolation points to align perfectly. In this case, using the same argument as before,
the operator IpT preserves global continuity indeed.

As our next step, we encapsulate the aforementioned “cut-off” process in a linear operator.

Definition 3.24. Let B ⊆ T and δ > 0 with 4σ3
shphB ≤ δ . 1 and denote by κδB ∈ S1,1(T ) the discrete cut-off

function from L.3.19. Furthermore, denote by IpT : C0
pw(T ) −→ Sp,0(T ) the Lagrange interpolation operator from

D.3.20. We define the discrete cut-off operator

Kδ
B :

{
Sp,1(T ) −→ Sp,1(T )

v 7−→ IpT (κδBv)
.

The discrete cut-off operator Kδ
B inherits its core properties from IpT .

Lemma 3.25. Let B ⊆ T and δ > 0 with 4σ3
shphB ≤ δ . 1. For all v ∈ Sp,1(T ), the linear operator Kδ

B has the

cut-off property suppT (Kδ
Bv) ⊆ Bδ and the local projection property (Kδ

Bv)|B = v|B. Furthermore, Kδ
B preserves

homogeneous boundary values: For all v ∈ Sp,10 (T ), there holds Kδ
Bv ∈ Sp,10 (T ). Finally, for every v ∈ Sp,1(T ) and

every T ∈ T , there holds the local stability estimate

‖Kδ
Bv‖L2(T ) + δ|Kδ

Bv|H1(T ) . ‖v‖L2(T ) + δ|v|H1(T ).

Proof. The cut-off property, the local projection property and the preservation of homogeneous boundary values
follow directly from L.3.22 and L.3.19. Finally, let v ∈ Sp,1(T ) and T ∈ T . Note that κδBv ∈ Sp+1,1(T ), i.e., we can
use the stability estimate from L.3.22:

1∑
l=0

δl|Kδ
Bv|Hl(T ) .

1∑
l=0

δl|κδBv|Hl(T ) .
1∑
l=0

δl
l∑
i=0

|κδB|W l−i,∞(T )|v|Hi(T )

L.3.19

.
1∑
l=0

δl|v|Hl(T ).

�

3.7. The spaces of locally discrete harmonic functions. In this subsection, we introduce the spaces of locally
discrete harmonic functions. As we already mentioned in Section 3.1, they are chosen for three main reasons:
To begin with, they fit in seamlessly with the discrete solution operator ST : L2(Ω) −→ Sp,10 (T ) from D.3.8.
Furthermore, as specified in L.3.27, they are invariant with respect to the discrete cut-off operators Kδ

B : Sp,1(T ) −→
Sp,1(T ) from D.3.24. But most importantly, they contain functions whose H1-norms can be bounded by L2-norms
with constants independent of h, i.e., a discrete Caccioppoli inequality.

Definition 3.26. For every B ⊆ T , we define the space of locally discrete harmonic functions

Sharm(B) := {u ∈ Sp,10 (T ) | ∀v ∈ Sp,10 (T ) with suppT (v) ⊆ B : a(u, v) = 0} ⊆ Sp,10 (T ).

We summarize the first two main features of the spaces Sharm(B) in the next lemma, namely their relationships to

the discrete solution operator ST : L2(Ω) −→ Sp,10 (T ) and the discrete cut-off operators Kδ
B : Sp,1(T ) −→ Sp,1(T ).

Lemma 3.27. The spaces of locally discrete harmonic functions are nested in the sense

∀B ⊆ B+ ⊆ T : Sharm(B+) ⊆ Sharm(B).

Furthermore, for all clusters B,D ⊆ T with B ∩ D = ∅, the operator ST has the mapping property

∀f ∈ L2(Ω) with suppT (f) ⊆ D : ST f ∈ Sharm(B).

Finally, for all B ⊆ T and all δ > 0 with 4σ3
shphB ≤ δ . 1, we have the invariance

∀u ∈ Sharm(B) : Kδ
Bu ∈ Sharm(B).
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Proof. The inclusion Sharm(B+) ⊆ Sharm(B) follows directly from the definition of the spaces. As for the mapping

properties of ST , let f ∈ L2(Ω) with suppT (f) ⊆ D. Then, for every v ∈ Sp,10 (T ) with suppT (v) ⊆ B, we have

a(ST f, v)
D.3.8

= 〈f, v〉L2(D∩B)
B∩D=∅

= 0.

Finally, consider a function u ∈ Sharm(B) and an arbitrary v ∈ Sp,10 (T ) with suppT (v) ⊆ B. Then,

a(Kδ
Bu, v)

D.2.1
= 〈a1∇Kδ

Bu,∇v〉L2(B) + 〈a2 · ∇Kδ
Bu, v〉L2(B) + 〈a3K

δ
Bu, v〉L2(B)

L.3.25
= 〈a1∇u,∇v〉L2(B) + 〈a2 · ∇u, v〉L2(B) + 〈a3u, v〉L2(B)

= a(u, v)

= 0.

This gives Kδ
Bu ∈ Sharm(B), which concludes the proof. �

Next, we turn our attention to the discrete Caccioppoli inequality. In a nutshell, it will allow us to bound an
H1-norm on a cluster B ⊆ T by an L2-norm on the slightly larger cluster Bδ. Obviously, this can be true only for a
certain subspace V ⊆ Sp,1(T ). In our setting, this is the space of locally discrete harmonic functions Sharm(Bδ) from
D.3.26. We can interpret the discrete Caccioppoli inequality as an improved version of the inverse inequality from
L.3.21, which bounds an H1-seminorm by an L2-norm, too. This time, however, the prefactor h of the H1-seminorm
can be increased to a (possibly much) bigger parameter δ � h.

Lemma 3.28. Let B ⊆ T and δ > 0 with 4σ3
shphB ≤ δ . 1. Then, for every u ∈ Sharm(Bδ), there holds the discrete

Caccioppoli inequality

δ|u|H1(B) . ‖u‖L2(Bδ).

Proof. First off, an induction on p ≥ 1 yields the following estimate: For every κ ∈ S1,0(T ), u ∈ Sp,0(T ) and T ∈ T ,

hp+1
T |κ2u|Hp+1(T ) . h

2
T |κ|W 1,∞(Ω)(‖u∇κ‖L2(T ) + ‖κ∇u‖L2(T )).

In the base case p = 1, the second-order derivatives in |κ2u|H2(T ) can be computed explicitly. Since κ, u ∈ P1(T ),
the terms containing Dακ or Dαu with |α| = 2 are not present. In the induction step p 7→ p + 1, we estimate
|κ2u|Hp+2(T ) .

∑
i |κ(∂iκ)u|Hp+1(T ) + |κ2(∂iu)|Hp+1(T ). For the first summand, we use the inverse inequality L.3.21

and get |κ(∂iκ)u|Hp+1(T ) . h
−p
T |κ(∂iκ)u|H1(T ). Again, we can expand the derivatives explicitly and cancel all terms

containing second order derivatives of κ ∈ P1(T ). The second summand is amenable to the induction hypothesis:

|κ2(∂iu)|Hp+1(T ) . h1−p
T |κ|W 1,∞(Ω)(‖(∂iu)∇κ‖L2(T ) + ‖κ∇(∂iu)‖L2(T )). These terms can be treated with the fact

∇κ ≡ const, the identity κ∇(∂iu) = ∂iκ∇u− (∂iκ)∇u and the inverse inequality L.3.21 once again.

Now, let us turn our attention to the discrete Caccioppoli inequality itself. For this purpose, let B ⊆ T and
δ > 0 with 4σ3

shphB ≤ δ . 1. We denote by κ := κδB ∈ S1,1(T ) the discrete cut-off function from L.3.19 and

by IpT : C0
pw(T ) −→ Sp,0(T ) the Lagrange interpolation operator from D.3.20. Furthermore, let u ∈ Sharm(Bδ).

The key step of the proof is to exploit the orthogonality a(u, v) = 0 for some carefully chosen test function

v ∈ Sp,10 (T ) with suppT (v) ⊆ Bδ. From L.3.22 and L.3.19 we know that v := IpT (κ2u) satisfies both v ∈ Sp,10 (T )
and suppT (v) ⊆ suppT (κ) ⊆ Bδ, i.e., we can use v as said test function. This results in the following bound:

a(u, κ2u) = a(u, (id− IpT )(κ2u))

D.2.1

.
∑
T∈Bδ

‖u‖H1(T )‖(id− IpT )(κ2u)‖H1(T )

L.3.22

.
∑
T∈Bδ

‖u‖H1(T )h
p
T |κ

2u|Hp+1(T )

. |κ|W 1,∞(Ω)

∑
T∈Bδ

hT ‖u‖H1(T )(‖u∇κ‖L2(T ) + ‖κ∇u‖L2(T ))

L.3.21

. |κ|W 1,∞(Ω)‖u‖L2(Bδ)(‖u∇κ‖L2(Ω) + ‖κ∇u‖L2(Ω)).
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On the other hand, using the coercivity of the PDE coefficient a1 in the bilinear form a(·, ·), cf. Section 2.1, we can
expand the term a(u, κ2u) and rearrange the summands:

‖κ∇u‖2L2(Ω) . 〈a1κ∇u, κ∇u〉L2(Ω)

D.2.1
= a(u, κ2u)− 2〈a1κ∇u, u∇κ〉L2(Ω) − 〈a2 · ∇u, κ2u〉L2(Ω) − 〈a3u, κ

2u〉L2(Ω)

. |κ|W 1,∞(Ω)‖u‖L2(Bδ)(‖u∇κ‖L2(Ω) + ‖κ∇u‖L2(Ω))

+‖κ∇u‖L2(Ω)‖u∇κ‖L2(Ω) + ‖κ∇u‖L2(Ω)‖κu‖L2(Ω) + ‖κu‖2L2(Ω)

∀ε>0
≤ Cε‖κ‖2W 1,∞(Ω)‖u‖

2
L2(Bδ) + ε‖κ∇u‖2L2(Ω).

Finally, since the parameter ε > 0 from Young’s inequality can be chosen arbitrarily small, we can absorb the last
summand of the right-hand side in the left-hand side of the overall inequality. We end up with

|u|H1(B)

κ|B≡1

≤ ‖κ∇u‖L2(Ω) . ‖κ‖W 1,∞(Ω)‖u‖L2(Bδ)
L.3.19

.
1

δ
‖u‖L2(Bδ).

This concludes the proof of the discrete Caccioppoli inequality. �

3.8. The single- and multi-step coarsening operators. In this subsection, we do the actual work in the
construction of the subspace VB,D,L ⊆ Sp,10 (T ) from Section 3.1. We design the so called single- and multi-step
coarsening operators. For given B ⊆ T , δ > 0 and u ∈ Sharm(Bδ), the single-step coarsening operator QδB produces
a “coarse” approximation QδBu ∈ Sharm(B) with an error ‖u − QδBu‖L2(B) ≤ 2−1‖u‖L2(Bδ). The prefactor 2−1 ∈
(0, 1) is essential, as it produces an exponential factor 2−L when L ∈ N single-step coarsening operators are

combined in a specific manner. This is precisely the idea behind the multi-step coarsening operator Qδ,LB . Given a

function u ∈ Sharm(BδL), it produces a “coarse” approximation Qδ,LB u ∈ Sharm(B) with an error ‖u−Qδ,LB u‖L2(B) ≤
2−L‖u‖L2(BδL).

As our construction of the single-step coarsening operator in T.3.32 is quite technical, we would like to reveal the
underlying deas first: Assume for a moment that T is uniform, i.e. hT h hmin,T . Then, a function u ∈ Sharm(Bδ)
is described by up to dimSp,0(T ) h #T h h−dT degrees of freedom. In order to reduce this number, we could
approximate u ≈ Πp

Su ∈ Sp,0(S), where S ⊆ Pow(Ω) is a second uniform mesh and where Πp
S : L2(Ω) −→ Sp,0(S)

is some kind of approximation operator. As long as S is coarser than T , i.e. hS & hT , this provides a reduction
of the dimension. On the other hand, the typical error bound ‖u − Πp

Su‖L2(Ω) . H|u|H1(Ω) involves an H1-norm

on the right-hand side. In order to get rid of the H1-norm, we want to apply the discrete Caccioppoli inequality,
L.3.28. For this to work, however, we first need to reduce the global quantity H|u|H1(Ω) to the local quantity

H|u|H1(B). This can be done using the discrete cut-off operator Kδ
B from D.3.24. Finally, the combined operator

Πp
SK

δ
B : Sharm(Bδ) −→ Sp,0(S) only lacks one more thing: It does not necessarily map into the space Sharm(B),

which is a critical requirement, because we want to iterate the argument by plugging the remainder ũ := u−QδBu of
one single-step coarsening operator into another one. Thankfully, we can simply append the orthogonal projection
PB : L2(Ω) −→ Sharm(B) without losing any of the aforementioned properties.

In the next lemma we provide a construction for the second, coarser mesh S ⊆ Pow(Ω):

Lemma 3.29. Let S0 ⊆ Pow(Ω) be an arbitrary mesh and (Sl)l∈N0
be the corresponding sequence of uniform

refinements. For every H > 0, there exists an S ∈ (Sl)l∈N0
with σshp(S) = C(Ω) and C(Ω)H ≤ hmin,S ≤ hS ≤ H.

In particular, S is uniform in the sense of D.3.2.

Proof. There hold the relations hSl = 2−lhS0 and hmin,Sl = 2−lhmin,S0 . For any given H > 0, we choose the mesh
S := SL, where L ∈ N0 is the minimal level satisfying hSL ≤ H. In particular, there also holds the lower bound
H < hSL−1

= 2−(L−1)hS0 = 2hS0h
−1
min,S0hmin,SL = C(Ω)hmin,SL . �

The additional mesh S ⊆ Pow(Ω) does not need to be aligned with the original mesh T ⊆ Pow(Ω) at all. The output

of the cut-off operator Kε
B is just an element of Sp,10 (T ) ⊆ H1(Ω), so we need an operator ΠS : H1(Ω) −→ Sq,0(S)

for some q ≥ 0. Also, in the case S = T the operator should act like a projection on functions from Sp,10 (T ). The
simplest solution for these demands is the piecewise orthogonal projection.
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Definition 3.30. Let S ⊆ Pow(Ω) be a mesh, p ≥ 0 and Π̂p : L2(T̂ ) −→ Pp(T̂ ) the orthogonal projection on the

reference element T̂ . The piecewise orthogonal projection Πp
S : L2(Ω) −→ Sp,0(S) is defined in a piecewise manner:

For every v ∈ L2(Ω) and every S ∈ S we set

(Πp
Sv)|S := Π̂p(v ◦ FS) ◦ F−1

S .

In fact, Πp
S coincides with the (global) orthogonal projection from L2(Ω) onto the closed subspace Sp,0(S). The

piecewise approach, however, results in desirable local properties and bounds.

Lemma 3.31. The linear operator Πp
S has a local projection property: For every cluster B ⊆ S and every function

v ∈ L2(Ω) with v ∈ Sp,0(B), there holds (Πp
Sv)|B = v|B. Furthermore, Πp

S preserves supports: For every v ∈ L2(Ω),
we have suppS(Πp

Sv) ⊆ suppS(v). Finally, for every k ∈ {0, . . . , p+ 1}, there hold the stability and error estimates

∀v ∈ Hk
pw(S) : ∀S ∈ S :

∑k
l=0 h

l
S |Π

p
Sv|Hl(S) .

∑k
l=0 h

l
S |v|Hl(S),∑k

l=0 h
l
S |(id−Πp

S)(v)|Hl(S) . hkS |v|Hk(S).

Now, we have all the ingredients for the construction of the single-step coarsening operator.

Theorem 3.32. Let T ⊆ Pow(Ω) be a mesh of locally bounded cardinality. Furthermore, let B ⊆ T and δ > 0 with
δ . 1. Then there exists a linear single-step coarsening operator

QδB : Sharm(Bδ) −→ Sharm(B)

of rank

rank(QδB) .

(
1 +

diamT (B)

δ

)dσcard

that satisfies the following approximation property: For every u ∈ Sharm(Bδ),

‖u−QδBu‖L2(B) ≤
1

2
‖u‖L2(Bδ).

Proof. Let B ⊆ T and δ > 0 with δ . 1. For the construction of QδB we need three operators: First, we use
the discrete cut-off operator Kε

B : Sp,1(T ) −→ Sp,1(T ) from D.3.24 with some carefully chosen parameter ε > 0.
Second, we apply the piecewise orthogonal projection Πp

S : L2(Ω) −→ Sp,0(S) from D. 3.30 on some suitable
mesh S ⊆ Pow(Ω). Third, the result is mapped back into the space Sharm(B) via the orthogonal projection
PB : L2(Ω) −→ Sharm(B).

For the precise choice of ε and S we have to distinguish between two cases: In the more involved case δ ≥ 20σ7
shphB

we choose ε := δ/(5σ4
shp) ≥ 4σ3

shphB and use the uniform mesh S ⊆ Pow(Ω) from L.3.29 with hS h hmin,S h H,

where the parameter H > 0 will be specified during the proof. In the degenerate case δ < 20σ7
shphB we set

ε := 4σ3
shphB and use the mesh S := T itself.

We define the asserted operator as

QδB := PBΠp
SK

ε
B : Sharm(Bδ) −→ Sharm(B).

The case δ ≥ 20σ7
shphB: Let u ∈ Sharm(Bδ). From L.3.16 we know that the parameter α := 4σ4

shpε satisfies

4σ3
shphBε ≤ α . 1. In particular, we can apply the discrete Caccioppoli inequality to the set Bε and the parameter

α. Since δ h α, this gives the stability estimate for the cut-off operator Kε
B

1∑
l=0

δl|Kε
Bu|Hl(Ω)

L.3.25

.
1∑
l=0

αl|u|Hl(Bε)
L.3.28

. ‖u‖L2(Bε+α)

ε+α≤δ
≤ ‖u‖L2(Bδ).

From L.3.27 and L.3.25 we know that Kε
Bu ∈ Sharm(B), hence PBK

ε
Bu = Kε

Bu. We conclude u|B = (Kε
Bu)|B =

(PBK
ε
Bu)|B and thus

‖u−QδBu‖L2(B) = ‖PBKε
Bu− PBΠp

SK
ε
Bu‖L2(B) ≤ ‖PB(id−Πp

S)(Kε
Bu)‖L2(Ω)

≤ ‖(id−Πp
S)(Kε

Bu)‖L2(Ω)

L.3.31

. H|Kε
Bu|H1(Ω)

. H
δ ‖u‖L2(Bδ).

In particular, we can choose H h δ > 0 small enough to establish the asserted error bound.
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The case δ < 20σ7
shphB: Again let u ∈ Sharm(Bδ). Exploiting S = T and L.3.25, the operator QδB reduces to

QδBu = PBΠp
TK

ε
Bu = PBK

ε
Bu = Kε

Bu. Consequently, the error bound becomes trivial:

‖u−QδBu‖L2(B) = ‖u−Kε
Bu‖L2(B) = ‖u− u‖L2(B) = 0.

To find a good upper bound for the rank of QδB, the locally bounded cardinality of S is crucial. In the case
δ ≥ 20σ7

shphB the mesh S is uniform and thus of locally bounded cardinality (cf. L.3.3). In the case δ < 20σ7
shphB

we chose S = T , which has locally bounded cardinality by assumption.

Next, we abbreviate B :=
⋃
Bε ⊆ Rd and compute a common lower bound for hS(B): In the case δ ≥ 20σ7

shphB we

have hB + ε+ δ . δ h H h hmin,S ≤ hS(B) and in the case δ < 20σ7
shphB we get hB + ε+ δ . hB ≤ hT (Bε) = hS(B)

as well.

Now, for every u ∈ Sharm(Bδ) we know from L.3.31 and L.3.25 that suppS(Πp
SK

ε
Bu) ⊆ suppS(Kε

Bu) ⊆ S(B). This
results in the estimate

rank(QδB) ≤ dim {v ∈ Sp,0(S) | suppS(v) ⊆ S(B)} h #S(B)
D.2.4

. (1 + h−1
S(B)diamS(S(B)))dσcard

L.3.16

. (1 + h−1
S(B)(diamT (B) + hB + ε))dσcard

hB+ε+δ.hS(B)

. (1 + δ−1diamT (B))dσcard ,

which finishes the proof. �

With the single-step coarsening operator at hand, we can iterate to obtain exponential convergence.

Theorem 3.33. Let T ⊆ Pow(Ω) be a mesh of locally bounded cardinality. Furthermore, let B ⊆ T and δ > 0 with
δ . 1. Then, for every L ∈ N, there exists a linear multi-step coarsening operator

Qδ,LB : Sharm(BδL) −→ Sharm(B)

of rank

rank(Qδ,LB ) .

(
L+

diamT (B)

δ

)dσcard+1

that satisfies the following approximation property: For every u ∈ Sharm(BδL), there holds

‖u−Qδ,LB u‖L2(B) ≤ 2−L‖u‖L2(BδL).

Proof. Let B ⊆ T and δ > 0 with δ . 1 as well as L ∈ N. We define a sequence of nested element sets B ⊆ B0 ⊆
· · · ⊆ BL ⊆ BδL inductively by B0 := B and Bl+1 := (Bl)δ. Using the corresponding single-step coarsening operators
Ql := QδBl : Sharm(Bl+1) −→ Sharm(Bl) from T.3.32, we make the following definition:

∀u ∈ Sharm(BδL) : Qδ,LB u := u− (id−Q0) ◦ · · · ◦ (id−QL−1)(u) ∈ Sharm(B).

Using the alternative representation Qδ,LB u = −
∑
π∈{0,1}L\{0}(−Q0)(π0) ◦ · · · ◦ (−QL−1)(πL−1)(u), we infer

rank(Qδ,LB ) ≤
∑L−1
l=0 rank(Ql)

T.3.32

.
∑L−1
l=0 (1 + δ−1diamT (Bl))dσcard

L.3.16

.
∑L−1
l=0 (1 + δ−1diamT (B) + l)dσcard ≤ (L+ δ−1diamT (B))dσcard+1.

Finally, the definition of Qδ,LB was such that the error bound becomes elementary: For every u ∈ Sharm(BδL),
iteration of T.3.32 gives

‖u−Qδ,LB u‖L2(B) = ‖(id−Q0) ◦ · · · ◦ (id−QL−1)(u)‖L2(B0) ≤ 2−L‖u‖L2(BδL).

�
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3.9. Putting everything together. We can finally answer the question of how to find the subspace VB,D,L ⊆
L2(Ω) from Section 3.1. After that, the proof of T.2.13 is just a matter of putting everything together.

Theorem 3.34. Let T ⊆ Pow(Ω) be a mesh of locally bounded cardinality and B,D ⊆ T clusters satisfying

0 < diamT (B) ≤ σadmdistT (B,D).

Then, for every L ∈ N, there exists a subspace

VB,D,L ⊆ Sp,10 (T )

of dimension

dimVB,D,L . L
dσcard+1

that satisfies the following approximation property: For every f ∈ L2(Ω) with suppT (f) ⊆ D,

inf
v∈VB,D,L

‖ST f − v‖L2(B) . 2−L‖f‖L2(D).

Proof. Let B,D ⊆ T with 0 < diamT (B) ≤ σadmdistT (B,D). For every given L ∈ N, we make the choice
δ := diamT (B)/(2σadmL) > 0 and use the space

VB,D,L := ran(Qδ,LB ) ⊆ Sp,10 (T ).

Here, Qδ,LB : Sharm(BδL) −→ Sharm(B) is the multi-step coarsening operator from T.3.33.

Using T.3.33 and the definition of δ, we can bound the dimension by

dimVB,D,L = rank(Qδ,LB ) .

(
L+

diamT (B)

δ

)dσcard+1

. Ldσcard+1.

Finally, let f ∈ L2(Ω) with suppT (f) ⊆ D. By definition of BδL and distT (BδL,D), there exist elements B ∈ B,
C ∈ BδL, D ∈ D such that distT (B,C) ≤ δL and distT (BδL,D) = distT (C,D). Using the triangle inequality of the
mesh metric distT (·, ·), we conclude distT (B,D) ≤ distT (B,D) ≤ distT (B,C) + distT (C,D) ≤ δL+ distT (BδL,D).
Now, exploiting the definition of δ and the assumptions on B,D, we obtain

distT (BδL,D) ≥ distT (B,D)− δL = distT (B,D)− diamT (B)

2σadm
≥ diamT (B)

2σadm
> 0.

Then, L.3.27 implies ST f ∈ Sharm(BδL) and ultimately

inf
v∈VB,D,L

‖ST f − v‖L2(B) ≤ ‖ST f −Qδ,LB (ST f)‖L2(B)

T.3.33
≤ 2−L‖ST f‖L2(BδL)

D.3.8

. 2−L‖f‖L2(D).

�

We close this section with the proof of T.2.13.

Proof. Let A ∈ RN×N be the matrix from D.2.9 and r ∈ N a given block rank bound. We define the asserted
H-matrix approximant B ∈ RN×N to A−1 in a block-wise fashion:

First, for every admissible block (I, J) ∈ Padm, we denote the corresponding index patches by B := T (I) ⊆ T
and D := T (J) ⊆ T . From D.2.10 we know that 0 < diamT (B) ≤ σadmdistT (B,D). Furthermore, let C > 0
be the constant from the dimension bound in T. 3.34. We set σexp := (1/C)1/(dσcard+1) ln(2) > 0 and L :=

b(r/C)1/(dσcard+1)c ∈ N. Then, T.3.34 provides a subspace VB,D,L ⊆ Sp,10 (T ) ⊆ L2(Ω). We apply L.3.14 to the
subspace VB,D,L ⊆ L2(Ω) and get matrices Xr

I,J ∈ RI×r̃ and Y r
I,J ∈ RJ×r̃ of size r̃ ≤ dimVB,D,L. We set

B|I×J := Xr
I,J(Y r

I,J)T .

Second, for every small block (I, J) ∈ Psmall, we make the trivial choice

B|I×J := A−1|I×J .

By D.2.11, we have B ∈ H(P, r̃) with a block rank bound

r̃ ≤ dimVB,D,L
T.3.34
≤ CLdσcard+1 ≤ r.
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For the error we get

‖A−1 −B‖2
L.3.12
≤ N2 · max

(I,J)∈Padm

‖A−1|I×J −Xr
I,J(Y r

I,J)T ‖2

L.3.14
≤ N2‖Λ‖2 · max

B,D⊆T
admissible

sup
f∈L2(Ω):

suppT (f)⊆D

‖f‖−1
L2(D) · inf

v∈VB,D,L
‖ST f − v‖L2(B)

T.3.34

. N2‖Λ‖22−L

. N2‖Λ‖2 exp(−σexpr
1/(dσcard+1)).

Finally, it only remains to bound the norm of Λ:

‖Λ‖2
D.2.6

. h−dmin,T

D.2.4

. h−dσcard

T

L.3.1

. #T σcard h (dimSp,10 (T ))σcard = Nσcard .

This concludes the proof of the main result, T.2.13. �

4. Numerical results

In this subsection, we illustrate the validity of T.2.13 by means of a numerical example:

For the geometry we choose the L-shaped domain Ω := ((0, 1) × (0, 1))\([1/2, 1] × [1/2, 1]) ⊆ R2 in two space
dimensions. The PDE coefficients for the model problem from Section 2.1 are given by a1(x) = ( 10 −1

−1 1 ), a2(x) :=

( 10x2
0 ) and a3(x) := 1. The mesh T is graded in the sense of D.3.4 towards Γ := {(1/2, 1/2)} with exponent α := 5

and the coarse mesh width H := 0.0095. We use the spline space S1,1
0 (T ) (p = 1, globally continuous, piecewise

linear) and the well-known basis of hat-functions {ϕ1, . . . , ϕN} ⊆ S1,1
0 (T ). The block partition P is constructed

from a geometrically balanced cluster tree TN as suggested in [GHLB04]. We choose the parameters σadm := 2 and
σsmall := 25 (cf. D.2.10). For the rank bound we choose the range r ∈ {1, . . . , 50}.

Unfortunately, the H-matrix approximant B ∈ RN×N from our proof is only a theoretical tool and inaccessible for
an implementation in a computer system. Hence, we revert to a block-wise singular values decomposition: First,
we compute the exact inverse A−1 ∈ RN×N explicitly. Then, for every admissible block (I, J) ∈ Padm, we perform

the singular values decomposition A−1|I×J = UΣV T ∈ RI×J . Here, U ∈ RI×I ,V ∈ RJ×J are orthogonal and
Σ = diag(σ1, . . . , σmin{#I,#J}) ∈ RI×J contains the corresponding singular values σ1 ≥ · · · ≥ σmin{#I,#J} ≥ 0.

Now, for the approximant we use B|I×J := U rΣrV
T
r ∈ RI×J , where U r ∈ RI×r, Σr ∈ Rr×r and V r ∈ RJ×r are

the first r columns of U , Σ and V , respectively. Recall from the theory of singular values decompositions (e.g.,
[Hac15]) that

‖A−1|I×J −B|I×J‖2 = min
C∈RI×J :

rank(C)≤r

‖A−1|I×J −C‖2 = σr+1.

In particular, we end up with the following computable error bound (cf. [Hac15, Lemma 6.5.8])

‖A−1 −B‖2 . depth(TN×N )· max
(I,J)∈P

‖A−1|I×J −B|I×J‖2 = depth(TN×N )· max
(I,J)∈P

σr+1(A−1|I×J).

The numerical example is implemented in MATLAB. For the inversion of the full matrix A ∈ RN×N we use
MATLAB’s built-in procedure inv(...). For the singular values decompositions we use svds(...). Recall that an
exact matrix inversion needs O(N2) memory and O(N3) time to compute, which effectively restricts the maximal
feasible problem size to N ≈ 70.000 on our machine.
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Figure 1. The mesh T , the cluster tree TN and the block partition P for N ≈ 2.000 degrees of freedom.

In Figure 1, we chose N ≈ 2.000 degrees of freedom. The elements are graded towards the reentrant corner with
a grading exponent α = 5. The cluster tree TN is clearly deeper near the grading center. The block partition P
uses sorted indices internally. Only a few admissible blocks are far away from the diagonal, lots of small blocks
agglomerate along the diagonal. The sparsity pattern becomes more pronounced as N →∞.

Figure 2. Approximation error and memory allocation for N ≈ 72.000 degrees of freedom.

In Figure 2, we chose N ≈ 72.000 degrees of freedom. The computable error bound from above (for r ∈ {1, . . . , 50})
is depicted on a linear abscissa and a logarithmic ordinate. The values are below a straight line with slope −0.37
indicating an exponential decay error(r) . 10−0.37r. This is even better than the asserted bound from T.2.13. The
allocated memory in MBytes is plotted on a linear abscissa and a linear ordinate. The values are below a straight
line with slope 103.57 indicating a polynomial growth memory(r) . r. Choosing a rank bound r = 37, for example,
gives an approximation error ≈ 10−14 and uses ≈ 4.2 GByte memory. The full system matrix takes ≈ 41.4 GByte
memory.
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