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Robust exponential convergence of hp-FEM in balanced norms for

singularly perturbed reaction-diffusion problems: corner domains

M. Faustmann

J.M. Melenk∗

Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna

Abstract

The hp-version of the finite element method is applied to singularly perturbed reaction-diffusion type
equations on polygonal domains. The solution exhibits boundary layers as well as corner layers. On
a class of meshes that are suitable refined near the boundary and the corners, robust exponential
convergence (in the polynomial degree) is shown in both a balanced norm and the maximum norm.

Key words: high order FEM, singular perturbation, balanced norm, uniform estimates

1. Introduction

We consider the boundary value problem

−ε2∇ · (A(x)∇u) + c(x)u = f in Ω ⊂ R
2, u|∂Ω = 0, (1.1)

where A is pointwise symmetric positive definite and satisfies A ≥ α0 > 0 on Ω, and c ≥ c0 > 0 on
Ω for some fixed α0, c0 > 0. Furthermore, the functions A, f , c are assumed to be analytic on Ω.
For the parameter ε ∈ (0, 1] we focus on the case of small ε << 1. The geometry Ω ⊂ R

2 is assumed
to be a curvilinear polygon. That is, the boundary ∂Ω of the bounded Lipschitz domain Ω consists
of finitely many arcs, each of which can be parametrized by an analytic function.

The weak formulation of (1.1) is: Find u ∈ H1
0 (Ω) such that

a(u, v) := ε2
∫

Ω

A(x)∇u · ∇v + c(x)uv =

∫

Ω

fv ∀v ∈ H1
0 (Ω). (1.2)

The bilinear form a induces the energy norm ‖ · ‖ε by ‖u‖2ε := a(u, u). The Galerkin discretization
of (1.2) is: Given a closed, finite dimensional subspace VN ⊂ H1

0 (Ω), find uN ∈ VN such that

a(uN , v) =

∫

Ω

fv ∀v ∈ VN . (1.3)

Clearly, the choice of the space VN is crucial given that the solution has boundary layers near the
boundary ∂Ω and corner singularities at the vertices of Ω. The boundary layers can very effectively
be captured with anisotropic elements. In the context of the h-version FEM, a possibility are
so-called Shishkin meshes as described, for example, in the monograph [9]. In the context of the hp-
version FEM, Spectral Boundary Layer Meshes are appropriate. The latter go back to [14] and have
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been extensively studied in [15, 4, 5]. Suitable meshes that also resolve the corner singularities are
described and analyzed in [5]. The FEM error u−uN is naturally analyzed in the energy norm ‖·‖ε,
which is, however, rather weak in the sense that the energy norm of the boundary layer contributions
tends to zero as ε → 0. In particular, a convergence analysis that is formulated in the energy norm
cannot be expected to yield strong results for the error within the layer. This observation has
motivated convergence analyses in stronger norms, in particular, the so-called balanced norm

‖v‖√ε := |v|√ε + ‖v‖L2(Ω), |v|√ε := ε1/2|v|H1(Ω). (1.4)

In the h-version FEM, robust algebraic convergence of the Galerkin method in this balanced norm
has recently been shown in 1D and 2D for smooth geometries [3, 7, 8]. The corresponding analysis
for the hp-version FEM was presented in [6], where it is shown for 1D and 2D problems with smooth
geometry that robust exponential convergence of the Galerkin method in the balanced norm holds
true. Robust convergence in the balanced norm is also at the heart of L∞-estimates in [6]. In the
present work, we extend the analysis of [6] to the above setting of piecewise analytic geometries.
We show robust exponential convergence in the balanced norm (Theorem 3.10) and the L∞-norm
(Theorem 4.5). As a by-product, the present analysis simplifies some of the arguments of [6].

2. An abstract convergence result for the balanced norm

In the following Lemma 2.1 the set Ω0 ⊂ Ω is an arbitrary open subset. In its later application,
it will be the union of the “large” elements of the triangulation; the complement Ω \Ω0 will consist
of anisotropic elements to capture the boundary layers and of small elements to resolve the corner
singularities.

Lemma 2.1. Let VN ⊂ H1
0 (Ω) be a closed subspace. Let u ∈ H1

0 (Ω), uN ∈ VN ⊂ H1
0 (Ω), and

Iu ∈ VN satisfy the following orthogonality conditions:

a(u− uN , v) = 0 ∀v ∈ VN , (2.1)∫

Ω0

c(x)(u − Iu)v = 0 ∀v ∈ VN |Ω0
. (2.2)

Then, for a constant C > 0 that depends only on ‖A‖L∞(Ω), ‖c‖L∞(Ω), α0, and c0:

ε1/2‖∇(u− uN )‖L2(Ω) ≤ C
[
ε1/2‖∇(u− Iu)‖L2(Ω) + ε−1/2‖u− Iu‖L2(Ω\Ω0)

]
. (2.3)

Proof. We compute

‖uN − Iu‖2ε = a(uN − Iu, uN − Iu) = a(u− Iu, uN − Iu)

= ε2
∫

Ω

A(x)∇(u − Iu) · ∇(uN − Iu) +

∫

Ω

c(x)(u − Iu)(uN − Iu)

= ε2
∫

Ω

A(x)∇(u − Iu) · ∇(uN − Iu) +

∫

Ω\Ω0

c(x)(u − Iu)(uN − Iu)

. ε2‖∇(u− Iu)‖L2(Ω)‖∇(uN − Iu)‖L2(Ω) + ‖u− Iu‖L2(Ω\Ω0)‖uN − Iu‖L2(Ω\Ω0).

Using Young’s inequality we conclude

‖uN − Iu‖2ε . ε2‖∇(u− Iu)‖2L2(Ω) + ‖u− Iu‖2L2(Ω\Ω0)
.

This implies in particular with the triangle inequality

ε1/2‖∇(u− uN )‖L2(Ω) ≤ ε1/2‖∇(u− Iu)‖L2(Ω) + ε1/2‖∇(uN − Iu)‖L2(Ω)

. ε1/2‖∇(u− Iu)‖L2(Ω) + ε−1/2‖u− Iu‖L2(Ω\Ω0).
2



Lemma 2.1 indicates what the ingredients for an analysis in balanced norms are:

1. The approximation properties of the (weighted) L2-projection ΠL2

Ω0
on Ω0 given by

ΠL2

Ω0
u ∈ VN |Ω0

s.t.

∫

Ω0

c(x)(u −ΠL2

Ω0
u)v = 0 ∀v ∈ VN |Ω0

. (2.4)

2. The properties of extension operators L0 that extend functions from VN |Ω0
to functions (also

in VN ) on Ω. Important will be their stability properties measured by

‖L0‖ := sup
v∈VN : v|∂Ω0

6=0

ε1/2|L0v|H1(Ω\Ω0) + ε−1/2‖L0v‖L2(Ω\Ω0)

‖v‖L∞(∂Ω0)
. (2.5)

Remark 2.2. While the term ε1/2|L0v|H1(Ω\Ω0)+ε−1/2‖L0v‖L2(Ω\Ω0) appears fairly naturally when
measuring the norm of the lifting operator L0, the denominator ‖v‖L∞(∂Ω0) is not the only “natural”
choice and could be replaced with other expressions, e.g., ‖v‖L2(Ω0).

The operators ΠL2

Ω0
and L0 allow us to formulate an error estimate for the Galerkin error u− uN in

a balanced norm:

Corollary 2.3. In the setting of Lemma 2.1 there exists a constant C > 0 depending solely on
‖A‖L∞(Ω), ‖c‖L∞(Ω), α0, c0 such that

|u− uN |√ε ≤ C inf
v∈VN

[
‖L0‖ ‖ΠL2

Ω0
u− v‖L∞(∂Ω0) (2.6)

+
√
ε‖∇(v −ΠL2

Ω0
u)‖L2(Ω0) + |u− v|√ε + ε−1/2‖u− v‖L2(Ω\Ω0)

]
.

Proof. Let v ∈ VN . Consider Iu defined by

Iu :=

{
ΠL2

Ω0
u in Ω0

v + L0((Π
L2

Ω0
u)|∂Ω0

− v|∂Ω0
) in Ω \ Ω0.

With the notations |w|√ε,ω =
√
ε‖∇w‖L2(ω) and ‖w‖√ε,ω =

√
ε‖∇w‖L2(ω)+‖w‖L2(ω) for measurable

sets ω, Lemma 2.1 implies

|u− uN |√ε . |u−ΠL2

Ω0
u|√ε,Ω0

+ |u − Iu|√ε,Ω\Ω0
+ ε−1/2‖u− Iu‖L2(Ω\Ω0)

. |u−ΠL2

Ω0
u|√ε,Ω0

+ |u − v|√ε,Ω\Ω0
+ ε−1/2‖u− v‖L2(Ω\Ω0) + ‖L0‖ ‖ΠL2

Ω0
u− v‖L∞(∂Ω0).

Estimating further with the triangle inequality |u−ΠL2

Ω0
u|√ε,Ω0

≤ |u−v|√ε,Ω0
+ |v−ΠL2

Ω0
u|√ε,Ω0

and
then infimizing over v ∈ VN gives the result.

3. hp-FEM

3.1. Spectral Boundary Layer Meshes

Rather than considering a general setting, we consider meshes that result from mapping a few ref-
erence configurations. Specifically, we assume that a fixed macro-triangulation T M = {KM |KM ∈
T M} consisting of curvilinear quadrilaterals KM with analytic element maps FKM : Ŝ := (0, 1)2 →
KM that satisfy the usual compatibility conditions, i.e., no hanging nodes and if two elements KM

1 ,
KM

2 share an edge e, then their element maps induce compatible parametrizations of e (cf., e.g.,
[5, Def. 2.4.1] for the precise conditions). Each element of the macro-triangulation may be further
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refined according to the few refinement patterns described in Definition 3.1 (see also [5, Sec. 3.3.3]).
The actual triangulation is then obtained by transplanting refinement patterns on the reference
square into physical space by means of the element maps of the macro-triangulation. That is, the
actual element maps are concatinations of affine maps—which realize the mapping from the ref-
erence square or triangle to the elements in the refinement pattern—and the element maps of the
macro-triangulation.

Definition 3.1 (admissible refinement patterns). Given σ ∈ (0, 1), κ ∈ (0, 1/2], and L ∈ N0, the
following refinement patterns are admissible:

1. The trivial patch: The reference square Ŝ is not further refined. The corresponding triangula-
tion of Ŝ consists of the single element: T̂ = {Ŝ}.

2. The boundary layer patch: Ŝ is split into two elements as depicted in Fig. 1 (left). We set

T̂ aniso = {(0, 1)× (0, κ)} and T̂ large = {(0, 1)× (κ, 1)}.

3. The tensor product patch: Ŝ is split into at least four elements. The small square (0, κ)2 may
be further refined geometrically with L ≥ 0 (L = 0 corresponds to no refinement) layers and a

geometric grading factor σ ∈ (0, 1); see Fig. 1 (right). The triangulation of Ŝ is decomposed

into three types of elements: T̂ large consists of the one “large” element, T̂ aniso consists of the
two anisotropic elements of aspect ratio O(1/κ), and T̂ CL consists of the elements in (0, κ)2.

4. The mixed patches and the geometric patches: See Fig. 2. The triangulation is decomposed
into three types of elements: T̂ large consists of the two “large” elements, T̂ aniso consists of the
two anisotropic elements of aspect ratio O(1/κ), and T̂ CL consists of the elements in (0, κ)2.

Since our analysis will mostly be done on the reference patterns, we introduce the notations
T̂ large
KM , T̂ aniso

KM , T̂ CL
KM for the sets T̂ large, T̂ aniso, T̂ CL that correspond to the chosen refinement

pattern for a macro-element KM ∈ T M.

Remark 3.2. The list of admissible refinement patterns in Definition 3.1 is kept small in the
interest of simplicity of exposition. A natural extension of the present list of patterns includes the
case that all quadrilaterals of the refinement pattern are split into two triangles. The refinement
patterns employed in the numerical example in Section 5 are also not included in Definition 3.1 but
could be treated with the same techniques. In the same vein, the requirement 3 in Definition 3.3
below is imposed to shorten notation and to simplify the analysis. Furthermore, the stipulation
that the macro-triangulation consist of quadrilaterals only could be relaxed to include triangles as
well. Nevertheless, we point out that any triangulation consisting of triangles can be turned into one
consisting of quadrilaterals by a suitable uniform refinement.

We consider meshes that result from applying these refinement patterns. Additionally, we im-
pose further conditions on the choice of the refinement patterns for each element of the macro-
triangulation:

Definition 3.3 (spectral boundary layer mesh T (κ,L)). Let T M be a fixed macro-triangulation
consisting of quadrilaterals with analytic element maps that satisfies [5, Def. 2.4.1]. Fix σ ∈ (0, 1)
and κ ∈ (0, 1/2]. For each macro-element KM, select LKM ∈ N0 and write L = (LKM)KM∈T M . A
mesh T (κ,L) is called a spectral boundary layer mesh if the following conditions are satisfied:

1. T (κ,L) is obtained by refining each element KM ∈ T M according to one of the refinement
patterns given in Definition 3.1 using the parameters σ, κ, and LKM .

2. The resulting mesh T (κ,L) is a regular triangulation of Ω, i.e., it does not have hanging nodes.
Since the element maps for the refinement patterns are assumed to be affine, this requirement
ensures that the resulting triangulation satisfies [5, Def. 2.4.1].

4
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Figure 1: Reference boundary layer patch (left); reference tensor product patch (right).
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Figure 2: Reference mixed patch (left); reference geometric patch (right).

3. For each element KM of the macro triangulation, we assume that for the intersection KM∩∂Ω
only the following cases can arise: a) it is empty; b) it consists of exactly one vertex; c) it
consists of the closure of exactly one edge; d) it consists of the closure of exactly two edges
intersecting at a corner of ∂Ω.

Further conditions on the choice of the refinement patterns are as follows:

4. If exactly one edge e of a macro-element KM ∈ T M lies on ∂Ω, then the corresponding
reference edge ê = F−1

KM(e) is (0, 1) × {0}, and the refinement patterns of the boundary layer
patch or the mixed patch is applied.

5. If exactly two edges e1, e2 of a macro-element KM ∈ T M lie on ∂Ω, then the corresponding
reference edges are (0, 1)× {0} and {0} × (0, 1), and the tensor product refinement pattern is
applied.

6. If exactly one vertex of a macro-element KM ∈ T M lies on ∂Ω, then the corresponding
reference vertex is the point (0, 0) and the refinement pattern is either the tensor product
patch, the mixed patch, or the geometric patch.

We refer the reader to Fig. 3 (right) for an example of a spectral boundary layer mesh.

The element maps FK : K̂ → K, K ∈ T (κ,L), are given by the concatination of affine maps
from the reference square or triangle and the patch map FKM . Here, the reference square is (0, 1)2

and the reference triangle {(x, y) | 0 < x < 1, 0 < y < 1 − x}. For any triangulation T we define

Sp,1(T ) := {u ∈ H1(Ω) |u|K ◦ FK ∈ Πp(K̂)}, where Πp(K̂) is the tensor product space Qp =

span{xiyj | 0 ≤ i, j ≤ p} if K̂ = (0, 1)2 and the space Pp = span{xiyj | 0 ≤ i + j ≤ p} if K̂ is the

reference triangle. Finally, we set Sp,1
0 (T ) := Sp,1(T ) ∩H1

0 (Ω).
5
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V̂1 V̂2 V̂3

V̂4 V̂5 V̂6

V̂7 V̂8

L = 2

Figure 3: Left: Notation for the construction of the lifting L0. Right: Example of a spectral boundary layer mesh.
Solid lines indicate macro elements, dashed ones mesh lines of the refinement patterns, solid regions contain geometric
refinement.

A triangulation T (κ,L) has three types of elements that cover the regions Ω0, Ωaniso, and ΩCL:

Definition 3.4 (Ω0, Ωaniso, ΩCL, VCL). 1. The “large” elements T large. These are the images
(under the macro-element maps) of the trivial patch or the large elements (denoted K large in

Figs. 1, 2). These elements are shape regular. We set Ω0 :=
(
∪{Ki |Ki ∈ T large}

)◦

2. The “anisotropic elements” T aniso. These elements are the images (under the macro-element
maps) of elements of aspect ratio O(1/κ), which are denoted by Kaniso in Figs. 1, 2. We set

Ωaniso :=
(
∪{Ki |Ki ∈ T aniso}

)◦
.

3. The “corner layer elements” T CL: These elements are the images of elements in the O(κ)-
neighborhood of (0, 0) of the reference pattern. These elements are shape regular. We set

ΩCL =
(
∪{Ki |Ki ∈ T CL}

)◦
.

VCL := {FKM(0, 0) |KM is either a tensor product or a mixed patch or geometric patch} denotes
the set of vertices of the macro-triangulation towards which potentially geometric refinement is done.

Remark 3.5. Key properties of the meshes T (κ,L) are: a) the elements abutting ∂Ω are either
anisotropic or from ΩCL; b) geometric refinement can be ensured near the vertices of Ω; c) there is
µ > 0 (depending only on the macro-triangulation) such that

dist(Ω0, ∂Ω) ≥ µκ. (3.1)

In the notation of [5, Sec. 3.3.2], these meshes are patchwise structured meshes. In particular,
therefore, the piecewise polynomial spaces Sp,1

0 (T (κ,L)) have approximation properties that were
analyzed in [5, Sec. 3.4.2] and discussed in more detail in Proposition 3.9 below.

Remark 3.6. (Scaling arguments) In our analysis, we will frequently appeal to scaling arguments.
Strictly speaking, such arguments apply only to affine element maps. In the present case, the element
maps are concatinations of affine maps and a fixed number of analytic diffeomorphisms (given by
the element maps of the macro-triangulation). Hence, scaling arguments can be brought to bear for

elements of the reference patterns on Ŝ and then transplanted with the macro-element maps. In
effect, therefore, scaling argument can be applied for estimates in L2 and the H1-seminorm.

The following lemma constructs a lifting L0 as required in Section 2. L0 is controlled in the
stronger norm ‖ · ‖+ given by

‖L0‖ ≤ ‖L0‖+ := sup
v∈VN : v|∂Ω0

6=0

‖L0v‖L∞(Ω) + ε1/2|L0v|H1(Ω\Ω0) + ε−1/2‖L0v‖L2(Ω\Ω0)

‖v‖L∞(∂Ω0)
. (3.2)

6



Lemma 3.7. Let T (κ,L) be a spectral boundary layer mesh (Def. 3.3). Set VN := Sp,1
0 (T (κ,L)).

There exists a lifting operator L0 : VN |∂Ω0
→ VN with

‖L0‖ ≤ ‖L0‖+ ≤ C

(
p2

ε1/2

κ1/2
+

κ1/2

ε1/2

)
. (3.3)

The constant C > 0 depends only on the shape-regularity of the macro-triangulation T M.

Proof. The lifting L0u is constructed patchwise, i.e., for each KM ∈ T M separately. To fix ideas,
we construct the lifting for one refinement pattern only, namely, for a macro-element KM that
corresponds to the mixed patch of Fig. 2 (left). We use the vertices V̂i, i = 1, . . . , 8 as shown in

Fig. 3. It is convenient to introduce ∂Ω̂0 := F−1
KM(∂Ω0 ∩ KM). This set consists of the union of

the closure of edges and possibly single points. For the present case of the mixed patch it contains
at least the two edges ê1 := (V̂5, V̂6) and ê2 := (V̂5, V̂7). Let u ∈ VN |∂Ω0

. We denote by û the

pull-back of u to the reference configuration, i.e., û := u ◦ FKM , which is defined on ∂Ω̂0. We now
proceed to define the lifting L0u by prescribing its extension L̂0û on the reference patch. This is
achieved in two steps: first, the values of L̂0û are fixed on the edges of the macro-element; in a
second step, the values of the edges are lifted to the elements. Let Vi := FKM(V̂i) denote the image

of V̂i under the patch map. We define L̂0û in the nodes V̂i, i = 1, . . . , 7, as follows: If Vi ∈ ∂Ω0, then
(L̂0û)(V̂i) := û(V̂i) = u(Vi). If Vi 6∈ ∂Ω0, then (L̂0û)(V̂i) := 0. Next, we define the values of L̂0û on

the 9 edges given by (V̂1, V̂2), (V̂2, V̂3), (V̂1, V̂4), (V̂4, V̂7), (V̂2, V̂5), (V̂4, V̂5), (V̂3, V̂6), (V̂6, V̂8), (V̂7, V̂8).

If the push-forward of an edge lies in ∂Ω0, then L̂0û is already defined by û. If the push-forward
does not lie in ∂Ω0, then we let L̂0û be the linear interpolant between the values at the endpoints
(which we have defined above already). This defines L̂0û in particular on the boundary ∂(0, 1)2 of
the reference refinement pattern. Consider the case L = 0, i.e., the square (0, κ)2 is not further

refined. Then L̂0û is already determined on all edges of the reference patch, and we can lift from the
edges to the elements on which L̂0û is still undefined. A fairly standard lifting, which we describe
in Lemma A.1 for the reader’s convenience, ensures

‖L̂0û‖L∞(Ŝ) ≤ C max
(x,y)∈∂Ω̂0

|û(x, y)|, ‖∇L̂0û‖L∞(Ŝ) ≤ Cκ−1p2 max
(x,y)∈∂Ω̂0

|û(x, y)|.

Here, the factor κ−1 appears since the lifting is done on elements of aspect ratio O(1/κ). We note

that the thus defined function L̂0û is also a continuous, piecewise polynomial of degree p if the square
(0, κ)2 is refined geometrically with L > 0 layers. Thus, we have constructed a lifting. Noting that
F−1
KM(KM \ Ω0) ⊂ (0, 1)2 \ (κ, 1)2 for the mixed patch, we infer

‖L0u‖L2(KM\Ω0) ≤ C
√
κ max

(x,y)∈KM∩∂Ω0

|u(x, y)|,

‖∇L0u‖L2(KM\Ω0) ≤ Cκ−1/2p2 max
(x,y)∈KM∩∂Ω0

|u(x, y)|.

In this way, we construct the lifting for each refinement pattern and consequently patch by patch.
It is essential to note that our assumptions on the refinement patterns are such that the patchwise
defined lifting is continuous across patch boundaries, i.e., it is actually in Sp,1

0 (T (κ,L)).

We will also need a second lifting operator:

Lemma 3.8. There is a lifting LCL : VN |∂ΩCL
→ VN with the following property:

‖LCL‖ := sup
v∈VN :v|∂Ω 6=0

|LCLv|H1(ΩCL) + ε−1‖LCLv‖L2(ΩCL) + ‖LCLv‖L∞(ΩCL)

‖v‖L∞(∂ΩCL)
≤ C

[
p2 +

κ

ε

]
. (3.4)

7



Proof. The lifting is again constructed patchwise. For simplicity, we will not construct the lifting to
Ω but only to ΩCL, since we are only interested in (LCLu)|ΩCL

.
We observe that ΩCL is the union of images of the square (0, κ)2 under certain macro-element

maps and that push-forwards of the lines ê1 := (0, κ) × {κ} and ê2 := {κ} × (0, κ) form part of
the boundary of ΩCL. The remaining two lines ê3 := (0, κ) × {0} and ê4 := {0} × (0, κ) are either
mapped to subsets of ∂Ω or are meshlines that are inside ΩCL. On (0, κ)2 we define LCL as follows:

Let u ∈ VN |∂ΩCL
and û be its pull-back under the macro-element map FKM . Fix L̂CLû to coincide

with û on the lines ê1 and ê2, to be zero in (0, 0), and to be the linear interpolant on the remaining

two edges ê3 and ê4. Finally, L̂CLû is lifted to (0, κ)2 by a standard lifting, e.g., the one constructed
in Lemma A.1. We conclude

‖L̂CLû‖L∞((0,κ)2) + p−2κ‖∇L̂CLû‖L∞((0,κ)2) . ‖û‖L∞(ê1∪ê2). (3.5)

Transforming to FKM((0, κ)2) yields (3.4).

By selecting κ = O(pε) in the spectral boundary layer meshes T (κ,L), one can construct an
approximation Πu ∈ Sp,1

0 (T (κ,L)) with the following approximation properties:

Proposition 3.9. For parameters λ > 0 and polynomial degrees p consider meshes T (min{λpε, 1/2},L).
Let L be defined as L := min{LKM |KM s.t.FKM(0, 0) is a vertex of Ω}. Then, there exist λ0 > 0,
b, C > 0 depending only on Ω, A, c, and f such that the following is true: For every λ ∈ (0, λ0]
there exists an approximation Πu ∈ Sp,1

0 (T (min{λpε, 1/2},L)) such that

‖u−Πu‖L∞(Ω) + ε1/2‖∇(u−Πu)‖L2(Ω) ≤ Cp4
(
λ−1/2e−bλp +

√
εpe−bL

)
. (3.6)

Furthermore, for arbitrary x ∈ R
2 we have

‖∇(u−Πu)‖L2(Bλpε(x)∩ΩCL) ≤ Cp4
(
λ−1/2e−bλp + pe−bL

)
, (3.7)

‖∇(u−Πu)‖L2(Bλpε(x)∩(Ω\ΩCL)) ≤ Cp4λ−1/2e−bλp. (3.8)

Proof. The result relies on a careful inspection of [5, Thm. 3.4.8] and a modification of the boundary
layer approximation that goes back to [14] for the 1D case (see also [6]). Of interest to us and in
our tracking of the procedure in [5, Thm. 3.4.8] is the case that λpε is sufficiently small, since in
the case λpε & 1, we may estimate ε−1 . λp and absorb powers of λp in the exponentially decaying
term e−bλp. We emphasize that in the course of the proof, the constants C, b > 0 may be different
in each occurrence.

Let Π∞
p,T be the approximation operator employed in the proof of [5, Thm. 3.4.8]. This operator

has the following stability properties by [5, Thm. 3.2.20]: Its pull-back Π∞
p,K̂

to the reference element

K̂ (which can be either the reference triangle or the reference square) satisfies

(Π∞
p,K̂

v)|e coincides with the Gauss-Lobatto interpolant of v|e on each edge e of K̂, (3.9)

‖v −Π∞
p,K̂

v‖L∞(K̂) . Cp inf
w∈Πp(K̂)

‖v − w‖L∞(K̂), Cp := p(1 + ln p), (3.10)

‖∇(v −Π∞
p,K̂

v)‖L2(K̂) . inf
w∈Πp(K̂)

‖∇(v − w)‖L2(K̂) + p2Cp‖v − w‖L∞(K̂). (3.11)

We inspect the proof of [5, Thm. 3.4.8], which studies u−Π∞
p,T u, and modify as needed. The exact

solution u of (1.1) is written as u = wε + χBLuBL
ε + χCLuCL

ε + rε, where wε represents the smooth
part of an asymptotic expansion, uBL

ε the boundary layer part, uCL
ε the corner layer and rε the

(exponentially small) remainder; the smooth cut-off functions χBL, χCL localize near ∂Ω and the
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vertices of Ω, respectively. (The properties of wε, rε, u
BL
ε , uCL

ε are detailed in [5, Thm. 2.3.4].) The
desired approximation Πu will be constructed of the form

Πu = Π∞
p,T wε +Π∞

p,T rε + ΠBLχBLuBL
ε +ΠCLχCLuCL

ε . (3.12)

We analyze these 4 terms in turn.
Treatment of wε: The function wε is analytic with ‖∇nwε‖L∞(Ω) ≤ Cγnn! ∀n ∈ N0 with

constants C, γ > 0 independent of ε. This implies for the shape-regular elements K ∈ T large ∪T CL

with hK denoting the element diameter

h−1
K ‖wε −Π∞

p,T wε‖L∞(K) + ‖∇(wε −Π∞
p,T wε)‖L∞(K) ≤ Ce−bp. (3.13)

For the anisotropic elements K ∈ T aniso, we get

‖wε −Π∞
p,T wε‖L∞(K) + κ−1‖∇(wε −Π∞

p,T wε)‖L∞(K) ≤ Ce−bp. (3.14)

Since κ = λpε, the estimates (3.13), (3.14) provide the desired estimates for the contribution of wε.
Treatment of rε: [5, Thm. 2.3.4] gives ‖rε‖L∞(Ω) + ‖rε‖H1(Ω) . e−b/ε. (3.10), (3.11), the fact that
elements have aspect ratio at most O(1/(λpε)) and the assumption λpε . 1 imply (cf. also the
arguments leading to [5, (3.4.25)–(3.4.27)])

‖rε −Π∞
p,T rε‖L∞(Ω) +

√
λpε‖∇(rε −Π∞

p,T rε)‖L2(Ω) ≤ Cp2Cpe
−b/ε ≤ Cp2Cpe

−bλp. (3.15)

Since ε . 1/(λp) this last inequality implies additionally

‖∇(rε −Π∞
p,T rε)‖L2(Ω) .

1

(λpε)1/2
p2Cpe

−b/ε .
1

λ1/2
p3/2Cpe

−b/ε .
1

λ1/2
p3/2Cpe

−bλp. (3.16)

These estimates provide the desired estimates for the contribution of rε.
Treatment of χBLuBL

ε : From [5, (3.4.28)] we get for the boundary layer part χBLuBL
ε

‖χBLuBL
ε −Π∞

p,T χ
BLuBL

ε ‖L∞(Ω) + λpε‖∇(χBLuBL
ε −Π∞

p,T χ
BLuBL

ε )‖L∞(Ω) . Cpp
2e−bλp. (3.17)

The approximation Π∞
p,T χ

BLuBL
ε needs to be corrected in the spirit of [14] in order to control

ε1/2‖∇(u−Πu)‖L2(Ω). Specifically, we approximate χBLuBL
ε by

ΠBLχBLuBL
ε :=

{
0 x ∈ Ω0

Π∞
p,T χ

BLuBL
ε − L0

(
Π∞

p,T χ
BLuBL

ε

)
x ∈ Ω \ Ω0,

(3.18)

where L0 is the lifting operator of Lemma 3.7. Note that (ΠBLχBLuBL
ε )|∂Ω = Π∞

p,T χ
BLuBL

ε . For

the analysis of the approximation properties of ΠBLχBLuBL
ε , we introduce the shorthand notation

ũBL := χBLuBL
ε and ũBL

p := Π∞
p,T (χ

BLuBL
ε ).

We use that dist(Ω0, ∂Ω) ≥ µλpε for some µ > 0 (cf. (3.1)). The decay properties of the boundary
layer (cf. [5, Thm. 2.3.4]) then read

ε−1/2‖ũBL‖L2(Ω0) + ε1/2‖∇ũBL‖L2(Ω0) + ‖ũBL‖L∞(Ω0) + ε‖∇ũBL‖L∞(Ω0) . e−bλp. (3.19)

These estimates and the fact ‖ · ‖L2(Bλpε(x)) . λpε‖ · ‖L∞(Bλpε(x)) produce the correct estimates for

the approximation of χBLuBL
ε on Ω0. In order to analyze the error on Ω \ Ω0 we need to control

Π∞
p,T (χ

BLuBL
ε ) on ∂Ω0. To that end, we note that the stability properties of Π∞

p,T given in (3.10)
and the fact that the elements in Ω0 are shape-regular and of size O(1) imply

‖ũBL
p ‖L∞(Ω0) . Cp‖ũBL‖L∞(Ω0) . Cpe

−bλp. (3.20)
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By construction, we have on Ω \ Ω0

ũBL −ΠBL(χCLuBL
ε ) = ũBL − ũBL

p + L0ũ
BL
p .

Since meas(Ω \Ω0) = O(λpε) and ‖·‖L2(Ω\Ω0) . meas(Ω \Ω0)
1/2‖·‖L∞(Ω\Ω0), we get from (3.17) the

following estimates for the first term ũBL − ũBL
p :

(λpε)−1/2‖ũBL − ũBL
p ‖L2(Ω\Ω0) + (λpε)1/2‖∇(ũBL − ũBL

p )‖L2(Ω\Ω0) . Cpp
2e−bλp. (3.21)

For the term L0ũ
BL
p , we use the estimates of Lemma 3.7 and (3.20) to arrive at

ε1/2‖∇L0ũ
BL
p ‖L2(Ω\Ω0) + ε−1/2‖L0ũ

BL
p ‖L2(Ω\Ω0) + ‖L0ũ

BL
p ‖L∞(Ω) ≤ ‖L0‖‖ũBL

p ‖L∞(∂Ω0)

≤ Cp3/2λ−1/2Cpe
−bλp. (3.22)

As in the proof of Lemma 3.7, we obtain, since meas(Bλpε(x)) = O(λpε),

‖∇L0ũ
BL
p ‖L2(Bλpε(x)∩Ω) . λεp‖∇L0ũ

BL
p ‖L∞(Bλpε(x)∩Ω) . p2‖ũBL

p ‖L∞(∂Ω0) ≤ Cp2Cpe
−bλp,

which allows us to conclude that the approximation ΠBL(χBLuBL
ε ) has the desired properties.

Treatment of uCL
ε : Finally, for the corner layer contribution we use [5, (3.4.29)—(3.4.33)]. Again,

we abbreviate
ũCL := χCLuCL

ε , and ũCL
p = Π∞

p,T (χ
CLuCL

ε ).

We infer directly from [5, (3.4.33)]:

‖ũCL − ũCL
p ‖L∞(ΩCL) + ‖∇(ũCL − ũCL

p )‖L2(ΩCL) . Cpp
3e−bL + e−bp. (3.23)

As in our treatment of the boundary layer part, we need to modify the approximation Π∞
p,T χ

CLuCL
ε .

We set

ΠCLχCLuCL
ε :=

{
0 x ∈ Ω \ ΩCL

Π∞
p,T χ

CLuCL
ε − LCL

(
Π∞

p,T χ
CLuCL

ε

)
x ∈ ΩCL,

(3.24)

where LCL is the lifting operator of Lemma 3.8. Note that (ΠCLχCLuCL
ε )|∂Ω = Π∞

p,T χ
CLuCL

ε .
The decay properties of the corner layer (cf. [5, Thm. 2.3.4]) then read

ε−1‖ũCL‖L2(Ω\ΩCL) + ‖∇ũCL‖L2(Ω\ΩCL) + ‖ũCL‖L∞(Ω\ΩCL) + ε‖∇ũCL‖L∞(Ω\ΩCL) . e−bλp. (3.25)

These estimates imply that our approximation of the corner layer contribution has the desired
properties on Ω \ ΩCL.

The stability properties of Π∞
p,T yield

‖ũCL
p ‖L∞(Ω\ΩCL) . Cp‖ũCL‖L∞(Ω\ΩCL) . Cpe

−bλp. (3.26)

By construction we have on ΩCL

χCLuCL
ε −ΠCL(χCLuCL

ε ) = ũCL − ũCL
p + LCLũ

CL
p .

The estimates of (3.23) give the desired bounds for the contribution ũCL − ũCL
p . For the correction

LCLũ
CL
p we use Lemma 3.8 and the bound (3.26) to get

‖∇LCLũ
CL
p ‖L2(ΩCL) + ε−1‖LCLũ

CL
p ‖L2(ΩCL) + ‖LCLũ

CL
p ‖L∞(ΩCL) . ‖LCL‖‖ũCL

p ‖L∞(∂ΩCL)

. Cpp
2e−λp.
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Theorem 3.10. Assume the hypotheses of Proposition 3.9 and let λ0, which depends solely on
Ω, A, c, and f , be given by Proposition 3.9. Then for each λ ∈ (0, λ0] there exist C, b > 0
independent of p and ε such that for the solution u of (1.1) and its Galerkin approximation uN ∈
Sp,1
0 (T (min{λpε, 1/2},L)) there holds

‖u− uN‖√ε ≤ C
(
e−bp +

√
εe−bL

)
.

Proof. We have with Πu of Proposition 3.9

‖u− uN‖L2(Ω) ≤ ‖u− uN‖ε ≤ inf
v∈VN

‖u− v‖ε ≤ ‖u−Πu‖ε ≤ C
(
e−bp +

√
εe−bL

)
. (3.27)

We are therefore left with estimating |u− uN |√ε. To that end, we apply Corollary 2.3 with v = Πu
of Proposition 3.9, which yields, since meas(Ω \ Ω0) = O(pε),

|u− uN |√ε . ‖L0‖‖ΠL2

Ω0
u−Πu‖L∞(∂Ω0) +

√
ε‖∇(ΠL2

Ω0
u− Πu)‖L2(Ω0) + e−bp +

√
εe−bL.

We exploit that Ω0 consists of a fixed number of shape-regular elements. Hence, a polynomial inverse
estimate on the reference element (cf. [13, (4.6.5)]) gives

‖∇(ΠL2

Ω0
u−Πu)‖L2(Ω0) . p2‖ΠL2

Ω0
u−Πu‖L2(Ω0) . p2‖u−Πu‖L2(Ω0) . e−bp +

√
εe−bL.

From Lemma 3.7 we get ‖L0‖ ≤ Cp3/2 for fixed λ. Finally, the term ‖ΠL2

Ω0
u − Πu‖L∞(∂Ω0) is

estimated again with polynomial inverse estimates (cf. [13, (4.6.1)])

‖ΠL2

Ω0
u−Πu‖L∞(∂Ω0) ≤ ‖ΠL2

Ω0
u−Πu‖L∞(Ω0) . p2‖ΠL2

Ω0
u−Πu‖L2(Ω0) . p2‖u−Πu‖L2(Ω0)

. e−bp +
√
εe−bL.

4. L∞-estimates

L∞-estimates for the Galerkin error u−uN are obtained in 3 steps: using the fact that the number
of elements in Ω0 and in Ωaniso is fixed, we estimate first ‖u−uN‖L∞(Ω0) and then ‖u−uN‖L∞(Ωaniso).
In a final step, we estimate ‖u−uN‖L∞(ΩCL). For this last estimate, we need to make an assumption
on the vector L, namely, that significant geometric refinement is only possible at the boundary ∂Ω:

Assumption 4.1. There is L∞ ≥ 0 such that for each KM with V := FKM(0, 0) ∈ VCL the
following dichotomy holds: either (V ∈ Ω and LKM ≤ L∞) or V ∈ ∂Ω.

Lemma 4.2. Let VN ⊂ H1
0 (Ω) be a closed subspace. Let Ω̃0 ⊂ Ω be open. Let u ∈ H1

0 (Ω) and
uN ∈ VN satisfy the Galerkin orthogonality (2.1). Let Iu ∈ VN satisfy Iu|Ω̃0

= uN |Ω̃0
. Then, for an

implied constant depending solely on ‖A‖L∞(Ω), ‖c‖L∞(Ω), α0, c0 there holds

|uN − Iu|H1(Ω\Ω̃0)
. |u− Iu|H1(Ω\Ω̃0)

+ ε−1‖u− Iu‖L2(Ω\Ω̃0)
. (4.1)

Proof. Proceeds as in the proof of Lemma 2.1.

Lemma 4.3. Let Assumption 4.1 be valid. Let VN := Sp,1
0 (T (κ,L)). Let uN , Iu ∈ VN satisfy

(uN − Iu)|∂ΩCL
= 0. Then

‖uN − Iu‖L∞(ΩCL) ≤ Cp‖∇(uN − Iu)‖L2(ΩCL). (4.2)

The constant C > 0 depends only the shape-regularity properties of T M.
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Proof. We note

ΩCL =

( ⋃

V ∈VCL

⋃{
FKM([0, κ]2) |KM ∈ T M such that FKM(0, 0) = V

}
)◦

.

Consider a fixed V ∈ VCL. The cases V ∈ Ω or V ∈ ∂Ω may occur.
The case V ∈ Ω: Assumption 4.1 implies that any macro-element KM with V = FKM(0, 0) is

of tensor product, mixed, or geometric refinement type with LKM ≤ L∞. Denote by ûN and Îu
the pull-backs of uN and Iu to Ŝ under the patch map FKM . We note that ê1 = (0, κ) × {κ} and
ê2 = {κ} × (0, κ) form part of F−1

KM(∂ΩCL). We iteratively apply the elementwise inverse estimates
of Lemma A.3 on the pull-backs of the subelements of ΩCL starting with the smallest elements. The
boundary contributions on the right-hand side of Lemma A.3 of the interior edges (in the last step
these are the edges ê1, ê2) are estimated by the L∞-norm on the neighboring element, which in turn
can again be estimated with Lemma A.3. After at most L∞-steps, we get

‖uN − Iu‖L∞(KM∩ΩCL) = ‖ûN − Îu‖L∞((0,κ)2) ≤ Cp‖∇(ûN − Îu)‖L2((0,κ)2) + ‖ûN − Îu‖L∞(ê1∪ê2)

. p‖∇(uN − Iu)‖L2(KM∩ΩCL) + ‖uN − Iu‖L∞(∂ΩCL).

This is the desired estimate since ‖uN − Iu‖L∞(∂ΩCL) = 0 by assumption.
The case V ∈ ∂Ω: Again, any macro-element KM with V = FKM(0, 0) is of tensor product,

mixed, or geometric refinement type. Define the relevant neighborhood of V by

ΩV :=


 ⋃

KM : F
KM (0,0)=V

FKM([0, κ]2)




◦

⊂ ΩCL.

Since V ∈ ∂Ω and ∂Ω is a Lipschitz domain and uN − Iu ∈ H1
0 (ΩV ), Lemma A.2 will be applicable.

Fix a KM with FKM(0, 0) = V . Denote by ûN and Îu the pull-backs of uN and Iu to Ŝ under
the patch map FKM . We use polynomial inverse estimates (cf. [13, (4.6.3)]) and scaling arguments

for each element K ∈ T̂ CL
KM of that patch to estimate with hK denoting the element size of K ∈ T̂ CL

KM :

‖ûN − Îu‖L∞(K) .
√
ln(p+ 1)

[
h−1
K ‖ûN − Îu‖L2(K) + ‖∇(ûN − Îu)‖L2(K)

]
.

Denoting by r̂ the distance from the origin and recalling that T̂ CL
KM is a geometric mesh so that for

K ∈ T̂ CL
KM with (0, 0) 6∈ K we have hK ∼ r̂(x) for all x ∈ K, we can estimate

‖ûN − Îu‖L∞(K) .
√
ln(p+ 1)

[∥∥∥∥
1

r̂
(ûN − Îu)

∥∥∥∥
L2(K)

+ ‖∇(ûN − Îu)‖L2(K)

]

.
√
ln(p+ 1)

[∥∥∥∥
1

r̂
(ûN − Îu)

∥∥∥∥
L2((0,κ)2)

+ ‖∇(ûN − Îu)‖L2((0,κ)2)

]
.

Denoting by rV the distance from V , we conclude

‖uN − Iu‖L∞(ΩV ) .
√
ln(p+ 1)

[∥∥∥∥
1

rV
(uN − Iu)

∥∥∥∥
L2(ΩV )

+ ‖∇(uN − Iu)‖L2(ΩV )

]

.
√
ln(p+ 1) ‖∇(uN − Iu)‖L2(ΩV ) ,

where the second inequality follows from Lemma A.2, our assumption that V ∈ ∂Ω, and the obser-
vation that uN − Iu ∈ H1

0 (ΩV ).
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Lemma 4.4. Assume the hypotheses of Proposition 3.9 and let λ0 be given by Proposition 3.9. Then
for each λ ∈ (0, λ0] there exist C, b > 0 independent of p and ε such that the Galerkin error u− uN

satisfies

‖u− uN‖L∞(Ω0) . e−bp +
√
εe−bL and ‖u− uN‖L∞(Ωaniso) . e−bp +

√
εe−bL.

Proof. Let Πu be the approximation of Proposition 3.9. Then, using that Ω0 is the union of large,
shape-regular elements and L = O(p), we get

‖u− uN‖L∞(Ω0) ≤ ‖u−Πu‖L∞(Ω0) + ‖Πu− uN‖L∞(Ω0) . ‖u−Πu‖L∞(Ω0) + p2‖Πu− uN‖L2(Ω0)

. ‖u−Πu‖L∞(Ω0) + p2‖u−Πu‖L2(Ω0) + p2‖u− uN‖L2(Ω0)

. e−bp +
√
εe−bL,

where the last step used Proposition 3.9 and employed (3.27). Next, we exploit that each element
in T aniso shares a “long” edge with either ∂Ω or with ∂Ω0. This implies with polynomial inverse
estimates (cf. Lemma A.3 applied with hy = λpε, hx = O(1)) and Proposition 3.9

‖u− uN‖L∞(Ωaniso) ≤ ‖u−Πu‖L∞(Ωaniso) + ‖Πu− uN‖L∞(Ωaniso)

. ‖u−Πu‖L∞(Ωaniso) + (λpε)1/2p‖∇(Πu− uN )‖L2(Ωaniso) + ‖Πu− uN‖L∞(∂Ω0)

. ‖u− uN‖L∞(Ω0) + p3/2‖u− uN‖√ε + e−bp +
√
εe−bL . e−bp +

√
εe−bL.

Theorem 4.5. Assume the hypotheses of Proposition 3.9 and let ℓ > 0. Assume that LKM ≥ ℓp
for those macro-elements KM with the property that FKM(0, 0) is a vertex of Ω. Let λ0 be given
by Proposition 3.9. Let u ∈ H1

0 (Ω) solve (1.1) and uN ∈ Sp,1
0 (T (min{λpε, 1/2},L)) be its Galerkin

approximation. Then for each λ ∈ (0, λ0] there exist C, b > 0 independent of p and ε such that the
finite element error u− uN satisfies

‖u− uN‖L∞(Ω) ≤ Ce−bp.

Proof. In view of Lemma 4.4 and L = O(p) it suffices to estimate ‖u − uN‖L∞(ΩCL). Define, with
Πu given by Proposition 3.9, the function Iu ∈ VN by

Iu :=

{
uN x ∈ Ω \ ΩCL

Πu − LCL(Πu − uN) x ∈ ΩCL

and estimate

‖u− uN‖L∞(ΩCL) ≤ ‖u−Πu‖L∞(ΩCL) + ‖uN − Iu‖L∞(ΩCL) + ‖LCL(Πu − uN)‖L∞(ΩCL). (4.3)

The term ‖u−Πu‖L∞(ΩCL) is estimated in the desired form in Proposition 3.9. For the second term
in (4.3) we note

‖uN − Iu‖L∞(ΩCL)

L. 4.3

. p‖∇(uN − Iu)‖L2(ΩCL)

L. 4.2

. p
[
‖∇(u− Iu)‖L2(ΩCL) + ε−1‖u− Iu‖L2(ΩCL)

]

.p
[
‖∇(u−Πu)‖L2(ΩCL) + ‖∇(Πu− Iu)‖L2(ΩCL) + ε−1‖u−Πu‖L2(ΩCL) + ε−1‖Πu− Iu‖L2(ΩCL)

]
.

Again, the terms involving u − Πu can be estimated in the desired fashion using Proposition 3.9.
The remaining terms involving Πu− Iu together with the third term of (4.3) are treated as follows:

‖∇(Πu− Iu)‖L2(ΩCL) + ε−1‖Πu− Iu‖L2(ΩCL) + ‖LCL(Πu − uN)‖L∞(ΩCL)

= ‖∇LCL(uN −Πu)‖L2(ΩCL) + ε−1‖LCL(uN −Πu)‖L2(ΩCL) + ‖LCL(Πu− uN )‖L∞(ΩCL)

≤ ‖LCL‖‖uN −Πu‖L∞(∂ΩCL)

. ‖LCL‖
[
‖u− uN‖L∞(∂ΩCL) + ‖u−Πu‖L∞(∂ΩCL)

]

. ‖LCL‖
[
‖u− uN‖L∞(Ω\ΩCL) + ‖u−Πu‖L∞(∂ΩCL)

]
.

The second term can be controlled with the aid of Proposition 3.9. Since Ω \ ΩCL = Ω0 ∪ Ωaniso,
the first term can be controlled using Lemma 4.4.
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5. Numerical example

We provide numerical examples that underline the robust exponential convergence of the hp-
FEM solution in the balanced norm. On the L-shaped domain Ω := (0, 1)2 \ ([1/2, 1)× [1/2, 1)) we
study

−ε2∆u + u = f in Ω, u|∂Ω = 0. (5.1)

We use a spectral boundary layer mesh T (pε,p+ 1) that is visualized in Fig. 4 (left) and is
designed in the spirit of the meshes described in Section 3.1. Although it consists of triangles only
and is derived from two types of refinement patterns that are not covered by Definition 3.1, the above
analysis could be extended to cover this type of mesh. The vector p+ 1 stands for the constant
vector with entries p + 1 and reflects the fact that we employ p + 1 steps of geometric refinement
towards each of the 6 vertices of the domain.

Figure 4: Left: spectral boundary layer mesh. Right: refined mesh for computing reference solution.

The finite element approximation uN ∈ Sp,1
0 (T (pε,p+ 1)) is computed with the C++-software

package NGSOLVE, [11, 10, 12] for p = 1, . . . , pmax := 7. As the exact solution u is unknown,
we compute a reference solution uref on a grid Tfine, which is indicated in Fig. 4 (right); it is a
refinement of T (pε,p+ 1) obtained by adding a second layer of anisotropic elements around the
boundary layer and doing two additional steps of geometric refinement to the corners. Additionally,
the reference solution on this grid is computed with a polynomial degree of 2pmax.

Example 5.1. We select f ≡ 1 in (5.1). Fig. 5 shows ‖uref − uN‖L2(Ω) and |uref − uN |√ε versus

the polynomial degree p. An exponential decay that is robust in ε is visible. The L2-error even
appears to scale with

√
ε. The balanced norm is defined in (1.4) as the sum of both contributions

and features therefore also robust exponential convergence in p.

Example 5.2. We select f(x, y) = 1
x2+y2+0.15 in (5.1). We use the same mesh as in Example 5.1.

Fig. 6 shows again the errors in L2 and the balanced H1-seminorm. In contrast to Example 5.1,
there is no significant dependence on ε in the L2-norm. A possible explanation is that the L2-error
can be bounded in the form e−b1p+

√
εe−b2p, where the first term may be associated with Ω0 whereas

the second term is linked to Ω \Ω0. The asymptotically dominant convergence depends on whether
b1 or b2 is smaller.
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Figure 5: L2-error ‖uN − uref‖L2(Ω) (left) and balanced H1-seminorm error
√
ε‖∇(uN − uref )‖L2(Ω) (right) for

Ex. 5.1.
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Figure 6: L2-error ‖uN − uref‖L2(Ω) (left) and balanced H1-seminorm error
√
ε‖∇(uN − uref )‖L2(Ω) (right) for

Ex. 5.2.

Appendix A

Lemma A.1. Let K̂ be the reference triangle or the reference square. Then there exists C > 0 such
that the following holds: For any f ∈ C(∂K̂) that is edgewise a polynomial of degree p there is a

lifting Lf ∈ Πp(K̂) with the additional property

‖Lf‖L∞(K̂) + p−2‖∇Lf‖L∞(K̂) ≤ C‖f‖L∞(∂K̂).

Proof. We only illustrate the case K̂ = {(x, y) | 0 < x < 1, 0 < y < 1− x} of a triangle, following [1,
Lemma 3.1]. After subtracting the polynomial of degree 1 that interpolates in the three vertices, we
may assume that f vanishes in the three vertices. The lifting is constructed for each edge separately.
We consider the edge e = (0, 1) × {0} and define the lifting by Lef(x, y) := f(x)1−x−y

1−x . Then
‖Lef‖L∞(K̂) ≤ ‖f‖L∞(e). For the gradient estimate, we consider only ∂yLef = −f(x)/(1 − x)

and note supx∈(0,1) |f(x)/(1 − x)| ≤ ‖f ′‖L∞(0,1) ≤ 2p2‖f‖L∞(0,1), where the last estimate expresses
Markov’s inequality for polynomials of degree p (see, e.g., [2, Chap. 4, Thm. 1.4] for a proof).
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Lemma A.2. Let ω ⊂ R
2 be a bounded, open set. Let x ∈ ∂ω and assume that ω satisfies an

exterior cone condition at x: There is a rotation Q ∈ R
2×2 and a constant c > 0 such that the set

x + QK ⊂ R
2 \ ω, where K := {x = (x1, x2) ∈ R

2 | 0 < x2 < c|x1|}. Then there exists C > 0
depending solely on c such that

∥∥∥∥
1

dist(·, x)u
∥∥∥∥
L2(ω)

≤ C‖∇u‖L2(ω) ∀u ∈ H1
0 (ω).

Proof. The desired estimate is scale invariant. We therefore assume diamω ≤ 1. Furthermore, we
assume x = 0 and Q = I. We note that ω̃ := B1(0) \K is a Lipschitz domain. Let ũ be the zero
extension of u to R

2. Standard estimates then provide

∥∥∥∥
1

dist(·, ∂ω̃) ũ
∥∥∥∥
L2(ω̃)

≤ C‖∇u‖L2(ω̃).

Since 0 ∈ ∂ω̃, the result follows.

Lemma A.3. Let hx, hy ∈ (0, 1]. Let Sh := (0, hx)× (0, hy) and Th := {(x, y) | 0 < x < hx, 0 < y <
hy(1 − x/hx)}. Then there exists C > 0 such that for all p ∈ N and all π ∈ Qp

‖π‖L∞(Sh) ≤ Cp(hy/hx)
1/2‖∂yπ‖L2(Sh) + ‖π(·, 0)‖L∞(0,hx),

‖π‖L∞(Th) ≤ Cp(hy/hx)
1/2‖∂yπ‖L2(Th) + ‖π(·, 0)‖L∞(0,hx).

Proof. We only prove the second estimate for the triangle Th. From the representation π(x, y) =

π(x, 0) +
∫ t

0
∂yπ(x, t) dt, we get for (x, y) ∈ Th

|π(x, y)|2 . |π(x, 0)|2 +
∣∣∣∣
∫ y

0

∂yπ(x, t) dt

∣∣∣∣
2

. |π(x, 0)|2 + hy

∫ hy(1−x/hx)

0

|∂yπ(x, t)|2 dt.

Since x 7→
∫ hy(1−x/hx)

0 |∂yπ(x, t)|2 dt is a polynomial of degree 2p+1, the polynomial inverse estimate
‖z‖L∞(0,hx) ≤ Cp2h−1

x ‖z‖L1(0,hx) for polynomials z of degree p (see, e.g., [2, Chap. 4, Thm. 2.6] for
a proof) yields the desired bound.
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