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On superconvergence of Runge-Kutta
convolution quadrature for the wave equation

Jens Markus Melenk, Alexander Rieder

April 16, 2019

The semidiscretization of a sound soft scattering problem modelled by the wave
equation is analyzed. The spatial treatment is done by integral equation methods.
Two temporal discretizations based on Runge-Kutta convolution quadrature are
compared: one relying on the incoming wave as input data and one based on its
temporal derivative. The convergence rate of the latter is shown to be higher than
previously established in the literature. Numerical results indicate sharpness of the
analysis.

1 Introduction

Boundary element methods have established themselves as one of the standard methods when
dealing with scattering problems, especially if the domain of interest is unbounded. First
introduced for stationary problems, beginning with the seminal works [BH86a, BH86b] the
theory for deploying these kind of methods also for time dependent problems has been steadily
extended; see [Say16] for an overview. The method of convolution quadrature, introduced by
Lubich in [Lub88a, Lub88b], is a convenient way of extending the stationary results to a time
dependent setting.

It is well-known that the convergence rate of a Runge-Kutta convolution quadrature (as
introduced in [LO93]), is determined by bounds on the convolution symbol K in the Laplace
domain. Namely, a bound of the form

‖K(s)‖ ≤ C |s|µ .

leads to convergence rate q + 1− µ, as was proven in [BLM11], see also [BL11, LO93] for earlier
results in this direction. Thus one might expect that changing the symbol to s−1K(s) would
increase the convergence order by one.

When considering discretizations of the wave equation using boundary integral methods,
this is not always the case. Instead, it has been observed that sometimes a “superconver-
gence phenomenon” appears, where the observed convergence rate surpasses those predicted,
see [RSM19a, RSM19b, Rie17].

In this paper, we give a first explanation why such a phenomenon occurs in the model problem
of sound soft scattering, i.e., the discretization of the Dirichlet-to-Neumann map. We expect
that similar phenomena can also explain the improved convergence rate for the Neumann prob-
lem or more complex scattering problems. The proof relies on the observation that the s−1-
weighted Dirichlet-to-Neumann map can be decomposed into a Dirichlet-to-Impedance map
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plus the identity operator. For the Dirichlet-to-Impedance operator, it was observed in [Ban14]
that an improved bound holds compared to the Dirichlet-to-Neumann map as long as the ge-
ometry is given by the sphere or the half-space. It is then conjectured that a similar bound
holds for smooth, convex geometries. In this paper, we generalize this result to a much broader
class of geometries (namely smooth or polygonal) without convexity assumption. This will then
immediately give the stated improved bound for the convolution quadrature scattering problem.

We conclude that due to this phenomenon, it may often be beneficial to slightly tweak the
formulation to work with an extra time derivative. In many situations, such formulations are
even the natural choice, see, e.g., [BR18, BL18, BLS15]. Especially when working with the wave
equation as a first order system as in [RSM19b].

Another way of looking at this phenomenon is that when using a standard formulation (see
Proposition 3.2), then the discrete integral will exhibit a superconvergence effect.

We would like to point out that the present paper focuses on a semidiscretization of the
problem with respect to the time variable. For practical purposes one would also have to take
into account the discretization in space using boundary elements.

We also would like to note that while popular, convolution quadrature is only one possibility
to apply boundary integral techniques to wave propagation problems. Notably also space-time
based methods have gained popularity [GNS17, GMO+18, JR17] in recent years.

2 Model Problem

We consider a sound soft scattering problem for acoustic waves. For a bounded Lipschitz domain
Ω− ⊆ Rd with Ω+ := Rd \ Ω−, the problem reads

ütot = ∆utot in Ω+ and utot(t)|Γ = 0 for t > 0, utot(t) = uinc(t) for t ≤ 0. (2.1)

Here uinc is a given incoming wave, i.e., uinc also solves the wave equation, and we assume that
for t ≤ 0 it has not reached the scatterer yet. The problem can be recast by decomposing the
total wave into the incoming and outgoing wave, utot = uinc + u, where u solves:

ü = ∆u in Ω+ and utot(t)|Γ = −uinc(t)|Γ for t > 0, utot(t) = 0 for t ≤ 0. (2.2)

This will be the problem we are discretizing.
For simplicity, we consider two possible cases. Either Ω− ⊆ Rd has a smooth boundary or

Ω− ⊆ R2 is a polygon. While we expect that the results and techniques can be generalized to
the case of piecewise smooth geometries, such extensions would lead to a much higher level of
technicality in the present paper. We focus on the exterior scattering problem as our motivation
and model problem, but all of the main results also hold for the interior Dirichlet problem.

We end the section by fixing some notation. We write Hm(Ω±) for the usual Sobolev spaces
on Ω+ or Ω−. On the interface Γ := ∂Ω we also need fractional spaces Hs(Γ) for s ∈ [−1, 1],
see, e.g., [McL00, AF03] for precise definitions. We also set H1

∆(Ω±) := {u ∈ H1(Ω±) : ∆u ∈
L2(Ω±)}. We write γ± : H1(Ω±) → H1/2(Γ) for the exterior and interior trace operator,
and ∂±n : H1

∆(Ω±) → H−1/2(Γ) for the normal derivative. We note that in both cases, we
take the normal to point out of the bounded domain Ω−. We write JγuK := γ+u − γ−u and
{{γu}} := 1

2 (γ+u+ γ−u) for the trace jump and mean, and J∂nuK := ∂+
n u − ∂−n u for the jump

of the normal derivative.
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2.1 Boundary Integral Methods and Convolution Quadrature

It is well-known that scattering problems of the form presented in Section 2 can be solved by
employing boundary integral methods, see [Say16] for a detailed time-domain treatment. For
the frequency domain, results can be found in most textbooks on the subject, see [SS11, Ste08,
McL00, GS18, HW08].

The use of boundary integral methods for discretizing the time domain scattering problem
dates back to the works [BH86a, BH86b], where also important Laplace domain estimates of
the form (3.2) were first shown.

For s ∈ C+ :=
{
z ∈ C : Re(z) ≥ 0

}
, we introduce the single and double layer potentials

(SLP(s)ϕ) (x) :=

∫
Γ

Φ(x− y; s)ϕ(y) dS(y), (2.3a)

(DLP(s)ψ) (x) :=

∫
Γ
∂ν(y)Φ(x− y; s)ψ(y) dS(y), (2.3b)

where Φ is the fundamental solution for the operator −∆ + s2:

Φ(x; s) :=

{
i
4H

(1)
0 (is |x|) for d = 2,

e−s|x|

4π|x| , for d = 3.
(2.4)

Here H
(1)
0 denotes the Hankel function of the first kind and order zero, see [McL00, Chapter 9].

Finally, we introduce the boundary integral operators engendered by the potentials:

V (s) := γ±SLP(s), and K(s) := {{γDLP(s)}} . (2.5)

In practice, these operators can be computed via explicit representation as integrals over the
boundary Γ. For sufficiently smooth functions ψ, ϕ the following equations hold:

V (s)ϕ =

∫
Γ

Φ(·, y, s)ϕ(y) dΓ(y), and K(s)ψ =

∫
Γ
∂ν(y)Φ(·, y, s)ψ(y) dΓ(y). (2.6a)

The operator we consider for discretizing (2.2) is the Dirichlet-to-Neumann map.

Definition 2.1. For s ∈ C+, given g ∈ H1/2(Γ), let u solve

−∆u+ s2u = 0 in Rd \ Γ and γ±u = g.

We then define the operators

DtN±(s)g := ∂±n u and DtI±(s)g := ∂±n u± sγ±u = DtN± g ± sg. (2.7)

In practice, the following well known proposition gives an explicit way to calculate DtN.

Proposition 2.2 (see, e.g., [LS09, Appendix 2]). The Dirichlet-to-Neumann map can be written
as

DtN±(s) = V −1(s)
(
∓ 1

2
+K(s)

)
.
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Runge-Kutta convolution quadrature was introduced by Lubich and Ostermann in [LO93].
It provides a simple and general way of approximating convolution integrals by a high order
method and has the great advantage that only the Laplace transform of the convolution symbol
needs to be easily computable. We only very briefly introduce the method and notation.

Let K be a holomorphic function in a half plane Re(s) > σ0 > 0, and let L denote the
Laplace transform and L −1 its inverse. We (formally) introduce the operational calculus by
defining

K(∂t)g := L −1
(
K(·)L g

)
,

where g ∈ dom (K(∂t)) is such that the inverse Laplace transform exists, and the expression
above is well defined.

For a Runge-Kutta method given by the Butcher tableau A, bT , c, the convolution quadrature
approximation of K(∂t) is given at the temporal grid points tj := jk where k > 0 denotes the
timestep size by

[
K(∂kt )g

]
(tn+1) := bTA−1

n∑
j=0

Wn−j
[
g
(
tj + kc`

)]m
`=1

with K

(
∆(ζ)

k

)
=
∞∑
n=0

Wnζ
n. (2.8)

The extension to operator valued functions K is straight forward.
We make the following assumptions on the Runge-Kutta method, slightly stronger than [BLM11].

Assumption 2.3. (i) The Runge-Kutta method is A-stable with (classical) order p ≥ 1 and
stage order q ≤ p.

(ii) The stability function R(z) := 1 + zbT (I−zA)−11 satisfies |R(it)| < 1 for 0 6= t ∈ R.

(iii) The Runge-Kutta coefficient matrix A is invertible.

(iv) The method is stiffly accurate, i.e. bTA−1 = (0, . . . , 0, 1).

Remark 2.4. Assumption 2.3 is satisfied by the Radau IIA and Lobatto IIIC methods, see [HW10].
Also note that the order conditions imply that cm = 1 for such methods.

Our analysis will employ the following result on Runge-Kutta convolution quadrature using
Laplace domain estimates:

Proposition 2.5 ([BLM11, Theorem 3]). Assume that K is holomorphic in the half plane
Re(s) > σ0 > 0, and that there exist µ1, µ2 ∈ R such that K(s) satisfies the following bounds
for all δ > 0:

|K(s)| ≤ Cσ0 |s|µ1 for Re(s) > σ0 > 0,

|K(s)| ≤ Cσ,δ |s|µ2 for Re(s) > σ > 0 with Arg(s) ∈ (−π/2 + δ, π/2− δ).

Assume that the Runge-Kutta method satisfies Assumption 2.3. Let r > max
(
p+µ1, p, q+ 1

)
and g ∈ Cr([0, T ]) satisfy g(0) = ġ(0) = . . . g(r−1)(0) = 0. Then there exists k̄ > 0 such that for
0 < k < k̄,∣∣∣K(∂kt )g(tn)−K(∂t)g(tn)

∣∣∣ ≤ Ckmin(p,q+1−µ2)

(∣∣∣g(r)(0)
∣∣∣+

∫ tn

0

∣∣∣g(r+1)(τ)
∣∣∣ dτ) .

The implied constant depends on tn, σ0, k̄, the constants Cσ0, Cδ, and the Runge-Kutta method.
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3 Main results

For simpler notation introduce a symbol for the sectors in Proposition 2.5. Throughout this
work we fix for σ0 > 0 and δ > 0 and set

S :=
{
s ∈ C,Re(s) > σ0,Arg(s) ∈ (−π/2 + δ, π/2− δ)

}
.

Remark 3.1. The choice of σ0 > 0 and δ > 0 in the definition of S is arbitrary, and all our
estimates will hold for any pick, although all the constants will be depending on σ0 and δ.

We are now able to state the main result of the paper. We start by stating the standard
convergence result for discretizing the Dirichlet-to-Neumann map.

Proposition 3.2 (Standard method). Let g ∈ Cr([0, T ], H1/2(Γ) for some r > p+2 and g(0) =
ġ(0) = . . . g(r)(0) = 0. Let λ := DtN±(∂kt )g be the exact normal derivative and λk := DtN±(∂kt )g
denote the standard CQ-approximation.

Then the following estimate holds:∥∥∥λ(t)− λk(t)
∥∥∥
H−1/2(Γ)

. kq
r∑
j=0

sup
τ∈(0,T )

‖g(τ)‖H1/2(Γ). (3.1)

Proof. Follows from the well known bound

∥∥DtN±(s)
∥∥
H1/2(Γ)→H−1/2(Γ)

.
|s|2

Re(s)
(3.2)

(see for example[LS09]) and Proposition 2.5.

We will observe numerically in Section 5 that Proposition 3.2 is essentially sharp. Thus, when
considering the differentiated equation, one expects an increased order by one, which follows
directly from Proposition 2.5. But for the Dirichlet-to-Neumann map the increase of order is
even greater, as long as one assumes slightly higher regularity of the data.

Theorem 3.3 (Method based on differentiated data). Let g ∈ Cr
(
[0, T ], H1(Γ)

)
for r > p+ 2

with g(0) = ġ(0) = . . . g(r)(0) = 0. Let λ := DtN±(∂kt )g be the exact normal derivative and
λk := [[∂kt ]−1 DtN±(∂kt )]ġ denote the CQ-approximation using ġ as input data.

Then the following estimate holds:∥∥∥λ(t)− λk(t)
∥∥∥
H−1/2(Γ)

. kmin(q+2,p)
r∑
j=0

sup
τ∈(0,T )

‖g(τ)‖H1(Γ). (3.3)

Proof. We apply Proposition 2.5. By linearity, we can write the Dirichlet-to-Neummann oper-
ator as

s−1 DtN(s) = s−1 DtI(s) + I, or in the time domain ∂−1
t DtN(∂t) = ∂−1

t DtI(∂t) + I(∂t).

The second operator (in frequency domain) is independent of s. It is a simple calculation that
in such cases the convolution weights satisfy Wj = δj,0K(0). Thus, we have

I(∂t)g(tn+1) = bTA−1 (g(tn + kc`))
m
`=1 .
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Since stiff accuracy implies bTA−1 = (0, . . . , 0, 1) and cm = 1, the operator I is reproduced
exactly by the convolution quadrature. A similar decomposition was already invoked in [BLM11]
to explain a superconvergence phenomenon for a scalar problem. Theorem 3.4 shows that the
Dirichlet-to-Impedance map satisfies

‖DtI(s)‖H1/2(Γ)→H−1/2(Γ) . |s|−2 for s ∈ C+, and ‖DtI(s)‖H1(Γ)→H−1/2(Γ) . 1 for s ∈ S .

By Proposition 2.5, this implies (3.3).

While Theorem 3.3 is the main motivation for this paper, its proof is based on another result,
which may be of independent interest.

Theorem 3.4. Let s ∈ S . Assume that Ω ⊆ Rd is smooth or Ω ⊆ R2 is a polygon. The
following estimate holds for the Dirichlet-to-Neumann map:∥∥DtN±(s)g ± sg

∥∥
H−1/2(Γ)

≤ C ‖g‖H1(Γ) ∀g ∈ H1(Γ). (3.4)

The constant C depends only on the geometry and the parameters σ0, δ defining the sector S .

Proof. Due to its lengthy and technical nature, we defer the proof to Section 4.

Since all our results hold for both the interior and exterior problem, we can also easily treat
the case of an indirect BEM formulation.

Corollary 3.5 (Indirect formulation). Let s ∈ S and assume that Ω ⊆ Rd is smooth or Ω ⊆ R2

is a polygon. Then, the operator V −1(s)− 2s satisfies the bound∥∥V −1(s)ϕ− 2sϕ
∥∥
H−1/2(Γ)

≤ ‖ϕ‖H1(Γ) ∀ϕ ∈ H1(Γ). (3.5)

Let g ∈ Cr([0, T ], H1(Γ) for r > p+ 2 with g(0) = ġ(0) = . . . g(r)(0) = 0. Let ϕ := V −1(∂kt )g
be the exact density and ϕk := [[∂kt ]−1V −1(∂kt )]ġ its CQ-approximation.

Then the following estimate holds:∥∥∥ϕ(t)− ϕk(t)
∥∥∥
H−1/2(Γ)

. kmin(q+2,p)
m∑
j=0

sup
τ∈(0,T )

‖g(τ)‖H1(Γ). (3.6)

Proof. We can write V −1(s) = DtN−(s) − DtN+(s). Thus the statements follows from Theo-
rem 3.3 and Theorem 3.4.

4 Proofs

The proof of Theorem 3.4 hinges on three main observations, which require some technical work
to make rigorous:

1. In 1d on R+, the interior Dirichlet-to-Neumann map is given by g 7→ sg.

2. The existing DtN-estimates poor s dependence is mainly caused by boundary layers.

3. Boundary layers are essentially a 1d phenomenon, so observation 1 applies.
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4.1 Preliminaries

When working with the Helmholtz equation, it is convenient to work with |s|-weighted norms.

Definition 4.1. For an open (or relatively open) set O, parameters s ∈ C+ and θ ∈ [0, 1], we
define the weighted Sobolev norms

‖u‖2|s|,θ,O := |u|2Hθ(O) + |s|2θ ‖u‖2L2(O) . (4.1)

and the dual norms by

‖u‖2|s|,−θ,O := sup
v∈Hθ(O)

(u, v)L2(O)

‖v‖|s|,θ,O
.

We start with some well known s-explicit estimates for the (modified) Helmholtz equation.

Lemma 4.2 (Well posedness). Let s ∈ S . The bilinear form

as(u, v) := (∇u,∇v)L2(Ω±) + s2(u, v)L2(Ω±)

associated to −∆ + s2 is elliptic, i.e.,satisfies

Re
(
ζas(u, u)

)
≥ C ‖u‖2|s|,1,Ω±

for some scalar ζ ∈ C with |ζ| = 1.

Proof. We set ζ := s
|s| and calculate:

Re
(
ζas(u, u)

)
=

Re(s)

|s| (∇u,∇v)L2(Ω±) +
Re(s)

|s| |s|
2 (u, v)L2(Ω±).

Since Re(s) ∼ |s| in the sector S this concludes the proof.

Lemma 4.3 (Trace estimates). For s ∈ S , let u ∈ H1(Ω±) satisfy

−∆u+ s2u = f ∈ L2(Ω−).

Then the following estimates hold for the traces of u:∥∥∂±n u∥∥H−1/2(Γ)
. |s|1/2 ‖u‖|s|,1,Ω± + |s|−1/2 ‖f‖L2(Ω±) ,∥∥γ±u∥∥

H−1/2(Γ)
. |s|−1/2 ‖u‖|s|,1,Ω± ,∥∥∂±n u± sγ±u∥∥H−1/2(Γ)
. |s|1/2 ‖u‖|s|,1,Ω± + |s|−1/2 ‖f‖L2(Ω±) .

Proof. We start with the normal derivative. For any ξ ∈ H1/2(Γ) and γ±v = ξ we calculate:〈
∂±n u, ξ

〉
Γ

= (f, v)Ω± + (∇u,∇v)Ω± + s2 (u, v)Ω±

.
(
‖u‖|s|,1,Ω±+ |s|−1 ‖f‖L2(Ω±)

)
‖v‖|s|,1,Ω±

.
(
|s|1/2 ‖u‖|s|,1,Ω− + |s|−1/2 ‖f‖L2(Ω±)

)
‖ξ‖H1/2(Γ) ,

where in the last step we picked v as in [Say16, Proposition 2.5.1].
For the Dirichlet trace, we get using the multiplicative trace estimate and the same lifting v:〈

γ±u, ξ
〉

Γ
≤
∥∥γ±u∥∥

L2(Γ)
‖ξ‖L2(Γ) . ‖u‖

1/2
L2(Ω±)

‖u‖1/2
H1(Ω±)

‖v‖1/2
L2(Ω±)

‖v‖1/2
H1(Ω±)

≤ |s|−1 ‖u‖|s|,1,Ω± ‖v‖|s|,1,Ω± . |s|−1/2 ‖u‖|s|,1,Ω± ‖ξ‖H1/2(Γ) .

The estimate for the impedance trace then follows trivially.
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The previous lemma shows that when using the standard Sobolev norms on the boundary,
all the constants involved have some s dependence. The next lemmas show that when the use
of the weighted norms introduced in Definition 4.1 avoids such dependencies:

Lemma 4.4. The operators γ± : H1(Ω±) → H1/2(Γ) have bounded right inverses E± and
satisfy the bounds:∥∥γ±u∥∥|s|,1/2,Γ . ‖u‖|s|,1,Ω± and

∥∥E±g∥∥|s|,1,Ω± . ‖g‖|s|,1/2,Γ . (4.2)

Proof. The existence of the right inverse follows from [MS11, Lemma 4.22]. We note that the
multiplicative trace estimate and Young’s inequality give:

|s|1/2
∥∥γ±u∥∥

L2(Γ)
.
(
‖u‖H1(Ω±) |s| ‖u‖L2(Ω±)

)1/2 ≤ ( ‖u‖2H1(Ω±) + |s|2 ‖u‖2L2(Ω±)

)1/2
.

Combining this with the standard trace estimate concludes the proof.

Lemma 4.5 (Dirichlet problem). Fix s ∈ S . Let g ∈ H1/2(Γ), f ∈ L2(Ω±). Then there exists
a unique solution to the problem

−∆u+ s2u = f in Ω± and γ±u = g.

The function satisfies the a priori bound

‖u‖|s|,1,Ω± . |s|−1 ‖f‖L2(Ω±) + ‖g‖|s|,1/2,Γ . (4.3)

Proof. Existence follows using the usual theory of elliptic problems. For the a priori bound, we
first note that by [MS11, Lemma 4.22], there exists a lifting uD satisfying

−∆uD + s2u = 0, ‖uD‖|s|,1,Ω± . ‖g‖|s|,1/2,Γ and γ±uD = g.

Thus the remainder ũ := u− uD solves:

−∆ũ+ s2ũ = f

with homogeneous Dirichlet conditions. Since the bilinear form as from Lemma 4.2 is elliptic,
we get

‖ũ‖2|s|,1,Ω± . Re
(
ζas(ũ, ũ)

)
= Re

(
ζ (f, ũ)Ω±

)
≤ |s|−1 ‖f‖L2(Ω±)

(
|s| ‖ũ‖L2(Ω±)

)
≤ |s|−1 ‖f‖L2(Ω±) ‖ũ‖|s|,1,Ω± .

Lemma 4.6 (Neumann problem). Fix s ∈ S . Let h ∈ H−1/2(Γ). Then there exists a unique
solution to the problem

−∆u+ s2u = f in Ω± and ∂±n u = h.

u satisfies the a priori bound

‖u‖|s|,1,Ω± . ‖h‖|s|,−1/2,Γ + |s|−1 ‖f‖L2(Ω±) . (4.4)

Proof. Follows easily from the weak formulation and (4.2).

Lemma 4.7. We also have the following trace inequality in a weaker norm than H−1/2. If
−∆u+ s2u = 0 we can estimate:∥∥∂−n u∥∥|s|,−1/2,Γ

. ‖u‖|s|,1,Ω− .

Proof. Follows easily from the weak definition of ∂−n u, the Cauchy-Schwarz inequality, and (4.2).
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4.2 Smooth geometries

In order to prove a first version of Theorem 3.4, we consider a simplified setting of smooth
geometry and Dirichlet trace. Closely following the ideas from [MS99, Mel02], we construct a
lowest order boundary layer function which will be the basis for all further estimates.

Lemma 4.8 (Boundary fitted coordinates). Let T : O ⊆ Rd−1 → Γ be a smooth local
parametrization of Γ. Define F : O × (−ε, ε)→ Rd as

F (x̂, ρ) := −ρν(x̂) + T (x̂), (4.5)

where ν(x̂) is the normal vector to Ω− at the point T (x̂).
For ε > 0 sufficiently small, F is a smooth diffeomorphism onto F

(
O× (−ε, ε)

)
. It holds that

F (O × (0, ε)) ⊆ Ω− and F (O × (−ε, 0)) ⊆ Ω+. Additionally F satisfies

DF−T (x̂, ρ)DF−1(x̂, ρ) =

(
T̃ (x̂) 0

0 1

)
+ ρR̃(x̂, ρ), (4.6)

where T̃ and R̃ are smooth.

Proof. We only show (4.6). We select a smooth orthogonal basis of the tangent space at T (x̂),
denoted by e1(x̂), . . . , ed−1(x̂). This implies that Q :=

(
e1(x̂), . . . , ed−1(x̂), ν(x̂)

)
is orthogonal.

We write the Jacobian as

DF (x̂, ρ) =
(
Dx̂T (x̂), ν(x̂)

)
+ ρDx̂ν(x̂) =

(
T̃1 0
0 1

)
Q+ ρDν(x̂).

Here T̃1 := Q−1Dx̂T (x̂), and thus ‖T̃1‖2 = ‖Dx̂T (x̂)‖2. We further compute:

DF−TDF−1 =
(
DFDF T

)−1
=

((
T̃1 0
0 1

)
QQT

(
T̃ T1 0
0 1

)
+ ρR1(x̂, ρ̂)

)−1

=

((
T̃1T̃

T
1 0

0 1

)
+ ρR1(x̂, ρ̂)

)−1

(4.7)

where R1 collects the remaining terms. For sufficiently small ρ > 0, depending only on ‖Dx̂T‖2
and ‖Dx̂ν‖2 we can linearize the inverse in (4.7) to get (4.6) with T̃ :=

(
T̃1T̃

T
1

)−1
.

Lemma 4.9. Assume that Ω− has smooth boundary Γ. Fix s ∈ S . For every u ∈ H1(Ω−)
solving

−∆u+ s2u = 0,

and γ−u ∈ H2(Γ) there exists a function uBL ∈ H1(Ω−) with the following properties:

(i) γ−uBL = γ−u,

(ii) ∂−n uBL − sγ−uBL = 0,

(iii) −∆uBL + s2uBL = f with

‖f‖L2(Ω−) . |s|1/2
∥∥γ−u∥∥

H1(Γ)
+ |s|−1/2

∥∥γ−u∥∥
H2(Γ)

. (4.8)
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(iv) For all ε > 0, consider the set Ω−ε := {x ∈ Ω− : dist(x,Γ) > ε}. Then, the following
estimates hold for all ` ∈ R with constants independent of s:

‖uBL‖H2(Ω−ε ) ≤ Cε,` |s|
−` ‖γu‖H2(Γ) .

The analogous statement also holds for the exterior problem, replacing −s by s in (ii).

Proof. For shorter notation, set g := γ−u. We only show the case of the interior problem. We
work in boundary fitted coordinates (x̂, ρ), as in Lemma 4.8. First assume, that supp(g) ⊂ T (O),
i.e., lies in the part of the boundary parametrized by T . We note that if u solves −∆u+s2u = f ,
then û := u ◦ F solves:

−∇ ·
(
JDF−TDF∇û

)
+ Js2û = f̂ Ĵ

with J := det(DF ) (see, e.g., [Mel02, Appendix A.1.1]) and f̂ = f ◦ F . On the other hand, if
ûBL satisfies

−∇ ·
(
JDF−TDF∇ûBL

)
+ Js2ûBL = f̂BL,

then uBL := ûBL ◦ F−1 solves

−∆uBL + s2uBL = fBL, with fBL := J−1f̂BL ◦ F−1.

We set Â := DF−TDF−1, and define with ĝ := g ◦ T the function ûBL(x̂, ρ) := e−sρĝ(x̂) in the
boundary fitted coordinates.

By differentiating out, we note that

−∇ · (JÂ∇û) = ∇x̂ · (JÃ∇û) + ∂ρ(e
T
d JÂ)∇û+ JÂd,d∂ρ∇û,

where Ã is the upper (d− 1)× d-block of Â. Inserting (4.6), we get that ûBL solves

−∇ · (JÂ∇ûBL) + Js2ûBL = −∇x̂ · (JÃ∇ûBL) + ∂ρ(e
T
d JÂ)∇ûBL + ρR̃d,dJ∂

2
ρ ûBL =: f̂BL,

as the leading ∂2
ρ-term cancels with the s2-term. Structurally, the right-hand side can be written

as:

f̂BL(x̂, ρ) =
d−1∑
j=0

aj∂x̂j ûBL + bj∂x̂j∂ρûBL +
d−1∑
i,j=1

cij∂x̂i∂x̂j ûBL + d∂ρûBL + ρr∂2
ρ ûBL.

with smooth functions a, b, c, d, r.
From the definition, one can easily see that ûBL satisfies the estimates

‖∂ρûBL‖L2(O×R+) + ‖∂ρ∇x̂ûBL‖L2(O×R+) +
∥∥ρ∂2

ρ ûBL
∥∥
L2(O×R+)

.
|s|√
Re(s)

‖ĝ‖H1(O) ,

‖∇x̂ûBL‖L2(O×R+) +
d−1∑
i,j=1

∥∥∂x̂i∂x̂j ûBL∥∥L2(O×R+)
.

1√
Re(s)

‖ĝ‖H2(O) .

Transforming back gives (4.8) for the part of Ω− parametrized by F . (iv) follows easily from
the definition, as the exponential decay dominates all powers of |s|.

This allows us to smoothly cut off uBL for large ρ and extend it by 0 to the whole domain.
For general g, we use a smooth partition of unity to decompose g into functions with local
support.
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As the next step, we lower the regularity requirement on γ−u.

Corollary 4.10. Assume that Ω− has a smooth boundary Γ. Fix s ∈ S . For every u ∈ H1(Ω−)
with γ−u ∈ H1(Γ) solving

−∆u+ s2u = 0,

there exists a function uBL ∈ H1(Ω−) with the following properties:

(i) ∂−n uBL − sγ−uBL = 0,

(ii)
∥∥∂−n (u− uBL)− s

(
γ−u− γ−uBL

)∥∥
H−1/2(Γ)

. ‖γ−u‖H1(Γ) ,

(iii) ‖u− uBL‖|s|,1,Ω− . |s|−1/2 ‖γ−u‖H1(Γ) ,

(iv) for all ε > 0, consider the set Ω−ε := {x ∈ Ω− : dist(x,Γ) > ε}. Then, the following
estimates hold for all ` ∈ R with constants independent of s:

‖uBL‖H2(Ω−ε ) ≤ Cε,` |s|
−` ∥∥γ−u∥∥

H1(Γ)
.

The analogous statement also holds in the case of the exterior problem, replacing −s by s in (i).

Proof. In order to apply Lemma 4.9, we needH2-regularity of g := γ−u. We fix a function
g̃ ∈ H2(Γ) with the following properties:

‖g − g̃‖|s|,1/2,Γ ≤ |s|−1/2 ‖g‖H1(Γ) and ‖g̃‖H2(Γ) . |s|1 ‖g‖H1(Γ) . (4.9)

Such a function can be constructed via the usual mollifiers. Let ũ denote the solution to

−∆ũ+ s2ũ = 0 and γ−ũ = g̃.

Since g̃ ∈ H2(Γ), we can apply Lemma 4.9 to construct uBL. (i) then follows by construction.
For (iii): we note that by Lemma 4.5 and 4.9:

‖u− uBL‖|s|,1,Ω− . ‖u− ũ‖|s|,1,Ω− + ‖ũ− uBL‖|s|,1,Ω−
. ‖g − g̃‖|s|,1/2,Γ + |s|−1

(
|s|1/2 ‖g̃‖H1(Γ) + |s|−1/2 ‖g̃‖H2(Γ)

)
. |s|−1/2 ‖g‖H1(Γ) .

For (ii), we use Lemma 4.3 and (4.3) to get that∥∥∂−n (u− ũ)− s
(
γ−u− γ−ũ

)∥∥
H−1/2(Γ)

. |s|1/2 ‖g − g̃‖|s|,1/2,Γ . ‖g‖H1(Γ) .

Similarly, we have∥∥∂−n (ũ− uBL)− s
(
γ−ũ− γ−uBL

)∥∥
H−1/2(Γ)

. |s|1/2 ‖ũ− ũBL‖|s|,1,Ω− + |s|−1/2
(
|s|1/2 ‖g̃‖H1(Ω−) + |s|−1/2 ‖g̃‖H2(Ω−)

)
. ‖g‖H1(Γ) .

Point (iv) directly follows from Lemma 4.9 (iv) and (4.9).
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4.3 Polygons

In this section, we work out what happens if the domain is non-smooth. For simplicity we
restrict ourselves to the case of polygons in two dimensions. In order to match the boundary
layer solutions from Lemma 4.9 at corners, we solve an appropriate transmission problem,
similarly to what was done in [Mel02]. See Figure 4.1b for the geometric situation we have in
mind.

We first need one additional Sobolev space. For a smooth curve Γ′ and θ ∈ [0, 1], we introduce

H̃θ(Γ′) :=
{
u ∈ Hθ(Γ′) : ‖u‖

H̃θ(Γ′) := ‖u‖Hθ(Γ′) + ‖d−θ∂Γ′u‖L2(Γ′) <∞
}
,

where d∂Γ′ denotes the distance to the endpoints of Γ′.

Lemma 4.11 (Transmission problem). Let O ⊂ R2 be an open Lipschitz domain. Let Γ′ ⊂ O
be a smooth interface that splits O into two disjoint Lipschitz domains O1 and O2.

Given g ∈ H̃1/2(Γ′), h ∈ H−1/2(Γ′), there exists a unique solution u ∈ H1(O1 ∪ O2) to the
following problem:

−∆u+ s2u = 0 in O, γ−u = 0 on ∂O, JγuK = JγgK and J∂nuK = h across Γ′.

Additionally, the following estimate holds:

‖u‖|s|,1,O . ‖g‖|s|,1/2,Γ′ + ‖d
−1/2
∂Γ′ g‖L2(Γ′) + ‖h‖|s|,−1/2,Γ′ .

Proof. Since g is assumed in H̃1/2(Γ′), we can extend it by 0 to a function g̃ ∈ H1/2(∂O1) such
that

‖g̃‖|s|,1/2,∂O1
. ‖g‖|s|,1/2,Γ′ + ‖d

−1/2
∂Γ′ g‖L2(Γ′)

(see for example [McL00, Theorem 3.33]).
We solve a Dirichlet problem on O1 with data g̃ to obtain u1 and extend it by 0 to O2. Then

we solve the following problem on O: Find u2 ∈ H1
0 (O) such that

(∇u2,∇v)L2(O) + s2(u2, v)L2(O) = 〈h, γΓ′v〉Γ′ + (∇u1,∇v)L2(O) + s2(u1, v)L2(O) ∀v ∈ H1
0 (O),

where γΓ′ denotes the trace operator on Γ′. The function u := u1 + u2 then solves the trans-
mission problem. The estimate follows from Lemmas 4.5 and 4.6.

Before we can bound the functions used to match boundary layers, we must control the jump
between two boundary layer solutions. We start with a very simple geometric situation.

Lemma 4.12. Fix an opening angle ω ∈ (0, 2π). Consider the sector Sω := {(r cos(ϕ), r sin(ϕ)) : r ∈
(0, 1), ϕ ∈ (0, ω)} and let g ∈ H1(−1, 1) be given.

Let (x̂, ŷ) be the (right handed) Cartesian coordinate system such that positive ŷ denotes the
distance to the axis {(r sin(ω), r cos(ω)) : r ∈ (0, 1)}.

For µ > 0, define

u1(x, y) := g(x)e−µsy and u2(x̂, ŷ) := g(x̂)e−µsŷ.

Consider the interface Γ′ := {r cos(ω/2), r sin(ω/2) : r ∈ (0, 1)}. Then the following estimates
hold:

‖u1 − u2‖|s|,1/2,Γ′ +
∥∥∥d−1/2

0 (u1 − u2)
∥∥∥
L2(Γ′)

. |s|−1/2 ‖g‖H1(−1,1) , (4.10)∥∥∂−n u1 − ∂−n u2

∥∥
|s|,−1/2,Γ′

. |s|−1/2 ‖g‖H1(−1,1) . (4.11)

where the orientation of the normal is arbitrarily fixed.
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Proof. We work in polar coordinates. The boundary fitted coordinates are given by(
x
y

)
:=

(
r cos(ϑ)
r sin(ϑ)

) (
x̂
ŷ

)
:=

(
−r cos(ω − ϑ)
r sin(ω − ϑ)

)
∀r ∈ (0, 1), ϑ ∈ (0, ω).

For shorter notation we introduce the constants c1 := cos(ω/2), c2 := sin(ω/2) and note c2 > 0.
We start with the estimate for the Dirichlet jump, and calculate on Γ′:

JγuK(r, ϑ) := u1(x, y)− u2(x̂, ŷ) = [g(rc1)− g(−rc1)] e−c2µsr.

We estimate:

‖JγuK‖2L2(Γ′) =

∫ 1

0
[g(rc1))− g(−rc1)]2 e−2 Re(s)µc2r dr =

∫ 1

0

[∫ r

−r
g′(τc1)c1 dτ

]2

e−2 Re(s)µc2r dr

.
∫ 1

0

∥∥g′∥∥2

L2(−1,1)
r e−2 Re(s)µc2r dr .

1

Re(s)2

∥∥g′∥∥2

L2(−1,1)
.

An analogous computation gives:∥∥∥d−1/2
0 JγuK

∥∥∥2

L2(Γ′)
.

1

Re(s)

∥∥g′∥∥2

L2(−1,1)
.

Next we compute the tangential derivative of JγuK on Γ′:

∂

∂r
JγuK = −sµc2e

−c2µsr[g(rc1)− g(−rc1)
]

+ e−c2µsrc1

[
g′(rc1) + g′(rc1)

]
.

The first term is handled analogously to the L2-term. For the second term we use the crude
estimate |e−sµrc2 | . 1 and get: ∥∥ ∂

∂r
JγuK

∥∥
L2(Γ′)

.
∥∥g′∥∥

L2(−1,1)
.

Interpolating these two estimates then gives (4.10).
In polar coordinates, the normal derivative of a function can be computed as

∂nΓ′u = κ1(ϑ)
∂u

∂r
+ κ2(ϑ)

1

r

∂u

∂ϑ
.

for smooth functions κ1, κ2. Thus it is sufficient to estimate the radial and angular derivatives.
We have already handled the radial part. On Γ′, we calculate for the angular derivative:

1

r

∂

∂ϑ

(
u1 − u2

)
= −

[
g′(rc1)− g′(−rc1)

]
c2e
−sµc2r − s [g(rc1)− g(−rc1)]µc1e

−sµc2r.

Structurally, the terms are the same as for the derivative of JγuK. We analogously get the
estimate:

‖J∂nuK‖L2(Γ′) . ‖g‖H1(Γ′) .

To get to the weaker norm, we simply calculate for ξ ∈ H1/2(Γ′):

〈J∂nuK, ξ〉Γ . ‖J∂nuK‖L2(Γ′) ‖ξ‖L2(Γ′) . |s|−1/2 ‖J∂nuK‖L2(Γ′) ‖ξ‖|s|,1/2,Γ′ ,

which completes the proof.
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(b) Geometric situation at a single corner

Figure 4.1: Geometric situation for nonsmooth domains

Thus far we only considered smooth geometries. Next we handle what happens at corners.
We will do so by introducing corner layers, similarly to what was done in [Mel02, Section 7.4.3].

Theorem 4.13. Let Ω− ⊆ R2 be a polygon, s ∈ S . If u solves

−∆u+ s2u = 0, γ−u = g for g ∈ H1(Γ),

then u can be decomposed into contributions u = uBL + uCL + r, where

(i) uBL satisfies ∂−n uBL − sγ−uBL = 0.

(ii) uCL satisfies γ−uCL = 0 on Γ,

‖uCL‖|s|,1,Ω− . |s|−1/2 ‖g‖H1(Γ) , and
∥∥∂−n uCL − sγ−uCL∥∥H−1/2(Γ)

. C ‖g‖H1(Γ) .

(iii) The remainder is small in the sense∥∥∂−n r − sγ−r∥∥H−1/2(Γ)
. C ‖g‖H1(Γ) .

The analogous statement holds for the exterior problem, replacing −s by s in (i)-(iii).

Proof. For simplicity, we focus on a single corner, and assume g ∈ H2(Γ). The boundary consists
of two straight boundaries Γ1, Γ2 meeting at a vertex V . We consider two subdomains with
smooth boundary denoted by Ω−1 , Ω−2 which contain the boundary parts Γ1 and Γ2 respectively,
and consider a sector Sω = Bκ(V ) ∩ Ω− with apex V and radius κ small enough that ∂Sω =
(Γ1 ∪ Γ2 ∪Bκ(V ))∩Ω−, i.e. the boundary can be written as Γ1, Γ2 and a circular segment. Let

Γ′ ⊂ Ω−1 ∩ Ω−2 be the line bisecting the angle at V ; see Figure 4.1b. We extend g to ∂Ω−1 , ∂Ω−2
by flattening the corner and reusing the values of g.
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On each Ω−i , i = 1, 2, the function uBL is given by applying the construction from Lemma 4.9
to u on Ω−i , and using appropriate cutoff functions away from Γ to get a function which is
globally defined on Ω−. Defining uBL this way leads to an discontinuity on the interface Γ′,
which we correct using the corner layer function. It is defined as the solution to the following
transmission problem:

−∆uCL + s2uCL = 0 on Sω, u = 0 on ∂Sω,

JγuCLK = −JγuBLK and J∂nuCLK = −J∂nuBLK on Γ′.

We note that, up to a translation and rotation, we are in the setting of Lemma 4.12 (u1, u2

correspond to the two different boundary layer functions used for defining uBL). Thus, we can
estimate the jumps across Γ′ by:

‖JγuBLK‖|s|,1/2,Γ′ + ‖d
−1/2
V JγuBLK‖L2(Γ′) + ‖J∂nuBLK‖|s|,−1/2,Γ′ . |s|−1/2 ‖g‖H1(Γ) .

By Lemma 4.11, this implies for the corner layer function:

‖uCL‖|s|,1,S . |s|−1/2 ‖g‖H1(Ω−) and ‖∂nuCL‖H−1/2(Γ) . ‖g‖H1(Ω−) .

The bound on the impedance trace follows easily from Lemma 4.3.
After repeating this construction for all boundary segments and corners of Ω−, we have

constructed functions uBL and uCL such that: r := u− uBL − uCL ∈ H1
0 (Ω−) and solves

−∆r + s2r = f

with f as in (4.8). The bounds of Lemma 4.3 and 4.5 then conclude the proof if g ∈ H2(Γ). For
only H1-regular g, we employ the same smoothing strategy as in Corollary 4.10. The result for
the exterior problem follows along the same lines.

4.4 Proof of Theorem 3.4

If Ω− has smooth boundary, we use the decomposition u = uBL + (u − uBL) with uBL as
in Corollary 4.10. If Ω− is a polygon, we use the decomposition u = uBL + uCL + r from
Theorem 4.13. In both cases, the impedance trace of uBL vanishes, and the impedance trace of
the remainders has already been estimated, which is sufficient to prove (3.4).

5 Numerical Examples

In this section, we compare the performance of the numerical schemes of Theorem 3.3 with
the more standard method of Proposition 3.2 for an interior scattering problem. That is, we
compare the Runge-Kutta convolution quadrature approximation given by

• [DtN−(∂kt )]uinc, which is denoted “standard method”, and

• [[∂kt ]−1 DtN−(∂kt )]u̇inc, which is denoted “differentiated method”.

We use two different Runge-Kutta methods of the Radau IIA family, one with 3 and one with
5 stages. For the 3-stage version, we have q = 3 and p = 5. We therefore expect a convergence
rate of order 3 for the standard method and full classical order 5 for the differentiated scheme.

In order to show that our theoretical estimates are sharp, we also look at the 5-stage method.
There, the stage order is q = 5 and the classical order p = 9. The expected rates are therefore
5 and 7 respectively for the two numerical schemes.
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Figure 5.1: Comparison of the standard and differentiated method for different RK schemes

For simplicity, we consider the interior scattering problem and prescribe an exact solution as
the travelling wave

u(x, t) := ψ(d · x− t) with ψ(τ) := cos
(π τ

2

)
e−

(τ−τ0)2

α .

The wave direction is selected as d := ( 1√
2
, 1√

2
), and the other parameters were τ0 := 4 and

α := 0.05. We integrated until the end time T = 12. In order to show that the method works
with the predicted rates, even for non-convex geometries, we consider the classical L-shaped
geometry, given by the vertices

(0.5, 0), (1, 0), (1, 1), (0, 1), (0, 0.5), (0.5, 0.5).

As the space discretization, we employ a boundary element method of order 5, based on
the code developed by F.-J. Sayas at the University of Delaware. A sufficiently refined grid is
employed to be able to focus on the temporal error. Instead of evaluating the H−1/2-error, we
compute the quantity

max
j=0,...n

√
〈V (1)ej , ej〉Γ with ej := ΠL2λ(tj)− λk(tj).

Here ΠL2 denotes the L2-orthogonal projection onto the BEM space. Since the grid is sufficiently
fine and fixed, this should not impact the observed convergence rates.

In Figure 5.1, we observe that the rates from Proposition 3.2 and Theorem 3.3 are obtained
as predicted. We conclude that while the fact that the rate jumps by order 2, even though the
modification of the scheme is of order one, is at first surprising, this can be rigorously explained
by Theorem 3.3. Observations of this type provided the main motivation for the investigations
in this work.
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