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Optimal Convergence of Higher Order Finite Element

Methods for Elliptic Interface Problems

Jingzhi Li∗ Jens Markus Melenk† Barbara Wohlmuth‡ Jun Zou§

January 16, 2009

Abstract

Higher order finite element methods are applied to 2D and 3D second order elliptic interface
problems with smooth interfaces, and their convergence is analyzed in the H1- and L2-norm.
The error estimates are expressed explicitly in terms of the approximation order p and a pa-
rameter δ that quantifies the mismatch between the smooth interface and the finite element
mesh. Optimal H1- and L2-norm convergence rates in the entire solution domain are estab-
lished when the mismatch between the interface and mesh is sufficiently small. Furthermore,
under weaker conditions on the mismatch between the interface and mesh, optimal estimates
are obtained in an H1-norm that excludes a thin tubular neighborhood of the interface. For
some typical cases of meshes where the interface is approximated by a spline, the mismatch δ
is expressed in terms of the order of the spline. The resulting error estimate is then explicit in
the approximation order and the order of the spline. Five numerical examples are presented
to illustrate and confirm the sharpness of the approximation theory.

Key words. Elliptic interface problems, blending finite element, higher order finite ele-
ments, optimal convergence.

AMS subject classification. 65N12, 65N30

1 Introduction

Elliptic interface problems are frequently encountered in scientific computing and industrial
applications [19]. A typical example is provided by the modelling of physical processes which
involve two or more materials with different properties, such as the conductivity of steel and
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bronze in heat diffusion. It is well-known that the solutions of elliptic interface problems
may have higher regularity in each individual material region than the regularity in the entire
physical domain due to the discontinuity of material properties across the interface.

Numerous numerical methods for elliptic interface problems with arbitrary but smooth
interfaces have been extensively studied during the last two decades; we refer to [2–4, 6–
8, 14, 15, 18, 20, 21], the recent monograph [19], and the references therein for an overview.
Roughly speaking, these methods can be categorized into three classes, namely, conforming,
nonconforming and IIM-related. For conforming methods, mostly linear finite element approx-
imations have been studied with the interface being approximated by a linear interpolating
spline (see [2–4,7,21]); isoparametric elements have also been analyzed in [3]. Nonconforming
methods include mortar element method [15], Nitsche’s method [14], which is closely related
to DG-type methods, and an interior penalty stabilized Lagrange multiplier method [6]. In
view of the effectiveness of the immersed interface methods for rectangular domains, immersed
FEMs of linear and quadratic classes in 1D and 2D on Cartesian grids are constructed and
analyzed in [8, 18,20].

The current work is concerned with the analysis of conforming higher order FEMs for
two- and three-dimensional interface problems with smooth interfaces. If the interface is
resolved exactly (e.g., using blending element techniques in [11–13]), then optimal rates of
convergence can be expected in appropriate Galerkin settings. But it is in general impractical
to resolve the curved interface exactly in numerical implementations, and the interface has to
be approximated. In this case, the mismatch between the FEM mesh and the interface raises
several questions:

1. How does the approximation of the interface affect the approximation properties of FEM
spaces? More precisely, how accurate should the approximation of the interface be in
order to retain optimal rates of convergence (in H1 and/or L2) of higher order FEMs?

2. How should the exact stiffness matrix (and the load vector involving the interface source
term) be effectively approximated while still preserving optimal rates of convergence?
This is an important issue in implementations since it is unrealistic to evaluate the
stiffness matrix (and the load vector) exactly in view of the fact that the coefficients
of the differential equation are not necessarily smooth on elements near the interface.
Hence, the exact bilinear form a (likewise the right-hand side) has to be approximated
by a computationally tractable one ah, and the effect of this variational crime has to be
appropriately controlled.

3. To what extent is the error introduced by approximating the interface localized? That
is, is the error due to this approximation (essentially) restricted to a small vicinity of the
interface?

The purpose of this present work is to provide answers to the above three questions. Theo-
rems 4.2, 4.6 and the discussion in Section 4.3 will address the first two questions, and provide
convergence results for p-th order FEMs under the assumption that the mesh resolves the in-
terface up to an order O(δ) (see Def. 3.1 for a precise definition). As an example, we mention
that one may expect δ = O(hm+1) if an interface is approximated in 2D by an interpolating
spline of degree m. In this situation the error of the FEM is O(hmin{p,(m+1)/2}) in H1 and
O(hmin{p,m}+1) in L2 (given sufficient regularity). In particular, we obtain optimal convergence
rates both in H1 and L2 for piecewise linear elements (p = 1) and piecewise linear interpolation
of the interface (m = 1). We would like to emphasize that for p > 1 the conditions on the
interface approximation are more stringent for optimal convergence rates in H1 than for opti-
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mal convergence rates in L2. These stringent conditions can be relaxed by adopting a different
error measure, for example, by restricting the attention to the convergence of the FEM away
from the interface. In doing so, Section 4.4 addresses the aforementioned third question. We
will show in Theorem 4.14 that optimal H1-convergence can be achieved outside a thin tubular
neighborhood of the interface under significantly weaker conditions on the mismatch between
the interface. Returning to the 2D example of an interpolating spline of degree m discussed
above, the FEM error is O(hmin{p,m}) when measured in the norm of H1(Ω \ Sδ), where Sδ is
a tubular neighborhood of the interface of width δ = O(hm+1).

The present work is closely related to the earlier works [3, 4, 7]. The work [3] analyzes the
case of isoparametric elements and obtains optimal convergence rates under extra regularity
assumptions (see [3, Thm. 2.1]). References [4,7] restrict their attention to the 2D case. In all
three references, the interface is approximated by an interpolating spline (possibly of higher
order); in contrast, the present paper does not make this assumption and merely requires the
approximation to the interface to be sufficiently accurate in an appropriate sense (see Def. 3.1).

Although the detailed approximation theory is developed in this work only for a scalar
elliptic model problem, analogous results can be naturally extended to some vectorial sys-
tems such as the Lamé equations; a numerical example is presented to illustrate this point in
Section 5.

The rest of the paper is organized as follows. In Section 2, we introduce the triangulation
of the domain and finite element spaces, where an abstract framework is adopted in which
very weak approximation properties and conditions on the element maps are stipulated. Using
this framework, the classical affine elements, curved elements [9,24] and blending elements can
be treated in a unified manner. Section 3 analyzes the approximation of piecewise smooth
functions by FEM spaces, with special attention to the mismatch between the mesh and the
interface. The basic analysis tools are a δ-strip argument (Lemma 3.4) as well as a modified
nodal interpolation operator (Def. 3.3). The approximation results of Section 3 are applied to
the FEM in Section 4, and optimal convergence results both in H1 and L2 are obtained. Five
numerical examples are presented in Section 5 to illustrate and confirm the effectiveness and
sharpness of the approximation theory developed in this work.

2 Elliptic interface problem and FEM spaces

In this work we will develop a general convergence theory for finite element methods for elliptic
interface problems. For the sake of exposition, we will focus our theory on the following model
elliptic interface problem:

−∇ · (β∇u) = f in Ω , (1)

which is complemented with the Dirichlet boundary condition

u = 0 on ∂Ω (2)

and the jump conditions on the interface for the solution and the flux:

[u] = 0 on Γ,

[
β

∂u

∂n

]
= g on Γ . (3)

The domain Ω is assumed to be occupied by two different media or materials, Ω1 and Ω2, with
Ω1 ⊂⊂ Ω, Ω2 := Ω \ Ω1, and the interface Γ := ∂Ω1 (see Fig. 1) is required to have at least
C2-regularity and f ∈ L2(Ω) and g ∈ H1/2(Γ). The positive coefficient function β is assumed
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to be piecewise constant, i.e., there exists two positive number βi > 0, i = 1, 2 such that
β|Ωi = βi, i = 1, 2.

We assume at this point Ω ⊂ R
d to be a Lipschitz domain. The conditions on the triangu-

lation will effectively impose that ∂Ω be piecewise smooth.
In the rest of this section we introduce some notations and conventions that will be used

throughout the work. The vector n is always understood to be the unit outward normal to the
boundary ∂Ω1. For a function u ∈ L2(Ω) we denote by ui its restriction on Ωi, i.e., ui := u|Ωi .
The jump [v] is always understood to be v1 − v2 on Γ. We restrict our attention here to
Dirichlet boundary conditions on ∂Ω and piecewise constant coefficients β; the extension to
other boundary conditions such as Neumann conditions and piecewise smooth functions β is
possible; see the remarks at the end of Section 4.3.

Ω

Ω1Ω2

n

Γ

Figure 1: Domain Ω and its subdomains Ω1 and Ω2.

For any nonnegative integer k, Hk(Ω) stands for the standard Sobolev space [1], and H1
0 (Ω)

is the subspace of H1(Ω) consisting of all functions that vanish on ∂Ω in the sense of traces.
For any function v defined on Ωi (i = 1, 2), we will often need its extension to the entire space
R

d. This can be achieved with the Stein extension operator Ei : L2(Ωi) → L2(Rd), [22]. We
recall that this operator is a bounded linear operator Ei : Hk(Ωi) → Hk(Rd) for any fixed
k ≥ 0.

As usual, C denotes a generic constant independent of critical parameters such as the mesh
size h. For non-negative expressions A, B, the notation A.B means the existence of a constant
C > 0 such that A ≤ CB, where, again, C is independent of the mesh size h.

2.1 Triangulations

We triangulate the domain Ω by a collection of (possibly curved) open simplicial elements K,
denoted by T . Each element K ∈ T is the image of a standard open unit simplex, the so-called

reference element K̂ ⊂ R
d, under an element map FK : K̂ → K. For each element K, the

images of faces, edges, vertices of the reference element K̂ under the map FK are called faces,
edges, and vertices of K, respectively. We set hK := diam K.

The precise conditions on the element maps FK are formalized in the following definition.

Definition 2.1 (γ-shape regular). A triangulation T with corresponding element maps {FK}K∈T

is a γ-shape regular triangulation of Ω if the following conditions are satisfied:
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(T1) The maps FK : K̂ → K = FK(K̂) are C1-diffeomorphisms between K̂ and K, not
necessarily affine.

(T2) Ω = ∪N
K∈T K; and for each pair of elements K, K ′ from T there holds either K = K ′ or

K ∩ K ′ = ∅.
(T3) For each pair of elements K and K ′ from T , the intersection K∩K ′ is either empty, or a

face, an edge or a vertex shared by K and K ′. If K∩K ′ 6= ∅, then for σ = ∂K ∩∂K ′, the
map Q : x 7→

(
F−1

K ′ ◦ FK

)
(x) is an isometric isomorphism between F−1

K ′ (σ) and F−1
K (σ).

(T4) ‖F ′
K‖

L∞( bK)
≤ γhK and ‖(F ′

K)−1‖
L∞( bK)

≤ γh−1
K for all K ∈ T .

Examples of specific choices of the element maps FK will be discussed in Section 4. In
addition to the shape regularity, we will restrict our analysis in this paper to quasiuniform
triangulations T of mesh size h, i.e., the triangulations T satisfy

hK ≤ h ≤ ChK ∀K ∈ T (4)

for a constant C > 0 independent of h.
We point out that Condition (T4) implies that the number of elements that share a node

or an edge is bounded by a constant depending solely on γ and is in particular independent
of h. From the assumption hK ≤ h we immediately get that K ⊂ BK := Bh(bK), where
Bh(bK) is the ball of radius h centered at the barycenter bK of K. The γ-shape regularity
(Condition (T4)) of the triangulation T yields directly the existence of M > 0 depending solely
on γ and the constant C of (4) such that

card{K ∈ T ; x ∈ BK} ≤ M ∀x ∈ Ω (5)

where card(A) stands for the number of the elements in a given set A.

Remark 2.2. Condition (T2) in Definition 2.1 requires the triangulation T to cover Ω exactly.
This is done for convenience in order to concentrate on the approximation of the interface Γ.
Approximating the outer boundary ∂Ω introduces additional variational crimes that have,
however, already been studied in the literature.

2.2 Finite Element Spaces

Let T be a γ-shape regular triangulation of Ω, and let P̂p be the space of polynomials of total
degree less than or equal to p in d variables. Then we define the finite element space

Sp,1(T ) = {u ∈ H1(Ω); u|K ◦ FK ∈ P̂p(K̂) ∀K ∈ T } , (6)

and its subspace Sp,1
0 (T ) = Sp,1(T ) ∩ H1

0 (Ω). The approximation theory of Section 3 will be
based on nodal finite element interpolation operators mapping from C(Ω) to Sp,1(T ). The first
operator Ip is constructed in the standard way as follows: First, we recall that the simplicial

reference element of order p is a triple (K̂, Ξ̂p, P̂p), where Ξ̂p = {âp
i ∈ K̂ | i = 1, . . . ,Np} is a set

of Np = dim P̂p nodal points in K̂. For the sake of definiteness, we select for Ξ̂p the classical
equidistant arrangement given in [9, Formula 2.2.11, pp. 49]. We will denote the standard

nodal interpolation operator on the reference element K̂ by Îp : C(K̂) → P̂p and define Ip

elementwise by

(Ipu)|K =
(
Îp(u|K ◦ FK)

)
◦ F−1

K ∀ K ∈ T . (7)
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Noting that the condition (T3) of Def. 2.1 explicitly requires the parameterizations from two
neighboring elements to be the same on their common part and observing that the nodes of
Ξ̂p are distributed symmetrically on the edges and faces of K̂ we conclude that Ip : C(Ω) →
Sp,1(T ) and (Ipu)|∂Ω = 0 if u|∂Ω = 0. We set Ξ(T ) := ∪K∈T FK(Ξ̂p) and observe that each
element v ∈ Sp,1(T ) is uniquely determined by specifying the nodal values {v(x) |x ∈ Ξ(T )};
additionally, v|K is uniquely determined by prescribing the values {v(x) |x ∈ FK(Ξ̂p) = Ξ(T )∩
K}.

Concerning the approximation properties of Ip we assume throughout the paper

Assumption 2.3. For q ∈ {0, 1}, the interpolant Ip satisfies

‖v − Ipv‖Hq(K). hp+1−q‖v‖Hp+1(K) ∀ v ∈ Hp+1(K). (8)

Remark 2.4. Assumption 2.3 is effectively an assumption on the element maps FK . It is true
for affine element maps and element maps used for isoparametric elements.

Assumption 2.3 quantifies the approximation properties of the nodal interpolation operator
Ip on each element K under maximal smoothness assumptions. However, the solutions u
to (1)–(3) may be less regular. The optimal approximation properties of Ip for sufficiently

smooth functions imply that the spaces Sp,1
0 (T ) have optimal approximation properties when

approximating functions that have less regularity, more specifically, the operator Ip has optimal
approximation properties also for functions with less regularity, as shown in the following
lemma.

Lemma 2.5. If the interpolation operator Ip satisfies Assumption 2.3, then for every s ∈
{1, . . . , p} and q ∈ {0, 1} there holds

‖u − Ipu‖2
Hq(Ω) =

∑

K∈T

‖u − Ipu‖2
Hq(K).h2(s+1−q)‖u‖2

Hs+1(Ω) ∀u ∈ Hs+1(Ω). (9)

Proof. We start by noting that the Stein extension operator allows us to assume u ∈ Hs+1(Rd).
By standard approximation results (see, e.g., [5]), there exists a polynomial π of degree s for
every element K such that the following simultaneous approximation properties are satisfied:

hd/2‖u − π‖L∞(BK ) +
s∑

t=0

ht|u − π|Ht(BK).hs+1|u|Hs+1(BK) (10)

where BK is defined in Subsection 2.1. We now employ the estimate (10), Assumption 2.3, an
inverse estimate for polynomials (cf. [5, Lemma 4.5.3]), the fact that K ⊂ BK , and π ∈ Ps to
get for q ∈ {0, 1} that

|u − Ipu|Hq(K) ≤ |u − π|Hq(K) + |π − Ipπ|Hq(K) + |Ip(u − π)|Hq(K)

. hs+1−q|u|Hs+1(BK) + hp+1−q‖π‖Hp+1(K) + h−q+d/2‖u − π‖L∞(K)

. hs+1−q|u|Hs+1(BK) + hs+1−q‖π‖Hs(BK).hs+1−q‖u‖Hs+1(BK),

where in the last estimate we have used the approximation property (10) and the fact that
h.1 (by the boundedness of Ω). Now the desired estimate (9) follows by summing over all
elements K ∈ T and using the bound (5).
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Ω

Ω1Ω2

n

Γ
K1

K2

K3

K4

Figure 2: Sδ: region between the two closed dashed lines of width δ around the interface Γ; Interface
elements: K3 ∈ T 1

∗ , K4 ∈ T 2
∗ ; Non-interface elements: K1 ∈ T 1, K2 ∈ T 2.

3 A piecewise polynomial interpolation operator

In this section, we study the approximation of piecewise smooth functions by the finite element
space Sp,1(T ). Clearly the accuracy of this approximation depends on how well the mesh T
can resolve the interface Γ. In order to be able to quantify this, we introduce, for δ > 0, the
following three neighborhoods of the interface Γ:

Sδ := {x ∈ Ω ; dist (x,Γ) < δ}, Si
δ := {x ∈ Ωi ; dist (x,Γ) < δ} for i = 1, 2.

Definition 3.1. The triangulation T is said to resolve the interface Γ up to error δ if it can
be decomposed as T = T 1 ∪ T 2 ∪ T 1

∗ ∪ T 2
∗ , where

T i = {K ∈ T ; K ⊂ Ωi \ Sδ} , i = 1, 2,

and the sets T i
∗ have the property that K ∈ T i

∗ implies max{dist (x,Γ ∩ K) ; x ∈ K∩Ωi′} ≤ δ .
Here, we denote for i = 1, 2, by i′ the dual index i′ by i′ = 1 if i = 2 and i′ = 2 if i = 1.

We write
Ωi,h := ∪{K ; K ∈ T i ∪ T i

∗ }, Γh := ∂Ω1,h ∩ ∂Ω2,h (11)

and T∗ := T 1
∗ ∪ T 2

∗ . Any element in T∗ will be called an interface element and any element
K in T 1 or T 2 is called a non-interface element. Figure 2 illustrates the Sδ-region and some
typical elements in T 1, T 2, T 1

∗ and T 2
∗ , respectively.

Definition 3.1 does not necessarily imply that the decomposition stated there is unique.
Uniqueness is given if δ is significantly smaller than h, which is the case of practical interest.
A typical example is the interface-aligned triangulation; see [7]:

Example 3.2. Let Γ be of class C2 and let T be an affine triangulation with the property
that for each element K all its d + 1 nodes are completely contained in either Ω̄1 or Ω̄2. Then
the triangulation T resolves the interface Γ up to error δ = O(h2).

Next, we introduce a perturbed nodal interpolation operator I. This operator coincides
with the standard Lagrange type interpolation operator Ip on any non-interface element in T i

(i = 1, 2) and is an appropriate modification of Ip on interface elements.
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Definition 3.3 (Perturbed nodal interpolation operator). Let T be a quasi-uniform regular
triangulation in the sense of Definition 2.1 with mesh size h, and let Sp,1(T ) be the space
defined in (6). The operator I : C(Ω) → Sp,1(T ) is defined by specifying its nodal values in
Ξ(T ) as follows:

1. For ξ ∈ Ξ(T ) \ Sδ, set (Iu)(ξ) := u(ξ);

2. For ξ ∈ Ξ(T ) ∩ Sδ, choose a point ξ̃ ∈ Γ ∩ B2δ(ξ) and set (Iu)(ξ) := u(ξ̃).

By the definition of Sδ, we know that Γ ∩ B2δ(ξ) 6= ∅ so that the perturbed nodal interpo-
lation operator I is well-defined.

Before presenting the approximation properties of the perturbed nodal interpolation oper-
ator I, we show the following results about the δ-strip Sδ:

Lemma 3.4. For z ∈ H1(Ω1 ∪ Ω2), there holds

‖z‖L2(Sδ) .
√

δ‖z‖H1(Ω1∪Ω2) , (12)

while for z ∈ H1(Ω) with z|Γ = 0 there holds

‖z‖L2(Sδ) . δ‖z‖H1(Ω). (13)

Proof. Let us first assume that the function zi belongs to C1(Ω̄i). For simplicity, we restrict our
discussion for the 2D case. But the same ideas of local coordinate systems and the compactness
argument can be easily extended to the 3D case.

Since the interface Γ is of C2-smooth at least, for any fixed point x ∈ Γ, let there be ǫ > 0
and δ > 0 to be chosen later, we can define a mapping F : (−ǫ, ǫ) × (0, δ) 7→ R

2 as follows

F (t, s) = γ(t) + sν(t).

where γ(t) ∈ R
2 is a local representation of the interface curve parametrized by its arc length

with γ(0) = x, and ν(t) ∈ R
2 is the unit normal vector of the curve at x pointing inwards Ωi.

A simple calculation gives

∂F

∂s
= ν(t),

∂F

∂t
= (1 + sκ(t))τ(t).

where τ(t) ∈ R
2 is the tangential vector of the curve at x and thus

∣∣∣∣
∂F (t, s)

∂(t, s)

∣∣∣∣ =

∣∣∣∣(1 + sκ(t)) det(

∣∣∣∣
τT (t)
νT (t)

∣∣∣∣)
∣∣∣∣ = |1 + sκ(t)|.

The last equality follows from the facts that τ(t) and ν(t) are unit vectors and orthogonal to
each other. Noting that the curvature κ of the curve is independent of the coordinate systems
and continuous along the curve, while the curve Γ is compact in R

2, hence |κ(t)| can be bounded

by a positive constant. When δ is chosen sufficiently small, we have 0 < c < |∂F (t,s)
∂(t,s) | < C and

thus define a local differmorphism between the a small slice N i
δ(x, ǫ) of the δ-strip region Si

δ

and a small rectangle region in (t, s) coordinate system as shown in Figure 3.
Hence we have

‖zi‖2
L2(N i

δ(x,ǫ)) =

∫ ǫ

t=−ǫ

∫ δ

s=0
|zi(t, s)|2(1 + sκ(t)) dsdt

. δ

∫ ǫ

t=−ǫ
max
0<s<δ

|zi(t, s)|2 dt

. δ

∫ ǫ

t=−ǫ

∫ δ

s=0
|zi(t, s)|2 + |∂szi(t, s)|2 dsdt

. δ‖zi‖2
H1(N i

δ(x,ǫ)).
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s

t

F

F−1

N i
δ(x, ǫ)

Ωi

Si
δ

ǫ−ǫ

δ

ν

Figure 3: Local coordinate system.

where in the second inequality we make use of the 1D Sobolev embedding ‖u‖L∞(I).‖u‖H1(I),

where I ⊂ R is a fixed interval, and in the third inequality we use the facts that ‖∂F−1(x,y)
∂(x,y) ‖ ≤ C

and |det(∂F−1(x,y)
∂(x,y) )| ≤ C provided ǫ is chosen small enough.

With the ǫ chosen above fixed, since the interface Γ is compact in R
2, letting the interface

be decomposed into a finite number of small curved intervals and applying the flattening
argument for each interval, we obtain

‖zi‖2
L2(Si

δ).δ‖zi‖2
H1(Si

δ).δ‖zi‖2
H1(Ωi)

.

The desired estimates for z ∈ H1(Ω1 ∪ Ω2) follow by taking summation over i = 1, 2.
Finally, the second bound basically follows the same lines except using a 1D-Sobolev embed-

ding theorem by observing that z(t, 0) = 0 implies |z(t, s)| = |
∫ s
0 z′(t, x) dx| ≤ Cδ‖z′(t, ·)‖L∞(I)

for every s ∈ [0, δ].

Armed with the technical δ-region argument Lemma 3.4, we can now show some approxi-
mation properties of the perturbed nodal interpolation operator I.

Theorem 3.5. Let d ∈ {2, 3}, let I be the perturbed nodal interpolation introduced in Def-
inition 3.3. Assume that the nodal interpolation operator Ip satisfies Assumption 2.3. Let
s ∈ {1, . . . , p} and δ.h. Then for u ∈ H1(Ω) ∩ Hs+1(Ω1 ∪ Ω2) there holds for q ∈ {0, 1}

‖u − Iu‖Hq(Ω) .
(
δ1−q/2 +

√
δh1−q

)
‖u‖H2(Ω1∪Ω2) + hs+1−q‖u‖Hs+1(Ω1∪Ω2).

These estimates can be improved if s ≥ 2:

‖u − Iu‖Hq(Sδ) . δ1−q/2‖u‖H2(Ω1∪Ω2) + δh1/2−q‖u‖H3(Ω1∪Ω2) + hs+1−q‖u‖Hs+1(Ω1∪Ω2),

‖u − Iu‖Hq(Ω\Sδ) . δh1/2−q‖u‖H3(Ω1∪Ω2) + hs+1−q‖u‖Hs+1(Ω1∪Ω2).

Proof. Noting the fact that the interpolation operators I and Ip coincide on a non-interface
element K ∈ T i, i ∈ {1, 2}, Lemma 2.5 gives for q ∈ {0, 1} and i ∈ {1, 2}:

∑

K∈T i

‖u − Iu‖2
Hq(K).h2(s+1−q)‖u‖2

Hs+1(Ωi)
.

It remains to estimate
∑

K∈T i
∗
‖u − Iu‖2

Hq(K). We therefore focus on ‖u − Iu‖Hq(K) for an

element K ∈ T i
∗ . This is achieved in four steps. Before proceding with further estimates, we

recall that K ∈ T i
∗ implies K ∩ Ωi′ ⊂ Sδ.

9



Step 1. We claim that for all nodes ξ ∈ Ξ(T ) ∩ K, there holds

|Iu(ξ) − (Eiu)(ξ)|.
(

δ

r

)1/2

r1−d/2
[
‖∇Eiu‖L2(Br(ξ)) + r |∇Eiu|H1(Br(ξ))

]
, (14)

where Br(ξ) is a ball of radius r > 0. If ξ ∈ Ξ(T ) ∩ K \ Sδ, we know Iu(ξ) = (Eiu)(ξ). So
we only need to consider the case with ξ ∈ Ξ(T ) ∩ K ∩ Sδ. Then by definition of I, we have
Iu(ξ) = u(ξ̃) = Eiu(ξ̃) for some ξ̃ ∈ Γ ∩ B2δ(ξ). For a ball B1 ⊂ R

d (d = 2, 3) of radius 1, the
Sobolev embedding H2(B1) ⊂ C0,1/2(B1) (see [1, Chapter 4]) gives for every v ∈ H2(B1) that

|v(x) − v(y)|.|x − y|1/2
[
‖∇v‖L2(B1) + |∇v|H1(B1)

]
∀x, y ∈ B1. (15)

A scaling argument then yields (14).
Step 2. It follows from Step 1 that

h−1‖Iu − IpEiu‖L2(K) + ‖∇(Iu − IpEiu)‖L2(K).hd/2−1
∑

ξ∈Ξ(T )∩K

|Iu(ξ) − Eiu(ξ)|

.

(
δ

r

)1/2 ( r

h

)1−d/2 [
‖∇Eiu‖L2(Br(K)) + r |∇Eiu|H1(Br(K))

]
, (16)

where Br(K) = ∪x∈KBr(x). We will use r ∼ h below.
Step 3. For each K ∈ T i

∗ , we can write

(u − Iu)|K = (u − Eiu)|K + (Eiu − IpEiu)|K + (IpEiu − Iu)|K . (17)

Noting that Eiu = u in K \ Sδ, we derive for q = 0, 1 that

∑

K∈T i
∗

‖u − Iu‖2
Hq(K\Sδ) .

∑

K∈T i
∗

‖Eiu − IpEiu‖2
Hq(K) +

∑

K∈T i
∗

‖IpEiu − Iu‖2
Hq(K), (18)

∑

K∈T i
∗

‖u − Iu‖2
Hq(K∩Sδ) .

∑

K∈T i
∗

‖u − Eiu‖2
Hq(K∩Sδ)

+
∑

K∈T i
∗

‖Eiu − IpEiu‖2
Hq(K)

+
∑

K∈T i
∗

‖IpEiu − Iu‖2
Hq(K) . (19)

By applying Lemma 3.4, we obtain for q = 0, 1 that

∑

K∈T i
∗

‖u − Eiu‖2
Hq(K∩Sδ).

2∑

i=1

‖u − Eiu‖2
Hq(Sδ).δ2−q

2∑

i=1

‖u‖2
H2(Ωi)

. (20)

The smoothness of Eiu implies with Lemma 2.5 that

∑

K∈T i
∗

‖Eiu − IpEiu‖2
Hq(K).h2(s+1−q)‖Eiu‖2

Hs+1(Ωi)
.h2(s+1−q)‖u‖2

Hs+1(Ωi)
. (21)

To bound the terms involving IpEiu − Iu in (18) and (19), we wish to employ the estimate
(16) with r ∼ h. To that end, we note that simple geometric considerations gives us

∪K∈T∗Bh(K) ⊂ Sµh
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for a suitable µ > 0, and the γ-shape regularity of the triangulation implies the existence of
M > 0 independent of h such that

sup
x∈Sµh

card{K ∈ T∗ ; x ∈ Bh(K)} = M < ∞. (22)

Hence, using (16) with r ∼ h leads to

∑

K∈T i
∗

h−2‖IpEiu − Iu‖2
L2(K) + ‖∇(IpEiu − Iu)‖2

L2(K).M
δ

h

[
‖∇Eiu‖2

L2(Sµh) + h2‖∇Eiu‖2
H1(Sµh)

]
.

Since Lemma 3.4 implies ‖∇Eiu‖L2(Sµh).
√

h‖Eiu‖H2(Ω1∪Ω2).
√

h‖u‖H2(Ωi) we obtain

∑

K∈T i
∗

h−2‖IpEiu − Iu‖2
L2(K) + ‖∇(IpEiu − Iu)‖2

L2(K).δ‖u‖2
H2(Ωi)

. (23)

Inserting the estimates (20)–(23) in (18)–(19) gives

∑

K∈T i
∗

‖u − Iu‖2
Hq(K\Sδ) . δh2−2q‖u‖2

H2(Ω1∪Ω2)
+ h2(p+1−q)‖u‖2

Hp+1(Ω1∪Ω2),

∑

K∈T i
∗

‖u − Iu‖2
Hq(K∩Sδ) . δ2−q‖u‖2

H2(Ω1∪Ω2) + δh2−2q‖u‖2
H2(Ω1∪Ω2)

+ h2(p+1−q)‖u‖2
Hp+1(Ω1∪Ω2).

Step 4. We now improve the estimates for the case s ≥ 2. To that end, we need to modify the
argument of Step 1. For B1 ⊂ R

d, we have the Sobolev embedding result H3(B1) ⊂ C0,1(B1),
which implies

|v(x) − v(y)|.|x − y|‖∇v‖H2(B1) ∀ v ∈ H3(B1).

A scaling argument then produces

|Iu(ξ) − Eiu(ξ)|.δ

r
r1−d/2

[
‖∇Eiu‖L2(Br(ξ)) + r |∇Eiu|H1(Br(ξ)) + r2 |∇Eiu|H2(Br(ξ))

]
.

Now choosing r ∼ h and proceeding as we did in Steps 2 and 3 yield

∑

K∈T i
∗

h−2‖IpEiu − Iu‖2
L2(K) + ‖∇(IpEiu − Iu)‖2

L2(K)

. δ2

[
1

h
‖u‖2

H2(Ω1∪Ω2)
+ ‖u‖2

H2(Ω1∪Ω2)
+ h2‖u‖2

H3(Ω1∪Ω2)

]

.
δ2

h
‖u‖2

H2(Ω1∪Ω2) + δ2h2‖u‖H3(Ω1∪Ω2)

. δ2h−1‖u‖2
H3(Ω1∪Ω2). (24)

By inserting the estimates (20)–(21), and the new bound (24) in (18)–(19) we obtain

∑

K∈T i
∗

‖u − Iu‖2
Hq(K\Sδ) . δ2h1−2q‖u‖2

H3(Ω1∪Ω2) + h2(s+1−q)‖u‖2
Hs+1(Ω1∪Ω2),

∑

K∈T i
∗

‖u − Iu‖2
Hq(K∩Sδ) . δ2−q‖u‖2

H2(Ω1∪Ω2) + δ2h1−2q‖u‖2
H3(Ω1∪Ω2) + h2(s+1−q)‖u‖2

Hs+1(Ω1∪Ω2).

This completes the proof of Theorem 3.5.
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4 Convergence analysis of finite element methods

In this section we formulate the finite element approximation of the interface problem (1)–(3)
and establish a priori error estimates.

4.1 Formulation of finite element approximation

By integration by parts one can immediately derive the following weak formulation of the
interface problem (1)–(3):

Problem (P ). Find u ∈ H1
0 (Ω) such that

a(u, v) = L(v) ∀ v ∈ H1
0 (Ω), (25)

where the bilinear form a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R is defined by

a(u, v) =
2∑

i=1

∫

Ωi

βi∇ui · ∇vi dx, (26)

and the linear form L(v) : H1
0 (Ω) → R by

L(v) =

2∑

k=1

∫

Ωi

fvi dx +

∫

Γ
gv ds. (27)

The conforming finite element discretization of the variational problem (P ) then reads:
Problem (P c

h). Find uh ∈ Sp,1
0 (T ) such that

a(uh, vh) = L(vh) ∀ vh ∈ Sp,1
0 (T ). (28)

We note that the evaluation of the entries of the stiffness matrix involving interface elements
is numerically challenging (especially in 3D) if the mesh is not aligned with the interface. A
much more convenient formulation is obtained by using the following approximate bilinear
form ah(·, ·):

ah(u, v) =
∑

K∈T

∫

K
βK∇u · ∇v dx, (29)

where the coefficients βK are elementwise smooth. In our present setting of piecewise constant
coefficient β, for every K ∈ T we take βK = βi if K ∈ T i ∪T i

∗ with i ∈ {1, 2}. It is immediate
to see that the bilinear form ah(·, ·) still preserves the coercivity, and that the two bilinear
forms ah and a are related to each other by

a(u, v) = ah(u, v) + a∆(u, v), (30)

where the bilinear form a∆(·, ·) satisfies

|a∆(u, v)|.‖u‖H1(Sδ)‖v‖H1(Sδ). (31)

With the simplified bilinear form in (29), we can now define a more practical finite element
method for the variational problem (P ).

Problem (Ph). Find uh ∈ Sp,1
0 (T ) such that

ah(uh, v) = L(v) ∀ v ∈ Sp,1
0 (T ). (32)

12



4.2 General convergence results

We start with a technical lemma to be used in the subsequent convergence analysis.

Lemma 4.1. For δ.h, there exists a positive constant µ independent of h such that

‖wh‖H1(Sδ).

√
δ

h
‖wh‖H1(Sµh) ∀wh ∈ Sp,1(T ).

Proof. The smoothness of the interface Γ and the shape regularity of the triangulation imply
that meas(K ∩ Sδ).hd−1δ for every K ∈ T . Hence

‖wh‖2
H1(Sδ) ≤

∑

K∈T :K∩Sδ 6=∅

‖wh‖2
H1(K∩Sδ).

∑

K∈T :K∩Sδ 6=∅

δhd−1‖wh‖2
W 1,∞(K)

.
∑

K∈T :K∩Sδ 6=∅

δhd−1h−d‖wh‖2
H1(K).

δ

h
‖wh‖2

H1(Sµh),

where we have exploited the assumption δ.h in the last estimate.

We are now ready to derive the H1- and L2-norm error estimates.

Theorem 4.2. Let u and uh be the solutions to the systems (25) and (32) respectively. Assume
that u ∈ H1

0 (Ω)∩Hs+1(Ω1 ∪Ω2) for some s ∈ {1, . . . , p}. Then for δ.h the following estimate
holds:

‖u − uh‖H1(Ω) .
√

δ‖u‖H2(Ω1∪Ω2) + hs‖u‖Hs+1(Ω1∪Ω2) .

Proof. An application of the first Strang Lemma (see, e.g., [9, Thm. 4.1.1]) to (25) and (32)
gives

‖u − uh‖H1(Ω). inf
w∈Sp,1

0
(T )

{
‖u − w‖H1(Ω) + sup

v∈Sp,1
0

(T )

|a(w, v) − ah(w, v)|
‖v‖H1(Ω)

}
. (33)

From Theorem 3.5 we have

‖u − Iu‖H1(Ω).hs‖u‖Hs+1(Ω1∪Ω2) +
√

δ‖u‖H2(Ω1∪Ω2) . (34)

Next, for all v ∈ Sp,1(T ) one can derive by using Lemmas 3.4 and 4.1 that

|a∆(Iu, v)| . ‖Iu‖H1(Sδ)‖v‖H1(Sδ).
(
‖u‖H1(Sδ) + ‖u − Iu‖H1(Sδ)

)√
δh−1/2‖v‖H1(Sµh)

. (
√

δ‖u‖H2(Ω1∪Ω2) + hs‖u‖Hs+1(Ω1∪Ω2))
√

δh−1/2‖v‖H1(Sµh) ,

which implies with δ.h that

sup
v∈Sp,1(T )

|a∆(Iu, v)|
‖v‖H1(Ω)

.
√

δ‖u‖H2(Ω1∪Ω2) + hs‖u‖Hs+1(Ω1∪Ω2) . (35)

Now the desired estimate follows from (33)–(35).

Remark 4.3. Theorem 4.2 quantifies the effect of approximating the interface. In order to
achieve the optimal p-th order approximation with the finite element space Sp,1(T ) in H1-
norm, δ must be of the order O(h2p).
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The L2-norm estimates for u − uh can be obtained as usual by duality arguments. We
formulate the necessary shift theorem for the appropriate dual problem as an assumption:

Assumption 4.4 (full dual regularity). For g = 0 and every f ∈ L2(Ω) the solution u of
(1)–(3) satisfies u ∈ H1

0 (Ω) ∩ H2(Ω1 ∪ Ω2) together with the a priori estimate ‖u‖H2(Ω1∪Ω2) ≤
C‖f‖L2(Ω).

Remark 4.5. Assumption 4.4 is satisfied if Ω is convex or ∂Ω is sufficiently smooth, [7, 21].

Theorem 4.6 below gives error estimates for the L2-error of the FEM. Surprisingly, the
conditions on the degree of approximation of the interface to obtain the optimal convergence
are not as strong as those for optimal convergence in H1-norm. In particular, for p > 1,
isoparametric elements lead to optimal rates in L2 but not in H1. For example, isoparametric
quadratic finite elements achieve optimal third order convergence in the L2-norm but only
order 1.5 in the energy norm in general.

Theorem 4.6. Under the hypotheses of Theorem 4.2 and Assumption 4.4, the following esti-
mate holds:

‖u − uh‖L2(Ω).(hs+1 + δ)‖u‖Hs+1(Ω1∪Ω2). (36)

Proof. Abbreviate e := u − uh. By Theorem 4.2 we have

‖e‖H1(Ω).hs‖u‖Hs+1(Ω1∪Ω2) +
√

δ‖u‖H2(Ω1∪Ω2). (37)

For the duality argument, we define w ∈ H1
0 (Ω) and wh ∈ Sp,1

0 (T ) by

a(v,w) = (u − uh, v)L2(Ω) ∀v ∈ H1
0 (Ω), (38)

a(v,wh) = (u − uh, v)L2(Ω) ∀v ∈ Sp,1
0 (T ). (39)

That is, w is the weak solution to the interface problem (1)–(3) with g = 0. Assumption 4.4
implies w ∈ H2(Ω1 ∪ Ω2) with the a priori bound

‖w‖H2(Ω1∪Ω2).‖u − uh‖L2(Ω). (40)

The function wh ∈ Sp,1
0 (T ) is the Galerkin approximation of w. Céa’s Lemma together with

Theorem 3.5 therefore gives

‖w − wh‖H1(Ω) . inf
v∈Sp,1

0
(T )

‖w − v‖H1(Ω) ≤ ‖w − Iw‖H1(Ω)

. (h +
√

δ)‖w‖H2(Ω1∪Ω2).(h +
√

δ)‖u − uh‖L2(Ω). (41)

It is easy to verify the following Galerkin orthogonalities for u − uh and w − wh:

a(e, v) = −a∆(uh, v) ∀v ∈ Sp,1
0 (T ),

a(v,w − wh) = 0 ∀v ∈ Sp,1
0 (T ).

These two Galerkin orthogonalities imply that

‖e‖2
L2(Ω) = a(e,w) = a(e,w − wh) + a(e,wh) = a(u − Iu,w − wh) − a∆(uh, wh).
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Recognizing the bilinear form a as an integral over Ω that can be split into integrals over Sδ

and Ω \ Sδ, we obtain with the estimate (31) that

‖e‖2
L2(Ω) . ‖u − Iu‖H1(Sδ)‖w − wh‖H1(Sδ) + ‖u − Iu‖H1(Ω\Sδ)‖w − wh‖H1(Ω\Sδ)

+ ‖uh‖H1(Sδ)‖wh‖H1(Sδ) =: T1 + T2 + T3. (42)

We now claim

‖uh‖H1(Sδ) . (hs +
√

δ)‖u‖Hs+1(Ω1∪Ω2) , (43)

‖w‖H1(Sδ) + ‖wh‖H1(Sδ) .
√

δ‖e‖L2(Ω). (44)

To see (43), we apply Lemma 3.4 to obtain

‖uh‖H1(Sδ) ≤ ‖e‖H1(Sδ) + ‖u‖H1(Sδ).‖e‖H1(Ω) +
√

δ‖u‖H2(Ω1∪Ω2).

Then the error bound (37) leads immediately to (43). The bound ‖w‖H1(Sδ).
√

δ‖e‖L2(Ω)

follows from Lemma 3.4 and the regularity assertion (40). For the bound of ‖wh‖H1(Sδ), we
use Lemma 4.1, the estimate (41), and the regularity assertion (40) to get

‖wh‖H1(Sδ) .
√

δh−1/2‖wh‖H1(Sµh).
√

δh−1/2
(
‖w − wh‖H1(Sµh) + ‖w‖H1(Sµh)

)

.
√

δh−1/2
(
‖w − wh‖H1(Sµh) + h1/2‖w‖H2(Ω1∪Ω2)

)

.
(√

δh + δh−1/2 +
√

δ
)
‖e‖L2(Ω),

which yields the estimate (44) in view of δ.h.
Now we will estimate the three terms T3, T2 and T1 in (42) one by one. First for T3, it

follows from (43) and (44) that

T3.
√

δ(hs +
√

δ)‖u‖Hs+1(Ω1∪Ω2)‖e‖L2(Ω) .

Then noting that s ≥ 1 and hs
√

δ.h2s + δ, we see that T3 can be bounded in the desired
fashion.

For the estimate of T2 with s ≥ 2, we obtain by applying Theorem 3.5 and (41) that

T2 .
(
δh−1/2‖u‖H3(Ω1∪Ω2) + hs‖u‖Hs+1(Ω1∪Ω2)

)
(h +

√
δ)‖e‖L2(Ω)

.
(
δh1/2 + δ

√
δh−1/2 + hs+1 + hs

√
δ
)
‖u‖Hs+1(Ω1∪Ω2)‖e‖L2(Ω)

.
(
hs+1 + δ

)
‖u‖Hs+1(Ω1∪Ω2)‖e‖L2(Ω),

since δ.h and hs
√

δ.h2s + δ.hs+1 + δ. This is an estimate of the desired form. The case with
s = 1 is completely analogous and therefore omitted.

Finally for T1, it follows from (44) that

T1 . ‖u − Iu‖H1(Ω)

(
‖w‖H1(Sδ) + ‖wh‖H1(Sδ)

)
.
(√

δ + hs
)
‖u‖Hs+1(Ω1∪Ω2)

√
δ‖e‖L2(Ω)

.
(
δ + hs

√
δ
)
‖u‖Hs+1(Ω1∪Ω2)‖e‖L2(Ω).

Again, we arrive at an estimate of the desired form. This completes the proof of Theorem 4.6.
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4.3 Applications and extensions

Theorems 4.2 and 4.6 quantify the convergence behavior of the finite element method in terms
of the mesh size h and the parameter δ, which measures how well the triangulation resolves the
interface Γ. An important case of finite elements is that of polynomial element maps of degree
m ∈ N. The use of polynomial element maps results in a piecewise polynomial approximation
of Γ; hence, one expects δ = O(hm+1). We recall a standard terminology: the case m < p
is referred to as subparametric elements, the case m = p as isoparametric elements and the
case m > p as superparametric elements; see [5, 9]. The construction of the element maps
FK was studied systematically in [16] in a way that not only Assumption 2.3 but also the
approximation order of the interface δ = O(hm+1) are satisfied. Following [16, Lemma 5], one
can show

Lemma 4.7. Let the interface Γ be of of class Cm+1 and let T be a triangulation of Ω
satisfying Definition 2.1, with all its element maps FK defined by the m-th order polynomials
in a practical manner (see [16] for details). Then the triangulation T resolves the interface Γ
up to the error δ = O(hm+1).

Lemma 4.7, along with Theorems 4.2 and 4.6, implies immediately the following conver-
gence results:

Theorem 4.8 (isoparametric and superparametric elements). Let Γ be sufficiently smooth and
the element maps FK be polynomials of degree m as constructed in [16]. Let u and uh be the
solutions to the systems (25) and (32), with u satisfying that u ∈ Hp+1(Ω1 ∪ Ω2). Then:

1. For isoparametric elements with m = p, there holds

‖u − uh‖H1(Ω).h(p+1)/2‖u‖Hp+1(Ω1∪Ω2).

2. For superparametric elements with m ≥ 2p − 1, there holds

‖u − uh‖H1(Ω).hp‖u‖Hp+1(Ω1∪Ω2).

If Assumption 4.4 holds, then there holds in both cases additionally

‖u − uh‖L2(Ω).hp+1‖u‖Hp+1(Ω1∪Ω2).

Remark 4.9. Theorem 4.8 reveals that linear finite elements (m = p = 1) indeed achieve
optimal convergence order both in the H1- and L2-norms. While for higher order finite el-
ements, isoparametric finite elements yields optimal convergence in the L2-norm, but not in
the H1-norm. One has to resort to superparametric finite elements to recover the optimal
convergence for the H1-norm.

For the sake of exposition and clarity, we have chosen to avoid a few rather technical but
practically important issues in the current work. Nevertheless, we believe that the theory of
the present paper can be generalized in the following directions:

• Piecewise smooth coefficients: We have restricted our attention to piecewise constant
coefficients β in (1). However, all our results can be extended to piecewise smooth
coefficients. In this case, one just needs to replace the constant βK in (29) by some
appropriate approximation of β|K , e.g, an average or an interpolant of β.
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• Quasi-uniform triangulations: The convergence theory has been established for quasi-
uniform meshes. Conceivably, the analysis can be extended to more general, shape-
regular triangulations with local mesh refinement. The assumption of quasi-uniformity,
which is reasonable in the case of piecewise smooth solutions considered here, allows us
to simplify covering arguments in the estimates (5) and (22).

• Elasticity problems: Using the vector-valued forms of the finite element spaces discussed
in this work, one can solve elastic interface problems as well. Vectorized versions of the
perturbed interpolation operator of Definition 3.3, the δ-region argument of Lemma 3.4,
and the approximation property of Theorem 3.5 can be derived analogously without
essential modifications. In particular, for the simplest case with continuous piecewise
linear finite elements with p = m = 1, vectorized version of Theorem 4.8 can be derived
in a similar way. Optimal convergence, e.g. first order in energy norm and second order
in L2-norm, can readily be derived for the Lamé system.

• Treatment of non-homogeneous interface source functions g: In our analysis, we have
ignored variational crimes stemming from approximating the right-hand side L(·), which
arises in particular when g 6= 0. In this situation, a numerically feasible realization of
L(·) is likely to be based on the approximate interface Γh, which is a union of faces of
elements. It is likely that the error introduced by the approximation can be quantified
with techniques similar to [7] and the present paper provided that Γh and Γ are sufficiently
close in an appropriate sense.

4.4 Convergence away from the interface

We recall that Theorem 4.8 indicates that isoparametric elements do not achieve optimal
convergence rates in the H1-norm, which is due to the poor approximation within the strip
region Sδ around the interface. Indeed, as it will be seen in Theorem 4.14 below, the condition
δ = O(hp+1) is sufficient to ensure optimal H1-norm convergence of order O(hp) in the region
Ω \Sδ away from the interface, as long as the exact solution u is sufficiently smooth in Ω \Sδ.

Our main results of this subsection (Theorem 4.14) are established based on a duality
argument. In order to stress the fact that rather weak regularity requirements for the solution
to the dual system of the original interface problem (1)–(3) are sufficient for the optimal H1

convergence in Ω \ Sδ, we formulate the following assumption, which states that for every
f ∈ L2(Ω) the solution to the dual problem has Sobolev regularity H3/2 near ∂Ω and is
piecewise H2 near the interface.

Assumption 4.10. There exist two domains Ω′
1 and Ω′

2 with Ω1 ⊂ Ω′
1 ⊂ Ω′

1 ⊂ Ω′
2 ⊂ Ω′

2 ⊂ Ω
such that for every f ∈ L2(Ω) the solution u of the elliptic system (1)–(3) with g = 0 satisfies
u ∈ H1

0 (Ω) ∩ H3/2(Ω \ Ω′
1) ∩ H2((Ω1 ∪ Ω2) ∩ Ω′

2) together with the following a priori estimate:

‖u‖H2((Ω1∪Ω2)∩Ω′
2
) + ‖u‖

H3/2(Ω\Ω′
1
)
≤ C‖f‖L2(Ω). (45)

Remark 4.11. Assumption 4.10 is true in the present case of piecewise constant coefficient β
for polygonal (2D) or polyhedral (3D) Lipschitz domains: The smoothness of Γ and f ∈ L2(Ω)
implies by standard arguments that u ∈ H2((Ω1 ∪ Ω2) ∩ Ω′

2) (see, e.g., [7]). For the H3/2-
regularity near ∂Ω, let χ be a smooth cut-off function with χ ≡ 1 on Ω \ Ω′

1 and χ ≡ 0 on
an open neighborhood of Ω1. The function ũ := χu then satisfies −∆ũ ∈ L2(Ω) and coincides
with u on Ω \ Ω′

1. By [10, Rem. 2.4.6] for the 2D case and by [10, Cor. 2.6.7] for the 3D
case there exists s0 ∈ (3/2, 2] and C > 0 (both depending solely on Ω) such that ũ satisfies
‖ũ‖Hs0 (Ω) ≤ C‖∆ũ‖L2(Ω). The argument is concluded by noting ‖∆ũ‖L2(Ω) ≤ C‖f‖L2(Ω).
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Now we can derive our first approximation result.

Lemma 4.12. Assume that Assumption 2.3 holds for Ip and let s ∈ [1, p+1] be a real number.
Then there exists a constant C > 0 independent of h such that the following approximation

inf
v∈Sp,1

0
(T )

‖w − v‖L2(Ω) + h‖w − v‖H1(Ω) ≤ Chs‖w‖Hs(Ω)

is satisfied for all w ∈ Hs(Ω) ∩ H1
0 (Ω).

Proof. Let w ∈ Hs(Ω) ∩ H1
0 (Ω). It follows from [5, Thm. 12.4.2] and the approximation

properties of Ip that there exists a v ∈ Sp,1(T ) such that

‖w − v‖L2(Ω) + h‖w − v‖H1(Ω).hs‖w‖Hs(Ω). (46)

Since v does not necessarily vanish on ∂Ω, we define the correction vc ∈ Sp,1(T ) by the
condition that vc vanish at all nodes that lie strictly inside Ω and vc(V ) = −v(V ) for all
nodes V lying on ∂Ω. Then we have v + vc ∈ Sp,1

0 (T ). For each node V ∈ ∂Ω, we set
ΓV := ∪{K ∩ ∂Ω ; V ∈ K}. By the shape regularity of the triangulation and the assumption
on the element maps, there exist two positive integers M and M ′ independent of h such that
every point x ∈ ∂Ω lies in at most M sets ΓV , and every node V ∈ ∂Ω is a node of at most
M ′ elements in T . Finally, for every node V ∈ ∂Ω there exists an element K ∈ T and a face
f (3D) (or an edge (2D)) of K such that f ⊂ ∂Ω and V ∈ f ; hence f ⊂ ΓV . We have by the
standard inverse estimate that |vc(V )|.h−(d−1)/2‖vc‖L2(ΓV ). With further inverse estimates
for q ∈ {0, 1}, we derive

‖vc‖2
Hq(Ω) ≤

∑

K:K∩∂Ω 6=∅

‖vc‖2
Hq(K).

∑

K:K∩∂Ω 6=∅

∑

V :V ∈K∩∂Ω

hd−2q|vc(V )|2

. hd−2q
∑

V ∈∂Ω

∑

K:V ∈K

|vc(V )|2 ≤ M ′hd−2q
∑

V ∈∂Ω

|vc(V )|2

. hd−2qh−(d−1)
∑

V :V ∈∂Ω

‖vc‖2
L2(ΓV ) ≤ Mh1−2q‖vc‖2

L2(∂Ω).

Since w|∂Ω = 0 and vc|∂Ω = −v|∂Ω we can estimate with a multiplicative trace inequal-
ity ‖vc‖2

L2(∂Ω) = ‖w − v‖2
L2(∂Ω).‖w − v‖L2(Ω)‖w − v‖H1(Ω).h2s−1‖w‖2

Hs(Ω). We conclude

‖vc‖Hq(Ω).h1/2−q+s−1/2‖w‖Hs(Ω).hs−q‖w‖Hs(Ω), which, along with the triangle inequality,
indicates that (46) is also true when v is replaced by v + vc, hence proves the desired estimate
in Lemma 4.12.

The next lemma shows an L2-norm error estimate under weaker assumptions than those
of Theorem 4.6. Although the accuracy obtained here is also lower than in Theorem 4.6 (by a
half order), it suffices for us to recover the optimal H1 convergence rate for the isoparametric
elements in the region away from the interface (see Theorem 4.14).

Lemma 4.13. Let u and uh be the solutions to the systems (25) and (32) respectively, with u
satisfying u ∈ H1

0 (Ω) ∩ Hs+1(Ω1 ∪ Ω2) for some s ∈ {2, . . . , p}. Then under Assumption 4.10
the following estimate holds for δ.h:

‖u − uh‖L2(Ω).(δ + hs+1/2)‖u‖Hs+1(Ω1∪Ω2).
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Proof. The proof follows the arguments of the proof of Theorem 4.6, taking care, however, of
the fact that the solution w to the dual problem

−∇ · (β∇w) = u − uh in Ω, w|∂Ω = 0,

may not be in H2(Ω1 ∪ Ω2) now. By Assumption 4.10 we know that w satisfies

‖w‖H2((Ω1∪Ω2)∩Ω′
2
) + ‖w‖

H3/2(Ω\Ω′
1
)
≤ C‖u − uh‖L2(Ω).

Next, we select a smooth cut-off function χ with suppχ ⊂ Ω \ Ω′
1 and χ ≡ 1 on Ω \Ω′

2, where
Ω′

1, Ω′
2 are given in Assumption 4.10. Then Assumption 4.10 ensures wχ ∈ H3/2(Ω) ∩ H1

0 (Ω)
and w(1 − χ) ∈ H2(Ω1 ∪ Ω2) ∩ H1

0 (Ω). By applying Lemma 4.12 to approximate wχ and
Theorem 3.5 to approximate w(1 − χ), we know the existence of a w̃h ∈ Sp,1

0 (T ) such that

‖w − w̃h‖H1(Ω).
(
h1/2 +

√
δ
)
‖u − uh‖L2(Ω).

As in the proof of Theorem 4.6, letting wh be the finite element approximation of w in Sp,1
0 (T )

produces ‖w − wh‖H1(Ω).‖w − w̃h‖H1(Ω) by Céa’s Lemma. Now the desired error estimate
follows by repeating the remaining steps of the proof of Theorem 4.6.

The next theorem demonstrates that the optimal H1-convergence can be achieved in the
region Ω \ Sδ away from the interface.

Theorem 4.14. Let u and uh be the solutions to the systems (25) and (32) respectively, and
assume u ∈ H1

0 (Ω)∩Hs+1(Ω1 ∪Ω2) for some s ∈ {1, . . . , p}. Then under Assumption 4.10 the
following estimate holds for δ.h:

‖u − uh‖H1(Ω\Sδ). err(s, δ, h)‖u‖Hs+1(Ω1∪Ω2)

where err(s, δ, h) is given by

err(s, δ, h) =

{
h + δ1/2 for s = 1

hs +
(

δ
h

)3/2
+
(

δ
h

)
h1/4 +

(
δ
h

)3/4
hs/2 +

(
δ
h

)1/2
hs/2 +

(
δ
h

)1/4
hs−1/4 for s ≥ 2

which leads to the optimal convergence when δ = O(hs+1):

‖u − uh‖H1(Ω\Sδ).hs‖u‖Hs+1(Ω1∪Ω2).

Proof. The case s = 1 follows trivially from Theorem 4.2. For the case s ≥ 2 set e := u − uh

and denote by a
h,Ω\Sδ

and a
h,Sδ

the bilinear form ah in (29) when the domain of integration is

restricted on Ω \ Sδ and Sδ respectively. It follows from the Galerkin orthogonality that

ah(e, v) = −a∆(u, v) ∀v ∈ Sp,1
0 (T ).

Using this Galerkin orthogonality and the Cauchy-Schwarz inequality we obtain

‖e‖2
H1(Ω\Sδ) . a

h,Ω\Sδ
(e, e) = ah(e, e) − a

h,Sδ
(e, e)

= ah(e, u − Iu) − a∆(e, Iu − uh) − a
h,Sδ

(e, e)

= a
h,Ω\Sδ

(e, u − Iu) − a∆(e, Iu − uh) − a
h,Sδ

(e, Iu − uh)

. ‖e‖H1(Ω\Sδ)‖u − Iu‖H1(Ω\Sδ) + ‖e‖H1(Sδ)‖Iu − uh‖H1(Sδ).
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Then we derive by using the Young’s inequality for the first term and the triangle inequality
for the second term above that

‖e‖2
H1(Ω\Sδ).‖u − Iu‖2

H1(Ω\Sδ) + ‖Iu − uh‖2
H1(Sδ) + ‖u − Iu‖H1(Sδ)‖Iu − uh‖H1(Sδ). (47)

For the error Iu − uh in (47), we can estimate it in Sδ by using Lemmas 4.1 and 4.13 and
Theorem 3.5 (with s ≥ 2) as follows:

‖Iu − uh‖H1(Sδ) . δ1/2h−1/2‖Iu − uh‖H1(Sµh).δ1/2h−3/2‖Iu − uh‖L2(Sµh)

. δ1/2h−3/2
(
‖Iu − u‖L2(Sµh) + ‖u − uh‖L2(Sµh)

)
) (48)

. δ1/2h−3/2
(
δ + hs+1/2

)
‖u‖Hs+1(Ω1∪Ω2).

Using this and Theorem 3.5 again we conclude from (47) for δ.h that

‖e‖2
H1(Ω\Sδ)

.
{

δ2h−1 + h2s + δh−3(δ2 + h2s+1) + (δ1/2 + hs)δ1/2h−3/2(δ + hs+1/2)
}
‖u‖2

Hs+1(Ω1∪Ω2)

.
{

δ2h−1 + h2s + δ3h−3 + δh2s−2 + δ2h−3/2 + δhs−1 + δ3/2hs−3/2 + δ1/2h2s−1
}
‖u‖2

Hs+1(Ω1∪Ω2)

which gives the desired estimate for s ≥ 2 in Theorem 4.14 by taking the square root on both
sides.

The optimal H1-convergence of Theorem 4.14 enables us to generalize a result in [3,
Thm. 2.1]:

Corollary 4.15. Let u and uh be the solutions to the systems (25) and (32) respectively, and
assume u ∈ H1

0 (Ω)∩Hp+1(Ω1∪Ω2). Then under Assumption 4.10 the following estimate holds
for δ = O(hp+1):

2∑

i=1

‖ũi − uh‖H1(Ωi,h).hp

(
2∑

i=1

‖u‖Hp+1(Ωi) + ‖ũi‖Hp+1(Ω)

)
.

where Ωi,h := ∪{K ; K ∈ T i∪T i
∗ } and ũi ∈ Hp+1(Rd) is an extension of the function ui = u|Ωi

for i = 1, 2.

Proof. We will make use of some key observations in the following proof: for each K ∈ T ,
there exists a fixed (open) ball B̂ ⊂ K̂ that is independent of h such that FK(B̂) ⊂ K \ Sδ;
this implies that ũi|FK( bB)

= u|
FK( bB)

for each K ∈ T i ∪ T i
∗ ; all the norms are equivalent on

the finite-dimensional space of polynomials of degree p, namely ‖π‖H1( bK) ∼ ‖π‖H1( bB) for all

π ∈ Pp(K̂).

Now for any K ∈ T i ∪ T i
∗ , we define ̂̃u := ũi|K ◦ FK , û := u|K ◦ FK , ûh := uh|K ◦ FK .

Recalling the operator Ip of Section 2.2 and estimate (8), we derive for q ∈ {0, 1} that

‖ũi − uh‖Hq(K) ≤ ‖ũi − Ipũi‖Hq(K) + ‖Ipũi − uh‖Hq(K)

. hp+1−q‖ũi‖Hp+1(K) + hd/2−q‖Îp
̂̃u − ûh‖Hq( bK)

.
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The second term above can be estimated further as follows:

hd/2−q‖Îp(̂̃u − ûh)‖Hq( bK) . hd/2−q‖Îp(̂̃u − ûh)‖Hq( bB)

≤ hd/2−q‖Îp
̂̃u − ̂̃u‖

Hq( bB)
+ hd/2−q‖̂̃u − ûh‖Hq( bB)

. ‖Ipũi − ũi‖Hq(K) + ‖ũi − uh‖Hq(K\Sδ)

. ‖Ipũi − ũi‖Hq(K) + ‖u − uh‖Hq(K\Sδ)

. hp+1−q‖ũi‖Hp+1(K) + ‖u − uh‖Hq(K\Sδ).

Now summing up both sides over all elements yields

2∑

i=1

∑

K∈T i∪T i
∗

‖ũi − uh‖2
Hq(K).

2∑

i=1

∑

K∈T i∪T i
∗

h2(p+1−q)‖ũi‖2
Hp+1(K) + ‖u − uh‖2

Hq(Ω\Sδ).

This allows us to conclude the proof by an appeal to Theorem 4.14.

Remark 4.16. One possible choice of the extension ũi used in Corollary 4.15 is given by the
Stein extension Eiu|Ωi . Corollary 4.15 shows that the finite element approximation uh is closer
to Eiu|Ωi on Ωi,h than to u in the case δ = O(hp+1). This improvement over Theorem 4.8
is achieved by changing the measurement of the error. This viewpoint was adopted in [3],
where Corollary 4.15 was shown for the case that Γ is approximated by an interpolating
spline of degree p. An alternative viewpoint is to ask whether it is possible to construct,
by postprocessing uh, an approximation ũh that is closer to u on Sδ than uh. Indeed, it is
possible to “extrapolate” the approximation uh|Ω\Sδ

to the tubular neighborhood Sδ to arrive
at a non-conforming approximation ũh (ũh is not necessarily in H1(Ω)). This is the approach
taken in [4] for the case p = 1.

5 Numerical examples

In this section, we present five numerical examples to confirm the theoretical prediction of the
convergence theory developed in Sections 2–4. All our numerical experiments are implemented
in Matlab. We test the affine linear finite element, subparametric, isoparametric and super-
parametric quadratic finite elements, which are denoted by P1 (m = 1, p = 1), P2 (m = 1,
p = 2), isoP2 (m = 2, p = 2) and superP2 (m = 3, p = 2), respectively. In all calculations, we
use interface-aligned triangulations, i.e., each element K of the triangulation satisfies either
K ∩ Γ = ∅ or, otherwise, either a single vertex of K lies on the interface Γ or all the nodal
points of one edge (or one face) of K lie on Γ. Note that after each mesh refinement, some
regularly refined elements near the interface have to be slightly adjusted to ensure that they
are interface-aligned. One way to ensure this is to use the functions initmesh and refinemesh

in Matlab’s PDE toolbox.

Example 5.1. The computational domain Ω is (−2, 2) × (−2, 2), and the interface Γ is the
unit circle {(x, y); x2 + y2 = 1}. The exact solution u is chosen to be

u(x, y) =





1 − (x2 + y2)2

4α1
, if x2 + y2 ≤ 1;

1 − (x2 + y2)2

4α2
, if x2 + y2 > 1,

(49)
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which has vanishing jumps both in the solution and the co-normal derivative Γ. The exact
solution is shown in Figure 4 (a). Here we choose α1 = 1, α2 = 10, and define the source
functions f and g through the equations (1) and (3) using the exact solution.
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Figure 4: (a): The exact solution in Example 5.1; (b): The exact solution in Example 5.2.

Figure 5 shows the convergence behavior of the P1, P2, isoP2, and superP2 elements. In
Figure 5 (a), we can clearly see that the linear finite element P1 gives the optimal first order
convergence in the H1-norm and second order convergence in the L2-norm for δ = O(h2).
As the theory predicts, the affine-equivalent quadratic finite element P2, can achieve only
first order convergence in the H1-norm and second order convergence in the L2-norm due
to the poor approximation of the interface (δ = O(h2)); see Figure 5 (b). In other words,
only a small gain in accuracy is obtained by using P2 elements instead of linear P1 elements.
Figure 5 (c) shows the convergence of isoP2 elements. We observe second order convergence in
the H1-norm, which is better than O(h3/2) predicted by Theorem 4.8. However, this effect is
explained by symmetry properties of the circular interface, namely, a piecewise quadratic spline
interpolating a circle leads to δ = O(h4) instead of δ = O(h3) for arbitrary (smooth) curves.
For the superparametric quadratic finite element superP2, the interface approximation order
δ = O(h4). Theory predicts the optimal second order convergence in the H1-norm and third
order convergence in the L2-norm, and these are confirmed by the numerics in Figure 5 (d).

Example 5.2. The computational domain is (−1, 1) × (−1, 1) and the interface Γ is taken to
be the cubic curve y = 2x3. The exact solution u is given by

u(x, y) =





(y − 2x3)2 − 30(y − 2x3)

α1
, if y ≥ 2x3;

(y − 2x3)2 − 30(y − 2x3)

α2
, if y < 2x3.

(50)

In our numerical test we have chosen α1 = 20, α2 = 1. The exact solution is shown in
Figure 4 (b).

Figure 6 shows the numerical results for this example. As in Example 5.1, the convergence
behavior of the P1, P2 and superP2 elements confirm the theoretical prediction as shown in
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Figure 5: Convergence of P1, P2, isoP2, and superP2 elements in Example 5.1.
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Figure 6: Convergence of P1, P2, isoP2, superP2 elements in Example 5.2.
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Figure 6(a), (b) and (d). For the isoP2 case, one does not obtain the optimal convergence rate
due to the poor interface approximation δ = O(h3). In Figure 6(c) the H1-error appears to
decay faster than the red reference line with slope 1.5. This is a preasymptotic phenomenon,
since the global error consists of an O(h1.5) contribution from relatively few elements near the
interface and an O(h2) contribution from the elements away from the interface. Table 1 shows
this in more detail, where the H1-norms of the error e = u − uh are listed for the mismatch
region S := (Ω1,h \Ω1)∪ (Ω2,h \Ω2) and the region Ω \S. Table 1 also includes the number of
degrees of freedom (dofs), and the level of refinement (level). Linear regression for the isoP2-
case shows a decay rate of 1.9573 for the H1(Ω\S)-error and 1.5511 for the H1(S)-error, which
is in good agreement with Corollary 4.15 and Theorem 4.2.

isoP2 element P2 element
level dofs h ‖e‖H1(Ω\Sδ) ‖e‖H1(Sδ) ‖e‖H1(Ω\Sδ) ‖e‖H1(Sδ)

1 751 2.3333(−1) 3.5494(−1) 1.9452(−1) 5.0444(−1) 2.6823(+0)
2 2, 917 1.1771(−1) 8.9432(−2) 6.8844(−2) 1.5378(−1) 1.3448(+0)
3 11, 497 5.9414(−2) 2.2461(−2) 2.4198(−2) 4.9227(−2) 6.7303(−1)
4 45, 649 2.9848(−2) 6.4511(−3) 8.3592(−3) 1.6388(−2) 3.3662(−1)
5 181, 921 1.4960(−2) 1.6391(−3) 2.8461(−3) 5.6011(−3) 1.6831(−1)
6 726, 337 7.4888(−3) 4.0571(−4) 9.2957(−4) 1.9445(−3) 8.3974(−2)

Table 1: H1-performance for P2 and isoP2 finite elements in Example 5.2.

Example 5.3. The computational domain is (−1, 1)×(−1, 1) and the interface Γ is the ellipse

given by 16x2

9 + 4y2 = 1. The exact solution u is chosen as

u(x, y) =

{
10 − 10(x2 + y2)2, if 16x2

9 + 4x2 ≤ 1;

110 − 10(x2 + y2)2 − 1600
9 x2 − 400y2, if 16x2

9 + 4x2 > 1.
(51)

The solution u has non-vanishing interface values, and we choose piecewise smooth coefficients
α1 = (−6220x2 + 6561)/(180x2 + 81), α2 = 1 in the numerical test. The exact solution is
shown in Figure 7 (a).

The convergence results for P1, P2, isoP2 and superP2 elements are plotted in Figure 8(a),
(b), (c) and (d). Once again the numerical results confirm the theoretical predictions. In
particular, the suboptimal behavior of the isoP2 approximation (see Figure 8(c)) is more
evident than that in Example 5.2.

For this example, we also study the convergence behavior away from the interface as an-
alyzed in Theorem 4.14. In Fig. 9, we present the errors ‖u − uh‖H1(S) and ‖u − uh‖H1(Ω\S)

for P2 and isoP2 elements and S = (Ω1,h \ Ω1) ∪ (Ω2,h \ Ω2). We note that the H1(S)-error
is very close to the H1(Ω)-error in Fig. 8. In fact, H1(Ω \ S)-error is of higher order com-
pared to H1(S), and Theorem 4.14 allows us to quantify this. Applying Theorem 4.14 with
δ = O(h2) for the case P2 and δ = O(h3) for the case isoP2 we get for the error for the error
‖u − uh‖H1(Ω\Sδ) the bounds O(h1.25) and O(h2), respectively. Numerically, we observe in
Fig. 9 convergence O(h1.5) and O(h2), respectively.

Example 5.4. We consider the well-known benchmark test of a 2D elastic interface problem
specified in Sukumar et al., [23]. The problem is radially symmetric with different material
properties in concentric discs around the origin. The computational domain is {(x, y); x2+y2 <

25



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−600

−400

−200

0

200

(a)

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

(b)

Figure 7: (a): The exact solution in Example 5.3. (b): The exact solution in Example 5.4.

b2} with a circular interface Γ of the form x2 + y2 = a2. The inner disc has Young’s modulus
E1 and Poisson ratio ν1, and the outer one E2 and ν2. At any point, the displacement vector
can be written as u = (ur, uθ), where ur is the radial component and uθ is the circumferential
component of the displacement. The material is subjected to the Dirichlet boundary condition
u = x (in Cartesian coordinates), and the exact solution to the problem is given by

ur(r) =





((
1 − b2

a2

)
c + b2

a2

)
r, 0 ≤ r ≤ a;(

r − b2

r

)
c + b2

r , a ≤ r ≤ b.

with

c =
(λ1 + µ1 + µ2)b

2

(λ2 + µ2)a2 + (λ1 + µ1)(b2 − a2) + µ2b2
.

The Lamé constants λi and µi are given by λi = Eiνi
(1+νi)(1−2νi)

and µi = Ei
2(1+νi)

, i = 1, 2.

Following [23], we select E1 = 1, ν1 = 0.25, E2 = 10, ν2 = 0.3, a = 0.4 and b = 2. The
magnitude of the displacement of the exact solution are shown in Figure 7 (b).

Figure 10 displays the errors in the H1- and L2-norm as a function of the mesh size h.
We clearly see that the linear elements P1 achieves optimal convergence, i.e., first order in the
H1-norm and second order in the L2-norm.

Example 5.5. Our last example is a 3D interface problem. We take the cubic domain (−1, 1)3

as the computational domain with a spherical interface Γ: x2 + y2 + z2 = 0.72. The exact
solution u is given by

u(x, y) =

{
(0.72 − x2 − y2 − z2)2/α1, if x2 + y2 + z2 ≤ 0.72;
(0.72 − x2 − y2 − z2)2/α2, if x2 + y2 + z2 > 0.72 ,

(52)

with the discontinuous coefficients chosen to be α1 = 1 and α2 = 10 in our test, and is
visualized with five equidistant slices along the x-axis in Figure 11 with a colormap nearby
indicating the values of u.
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Figure 8: Convergence of P1, P2, isoP2, superP2 elements for Example 5.3.
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Figure 10: Convergence of P1 finite elements for Example 5.4.
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Figure 11: The exact solution in Example 5.5.

One can observe in Figure 12 that the linear finite elements P1 yield optimal convergence
in both the L2 and H1-norm as the mesh is refined. We mention that the final mesh has
approximately 300, 000 vertices after five successive refinements.

6 Concluding remarks

This work is concerned with higher order finite element methods for solving the elliptic inter-
face problems in d dimensions. A general convergence theory is developed for finite element
methods in an abstract framework. A novel analysis tool is used for the error estimates of
finite element interpolations for piecewise smooth functions. The tool, in combination with a
δ-strip argument, enables us to improve the existing nearly optimal convergence of the contin-
uous piecewise linear finite elements in two dimensions, and achieve the optimal convergence
in three dimensions and for higher order finite elements. The new arguments reveal that not
only the order of the finite elements must be increased but also the approximation of the
interface should be improved to a certain degree in order to achieve a desired optimal higher
order accuracy in H1- and/or L2-norm. Five concrete examples of the finite element methods
for elliptic and elastic interface problems are numerically tested and compared, which confirm
quite well the predictions and sharpness of the theory.
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A Numerical results

For the purpose of comparison, we list in this appendix the relevant data of all the experiments
in Section 5, including the number of uniform refinements RN , the number of degrees of freedom
dofs, the mesh size h, and various errors for the 5 examples. We set

S = (Ω1,h \ Ω1) ∪ (Ω2,h \ Ω2).

Seven kinds of errors are calculated:

1. the L2(Ω \ S) and H1(Ω \ S) errors are denoted ENL and ENH , respectively (“N” for
non-interface)

2. the L2(S) and H1(S) errors are denoted ESL and ESH respectively (“S” for Strip)

3. the total L2(Ω) and H1(Ω) errors are denoted ETL and ETH

4. the maximal nodal error is denoted L∞.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.1000e+002 2.5441e-001 1.3732e-002 2.0522e-001 2.4281e-004 1.3350e-001 1.3734e-002 2.4482e-001 4.2998e-003
2 2.7570e+003 1.2721e-001 3.5297e-003 1.0486e-001 3.0342e-005 6.7377e-002 3.5298e-003 1.2464e-001 1.5450e-003
3 1.0865e+004 6.3603e-002 8.9067e-004 5.2817e-002 3.7900e-006 3.3801e-002 8.9067e-004 6.2707e-002 5.1061e-004
4 4.3137e+004 3.1801e-002 2.2332e-004 2.6470e-002 4.7351e-007 1.6923e-002 2.2332e-004 3.1417e-002 1.5806e-004
5 1.7191e+005 1.5901e-002 5.5879e-005 1.3244e-002 5.9171e-008 8.4665e-003 5.5879e-005 1.5719e-002 4.7025e-005
6 6.8634e+005 7.9503e-003 1.3973e-005 6.6234e-003 7.3951e-009 4.2344e-003 1.3973e-005 7.8612e-003 1.3628e-005

Table 2: History of error decay for P1 finite element in Example 5.1.
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RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.3300e+002 4.5743e-001 2.0939e-002 2.6235e-001 1.8582e-003 2.4993e-001 2.1021e-002 3.6234e-001 1.6289e-002
2 2.8490e+003 2.3385e-001 5.2690e-003 5.6050e-002 2.3789e-004 1.2700e-001 5.2744e-003 1.3882e-001 4.1815e-003
3 1.1233e+004 1.2110e-001 1.3054e-003 8.9928e-003 2.9923e-005 6.3797e-002 1.3058e-003 6.4427e-002 1.0535e-003
4 4.4609e+004 6.1576e-002 3.2373e-004 3.1953e-003 3.7470e-006 3.1943e-002 3.2375e-004 3.2102e-002 2.6396e-004
5 1.7779e+005 3.1042e-002 8.0530e-005 1.1322e-003 4.6863e-007 1.5979e-002 8.0531e-005 1.6019e-002 6.6037e-005
6 7.0989e+005 1.5584e-002 2.0078e-005 4.0069e-004 5.8590e-008 7.9909e-003 2.0078e-005 8.0009e-003 1.6514e-005

Table 3: History of error decay for P2 finite element in Example 5.1.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.3300e+002 4.5743e-001 1.8043e-003 3.8851e-002 9.4987e-007 1.1282e-002 1.8043e-003 4.0456e-002 1.1859e-003
2 2.8490e+003 2.3385e-001 2.2908e-004 9.8305e-003 2.5428e-008 2.7080e-003 2.2908e-004 1.0197e-002 1.7868e-004
3 1.1233e+004 1.2110e-001 2.8212e-005 2.4109e-003 5.8764e-010 6.9249e-004 2.8212e-005 2.5084e-003 2.6614e-005
4 4.4609e+004 6.1576e-002 3.4641e-006 5.9157e-004 1.3713e-011 1.7349e-004 3.4641e-006 6.1649e-004 3.6552e-006
5 1.7779e+005 3.1042e-002 4.2773e-007 1.4609e-004 3.3261e-013 4.3519e-005 4.2773e-007 1.5243e-004 4.7914e-007
6 7.0989e+005 1.5584e-002 5.3088e-008 3.6267e-005 8.5407e-015 1.0880e-005 5.3088e-008 3.7863e-005 6.1327e-008

Table 4: History of error decay for isoP2 finite element in Example 5.1.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.3300e+002 4.5743e-001 1.8067e-003 3.8902e-002 5.8447e-005 1.1056e-002 1.8076e-003 4.0442e-002 1.1593e-003
2 2.8490e+003 2.3385e-001 2.2919e-004 9.8336e-003 4.0799e-006 2.7853e-003 2.2923e-004 1.0220e-002 1.8058e-004
3 1.1233e+004 1.2110e-001 2.8216e-005 2.4111e-003 2.6305e-007 6.9851e-004 2.8217e-005 2.5102e-003 2.6731e-005
4 4.4609e+004 6.1576e-002 3.4643e-006 5.9159e-004 1.6666e-008 1.7500e-004 3.4643e-006 6.1693e-004 3.6625e-006
5 1.7779e+005 3.1042e-002 4.2773e-007 1.4609e-004 1.0289e-009 4.3804e-005 4.2773e-007 1.5251e-004 4.7959e-007
6 7.0989e+005 1.5584e-002 5.3088e-008 3.6267e-005 6.3275e-011 1.0958e-005 5.3088e-008 3.7886e-005 6.1355e-008

Table 5: History of error decay for superP2 finite element in Example 5.1.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.1900e+002 1.3548e-001 1.4236e-001 5.6168e+000 8.6498e-005 1.3901e+000 1.4236e-001 5.7863e+000 9.9619e-002
2 2.7910e+003 6.7741e-002 3.6386e-002 2.8362e+000 1.0821e-005 6.8440e-001 3.6386e-002 2.9176e+000 3.8003e-002
3 1.0997e+004 3.3870e-002 9.1713e-003 1.4236e+000 1.3530e-006 3.3946e-001 9.1713e-003 1.4635e+000 1.2806e-002
4 4.3657e+004 1.6935e-002 2.2990e-003 7.1277e-001 1.6915e-007 1.6902e-001 2.2990e-003 7.3254e-001 4.0108e-003
5 1.7397e+005 8.4676e-003 5.7524e-004 3.5654e-001 2.1138e-008 8.4151e-002 5.7524e-004 3.6633e-001 1.2034e-003
6 6.9456e+005 4.2338e-003 1.4385e-004 1.7829e-001 2.3808e-009 3.9000e-002 1.4385e-004 1.8251e-001 3.5092e-004

Table 6: History of error decay for P1 finite element in Example 5.2.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.5100e+002 2.3333e-001 2.3840e-002 5.0444e-001 8.4971e-004 2.6823e+000 2.3855e-002 2.7293e+000 7.6624e-002
2 2.9170e+003 1.1771e-001 5.5507e-003 1.5378e-001 1.0633e-004 1.3448e+000 5.5518e-003 1.3536e+000 1.9378e-002
3 1.1497e+004 5.9414e-002 1.3550e-003 4.9227e-002 1.3296e-005 6.7303e-001 1.3551e-003 6.7483e-001 4.8680e-003
4 4.5649e+004 2.9848e-002 3.3590e-004 1.6388e-002 1.6622e-006 3.3662e-001 3.3590e-004 3.3702e-001 1.2196e-003
5 1.8192e+005 1.4960e-002 8.3700e-005 5.6011e-003 2.0777e-007 1.6831e-001 8.3700e-005 1.6840e-001 3.0520e-004
6 7.2634e+005 7.4888e-003 2.0896e-005 1.9445e-003 2.5961e-008 8.3974e-002 2.0896e-005 8.3996e-002 7.6334e-005

Table 7: History of error decay for P2 finite element in Example 5.2.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.5100e+002 2.3333e-001 7.4043e-003 3.5494e-001 6.3022e-007 1.9452e-001 7.4043e-003 4.0475e-001 5.6546e-003
2 2.9170e+003 1.1771e-001 9.2045e-004 8.9432e-002 2.5821e-008 6.8844e-002 9.2045e-004 1.1286e-001 6.8781e-004
3 1.1497e+004 5.9414e-002 1.1526e-004 2.2461e-002 1.0758e-009 2.4198e-002 1.1526e-004 3.3016e-002 8.9284e-005
4 4.5649e+004 2.9848e-002 1.4745e-005 6.4511e-003 4.0205e-011 8.3592e-003 1.4745e-005 1.0559e-002 1.1291e-005
5 1.8192e+005 1.4960e-002 1.8433e-006 1.6391e-003 7.3168e-013 2.8461e-003 1.8433e-006 3.2843e-003 1.4150e-006
6 7.2634e+005 7.4888e-003 2.3051e-007 4.0571e-004 3.9317e-015 9.2957e-004 2.3051e-007 1.0142e-003 1.7698e-007

Table 8: History of error decay for isoP2 finite element in Example 5.2.
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RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.5100e+002 2.3333e-001 7.4664e-003 3.5729e-001 1.5782e-012 6.7137e-007 7.4664e-003 3.5729e-001 8.1278e-003
2 2.9170e+003 1.1771e-001 9.2471e-004 8.9760e-002 1.2424e-013 6.3858e-007 9.2471e-004 8.9760e-002 9.5602e-004
3 1.1497e+004 5.9414e-002 1.1553e-004 2.2497e-002 1.0591e-014 6.9782e-007 1.1553e-004 2.2497e-002 1.2163e-004
4 4.5649e+004 2.9848e-002 1.4458e-005 5.6308e-003 1.0723e-015 7.7674e-007 1.4458e-005 5.6308e-003 1.5319e-005
5 1.8192e+005 1.4960e-002 1.8087e-006 1.4081e-003 7.1763e-017 5.3385e-007 1.8087e-006 1.4081e-003 1.9072e-006
6 7.2634e+005 7.4888e-003 2.2619e-007 3.5213e-004 2.0294e-018 5.1592e-007 2.2619e-007 3.5213e-004 2.3989e-007

Table 9: History of error decay for superP2 finite element in Example 5.2.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 7.1900e+002 1.3548e-001 1.4236e-001 5.6168e+000 8.6498e-005 1.3901e+000 1.4236e-001 5.7863e+000 9.9619e-002
2 2.7910e+003 6.7741e-002 3.6386e-002 2.8362e+000 1.0821e-005 6.8440e-001 3.6386e-002 2.9176e+000 3.8003e-002
3 1.0997e+004 3.3870e-002 9.1713e-003 1.4236e+000 1.3530e-006 3.3946e-001 9.1713e-003 1.4635e+000 1.2806e-002
4 4.3657e+004 1.6935e-002 2.2990e-003 7.1277e-001 1.6915e-007 1.6902e-001 2.2990e-003 7.3254e-001 4.0108e-003
5 1.7397e+005 8.4676e-003 5.7524e-004 3.5654e-001 2.1138e-008 8.4151e-002 5.7524e-004 3.6633e-001 1.2034e-003
6 6.9456e+005 4.2338e-003 1.4385e-004 1.7829e-001 2.3808e-009 3.9000e-002 1.4385e-004 1.8251e-001 3.5092e-004

Table 10: History of error decay for P1 finite element in Example 5.3.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 6.9300e+002 2.4652e-001 1.0908e+000 2.2000e+001 1.4236e-001 3.7969e+001 1.1001e+000 4.3882e+001 1.1504e+000
2 2.6890e+003 1.2326e-001 2.8950e-001 3.7784e+000 1.9147e-002 1.9315e+001 2.9013e-001 1.9681e+001 3.1339e-001
3 1.0593e+004 6.1631e-002 7.4152e-002 1.3219e+000 2.4658e-003 9.7184e+000 7.4193e-002 9.8079e+000 8.0853e-002
4 4.2049e+004 3.0815e-002 1.8743e-002 4.6684e-001 3.1232e-004 4.8716e+000 1.8746e-002 4.8939e+000 2.0535e-002
5 1.6755e+005 1.5408e-002 4.7103e-003 1.6651e-001 3.9280e-005 2.4385e+000 4.7104e-003 2.4442e+000 5.2264e-003
6 6.6893e+005 7.7038e-003 1.1806e-003 6.0217e-002 4.9246e-006 1.2199e+000 1.1806e-003 1.2214e+000 1.3197e-003

Table 11: History of error decay for P2 finite element in Example 5.3.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 6.9300e+002 2.4652e-001 2.2092e-002 1.0674e+000 3.4692e-004 4.2074e+000 2.2095e-002 4.3406e+000 4.5236e-002
2 2.6890e+003 1.2326e-001 2.0117e-003 1.9740e-001 1.5177e-005 1.4783e+000 2.0118e-003 1.4914e+000 5.7106e-003
3 1.0593e+004 6.1631e-002 2.0179e-004 3.9142e-002 6.6688e-007 5.2122e-001 2.0179e-004 5.2269e-001 7.2301e-004
4 4.2049e+004 3.0815e-002 2.1919e-005 8.2960e-003 2.9083e-008 1.8511e-001 2.1919e-005 1.8529e-001 9.1177e-005
5 1.6755e+005 1.5408e-002 2.5418e-006 1.8841e-003 1.7892e-009 6.9612e-002 2.5418e-006 6.9637e-002 1.2292e-005
6 6.6893e+005 7.7038e-003 2.9887e-007 4.5074e-004 8.1327e-011 2.4685e-002 2.9887e-007 2.4689e-002 1.7550e-006

Table 12: History of error decay for isoP2 finite element in Example 5.3.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 6.9300e+002 2.4652e-001 2.2606e-002 1.1980e+000 1.5412e-005 1.0519e+000 2.2606e-002 1.5943e+000 8.4432e-002
2 2.6890e+003 1.2326e-001 2.0882e-003 2.1680e-001 5.6035e-007 2.4717e-001 2.0882e-003 3.2877e-001 9.2766e-003
3 1.0593e+004 6.1631e-002 2.0906e-004 4.1998e-002 2.7710e-008 6.0422e-002 2.0906e-004 7.3584e-002 1.0377e-003
4 4.2049e+004 3.0815e-002 2.2762e-005 8.8773e-003 1.6068e-009 1.4897e-002 2.2762e-005 1.7341e-002 2.2128e-004
5 1.6755e+005 1.5408e-002 2.6934e-006 2.0892e-003 1.0260e-010 4.0132e-003 2.6934e-006 4.5244e-003 2.6740e-005
6 6.6893e+005 7.7038e-003 3.0837e-007 4.9474e-004 2.1163e-013 1.0674e-003 3.0837e-007 1.1764e-003 2.8472e-006

Table 13: History of error decay for superP2 finite element in Example 5.3.

RN dofs h ENL ENH ESL ESH ETL ETH L∞

1 3.1200e+002 4.5021e-001 1.5013e-001 9.9602e-001 3.5685e-002 9.1427e-001 1.5431e-001 1.3520e+000 1.3021e-001
2 1.1740e+003 2.2511e-001 4.1359e-002 5.6411e-001 5.2191e-003 4.8873e-001 4.1687e-002 7.4638e-001 4.0213e-002
3 4.5540e+003 1.1255e-001 1.0765e-002 2.0238e-001 7.0400e-004 2.5209e-001 1.0788e-002 3.2327e-001 1.4732e-002
4 1.7938e+004 5.6277e-002 2.7441e-003 9.7970e-002 9.2300e-005 1.2807e-001 2.7457e-003 1.6124e-001 5.5225e-003
5 7.1202e+004 2.8138e-002 6.9200e-004 4.8683e-002 1.1889e-005 6.4566e-002 6.9211e-004 8.0863e-002 1.8986e-003
6 2.8371e+005 1.4069e-002 1.7358e-004 2.4283e-002 1.5121e-006 3.2420e-002 1.7358e-004 4.0506e-002 6.0919e-004

Table 14: History of error decay for P1 finite element in Example 5.4.
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