
ASC Report No. 42/2011

Mixed Conforming elements for the
large-body limit in micromagnetics: a finite
element approach

M. Aurada, J.M. Melenk, D. Praetorius

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien

www.asc.tuwien.ac.at ISBN 978-3-902627-04-9



Most recent ASC Reports

41/2011 P. Amodio, T. Levitina, G. Settanni, E.B. Weinmüller
On the Calculation of the Finite Hankel Transform Eigenfunctions

40/2011 D.P. Hewett, S. Langdon, J.M. Melenk
A high frequency hp boundary element method for scattering by convex polygons

39/2011 A. Jüngel
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MIXED CONFORMING ELEMENTS FOR THE LARGE-BODY LIMIT IN

MICROMAGNETICS: A FINITE ELEMENT APPROACH

MARKUS AURADA, JENS M. MELENK, AND DIRK PRAETORIUS

Abstract. We introduce a stabilized conforming mixed finite element method for a macroscopic
model in micromagnetics. We show well-posedness of the discrete problem for higher order elements
in two and three dimensions, develop a full a priori analysis for lowest order elements, and discuss
the extension of the method to higher order elements. We introduce a residual-based a posteriori

error estimator and present an adaptive strategy. Numerical examples illustrate the performance
of the method.

1. Introduction

Magnetic storage media, sensors, and magnetic random access memory are just a few every day
examples of the importance of magnetic materials for modern life. In order to better understand
the underlying physical phenomena, which take place on the micro- and even the nanoscale, and
to design new devices that exploit micromagnetic effects, reliable numerical simulations are an
indispensible tool. This need for simulation tools is reflected in a large body of literature. We refer to
the monograph [32] and to the overview articles [12, 28, 33] as well as to the recent works [1, 4, 5, 6].
In this larger context, we study as, for example, [11, 27, 9], a specific reduced model arising in
stationary micromagnetics. This model has been thoroughly analyzed mathematically in [15] and
in [29, 35]. It is worth stressing that the richness of physical micromagnetic phenomena corresponds
to a variety of parameter regimes that lead to other reduced models as discussed in [16].

In rigid ferromagnetic bodies Ω ⊂ R
d, d = 2, 3, the mathematical description of magnetization

states m : Ω → S
d−1 :=

{
x ∈ R

d : |x| = 1
}

goes back to the classical model by Landau and
Lifshitz [8], where the magnetization solves the minimization problem (MPα):

Problem 1.1 (MPα). Given an applied field f ∈ L2(Ω,Rd), find a minimizer m ∈ A′ :=
H1(Ω,Sd−1) :=

{
n ∈ H1(Ω,Rd) : |n(x)| = 1 a.e. in Ω

}
of

(1.1) inf
m∈A′

Eα
f (m), Eα

f (m) := α

∫

Ω
|∇m|2 +

∫

Ω
ϕ ◦m−

∫

Ω
f ·m+

1

2

∫

Rd

|∇u|2.

Here, the magnetic potential u : Rd → R is linked to m through the magnetostatic Maxwell equation

(1.2) div (∇u−mχΩ) = 0 in D′(Rd).

The four terms in the energy functional Eα
f of (1.1) favor different properties of the minimizer.

The first term penalizes rapidly varying structures, where α > 0 denotes a (typically very small)
exchange parameter (length scale). The even function ϕ ∈ C∞(Rd,R≥0) in the second term models
crystallographic properties of the ferromagnet and may be non-convex. The third term with the
applied exterior field f ∈ L2(Ω,Rd) favors magnetizations aligned with f , and the last term is a
measure of divm; we refer to [25] for a detailed discussion of the model and its physical background.

Mathematically, Problem 1.1 (MPα) is a non-convex, full-space minimization problem. For this
problem to be numerically tractable, we have to make several simplifications, which, ultimately, will
lead to our considering the saddle point problem (SPP

Ω̂
) stated in Problem 2.1 and its discrete
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version (SPP
ε,N

Ω̂,σ
) stated in Problem 3.4. Let us comment in more detail on some of the challenges

that arise when trying to discretize Problem 1.1 (MPα) directly and show how the continuous
Problem 2.1 is obtained:

1. Often, the parameter α is small compared to diam(Ω). Features on this length scale are very
hard to resolve numerically. A common approach is then to neglect this contribution to the energy
functional Eα

f . The resulting model with energy functional E0
f is known as the large-body limit in

micromagnetics and useful, for example, to predict virgin magnetization curves; we refer to [15] for
a detailed discussion of this model.

2. The minimization problem of the large-body limit is a non-convex minimization problem due
to the non-convex pointwise length constraint |m(x)| = 1 for almost every x ∈ Ω and the non-convex
anisotropy density ϕ. Additionally, it may not have minimizers, but only infimizing sequences [26].
To overcome this difficulty, one strategy is to relax the problem by convexification [15]: We replace
the anisotropy density ϕ by its lower convex envelope

ϕ∗∗(x) := sup
{
φ(x) : φ : Rd → R convex and φ|Sd−1 ≤ ϕ

}
for x ∈ B

d :=
{
R
d : |x| ≤ 1

}
,

and enlarge the set of admissible functions A′ to

(1.3) A∗ := L2(Ω,Bd) :=
{
n ∈ L2(Ω,Rd) : |n(x)| ≤ 1 a.e. in Ω

}
.

In this new setting, the energy functional E0
f attains its infimum, and its minimizers are precisely the

subsequential weak limits of the infimizing sequences of the non-convex version, [15, Theorem 3.4].
We recall that by [15, Proposition 3.1] we have ϕ∗∗ ∈ C1(Bd) and ϕ∗∗ convex. Moreover, by [15,
Theorem 4.2] solving this convexified minimization problem is equivalent to solving the correspond-
ing Euler-Lagrange equations. Finally, we point the reader to Example 1.3 below, where ϕ∗∗ is
given explicitly for the practically relevant case of “uniaxial” materials.

3. The presence of the full space R
d in the energy functional E0

f and in the side constraint (1.2)

requires special care in discretizations. Following [11], we replace the full space R
d in (1.1) and (1.2)

by a bounded Lipschitz domain Ω̂ containing Ω. Then, the integral over R
d in (1.1) is replaced by

an integral over Ω̂, and the full-space equation (1.2) simplifies to a PDE on the finite domain Ω̂
which has to be supplemented by appropriate boundary conditions. For ease of presentation and
following [11], we use homogeneous Dirichlet conditions.

The above modifications and simplifications lead to a convex minimization problem under a
PDE-constraint, which we call (RMP

Ω̂
):

Problem 1.2 (RMPΩ̂). Find u ∈ H1
0 (Ω̂) and m ∈ A∗ that minimize the energy functional

E∗∗
f ,Ω̂

(m) :=

∫

Ω
ϕ∗∗ ◦m−

∫

Ω
f ·m+

1

2

∫

Ω̂
|∇u|2

under the side constraint

(1.4) div (∇u−mχΩ) = 0 in H−1(Ω̂),

where H−1(Ω̂) := (H1
0 (Ω̂))

′ denotes the dual space of H1
0 (Ω̂).

Problem 1.2 is the continuous problem under consideration in this paper. We will, however, mostly
use its equivalent saddle point formulation (SPPΩ̂) given in Problem 2.1. Existence of solutions
follows by standard arguments in view of the convexity of ϕ∗∗. In practically relevant situations,
however, the function ϕ∗∗ is not strictly convex so that uniqueness is an issue. A prominent example
is that of an “uniaxial” material such as cobalt, where the anisotropy ϕ favors a particular direction
(“easy axis”), given as follows:

2



Example 1.3. Uniaxial materials can be modelled with the aid of the uniaxial anisotropy density

(1.5) ϕ : Sd−1 → R, ϕ(x) =
1

2
(1− (e · x)2),

where e ∈ R
d is a given fixed unit vector, called easy axis [8, 25]. ϕ favors magnetizations m aligned

with e. In this case, the lower convex envelope ϕ∗∗ and its gradient ∇ϕ∗∗ can easily be computed [11]:

ϕ∗∗(x) =
1

2

d−1∑

i=1

(x · zi)2, x ∈ B
d,(1.6)

∇ϕ∗∗(x) =

d−1∑

i=1

(x · zi) zi, x ∈ B
d,(1.7)

where {e, z1, . . . , zd−1} is an orthonormal basis of Rd.

A particular feature of the uniaxial case of Example 1.3 is its lack of strict convexity since it does
not provide any control over the easy-axis component e · m of the magnetization. Nevertheless,
uniqueness can be shown in the uniaxial case by exploiting the PDE-side constraint (1.4). In
Proposition 2.2 below, we briefly recapitulate this non-standard argument, which can also be found
in [11, Theorem 2.1] for 2D and, with a different argument, in [9, Theorem 2.2] for 2D and 3D,
since the mechanisms of the proof are important for the understanding of the behavior of the
discretization.

In the degenerate setting of uniaxial materials, a straightforward discretization of the Euler-
Lagrange equations for Problem 1.2 using conforming lowest order elements loses the uniqueness
assertion of the continuous problem as shown in [11]. Therefore, [11] advocates the use of lowest
order non-conforming elements and shows existence and uniqueness for the discrete system by a
direct analysis of the discrete system. The novelty of the present paper over [11] is twofold: firstly,

it is based on conforming elements (i.e., H1(Ω̂)-conforming elements for the approximation of u

and L2(Ω)-conforming elements for that of m) and shows that optimal order convergence can be
achieved in that setting (under sufficient regularity assumptions); secondly, and more importantly, it
works out a mechanism by which the existence and uniqueness assertions of the continuous problem
can be transferred to the discrete problem. This opens the door to higher order discretizations.

Let us elaborate on the need of stabilization. The first order conditions for the constrained
minimization Problem 1.2 (RMPΩ̂) take the form of a (nonlinear) saddle point problem for the
primal variables (u,m) and a Lagrange multiplier p. It is thus a block 2 × 2 system. On the
continuous level, the (1, 1) block of this 2×2 block system has special properties on the kernel Ker b
of the operator b associated with the linear constraint (1.4). In a straightforward (conforming)
discretization, the discrete kernel KerN b is not necessarily a subspace of the continuous kernel
Ker b and hence, the properties of the continuous problem cannot be used on the discrete level.
This is rectified by our stabilization term σ since it establishes an appropriate connection between
the discrete kernel KerN b and the continuous kernel Ker b. We point out that the choice of the
stabilization term is motivated by augmented Lagrangian methods as discussed, for example, in the
classical monograph [20].

The idea of addressing the instability of conforming discretizations of the Euler-Lagrange equa-
tions for Problem 1.2 (RMPΩ̂) with the aid of stabilization terms has also been pursued in [22].
Whereas the stabilization term of the present paper is consistent, the stabilization term of [22] is
inconsistent in that it penalizes the jump of the tangential component of the magnetization, which,
however, should be allowed to be discontinuous in order to accurately reflect magnetic domains and
domain walls. A completely different approach to dealing with the constraint (1.2) is taken in [9].
There, the constraint (1.2) is completely eliminated by using an explicit representation ∇u = Pm.
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However, as the operator P is non-local, any discretization has to address the issue of the efficient
realization of P, for example, by matrix compression methods such as H-matrices; see [24] for the
general concept of H-matrices and [31] for the particular application to the operator P. As a final
remark on the literature, we mention another approach to dealing with the constraint (1.2). Instead

of replacing the full space R
d with a finite domain Ω̂ and thus incur an additional modelling error,

it is also possible to avoid this error using finite element–boundary element coupling techniques [3].

The remainder of this paper is structured as follows. Starting point for the discretization is the
equivalent saddle point formulation (SPPΩ̂) for Problem 1.2 (RMPΩ̂), which we present in Section 2.
In Section 2.1, we formulate a penalty method to enforce the side constraint |m(x)| ≤ 1 as in
[11, 22, 9]. We formulate the discrete stabilized saddle point problem in Section 3.1 as Problem 3.4

(SPP
ε,N

Ω̂,σ
) and show existence and uniqueness of solutions. Section 3.4 is devoted to the a priori

analysis. A numerical example in Section 3.5 illustrates the a priori convergence results. A reliable
a posteriori error estimator is derived Section 4.1, which forms the basis of an adaptive algorithm.
A numerical example illustrating the performance of this adaptive algorithm is given Section 4.2.

2. The continuous model

We reformulate the minimizing problem (RMP
Ω̂
) as the saddle point problem (SPP

Ω̂
) as follows:

With L2(Ω) := L2(Ω,Rd) let X := H1
0 (Ω̂) × L2(Ω), M := H1

0 (Ω̂), and let 〈• | •〉L2(Ω) be the usual

inner product in L2(Ω). The saddle point formulation (SPP
Ω̂
) then reads:

Problem 2.1 (SPP
Ω̂
). Find (u,m; p) ∈ X ×M and λm ∈ L2(Ω,R≥0) such that

a(u,m; v,n) + b(v,n; p) = 〈f |n〉L2(Ω) for all (v,n) ∈ X,(2.1)

b(u,m; q) = 0 for all q ∈ M,(2.2)

λm(x)(1− |m(x)|) = 0 for almost every x ∈ Ω,(2.3)

under the constraint |m(x)| ≤ 1 a.e. in Ω, where

a(u,m; v,n) := 〈∇u |∇v〉
L2(Ω̂) + 〈∇ϕ∗∗ ◦m+ λmm |n〉L2(Ω),(2.4)

b(u,m; p) := 〈∇u−mχΩ |∇p〉
L(Ω̂).(2.5)

We stress that (2.2) is just the weak formulation of the side constraint (1.4). Next, we show
equivalence of the saddle point formulation (SPPΩ̂) and the minimization problem (RMPΩ̂) as well
as existence of solutions. In general, neither the solution (u,m) ∈ X of (RMPΩ̂) nor the solution
(u,m; p) ∈ X ×M of (SPPΩ̂) is unique. However, as mentioned in the introduction, for the special
case of uniaxial materials (see Example 1.3), uniqueness of the magnetization m can be asserted:

Proposition 2.2 (Equivalence of (SPP
Ω̂
) and (RMP

Ω̂
) & (unique) solvability). The following

statements are true:

(i) The relaxed minimization problem (RMPΩ̂) has solutions.

(ii) The minimization problem (RMPΩ̂) and the saddle point problem (SPPΩ̂) are equivalent.

(iii) The magnetic potential u and the Lagrangian p are uniquely determined in (SPPΩ̂).

(iv) If ϕ∗∗ is given as in Example 1.3 (“uniaxial case”), then problems (RMPΩ̂) and (SPPΩ̂) are
uniquely solvable.

Proof. Proof of (i): The direct method of the calculus of variations is used in [15] to prove
existence of solutions of (RMP ), i.e., the relaxed minimization problem in the full space R

d. The

same argument works when R
d is replaced with Ω̂, which implies the existence of solutions of

(RMP
Ω̂
), cf. [11].
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Proof of (ii): We consider the Euler-Lagrange equation of (RMPΩ̂):

〈∇u+∇ϕ∗∗ ◦m+ λmm |n〉L2(Ω) = 〈f |n〉L2(Ω) for all n ∈ L2(Ω),(2.6)

〈∇u−mχΩ |∇v〉
L2(Ω̂)

= 0 for all v ∈ H1
0 (Ω̂),(2.7)

λm(x)(1− |m(x)|) = 0 for almost every x ∈ Ω.(2.8)

The equivalence of the minimization problem with the Euler-Lagrange equations (2.6) and (2.8)
under the side constraint (1.2) is shown in [15, Theorem 4.2]. Inspection of the procedure there
shows that this equivalence also holds under the side constraint (1.4) or (2.7). A more elementary
proof of this equivalence using methods from convex analysis can be found in [2]. Next, we show
the equivalence of (SPP

Ω̂
) and (2.6)—(2.8). Let (u,m; p) ∈ X × M and λm ∈ L2(Ω,R≥0) be a

solution of (SPP
Ω̂
). The choice n = 0 in (2.1) shows p = −u. With this observation, (2.1) coincides

with equation (2.6), and (2.2) is just (2.7). Conversely, let (u,m) ∈ X and λm ∈ L2(Ω,R≥0) be a
solution of (2.6)—(2.8). As can easily be seen, this triple together with p = −u solves (SPPΩ̂).

Proof of (iii): According to [11], u is unique. We recall the argument for the sake of com-
pleteness. Let (ui,mi; pi) ∈ X ×M and λmi

∈ L2(Ω,R≥0), i = 1, 2, be two solutions of (SPPΩ̂).
Subtracting equations (2.1) and (2.2) yields with the test functions v = u2 − u1, n = m2 −m1 and
q = p2 − p1 the equation

‖∇(u2 − u1)‖2L2(Ω̂)
+ 〈∇ϕ∗∗ ◦m2 −∇ϕ∗∗ ◦m1 |m2 −m1〉L2(Ω)(2.9)

+ 〈λm2
m2 − λm1

m1 |m2 −m1〉L2(Ω) = 0

From the convexity of ϕ∗∗, we get the non-negativity of the second term. Pointwise non-negativity
of the third term was proved in [11, Theorem 2.1]. Hence, all terms vanish and we deduce u2 = u1.
It remains to prove uniqueness of p. Suppose (u,m; pi) ∈ X ×M and λm ∈ L2(Ω,R≥0), i = 1, 2,
to solve (SPPΩ̂). From (2.1) we get

b(v,n; p1 − p2) = 0 for all (v,n) ∈ X.

The desired conclusion p1 = p2 follows from the fact that the bilinear form b satisfies an inf-sup
condition as we now show: With the norms

‖(u,m)‖X :=
(
‖∇u‖2

L2(Ω̂)
+ ‖m‖2

L2(Ω)

)1/2
and ‖q‖M := ‖∇q‖

L2(Ω̂)
,

we obtain for arbitrary q ∈ M \ {0}

sup
(u,m)∈X\{0}

|b(u,m; q)|
‖(u,m)‖X‖q‖M

≥ |b(q, 0; q)|
‖(q, 0)‖X‖q‖M

= 1,

which implies

inf
q∈M\{0}

sup
(u,m)∈X\{0}

|b(u,m; q)|
‖(u,m)‖X‖q‖M

≥ 1 > 0.

Proof of (iv): Using mollifier techniques, [9] proves this assertion for the minimization problem
(RMP ) for the case of a the full space R

d, d = 2, 3. With minor modifications, the proof applies
also to (RMP

Ω̂
); see also [11, Thm. 2.1] for an alternative proof for the case d = 2. Nevertheless, we

sketch the key arguments for the uniqueness of m in order to accentuate what the stabilization needs
to ensure in the discrete method. Letting (ui,mi, pi), i = 1, 2 be two solutions, we proceed as above
to conclude from (2.9) that ‖∇(u2−u1)‖L2(Ω̂)

= 0 and 〈∇ϕ∗∗ ◦m2−∇ϕ∗∗ ◦m1,m2−m1〉L2(Ω) = 0.

The first equality implies u2 = u1. For the second equality, we use the explicit formula for ∇ϕ∗∗
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given in Example 1.3 to get

(2.10)

d−1∑

i=1

‖(m2 −m1) · zi‖2L2(Ω) = 0.

In order to conclude that m2 −m1 = 0, we use the Maxwell equation (2.2): By linearity, we have
b(u2−u1,m2−m1; q) = 0 for all q ∈ M . This means (0,m2−m1) ∈ Kerb, or, written in differential
equation form

(2.11) divmχΩ = 0 in H−1(Ω̂).

Combining (2.10) and (2.11) then implies m2−m1 = 0. This follows by classical calculus if m2−m1

is sufficiently smooth; for the present case of distributions, smoothing arguments have to employed
as shown in [30, Satz 2.12] or [19, Lemma 14]. This concludes the proof. �

2.1. Penalization. The pointwise side constraint |m(x)| ≤ 1 is difficult to enforce numerically.
We will therefore relax this condition using a penalty method as originally used in [11] and later
also in [9, 22]. We assume from now on that ϕ∗∗ is the restriction to B

d of a convex and continuous
differentiable function defined in the full space R

d.
Given a function ε ∈ L∞(Ω,R>0), the penalized problem (RMP ε

Ω̂
) is then: Find minimizer(s)

m ∈ L2(Ω) of

(2.12) min
m∈L2(Ω)

E
∗∗,ε

f ,Ω̂
(u,m), E

∗∗,ε

f ,Ω̂
(u,m) :=

∫

Ω
ϕ∗∗◦m−

∫

Ω
f ·m+

1

2

∫

Ω̂
|∇u|2+1

2

∫

Ω

(|m| − 1)2+
ε

where the potential u ∈ H1
0 (Ω̂) is the unique solution of the side constraint

(2.13) 〈∇u−mχΩ |∇v〉
L2(Ω̂)

for all v ∈ H1
0 (Ω̂).

Later on, the penalization parameter ε will be related to be the local mesh-size in the discrete
version of (2.12). We mention that E∗∗,ε

f ,Ω̂
is convex, continuous, Gâteaux differentiable and coercive.

In particular, the direct method of the calculus of variations proves that (RMP ε
Ω̂
) has solutions,

and Proposition 2.2 holds accordingly. Details are left to the reader.

3. The discrete problem

3.1. Notation. Let T̂ := {K1, . . . ,KM̂
} denote an affine, regular, γ-shape regular triangulation

of Ω̂ and its restriction to Ω, T := T̂ |Ω :=
{
K ∈ T : K ⊂ Ω

}
= {K1, . . . ,KM} be a triangulation

of Ω. The spaces of scalar-valued or vector-valued polynomials of (total) degree k on an element K

are denoted Pk(K) and Pk(K;Rd). Introduce the scalar-valued spaces

Sk,1(T̂ ) :=
{
u ∈ H1(Ω̂) : u|K ∈ Pk(K), for all K ∈ T̂

}
⊂ H1(Ω̂),

S
k,1
0 (T̂ ) := Sk,1(T̂ ) ∩H1

0 (Ω̂),

of globally continuous, T̂ -piecewise polynomials of degree k. The scalar-valued and vector-valued
spaces of T -piecewise polynomials of degree k are denoted by

Sk,0(T ) :=
{
u ∈ L2(Ω) : u|K ∈ Pk(K), for all K ∈ T

}
⊂ L2(Ω),

Sk,0(T ) :=
{
m ∈ L2(Ω) : m|K ∈ Pk(K,Rd), for all K ∈ T

}
⊂ L2(Ω)

In addition, we use the abbreviations Xk
N := S

k,1
0 (T̂ ) × Sk−1,0(T ) ⊂ X and Mk

N := S
k,1
0 (T̂ ) ⊂ M

with k ≥ 1.
6



3.2. An unstable saddle point formulation. We formulate now a discrete version of the saddle
point problem (SPPΩ̂). The starting point is the minimization of the penalized energy functional

E
∗∗,ε

f ,Ω̂
(u,m) on the discrete space Xk

N . More specifically, the minimization problem (RMP
ε,N

Ω̂
) is:

Find (uN ,mN ) ∈ Xk
N such that E

∗∗,ε

f ,Ω̂
is minimized under the side constraint

(3.1) b(uN ,mN ; q) = 0 ∀q ∈ Mk
N .

The Lagrangian associated with this constrained minimization problem is

(3.2) Lε(u,m; p) := E
∗∗,ε

f ,Ω̂
(u,m) + b(u,m; p) for all (u,m) ∈ Xk

N , p ∈ Mk
N .

The solution of the constrained minimization problem is the stationary point of the Lagrangian Lε.
The derivatives of Lε can be computed explicitly leading to the following formulation, if we select
ε to be a T -piecewise constant function:

Problem 3.1 (SPPε,N

Ω̂
). Let ε ∈ S0,0(T ) and ε > 0. Find (uN ,mN ; pN ) ∈ Xk

N ×Mk
N such that

aN (uN ,mN ; v,n) + b(v,n; pN ) = 〈f |n〉L2(Ω) for all (v,n) ∈ Xk
N ,(3.3)

b(uN ,mN ; q) = 0 for all q ∈ Mk
N ,(3.4)

where we set

aN (uN ,mN ; v,n) := 〈∇uN |∇v〉
L2(Ω̂) + 〈∇ϕ∗∗ ◦mN + λNmN |n〉L2(Ω),(3.5)

λN :=
(|mN | − 1)+

ε|mN | .(3.6)

Compared with the continuous formulation in Problem 2.1, the main difference is that the con-
tinuous Lagrange multiplier λm ∈ L2(Ω,R≥0), characterized by the condition (2.3), is replaced by
the term (3.6).

Since the minimization problem (RMP
ε,N

Ω̂
) has solutions, it is easy to show via the Euler-Lagrange

equation that (SPP
ε,N

Ω̂
) also has solutions. Here, the existence and uniqueness of the Lagrange

parameter pN follows from a discrete inf-sup condition of the bilinear form b in the same way as in
the proof of Lemma 2.2. Reviewing the arguments of Lemma 2.2 also shows the uniqueness of uN .
Uniqueness of mN , however, cannot be ensured by repeating the arguments of the continuous case
presented in Proposition 2.2 since Ker bN 6⊂ Ker b, where we define the kernels

Ker b :=
{
(u,m) ∈ X : b(u,m; q) = 0 for all q ∈ H1

0 (Ω̂)
}
,

KerN b :=
{
(uN ,mN ) ∈ Xk

N : b(uN ,mN ; q) = 0 for all q ∈ Mk
N

}
.

This lack of uniqueness expresses the fact that the discrete formulation is unstable. Stability can
be obtained by adding a stabilization term as shown in the following section.

3.3. A stable saddle point formulation. In order to ensure uniqueness of a solution (uN ,mN ) ∈
Xk

N of the discrete problem, we add a suitable stabilization term σ to the term aN . To that end,
we define the augmented Lagrangian as

(3.7) Laug(u,m; p) := E
∗∗,ε

f ,Ω̂
(u,m) + b(u,m; p) +

1

2
σ(u,m;u,m),
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where the stabilizing bilinear form σ is defined by

σ(u,m; v,n) :=
∑

K∈T

h2K

∫

K
∇ · (∇u−m)∇ · (∇v − n)

+
∑

E∈E

hE

∫

E
[(∇u−mχΩ) · ν]E [(∇v − nχΩ) · ν]E.

(3.8)

Here, E denotes the set of edges (d = 2) or faces (d = 3) of the elements of the triangulation T of
Ω. Moreover, [•]E denotes the jump across an edge or face E and ν the normal vector of E, i.e.

[(∇u−mχΩ) · ν]E := (∇u−mχΩ)|K ′ · νK ′ + (∇u−mχΩ)|K ′′ · νK
′′

on the edge (or face) E = K ′ ∩K
′′ ∈ E , which is the intersection of uniquely determined elements

K ′,K
′′ ∈ T̂ . νK ′ and νK ′′ denote the exterior normal vectors of K ′ and K

′′

respectively. Finally,
we denote with hE and hK the diameter of an edge (or face) E and an element K.

Lemma 3.2 (Stabilizing bilinear form). The bilinear form σ(•; •) defined in (3.8) is positive semi-
definite, symmetric, and consistent, i.e., the exact solution (u,m) ∈ X satisfies σ(u,m; v,n) = 0
for all (v,n) ∈ Xk

N . Moreover, there holds the estimate

(3.9) ‖div (∇u−mχΩ)‖2H−1(Ω̂)
. σ(u,m;u,m) + ‖∇u‖2

L2(Ω̂\Ω)
for all (u,m) ∈ KerN b.

Remark 3.3. Estimate (3.9) provides a connection between the discrete kernel KerN b and the
continuous kernel Ker b. It is this link between Ker b and KerN b that is the essential ingredient of
the uniqueness assertion of Theorem 3.5 below for the stabilized discrete problem.

Proof of Lemma 3.2. Clearly, σ is symmetric and positive semi-definite. To see the consistency, we

note that (1.4) implies ∇u−mχΩ ∈ H(div; Ω̂,Rd) with div (∇u−mχΩ) = 0. Hence, div (∇u−m) =

0 a.e. in Ω. Furthermore, since ∇u − mχΩ ∈ H(div; Ω̂,Rd), its normal trace is in H−1/2(E) for

each edge (or face, if d = 3) E and [(∇u −m) · ν]E = 0 ∈ H−1/2(E). Hence, [(∇u −m) · ν]E = 0
a.e. on E ∈ E .

To prove the estimate (3.9), we employ the Clément interpolant operator IN : H1
0 (Ω̂) → S

k,1
0 (T̂ )

of [13]. Given (u,m) ∈ KerN b, we estimate

‖div (∇u−mχΩ)‖H−1(Ω̂)
≤ sup

q∈H1

0
(Ω̂)\{0}

∣∣〈∇u−mχΩ |∇q〉
L2(Ω̂)

∣∣

‖∇q‖
L2(Ω̂)

= sup
q∈H1

0
(Ω̂)\{0}

∣∣〈∇u−mχΩ |∇(q − INq)〉
L2(Ω̂)

∣∣

‖∇q‖
L2(Ω̂)

≤ sup
q∈H1

0
(Ω̂)\{0}

∣∣〈∇u−m |∇(q − INq)〉L2(Ω)

∣∣ +
∣∣〈∇u |∇(q − INq)〉

L2(Ω̂\Ω)

∣∣

‖∇q‖
L2(Ω̂)

≤ sup
q∈H1

0
(Ω̂)\{0}

∑
K∈T

∣∣〈(∇u−m) · ν | q − INq〉L2(∂K)

∣∣ + C‖∇u‖
L2(Ω̂\Ω)

‖∇q‖
L2(Ω̂)

‖∇q‖
L2(Ω̂)

Application of standard properties of the Clément interpolant yields the claimed result (3.9). We
omit the details. �

We now formulate the stabilized discrete saddle point problem (SPP
ε,N

Ω̂,σ
):
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Problem 3.4 (SPP
ε,N

Ω̂,σ
). Find (uN ,mN ) ∈ Xk

N , pN ∈ Mk
N such that

aσN (uN ,mN ; v,n) + b(v,n; pN ) = 〈f |n〉L2(Ω) for all (v,n) ∈ Xk
N ,(3.10)

b(uN ,mN ; q) = 0 for all q ∈ Mk
N(3.11)

with aσN (uN ,mN ; v,n) := aN (uN ,mN ; v,n) + σ(uN ,mN ; v,n).

The following theorem states existence and uniqueness of the solution (uN ,mN , pN ) of the sta-
bilized discrete saddle point problem.

Theorem 3.5 (Stability and (unique) solvability of discrete saddle point problem (SPP
ε,N

Ω̂,σ
)). The

following statements are true:

(i) The discrete problem (SPP
ε,N

Ω̂,σ
) has solutions.

(ii) The magnetic potential uN and the Lagrangian pN are uniquely determined in (SPP
ε,N

Ω̂,σ
).

(iii) If ϕ∗∗ is given as in Example 1.3 (“uniaxial case”), the discrete problem (SPP
ε,N

Ω̂,σ
) is uniquely

solvable.

Proof. Existence of solutions (uN ,mN , pN ) for (SPP
ε,N

Ω̂,σ
) as well as uniqueness of un and pN follow

as in the continuous case, see Proposition 2.2. Thus, it only remains to prove uniqueness of mN

for the uniaxial case: Let (uN,i,mN,i; pN,i), for i = 1, 2 be solutions of (SPP
ε,N

Ω̂,σ
). We use the

abbreviations eu := uN,2 − uN,1, em := mN,2 −mN,1 and ep := pN,2 − pN,1. From (3.11) we obtain

(3.12) 〈∇eu − emχΩ |∇q〉
L2(Ω̂)

= 0 for all q ∈ Mk
N ,

and hence (eu,em) ∈ KerN b. The key step is now to show that (eu,em) ∈ Ker b since then the
same arguments as in the continuous case can be employed to show uniqueness.

Equation (3.10) with v := eu and n := em together with (3.12) and q = ep shows

‖∇eu‖2L2(Ω̂)
+

d−1∑

i=1

‖em ·zi‖2L2(Ω)+ 〈λN,2mN,2−λN,1mN,1 |em〉L2(Ω)+σ(eu,em; eu,em) = 0.

In [11, Theorem 3.1], it is shown that (λN,2mN,2−λN,1mN,1) ·em ≥ 0 pointwise almost everywhere
in Ω. Non-negativity of the bilinear form σ(•; •) now leads to eu = 0 and em · zi = 0 almost

everywhere in Ω̂ and Ω respectively. Furthermore,

‖div (∇eu − emχΩ)‖2H−1(Ω̂)
. σ(eu,em; eu,em) + ‖∇eu‖2L2(Ω̂\Ω)

= 0

shows (eu,em) ∈ Ker b. In particular, we get together with eu = 0

(3.13) div emχΩ = 0 in H−1(Ω̂) and hence div emχΩ = 0 in L2(Rd).

This observation combined with em ·zi = 0, i = 1, . . . , d−1, enables us to prove emχω = 0 on R
d by

smoothing techniques as first noted in [30, Satz 2.12]. Hence, we have uniqueness of mN . Finally,
the discrete inf-sup condition of the bilinear form b ensures uniqueness of the Lagrange multiplier
pN . �

3.4. A priori error estimation. In this section, we present a full a priori error analysis for
the lowest order case k = 1, in Theorem 3.6 for general functions ϕ∗∗ and in Theorem 3.7 for the
special case of uniaxial materials given in Example 1.3. In both theorems, the continuous problem

is understood to be (SPP
Ω̂
) and the discrete problem (SPP

ε,N

Ω̂,σ
). We begin with a general a priori

estimate for arbitrary anisotropy densities ϕ∗∗, for which we can establish convergence O(h +
√
ε)

for the lowest order discretization (under smoothness assumptions).
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Theorem 3.6 (A priori estimate). Let (u,m, p) and (uN ,mN , pN ) be solutions of Problem 2.1

(SPPΩ̂) and Problem 3.4 (SPP
ε,N

Ω̂,σ
) with k = 1, i.e., X1

N = S
1,1
0 (T̂ )× S0,0(T ) and M1

N = S
1,1
0 (T̂ ).

The following a priori estimate holds for all uT , pT ∈ S
1,1
0 (T̂ ) and for all mT ∈ S0,0(T ):

‖∇(u− uN )‖2
L2(Ω̂)

+ 〈∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN |m−mN 〉L2(Ω)

+ |(u− uN ,m−mN )|2σ + ‖∇(p − pN )‖2
L2(Ω̂)

≤ C1C
2
σ

{(
1 +

δ1 + δ2

δ1δ2
+ C2

σ

)(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)

+ |(u− uT ,m−mT )|2σ + δ1‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2
L2(Ω)

+ δ2‖λmm− λNmN‖2
L2(Ω)

+ C2
γ‖p− pT ‖2T̂ + ‖ε1/2λmm‖2

L2(Ω)
− ‖ε1/2λNmN‖2

L2(Ω)

}
.

(3.14)

The constant Cγ = Cγ(Ω̂, T̂ ) > 0 depends only on the domain Ω̂ and the shape regularity of the

triangulation T̂ . Cσ > 0 is the same constant as in (3.22). The positive constants δ1, δ2 > 0 can be
chosen arbitrarily small, and C1 > 0 is an absolute constant. The mesh-dependent norm ‖p− pT ‖T̂
is defined by

(3.15) ‖p− pT ‖2T̂ :=
∑

K∈T̂

{
h−2
K ‖p − pT ‖2L2(K) + ‖∇(p − pT )‖2L2(K)

}
.

In the uniaxial case, the upper bound is now improved to O(h + ε). The power of h is optimal
for lowest-order elements k = 1. The power of ε is empirically optimal as is seen from numerical
experiments, cf. Section 3.5.

Theorem 3.7 (A priori estimate for uniaxial case). Assume in addition to the hypotheses of The-
orem 3.6 that

(3.16) C0‖∇ϕ∗∗ ◦m1 −∇ϕ∗∗ ◦m2‖2L2(Ω)
≤ 〈∇ϕ∗∗ ◦m1 −∇ϕ∗∗ ◦m2 |m1 −m2〉L2(Ω).

Then there holds the a priori estimate

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2
L2(Ω)

+ ‖λmm− λNmN‖2
L2(Ω)

+ |(u− uN ,m−mN )|2σ + ‖∇(p − pN )‖2
L2(Ω̂)

≤ 2C2

(
1 + C2‖ε‖L∞(Ω)

){
C3

(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)

+ |(u− uT ,m−mT )|2σ + C2
γ‖p − pT ‖2T̂ + ‖λmm−Π(λmm)‖2

L2(Ω)

}

+ 4C2
2‖ε‖L∞(Ω)‖ε1/2λmm‖2

L2(Ω)
,

(3.17)

where Π : L2(Ω) ։ S0,0(T ) denotes the L2(Ω)-orthogonal projection. The constants C2, C3 > 0

are defined by C2 := 4(1 + 6C2
σ)

C1C2
σ

C0
and C3 := 1 + 6(1 + 4C2

σ)
C1C2

σ

C0
+ C2

σ with C1, Cσ, Cγ > 0 of
Theorem 3.6.

Corollary 3.8. In addition to the assumptions of Theorems 3.6 and 3.7, assume for the solution

(u,m, p, λm) of problem (SPP
Ω̂
) the regularity assertions u, p ∈ H2(Ω̂), m ∈ H1(Ω,Rd) as well as

λmm ∈ H1(Ω,Rd). Then, with h := max
K∈T̂

hK :

‖∇(u− uN )‖
L2(Ω̂) + ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖L2(Ω) + ‖λmm− λNmN‖L2(Ω)

+ |(u− uN ,m−mN )|σ + ‖∇(p − pN )‖
L2(Ω̂)

= O
(
h+ ‖ε‖L∞(Ω)

)
.

(3.18)
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Proof. Let Iu, Ip ∈ S
1,1
0 (T̂ ) be the piecewise linear nodal interpolants of u and p. The result then

follows from (3.17) with the choices uT = Iu, pT = Ip and mT = Πm. �

We start by formulating the Galerkin orthogonalities available to us: Subtracting (3.10) from
(2.1) and (3.11) from (2.2) yields together with the consistency of σ the two relations

〈∇(u− uN ) |∇vN 〉
L2(Ω̂)

+ 〈∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN |nN 〉L2(Ω)

+ 〈λmm− λNmN |nN 〉L2(Ω) + 〈∇vN − nNχΩ |∇(p − pN )〉
L2(Ω̂)

+ σ(u− uN ,m−mN ; vN ,nN ) = 0 for all (vN ,nN ) ∈ Xk
N ,

(3.19)

and

〈∇(u− uN )− (m−mN )χΩ |∇qN 〉
L2(Ω̂)

= 0, for all qN ∈ Mk
N(3.20)

The symmetric positive semi-definite bilinear form σ of (3.8) introduces a seminorm | · |σ in the
standard way by

|(u,m)|2σ := σ(u,m;u,m).

We notice the Cauchy-Schwarz inequality for all (u,m), (v,n) with finite semi-norm:

(3.21) σ(u,m; v,n) ≤ |(u,m)|σ |(v,n)|σ.
Furthermore, we have the following inverse estimate:

Lemma 3.9. There exists Cσ > 0 depending only on the shape-regularity of T̂ and k such that

|(uN ,mN )|2σ ≤ C2
σ(‖∇uN‖2

L2(Ω̂)
+ ‖mN‖2

L2(Ω)
) for all (uN ,mN ) ∈ Xk

N .(3.22)

Proof. The estimate (3.22) follows from transformation to the reference element and norm equiva-
lence on finite dimensional spaces on the reference element. �

We will use the following abbreviations:

(3.23)
d := ∇ϕ∗∗ ◦m, dN := ∇ϕ∗∗ ◦mN ,

l := λmm, lN := λNmN .

Proof of Theorem 3.6. First, in step 1 to step 8, it is convenient to look only for an estimate in
the discrete constrained space KerN b. So consider first elements (u⋆T ,m

⋆
T ) ∈ KerNb instead of

elements in the whole approximation space X1
N . Later on in step 9, it will be shown how to get an

estimate for arbitrary (uT ,mT ) ∈ X1
N in the sense of a best approximation result.

Step 1: The Galerkin orthogonality (3.19) with vN = u⋆T − uN and nN = m⋆
T −mN yields

‖∇(u⋆T − uN )‖2
L2(Ω̂)

+ 〈d− dN |m−mN 〉L2(Ω)

+ 〈l − lN |m−mN 〉L2(Ω) + |(u⋆T − uN ,m⋆
T −mN )|2σ

= 〈∇(u⋆T − u) |∇(u⋆T − uN )〉
L2(Ω̂) + 〈d− dN |m−m⋆

T 〉L2(Ω)

+ 〈l − lN |m−m⋆
T 〉L2(Ω) − 〈∇(u⋆T − uN )− (m⋆

T −mN )χΩ |∇(p− pN )〉
L2(Ω̂)

+ σ(u⋆T − u,m⋆
T −m;u⋆T − uN ,m⋆

T −mN ).

(3.24)

Step 2: We claim∣∣〈∇(u⋆T − uN )− (m⋆
T −mN )χΩ |∇(p − pN )〉

L2(Ω̂)

∣∣

≤ Cγ

{
|(u⋆T − uN ,m⋆

T −mN )|2σ + ‖∇(u⋆T − uN )‖2
L2(Ω̂)

}1/2
‖p − pT ‖T̂

(3.25)

for arbitrary pT ∈ M1
N = S

1,1
0 (T̂ ) and a constant Cγ = Cγ(Ω̂, T̂ ) which depends only on the domain

Ω̂ and the shape regularity of the triangulation T̂ .
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Note first with (u⋆T ,m
⋆
T ), (uN ,mN ) ∈ KerN b the validity of

〈∇(u⋆T − uN )− (m⋆
T −mN )χΩ |∇(pT − pN )〉

L2(Ω̂)
= b(u⋆T − uN ,m⋆

T −mN ; pT − pN ) = 0.

With this the proof of step 2 starts by expanding

〈∇(u⋆T − uN )− (m⋆
T −mN )χΩ |∇(p− pN )〉

L2(Ω̂)

= 〈∇(u⋆T − uN )− (m⋆
T −mN )χΩ |∇(p− pT )〉L2(Ω̂)

+ b(u⋆T − uN ,m⋆
T −mN ; pT − pN )

=
∑

K∈T̂

∫

K

(
∇(u⋆T − uN )− (m⋆

T −mN )χΩ

)
· ∇(p− pT ).

Using integration by parts, where Ê int denotes all edges (or faces) of elements of T̂ that lie within

Ω̂, we see

=
∑

K∈T̂

−
∫

K
∇ ·

(
∇(u⋆T − uN )− (m⋆

T −mN )χΩ

)
(p− pT )

+
∑

E∈Ê int

∫

E

[
ν ·

(
∇(u⋆T − uN )− (m⋆

T −mN )χΩ

)]
E
(p − pT ).

Applying Cauchy-Schwarz inequality twice, we obtain

≤
√∑

K∈T̂

h2K

∥∥∇ ·
(
∇(u⋆T − uN )− (m⋆

T −mN )χΩ

)∥∥2
L2(K)

√∑

K∈T̂

h−2
K ‖p − pT ‖2L2(K)

+

√ ∑

E∈Ê int

hE
∥∥[ν ·

(
∇(u⋆T − uN )− (m⋆

T −mN )χΩ

)]
E

∥∥2
L2(E)

√ ∑

E∈Ê int

h−1
E ‖p− pT ‖2L2(E)

.

By γ-shape regularity of T̂ , there holds hE ∼ hK uniformly for all K ∈ T̂ and edges/faces E ∈ Ê int

of K. The trace theorem together with a scaling argument shows for both cases d = 2, 3

h−1
K ‖p− pT ‖2L2(∂K) . h−2

K ‖p − pT ‖2L2(K) + ‖∇(p− pT )‖2L2(K)
.

Hence, we get
∑

E∈Ê int

h−1
E ‖p− pT ‖2L2(E) .

∑

K∈T̂

h−1
K ‖p − pT ‖2L2(∂K) . ‖p − pT ‖2T̂ .

Together with the definition of σ in (3.8), this leads to

〈∇(u⋆T − uN )− (m⋆
T −mN )χΩ |∇(p− pN )〉

L2(Ω̂)

.
{
|(u⋆T − uN ,m⋆

T −mN )|2σ + ‖∇(u⋆T − uN )‖2
L2(Ω̂\Ω̄)

}1/2
‖p − pT ‖L2(T̂ )

.

This completes the proof of step 2.
Step 3: We now assert with the same constant Cγ as in step 2

1

4
‖∇(u⋆T − uN )‖2

L2(Ω̂)
+ 〈d− dN |m−mN 〉L2(Ω) +

1

4
|(u⋆T − uN ,m⋆

T −mN )|2σ

≤ 1

2
‖∇(u⋆T − u)‖2

L2(Ω̂)
+ 〈d− dN |m−m⋆

T 〉L2(Ω) + 〈l − lN |m−m⋆
T 〉L2(Ω)

+ C2
γ‖p − pT ‖2T̂ +

1

2
‖ε1/2l‖2

L2(Ω)
− 1

2
‖ε1/2lN‖2

L2(Ω)
+

1

2
|(u⋆T − u,m⋆

T −m)|2σ .

(3.26)
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To see this, we use the bound

(3.27)
1

2
ελ2

N |mN |2 − 1

2
ελ2

m|m|2 ≤ (l − lN ) · (m−mN ) a.e. in Ω,

of [11, Proof of Theorem 4.3] in (3.24), insert (3.25) and apply the Young inequality to get

‖∇(u⋆T − uN )‖2
L2(Ω̂)

+ 〈d− dN |m−mN 〉L2(Ω) + |(u⋆T − uN ,m⋆
T −mN )|2σ

≤ 〈∇(u⋆T − u) |∇(u⋆T − uN )〉
L2(Ω̂) + 〈d− dN |m−m⋆

T 〉L2(Ω) + 〈l − lN |m−m⋆
T 〉L2(Ω)

+
∣∣〈∇(u⋆T − uN )− (m⋆

T −mN )χΩ |∇(p− pN )〉
L2(Ω̂)

∣∣− 〈l − lN |m−mN 〉L2(Ω)

+ σ(u⋆T − u,m⋆
T −m;u⋆T − uN ,m⋆

T −mN )

≤ 1

2
‖∇(u⋆T − u)‖2

L2(Ω̂)
+

1

2
‖∇(u⋆T − uN )‖2

L2(Ω̂)
+ 〈d− dN |m−m⋆

T 〉L2(Ω)

+ 〈l − lN |m−m⋆
T 〉L2(Ω) +

δ

2

{
|(u⋆T − uN ,m⋆

T −mN )|2σ + ‖∇(u⋆T − uN )‖2
L2(Ω̂)

}

+
C2
γ

2δ
‖p − pT ‖2T̂ +

1

2
‖ε1/2l‖2

L2(Ω)
− 1

2
‖ε1/2lN‖2

L2(Ω)

+
1

2
|(u⋆T − u,m⋆

T −m)|2σ +
1

2
|(u⋆T − uN ,m⋆

T −mN )|2σ .

By collecting the terms |(u⋆T − uN ;m⋆
T −mN )|2σ and ‖∇(u⋆T − uN )‖2

L2(Ω̂)
on the left-hand side and

choosing δ = 1
2 , we obtain (3.26).

Step 4: We show now that

1

8
‖∇(u− uN )‖2

L2(Ω̂)
+ 〈d− dN |m−mN 〉L2(Ω) +

1

4
|(u⋆T − uN ,m⋆

T −mN )|2σ

≤ 3

4
‖∇(u− u⋆T )‖2L2(Ω̂)

+ 〈d− dN |m−m⋆
T 〉L2(Ω) + 〈l − lN |m−m⋆

T 〉L2(Ω)

+ C2
γ‖p − pT ‖2T̂ +

1

2
‖ε1/2l‖2

L2(Ω)
− 1

2
‖ε1/2lN‖2

L2(Ω)
+

1

2
|(u⋆T − u,m⋆

T −m)|2σ .

(3.28)

A triangle and a Young inequality show

1

8
‖∇(u− uN )‖2

L2(Ω̂)
≤ 1

4
‖∇(u− u⋆T )‖2L2(Ω̂)

+
1

4
‖∇(u⋆T − uN )‖2

L2(Ω̂)
.

This together with (3.26) gives the claimed estimate.
Step 5: This step shows the validity of

‖∇(u− uN )‖2
L2(Ω̂)

+ 〈d− dN |m−mN 〉L2(Ω) + |(u⋆T − uN ,m⋆
T −mN )|2σ

≤ 6‖∇(u− u⋆T )‖2L2(Ω̂)
+ 4δ1‖d− dN‖2

L2(Ω)
+ 4δ2‖l − lN‖2

L2(Ω)

+
4(δ1 + δ2)

δ1δ2
‖m−m⋆

T ‖2L2(Ω)
+ 8C2

γ‖p− pT ‖2T̂ + 4
{
‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)

}

+ 4|(u⋆T − u,m⋆
T −m)|2σ ,

(3.29)

with arbitrary small δ1, δ2 > 0.
13



Recall the convexity of ϕ∗∗, which guarantees 〈d− dN |m−mN 〉L2(Ω) ≥ 0. Applying two times

a Young inequality to the right-hand side of (3.28) shows for arbitrary positive constants δ1, δ2

1

8

{
‖∇(u− uN )‖2

L2(Ω̂)
+ 〈d− dN |m−mN 〉L2(Ω) + |(u⋆T − uN ,m⋆

T −mN )|2σ
}

≤ 3

4
‖∇(u− u⋆T )‖2L2(Ω̂)

+
δ1

2
‖d− dN‖2

L2(Ω)
+

δ2

2
‖l − lN‖2

L2(Ω)

+
( 1

2δ1
+

1

2δ2

)
‖m−m⋆

T ‖2L2(Ω)
+ C2

γ‖p − pT ‖2T̂

+
1

2
‖ε1/2l‖2

L2(Ω)
− 1

2
‖ε1/2lN‖2

L2(Ω)
+

1

2
|(u⋆T − u,m⋆

T −m)|2σ.

Multiplying through by a factor 8 gives (3.29).
Step 6: In this step, we control the error contribution |(u− uN ,m−mN )|σ by showing

1

2

{
‖∇(u− uN )‖2

L2(Ω̂)
+ 〈d− dN |m−mN 〉L2(Ω) + |(u− uN ,m−mN )|2σ

}

≤ 6‖∇(u− u⋆T )‖2L2(Ω̂)
+ 4δ1‖d− dN‖2

L2(Ω)
+ 4δ2‖l − lN‖2

L2(Ω)

+
4(δ1 + δ2)

δ1δ2
‖m−m⋆

T ‖2L2(Ω)
+ 8C2

γ‖p− pT ‖2T̂ + 4
{
‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)

}

+ 5|(u⋆T − u,m⋆
T −m)|2σ ,

(3.30)

This can be easily seen by adding the term |(u⋆T − u,m⋆
T − m)|2σ to both sides of (3.29). A

triangle inequality now gives

1

2
|(u− uN ,m−mN )|2σ ≤ |(u⋆T − u,m⋆

T −m)|2σ + |(u⋆T − uN ,m⋆
T −mN )|2σ,

which shows (3.30).
Step 7: We now estimate ‖∇(p − pN )‖

L2(Ω̂)
. For this, we note that a special situation of the

discrete LBB condition applies, namely,

‖∇(pT − pN )‖
L2(Ω̂)

=
|b(pT − pN ,0 ; pT − pN )|

‖∇(pT − pN )‖
L2(Ω̂)

≤ sup
vN∈Sk,1

0
(Ω̂)

|b(vN ,0 ; pT − pN )|
‖∇vN‖

L2(Ω̂)

= sup
vN∈Sk,1

0
(Ω̂)

|〈∇vN |∇(pT − p)〉
L2(Ω̂)

+ 〈∇vN |∇(p − pN )〉
L2(Ω̂)

|
‖∇vN‖

L2(Ω̂)

.

The Galerkin orthogonality (3.19) with nN = 0 shows

〈∇vN |∇(p − pN )〉
L2(Ω̂) = −〈∇(u− uN ) |∇vN 〉

L2(Ω̂) − σ(u− uN ,m−mN ; vN ,0 ).

Using the Cauchy-Schwarz inequality together with Lemma 3.9 and the constant Cσ therein, one
gets

‖∇(pT − pN )‖
L2(Ω̂)

≤ ‖∇(pT − p)‖
L2(Ω̂)

+ ‖∇(u− uN )‖
L2(Ω̂)

+ Cσ|(u− uN ,m−mN )|σ.

From now on we want to suppress non-critical coefficients arising e.g. from certain Young inequalities
with a . symbol. We estimate ‖∇(u−uN )‖

L2(Ω̂)+Cσ|(u−uN ,m−mN )|σ with (3.30). Furthermore

we use from Definition (3.15) the trivial estimate ‖∇(p − pT )‖2
L2(Ω̂)

≤ ‖∇(p − pT )‖2T̂ . Altogether

14



we get

‖∇(p− pN )‖2
L2(Ω̂)

≤
{
‖∇(p− pT )‖L2(Ω̂) + ‖∇(pT − pN )‖

L2(Ω̂)

}2

. C2
σ

{
‖∇(u− u⋆T )‖2L2(Ω̂)

+ δ1‖d− dN‖2
L2(Ω)

+ δ2‖l − lN‖2
L2(Ω)

+
δ1 + δ2

δ1δ2
‖m−m⋆

T ‖2L2(Ω)

+ C2
γ‖p − pT ‖2T̂ + ‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)
+ |(u⋆T − u,m⋆

T −m)|2σ
}
.

Step 8: In this step, the best approximation result in the constrained space KerN b is stated.
Note first that the results of step 6 and step 7 are valid for all (u⋆T ,m

⋆
T ) ∈ KerN b. Adding these

results we obtain

‖∇(u− uN )‖2
L2(Ω̂)

+ 〈d− dN |m−mN 〉L2(Ω) + |(u− uN ,m−mN )|2σ + ‖∇(p − pN )‖2
L2(Ω̂)

. C2
σ inf
(u⋆

T
,m⋆

T
)∈KerN b

{
‖∇(u− u⋆T )‖2L2(Ω̂)

+
δ1 + δ2

δ1δ2
‖m−m⋆

T ‖2L2(Ω)
+ |(u⋆T − u,m⋆

T −m)|2σ
}

+ C2
σ

{
δ1‖d− dN‖2

L2(Ω)
+ δ2‖l − lN‖2

L2(Ω)
+ C2

γ‖p− pT ‖2T̂
+ ‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)

}
.

(3.31)

Step 9: As mentioned at the beginning of the proof, in this step an estimate in the whole
approximation space X1

N will be given. So let arbitrary but fixed elements (uT ,mT ) ∈ X1
N be

given. We consider the problem to find (rN , sN ) ∈ X1
N such that

(3.32) b(rN , sN ; qN ) = b(u− uT ,m−mT ; qN )

holds for all qN ∈ M1
N . Since the LBB condition for the bilinear form also holds in the discrete

spaces, i.e.

inf
p∈M1

N

sup
(u,m)∈X1

N

b(u,m; p)

‖(u,m)‖X‖p‖M
≥ 1,

there exists a unique element (rN , sN ) ∈ (KerN b)⊥ solving (3.32) with the additional property

‖(rN , sN )‖X ≤ ‖b(u− uT ,m−mT ; •)‖M∗
N
≤ ‖∇(u− uT )‖L2(Ω̂)

+ ‖m−mT ‖L2(Ω).

Since (u,m) ∈ Ker b, (3.32) yields (rN + uT , sN + mT ) ∈ KerN b. With Lemma 3.9 and the

abbreviation δ := δ1+δ2
δ1δ2

, we get

inf
(u⋆

T
,m⋆

T
)∈KerN b

{
‖∇(u− u⋆T )‖2L2Ω̂)

+ δ‖m −m⋆
T ‖2L2(Ω)

+ |(u⋆T − u,m⋆
T −m)|2σ

}

≤ ‖∇(u− rN − uT )‖2L2(Ω̂)
+ δ‖m − sN −mT ‖2L2(Ω)

+ |(rN + uT − u, sN +mT −m)|2σ
. ‖∇(u− uT )‖2L2(Ω̂)

+ δ‖m−mT ‖2L2(Ω)
+ |(uT − u,mT −m)|2σ

+ (1 + C2
σ)‖∇rN‖2

L2(Ω̂)
+ (δ + C2

σ)‖sN‖2
L2(Ω)

.
(
1 + δ + C2

σ

)(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)
+ |(u− uT ,m−mT )|2σ.

Using this last result in (3.31) gives (3.14) and concludes the proof. �

Proof of Theorem 3.7. Recall the shorthand notation in (3.23).
Step 1: With the additionally assumption (3.16), the term ‖d−dN‖2

L2(Ω)
on the right-hand side of
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(3.14) in Proposition 3.6 can be absorbed by the left-hand side. Indeed, set e.g. δ1 = C0

2C1C2
σ
. This

choice leads to

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖d− dN‖2
L2(Ω)

+ |(u− uN ,m−mN )|2σ + ‖∇(p− pN )‖2
L2(Ω̂)

≤ 2C1C
2
σ

C0

{(
1 +

δ1 + δ2

δ1δ2
+ C2

σ

)(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)

+ |(u− uT ,m−mT )|2σ + δ2‖l − lN‖2
L2(Ω)

+ C2
γ‖p− pT ‖2T̂

+ ‖ε1/2l‖2
L2(Ω)

− ‖ε1/2lN‖2
L2(Ω)

}
.

(3.33)

Step 2: For ‖Πl − lN‖2
L2(Ω)

there holds an estimate of type (3.33).

Indeed, using the L(Ω)2-orthogonal projection, the Galerkin orthogonality (3.19) with vN = 0
and nN = Πl − lN , Lemma 3.9 and Cauchy-Schwarz inequality we get

‖Πl − lN‖2
L2(Ω)

= 〈l − lN |Πl − lN 〉L2(Ω)

= −〈d− dN |Πl − lN 〉L2(Ω) + 〈(Πl − lN )χΩ |∇(p − pN )〉
L2(Ω̂)

− σ(u− uN ,m−mN ; 0,Πl − lN )

≤
{
‖d− dN‖L2(Ω) + ‖∇(p− pN )‖

L2(Ω̂)
+ Cσ|(u− uN ,m−mN )|σ

}
‖Πl − lN‖L2(Ω).

(3.34)

Cancelling the factor ‖Πl − lN‖L2(Ω) on both sides and squaring the inequality gives

‖Πl − lN‖2
L2(Ω)

≤ 3C2
σ

{
‖d− dN‖2

L2(Ω)
+ ‖∇(p − pN )‖2

L2(Ω̂)
+ |(u− uN ,m−mN )|2σ

}
.(3.35)

Step 3: Applying (3.33) together with (3.35) and ‖l − lN‖ ≤ ‖l − Πl‖ + ‖Πl − lN‖ gives the
following estimate

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖d− dN‖2
L2(Ω)

+ ‖l − lN‖2
L2(Ω)

+ |(u− uN ,m−mN )|2σ
+ ‖∇(p − pN )‖2

L2(Ω̂)

≤ C2

{(
1 +

δ1 + δ2

δ1δ2
+ C2

σ

)(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)
+ |(u− uT ,m−mT )|2σ

+ C2
γ‖p − pT ‖2T̂ + ‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)
+ ‖l −Πl‖2

L2(Ω)

}
,

(3.36)

with C2 := 4(1 + 6C2
σ)

C1C2
σ

C0
. Note that using (3.33) would involve the term δ2‖l − lN‖2

L2(Ω)
on the

right-hand side in the above estimate. We already absorbed this term from the right-hand side by
setting δ2 :=

1
C2

.

Step 4: In this step, the claimed estimate (3.17) is proved. The following relation valid for all
positive cconstants C was proven in [30, Lemma 2.32], see also [11]:

C
{
‖ε1/2l‖2

L2(Ω)
− ‖ε1/2lN‖2

L2(Ω)

}

≤ C2
{
‖ε‖L∞(Ω)‖ε1/2l‖2L2(Ω)

+ ‖ε‖L∞(Ω)‖ε1/2lN‖2
L2(Ω)

}
+

1

2
‖l − lN‖2

L2(Ω)
.
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Plugging this into (3.36) with C = C2 and absorbing the term 1
2‖l − lN‖2L2(Ω) gives

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖d− dN‖2
L2(Ω)

+ ‖l − lN‖2
L2(Ω)

+ |(u− uN ,m−mN )|2σ
+ ‖∇(p − pN )‖2

L2(Ω̂)

≤ 2C2

{(
1 +

δ1 + δ2

δ1δ2
+ C2

σ

)(
‖∇(u− uT )‖2L2(Ω̂)

+ ‖m−mT ‖2L2(Ω)

)

+ |(u− uT ,m−mT )|2σ + C2
γ‖p− pT ‖2T̂ + ‖l −Πl‖2

L2(Ω)

}

+ 2C2
2‖ε‖L∞(Ω)

{
‖ε1/2l‖2

L2(Ω)
+ ‖ε1/2lN‖2

L2(Ω)

}
.

Finally, the term ‖ε1/2lN‖2
L2(Ω)

can be estimated using (3.36) resulting in the claimed bound (3.17).

�

Discussion 3.10 (Proof of Theorem 3.7). The difficulty in the proof lies in the treatment of the
non-smooth non-linear terms. For interesting a priori estimates, one needs to absorb (or least
estimate) the terms ‖d−dN‖2

L2(Ω)
= ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2

L2(Ω)
and ‖l− lN‖2

L2(Ω)
= ‖λmm−

λNmN‖2
L2(Ω)

of the right-hand side of (3.14). We achieved this for the term ‖d − dN‖L2(Ω) using

assumption (3.16), which covers, for example, the case of uniaxial materials; similar techniques
have also been employed in [9, 11, 22]. The key steps in the treatment of ‖l − lN‖2

L2(Ω)
are (3.34)

(3.35), which rely on the use of the nN = Πl− lN as a test function. However, this is only possible
in the lowest order case k = 1 in view of the representation lN = λNmN and the explicit formula
for λN given in (3.6). When considering higher order elements, it is possible to use Π(l − lN ) as
a test function, which ultimately leads to an additional a posteriori term ‖ΠlN − lN‖2

L2(Ω)
on the

right-hand side.

Note that estimate (3.18) is optimal with respect to the local mesh size h and suggests the choice
ε = O(hα) with α = 1. Numerical experiments reveal that the choice α ∈ (0, 1) dominates the error
in the sense that, for smooth exact solution (u,m), one observes numerically convergence O(hα).
Empirically, the estimate (3.18) is thus even optimal with respect to ε, and ε = O(h) leads in
this case to optimal convergence O(h). Throughout the following experiments, we thus choose the
T -piecewise constant penalization function ε = h, where h ∈ L∞(Ω) is defined by h|K := diamK.

3.5. Numerical example - uniform mesh refinement. In the first numerical experiment
we consider the model case of uniaxial materials, cf. (1.5)–(1.7) in two dimensions and choose a
constant exterior field f = [0.6, 0] parallel to the easy axis e = [1, 0]. Therefore, we have z = [0, 1].
Furthermore, we choose the magnetic rod Ω = (−0.05, 0.05) × (−0.25, 0.25) and the surrounding

area Ω̂ = (−0.55, 0.55)2 . Up to a scaling, this example coincides with an example already studied in

[11]. Fig. 1a shows the isolines of the magnetic potential u in the computational domain Ω̂; Fig. 1b
presents the magnetization m on a rather coarse mesh. As can be seen in Fig. 1c and Fig. 1d, the
theoretical prediction for the convergence rates are verified. Although we do not control the error
‖(m −mN ) · e‖L2(Ω) in the present uniaxial case (cf. (3.18)), we observe convergence O(h) in the
full norm ‖m−mN‖L2(Ω).

In the continuous case, the Lagrange multiplier p turns out to be exactly −u. This relation does
not hold in the discrete case. Here, we only observe convergence of ∇p towards −∇u with almost
the same rate as for the error in ∇u and ∇p.
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Figure 1. convergence analysis on uniform meshes for example of Section 3.5
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4. A posteriori analysis

4.1. A posteriori error estimate. We restrict the a posteriori analysis of (SPP
ε,N

Ω̂,σ
) to lowest

order elements in the model case of uniaxial materials (see Example 1.3 for the definition of ϕ∗∗

and ∇ϕ∗∗). The discrete spaces are X1
N = S

1,1
0 (T̂ )× S0,0(T ) and M1

N = S
1,1
0 (T̂ ). Before we start,

we show a representation of the stabilizing bilinear form σ, whose proof is straight forward and
therefore omitted:

Lemma 4.1. For each (uN ,mN ) ∈ X1
N there exists a unique pair (UN ,MN ) ∈ X1

N such that

(4.1) σ(uN ,mN ; v,n) = 〈∇UN |∇v〉
L2(Ω̂) + 〈MN |n〉L2(Ω) for all (v,n) ∈ X1

N .
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Furthermore, MN is explicitly given by

(4.2) MN |K · ej := − 1

|K|
∑

E∈E(K)

hE〈[(∇uN −mN ) · ν]E | ej · νK,E〉L2(E)

and ej denotes the j-th canonical basis vector of Rd, νK,E the exterior-normal vector of the element

K ∈ T along the edge (or face) E ⊂ K and E(K) the edges (or faces) of the element K. �

With this notation, the main result in this section reads as follows:

Theorem 4.2 (A posteriori estimate for uniaxial case). Under the assumptions of Lemma 4.3, there
holds

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2
L2(Ω)

+ ‖∇(p − pN )‖2
L2(Ω̂)

+ ‖λmm− λNmN‖2
L2(Ω)

≤ C
{
‖f −Πf‖2

L2(Ω)
+

∣∣〈f −Πf |m−Πm〉L2(Ω)

∣∣+ 〈ε|λNmN | | |(f −Πf) +MN |〉L2(Ω)

+ ‖ελNmN‖2
L2(Ω)

+
∑

E∈E int(T̂ )

hE‖[(∇uN −mNχΩ) · ν]E‖2L2(E) + ‖∇(uN + pN )‖2
L2(Ω̂)

+ ‖MN‖L1(Ω) +
∣∣〈MN |mN 〉L2(Ω)

∣∣
}
.

(4.3)

For the proof, we use the Scott-Zhang interpolation operator I : H1
0 (Ω̂) ։ S

1,1
0 (T̂ ) of [34], which

has approximation properties similar to those of the Clément interpolation operator but has the
additional property of being a projection. Moreover, we use the estimate

(4.4) −〈λmm− λNmN |m−mN 〉L2(Ω) ≤ 〈ε|λNmN | | |λmm− λNmN |〉L2(Ω),

which is part of the proof of [11, Theorem 4.3]. The main step of the proof of Theorem 4.2 is stated
in the following lemma.

Lemma 4.3. Let (u,m, p) ∈ X ×M and (uN ,mN , pN ) ∈ X1
N ×M1

N be solutions of (SPP
Ω̂
) and

(SPP
ε,N

Ω̂,σ
) in the uniaxial case for lowest order elements. Then there holds the a posteriori estimate

‖∇(u− uN )‖2
L2(Ω̂)

+ ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2
L2(Ω)

+ ‖∇(p − pN )‖2
L2(Ω̂)

≤ C
{∣∣〈f −Πf |m−Πm〉L2(Ω)

∣∣+ 〈ε|λNmN | | |(f −Πf) +MN |〉L2(Ω) + ‖ελNmN‖2
L2(Ω)

+
∑

E∈E int(T̂ )

hE‖[(∇uN −mNχΩ) · ν]E‖2L2(E) + ‖∇(uN + pN )‖2
L2(Ω̂)

+ ‖MN‖L1(Ω) +
∣∣〈MN |mN 〉L2(Ω)

∣∣
}
,

(4.5)

where the constant C depends only on the domain Ω̂ and the shape regularity constant γ.

Proof. Recall the shorthand notation of (3.23).
Step 1: Subtracting (3.10) from (2.1) and (3.11) from (2.2) yields with the abbreviations eu :=

u−uN , em := m−mN , ep := p−pN for all (vN ,nN , qN ) ∈ X1
N ×M1

N the Galerkin orthogonalities

0 = 〈∇eu |∇vN 〉
L2(Ω̂)

+ 〈d− dN |nN 〉L2(Ω) + 〈l − lN |nN 〉L2(Ω)

− σ(uN ,mN ; vN ,nN ) + 〈∇vN − nNχΩ |∇ep〉L2(Ω̂),
(4.6)

0 = 〈∇eu − emχΩ |∇qN 〉
L2(Ω̂)

.(4.7)
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Step 2: We subtract equation (4.6) from ‖∇eu‖2
L2(Ω̂)

+ 〈d−dN |em〉L2(Ω), add and subtract on

the right-hand side the two terms 〈l |em〉L2(Ω) and 〈∇eu − emχΩ |∇p〉
L2(Ω̂)

and use (2.1) with the

test functions v := ∇(eu − Ieu) and n := em −Πem. Note now the orthogonality relations

〈dN |em −Πem〉L2(Ω) = 0, 〈lN |em −Πem〉L2(Ω) = 0, and

〈f |em −Πem〉L2(Ω) = 〈f −Πf |m−Πm〉L2(Ω).

Altogether this gives

‖∇eu‖2L2(Ω̂)
+ 〈d− dN |em〉L2(Ω)

= 〈f −Πf |m−Πm〉L2(Ω) − 〈l − lN |em〉L2(Ω) − 〈∇eu − emχΩ |∇p〉
L2(Ω̂)

− 〈∇uN |∇(eu − Ieu)〉L2(Ω̂) + 〈∇Ieu −ΠemχΩ |∇pN 〉
L2(Ω̂)

+ σ(uN ,mN ; Ieu,Πem).

Step 3: Since p = −u we get with (2.2), (3.11) and the projection property of I

〈∇Ieu −ΠemχΩ |∇pN 〉
L2(Ω̂) = 〈∇(Ieu − eu) |∇pN 〉

L2(Ω̂).

Together with the approximation properties of I and application of standard finite element tech-
niques we estimate

〈∇eu − emχΩ |∇p〉
L2(Ω̂)

=〈∇uN −mNχΩ |∇eu〉L2(Ω̂)
=〈∇uN −mNχΩ |∇(eu − Ieu)〉L2(Ω̂)

≤ 1

2c1

∑

E∈E int(T̂ )

hE‖[(∇uN −mNχΩ) · ν]E‖2L2(E) +
Cc1

2
‖∇eu‖2L2(Ω̂)

,

where due to the Young inequality c1 > 0 may be chosen arbitrary. Together this shows the estimate

‖∇eu‖2L2(Ω̂)
+ 〈d− dN |em〉L2(Ω) ≤

∣∣〈f −Πf |m−Πm〉L2(Ω)

∣∣

− 〈l − lN |em〉L2(Ω) +
1

2c1

∑

E∈E int(T̂ )

hE‖[(∇uN −mNχΩ) · ν]E‖2L2(E)

+
Cc1

2
‖∇eu‖2L2(Ω̂)

+ 〈∇(Ieu − eu) |∇(uN + pN )〉
L2(Ω̂) + σ(uN ,mN ; Ieu,Πem).

(4.8)

Step 4: We estimate −〈l− lN |em〉L2(Ω). (2.1) with v = 0 and (3.10) with (vN ,nN ) = (0, χKej)
together with the representation of σ given by Lemma 4.1 yields

l − lN = (f −Πf)− (d− dN ) +∇ep +MN a.e. in Ω

and with (4.4) we get

− 〈l − lN |em〉L2(Ω) ≤ 〈ε|lN | | |l − lN |〉L2(Ω) ≤ 〈ε|lN | | |(f −Πf) +MN |〉L2(Ω)

+
c2

2
‖d− dN‖2

L2(Ω)
+

c3

2
‖∇ep‖2L2(Ω̂)

+ (
1

2c2
+

1

2c3
)‖εlN‖2

L2(Ω)

(4.9)

again with arbitrary c2, c3 > 0.
Step 5: Next we consider the term σ(uN ,mN ; Ieu,Πem). Setting vN = Ieu and nN = 0 in

(3.10) gives

σ(uN ,mN ; Ieu,0 ) = −〈∇Ieu |∇(uN + pN )〉
L2(Ω̂)

20



and hence with arbitrary c4 > 0

σ(uN ,mN ; Ieu,Πem) = σ(uN ,mN ; Ieu,0 ) + σ(uN ,mN ; 0,Πem)

≤ 1

2c4
‖∇(uN + pN )‖2

L2(Ω̂)
+

Cc4

2
‖∇eu‖2L2(Ω̂)

+ 〈MN |Πm−m〉L2(Ω)

+ 〈MN |m−mN 〉L2(Ω)

≤ 1

2c4
‖∇(uN + pN )‖2

L2(Ω̂)
+

Cc4

2
‖∇eu‖2L2(Ω̂)

+ ‖MN‖L1(Ω) + |〈MN |mN 〉L2(Ω)|.

(4.10)

Step 6: In this last step we estimate ‖∇ep‖L2(Ω) and use the monotonicity of ∇ϕ∗∗ and the

identity p = −u. Firstly, we have

‖∇ep‖2L2(Ω̂)
≤ 2‖∇eu‖2L2(Ω̂)

+ 2‖∇(uN + pN )‖2
L2(Ω̂)

.(4.11)

Secondly, we substitute (4.9) and (4.10) in (4.8), multiply (4.11) by a constant c5 > 0 that we will
fix later on, add it to (4.8) and exploit

‖d− dN‖2
L2(Ω)

= 〈d− dN |em〉L2(Ω) (uniaxial case !) and to

〈∇(Ieu − eu) |∇(uN + pN )〉
L2(Ω̂)

≤ Cc6

2
‖∇eu‖2L2(Ω̂)

+
1

2c6
‖∇(uN + pN )‖2

L2(Ω̂)
,

where c6 > 0 is again arbitrary. We end up with

‖∇eu‖2L2(Ω̂)
+ ‖d− dN‖2

L2(Ω)
+ c5‖∇ep‖2L2(Ω̂)

≤
∣∣〈f −Πf |m−Πm〉L2(Ω)

∣∣+ 〈ε|lN | | |(f −Πf) +MN |〉L2(Ω)

+

(
1

2c2
+

1

2c3

)
‖εlN‖2

L2(Ω)
+

c2

2
‖d − dN‖2

L2(Ω)
+

c3

2
‖∇ep‖2L2(Ω̂)

+
1

2c1

∑

E∈E int(T̂ )

hE‖[(∇uN −mNχΩ) · ν]E‖2L2(E) +

(
C(c1 + c4 + c6)

2
+ 2c5

)
‖∇eu‖2L2(Ω̂)

+

(
1

2c4
+

1

2c6
+ 2c5

)
‖∇(uN + pN )‖2

L2(Ω̂)
+ ‖MN‖L1(Ω) +

∣∣〈MN |mN 〉L2(Ω)

∣∣.

To absorb certain right-hand side terms we choose firstly c1, c2, c4, c5 and c6 sufficiently small to
absorb ‖d − dN‖2

L2(Ω)
and ‖∇eu‖2

L2(Ω̂)
. Secondly, we choose c3 < 2c5 to absorb ‖∇ep‖2

L2(Ω̂)
. This

gives the claimed estimate and ends the proof. �

Proof of Theorem 4.2. Because of the consistency of the stabilizing bilinear form σ, cf. Lemma 3.2,
we deduce as in (3.34) and (3.35)

‖Πl − lN‖2
L2(Ω)

≤ C
(
‖d− dN‖2

L2(Ω)
+ ‖∇ep‖2L2(Ω̂)

+ |(uN ,mN )|2σ
)
.

We denote now the right-hand-side of (4.5) with Cest
2 and observe

‖Πl − lN‖2
L2(Ω)

≤ Cest
2.
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We estimate now ‖l − Πl‖2
L2(Ω,Rd)

. To this end consider one more time equation (2.1) with v = 0

and n = l−Πl.

‖l −Πl‖2
L2(Ω)

= 〈l −Πl | l −Πl〉L2(Ω) = 〈l | l −Πl〉L2(Ω)

= 〈f | l −Πl〉L2(Ω) − 〈d | l −Πl〉L2(Ω) + 〈(l −Πl)χΩ |∇p〉
L2(Ω̂)

= 〈f −Πf | l −Πl〉L2(Ω) − 〈d− dN | l −Πl〉L2(Ω) + 〈(l −Πl)χΩ |∇ep〉L2(Ω̂)

≤
{
‖f −Πf‖L2(Ω) + ‖d− dN‖L2(Ω) + ‖∇ep‖L2(Ω̂)

}
‖l −Πl‖L2(Ω)

Cancelling ‖l −Πl‖L2(Ω) and squaring again leads to

‖l −Πl‖2
L2(Ω)

≤ C
{
‖f −Πf‖2

L2(Ω)
+ est

2
}

and hence

‖l − lN‖2
L2(Ω)

= ‖l −Πl‖2
L2(Ω)

+ ‖Πl − lN‖2
L2(Ω)

≤ C
{
‖f −Πf‖2

L2(Ω)
+ est

2
}
.

Adding this last result to (4.5) yields the claimed result. �

4.2. Numerical example - adaptive FEM. We use a common adaptive algorithm of the type

solve → estimate → mark → refine

For error estimation, we deduce from (4.3) a simplified reliable (upper) error bound of the following
form:

(4.12) η2 :=
∑

K∈T̂

η2K :=
∑

K∈T̂

(η21,K + η23,K) +
∑

K∈T

(η22,K + η24,K).

We make the following simplifications:

• As we are interested in constant exterior magnetization fields f , the term ‖f − Πf‖L2(Ω)

vanishes.
• With the definition of λN given in (3.6) we can bound

2
∣∣〈MN |mN 〉L2(Ω)

∣∣ ≤ 2〈|MN | | |mN |〉L2(Ω)

≤ 2〈|MN | | (|mN | − 1)+〉L2(Ω) + 2〈|MN | | 1〉L2(Ω)

≤ 2‖MN‖L2(Ω)‖(|mN | − 1)+‖L2(Ω) + 2‖MN‖L1(Ω)

≤ ‖MN‖2
L2(Ω)

+ ‖ελNmN‖2
L2(Ω)

+ 2‖MN‖L1(Ω).

• A simple computation shows ‖MN‖2
L2(Ω)

.
∑

E∈E int(T ) hE‖[(∇uN −mχΩ) · ν]E‖2L2(E).

With these simplifications, we define the local refinement indicators in (4.12) by

η21,K =
1

2

∑

E∈E(K)∩E int(T̂ )

hE‖[(∇uN −mχΩ) · ν]E‖2L2(E), η22,K = ‖MN‖2
L1(K)

,

η23,K = ‖∇(uN + pN )‖2
L2(K)

and η24,K = ‖ελNmN‖2
L2(K)

.

For element marking, we use the strategy proposed by Dörfler in [17], i.e., for given θ ∈ (0, 1], a

smallest set M ⊂ T̂ is determined such that

θ
∑

K∈T̂

η2K ≤
∑

K∈M

η2K ,
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Figure 2. convergence of adaptive algorithm: meshes

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

x

potential u: mesh 7: 11808 / 468 elements

 

y

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(a) mesh on Ω̂ for uN and pN

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

y

magnetization m: mesh 7: 11808 / 468 elements

 

 

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b) mesh on Ω for magnetization

and the new mesh is obtained by refining the elements of M using newest vertex bisection (and
performing, of course, mesh closure). In the numerical example below, we use θ = 0.4.

In our second numerical experiment we choose a constant exterior field f = [0, 0.9]. Again we
consider the model case of uniaxial materials and choose the easy axis e, the magnetic rod Ω, and

the surrounding area Ω̂ as in the first numerical experiment. Again we refer to [11].

In our numerical computation, we observe a strong mesh refinement in Ω̂ \ Ω towards the four
corners of Ω. This is probably due to the corner singularities of u and p at the four re-entrant corners

of Ω̂ \ Ω, see Fig. 2a. Moreover, we observe in Fig. 2b some mesh refinement in Ω, which could
indicate some singular behavior of m. The convergence results presented in Fig. 3 suggests that
the adaptive algorithm achieves the optimal convergence order O(N−1/2), where N is the problem
size, at least for ‖(m − mN ) · z‖L2(Ω); this is not observed for uniform mesh-refinement for this
example, see Fig. 3a and Fig. 3b. Although our a priori convergence theory does not provide good
control over the error component (m − mN ) · e, the adaptive algorithm achieves almost optimal
convergence of ‖(m−mN ) · e‖L2(Ω) in this example.
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