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MAPPING PROPERTIES OF HELMHOLTZ BOUNDARY INTEGRAL
OPERATORS AND THEIR APPLICATION TO THE HP-BEM

MAIKE LOHNDORF* AND JENS MARKUS MELENK'

Abstract. For the Helmholtz equation (with wavenumber k) and analytic curves or surfaces
I" we analyze the mapping properties of the single layer, double layer as well combined potential
boundary integral operators. A k-explicit regularity theory for the single layer and double layer
potentials is developed, in which these operators are decomposed into three parts: the first part is
the single or double layer potential for the Laplace equation, the second part is an operator with
finite shift properties, and the third part is an operator that maps into a space of piecewise analytic
functions. For all parts, the k-dependence is made explicit. We also develop a k-explicit regularity
theory for the inverse of the combined potential operator A = £1/24+ K —inV and its adjoint, where
V and K are the single layer and double layer operators for the Helmholtz kernel and n € R is a
coupling parameter with || ~ |k|. Under the assumption that ||A71||L2(F)<—L2(1") grows at most

polynomially in k, the inverse A~! is decomposed into an operator Ay : L2(T") — L?(T") with bounds
independent of k and a smoothing operator Az that maps into a space of analytic functions on T".
The k-dependence of the mapping properties of A> is made explicit. We show quasi-optimality (in
an L2 (T')-setting) of the hp-version of the Galerkin BEM applied to A or A’ under the assumption
of scale resolution, i.e., the polynomial degree p is at least O(logk) and kh/p is bounded by a
number that is sufficiently small, but independent of k. Under this assumption, the constant in the
quasi-optimality estimate is independent of k. Numerical examples in 2D illustrate the theoretical
results.

1. introduction. Acoustic and electromagnetic scattering problems are often
treated with boundary integral equation (BIE) methods. In a time-harmonic setting,
these BIEs depend on the wavenumber k& under consideration. An understanding of
how the boundary integral operators (BIOs) and the solutions of the BIEs depend
on k is crucial for the design and analysis of efficient numerical schemes based on
such BIEs, especially in the high frequency regime. Key components of efficient
numerical methods are (a) approximation properties of the ansatz spaces and (b) the
stability of the method. As discussed in the recent survey article [5], notable progress
has been made in the construction of highly efficient approximation spaces that are
capable of capturing the oscillatory nature of the solution. The situation is less
developed for the stability analysis of numerical methods based on BIEs, particularly
in the high frequency regime. Partly, this is due to an insufficient understanding of
the wavenumber dependence of the mapping properties of the relevant BIOs. The
present paper addresses this latter issue for the specific case of two types of combined
field BIEs for the Helmholtz equation, namely, those usually attributed to Burton &
Miller, [11] and those commonly associated with the names of Brakhage & Werner [4],
Leis [18], and Pani¢ [26].

Our k-explicit regularity theory takes the form of an additive decomposition of the op-
erators into several terms with different mapping properties. Section 4 provides these
decompositions for the classical single and double layer potentials. These operators
are decomposed into three parts: the first part is the corresponding operator for the
Laplace equation and therefore k-independent; the other two terms have smoothing
properties but their operator norms depend on k. Our principal decomposition results
for the layer potential are for analytic geometries (see Theorems 4.3, 4.4); however, it
is also possible to obtain similar results for Lipschitz boundaries, which is worked out
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T]_NSTITUT FUR ANALYSIS UND SCIENTIFIC COMPUTING, TECHNISCHE UNIVER-
SITAT WIEN, AUSTRIA (MELENKQTUWIEN.AC.AT).

1



in Theorems 4.1, 4.2. Section 6 is at the heart of this paper and provides the additive
decompositions for the inverses of the combined field operators in Theorems 6.7, 6.8;
here, we restrict our attention to analytic geometries.

At first glance the stability theory for Galerkin discretizations of combined field BIEs
on smooth geometries does not seem to pose difficulties since these BIOs are compact
perturbations of the identity and hence, by general functional analytic arguments,
asymptotic quasi-optimality is ensured. However, these general arguments give no
indication of how the wavenumber k enters in the estimates and, in particular, affects
the onset of quasi-optimal convergence. The k-explicit regularity theory developed in
Section 6 allows us be explicit at this point for the hp-version of the BEM in Corol-
laries 7.19, 7.22. For analytic geometries and under the assumption that the solution
operator for the combined field BIE grows at most polynomially in the wavenumber
k, a scale resolution condition of the form

kh
— sufficiently small and p > Clogk (1.1)
p

ensures quasi-optimality of the hp-BEM. We stress that, by [9], the assumption of
polynomial growth of the norm of the inverse of the combined field BIO is ensured
for star-shaped domains so that the present paper provides a complete k-explicit
convergence theory for the case of star-shaped domains with analytic boundary. It is
worth rephrasing the scale resolution condition (1.1) as follows: If the approximation
order p is selected as p = O(logk), then the onset of quasi-optimality is achieved
for h = O(p/k), i.e., for a fixed number of degrees of freedom per wavelength. The
numerical results of Section 8 illustrate that indeed a scale resolution condition of the
form (1.1) ensures quasi-optimality of the hp-BEM. The side condition p = O(log k)
in (1.1) may be viewed as expressing the possibility of “pollution”. However, our
numerical experiments show that the weaker condition “kh/p small” alone is often
sufficient for quasi-optimality of the hp-BEM. Put differently: in contrast to the finite
element method, the BEM appear not to be very susceptible to “pollution”.

To the knowledge of the authors, the only other k-explicit stability analysis for dis-
cretizations of combined field BIOs is provided in [13], where the special cases of
circular or spherical geometries are studied; in that setting the double layer and sin-
gle layer operators can be diagonalized simultaneously by Fourier techniques, which
allows [13] to show that the combined field BIOs are even L2-elliptic.

The result of the present paper have counterparts in the context of differential equa-
tions and finite elements. Decomposition results analogous to those of the present
paper have recently been obtained in [24,25] for several Helmholtz boundary value
problems. A k-explicit convergence theory for the hp-version of the finite element
method has also been developed in [24,25] using similar techniques; also there, the
key scale resolution condition on the mesh size h and the approximation order p takes
the form (1.1).

The paper is organized as follows: the remainder of this first section introduces gen-
eral notation and various boundary integral operators. Section 2 collects mapping
properties of the classical single layer and double layer potential operators on Lips-
chitz domains. In particular, the limiting cases studied in Lemmata 2.1, 2.2 appear
to be new. Section 3 studies the mapping properties of the Newton potential for the
Helmholtz equation. Section 4 provides decomposition results for the Helmholtz single
layer and double layer potential operators both for Lipschitz domains and domains
with analytic boundaries. Section 5 applies the results of Section 4 to the combined
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field operators. Section 6 is a key section of the paper in that it provides decomposi-
tion results for the inverses of the combined field operators. Section 7 shows how the
regularity theory of Sections 5 and 6 permits a k-explicit stability and convergence
analysis of the hp-BEM. In Section 8 finally, we present numerical results for the
hp-BEM in 2D.

1.1. notation and general assumptions.

1.1.1. general notation. Let @ C R? d € {2,3}, be a bounded Lipschitz
domain with a connected boundary. We set I' := 992 and QF := R?\ Q. Throughout
the paper, we assume that the open ball Bg := Bgr(0) of radius R around the origin
contains €2, i.e., @ C Bgr. We set Qg := (QU Q)N Br = Bg \ I'. We will denote by
it and §*! the interior and exterior trace operator on I'. The interior and exterior

co-normal derivative operators are denoted by vi", v% i.e., for sufficiently smooth

functions u, we set ity 1= Y Vu - it and v§*'u := 7§**Vu - i, where, in both cases
77 is the unit normal vector point out of 2. As is standard, we introduce the jump
operators

[u] = 76" u = ~6"u,  [Onu] = A" u = 91" .

For linear operators A that map into spaces of piecewise defined functions, we define
the operators [A] and [0,.4] in an analogous way, e.g., [A]e = [Ag]. Sobolev spaces
H* are defined in the standard way, [1,30]. We stress, however, that if an open set

w C R? consists of m € N components of connectedness w;, i = 1,...,m, then the
space H®(w) can be identified with the product space []."; H*(w;) equipped with

1/2
the norm (Zgl HuH%(w)) . For a domain w C RY, we will also employ the
Besov spaces By ), . (w), which are defined in the standard way by the real method of

interpolation (see, e.g., [3,30,31]). Sets of analytic functions will play a very important
role in our theory. We therefore introduce the following definition.
DEFINITION 1.1. For an open set T' and constant Cy, vy > 0 we set

A(Cp,vp, T) :=={f € LX(T) | |V"fll 21y < Cpyf max{n+1,k}*  Vn € No}.

|
Here, [V™u(z)? = %|D°‘u(aj)|2.
aeNg:|a|=n )

For domains w C RY, it is convenient to introduce the k-dependent norm ||u||z;,. by
lullFew = llullizg) + 51 Vul 72,

Tubular neighborhoods T of I" are open sets of such that T D {z € R¢| dist(z,T) < €}
for some € > 0.
Throughout the paper, we will use the following conventions:
CONVENTION 1.2.
(i) We assume |k| > ko > 0 for some fized ko > 0.
(i) If the wavenumber k appears outside the boundary integral operators and poten-
tials such as Vi, and YN/;C and the expressions of (1.7), then it is just a short-hand

for |k|. In particular, k stands for |k| in estimates. For example, k > ko means
k| = ko.



1.1.2. layer potentials. In recent years, boundary element methods (BEM)
and BIOs have been made accessible to a wider audience through several monographs,
e.g., [14,20,27,29]. We refer to these books for more information about the operators
studied here.

We denote by V, K, K’ the usual single layer, double layer, and adjoint double layer
operators for the Helmholtz equation. The single layer and double layer potentials
are denoted by V and K. More specifically, we define the Helmholtz kernel Gy, by

FHO (ke —y)), d=2,
{iikxoy( |$ y|) i3 for k > 0,

Gi(z,y) ==

Anlz—y|’ ’

G =Gy, for k < 0,

where Hél) is the first kind Hankel function of order zero. The limiting case k = 0
corresponds to the Laplace operator and is defined as Go(z,y) = —1/(27)In|z — y|
for the case d = 2 and Go(z,y) = 1/(4w|x — y|) for the case d = 3. The potential

operators V and K are defined by

(Vo)) == / Grlm ey s, (Ro)(a) = / O, Gi(, 9)p(y) dsy, @ € RAT.

From these potentials, the single layer, double layer, and adjoint double layer operators
are defined as follows:

e 1, .~ - 1
Vo= ity K::i(ygntf(ﬂgﬂf(), K=oV -3, (12)

If need be, we will write Vi, Ki, Kj, to clarify the k-dependence. We mention in

passing that for & # 0, the potentials ‘71@ and K r are solutions of the homogeneous
Helmholtz equation on R?\T; for k > 0 they satisfy the outgoing Sommerfeld radiation
condition while for £ < 0, they satisfy the incoming radiation condition.

We finally turn to the definition of adjoint operators. We have for all k¥ € R for the
L*(T") scalar product and all ¢, ¢ € HY/?(T):

Ve, )2y = (@, Vorth) L2 1y, (1.3a)
(Krw, ) r2ry = (9, KL ) L2y, (1.3b)

i.e., the adjoints of Vi, and K} are V_j and K’ ,, respectively. It is worth pointing

out that we have the connections ‘7—1@@ = 17kgo and IN{_k¢ = IN(kcp.

1.1.3. combined field operators. For a coupling parameter n € R\ {0} we
consider four combined field operators. The operator A has one of the following two
forms:

A:Ak:—%—l-K—inV (1.4a)

A:Ak:%—I—K—inV. (1.4b)
The operator A’ has one of the following two forms:

A= ;:—%—l-K'—l-inV, (1.5a)

A= ;:%+K’+inv. (1.5b)
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We use the same notation for the operators in (1.4a), (1.4b) and (1.5a), (1.5b) since
most of our results will be valid for both cases.

In order to avoid keeping track of the precise dependence of various constants on 7,
we assume throughout this paper that

0| ~ k| (1.6)

On smooth surfaces, it is well-known, [7,11], that the operators A and A’ of the
form given in (1.4b), (1.5b), are invertible as operators acting on L?(T"). In fact,
the operator of (1.4b) is invertible on H*(T") for s > 0 and the operator of (1.5b)
is invertible on H*(T") for s > —1/2, [8,9]. We abbreviate (omitting the implicit
dependence on 7)

C(Ak,s,k) = ”A];lHHS(F)HHS(F)a C( ;C,S,k) = H(A;g)_lHHS(F)HHS(F). (1.7)

We will see that in the context of high order Galerkin BEM, a case of particular
interest is the one where C(A,s, k) grows only polynomially in k. In view of the
following lemma, a polynomial growth of C(A, s, k) can reasonably be expected:
LEMMA 1.3 ([9]). Let the Lipschitz domain §) be star-shaped with respect to the origin.
Then there exists a constant C' > 0 independent of k such that for the operators A,
A’ given in (1.4b), (1.5b), there holds

C(A, 0,k) = C(A",.,0,—k) < C.

For ease of future reference, we introduce the following two assumptions.
ASSUMPTION 1.4. The operator A : H?4(T') — H*®4(T") is boundedly invertible with
C(Ak, 54, k) = | AL | oa (ymroa(r)-
ASSUMPTION 1.5. The operator A’ : H?4(T') — H*4(T') is boundedly invertible with
C(Ay, 5a,k) = [(AL) " Hlea @)y —roa -

2. properties of the Laplace single and double layer potentials. In this
section, we collect some mapping properties of the potential operators V; and Ky for
the Laplace equation.

2.1. Lipschitz domains. For Lipschitz domains 2 and —1 < s < 1 one can
define the Sobolev spaces H*(I") intrinsically. It is then known (see also Lemmata 2.1,
2.2 below) that for |s| < 1/2 the operators

Vo : H-Y/2+5(1') — HY(Bg) N H'**(QR) (2.1a)
Ko : HY/?5() — H'**(Qp) (2.1b)

are bounded linear operators (relevant literature includes [12,15,16,32]; see also Lem-
mata 2.1, 2.2 below). The following Lemma 2.1 clarifies into what space of functions
defined on the ball Br (as opposed to Qr) the potential operator ‘70 maps elements
in the limiting cases s = £1/2:
LEMMA 2.1 (mapping properties of Vo). For —1/2 < s < 1/2 we have that Vj :
H~Y/2+5(T') — H'**(Bg) is a bounded linear operator. The limiting cases s = +1/2
take the forms Vo : H- () — By/2 (Bg) and Vy : L*(T) — By/2(Br).
Proof. The result for —1/2 < s < 1/2 are known in the literature (see, e.g., [20]). The
proofs of the limiting cases s = +1/2 are relegated to Appendix A. O
The potential operator IN(O produces functions that jump across I'. This implies that,
viewed as a function on the ball Br, one cannot hope for more regularity than Koy €
B;)/OQO(BR); this is indeed the case for the limiting case s = —1/2:
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LEMMA 2.2 (mapping properties of Ko). For —1/2 < s < 1/2 we have K, :

HY?+3(T) — H'Y$(Qg). For the limiting case s = —1/2 we have the additional
result Ko : L*(T) — By'2 (Bg).

Proof. See Appendix A. O

2.2. smooth domains. The mapping properties given in (2.1) are restricted to
the range |s| < 1/2 for Lipschitz domains. For smooth domains, the range can be
extended, for example, to include all s > —1. To that end, we note
LEMMA 2.3. Let T be of class C*°. Then there exists C > 0 depending only on 2 and
R such that for ¢ € H'/?(T) there holds

Vool zzr) < Cllella-32(r),
Kool r22r) < Cliolla-1r2(r)-

Proof. Set u := Vyp. We only aim at estimating lull L2y since [lulr2(\0) is
estimated similarly. To that end, let w € H?(Q2) solve
—Aw=u in Q, Ohw=0 onT.

Then w € H?(Q) together with |[w]| g2()S|ullL2(q) and therefore

nt

HUJH%%Q) = '/F'y{"tuw‘ SH'YimU”H*?’/?(F)Hw”H2(Q)§H71 UHH*?’/Z(F)HUHL%Q)'
Next, we use the representation
int int{s 1 /
nru=m"Vop = (5 + Koo

and [20, Thm. 7.2] to bound ||[v{"*ul| g-s/2(r) < Cll@l gr-s/2(r)-

We proceed in a similar manner to bound ||I~(0<p|\Lz(Q). Let u = (Kop)|o and let
w € H2(2) N HY(Q) solve

—Aw=u inQ, w|r = 0.

Then |wl| g2 o) S|lull 2(@) and therefore

SJHUHH*I/?(F) H’Y%nthHW(F)g||U||H*1/2(F) [ullz2(r)-

ulagey = \ [t

From the representation y"'u = (—% + Kp)p and the mapping properties of Ky
on smooth domains, [20, Thm. 7.2], we get again [|ul g-1/21r) < Cll@llg-1/2(r)- O
Lemma 2.3 allows us to extend the operators ‘70 and l~(0 to operators defined on
H=3/2(T") and H~/?(T") respectively. We thus have

LEMMA 2.4. Let T’ be of class C*°. Then the operators 170 and I?O are bounded linear
operators

‘70 . H—1/2+s(1—\) N H1+S(QR), f?o . H1/2+s(1—\) N H1+S(QR)

for every s > —1 and every R > 0 such that Q C Bg.

Proof. The case s > —1/2 is shown in [20, Cor. 6.14]. The case s = —1 follows
from Lemma 2.3. An interpolation argument then provided the intermediate range
-1<s<-1/2.0



2.3. invertibility properties. For future reference, we recall the following re-

sults:
LEMMA 2.5. Let T' be smooth and o € R\ {0} be fized. If d = 2, assume additionally
that diam Q < 1. Then:

(i) =&+ Ko : H*(T') — H*(T') is boundedly invertible for s > 0.

(ii) & + Ko +iaVy: H¥(T') — H*(T) is boundedly invertible for s > 0.
(iti) —5 + K{ : H*(I') — H*(T') is boundedly invertible for s > —1/2.

(iv) 3+ K +iaVy : H*(T') — H*(T') is boundedly invertible for s > —1/2.
Proof. See Appendix D. O

3. Properties of the Helmholtz Newton potential. A key ingredient of our
decomposition of the operators V', K, and A, A’ are low pass and high pass filters
that we introduce now:

LEMMA 3.1 (full space frequency splitting). Let ¢ € (0,1). Then one can construct
linear operators Hya and Lga defined on L?(R?) with the following properties:

(i) Hga + Lpa = 1d

(it) |Hrafll s gay < Cs,sr (qk‘l)s_S,HfHHs(Rd) for all0 < s' < s and f € H*(R?)
(i4i) Lyaf is entire and

V" Lgafllz2mray < C(vK)" || fll2ey  Vn € No.

Here, the constants C, v depend on the choice of ¢ and s but are independent of
k> k.
Proof. See [24, Lemmata 4.2, 4.3] for details. A sketch of the construction is as follows:
The operators Hga and Lga are defined in terms the Fourier transformation F :
L*(R?) — L*(RY) by F(Hga(f)) := Xga\p,,F (f) and F(Lga(f)) := xB,,0)F (f)-
Here, n > 1 is a parameter that is selected depending on the chosen ¢ € (0,1) and xg
denotes the characteristic function of the set £ C R?. O
The Newton potential Ni(f) of f € L?(R%) with compact support is defined by

It is the solution of the inhomogeneous Helmholtz equation with right-hand side f
and satisfies the outgoing radiation condition if £ > 0 and the incoming radiation
condition if £ < 0. For Nj, we have the following decomposition result:

LEMMA 3.2 (mapping properties of Ny). For every f € L%(R?) there holds

1Nk, + 5 NGl a2(r) < CrIlFll2a)- (3-2)

Additionally, the following decomposition result holds: Let q € (0,1) be arbitrary.
Then the high frequency operator Hga and the low frequency operator Lga can be
chosen such that for s >0 and 0 < s’ < s+ 2 the function Ny(Hgaf) satisfies

INk(Hza )| 7 () < Coosr (ak™ 1 f [ 115 . (3.3)

The constant Cs ¢ is independent of g € (0,1) and k > ko. The function Ni(Lgaf)
is entire and satisfies

IV NeLaa f)ll2 () < CORY [l 2mey ¥ € N (3.4)

Here, the constants C, v are independent of k > ko but depend on q.
7



Proof. The estimate (3.2) is shown in [25, Lemma 3.5]. Inspection of the procedure
in [25, Lemma 3.5] reveals that the function v4 in [25, Lemma 3.5] coincides with
Ni(Lgaf), which shows (3.4). Finally, [25, Lemma 3.5] shows (3.3) for the case s = 0.
Inspection of the proof shows that it can be extended in a straight forwards way to
the case s > 0. 0

An interpolation argument allows us to infer the following result:

COROLLARY 3.3. Let s >0 and s & No. Fir a cut-off function x with suppx C Bag.
Then for all f € B; (B2r)

| N (Hiza Oz () < Consr (@b 1 F s _(mamys 08" <245, (35)
| Nk (Hzs D s () < Coll P33, (B (3.6)

Proof. The operator f — Ny(Hgaxf) is linear and, for every ¢ > 0, we have by
Lemma 3.2

| Ne(Hra X )|l 28Ry < Cell fll 5t (Bag)s (3.7)
| Nk (Hpax ) 22(8r) < Celak™ )T 1l t(Ban)» (3.8)

for a constant Cy > 0 that depends solely on ¢, R, and x. Since the spaces Bj
are defined as interpolation spaces between standard Sobolev spaces, the estimates
(3.7) imply (3.6). Since (L*(Bgr),L*(BRr))o.co = L*(Bg) for every 0 € (0,1), the
estimate (3.5) for the special case s' = 0 follows also from an interpolation argument
and (3.8). Finally, the general case in (3.5) follows from the interpolation inequality
12|l gocs+2 < C||ZH1L§9||Z| %§+2 for s+2>0and 6 € (0,1). O

4. decomposition of layer potentials. The present section focuses on the

mapping properties of the layer potentials V and K with particular emphasis on
making the k-dependence explicit. We do this through an additive decomposition of
V and K into a leading order part that corresponds to the Laplace operator (i.e., Vj
and IN(O) and regularizing parts.
We present two different types of decompositions: the first type is done for Lipschitz
domains and formulated in Subsection 4.1. Since the regularizing parts are defined
as solutions of transmission problems, the limited regularity of Lipschitz domains
imposes restrictions on the Sobolev range for which the decomposition can be done in a
meaningful way. We therefore consider in Section 4.2 the case of domains with analytic
boundary, where, by a modification of the procedure of Section 4.1, decompositions
are obtained that are valid for large ranges of Sobolev spaces.

4.1. decomposition of layer potentials: Lipschitz domains.
4.1.1. decomposition of the single layer potential. THEOREM 4.1 (decom-
position of V, Lipschitz domain). Let g € (0,1) be given. Then one can write
V="V +Sv+ Ay,
where for every —1/2 < s < 1/2 the linear operators Sy : H=1/2Ts() — H3+%(Bpg)
and Ay : H-Y/2+3(T') — H3*3(BpR) satisfy the following bounds:
1Svell e (Bry < Cs g (gh™ ) el g—2/24 1y 0<s <3+s,

IV Avellaaa) < COR)" M Vol z(zn) < COR)™ Hlellm-1ry  ¥n € No.
8



Here, the constant Cs ¢ s independent of ¢ and k > ko. The constants C, v are
independent of k > ko but depend on q. B

For s = +1/2 we have that Sy : H=/?*5(I') — BSE(BR) and Ay : H7Y/?+3(T) —
BS’E(BR) satisfy the following bounds:

ISy el g By < Cowra® (k™) @l g-12very,  0< 8" <3+,
||SVSD||B;§(BR) < Csq®(qk™ ") Nl =172+ (.
IV Ay @ll2(Br) < COR)" M IVopllL2(Br) < COYR)" gl -1y Vn € No.

Proof. We will exploit density of H'/?(I') in H~/?*5(T) for —1/2 < s < 1/2. Let
therefore ¢ € H'/2(T") be given. Set u := V¢ and ug := Voo. Let x be a smooth
cut-off function with suppy C Bag and x|, = 1. Then the function @ := u — xug
satisfies

— Al — k%0 = f:= —(Ax)ug — 2Vx - Vg + k?xug in QUQT,
[@] =0 on T (in HY?(T)),
[Ont] =0 on T (in H-V/2(I")),

U satisfies a radiation condition at oo,

and f has compact support. The mapping properties of ‘70 on Lipschitz domains of
Lemma 2.1 imply for —1/2 < s <1/2:

luollri+s(Br) < Cllela-1/2eery,  —1/2<s<1/2, (4.1)
lwoll gyt By < Cllola-1240rys s =+1/2. (4.2)
We have therefore an explicit solution formula for @, namely,
@ = Ni(f)
Hence, we have the representation
= xuo + Ni(f) = xuo + Ne(Hza f) + Ni(Lga f) = xuo + Sy + Avg,

where the parameter ¢ in the definition of Hga is still at our disposal.

We first consider the regularity of Sy. In view of Lemma 3.2 and Corollary 3.3 we
have to analyze the regularity properties of f. By interior regularity, we have that ug
is analytic away from T', and we get for s = +1/2:

1By By < CR Nl 172000y

Next, the support properties of f imply that f = x’f for some smooth cut-off function
x'. Hence, Corollary 3.3 implies for s = +1/2

INk(Hga )l 2(8r) < Clak™ ) k[l gr-1/245 1), (4.3)
HNk(HRdf)Hng;(BR) < Ck2||90||H*1/2+3(I‘)~

Interpolation then allows us to conclude for —1/2 < s < 1/2

1Nk (Hga f)ll22(5r) < Clak™)> k2ol g-1/2+0(r, (4.5)

INk(Hga f) | rrs+= By < CE [0l gr-1/245 (ry-
9



We have thus shown all the estimates for g‘v for the cases s/ = 0 and s’ = 3 + s. For
the remaining intermediate estimates, we simply use another interpolation argument.
Specifically, for the case —1/2 < s < 1/2 we use the multiplicative interpolation
inequality with 6 = s'/(3 + s) to get

1Nk (Hia f)| g1+ () < ClNk(Hiet )| 2y | Ne(Hit )| 234 5.0
< CkQ(qkfl)ngS*SlH@HH%/HS(F)-
Let us now turn to the Ni(Lgaf). From Lemma 3.2 we get
IV Ni(Lra f)ll 22y < COE)"HIfllL2(B2r) < COK)" ™ R [[wo]| 22 (3o
< COR)" Vool L2 (Bar)-
Density of H'/?(T") in H~'/2*%(T") concludes the argument. 00

4.1.2. decomposition of the double layer potential. The method of proof
of Theorem 4.1 is applicable to the double layer potential as well for the end point
case s = —1/2:

THEOREM 4.2 (decomposition of K, Lipschitz domain). Let  C Bg be a Lipschitz
domain and let q € (0,1) be given. Then

I? = IN(O + §K + .ZK,
where Sk : LA(T) — B;/OQO(BR) satisfies
||SK<P|\Bg(;(BR) < CE*||ll 2y,
ISk ellz2(Br) < Ca*(ak™) 2|l L2ry-

Here, the constant C is independent of q and k > ko. The linear operator VZK :
L3(T) — Bg(;(BR) maps into a space of analytic functions, viz.,

IV Akl L2 (57 < COR)" T Kool L2(sa) < COR) T @llaqry  Yn € No.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. We proceed as in the proof of Theorem 4.1. This implies the form

K = Ko+ Sk + Ag;
here, §K and KK are defined by

Sk + Ak = Ny(Hza f) + Ni(Lpaf),
where, for uy = IN(ng, the function f is given by

f=—=Axuo +2Vx - Vug + k*xug

The mapping properties of IN(O detailed in Lemma 2.2 imply l~(0<p € B;{;(BQR).
Proceeding as in the proof of Theorem 4.1 we arrive at

| Nu(Hga )| 2y < Clak™ 205 g )
< Cq2k_2(qk_1)1/2k2||K0¢||B;/;(B2R) < cq2(qk—1)1/2||¢||L2(p),
HNk(HRdf)”Bg’/;(BR) < CHfHB;/;(BQR) < Ck2||¢||L2(F)

The estimates for A K are obtained in exactly the same way as in Theorem 4.1. O
10



4.2. decomposition of layer potentials: analytic boundaries. The method
of proof in Theorems 4.1 and 4.2 relies on (Sobolev) regularity of Vo or Kop as
a function on the ball Bag. However, these functions are only piecewise smooth
(higher order derivatives jump across I'), and the approach of Theorems 4.1, 4.2
could not exploit this piecewise smoothness. In order to exploit it, we need to modify
the definition of the operators Sy and Sx. Our approach to the construction of
decompositions will rely on a regularity theory for transmission problem, where the
transmission conditions are imposed on I'. This requires regularity of I'. We illustrate
what kind of result may be expected for the case of analytic I'.

THEOREM 4.3 (decomposition of V', analytic boundary). Let I' be analytic and q €
(0,1). Then

‘7 = % + §V,pw + -’ZV,pw
where the linear operators §V7pw and Zv,pw satisfy the following for every s > —1:
(i) Sypw : H-Y/?+5(T) — H?(Bg) N H3*5(Qr) with
HSVﬁDw(PHHS’(QR) < Gy oq*(gh™ )t ||90||H*1/2+5(F)7 0<s <s+3.

Here, the constant Cy ¢ > 0 is independent of g and k > ky.
(ii) Avpw : H™Y/2+3(T) — H?(Bg) maps into a space of piecewise analytic func-
tions and

IV Ay puwllr2in) < Cky™ max{n + 1,E}"|¢llg-s2@y  Vn € N.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. We start again as in the proof of Theorem 4.1. We have

f=—(Ax)ug —2Vx - Vug + k2 xuo,

where ug = \70<p and x is the cut-off function of Theorem 4.1. By the mapping prop-
erties of Vy (cf. Lemma 2.4), we have that f is piecewise in H'**. More specifically,

||f||H1+S(QzR) < OkQ”@”H*l/?#‘(F)'

Let Eq and Eq+ be the Stein extension operators (see [28, Chap. V1.3, Thm. 5]) for
the sets  and QF. Additionally, let Yo and xq+ be the characteristic functions of
and Q7. We observe

f = Hga(Eqa(fxa)) + Lra(Ea(fxa)) in €,
f = Hya(Eq+(fxa+)) + Lra(Eq+ (fxa+)) in QF.

These formulas suggest to write f in the form f = fyi+s + fa pw, Where

friesla = Hra(Ea(fxa))lo, Jrreslor = Hga(Eq+ (fXxa+)) o+,
fapwlo = Lra(Ea(fxa))las fapwlor = Lra(Eq+ (fxa+))la+s

The properties of Hga and Lga given in Lemma 3.1 then imply

I fer+ellL2@avry < Clfllp2ray < Ck?||[Vogll 12(Ban)s (4.7)
HfHHSHHf(Rd\F) < C(qk_l)1+S_tk2”9‘7”H*1/2+5(F)7 te {07 1+ 3}7
IV" fapuwllzz@ary < CE*(VE) Vool 2oy Y € No. (4.9)
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It will be advisable to split fyi1+s once more, namely, to write

frree = Hea(fases) + Lea(frgres) = frin+ fa. (4.10)

Since Lga(fri+s) is an entire function and fgi+s is piecewise smooth, we conclude
that ffi, = Hga(fgi+s) is plecewise smooth. Concerning bounds for ff,, we start
by noting that Lemma 3.1 implies

IV fallL2ray < C(vk)" || frres |l L2(ra) Vn € Np.
Inserting into this the estimates (4.8) and (4.7) leads to two different bounds:

V" fallL2@ay < C(YE) " k"~ ||p|l gr-1/2+(ry VY1 € No, (4.11)
V" fallLz@ay < COyR) B Vool L2(Bary  Vn € No. (4.12)

The estimate (4.11) together with interpolation inequalities implies
I fall e rey S (qkfl)HS*th||90||H71/2+S(F)a t€{0,1+s}. (4.13)

The bounds (4.8) and (4.13) imply for frin = fri+s — fa

I finll e @aney SN Faies | me@avry + | fall ze@avr)
ST T R ol g-reiery,  tE€{0, 145} (4.14)

Next, Lemma 3.2 gives for Ni(ffin) = Ng(Hpga fr1+:)

INK(Frin)llL2(Bor) < C(gk™")? | frres

The regularity theory of Theorem B.6 then implies

L2RND) < qu(qk_l)HS||90||H*1/2+5(F)-(4~15)

[Nk (frin) | stz S
B frinll 2 gavey + [ Finll e @avry + BTN (Frin)ll2(Ban) < CRE @l 17240 ry)-

This estimate together with (4.15) can be written as

INKCf pin) Lt () SEZ (a2 ol =12+ (), t€{0,3+s}.

The (piecewise) multiplicative interpolation inequality then gives estimates for the
intermediate values 0 < s’ < 3 + s:

34s5—s’ 3+s s /(3+s
INK(F i) a1 () < CINe(Frin) | Sty N (F i) 355 oy
< C’kz(qkfl)gﬂﬂlH%’HH%/HS(F)-
Upon setting §V7pwg0 := Ni(frin)) we get the desired estimates for §V, We now

turn to the properties of Ay, ., which is defined as Ay pwe := Ni(fa) + Ne(fapw)-
Lemma 3.2 implies

1 1
D> EININE(Fapw) | (Bary + Dk INe(E) 15 (Bar)
=0 =0
Sk fall e ey + kM fapwll L2y < CEIVooll L2 (Ban)- (4.16)

12



(4.16) and Theorem B.4 produce
IV 2 Ay gt () < C max{m, kY25 [Voell s pan) + IVl 25| ¥ € No

for suitable constants C, v > 0 independent of n and k. Together with (4.16) and
the observation ||1~/030||L2(QR) < Ol gr-s/2(ry (cf. Lemma 2.4) this implies the desired
estimates for Av,pwga. O

The proof of Theorem 4.3 relies on two facts, namely, on a piecewise shift theorem for
Vo and regularity theory for Helmholtz transmission problems. The same arguments
can therefore be used for the double layer potential K.

THEOREM 4.4 (decomposition of K, analytic boundary). Let T' be analytic and

q € (0,1). Then we can decompose K as
K = I?O + §K,pw + AVK,pw
such that for every s > —1:
(i) Sk pw : HY/?*T5(T) — H?(Bg) N H3**(QR) with

14+s—s

15K puwpllmsr () < Csr,s4° (gk™) ol zr1/242 (1) 0<s <s+3

Here, the constant Cy ¢ > 0 is independent of g and k > k.
(ii) Agpw : HY/?+3(T) — H?(Bg) maps into a space of piecewise analytic functions
and

||V"VZK)pwg0||L2(QR) < Cky" max{n + 1, k}" |l g-1/2(r Vn € No.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. The proof is analogous to that of Theorem 4.3. O

4.2.1. further mapping properties of the operators V and K. The results
of Section 4.2 permit us to formulate the following corollary.
COROLLARY 4.5. Let I' be analytic. Then

IVl z2(@n) < Chllelm-s/2(r), (4.17)
IVelm@n < C llellu-rzw) + Rlellmsmm] (4.18)
1K@l 22y < CEI@l m-1/2(r), (4.19)
1K@l (0m) < C [l 22y + K2l r-1/2 ()] (4.20)
kz”‘f;wHH’l(BR) < Ck2H(pHH*3/2(F)7 (4.21)
k2|“[?80”H’1(BR) < Ck2H(pHH*1/2(F)' (4.22)

Furthermore, since for ¢ € H~Y?(T) we have Vo, Kp € L?(BgR), there holds for
every open subset w C Bp:

IVolag-—1w) < IVella-1(8r) I Kolla-—1w) < I1Kellg-1(Br)- (4.23)

Proof. For the L?- and H'-bounds, combine Theorems 4.3, 4.4 with Lemma 2.3.
For the H!-estimates, we proceed as follows. For the double layer potential K¢ €
L?(Qg) we use the differential equation to get for v € HJ (BR)

E(Kp,v) = — A AKpv = — A A(Skp + Axp)v.
, ; .



An integration by parts and the observations that Si¢ and Axp € H2 (Br) (and
thus their normal derivative does not jump across I') yield together with Theorem 4.4

V(§K<p + .Zxcp) -V

}k%fﬂp,v)‘ = A

<C [qz(qk71)5||80||H1/2+s(r) + k2||90||H*1/2(F)] VUl L2(Bg)-

Selecting s = —1 leads to the claim estimate. For ||1~/g0||H71(BR), we proceed analo-
gously. O

For later reference, we collect some interior regularity results for solutions to the
homogeneous Helmholtz equation.

LEMMA 4.6. Let ' CC w C R? be two bounded Lipschitz domains. Let u € L?(w)
solve the homogeneous Helmholtz equation. Then there exists C' > 0 (depending only
on dist (W', 0w) > 0, w, and ko) such that

lull?wr < CK?[lull zr-1(w)-
If u € HY(w), then we have

[Onull 1720y < CE[lullw-

Proof. For every smooth cut-off function x with suppx C w we have |[xullg-1() <
Cllull r-1(w)- Next, classical interior regularity gives us

IVull 2wy < CF[lull L2
for all w’ CC w"” CC w Next, to get the L2-estimate we observe that yu satisfies
—A(xu) + E*xu = 2k*xyu — 2Vx - Vu — Ayu, xu=0 on Ow.
Lax-Milgram for the operator —A + k2 Id then gives

Ixull#w < CE?|Ixull 1wy < Ck*|lullg—1(u)-

We now turn to the case of u € H'(w). For v € H'(w) we have
/Vu-Vv+/Auv /Vu-Vv—kQ/uv

which implies the stated estimate. O

5. decomposition of combined field operators. The combined field opera-
tors A and A’ of (1.4), (1.5) are linear combinations of the operators V and K. Hence,
the decompositions of the operators V and K of Section 4 imply decompositions of
A and A’. The purpose of the present section is to give these decompositions a form
that will be convenient later on. We restrict our attention to the case of analytic
boundaries T'.

[(Onu, v)| =

< ullrwllvlirew,

5.1. frequency splitting for function spaces on surfaces and domains.
An important tool for the analysis will the “frequency splitting” operators analogous
to the operators Hrs and Lga of Lemma 3.1. We have
LEMMA 5.1 (frequency splitting on domains). Let ¢ € (0,1) and Q be a bounded
Lipschitz domain. Then one can construct operators Lo and Hgq defined on L*(Q)
with the following properties:
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(i) Ho+ Lo =1d )
(it) |Hafll g ) < Cow (ah™1) " || fllo(0), where 0 < 5" <'s and s > 0.
(iii) Laf is an entire function on R and

IV*"Laflremey < COYR)* [ fll2@)  Vn € No.

Here, Cs ¢ is independent of k and q; the constants C, vy are independent of k.
Proof. Let Eq : L?(2) — L2?(RY) be the Stein extension operator. Then define
Hqf = (Hga o Eqf)|a and Lof := (Lge o Eqf). The properties then follow from
Lemma 3.1. O
LEMMA 5.2 (frequency splitting on surfaces). Let Q C R? be a bounded Lipschitz
domain with smooth boundary T'. Let s > 0 and g € (0,1). Then one can construct
operators Ly : H*(I') — H'Y/?T5(R%) and Hy : H*(T) — H*(T') with the following
properties:

(Z) HF—F’}/éntLF =1d ,

() 1 Fe fll ey < Coo (b~ | fllz-qoy, where 0 < < 5.

(iii) Lrf is an entire function on R? and
IV Lo fllaeey < COR)" ™2 fllgsry - V¥n € No.

Here, the constant Cs ¢ is independent of k and q; the constants C, v are independent
of k.

Proof. Related frequency splittings have been constructed in [24]. We therefore merely
sketch the construction. Let G : H*(I') — H'/?5(R?) be a lifting operator. Define
Hr := ~}" o Hga o G and Lr := Lpa o G. The properties of Hga and Lra given
Lemma 3.1 then imply the statements. For example, the bound for Hr follows from
the properties of Hga. Specifically, the multiplicative trace inequality (see, e.g., [23,
Thm. A.2]) yields

2s/(142s 1/(142s
1Hrll ey < 11 Hia (G177 0y | Hea (GO 3 ey

< @k IGol vz @) S(ak ™) Nl e oy

on the other hand, trace inequalities and the stability of Hpr« yield

I Hrll s (o) SIHra (GO | 17245 () SIGP 1240 () Sl s ()

Thus, the limiting cases s’ € {0, s} are proved. The intermediate cases 0 < s’ < s
follow by interpolation arguments. O
The frequency splitting in Lemma 5.2 relies on a frequency splitting in a domain and
the trace operator. This precludes a direct extension of the construction to negative-
index Sobolev spaces. Nevertheless, splittings can be defined on such spaces, and the
following lemma presents one possible construction.
LEMMA 5.3 (frequency splitting on surfaces, negative norms). Let Q C R¢ be a
bounded Lipschitz domain with an analytic boundary T'. Let ¢ € (0,1). Then one can
construct operators L1, HL® on H~YT) with the following properties:

(i) Lp® + H® =1d

(ii) for —1< s’ <s<1:

NHE fll ger oy < Cla/R)* ™ (1 f | 2o )
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(iii) LY f is the restriction to T' of a function that is analytic on a tubular neigh-
borhood T' of I and satisfies

VL fl| p2ery < CKY24m max{k, n}" (| fl g-1/2(r) Vn € Np.

Proof. Consider on the compact manifold I" for the Laplace-Beltrami operator Ar the
eigenvalue problem

—~Arp—Xp=0 onT.

There are countably many eigenfunctions ¢,,, m € Ny, with associated eigenvalues
Am > 0, which we assume to be sorted in ascending order. Without loss of generality,
we impose the normalization ||y, || 2y = 1. We have Weyl’s formula (see [10, p. 155])

N(A) := card{ A, | A < A} ~ CpA4TY

where the constant Cr depends solely on I'. Additionally, we have from Lemma C.1
the existence of a tubular neighborhood T' of I and constants C, v > 0 such that

IV omllr2ery < Oy {Am,n}"  Vn e No. (5.1)

Furthermore, the functions (p,)°_, are an orthonormal basis of L?(T") and an or-
thogonal basis of H!(I'):

|u||L2(F) Z [, pm) 2| Yu € L*(T),

HUJH?{l(F) = (1+ )\12;1)|<U, 80m>L2(F)|2 Vu € Hl(r)-

m=0

By interpolation, we get for 0 < s <1 and u € L?(T'):

[ull3e iy ~ > (14 A2) (. @m) L2y |-
m=0

By duality, distributions f € H*(T") with s € [—1, 0] can be identified with sequences
(fm)oo_ such that Hf”%{s(r) ~ e (L4 A2)%| frn]?. We will write (formally) f =
> o fm®m to express this identification.

We now define the operators H{“ and L1 by

HIT‘Legf = Z Jfm®m, L;egf = Z fm®m

miXm >nk m:Ay, <nk

Then clearly H“ + L = Id. Next, in the tubular neighborhood T of T' we have

IV LE ey < Y UfmlIV @mllizry < Cy" max{nk,n}™ > |fnl

m:A;, <nk m:Am <nk
< Cv" max{nk,n}" Z (14 X2,)1/2 Z (14 X2,)~1/2|f,|2
m:Am, <nk m:Am, <nk

< Oy max{nk,n}" (1 + (nk)*)""*/N0k) || £l sr-172(r)
< CkM 2 max{nk, n}" || fll g-1r2ry-
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For HR® f, we compute for —1 < ¢’ < s < 1:

HHE f Gy SC % (L4 M) fl® < O+ k) flI3e ),
m:Am >nk

which finishes the proof. O

REMARK 5.4. The factor k%/2 in the estimates for L1-* is not optimal and can be
reduced (see Remark C.2). Also, the proof shows that the term || f||z-1/2(r) in the
bounds for L’ can be reduced to || f|| z-1(r) at the expense of further powers of k.

5.2. decomposition of A and A’. We recall the definition of 2A(C,~, T\ T)
given in Definition 1.1 and the definition of the jump operator [-] in Section 1.1.1.
LEMMA 5.5 (decomposition of A). Let I' be analytic and let s > 0. Fiz g € (0,1).
Then the operator A can be written as

1 ~
A::|2§+K0+RA+]€[AA]

where Ry : HY(T) — H*TY(T) and A, satisfy for some constant C, which is inde-
pendent of k > ko and q, and a constant v > 0, which is independent of k > ko,

|Rallgs+1(vy—ms ) < CE, | Rall g (ry—me ) < 4
Aap € U(CCy,v,QR)),  Co = |l@llm-1/2ry + Ellll rr-s/2(r)-

Proof. Before turning to the proof, we point out that, since only the jump of the
potential A Ay across I' appears in the decomposition of A, there is some freedom
in the choice of A4. In particular, Ay can be selected such that (AAf)|Q+ =0
or (AAf)|Q = 0. Indeed, we will construct A4 such that AAf =0on QFif A=
—1/2+4 K —inV is considered and Asf=0o0nQif A= 1/24+ K —inV.

We will only consider the operator A given in (1.4a) (i.e., the case A = —1/2 +
K —inV), the other case being handled analogously. Since A = Wént(K i?ﬂN/)7 the
decompositions of K and V of Theorems 4. 4, 4.3 produce

1 vt (5 x . (5 7
A= {—5 + Ko} + {"y(z)nt (SK,pw — lnSV,pw) — 177V0} + {’YO ¢ (AK,pw — lnAV,pw) }

With the aid of the high and low frequency operators Hr and Lr of Lemma 5.2, we
write Vo = HrVp + WthrVo and therefore arrive at the decomposition

A=-1/2+ Kot R+ " A,
Ay = —ink_leVo + kT Ak — ik Ay .

It remains to obtain the stated bounds. Theorems 4.3, 4.4 and Lemma 5.2 produce
(for notational convenience, we employ the same parameter ¢ € (0, 1) in the splittings
of Theorems 4.3, 4.4 and Lemma 5.2)

Y& Sy o || 1+ (s (ry < C?, V& SV ol s (o) 1y < CgPk™Y,
1™ Sk pw | 1+ 0y —mrs () < Ok, 116 Sk pw Lz ()= () < C,
I HeVo |l goes vy ey < C, | HrVoll g (ry sy < Cqk™".
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By selecting ¢ sufficiently small, we can obtain the desired bounds for R4. For A A
we see that Theorems 4.3, 4.4, and Lemma 5.2 together with the mapping properties
of Vp yield

peH'PT) = Aap €UCCp,7, ), Co:=llelmrmytklelu-smm).

This concludes the proof. O

REMARK 5.6. The operator —1/2+ Ky is invertible while the operator 1/2+ Ky has
a one-dimensional kernel. It will be convenient to have decompositions with invertible
leading term. By Lemma 2.5, the operator 1/2+ Ky — iVy is invertible. Inspection of
the proof of Lemma 5.5 shows that we can achieve a decomposition of the following
form:

1 ~
1/2+K—i7’]V:§+K0+i‘/0+RA+I€[AA]

where the operators R4 and .ZA have the reqularity properties stated in Lemma 5.5.
The next two lemmas provide decompositions of A’—the difference between these two
results lies in the range of Sobolev spaces on which they are defined: While Lemma 5.7
covers the case s > 0, Lemma 5.9 extends the range to s > —1/2 at the expense of
further powers of k.

LEMMA 5.7 (decomposition of A’). Let ' be analytic and let s > 0. Fiz q € (0,1).
Then the operator A’ can be written in the form

1 ~ ~
A= :|:§ + K{+ Rar + k[Aar 1] + [0nAar 2]

where Rar : H*(T') — H*TY(T) and Ay satisfy for some constants C, v > 0 that are
independent of k > kg

[Rarllgo+1(ry =y < Ck, | Rarll s vy s (1) < @
Aarip € Q[(CCw,V,QR)), Cp = kHQPHH*W?(F)v i€{1,2}.

Proof. We consider the case A’ = 1 + K’ +inV, the case A’ = —=1/2+ K’ + inV
being handled by analogous arguments. We recall that the operator A’ is given by
Al = 4"V — inyi"Vep. In view of 4"V, = 1/2 + K|, we can write with the
decomposition of Theorem 4.3

1 L~ ~ e~ ~
A= 5+ K+ 1 (Sv + Avg ) + 598" (Vo + Sy + Avu ) - (5:2)

Here, the parameter g appearing in the definition of the decomposition of Theorem 4.3
is still at our disposal. Using the high and low frequency operators Hq of Lq (the
parameter g appearing in their definition will be selected shortly) we can set
Ra = ”yf”tgv,pw + in*yé"tgvypw + in”yé”tHgﬂN/O,
Axg=—k""xo (inﬂv,pw + inLQ%) :

AA’,2 = _XQAV,pwu
18



where xqo denotes the characteristic function for 2. Theorem 4.3 yields

Vi Sy po | i +e (yrre oy < Caky, V™ Svipoll e () rrs () < C?
176" Sv.puwll 42 (ry—bre () < O, 176" Sv.puwll i+ () — 120y < Cg®k™"
176" HoVoll s (ry s (ry < C, 16" HoVoll e (ry ey < Cgk™".

Selecting g appropriately gives the desired bounds for R4/. From Theorem 4.3,
Lemma 5.1, and Lemma 2.4 we infer

Awop and  Aaqpe A(CCy,v,QR), Cy = kol g-3/2(r)-

O

REMARK 5.8. The operator —1/2 + K|, is invertible while the operator 1/2 4+ K|, has
a one-dimensional kernel. By Lemma 2.5, the operator 1/2 + K{ + iVp is invertible.
Inspection of the proof of Lemma 5.7 shows that we can achieve a decomposition of
the following form:

1 ~ ~
12+ K'+inV = o 4 Ki = iV + Ra + k[Aara] + (00 Aa o],

where the operators Ra and VZA/J, i € {1,2} have the regularity properties stated in
Lemma 5.7.

LEMMA 5.9 (decomposition of A"). Let T be analytic and let —1/2 < s < 0. Fix
q € (0,1). Then the operator A’ can be written in the form

1 ~ ~
A = :|:§ + K{+ Rar + k[Aar 1] + [0nAar 2]

where Rar : H*(T') — H*YY(T) and Ay satisfy for some constants C, v > 0 and a
tubular neighborhood T of T' that are all independent of k > kg
[Rarllgo+1(ry—ms () < Ck, | Rar |l s (ry—mrs () < @
A 19 € U(CCy,7, T
A2 € A(CC,h, v, T

), Co=kllellg-sr2q) + k2@l m-1m),

NN

) Cp = k”‘PHH*3/2(F)~

Proof. The proof is very similar to that of Lemma 5.7. We start from (5.2). Using
the frequency splitting operators H“ and Li:“ of Lemma 5.3, we can define
Rar = HE* (7S + 138" Svp + 1010
.ZA/J =k~ xq (—injv,pw — Lp (ﬂ'"tgv_,pw + in'yé"tgv,pw + inVO)) ,
-’ZA/,Q = _XQ-/ZV,pw-

Using the mapping properties of §V7pw and V) we can infer from Lemma 5.3 that

R 4+ has the desired mapping properties. For the operators ./Z(A/)l, .ZA/,Q we get from
Theorem 4.3 and the mapping properties of Vj that
Vi SV pe + 1075 Sy + inVoll 2y (ry < Ck.
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From Lemma 5.3 we therefore get
ZA'J@ € Q[(chav% T), Cp = kd/Q”@”H*l(F) + k”@”H*?’/?(F)

and an analogous estimate for ZA/)Q. 0

REMARK 5.10. The proof of Lemma 5.9 shows that in the context of smooth domains,
further decompositions are possible. In particular, it is possible to exploit the smooth-
ing properties of Ko and K. Since Ko : L*(T) — HY(T) and K}, : L*(T') — H(T)
we see that the splittings Ko = Hr" Ko + L Ko and K{ = Hr K+ L{LK{) lead,
for example, to

|HR Y Koll 22 < Cq/k, |Hr Y Kol 22 < Cq/k.

Inserting this in the decompositions of Lemmata 5.5, 5.9 shows that the operators A,
A’ can be we written as sums of three terms: £1/21d, an operator that is small (as
an operator L?(T") — L*(T), and an operator that maps into a trace class of analytic
functions.

6. decomposition of the inverse of combined field operators. We turn to
the mapping properties of the operators A=! and (A’)~!, where A and A’ are defined
in (1.4) and (1.5). Put differently, we seek estimates for the solution ¢ of the following
problems:

Ap=f
Ap=1.

Here, f is in an appropriate Sobolev space to specified below. We will focus on the
case of analytic boundaries T'.

—~
o=
~— —

6.1. analytic regularity. In this section, we study (6.1), (6.2) for analytic T’
and analytic right-hand side f. The solution ¢ is then likewise analytic and the aim
of the present section is to study the k-dependence of the solution ¢.

6.1.1. the operator A. LEMMA 6.1. Let I' be analytic and let T be a tubular
neighborhood of T'. Suppose g € A(Cyy, g, T\T') for some C, 74 > 0. Let o € H/?(T)
satisfy

1 : ex n
<i§+K—mV) ¢ =7%"9-7"9
Then ¢ = &% u — yirtu, where, with the operator A defined in (6.3),

u € A(CCy,7,Qr), Cu = Cy + k7 Y|VAY| 20 + 1 A0l L2 (00)-

The constants C and v depend solely on I', 4, ko, and the choice of R.

Proof. Before proving the lemma, we stress the following points: First, the existence
of ¢ is stipulated as an assumption. Second, as will be discussed in more detail
below, k™ |V Al L2(0,) + | A®l L2(ay) grows only algebraically in k under appropriate
assumptions. Thirdly, it is allowed to select g such that it vanishes in Q or in Q7; in
fact, this is how Lemma 6.1 will be employed below. Finally, in view of Lemma B.5
it is possible to select u such that it vanishes on Q or Q7.

We define the potential u on QU QT by

u=Ap:=Kp—inVe. (6.3)
20



Then u satisfies the homogeneous Helmholtz equation on Q U Q% together with

Y5 u = [g] if (-3 +K —inV)p = [g], (6.4)
ext

Y6 u = [g] if (3 4+ K —inV)e = [g]. (6.5)

We will only consider the first case (corresponding to an interior Dirichlet problem)—
the method of proof can be applied to the second case as well. Also, for simplicity of
notation we assume that ¢ = 0 on Q. This is not a restriction and can realized with
the aid of Lemma B.5. B B

The jump relations satisfied by K and V' (see [20, Thm. 6.11]) give us on I'":

ext int

[u] = ¢, Y — 7" = inp. (6.6)

The first jump relation shows that we have to prove u € A(Cy, Yu, 2r). To that end,
we note that u solves by (6.4)

—Au—k*u=0 onQ, 'yé"tu =g.

In view of the analyticity of I" and g, Theorem B.2 implies the existence of a tubular
neighborhood T of I such that u € A(Cy, v, TNQ), where C1 < C (Cy + k7 ul2,0)
for a C' > 0 independent of u and k.

The jump relations (6.6) imply the Robin boundary conditions

Vi — iny§ e = v — iy e =: g (6.7)

The analyticity of T' implies the existence of a tubular neighborhood of T' (again
denoted T') and an analytic function G= € A(CC1k, v, TNQ) with "G~ = g. Next,
Lemma B.5 implies the existence of a function G' and a tubular neighborhood of I"
(again denoted T') with G € A(CC1k,v, T N QT) and 7§*'G = "G~ = §. Then,
Theorem B.3 gives u € A(CCa,~v, T NQT), where Co = C1 + k™ ||u||4 0+np,- Since
u = Ap, we have so far obtained u € A(CC,y,~, T\I') with C,, defined in the statement
of the lemma. Interior regularity (see [22, Prop. 5.5.1]) finally gives estimates for u
not only near T' but in all of Qg, i.e., u € A(CCy, vu, Qg) for suitable C, v, > 0. O

The existence of ¢ is stipulated as an assumption in Lemma 6.1. We formulated
¢ € H'?(T) since this readily implies Ap € H'(Qg) and the constant C,, can be
estimated in terms of ||| g1/2(r). However, it will be more convenient in the following
to bound C,, in terms of [|¢|[z2(ry and ||Ag|| g1/2(ry, which we now show how to do:

LEMMA 6.2. Assume the hypotheses of Lemma 6.1. If o € HY/?(T') then
1A@l L2(an) + k7 VAPl L2y < C (K7 @l /2y + Klloll g-irzy + K2l g-sr2y ] -
If o € L*(T') and Ap € H'/?(T) then

1A@l 2(00) + kM IVAQl L2(00) < C [l A0l 2y + Bl el 120y + B2l @l 5720y -

Proof. If ¢ € H'Y/?(T"), then we can insert the result of Corollary 4.5 to get

IA¢||z2n) < C [kl g2y + k210l m-s2m)] »

HVESDHL?(QR) <C [||SD||H1/2(F) + k2H90HH*1/2(F) + k3H‘pHH*3/2(F)] )
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which is the first estimate. For the second one, we consider again the case where
Ap (see (6.3)) solves an interior Dirichlet problem. If ¢ € L*(T), then it is a priori
not clear that Ap € H*(Qg). However, this can be inferred as follows: We write
A=41/2+ Ko+ S, where, by Theorem 4.4, the operator S : L?(T') — H'(I'). Since
likewise Ko : L?(T') — H'(T'), we conclude from Ap € H'Y/?(T") that 1/2¢ € H'/2(T).
In particular, ggp € H'(Qg). To get bounds for u := g(p, we restrict our attention to
the case A = —1/24+ K —inV as in the proof of Lemma 6.1 and note that (4.21)—(4.23)
of Corollary 4.5 produce

K ull -1 + Flull g-1(8ar) < C Kl m-12my + Bl a-s2ry] - (6.8)
Next, u is the solution of the following interior Dirichlet problem:
—Au=k*Ap e L*(Q) inQ, Yt = g := Ag.
Standard a priori bounds for Laplace Dirichlet problems together with (6.8) and (6.8)
imply
lull+.0 < C [lgllgrey + kQH@HH%/z(F) + kSH‘pHH*E'/z(F)] .

Lemma 4.6 allows us to infer

I ul| =172y < CEllull#.0 lull 2o < CE ullg-1(Byr)-  (6.9)
The jump condition (6.6) satisfied by u reads y{%'u — vi"'u = iny. Rewriting this as
Yy = 4imty + ikep, we infer that u solves in QF

—Au=k?u on QF, ety = ity + ik, ulopr = uloBg-

A priori bounds for the Laplace operator together with (6.9) give us

lll s oy < € (IR0l s + I0E lli- 2y + Bllellir- /ey + Nll vz o)

< Ck Ngllmrery + KNl m-1r2wy + Kol g-s2my] »

which concludes the argument. O

If the operator A is invertible and Assumption 1.4 is true, then we obtain the following
regularity assertion for A~

COROLLARY 6.3. Let I' be analytic, T be a tubular neighborhood of I', and Cg, v4 > 0.
Let Assumption 1.4 be satisfied for some so > 0. Then there exist constants C, v > 0
such that for every g € U(Cy, vy, T \T') the solution ¢ € H**(T') of Ap = [g] satisfies

)
=], weAUCCy 7, %), C,p:=Cyk(1+k’C(A sa,k)), [:= 5 +sa

Furthermore, u is given explicitly by (6.3), i.e., u = A(A71[g]).
Proof. From the trace inequality (and, in the limiting case s4 = 0, a multiplicative
trace inequality) we get

(9]l zroa () < CCyk=ATY2, 9]l 2y < CCykY2, 9]l 272y < CCyk.
Therefore, by assumption we obtain for ¢ = A~![g]
lellz2ry < Cllelmeamy < CO(A, sa, k)[g]| meary < CO(A, 54, )k 4F12C,.
Lemma 6.2 then implies for the function u = ggp
lull 2 + kI Vull 2 < CKT2H94Cy0(A, 54, F).

An appeal to Lemma 6.1 concludes the argument. O
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6.1.2. the operator A’. For the operator A’, one can proceed very similarly as
for the operator A.
LEMMA 6.4. Let T be a tubular neighborhood of T' and let g1 € A(Cy,, 71, T\T') and
g2 €A(Cyy,v2, T\T). Let p € H-Y2(T') satisfy

1 : ex in ex in
(15 + K+ an) @ = k(6" 91 — 70" 91) + (7§92 — 71" g2)
Then ¢ = v{*t'u — vi™y for a function

u € A(CCy, Qr) Cu=0Cq, +Cy, + kil”@”H*lﬂ(r) + Ellll zr-s/2(ry.-

The constants C, v > 0 depend only on I, vg,, v4,, and ko.
Proof. We introduce the potential u := V¢, which satisfies the homogeneous Helmholtz

int ext

equation in Q U QT. Additionally, it satisfies the jump conditions 7" u = v§"*u and
) 1 1
ity + inu = (5 +K' +inV)p and Afu+inu = (—5 + K' +inV)ep onT.

Let us assume that A’ = 1/2 + K’ 4 inV, since the case of A’ = —1/2 + K' +inV is
handled with analogous arguments. For simplicity of notation, we assume, as we may
in view of Lemma B.5, that g; = go = 0 on Q.

Then u solves the homogeneous Helmholtz equation in  with Robin boundary con-
dition vi™u + inu = kv g1 + vi"t gy on I'. The analyticity of g; and go then implies
by Theorem B.3 the existence of a tubular neighborhood T of T" and a constant v > 0
such that

ueACC,, 7, T'NQ),  Cp = [k Vullr2() + ullL2@) + Cyy + Cy, ] (6.10)

By means of Lemma B.5, we may view v¢"u as the trace y§*'u of a function @ €

A(CC!, 5, T" NQT), where the tubular neighborhood T" and the constant ¥ depend
solely on I, 7, and ko. In QF, the function u satisfies the homogeneous Helmholtz

equation and, in view of the jump condition v§*u = 4{"*u, on I" the Dirichlet bound-

ary condition y§*'u = y§**u. Hence, we conclude from Theorem B.2 the existence
of a tubular neighborhood (again denoted T') and constants C, 7, > 0 that depend

solely on I' and 7 such that
uem(ccga’yuvaQ+)v O’Z = O'{L_FkilHuH'H,Q+ﬁBR'
Corollary 4.5 implies

K=l pan < C K7 Il a2y + Ellol m-s/2r)

so that we conclude u € A(CCy,7y, T \T') with C, defined in the statement of the
lemma. Finally, interior regularity (see [22, Prop. 5.5.1]) gives estimates not only near
I but in all of Qg, ie., u € A(CCy,Vu, Qr) for suitable v,, C > 0. Observing that
yinty — v§%ty = ¢ concludes the proof. [

COROLLARY 6.5. Let I' be analytic, T be a tubular neighborhood of I', and Cy,, Cl,,
Vg > 0. Let Assumption 1.5 be satisfied for some sg > —1/2. Then there exist
constants C, v > 0 independent of k > ko such that for all g1 € A(Cyy,7ve, T\ T),

g2 € A(Cy,, vy, T\T) the solution ¢ € H*4(T') of Ap = k[g1] + [Ong2] satisfies

¥ = [anu]v u € Q’[(COL,O)’Yv QR)) C«p = (Ogl + ng) (1 + kﬁO(Ala SA, k)) )

)
8= ) +s¥, s = max{sa,0}.
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Furthermore, u is given explicitly as u = V((A))"[g]).
Proof. We use Lemma 6.4. Using s4 > —1/2 and Assumption 1.5 gives for the
solution ¢ of A’¢ = k[g1] + [Ongo]

lell g-120y < Cllollary < CC(A, sa,k)||k[g1] + [Onge]ll m=a ()
< CC(Av SA, k)Hk[gl] + [67192]” ) < C(A7 SA, k)k5X+3/2(Cgl + ng)'

ot
H°A(T

Hence, we get
Cgl +Og2+k71H(pHH71/2(p)+I€H(/DHH73/2(F) < C(Ogl+Cg2) (1 + k5/2+SXC(A’, SA, k)) .

An appeal to Lemma 6.4 concludes the proof. O

6.2. finite regularity. This section is the core of the paper and provides de-
composition results for the operators A~ and (A’)~! as operators acting on Sobolev
spaces H*(I"). These results are formulated as Theorems 6.7, 6.8. Before working out
the details, we formulate a lemma that isolates an important structural element of
the proof of Theorems 6.7, 6.8.

LEMMA 6.6 (“iteration lemma”). Let T be a tubular neighborhood of T. Let s,
s € R, and 71, 72, v > 0 be given. Let Cymootn(k), Csowe(k) > 0 be two, possibly
k-dependent numbers.
Assume that B : H*(T') — H*(T") satisfies the following conditions:

(i) B can be decomposed as

B=By+Bs+ R

where By : H*(T') — H*(T") is boundedly invertible, R is a bounded linear oper-
ator with

”RBO_IHHS(F)HHS(F) <g<l1
and B4 is a bounded linear operator of the form
Ba= k[EA,l] + [(%EA,z]
with
Baip € UComooth (B¢l =), 7, T\T)  Voe HT),  ie{l,2}

(ii) B~ is a bounded linear operator in H*(T') and H*= (') (with possibly k-dependent
norms).

(i1i) If ¢ € H*(T') satisfies By = k[g1] + [Ong2] for some g1 € A(Cy,,71,T\T), g2 €
A(Cyyp, 72, T\T), then ¢ = [u] (or, p = [Onu]) for some u € A(Csorve (k)(Ca, +
OGz)a Vs QR)

Under these assumptions there exist constants 6’, ¥ > 0 depending only on v1, ¥z,
and T, and ko such that B~! can be written as

B™'=B;+Bp
where Bg has the form Bgf = [Bgf] (or Baf = [0,Bsf]) and

HBZHHS(F)HHS(F) <(1- q)_l||B(J71HHS(F)&HS(F)7

EBf S Ql(CB7§7QR)7 CB = écsolve(k) Csmooth(k)||f||H5(F)'
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Proof. For f € H*(T') consider the following iteration:
(p(])"inite = 0, A = 0,
Budf e i f Bl ),

B&;! = —Badfm",

(P{l'iflite — (pfinite + 57];'1'711'te7 @ﬁﬂ — (pﬁ + 5;;1_

n

The sequences (/™€) and (p7)2, converge as we now show. Define the residual
T = f — Bl + pA). Then

rnn = f = Bl +@ilin) = f = Bl + 6 4+ ot + 671
=1y — B6J™" — B&;! =y, — (Bo + Ba + R)8,"" — BS;}!
_ _Razinita‘ _ BA(Svjl'inite _ B(S;;l _ _Ré‘g:inite _ —RBo_l’I”n.
The assumption ||RB0_1||H3(1")4_H5(1") < q < 1 therefore implies ||7, || s (ry < ¢"[|70ll (1)
and thus [|6£7% | zrory < ¢"|| By | i 0y (o) |70l 1+ (r)- We conclude that the sum
S0 o 0imite converges in H*(T'). Since B is a bounded linear operator, also the sum

n=

S22 62 converges in H*(T'). We thus define the operators Bz and Bp by

n=0"n
o0 o0
. . finite _ finite . : A A
Bz : f lim ¢ 2)% , Bp:fe lim gy 2%5”-
n= n—=

It is easy to see that || Bz || gsry—mem) < (1 — @) 7Y By 'l s (ry—ms(r)- Next, in view
of lim,, 0 077 = 0, we obtain from (6.12) that lim,, ., /™€ + @7 is the solution
of By = f. To obtain the representation Bgf = [Bgf] (or Bpf = [0,Bp]), we sum
the terms in (6.13) to get the relation

B(Bpf)=—-BaBzf.

Thus, by assumptions on the operators B and By, we see that Bpf has the form
Bgpf = [Bgpf] (or [0,Bpf]) for an operator Bp that satisfies

EBf € Ql(Ccsolve(k)csrrwoth(k)HJPHHS(F)a77 QR)'
for appropriate 7. O

6.2.1. the operator A. We show that the operator A=! of (1.4) can be de-

composed into a zero-th order operator with k-independent bounds and an analytic
part:
THEOREM 6.7 (decomposition of A=1). Let I' be analytic. If d = 2, then then
assume additionally diam Q < 1. Let Assumption 1.4 be valid for some sa > 0 and
some s > 0. Then there exist constants C, v > 0 independent of k > ko with the
following properties: The operator A~' can be written as

A7l = Ay + ,YgztAVA71 — ,YéntA'A71
where the linear operators Az und ZA—I satisfy

| Az ms (0y—mrs () < C,
Aurf €ACCs, 7, QR),  Cp =k (1 FEYPHAC(A, 54, k)) 1F 1| e (r.-
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Proof. Before turning to the proof, we point out that, since only the jump of Ay f
across I' appears in the decomposition of A~ there is some freedom in the choice
of A4. In particular, A4 can be selected such that (Aaf)la+ = 0 or (Aaf)|la = 0.
In fact, the proof shows that we construct .ZA such that .ZAf =0on QT if A=
—1/2+ K —inV is considered and A5 f =0on Q if A=1/2+ K —inV.

Our starting point is Lemma 2.5, which asserts that —1/2 + Ky and 1/2 + Ky +iVp
are invertible operators on H*(I'). Lemma 5.5 and Remark 5.6 permit us to write

AZ—%-I—KQ-FRA-FHAVA], ifA=-1/2+ K —inV,
1 ~
A=+ Ko+iVh+ Ra+k[Aa],  ifA=1/2+K—inV.

with operators R 4 and A 4 having the properties stated in Lemma 5.5. In the notation
of Lemma 6.6, we set

Ly Ko+iVy, ifA=1/2+K—ipV,

R=Ra, Bui1=As, Bus=0, By=
A AL PA ‘ {—%+K0 if A= —1/24 K —inV

In view of Lemma 5.5, the norm |[Ra||gsr)—m+r) can be made arbitrarily small.
We may therefore assume that ||RBO71HH5(F)HH3(F) < 1. Furthermore, Lemma 5.5
together with the trivial embedding H*(T') ¢ H~'/2(T') ¢ H~3/?(T") implies that
Csmooth (k) < Ck. Finally, Corollary 6.3 provides us, again in the terminology of
Lemma 6.6, with

Clotve(k) ~ E2(1 + E/2T54C(A, 54, k)). (6.15)

Thus, Csotve(k)Camootn (k) ~ k3(1+k>/?+34C(A, s4,k)), and Lemma 6.6 implies the
result. O

6.2.2. the operator A’. The operator A’ is handled with similar techniques.
THEOREM 6.8 (decomposition of (A")™1). Let T' be analytic. If d = 2, then assume
additionally diam Q < 1. Let Assumption 1.5 be valid for some s4 > —1/2 and some
5 > 0. Then there exist constants C, v > 0 independent of k > ko with the following
properties: The operator (A')~1 can be written as

(A/)_l = /Z + metAA’.,in'u - VintAA’,inv
where the linear operators A’y and gAf,my satisfy with sjg := max{sa,0}

I AZ | fs () — =y < C,
Ay inef €U(CCr7,0p),  Cpi= (14 K200 54, 1) [ ller).

Proof. With Lemma 5.7 and Remark 5.8 we write

LK)+ iVo + Rar + k[Aar 1] + [0nda o] i A =1/24 K' +inV.
26

v {—% + K)+ Rar + k[ A1) + [0n A 2] if A'=-1/2+ K'+inV,



This has the form required in Lemma 6.6, if we set
1 ! : ! s

—5+ K, itA=-1/24+ K+inV ~ ~ )

By = 2 0 ’ R=R ’y B ,L:A iy 1E 1,2

’ {%+K6+iVo iFA =1/2+ K +inV A ArT A {2}

By Lemma 2.5, the operator By is invertible on H*(T"). Hence, selecting ¢ in Lemma 5.7
appropriately, we may assume ||RB; ! | s (ry—m=(ry < 1. Lemma 5.7 provides the nec-

essary information about the mapping properties of B4 ;, i € {1,2}. Since s > 0, we
conclude that (in the notation of Lemma 6.6) Cspooth (k) ~ k. From Corollary 6.5 we
obtain

Cootve (k) ~ k71 (14 K/2AC(A 5,8 ) (6.16)

Lemma 6.6 then implies the result. O

Theorem 6.8 restricts its attention to the case s > 0. However, the case s = —1/2 is
particular interest given that it is the energy space for the operator K’. We therefore
modify the arguments slightly to cover this case as well:

THEOREM 6.9 (decomposition of (A")™!, negative norms). Let I' be analytic. If
d = 2, then assume additionally diam Q < 1. Let Assumption 1.5 be valid for some
sa > —1/2 and some —1/2 < s < 0. Then the operator (A')~! can be written as

(A/)71 _ A/Z +7§xtAVA’ _ ,yi'ntAVA/
where the linear operators A’y and Ay satisfy with sh = max{s4,0}

A% | e 0y e () < C,
AA’f S Ql(OCf,’Y,T), Oj = kd/2 (1 + k5/2+SXO(A/, SA, k)) HfHHS(F)

Here, C', v > 0, and the tubular neighborhood T of I' are independent of k > k.
Proof. We proceed as in the proof of Theorem 6.8 but replace the decomposition of
Lemma 5.7 with that of Lemma 5.9. That lemma leads to Cymoorn(k) < k%2 + k ~
k2. Since Cyorpe (k) is given by (6.16) we get the desired result. O

7. L2-stability and convergence. Since the operators A and A’ will appear
now in conjunction with their adjoints, it will use useful to write explicitly the k-
dependence, i.e., we write Ay and Aj,. We will use the following additional operators:

Ag = —1/2+ Ky if A=-1/24+ K —inV, (7.1)
Ay =+1/2+ Ky — iV ifA=1/2+ K —inV, (7.2)
Ay =-1/2+ K|, if A'=-1/2+ K —inV, (7.3)
Ay =+1/2+ K{+1iV, if A"=1/2+ K —inV. (7.4)

We view these operators as operators acting on L?(I') and note that the operators
A} given in (7.4), (7.3) are the L?(T')-adjoints of the operators Ay of (7.2), (7.1)
respectively. Associated with these operators are the sesquilinear forms ay and aj,
(which are linear in the first and anti-linear in the second argument) given by

1 .
ak(u,v) = (Agu,v)o = :tg(u,v)o + (Kgu,v)o — in(Viu, v)o,
1
ay(u,v) == (Apu,v)o = :|:§(u,v)0 + (K u,v)o + in(Veu, v)o.
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The operator equations (6.1), (6.2) are discretized as follows: given Xy C L?(T):

find uy € Xy s.t. ax(un,v) = (f,v)o Yo e Xn, (7.5)
find v}y € Xy s.t. a(uy,v) = (f,v)o Yo e Xn. (7.6)

Here and in the following, we use the short-hand (-,-)o to denote the L?(T)-inner
product. Since Ay and A} are compact perturbations of the identity operator, unique
solvability of (7.5), (7.6) and quasi-optimality is given if X is sufficiently large. The
purpose of the present section is to make the k-dependence of the required approxima-
tion properties of X explicit. We acknowledge here that our technique, which derives
the stability of the method from approximation results for suitable adjoint problems,
has previously been used in the literature, for example in [21,24,25] and [2].

7.1. regularity properties of auxiliary operators. In view of (1.3) we have
ar(u,v) = a’_,(v,u) Yu,v € LQ(F),

which expresses the fact that the L?(T')-adjoint of Ay is given by A’ ,:

LEMMA 7.1. For every k € R\ {0} the operators Ay and A’ are L*(T')-adjoints of
each other.

We recall from Lemmata 5.5, 5.7 and Remarks 5.6, 5.8 that the operators Ay — Ag
and A’ | — A{, can be decomposed into two parts, namely, a part that is arbitrarily
small (as an operator H*(I') — H*(T') and therefore, in particular, L?(T') — L?(T))
and an operator that maps into a class of analytic functions. In view of this obser-
vation and the fact that the operators A,;l and (A’ ,)~! can, by Theorems 6.7, 6.8,
be decomposed into a zero-th order operator (that is uniformly bounded in k) and
an operator that maps into a class of analytic functions, we can can formulate the
following result:

LEMMA 7.2. Let T’ be analytic. Let q, ¢ € (0,1) be given. Let C(Ax,0,k) and
C(A’_,,0,—k) be defined by Assumptions 1.4, 1.5. If d = 2, then assume additionally
diamQ < 1. Then

AI;I(AIC - AO) = TA + [Vzlvk:,A,in'u]a
(A/—k)il(A/—k; - A/O) = TA/ + k[-Afk,A/.,inv,l] + [anAfk,A’,inv,QL
where for some C, v > 0 independent of k > ko and all ¢ € L*(T):

I Tallz2 12 < q, |Tarllp2er2 < ¢,
Ak:,A,in’USO S 21(0050777 QR)? Cga = (1 + k5/2C(Ak7 07 k))(l + ks)”@”[ﬁ(F)?
A4 inv.it0 € A(CC, 7, Qr), ClL=(1+EC(A 4, 0,—k)l¢ll 2w, i€ {1,2}.

Proof. We first prove the decomposition result for (A" ;) ~' (A’ , —Aj{). From Lemma 5.7
(or Remark 5.8) and Theorem 6.8 we get

(A/—k)il = A/Z + [anVZA/,invL
ALy — Ay = Rar + k[Aa 1] + [0 A o).
Hence, we obtain

(A/_k)il = Ay Ra + [6H¢ZA/7MU]RA/ + (A/_k)71 (k[quvA/)l] + [6H¢ZA/72]) .
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We set T4 := A, Ra. From Theorem 6.8 we know that ||A}||z2r2 is bounded
uniformly in k. Lemma 5.7 (or Remark 5.8) tells us that ||[Ra/||p2. 12 can be made
arbitrarily small. Hence, T4 has the desired property. For ¢ € L*(T') we get from
Theorem 6.8 and Lemma 5.7

AVA/7Z-”URA/QD (S Q[(CCw)l,W, QR), C%l = (1 + k5/2C(A/,k, 0, —k)) H(pHLz(F),

k-’ZA’,lwa A'A'J(P S %(00@72775 QR)v C«p,? = (1 + k5/QC(ALk5 07 _k)) H<PHL2(F)

Corollary 6.5 then allows us to define the operators .ka,A/,mv,i, 1 € {1,2} with the
stated properties.

The decomposition of A, ' (Ax — Ap) is performed in an analogous way by making use
of Theorem 6.7, Lemma 5.5, and Corollary 6.3: We can write

A;l =Az+ [.AVAfl],
Ay — Ag = Ry + k[ A4].

Therefore, A, '(Ax — Ao) = AzRa + [As-1]Ra + A;lk[.ZA]. Again, we set Ty :=
Az R4 and see that its norm can be made arbitrarily small. The properties of A A-1
given in Theorem 6.7 and those of A4 given in Lemma 5.5 together with Corollary 6.3
then imply the result. O

7.2. abstract convergence analysis. For the approximation space Xy C
L2(T') we denote by ITX" : L%T') — Xy the L2(I)-projection onto Xy. It will
be useful to quantify the approximation of analytic functions from the space Xy:
DEFINITION 7.3. Let T be a fized tubular neighborhood of I'. For every v > 0, define

nl(Na k)’ 772(N7 kvV)) n(vaaf}/) by

m (N, k,7) := sup{||k[u] — I k[u) || 20y | w € A(1,7, T\ T)},

12(N, k) == sup{[|[8pu] — TIX [0,u] | L2y | w € A(1,7, T\ T)},
(N, k,v) == (N, k,v) +n2(N, k7).

We point out that, by linearity, we have for functions u € (C,,v,T \ T') the
bound || k[u] — HJL\,zk[u]HLz(p) < Cym (N, k,~) and an analogous estimate for ||[0,u] —
TR (O] 2(r)-

We will also need stability properties of the spaces Xy for the operators Ay and Af;
for future reference we formulate these as assumptions:

ASSUMPTION 7.4. The space Xn satisfies a uniform discrete inf-sup condition for
the operator —1/2 + Ky, i.e., there exists 7o > 0 independent of N such that

—-1/2+ K
0<7 < inf  sup (=172 + KoJu, v)o| (7.7)
0AUEXN 0£veX y l[ullo f[vllo

The inf-sup condition (7.7) is equivalent to

—1/2 + K|
N (G VEE o) TN

) (7.8)
0£uEXN 0£vEX N l[ullo[[v]lo

with the same constant vy > 0.
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ASSUMPTION 7.5. The space XN satisfies a uniform discrete inf-sup condition for
the operator 1/2 + Ko — iV, i.e., there exists g > 0 independent of N such that

|((1/2 + Ko — iVQ)U, ’U)()l

0<v < inf sup 7.9
T i o BT TuloTell (79
The inf-sup condition (7.9) is equivalent to
1/2 + K| + iV,
0<v < inf sup [((4/2+ Kp + O)U’U)(J', (7.10)

0AUEXN 0£vEX N ||U||OHU||0

with the same constant vy > 0.

REMARK 7.6. For smooth surfaces T, the operators Ko : L*(T') — L*(T) and V; :
L?(T") — L*(T) are compact. Hence, Assumptions 7.4, 7.5 are satisfied, for example,
for standard hp-BEM spaces, when the discretization is sufficiently fine.

We close this section with two approximation results.

LEMMA 7.7. Let T be analytic. Let ¢ € (0,1) be given and let n(N, —k,~y) be defined
by Definition 7.8. Let Assumption 1.5 be true with s4 = 0. Then

(14 =K (A) 7 (A = Ao re < g+ C {1+ B/2C(AL L0, ) (N, —F, ),

for a vy > 0 that is independent of k > ko (but possibly depends on q).

Proof. From Lemma 5.7, we have A’ | — Ay = Ra + k[gA/J] + [51111,4',2] where
|Rar||12r2 can be made arbitrarily small. Thus, ||(Id =14 )Ras || p2r2 < [|Rar||p2e 12
can be made arbitrarily small. The L?(T)-approximation of the remaining terms
[VZA’JL [anVZA',z] directly lead to the stated estimate.

From Lemma 7.2 we get the decomposition (A’ ;)71 (A" ,—Ap) = TA/—i-k[./ka,A/,inv,l]—l-
[371./1,;6,,4/_,1-”1,,2], where ||Ta/||z212 can be made arbitrarily small. It is easy to see
that the L?(I')-approximation of the remaining terms leads to the stated estimate. O
LEMMA 7.8. Let T be analytic. Let g € (0,1) be given and let n1 (N, k,~) be defined
by Definition 7.3. Let Assumption 1.4 be true with s4 = 0. Then

(1 =TT ) (Ag — o) 1212 < g + Chi (N, k. ),
1(1d —TI5) A (Ag — Ao)| L2 r2 < g + CK? {1 + kP20 (A, 0, k)} m (N, k, ),

for a vy > 0 that is independent of k > ko (but possibly depends on q).
Proof. The proof follows the lines of that of Lemma 7.7. The estimate for ||(Id —HZL\;)(A;C—
Ap)|| 22 follows from Lemma 5.5. Lemma 7.2 finally leads to the second bound. O

7.2.1. The case of the operator A. At the heart of our analysis is the following
quasi-optimality result:
THEOREM 7.9. Let I' be analytic. If d = 2, then assume additionally diamQ < 1.
Let Assumption 1.4 be valid with s = 0. Let 1, m2 be defined in Definition 7.3. If
A=-1/2+ K —inV, then let Assumption 7.4 be valid; if A=1/2+ K —inV, then
let Assumption 7.5 be satisfied.
Then there exist constants €, v > 0 independent of k such that under the assumption

ki (N, k,7y) < e, (1 +EY20(A 0, —k)) 0(N, —k,7) < e (7.11)
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the following is true: If u € L*(T') and uy € Xx are two functions that satisfy the
Galerkin orthogonality

ar(u —un,v) =0 Yv e Xy (7.12)
then with o as stated in Assumptions 7.4, 7.5

||AO||L2HL2)

inf ||u—wN||L2(p). (7.13)
7o

wNEXN

lu—unllz2ry <2 (1 +

Proof. We introduce the abbreviation e := u — uy. Let wy € Xy be arbitrary. Then
by the triangle inequality

lleflo < [lu = wnllo + lun = wn o (7.14)

Hence, we have to estimate |[uxy — wy|lop. By the discrete inf-sup condition we can
find a UN € XN with ||’UN||0 =1 and ’70||UN - wNHO < (AQ(UN - ’U}N),’UN)Q. With

the Galerkin orthogonality (Ax(u — uy),vn)o = 0, we then obtain

Yollun —wnllo < ((Ao — Ak)(un —wn),vn)o + (Ak(un —wnN),vN)o
= ((Ao — Ap)(un —wn),vn)o + (Ar(u — wn),vN)o
((Ax — Ag)e,vn)o + (Ao(u — wn), vN)o
< |[[Aol 2 r2[lu — wnllo + ((Ax — Ao)e, vn)o- (7.15)

In order to treat the term ((Ax — Ag)e, vy )o we define ¢ € L%(T) by
((Ag — Ao)z,oNn)0 = (2, A1 0)0 V2 € LA(T). (7.16)
Lemma 7.2 tells us
¥ = (AL)THAL, — Apvn (7.17)

By selecting z = e in (7.16), using Galerkin orthogonality satisfied by the error e and
orthogonality properties of HJL\,2 we obtain

((Ax — Ag)e,vn)o

= (e, A )0 = (Ake, )0 = (Age, ¢ — HJLVQUJ)O

= (Aoe, ¥ — TTX )0 + ((Ax — Ag)e, ¥ — TIX ¥)o

= (Aoe, v — TIK )0 + ((Ar — Ao)e — IIK (Ax — Ao)e, v — IIK ).

Hence, from (7.17) and |lun]lo =1

(A = Ag)e, ool < {1 oz + (1 ~TIK )(Ax = Ao)llz2r2 |
X [|(1d—TIE ) (A ) 1AL = Ap)llza—z2 [lelo.
From Lemmata 7.7, 7.8 we get for arbitrary ¢ € (0,1)
[((Ak — Ao)e,vn)ol < {l[Aollr2r2 + g+ Chni (N, k, v)} (7.18)

x {a+C (14 K20(A,,0,-k)) (N, ~k, )} llello
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Select now g € (0,1) such that (||Aol/r2—r2 + ¢)¢ < 1/2. Then the constants C and
v in (7.18) are fixed and independent of k > kg. We can furthermore select € > 0
independent of k such that the assumption (7.11) then guarantees that the product
of the two curly braces in (7.18) is bounded by 1/2. Combining (7.14), (7.15), and
(7.18) therefore yields

A 212 1
lleflo < 1+7H ollzzt lu —wnllo + 5 llellos
Yo 2

which leads to the desired estimate. O

Theorem 7.9 provides quasi-optimality under the assumption that uy € Xy exists.
However, the discrete inf-sup condition follows easily from Theorem 7.9. In particular,
we obtain that the discrete inf-sup constant is, up to a constant that is independent
of k, and N, the inf-sup constant for the continuous problem. This is a consequence
of the following, general result:

THEOREM 7.10. Let X be a Hilbert space with norm | - ||x. Let Xy C X be a
finite-dimensional subspace. Let a : X x X — C be a continuous sesquilinear form
that satisfies the inf-sup condition

. la(u, v)|
0<v < inf sup ——F——.
0AueX ozvex llullxlvlx

Let Cyopt > 0 be such that any pair (u,un) € X x Xy that satisfies the Galerkin
orthogonality

alu—un,v)=0 Vv e Xy
enjoys the best approximation property
[u—unllx < Cyopt vier%(fN Ju—vllx.

Then the discrete inf-sup condition holds, i.e.,

- la(u, v)| N L,
in su —_— =IYN 2> Vg————— .
04ueXn ogvexy Tullxlollx ™ = T+ Coopr

Proof. We first show that the restriction of the sesquilinear form a to Xy x X induces
an injective operator Xy — X4;. To see this, let uy € Xy satisfy a(uy,v) = 0 for
all v € Xy. Our assumption is then applicable to the pair (u,un) = (0,un), and we
get [lun||x = |Ju —un|lx < Chopt infrexy [[u —v||x < Cyopt]|u]|x = 0. By dimension
arguments, therefore, the Galerkin projection operator Py : X — X given by

a(u — Pyu,v) =0 Yv € Xy

is well-defined. Additionally, the quasi-optimality assumption produces the stability
result || Pyullx < [Jullx + [Ju — Pyullx < (1 + Coopt)||ullx-
It is known that
inf sup _alw, o)l = inf sup _a(w, o)l .
0FueXN ozvexy |lullxllvllx  0FvEXN oxuexy llullxlvllx
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We will therefore just compute the second inf-sup constant. To that end, let v €
Xn \ {0}. Then by Galerkin orthogonality and v € Xy

la(u,v)| la(Pyu,v)] la(u,v)]
sup ————— = SUp T—————— = SUp T
oguexy lullxlvllx  oguex IPnullxllvlx  ozuex [[Prullx|vlx
1 a(w,o)] 1

= 1+ Cyopt ozuex llullx[vllx = 14+ Coopt

Taking the infimum over all v € Xy concludes the argument. 0

Combining Theorems 7.10 and 7.9 yields:

COROLLARY 7.11. Assume the hypotheses of Theorem 7.9. If the approzimation
space XN satisfies (7.11), then (7.5) is uniquely solvable and the quasi-optimality
result (7.18) is true.

7.2.2. The case of the operator A’. The results of Section 7.2.1 for the dis-
cretization of the operator Ay have clearly analogs for the discretization of the operator
A).. Since the procedure is very similar to that of Section 7.2.1, we merely state the
results and leave their proofs to the reader.

THEOREM 7.12. Let ' be analytic. If d = 2, then assume additionally diam ) < 1.
Let Assumption 1.5 be valid with s4 = 0. Let 11, n be defined in Definition 7.3. If
A= —1/2+ K'+inV, then let Assumption 7.4 be valid; if A’ =1/24+ K'+inV, then
let Assumption 7.5 be satisfied.

Then there exist constants €, v > 0 independent of k > ko such that under the
assumption

BN k) <e, K (14 K204 4,0,-k)) m(N,~k,) <= (7.19)

the following is true: If u € L3(T') and ux € Xn are two functions that satisfy the
Galerkin orthogonality

ap(u—un,v) =0  YoeXy (7.20)
then with o as stated in Assumption 7.4 or 7.5

|A6”L2<—L2)

" inf HUJ_'LUN”L?(I‘)- (721)

— <2(1
= uxlzary < 2 (14 Linf
Proof. See Appendix E. O

COROLLARY 7.13. Assume the hypotheses of Theorem 7.12. If the approzimation
space Xy satisfies (7.19), then (7.6) is uniquely solvable and the quasi-optimality
result (7.21) is true.

7.3. classical hp-BEM. The analysis of the preceding section shows that the
stability and convergence analysis of discretizations of the operators A and A’ can be
reduced to questions of approximability. As an example of the abstract theory, we
consider the classical hp-BEM. We restrict our attention here to a situation in which
the h-dependence can be obtained by scaling arguments. R
We let K41 = {z e R“10 < 2 < 1, Y, < 1} and K¢ = {z € R?|0 <
x; <1, Zle x; < 1} be the references simplices in R~! and R?. By 7 we denote
a triangulation of I" into elements K € 7', where the elements K are assumed to be
the images of K%' under smooth element maps Fx : K%' — K. The element maps
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Fy are furthermore required to be C'-diffeomorphisms between Kd-1 and K. For
p € No, we then define the hp-BEM space SP(7) by

SP(T) ={ue L*T)|u|lg o Fx € P, VK €T}, (7.22)

where P, is the vector space of all polynomials of degree p.
To motivate the class of triangulations of Assumption 7.16 below, we consider the
following two examples:
EXAMPLE 7.14. Let d = 2 and T' = 9Q C R? be an analytic curve. Let the analytic
function R :[0,1) — T be a parametrization of T'. Denote by T a uniform mesh on
[0,1) with mesh size h. Define the mesh T by “transporting” the elements of T to
T via R. Then the element maps Fx have the form Fx = Ro Ak, where Ak is an
affine map with |VAk| < Ch and ||(VAk)™|| < Ch™t. These element maps have
the form stipulated in Definition 7.16 below.
EXAMPLE 7.15. Let d = 3 and I’ = 02 be analytic. Let T be a patchwise constructed
mesh on the domain Q as given in [25, Example 5.1]. There, the element maps
Fy - K — K have the form Fx = R oAk for an affine map Ax with |VAk| < Ch
and |[(VAg)™Y| < Ch™! and the functions Rk satisfy

H(VRK)_I ”Loo(f(d) < Cmetrim ”vnRK”Lm([}d) < Cmetric')/nn! Vn € No;
here, K= AK(IA(d) 1s the image of the reference simplex K4 under the affine map
Ag. The mesh T on the domain Q induces in a canonical way a mesh mesh on
T'= 0. This trace mesh has the properties specified in the Definition 7.16 below.
The two examples motivate the following assumptions on the triangulation of I':
DEFINITION 7.16 (quasi-uniform triangulation). A triangulation T;, of the analytic
manifold T is said to be a quasi-uniform mesh with mesh size h if the following is true:
Each element map Fx can be written as Fx = Ry o Ak, where Ak is an affine map

and the maps Rx and Ag satisfy for constants Cagine, Cmetric, YT > 0 independent
of h:

||VAKHLoo(f() < Cafﬁncha H(VAK)_lHLoo(f() < Cafﬁnch_l
”(VRK)_lHLoo(f{) < Cmetrim ”vnRKHLoo(}}) < Cmetric')/’?’n! Vn € Ny.

Here, K = AK(I?).
LEMMA 7.17. Let T' be analytic. Let Ty, be a quasi-uniform triangulation of T' with
mesh size h in the sense of Definition 7.16. Fix a tubular neighborhood T of T'. Let
XN = SP(T3). Let C > 0 be fixed and assume that h, p, and k satisfy

L

p
Then, for every v > 0 there exist C, o > 0 (independent of h, p, and k > ko) such

that
B\ ER\ P!
n(N,kw)Sm(N,k,anz(N,k,v)S0k3/2{(—) + (—) :
oc+h op

Proof. We only sketch the arguments for the bound on 77, which quantifies how
well the jump k[u] of a piecewise analytic function can be approximated from Xy =
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SP(7p). Using Lemma B.5, we may assume that u|g+ = 0. Denote by 7i(x) the outer
normal vector of {2 at the point x € I'.

1. step: Let T}, be a tubular neighborhood of I" of width O(h) and u € A(Cly, vy, T\T')
for a fixed tubular neighborhood of I'. We assume that h is small (as compared to

the width of T). With the aid of [19, Lemma 2.1] and the interpolation inequality
1/2

||v|\B;/2 Q)NHU||L2(Q)”UHH1(Q)’ we conclude

V™l L2(1,,) < CVERCy(v,)" max{k,n+1}"  Vn e Ny, (7.23)

where the constants C, ~,, are independent of k > k¢ and h.

2. step: The reference simplex K can be written in the form K¢ = {(z,2)]0 < z <
1,7 € de’l}. The element maps Fx : K4 ! — T have the form Fx = Ry o Ag.
Define

Af K3 (3,2) = (Ak (@), h2)
R%:kdB(E,a’—’RK() Zi(Ri (T));

here K¢ is the image of K4 under Ad. and 7 € IN(, z € R. The assumption on Ay
implies readily that A% : K% — K¢ satisfies

|V A% <Ch,  |(VAL) <ot

1
e () o (70)

for a constant C' that is independent of h. The analyticity of I' implies furthermore
that the function R$, satisfies for some constants co, Cy, 7, that depend solely on T
and the constants Cietric, 77

VR ety > 0 IV Rkl ey < Corn! Vi € No.

3. step: The images K¢ = (R} o A%)([A(d) lie in a tubular neighborhood T}, of T
that has width O(h). Furthermore, geometric considerations imply a finite overlap
property, namely, the existence of a constant M > 0 such that any = € Q is in no
more than M of these sets:

sup {K € T, |z € K%} < M. (7.24)
reN

4. step: Define for each K € 7}, the constant

1
02— E I .

® N (2%2 max{k, n}n)Z H v u”[,?(Kd) ( )
nelNo

and note that (7.23) and (7.24) imply

2

Yo k<M < n) IVl 327, < OMCQkh (7.26)

e = 271 max{k n+1}
5. step: We have u|ga € A(Ck,2v,, K?), and [25, Lemma C.1] implies that the
function wu o R% satisfies u o R% € A(CCk,Au, K?), where the constants C' and 7,
depend solely on ., 7,4, and C,. Since the map A% is affine and Fit = R% o A%, we
get for constants C, 7 independent of k£ and h

V™ (wo Fi)ll 2 ey < COxh™*?(Fh)" max{k,n}"  Vn € No.
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Next, [25, Lemma C.2] gives for constants C, ¢ > 0 independent of h, p, and k > kg

4 4/ B\ /kR\PT
ﬂlél%p |lwo Fe — 7T||Loo(f<d) < CCxkh <m) + (0_]9) ,

where P, is the space of d-variate polynomials of degree p. Hence, taking the trace
on the d — 1-dimensional face K¢~! produces

/2 ho\PH! k)P
Tr1€n7£p ||u0FK_7T||Loo(f() < CCxkh <0+h> * <U_p> 7

where P, denotes the space of d — 1-variate polynomials of degree p. Scaling back to
the element K and summing over all elements K € 7}, yields

2
inf || [F2my < Y CORh™ R L ,,+1+ ERY"H
m u—1m e
TSP (T, = KeTs " o+h op

p+1 pt1\ 2
gcogk<< h ) +<@> )
o+ h op

Recalling that that we are actually interested in the approximation of the function
ku instead of u, we see that we have obtained the desired bound for 7;. O

THEOREM 7.18 (quasi-optimality for A). Let T’ be analytic. If d = 2, then assume
additionally diam Q < 1. Let T, a quasi-uniform mesh on T' of mesh size h in the
sense of Definition 7.16. Let Xn = SP(7},). Then there exist constants C, €, 0 > 0
independent of h, k, and p such that the following is true: If the scale resolution

condition
h p+1 kh p+1
5/2 4 / _ — <
{k +EAO(AL,, 0, k)}{(a+h> + (Up> <e (7.27)

is satisfied, then (7.5) has a unique solution uy which satisfies

|l — UNHLQ(F) < Cveég(f’fh,) |l — 'UHL2(F)7 (7.28)

where C' > 0 is independent of k > kg.

Proof. Combine Theorem 7.9 with Lemma 7.17. O

We now turn to a corollary for the case that the C(A’ ,,0,—k) grows only polyno-
mially in k. This assumption is quite reasonable in view of [9] who showed that for
star-shaped 2 and the case A) = 1/2+4 K}, +inV}, we have that C(A},0, k) is bounded
uniformly in k (i.e., 8 = 0 in the following corollary).

COROLLARY 7.19. Assume the hypotheses of Theorem 7.18. Assume additionally the
ezistence of C, B > 0 independent of k such that

C(A ,,0,—k) < CKP. (7.29)

Then there exist constants C1, Cy independent of h, k, and p such that for

hk
— <O and p > Cologk (7.30)
p
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the quasi-optimality assertion (7.28) of Theorem 7.18 is true.
REMARK 7.20. Corollary 7.19 can be phrased in a different way: the onset of quasi-
optimality of the BEM is guaranteed for the choice

p = [Cologk] andthlg.

The corresponding problem size N := dim SP(7,) is given by
N = dim SP(7;,) ~ h~ @ Dpd=1 o -1,

i.e., the onset of quasi-optimality of the BEM is achieved with a fized number of
degrees of freedom per wavelength.

Results corresponding to the above ones for the operator A hold for the operator A’.
We merely record the statements.

THEOREM 7.21 (quasi-optimality for A’). Let T' be analytic. If d = 2, then assume
additionally diam Q) < 1. Let T, a quasi-uniform mesh of mesh size h in the sense
of Definition 7.16. Let Xn = SP(73). Then there exist constants C, €, 0 > 0
independent of h, k, and p such that the following s true: If the scale resolution

condition
B\ ER\ P!
kK72 4 kSC(AL, 0. k o < 31
{W7/2 4 KoC (44,0, )}{<U+h) +<0p) <e (7.31)

is satisfied, then (7.6) has a unique solution uy which satisfies

lu—unllr2r) < Cveg}(fn) lu—=vllL2(r), (7.32)

where C' > 0 is independent of k.
COROLLARY 7.22. Assume the hypotheses of Theorem 7.21. Assume additionally the
existence of C, B > 0 independent of k such that

C(Ay,0,k) < CEP. (7.33)

Then there exist constants C, Cy independent of h, k, and p such that for
— < and p>Cologk (7.34)
p

the quasi-optimality assertion (7.32) of Theorem 7.21 is true.
REMARK 7.23. Corollary 7.22 can be phrased in a different way: the onset of quasi-
optimality of the BEM is guaranteed for the choice

p=[Czlogk] andh:q%

The corresponding problem size N := dim SP(7y,) is given by
N = dim SP(7;,) ~ h~ @ Dpd=1 | -1,

i.e., the onset of quasi-optimality of the BEM is achieved with a fized number of degrees
of freedom per wavelength. We conclude this section with the classical result that for
smooth boundaries I', we expect the quasi-optimality constant to be asymptotically
1:
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LEMMA 7.24. Let T : L*(T) — L?(T") be compact and assume that Id +T is invertible.
Assume that (Xn)nen C L3(T') satisfies

. . _ _ 2
J\}E)noo Uér;(fN lu — vl r2ry = 0 Vu e L*(T).

Then there exists Ng > 0 such that for every N > Nq the problem
given u € L*(T) find uy € Xy s.t. ((Id+T)un,vn)o = ((Id+T)u,vn)o Yoy € Xn

has a unique solution. Furthermore, for every € > 0 there exists N. > 0 such that for
N > N, we have

||U_UNHL2(F) S (1+6) inf ||U—U||L2(F)
veEXN

Proof. In view of Theorem 7.10, it suffices to con;entrate on the quasi-optimality
statement. It will be convenient to recall that 1% : L?(I') — X,, denotes the L>-
projection. Furthermore, we introduce the operator S : (Id +7")~*T’. Since T is

compact, the adjoint T” is likewise compact. Since Id —HZL\,2 converges to zero pointwise
and S is compact, we conclude

i (1 =TI ) S 2 = 0. (7.35)
By the same arguments, we have
i (1 =TI )Tl g2 = 0. (7:36)
Let vy € Xy be arbitrary and abbreviate e = u — uy and n = u — vy. Then by
Galerkin orthogonality
lelld = (Id+T)e, e)o — (Te,e)o = ((Id+T)e, n)o — (Te, e)o = (e,n)o + (Te, 1 — €)o.

The invertibility of Id +7" and the compactness of T imply invertibility of Id +7" and
thus that the problem

find ¢ € L2(T) s.t.  (Tv,n—e)o = (Id+T)v,¢)0 Yo € L*(T)

has a unique solution ¢ = (Id+7")"1T"(n — e) = S(n — e). Therefore, using again
Galerkin orthogonality, we arrive at

lell§ = (e, mo + ([ +T)e, ) = (e, m)o + (1d+T)e, v — T $)o
= (e.m)o + (e, (1 ~TIK J)o + (Te, (14 —T1K )e)o
= (e.n)o -+ (e, (14 =TI ))o + (14 ~IT§ ) Te, (1d ~TT5 ))o.
From ¢ = S(n — e) and the Cauchy-Schwarz inequality we get
2
lell§ < llellolinllo + llelloll(1d ~TI%) S| {llello + lInllo}
2 2
+[1(1d =1 )T [lellof| (1d ~TIX ) S| {Ilello + Inllo} -
Let now € > 0 be given. Then, (7.35), (7.36) imply the existence of N, > 0 such that
for N > N_ we have ||(Id —H%)SH < e and H(Id—H%)T” < e. Hence,
leflo < lInllo + (= +*){llello + lInllo}-
Rearranging terms produces

14+e+4¢2
< - =
lello < s————_zlI"llo.

which shows the desired bound after suitably adjusting €. O
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8. Numerical Results. All our numerical examples are based on the operator
A" =1/2+4 K' 4+ inV, where the coupling parameter is 7 = k or n = 1. The ansatz
spaces X are taken to be standard hp-BEM spaces of piecewise polynomials of
degree p. Specifically, let 7 = {K;|i =1,..., N} be a partition of I' into N elements
and let Fx : [-1,1] — T be the element maps. Then SP(7) = {u € L*T)|u|k o
Fx € P, VK € T}. Here, P, denotes the univariate polynomials of degree p. The
element maps Fy are constructed as described in Example 7.14, i.e., the uniform
mesh 7 in parameter space is transported to the curve I'" by its parametrization.
The basis of SP(7) selected for the computations is taken to be the push-forward of
the L2-normalized Legendre polynomials on the reference element [—1,1]. The BEM
operators K’ and V are set up with an hp-quadrature with pmne. + 2 quadrature
points in each direction per quadrature cell. Details of the fast quadrature technique
employed are described in [17]. Systematically, the number of elements N is taken
proportional to k.
Denoting by Pr, : L*(T') — SP(7) the Galerkin projector, which is characterized by

ay(u — Prpu,v) =0 Vv e SP(T),
we approximate the Galerkin error || Id —Pr p|| 212 by the formula

[v = Prpollz2

11d —Prpllpecre ~  sup (8.1)

vESPmaz (T) [[v]| 2

Unless stated otherwise, we select pqa. = 20 for the computation of (8.1).

Since for smooth domains we may expect that the quasi-optimality constant to be
asymptotically 1 (see Lemma 7.24) we do not present in our numerical examples
| Id =Pz p||L2 2 of (8.1) but instead the Galerkin Error Measure

E = \/I1d=Pryl3a_ps — 1. (8.2)

We also report the extremal singular values o, (M™1A’) and oy (M~1A’) for
p = 10, where M denotes the mass matrix for the space SP(7) and A’ represents
the stiffness matrix for the discretization of A’. These numbers give a very good
indication of 1/|(A")~ || 2> and ||A’||z2—r2. The singular values are computed
with the LAPACK-routine ZGESVD.
The examples below are selected to illustrate the theoretical results of the paper and
to test its limits. The geometries of Examples 8.1, 8.2, 8.3, 8.4 are circles and ellipses
and hence fully covered by our theory (recall that C'(Ag,0,k) = C(A",,0,—k) = O(1)
by [9]). The geometries in Examples 8.5, 8.6, 8.7, 8.8 are no longer star-shaped. In
Examples 8.7, 8.8 we even leave the realm of smooth geometries; these geometries are
“trapping domains” as was shown in [6, Thm. 5.1] and the wavenumbers selected in
our computations are precisely the critical wavenumbers identified in [6, Thm. 5.1].
Clearly, the choice of the coupling parameter 7 in (1.4) affects the norm C(Ag,0, k)
and thus, in turn, the conditions on the approximation properties of the discrete
spaces X for quasi-optimality. We therefore also perform calculations for the choice
n =1 in Examples 8.6 and 8.8.
EXAMPLE 8.1. Q = B1(0) is a circle with radius » = 1. The mesh has N = k elements
of equal size. The element maps Fx are obtained with the aid of the parameterization
{(rcosp,rsing)|p € [0,2m)} of the circle. The coupling parameter 7 is selected as
n = k. Fig. 8.1 shows the Galerkin Error Measure of (8.2) as a function of p; we also
give an indication of ||A’||z 2.2 and ||(A") Y| per2-
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circle, r=1,n =k

‘ ‘—'—k:1024

10t -6-k=256 ] k Omaz(M7LA") | opin(MTLAY)
T 1 | 1.26835 0.5
£ k3 8 | 1.54632 0.5
e N 16 | 1.89880 0.5
g s 32 | 2.40042 0.5
3 64 | 2.98223 0.5
128 | 3.76487 0.5
107 256 | 4.73099 0.5
1024 | 7.48469 0.5

1 2 3 4 5 6 780910 20
p+l

Fia. 8.1. (see Example 8.1) Circle with radius r =1, n = k. Left: Galerkin Error Measure E
(see (8.2)). Right: Estimate of ||A||p2 2 and 1/||(A") 7|2 p2-

circle, r=1/4,n = k

10

[—k=512

k| omaz(MTAY) | 0pmin(M~TA")
4 [ 1.06802 0.5
. 8 | 1.0832 0.5
S . 16 | 1.26835 0.5
gl 32 | 1.54632 0.5
3 64 | 1.8988 0.5
128 | 2.40042 0.5
256 | 2.98223 0.5
o | 512 | 3.76487 0.5
1 2 3 4 5678910 20
p+1

Fic. 8.2. (see Example 8.2) Circle with radius r = 1/4, n = k. Left: Galerkin Error Measure
E (see (8.2)). Right: Estimate of ||A'||p2._r2 and 1/||(A) " Y2 2.

ExXAMPLE 8.2. The setup is the same as in Example 8.1 except that the radius of the
circle is taken to be r = 1/4 instead of r = 1. The numerical results can be found in
Fig. 8.2.

EXAMPLE 8.3. Q is an ellipse with semi-axes a = 1 and b = 1/4. The boundary T'
is parametrized in the standard way by {(acosp,bsing)|¢ € [0,27)}. The element
maps are obtained by uniformly subdividing the parameter interval [0, 27), and the
mesh has N = k elements. The coupling parameter 7 is = k. The numerical results
are presented in Fig. 8.3.

EXAMPLE 8.4. The setup is the same as in Example 8.3 except that the ellipse has
been scaled: its semi-axes are a = 1/4 and b = 1/16. The numerical results are
collected in Fig. 8.4.

EXAMPLE 8.5. Q = By/3(0) \ By/4(0) is the annular region between two circles
of radii 1/2 and 1/4. The normal vector appearing in the definition of K always
points outwards. The boundary 0f) is parametrized in the standard way with polar
coordinates. The wave number is related to the number of elements N by N = 2k, and
each of the two components of connectedness of 92 has N/2 elements. The coupling
parameter 7 is = k. The results can be found in Fig. 8.5.
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ellipse, a=1, b=1/4,n = k

10 ‘—'—k:256
ot el k| mes(MTTAY) | gpin(MT1AY)
e 4 | 1.41593 0.489

5001 s |8 | 171889 0.5
) 16 | 2.01108 0.5
e S 32 | 2.64065 0.5
¢ 64 | 3.43955 0.5
ol 128 | 4.57966 0.5
256 | 6.0845 0.5

Wy 55 4 sevsti0 2

p+1

Fi1G. 8.3. (see Example 8.8) Ellipse with semiazes a = 1 and b = 1/4. Left: Galerkin Error
Measure E (see (8.2)). Right: Estimate of |A||p2_r2 and 1/|[(A) Y212

10°

Galerkin error

ellipse, a=1/4, b=1/16,n =k

k| omae(M7TAY) | 0pin(M~TAY)
4 0.986228 0.353

8 1.19612 0.427

16 | 1.41593 0.489

32 | 1.71889 0.5

64 | 2.01108 0.5
128 | 2.64065 0.5
256 | 3.43955 0.5
512 | 4.57966 0.5

4
p

3 5 6 7 80910
+1

20

F1G. 8.4. (see Example 8.4) Ellipse with semiazes a = 1/4 and b =1/16. Left: Galerkin Error
Measure E (see (8.2)). Right: Estimate of ||A||p2 2 and 1/||(A) " |2 p2

Galerkin error

circle in circle, r1=1/2, r2 =1/4,n = k
——k=512

-o- k=128

——k=64

—v— k=32
k=16

——k=4

- ¢ -k=256||

——k=8

k| Omas(M™LAY) | Gpmin(M~1A)
4 | 2.36155 0.500129
8 | 2.35101 0.497189
16 | 2.54262 0.238509
32 | 2.81275 0.500153
64 | 3.2803 0.51368_;
128 | 3.69209 0.914729_,
256 | 4.37155 0.884842_,
512 | 5.1591 0.275835_

4 5 6 7 8910
p+1

3

FIG. 8.5. (see Ezample 8.5) Q = By;5(0) \ By/4(0).

20

Left: Galerkin Error Measure E (see

(8.2)). Right: estimate of |A’|| 22 and ||(A) "2 p2-

41



circle in circle, r1=1/2,r12=1/4,n =1 circle in circle, r1=1/2,r2 =1/4,n =1

_____ ——k=512 b ——k=512
= - ¢-k=256 ° - ¢-k=256
-o- k=128 -o- k=128
. ——k=64 o ——k=64
107 1 ——k=32 || 10 —k=32 ||
s k=16 5 k=16
5 5 —+—k=8
é 107} :% 107}
(4} Y]
107 107
1 2 3 4 5678910 20 12345678910 20
p+l p+1
k Omaz(MTA) | opin(M™LAY)
4 1.84018 0.304956
8 1.64098 0.147632
16 | 1.67512 0.102911
32 | 1.65914 0.603251_4
64 | 1.70917 0.190993_1
128 | 1.87601 0.911284_5
256 | 1.99572 0.834516_5

FIG. 8.6. (see Example 8.6) Q = By /2(0)\ B1,4(0). Coupling parameter n = 1. Galerkin Error
Measure E (see (8.2)) plotted in loglog-scale (left) and semilogy-scale (right). Bottom: Estimate of
A2 p2 and [(A) L2 2.

EXAMPLE 8.6. The setup is as in Example 8.5. However, the coupling parameter
is given by n = 1 instead of n = k. The result are presented in Fig. 8.6.
EXAMPLE 8.7. Q is the C-shaped domain depicted in Fig. 8.7 given by

Q= ((-r/3,7/3) x (=r/2,7/2))\ ((0,7/3) x (—=r/6,7/6)), r=1/2.

For different values of the parmeter m € 3N, we select the number of elements N and
the wavenumber k according to

N = 20m, k= 3—7T
r
The meshes are are uniform on I'. The coupling parameter n = k. The results can be
found in Fig. 8.8.
ExXAMPLE 8.8. The setup is the same as in Example 8.7 with the exception that the
coupling parameter 7 is chosen as 1 = 1 instead of n = k and that p,,., = 15 instead
of Prar = 20. The numerical results can be found in Fig. 8.9.

ExaMPLE 8.9. The geometry is

Q=B (0)\ (B, (0)U{(rcosp,rsing)|r >0,|po| <w/2}),

where 1y = 0.5, 79 = 0.4, and w = %w (the geometry is drawn to scale in Fig. 8.10).

We select n = k. The discretization is quasi-uniform and k¥ = N. The numerical
results are reported in Fig. 8.11. We point out, however, that the resolution of the
mesh is not very fine: the number of elements in the “outlet” region increases from
1 (corresponding to k = 56) to 11 (corresponding to k& = 625). The width of the
“outlet” is 0.1.
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r/3 r/3

r/3

Fic. 8.7. Geometry of Examples 8.7, 8.8.

r r / 3
r/3
C-shape, r=1/2,n =k
——m=3
-e-m=6
10° -0--m=12H
> m=24
8
@
£
=
<
5]
O
107

| k= 6mm | Omaz(M™LA") | Omin(M™LAY) |

RE o w3

3 4 5 678910
+1

p

20

56.5487
113.097
226.195
452.389

2.721 2.24795_,4
2.99077 1.40383_1
3.59232 7.80885_2
4.86965 4.14679_o

F1G. 8.8. C-shaped domain (see Example 8.7), n = k. Left: Galerkin Error Measure E (see
(8.2)). Right: estimate of |A’|| 22 and ||(A) "2 p2-

C-shape, r=1/2,n =1

C-shape, r=1/2,n =1

10 —— 10
——m=48 ——m=48
-6-m=24
N <l
T ——m=3
107 4
v
107 10—
1 2 3 4 5 6 780910 15 1 2 3 45 6 7 8 9 10 15
p+1 p+1
m | k=6mm | omax(MTA) | opin(M~LA")
3 56.5487 | 1.59341 1.24977 _5
6 113.097 | 1.71847 3.42968_3
12 | 226.195 | 1.88635 1.02321_3
24 | 452.389 | 2.10001 2.27319_4
48 | 904.779 | 2.40774 8.30718_5

Fi1G. 8.9. C-shaped domain (see Example 8.8), n = 1. Galerkin Error Measure E (see (8.2))
(left: loglog-scale, right: semilogy-scale). Bottom: Estimate of |A'|| ;2.2 and ||[(A)) "2 p2-

43



Helmholtz resonator, gap angle 10 degrees, r1 =0.4,r2=0.5

0.5r

-0.5¢

Galerkin Error Measure

-04 -02 0 0.2 0.4 0.6

F1c. 8.10. Geometry of Example 8.9.

Helmholtz Resonator, r1=0.4, r2=0.5, angle = 10 deg.

-e-56 | { k Umam(M_lAl) Umin(M_lA/)
- 113 56 | 3.84481 0.111343
170 113 | 4.38575 0.376075_,
2170 | 476636 0.438144_,
R o 227 | 5.16703 0.198212_,
1|1 341 | 5.69761 0.17661_;
560 455 | 6.20524 0.314513_4
—625] | 511 | 6.32501 0.125367_4
569 | 6.3671 0.828561_5
— 625 | 6.60512 0.318163_,

p+1

Fic. 8.11. Resonator geometry (see Ezample 8.9), n = k. Galerkin Error Measure E (see
(8.2)) and estimates of ||A'||p2_p2 and ||[(A)) " |2 2.

Discussion of the numerical examples.

1.

The difference between Examples 8.1 and 8.2 and likewise Examples 8.3 and
8.4 is merely a scaling of the geometry. Alternatively, this could be achieved
by changing the wavenumber k by a factor 4. Indeed, comparing correspond-
ing cases in the numerical results shows that the same values are obtained.
We recall that in all numerical examples the mesh size h is proportional to
1/k. In the calculations based on smooth geometries, i.e., Examples 8.1, 8.2,
8.3, 8.4, 8.5, 8.6, we observe that the Galerkin Error Measure F tends to
zero as p — oo. This shows that indeed, asymptotically, the quasi-optimality
constant is 1. Closer inspection of the numerical results indicates an O(1/p)-
behavior, which is consistent with the finite shift properties of V5 and K.
It is noteworthy that in Example 8.6 with n = 1 the asymptotic behavior of
the Galerkin Error Measure appears to be O(1/(pk)). Hence, the combined
n and k dependence appears to be O((1 + ||)/(kp)).

In the case of circles (Examples 8.1, 8.2), ellipses (8.3, 8.4), and the case of an
annular geometry with coupling parameter n = k (Example 8.5) we observe
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that the condition

kh
— sufficiently small
p

is already enough to ensure quasi-optimality of the Galerkin hp-BEM. The
condition p = O(log k) is not visible. For the special case of a circle, this lack
of “pollution” may be expected in view the analysis of [2].

. The C-shaped geometry in the Examples 8.7, 8.8 is not smooth. Hence, the
operator K’ is no longer smoothing and one cannot expect the Galerin Error
Measure E of (8.2) to tend to zero. This is indeed visible in Figs. 8.8, 8.9.
The sharp decrease of the the Galerkin Error Measure E for large p is likely
to be a numerical artefact since F is obtained by comparing lower values of
p with the result for p,,q; = 20 in the case of Fig. 8.8 and pye, = 15 in
Fig. 8.9.

. The work [9] shows that C(4},0,k) = ||(A}) |12 r2 is bounded uniformly
in k for star-shaped geometries. Indeed, the numerical results for the case
of a circle (Examples 8.1, 8.2) and an ellipse (Examples 8.3, 8.4) confirm
this. In contrast, the geometries of Examples 8.5 and 8.7 are not star-shaped
and we observe in Figs. 8.5, 8.6, 8.8, 8.9 that C(4},0,k) is not bounded
uniformly in k but grows algebraically. The norm ||A’||p2_ 12 is seen to grow
(mildly) in k in all examples. This is in accordance with known results. For
example, [13] shows ||A'||z2—r2 = O(k'/?) for the case of a circle and [6]
proves ||A’||p2r2 = O(k'/?) for general 2D Lipschitz domains. For the
convenience of the reader, we present the tables of Figs. 8.1-8.9 in the form
of graphs in Fig. 8.12.

. For the C-shaped geometry of Examples 8.7, 8.8, a lower bound for C'(4},,0, k)
is given in [6, Thm. 5.1] as

-1
lolt ;,o,k)20k9/10<1+%> .

We observe in particular that selecting n = O(1) instead of n = O(k) leads
to an increase of the bound by a factor k. Our numerical examples (see the
tables in Figs. 8.7, 8.8 or the graphs in Fig. 8.12) indicate that the lower
bounds of [6, Thm. 5.1] are essentially sharp.

. In the case of circular/elliptic geometries and even in the case of the non-
convex geometry of an annulus, we did not observe a “pollution” effect, i.e.,
quasi-optimality of the Galerkin BEM takes place as soon as kh/p is below
a (geometry-dependent) threshold. The more stringent scale resolution con-
dition (1.1) that stipulates p = O(log k) might, however, be needed in more
general situations. This is the purpose of selecting 7 = 1 in the Examples 8.6,
8.8. It has the effect of increasing C'(4},,0, k), which, according to the analysis
of Section 7, puts conditions on the approximation properties of the hp-BEM
spaces. Indeed, the semilogarithmic plots in Figs. 8.6, 8.9 indicate that a con-
dition p = O(log k) is necessary to achieve a given quasi-optimality constant
for the Galerkin BEM.
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FiG. 8.12. Extremal singular values of M~Y A’ for Exzamples 8.1 (top left), 8.3 (top right), 8.5
(middle left), 8.6 (middle right), 8.7 (bottom left), 8.8 (bottom right).
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Appendix A. Proofs of Lemmata 2.1, 2.2. Proof of Lemma 2.1: The result
for —1/2 < s < 1/2 being known in the literature (see, e.g., [20]), we restrict our
attention to the limiting cases s = +1/2. We start with the case s = 1/2. Set
u = Vo for ¢ € L2(T"). Then u € H32(Qg) with lull 320y < CllllL2(ry, which
can be seen as follows: By [32, Thms. 3.3, 4.11] we have ||[Voo| g1y < Cllellz2ry-
Since Wé"t/eztf/ocp = Vb, the uniqueness assertion of [16, Thm. 5.15] implies that
u="Vop € H32(Qg). Next, [16, Thm. 5.6, Cor. 5.7] imply

[l /200y + VOVl L2y + Ul L2y + (V) 2y < Cllellremy; (A1)

here, the notation v* denotes the non-tangential maximal functions (see [32]) and
0(x) = dist(z,T') denotes the distance from T'.

Additionally, we have from [16, Prop. 2.18] that u € BS{;(BR) if and only if u €

L?(Bg) and Vu € B;{;(BR). It therefore remains to assert Vu € le)/OQO(BR). To

that end, consider v = 0;u for a fixed 7 and let v, := v* p. be its regularization, where
pe is a standard mollifier with length scale e. We have by standard arguments for
each fixed z € Bg such that v € H!(Bac(x)):

v = vellp2(p.@)) < ellVllL2Bac )
IVvellL2(B.2)) < IVVllL2(Bs. (2))-

For ¢ > 0 we denote by S := UzcrB:(x) the tubular neighborhood of T' of width e.
Covering the set Br \ S3. C Uzepp\s,. B:(2) we infer with the aid of Besicovitch’s
covering theorem

v = vell L2(Br\55) < CellVullpaias.) < €/216"2V2ul| 120n) < €20l 2(r),
IVvellL2(Ba\sse) < ClIVYIlL2(BR\s.) < Ce™ 216" 2V0|| L2 (0p) < Ce™ 2|0l L2(r).-

For the regularized function v. we have with the definition of the non-tangential
maximal function and (A.1)

1/2

[vellz2(s.) < Cllvllpa(s,.) < Ce2|v* |2y < Ce/?(loll 2.

Finally, for the derivative we compute

—1/2

Vel L2(ss.) < CeMvllzacs,) < Ce™ 2 [v* |2y < Ce™2(loll L2y

Thus, we obtain the following estimate for the K-functional:
K(v,6) < [0 = vell2(8r) + ellvell mr (8r) < C"2 (Il L2y

Since € > 0 is arbitrary, we conclude v € 321/020 (Br).

For the case s = —1/2 we start by noting that Vy : H~1(I') — L?(T"), which follows
from the self-adjointness of Vp, the above cite result by Verchota that Vy : L2(T') —
HY(T), and a duality argument. Next, we approximate ¢ € H (') by functions
(¢n)nen C L2(T'). As above, [16, Thm. 5.15] implies that the functions Vo, are
the unique harmonic functions with Dirichlet data Vp¢,. Combining an estimate due
to Dahlberg (see [16, Thm. 5.3]) and [16, Cor. 5.5] implies that Vop, € HY?(Qg)
together with

IVownll 12y < CllVownllzawy < Cllenll -1 (r)-
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By linearity of Vj, the sequence (V0<pn)n is a Cauchy sequence in H 1/2(Qpg). Fur-
thermore, it converges pointwise to Vop. We conclude that Voo € HY/2(Qg) and
|H~/0gp||H1/2 @rn) < Cll@llg-1r).- Appealing once more to [16, Cor. 5.5], we get for
u := Voo that |u* 22y + lullmrrzon < Cllellag— F) Using now the same argu-
ments as in the case s = 1/2, we conclude ||u||B;’/;(BR) < Cllella-1(ry-

The remaining cases —1/2 < s < 1/2 can now be inferred from the limiting cases
s = £1/2 by an interpolation argument. O

Pmof of Lemma 2.2: The proof is very similar to that of Lemma 2.1. The case
= 1/2 is see as follows: For ¢ € HY(T) c HY?T), we have Kop € H(QpR).
We have 70"/ Koo = (¥1/2 + Ko)p € HY/2(T') c L*(T). By [16, Cor. 5.5, the
interior and exterior non-tangential limits Tr'"*/"* Koo on T exist and are in L2(T").
These must coincide with the interior and exterior traces th/ ethocp and we conclude
T/ et Kop = 40"/ “" Kop = (¥1/2 + Ko)p. By [32, Thm. 3.3] we have (£1/2 +
Ko)p € H(9Q), so that [16, Thm. 5.15] implies Ko € H3/2(Qg). Then [16, Cor. 5.7]
implies Koo € H3/2(Qg) with ||Kog0||H3/z(QR < Cllollar ry-
For the case s = —1/2, we proceed as in the proof of Lemma 2.1. First, we show for
¢ € L*(T) that

[ Kopll m1/2(0p) + (Ko@) 2y < Cllellra -

The assertion Kop € Bl/ o (Br) follows from this in the same way as in the proof of
Lemma 2.1. Finally, for —1/2 < s < 1/2 the assertion Ko : H/2T5(') — HY5(Qp)

follows by an interpolation argument from Ko : HY/2tS(I') — H"$(Qp) for the
limiting cases s = +1/2, which have just been proved. O

Appendix B. regularity assertions for parameter-dependent elliptic PDEs.

B.1. analytic regularity. We start with a lemma that shows that membership
in the class 2 of analytic functions is preserved under analytic changes of variables:
LEMMA B.1. Let G, G1 C R? be bounded open sets. Assume that g : G, — R? is
analytic, |det g’| > 0 on Gy and that g(G1) C G. Let f1 : Gy — C, fo : G — C be
analytic and assume that fo € A(Cr,vs, G). Then the function F : x — f1(z)(f2 0
9)(z) satisfies F' € A(CCy,7',G) for some constants C, ' that depend solely on -,
fi, g, and k.

Proof. The case d = 2 is taken directly from [22, Lemma 4.3.1]. Inspection of the
proof of [22, Lemma 4.3.1] shows that it can be generalized to d > 2. O
Next, we recall that if a function u satisfies the differential equation

~V - (BVu) + k*cu= f (B.1)

and if the function F provides a sufficiently smooth change of variables, then the
transformed function @ := u o F' solves

—V - (BVQ) + k? det F'¢ti = det F'J,

where B = B o F,¢c=coF, and f: f o F. Finally, for the convenience of referring
to the assumptions on the coefficients B, ¢, we make the following assumptions: The
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matrix-valued function B is pointwise symmetric positive definite and

0 < Amin < B(z) Vz €w, (B.2a)
V™|l Loo(wy < Cevanl, V"Bl Lo (w) < Cpypn! Vn € Ng. (B.2b)

THEOREM B.2 (Dirichlet b.c.). Let w C R? be a bounded Lipschitz domain with
analytic boundary. Assume (B.2). Let u € H'(w) solve (B.1) on w for an f €
A(Cy,vy,w). Assume that u satisfies ulo, = Glow for a G € A(Cq,va,wNT"), where
T' is a tubular neighborhood of w. Fiz a tubular neighborhood T of Ow with T C T".
Then u satisfies

w € ACCy, v, wNT),  Cu:i=k 2Cs+ Cq+kYulrrmnw.

where the constants C and v, depend solely on vya, vf, Ow, ko, and the constants of
(B.2).

Proof. Consider the function z := u — G. Since G € A(Cq,va,w NT"), it suffices to
establish z € A(CCy, yu,w NT). The function z satisfies

—k2V-(BV2)—cz=f =k 2f—k 2V (BVG) —cG onT Nu, z|low = 0.

The assumptions on f and G and Lemma B.1 imply f € A(C(k~2Cs +Cg),7, T' Nw)
for some constants C, 5. From [22, Props. 5.5.1, 5.5.2] we get 2z € A(C(k~2Cs + Cq +
k=2, 170w), v, TNw). Since k71 2] 3,100 < C (Ca + k™ ull#,170w), the desired
result now follows. O

THEOREM B.3 (Robin b.c.). Letw C R? be a bounded Lipschitz domain with analytic
boundary. Assume (B.2). Let u € H'(w) solve (B.1) on w for an f € A(Cy,vf,w).
Assume that u satisfies

N =96" Gy + k(g G2)"

where, for some tubular neighborhood T of dw we have G1 € A(Cq,,va,,w NT')
and Gy is analytic on T'. Here, the trace operators vi™ and ™ are understood with

respect to w. Fiz a tubular neighborhood T of Ow with T C T'. Then u satisfies
u€ ACCy,Yu,wNT),  Cu:=k2C;+k 'Cq +k ullr 1w,

where C' and ~y,, depend solely on va,, v¢, Ow, Ga, ko, and the constants of (B.2).
Proof. The proof is sketched for a related 2D problem in [22, Prop. 5.4.5, Rem. 5.4.6].
The key observation is again that Lemma B.1 allows us to locally flatten the boundary
while preserving the structure of the differential equation and the boundary condi-
tions. Then the technique employed in [22, Prop. 5.4.5] is applicable. O

THEOREM B.4 (transmission conditions). Let w’, w C R? be two bounded domains
with w' CC w. Denote v := dw' and assume that v is analytic. Assume (B.2). Let
u € HY(w) solve (B.1) on w for an f € A(Cy,vs,w\ 7). Fizw” CCw. Then

u € A(CCy, Yu,w" \ 7), Cy, = k_zC'f + k_1||u||7.(,w

for some constants C, v, > 0 that depend solely on vr, w', W’, w, ko, and the
constants of (B.2).

Proof. The interesting estimates are those near the boundary . Here, the standard
procedure of locally flattening v can be brought to bear in view of Lemma B.1.
Then, [22, Prop. 5.5.4] is applicable. O
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LEMMA B.5. Let w C R? be a bounded Lipschitz domain with analytic boundary Ow.
Set wt :=RI\@. Let T be a tubular neighborhood of dw. Let G € A(Cq,va, T Nw).
Then there exists a tubular neighborhood T of Ow and constants C, & that depend
solely on g, Ow, ko with the following property: There exists a Ge Ql(CCg,'yé,Tﬁ
w™T) with "yg””té = ™G, Here, v§® and {™ are the trace operators with respect to
w.

Proof. The idea is to define G by reflection at dw. One can define boundary fitted
coordinates ¢ : Ow x (—¢,¢) — R? via ¥(z, p) := z + pii(x), where 7i(z) is the (outer)
normal vector of Jw at x € Ow. Since Ow is assumed to be analytic, 1 is likewise
analytic. For ¢ > 0 sufficiently small, the range of ¢ is a tubular neighborhood
(denoted T) of dw and restricted to T, the inverse 1)~! of 1) exists and is analytic.
We write ¥~ (z) = (y(x), p(z)). For z € T Nw™ we then define G*(z) by G*(z) :=
G((a(z),—p(z))). The analyticity of 1)~ and Lemma B.1 then implies the result. O

B.2. finite regularity. THEOREM B.6. Let o’ and w C R? be two bounded
domains with w' CC w. Denote by v := 0w’ and assume that v is analytic. Assume
(B.2). Letu € H'(w) solve (B.1) on w for some f € H*(w \ v) with s > 0. Fiz
W’ CCw.

If s € Ny, then

Z k™ T2 oy < C Zk7j72|‘vjf”L2(w\v) +llullpe@y |, (B.3)
n=0 =0

where the constant C depends on s but is independent of k > ko and u. If we assume
s > 0, then for some C > 0 independent of k > ko and u:

ull rraszqwnqy < C [ENf L2 + 1 f 1 me @) + &5 |ull 2] - (B.4)

Proof. We start by observing that standard elliptic regularity (note that the interface
~ is smooth) for

-V.-(BVu)=f onw
gives for s > 0 and any domain & with w” CC & CCw
[ e+ S Fll e @y + 0l 22) -
We apply this result with f: f + k%cu, multiply through with £~%, and get
k= lull o2y SE 51 e @y + 572 ullme @) + B Jull2@)- (B5)
For even integer s € 2Ny, we can iterate (B.5) to get

s/2
k=l ese@nn Sk flm2swovy + K lullz2@wyy), s € 2No.  (B.6)
j=0
For odd s € 1 + 2Ny we get analogously

(s41)/2-1
ol eSS DL kT s vy + Ellulla @) + 5 el 2 o)
=0
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The bound (B.6) with s = 0 produces [|ul] g2\ ) S| f I L2 @\y) + B[] L2\ 4)- Com-
bining this with the standard (piecewise) interpolation inequality

1/2

1/2 _
Sl o 1l 12y SE el 2 ) + Bl 22

HuHHl(w\'y
and appropriately adjusting the domains, we can conclude for s € Ny
k_SHuHHS+2(w”\v)NZ k™ JHfHHJ (w\7) + k HuHL2(w\'y (B7)
7=0

from which we derive (B.3). For the proof of (B.4) we introduce the notation o := |s]
and observe the (piecewise) interpolation inequality

s
o+2

llwl & w\v)NHUHLz w\»y)”u”?t}fﬂ&(w\y)v b1 =

For every 1 > 0 we get from Young’s inequality

< 1A=

—1/6
el e o <6t O ull L2ory + €1 O el gtz om)-

Selecting e; := k*(1=1) we arrive at
]| 72 () SE N0l L2y + B2 [l o2 (@) (B.8)

Next, we use again a (piecewise) interpolation inequality to bound for 0 < j <o < s
and Young’s inequality

s—j s i/s s s
B oS B zm) 7 I oy S0 o + 1 s oray- (B9)

Combining (B.9), (B.8), (B.7) we arrive at the desired bound (B.4). O

Appendix C. regularity of Laplace-Beltrami eigenfunctions. Let Q C R? be
a bounded domain with an analytic boundary T'. Let (¢m,A2,), m € Ng, be the
eigenpairs of the Laplace-Beltrami operator, i.e.,

—Arp, = /\fngam onI'.

We assume that the eigenvalues A,,, > 0 are sorted in ascending order and that the
eigenfunctions (¢, )men, are orthonormalized in L*(T).

LEMMA C.1 (analytic regularity of ¢,,). Let T be analytic. Then there exist constants
C, v > 0 independent of m such that

VEemll L2y < Cmax{Ay,,n}"y" Vn € Ny, (C.1)
where Vr denotes the surface gradient. Furthermore, there exists a tubular neighbor-
hood T of T' (depending solely on T') such that all functions ., can be extended to
analytic functions (again denoted ¢,,) on T that satisfy

V" omll L2y < Cmax{Am,n}"~y" Vn € Np. (C.2)

51



Proof. Sketch of the proof: If v : U — T for some U C R?! is one of the analytic
charts, then the Laplace-Beltrami operator Ar applied to a function u : I' — R has
the following form on U:

Z_: (V997 0;(uon)),

% \

where g = det G is the determinant of the metric tensor G given by G;; := 9;y - 05
and the matrix (g”)ﬁj:1 is the (pointwise) inverse of G. The matrix G is pointwise
symmetric positive definite and thus also its inverse (g%/)¢ j=1- By the analyticity of

the charts, the matrices (g%/)¢ .

i.j=1 and the function g are analytic. On U, the pull-back
®m = @ o~ of the eigenfunction ¢, satisfies for the analytic, pointwise symmetric

positive definite matrix A;; = \/ggij
AV (AVGR) = GPm =0,

Fix K cCc K’ cC U. Then [22, Prop. 5.5.1] gives

||V"+283m||L2(K) < maX{TLv)\m}nH”Y" ( 1||V80m||L2(K/) + A, ||80m||L2 K’)) - (C3)
We have ||oml| g1y ~ Am, and [[om||L2ry = 1. Hence,

[@mllz2ny <C, NPl xry < CAm. (C.4)
Combining (C.3), (C.4) we see that
||V"+2@m||L2(K) < C'max{n, )\m}"+27" Vn € NoU{-1,—-2}.

Returning to I" gives (C.1) in view of Lemma B.1. To see (C.2), we define the extension
of ¢, in the trivial way: In a tubular neighborhood T of I" one can define boundary
fitted coordinates I' x [—e,e] — T via (z, p) — z + pri(z), where 7i(z) is the (outer)
normal vector at € I'. For sufficiently small ¢, this is a bijection, and we can define
the extension by ., (x + pii(x)) = om(z). O

REMARK C.2. Taking the trivial extension to the tubular neighborhood T is clearly
not the only choice. For example, if one is only interested in extending ¢,, only
to QT NT then one can select the extension to be of the form ¢,,(z + pri(z)) =
om(x)e™P/ max{An .k} with slightly improved bounds in (C.2).

Appendix D. Proof of Lemma 2.5.

Proof of Lemma 2.5:

Proof of (i): For s = 0, this is shown in [32, Thms. 3.1, 4.2]. For s = 1/2, this follows
by the contractivity of the double layer potential (see, e.g., [27, Ubungsaufgabe 3.8.8]).
By interpolation, the cases 0 < s < 1/2 are therefore covered. For the cases s > 1/2,
we use regularity theory for transmission problems. Let f € H#*(I') and ¢ solve
(=1/2+4 Ko)¢ = f. Then ¢ € HY2(T') and therefore the potential u = Kop € H'()
satisfies

[l 2 @2m) SNl 22 SIS 272 ()

Furthermore, u solves on € the homogeneous Laplace equation and v&"'u = (—1/2 +
Ko)p = f € H5(Q2). By the smoothness of T' and standard elliptic regularity, we
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conclude u € H**/2(Q) and |[ul| gr+1/2(0) < C||fl|g=(r). Next, in view of the jump
relation [0, Ko@) = 0, we get that u satisfies

—Au=0 inQt, ety = inty,

From u € H*TY/2(Q) we obtain 4i"*u € H*~Y(T"). Elliptic regularity then provides
ulornp, € HTY/2(QF N Bg) together with

ull o172 @pnot) SIVE ull o -1y + 1l 21 (@ornot) SIFI s (r)-

The jump relation [Koy] = ¢ then implies ¢ € H*(T) with ol s oy SIF I £ (ry -
Proof of (ii): Since Ko and Vo map L?(I') — H'(T'), they are compact operators on
L?(T) and H'/2(T"). Hence, to see the invertibility of the operator 1/2 + Kq + iaVp
on L?(TI") and H'/2(T) it suffices to study the uniqueness of the adjoint. Let therefore
¢ € L*(T) satisfy

1
<§+K6—iaVo>cp=O.

Consider the potential u = VQQD. We have u € H3/2(QQR). Furthermore, u satisfies
: int . int 1 / .
—Au=0 inQ, Y —iayy e = §+K0_104V0 o =0.

This implies u|g = 0. Next, we aim to show u|g+ = 0. To that end, we note that the
jump relations for Vy imply [u] = 0. Hence, u solves

~Au=0 inQT, u=0 onl.

We now distinguish the cases d = 3 and d = 2. _

For d = 3, the decay properties of the single layer potential u = V¢ imply together
with [20, Thm. 8.10] that u|o+ = 0. Hence, the jump relations 0 = [9,u] = —¢ yield
the desired uniqueness assertion.

For d = 2, we let w, be the “equilibrium density”, i.e., w., € H~/?(T) satisfies
Voweq = const with (weq, 1) =1 (see [20, Thm. 8.15]).

We claim that (1/2 + K})we, = 0. To see this, let v € H'/?(T") be arbitrary. Then,
by [20, Lemma 8.14], we can write v = VyU + a, where a € C and (v,1) = 1. Hence,
with VoKo = K/ Vy (see [29, Cor. 6.19]) and (1/2 + Ko)1 = 0:

((1/2 4 Kg)weg, v) = ((1/2 + Ko)weg, Vou + a) = (Vo(1/2 + Kp)weq, v)
= ((1/2 + Ko)Voweq, 0) = 0,

where, in the last step, we used that Vhwe, is constant.
Next, let 8 € C be such that (p — Bweq,1) = 0. We define the potential u :=

Vo(¢ — Bweq). Then, since by assumption (1/2 + K|, — iaVp)p = 0, we get
1

1
(5 + K, — iaVo) (o — Bwey) = =P (5 + K| — iaVO) Weq = PiaVywe, = constant

As above, we conclude that @|q is constant; in fact ulg = —BVowe,. On QF, the
function u solves Laplace’s equation, satisfies the decay condition u(z) = O(1), |z| —
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0o, and attains the constant value —FVyweq on I'. The uniqueness assertion [20,
Thm. 8.10] therefore provides that @ is constant on R?. The jump relation —(p —
Bweq) = [0nu] = 0 yields ¢ = Pwe,. Hence,

0=(1/2+ Ky —iaVp)p = (1/2+ K| — iaVp)(Bweq) = —iaVy(Bweq) = —iaViep.

Finally, the scaling assumption on {2 ensures the invertibility of Vj and therefore
p=0.

We have thus shown that 1/2 + Ky + iaVj is boundedly invertible as an operator on
L*(T') and H'/?(T"). By interpolation, it is therefore boundedly invertible on H*(T')
for 0 <s<1/2.

To see the invertibility on the spaces H*(T'), s > 1/2, we exploit elliptic regularity.
Let f € H*(T') for s > 1/2. Then, the solution ¢ € H1/2( )of (1/2+ Ko+ialp)p = f

induces a potential u = Kogo + laVogo € H'(Q2r) that satisfies on Q
—Au=0 inQ, (1 +ia)y"u = f.
Thus, ulg € H*/2(Q). The jump conditions satisfied by u are
[ul =¢,  [Onu] = —iaep.
Hence, the potential u satisfies on QF
—Au=0 inQT, Ve + oy = yinty 4 1a’y§"tu € HY(I).

We conclude u|q,ng+ € H*TY/2(Qr N QF). The jump relation ¢ = [u] thus leads to
the desired p € H*(T).

Proof of (iii): The contractivity properties of 1/2 + K (see [29, Cor. 6.30]) imply the
convergence of the Neumann series for —1/2 + K} in H~/?(T). Thus, —1/2 + K}, is
boundedly invertible on H~'/2(T"). To see that it is boundedly invertible on H*(T)
for s > —1/2 we consider f € H*(T) and let ¢ € H~Y?(T) with (—1/2 4 K})¢ = f
The potential u = Voo € H'(Q2p) then satisfies the boundary condition ~v{*tu
(=1/2+K})p = f € H*(T). Elliptic regularity thus produces u|g,no+ € H*T3/2(QrN
Q71). On , the potential u satisfies Laplace’s equation together with the boundary
condition 'yé”tu = &%ty € H*TY(T). Again, elliptic regularity leads to u € HS+3/2(Q).
The jump condition —¢ = [0,u] € H*(T") leads to the desired result.

Proof of (iv): The proof resembles that of (ii). The operators K}, : H=1(T') — L?(T")
and Vo : H=Y2(T') — HY*(T") are compact on H~'/2(T"). Hence, unique solvability
on H=Y2(T') for 1/2 + K} + iaVj is ensured if we can ascertain uniqueness for the
adjoint equation. Let therefore p € H'/2?(T) satisfy (1/2+ Ko —iaVy)e = 0. Consider
the potential u = Kop — iaVpp. Then, u € H'(Qp) and 75 u — iaye®u = (1/2 +
Koy)p —iaVhp = 0. We note the jump conditions

[u] = ¢, [Onu] = iap. (D.1)

We distinguish again the cases d =2 and d = 3.

For d = 3, the potential u satisfies the decay conditions at co that allow us to conclude
with [20, Thm. 8.10] that u|g+ = 0. The jump conditions (D.1) therefore imply that
ulq satisfies vi"u — iayi"u = ¢y — iay§®u = 0. Hence, u|g = 0. Thus, the jump
conditions (D.1) imply ¢ = 0.

For d = 2, we first show that (¢,1) = 0. To that end, we recall (1/2 + K{)weq = 0
and note that the 1/2 4+ Ky — iaVhp = 0 implies

0= <weqv1/2+K0> <w5q,‘/b<,0> = _ia<%weq790>-
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Since Vyweq is a constant function (and, in view of the scaling assumption diam 2 < 1,
we have Voweq # 0), we get that ¢ has vanishing mean.
Consider now again the potential © = Kqp — iaVyp. Then

6 = (1/2 + Ko)p — iaVyp = 0. (D.2)

Hence, the uniqueness assertion of [20, Thm. 8.10] implies that u|g+ = 0. The jump
conditions satisfied by u read

[a] =, [Onu] = iap. (D-3)

Hence, yi"u — iay{™u = v§*'u — iay§®u = 0. Therefore, u|g = 0. From (D.3) we

finally conclude ¢ = 0.

The invertibility of 1/2 + K{ + iaVp on H*(T"), s > —1/2 now follows by arguments
similar to those used above. Let ¢ € H~'/2(T) solve (1/2 + K} + iaVp)p = f €
H*(T"). Then the potential u = 1704,0 satisfies yi"u + iayi"u = f. Elliptic regularity

therefore leads to ulg € H*+3/2(Q). The jump relations for V; then given y§®u =
yertu € HsH(T). Elliptic regularity produces ulg,nq+ € H*3/2(Qr N Q). The
jump relation —p = [0,u] € H*(T') allows us to conclude the proof. O

Appendix E. Proof of Theorem 7.12. Proof of Theorem 7.12: We introduce the
abbreviation e := u—wuy. Let wy € X be arbitrary. Then by the triangle inequality

lleflo < [lu —wnllo + lun = wn o (E.1)

Hence, we have to estimate |[uxy — wy|lop. By the discrete inf-sup condition we can
find vy € X with ||’UN||Q =1 and ’YOHUN — ’LUNHO < (Aa(’U,N — ’UJN),UN)O. With the
Galerkin orthogonality (A} (u — un),vn)o = 0, we then produce

Yollun —wnllo < ((Ag — Ap)(un — wn),vn)o + (A (un — wn ), va)o
= ((Ap — Ap)(un — wn),vn)o + (A (u — wn ), vn)o
= ((A} — Ap)e,vn)o + (Ay(u — wn),vN)o
< | Abllz 2 flu — wwllo + ((Ak — Ap)e, v )o- (E.2)
In order to treat the term ((A} — Aj)e,vn)o we define ¢ € L?(T) by
(A, — Az, on)o = (2, Agtd)o Yz e LA(D). (E.3)
Lemma 7.2 tells us

Y =A"}(A_k — Ag)un (E.4)

By selecting z = e in (E.3), using Galerkin orthogonality satisfied by the error e and
orthogonality properties of Hﬁ we obtain

((A;c - A/o)ewzv)o

= (e, A_xt)o = (Ahe, ¥)o = (Ahe, ¥ — IIK ¥)o

= (Abe, ¥ — TIK )0 + ((Af — Ape, v — IK ¥)o

= (Ape, v — K ¥)o + (A}, — Ap)e — IIK (A — Ap)e, v — IIK %),
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Hence, from (E.4) and ||vx|lo =1

2
(45 — Ape, ool < {IAglleacp + 00 —TE) (4] — Ag)] 2.1}
% [|(1d —TI§ ) AZL (A — Ao)z2z2 lle]o-
From Lemmata 7.7, 7.8 we get for arbitrary ¢ € (0,1)

(A% = A)e,vn)ol < {11 4gll s +q+ Chn(N.k,7)} (E5)
x g+ Ok (14 1920(4,0,-k) ) m (N, —k, ) } lello.

Select now ¢ € (0, 1) such that (||Aj|lL2—r2 +¢)g < 1/2. Then the constants C and ~y
in (E.5) are fixed and independent of k. We can furthermore select € > 0 independent
of k such that the assumption (7.19) then guarantees that the product of the two
curly braces in (E.5) is bounded by 1/2. Combining (E.1), (E.2), and (E.5) therefore
yields

Al 2,12 1
leflo < (1 4+ Hollzzz2y o+ Lel,
Yo 2

which leads to the desired estimate. O

Appendix F. Notes on mapping properties of ‘70 and IN{O.
LEMMA F.1. Let Q C R? be a bounded Lipschitz domain with connected boundary.
Denote by 0 the distance from 0. Then:

(i) Vo : L*(0Q) — H3/2(Q) and

Vol /2 )+ (Vow) || 200y + (VVow) [l L2 (a0 +IIVEV2 Vol 120y < CllellL2(an)-

Furthermore, the non-tangential limit of 17090 on 99 is Vyp.
(i) Vo : H=1(02) — HY?(Q) and

||‘70<P||H1/2(Q) + ||(‘70<P)*||L2(OQ) + ||\/5V‘70<PHL2(Q) < Cllella-1(00)-

Furthermore, the non-tangential limit of 170<p on 0N is V.
Proof. Before starting with the proof, we introduce the non-tangential trace operator
Tr, which is defined as Tru(z) := lim._, ep(s) u(2), where I'() is the non-tangential
cone associated with the point x € 99.
We start with the proof of part (i):
1. step: By [32, Thm. 3.3, Thm. 4.11] we have Vp : L?(9Q2) — H'(99).
2. step: We claim that the function u := ‘N/ng has non-tangential limits for almost all
x € 09, ie., TrVjp exists. To see this, we decompose ¢ = ¢ — ¢~ with ¢ and
¢~ > 0. By sign properties of the fundamental solution the functions u* := Vo™
and u~ := Vyp~ are positive harmonic functions in  (for the 2D case, we assume
here a proper scaling of the domain). By [15, Thm. 2.3] we conclude that u™ and
u~ have non-tangential limit almost everywhere; hence, also u = v — u~ has this
property.
3. step: Since u € H'() it has a trace on 99, which is Vo € H(9Q). Further-
more, this trace coincides with the non-tangential limit. From [16, Thm. 5.15], we
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therefore get that Voo = u € H*2(Q). Furthermore, 1wl 2200y < CllVoellaran) <
CllellL2(a0)- The estimates for [|u*[| 12(a0) and ||(Vu)*|| 12(aq) follow from [16, Cor. 5.7].

We now turn to the proof of part (ii):
1. step: The following duality argument shows that Vo : H=1(09Q) — L2(09): For ¢,
Y € L%(09Q) we compute

[(Vow, )] = [, Vo)l < [lell -1 o) IVoull o) < Cllell-1 o) 191 L200),
where the last step follows the assertion Vj : L2(9Q) — H'(99Q) of [32]. By density,
Vo can be (uniquely) extended to an operator H~(09Q) — L?(952).

2. step: We aim to show that the function u := Vy satisfies |[u*|| 290y < C|[Voo| r2(a0) <
Cllellm-1(90)- To that end, let (¢n)nen € L?(8Q) be a sequence converging in

H=1(09Q) to ¢. By part (i) (see 3. step), the functions w,, := Vop, converge non-
tangentially to Vpp,. By [16, Thm. 5.3, Thm. 5.4, Cor. 5.5] we have

[ (un)* I z2(80) + llunllg1/20) < CllVownllL2(a0)-

Since (5, )y, is a Cauchy sequence in H~1(952), we have that (uy, ), converges pointwise
to u in Q and (u,)* converges in L?(9Q) to a function @ € L?(9€2). We have

[ullL200) = lim_[lug]lL200) < C lim [[Vopnllz2a0) < C T lonlla—1@00) = Cllella-1 o)

After possibly passing to a subsequence, we may assume that u) converges to u
pointwise almost everywhere. Let z € 9 be a point with lim,, .. v’ (z) = u(z) € R.
Then for every z € T'(x)

()] < limsup (fu(=) = ()] + [ua(2)]) < limsup [u(z) = un(2)] + limsup ()

< lim |u(2) — un(2)] + limsup sup |un(z)| = 0+ limsup (u,)*(x) = u(z).
n—00 n—oo zel'(x) n—00

‘We conclude

u*(x) = ilrl?)IU(Z)l < u(x),

and hence that v* € L*(9Q) with [Ju*|z2(50) < Cll@lla-1(00)-
3. step: By [16, Cor. 5.5], we have u € H'/?(Q) and
lu*[lL2a0) + lull g1/2i0) + H\/SVUHN(Q) < Cllellg-100)-

To see that the non-tangential limit of Voy is Vo, we first note that [16, Cor. 5.5]
asserts that Voo has a non-tangential trace Tru € L?(99). Let u be the unique
solution of the boundary value problem

~Au=0 inQ, Tru="Vyp<c L*09Q).
Since Voo, — Vo in L2(99Q) and Tru, = Vop,, we get from a priori estimates
1T — wnll /2 () < Ol Te(@ = un)||L2(00) < ClVop — VownllL2a0) — 0.

By Caccioppoli inequalities, we infer that w is the pointwise limit of the functions wu,,.
This pointwise limit is also u, and we conclude v = u. Thus, Tru = Tru = Vyp. O
LEMMA F.2. Let Q € R? be a bounded Lipschitz domain with connected boundary.
Denote by § the distance from O). Then:
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(i) Ko: HY(8Q) — H32(Q) and
||R0¢||H3/2(Q)+||(f~(080)*||L2(aﬂ)+||(foosﬁ)*|\L2(aﬂ)+||\/gv21~(080||m(9) < Cllell ma0)-

Furthermore, the non-tangential limit of Kow on 9 is (—1/2 + Ko)e.
(i) Ko: L*(0Q) — HY?(Q) and

IKo¢ll 120y + (Ko@) | 2200y + VOVEp| 20y < CllollL2(o0)-

Furthermore, the non-tangential limit of Kow on 8 is (—1/2 + Ko)e.
Proof. We start with part (i): For ¢ € H(9Q) c HY/2(8), we have Kop € H'().
We have 4o Kop = (—1/2 + Ko)p € HY/2(8Q) ¢ L*(99). By [16, Cor. 5.5], the non-
tangential trace Tr IN{OQD exists and is in LQ(BQ). We conclude Tr IN(OQD = WOIN(OQD =
(—1/2 + Ko)p. By [32, Thm. 3.3] we have (—1/2 + Ko)p € H'(99Q), so that [16,

Thm. 5.15] implies Kop € H3/2(2). Then [16, Cor. 5.7] implies the desired estimate.

We turn to the proof of part (ii): This is proved using the same arguments as part
(ii) of Lemma F.1. O
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