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FEM-BEM COUPLING FOR THE LARGE-BODY LIMIT IN

MICROMAGNETICS

M. AURADA, J. M. MELENK, AND D. PRAETORIUS

Abstract. We present and analyze a coupled finite element–boundary element method for a model
in stationary micromagnetics. The finite element part is based on mixed conforming elements. For
two- and three-dimensional settings, we show well-posedness of the discrete problem and present
an a priori error analysis for the case of lowest order elements.

1. Introduction

Stationary micromagnetism is a theory that is successfully used to describe and predict mag-
netic phenomena, focussing typically on effects on a macroscopic length scale. The various models
currently in use originate from a classical approach by Landau and Lifshitz, [7], where the magne-
tization state m : Ω → Sd−1 := {x ∈ Rd : |x| = 1} of a rigid ferromagnetic body Ω ⊂ Rd (d = 2,
3) is the minimizer of a (possibly non-convex) minimization problem under a PDE constraint. The
following minimization problem, which is the starting point of our previous work [2] and the present
paper, is an example of this problem class:

Problem 1.1 (Reduced Minimization Problem — RMP). Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded
Lipschitz domain and ϕ∗∗ ∈ C1(Rd,R≥0) be convex. For a given applied field f ∈ L2(Ω)d :=
L2(Ω,Rd) find m ∈ A := {n ∈ L2(Ω)d : |n(x)| ≤ 1 a.e. in Ω} that minimizes the energy functional

E∗∗
f (m, u) :=

∫

Ω
ϕ∗∗ ◦m−

∫

Ω
f ·m+

1

2

∫

Rd

|∇u|2, (1.1)

where the magnetic potential u ∈ ḂL
1,2

(Rd) is related to m through and uniquely defined by

div (∇u−mχΩ) = 0 in D(Rd)′. (1.2)

Here, χΩ is the characteristic function for the set Ω, and the Beppo Levi space

ḂL
1,2

(Rd) =
{
u ∈ H1

ℓoc(R
d) : ∇u ∈ L2(Rd),

∫

Γ
u dS = 0

}
(1.3)

is the space of all local H1-functions with finite energy, where the constant functions are factored
out.

For a discussion of this problem, in particular its relation to more complex models of micromag-
netism, we refer to our closely connected earlier work [2] and to the fundamental paper [27] on the
mathematical analysis of the large-body limit in micromagnetics. On the side of numerical analysis,
the present work is intimately linked to [2] and to [9, 24, 8, 16]. We pause to comment on the
use of the notation ϕ∗∗: In more complex models, the minimization involves a possibly non-convex
function ϕ (in place of ϕ∗∗); nevertheless, it is shown in [27] that replacing ϕ with its lower convex
envelope ϕ∗∗ yields a model that still retains relevant macroscopic information.

From a numerical point of view, which is the focus of the present work, Problem 1.1 (RMP) poses
several challenges:

Date: June 13, 2013.
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(i) The fact that ϕ∗∗ is not necessarily strictly convex can lead to non-uniqueness of the mag-
netization m. Even if uniqueness can be ascertained for the continuous problem (this is, for
example, the case for so-called “uniaxial material”, which we will present in Example 1.2 be-
low) the uniqueness assertion does not necessarily extend to the discrete level. Motivated by
techniques of augmented Lagrangian methods, we develop in the present work a consistent
stabilization, which allows us to transfer the possible uniqueness assertion for the continuous
problem to the discrete one. In particular, this leads to well-posedness of the discrete problem.
A manifestation of the difficulties with uniqueness is that our a priori analysis does not control
the full L2-norm of the error in the magnetization m (cf. Theorems 4.8, 4.9).

(ii) The pointwise side constraint |m| ≤ 1 is difficult to realize in practice. Following [9, 8, 2] we
adopt a penalty approach.

(iii) The energy functional E∗∗
f

involves a function u that is defined on the full space Rd and

an integral extending over all of Rd. A discrete setting requires an appropriate treatment
of such functions. In the simplified setting of [2], the potential u is sought in the space

H1
0 (Ω̂) for some Ω̂ ⊃ Ω with dist(∂Ω̂,Ω) sufficiently large. Correspondingly, the integral over

Rd is replaced with an integral over Ω̂. Of course, this procedure introduces an additional
modeling error which is neglected in [9, 2] for simplicity. Furthermore, the computational

costs are considerably increased owing to the discretization of the large region Ω̂ \ Ω. In the
present work, we circumvent these problems by coupling a finite element method (FEM) to a
boundary element method (BEM). The stability and error analysis of this coupling procedure
is the principal contribution of this work over [2].

As mentioned above, the convex function ϕ∗∗ may fail to be strictly convex but a uniqueness
assertion for the magnetization m may nonetheless be true. We present such a function ϕ∗∗ in the
following Example 1.2, and we will review this uniqueness assertion in the proof of Proposition 3.2.
We review this proof of uniqueness since it sheds light on the requirements for the stabilization in
the discrete setting. Our a priori error analysis below will in particular cover the case of the function
ϕ∗∗ of Example 1.2.

Example 1.2. Uniaxial materials, which favor magnetizations m aligned with one so-called “easy
axis” e ∈ Sd−1 can be modeled with an energy contribution

∫
Ω ϕ ◦ m in the energy functional Ef ,

where the uniaxial anisotropy density ϕ is given by

ϕ : Sd−1 −→ R, ϕ(x) =
1

2

(
1− (e · x)2

)
, (1.4)

As mentioned above, we replace ϕ in the energy contribution
∫
Ω ϕ◦m with its lower convex envelope

ϕ∗∗, which then leads to the energy functional of Problem 1.1. In this setting, the lower convex
envelope ϕ∗∗ is given explicitly as follows for an orthonormal basis {e, z1, . . . zd−1} of Rd, [9]:

ϕ∗∗(x) =
1

2

d−1∑

i=1

(x · zi)
2, ∇ϕ∗∗(x) =

d−1∑

i=1

(x · zi)zi, for all x ∈ Bd :=
{
x ∈ Rd : |x| ≤ 1

}
. (1.5)

The remainder of the article is organized as follows: In Section 2.1 we recall boundary integral
operators and some of their properties in order to reformulate the minimization Problem 1.1 as

the minimization Problem 2.4 (also denoted (R̃MP )) posed on the domain Ω and its boundary
Γ := ∂Ω. Since we will work with the saddle point formulations of the continuous and discrete
problems, we formulate in Section 3.1 the continuous saddle point problem and show its equivalence

with (R̃MP ). In Section 4.2 we illustrate why a straight-forward discretization of the saddle point
formulation can lead to instability. Since the overall setting is one of a constrained minimization
problem, the key issue is the relation between the kernel of the continuous operator characterizing
the constraint and the kernel of its discrete version. The proper relationship can be ensured with
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suitable consistent stabilization terms, which we present in Section 4.3. Section 4.4 is devoted to a
detailed a priori error analysis of the stabilized method. We study in detail the case of lowest order
discretizations, where we show optimal convergence rates under suitable regularity assumptions.
While our stabilization scheme is not restricted to lowest order discretizations, our treatment of the
nonlinear terms is particularly well-suited for that setting. We conclude the article in Section 4.5
with numerical examples.

We will use fairly standard notation concerning Sobolev spaces (both integer order spaces Hk(Ω),
k ∈ N0) and fractional Sobolev spaces H1/2(Γ), H−1/2(Γ) as described in [22, 25, 28, 20] We write
H(div;Rd) = {u ∈ (L2(Rd))d : divu ∈ L2(Rd)}. We have already introduced the Beppo-Levi space

ḂL
1,2

(Rd) in the statement of Problem 1.1. This space is naturally endowed with the H1(Rd)-
seminorm. For a comprehensive treatment of this space and the fact that (the natural inclusion of)

the test space D(Rd) is dense within ḂL
1,2

(Rd), we refer the reader to [14].

2. The coupled volume–boundary integral equation formulation

2.1. Boundary Integral Operators. In this section we recall some facts from the theory of
boundary integral equations and fix notations—we refer the reader to the monographs [22, 25, 28, 20]
for an extensive discussion of boundary integral operators and boundary element methods.

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain with Lipschitz boundary Γ. We stress that we do
not assume that diam(Ω) < 1 for the case d = 2 as it is often done. We denote the exterior normal
vector field on Γ by ν. The interior and exterior trace operators are denoted by γint and γext. We
define ∂int

ν
u := ν · γint∇u and ∂ext

ν
u := ν · γext∇u to be the interior and exterior normal derivative

for (sufficiently smooth) functions u on the boundary Γ.
The fundamental solution for Laplace’s equation is

G(x, y) =

{
− 1

2π log |x− y| if d = 2,
1
4π

1
|x−y| if d = 3.

(2.1)

For φ ∈ H−1/2(Γ) and u ∈ H1/2(Γ) the simple layer potential Vφ and the double layer potential Ku
are formally defined by

(Vφ)(x) :=

∫

Γ
G(x, y)φ(y) dS(y), for x ∈ Rd \ Γ, (2.2)

(Ku)(x) :=

∫

Γ
∂int
ν(y)G(x, y)u(y) dS(y), for x ∈ Rd \ Γ. (2.3)

The potential operators V and K define solutions of the homogeneous Laplace equation, i.e., for
φ ∈ H−1/2(Γ) and u ∈ H1/2(Γ) there holds

∆(Vφ)(x) = 0 and ∆(Ku)(x) = 0 for x ∈ Rd \ Γ. (2.4)

The simple layer operator V : H−1/2(Γ) → H1/2(Γ), the double layer operator K : H1/2(Γ) →
H1/2(Γ), the adjoint double layer operator K ′ : H−1/2(Γ) → H−1/2(Γ), and the hypersingular

operator W : H1/2(Γ) → H−1/2(Γ) are formally defined as the compositions of V and K with
various trace operators, namely,

V φ := γint(Vφ) = γext(Vφ), Wu := −∂int
ν

(Ku) = −∂ext
ν

(Ku),

K ′φ := ∂int
ν

(Vφ) − 1/2φ = ∂ext
ν

(Vφ) + 1/2φ, Ku := γint(Ku) + 1/2u = γext(Ku) − 1/2u.
(2.5)

For an explicit representation of these operators, we refer to [22]. The operators V and W are in
addition symmetric operators.
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By 〈u ; φ〉Γ we denote the extended L2(Γ)-scalar product for functions φ ∈ H−1/2(Γ) and u ∈
H1/2(Γ). We note that K ′ is in fact the adjoint of K with respect to the extended L2(Γ)-scalar

product. The norms in H−1/2(Γ) and H1/2(Γ) are denoted by ‖ · ‖−1/2,Γ and ‖ · ‖1/2,Γ respectively.
We will work with the function spaces

H
1/2
∗ (Γ) := {v ∈ H1/2(Γ) : 〈v ; 1〉Γ = 0},

H
−1/2
∗ (Γ) := {φ ∈ H−1/2(Γ) : 〈φ ; 1〉Γ = 0}.

In the following two lemmas, we collect some properties of the boundary integral operators that will
be needed in the sequel. The following result can be inferred from [22, Thms. 8.12, 8.21]:

Lemma 2.1 (ellipticity of V and W ). Let Ω ⊆ Rd, d = 2, 3 be a bounded Lipschitz domain. There
exist constants cW1 , cV1 > 0 such that

|u|2W := 〈Wu ; u〉Γ ≥ cW1 ‖u‖21/2,Γ, for all u ∈ H
1/2
∗ (Γ), (2.6)

‖φ‖2V := 〈V φ ; φ〉Γ ≥ cV1 ‖φ‖
2
−1/2,Γ, for all φ ∈ H

−1/2
∗ (Γ). (2.7)

For d = 3 the estimate (2.7) is even valid for all φ ∈ H−1/2(Γ).

Lemma 2.2 (representation formula and Calderón system). Let Ω ⊆ Rd, d = 2, 3 be a bounded
Lipschitz domain. Denote by BR the ball with radius R centered at the origin. Let the function
u ∈ L2

loc(Ω
ext) satisfy

−∆u = 0 in Ωext, (2.8)

‖∇u‖L2(Ωext) <∞. (2.9)

Then, there exists a constant u∞ ∈ R such that u satisfies the following:

(i) the radiation condition

u = u∞ +O(1/r), r → ∞, (2.10)

(ii) the representation formula

u = K(γextu)− V(∂ext
ν
u) + u∞ in Ωext, (2.11)

(iii) the exterior Calderón system

γextu = (1/2 +K)(γextu)− V (∂ext
ν
u) + u∞ (2.12)

∂ext
ν
u = −W (γextu) + (1/2 −K ′)(∂ext

ν
u) (2.13)

(iv) the formula of integration by parts

‖∇u‖2L2(Ωext) = −〈∂ext
ν
u ; u〉Γ. (2.14)

Proof. See Appendix A. �

We also need the following auxiliary result:

Lemma 2.3. Let u ∈ H1/2(Γ) and φ ∈ H
−1/2
∗ (Γ) satisfy

〈V φ+ (1/2 −K)u;ψ〉Γ = 0 ∀ψ ∈ H
−1/2
∗ (Γ). (2.15)

Then there exists u∞ ∈ R such that the function ũ := Ku − Vφ + u∞ satisfies γextũ = u and
∂ext
ν
ũ = φ. Furthermore, ũ satisfies (2.12)–(2.13) and in particular, φ = −Wu+ (1/2 −K ′)φ.
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Proof. The condition φ ∈ H
−1/2
∗ (Γ) implies that the function û := Ku − Vφ satisfies on Ωext the

conditions (2.8)–(2.9) and thus has the properties stated in Lemma 2.2. Taking the exterior trace
on Γ (cf. (2.5)) we conclude with (2.15)

〈γextû− u;ψ〉Γ = 〈(1/2 +K)u− V φ− u;ψ〉Γ = 〈(−1/2 +K)u− V φ;ψ〉Γ = 0 ∀ψ ∈ H
−1/2
∗ (Γ).

This implies that u − γextû =: u∞ ∈ R, and the function ũ := Ku − Vφ + u∞ = û + u∞ satisfies

γextũ = u as well as ∂ext
ν
ũ ∈ H

−1/2
∗ (Γ) in the following way:

〈γextũ; 1〉Γ = 〈γext(Ku− Vφ+ u∞); 1〉Γ = 〈φ; (1/2 −K)1〉Γ = 0.

To see ∂ext
ν
ũ = φ, we first note that Lemma 2.2 gives a second representation of ũ, namely,

ũ = Kγextũ− V∂ext
ν
ũ+ ũ∞ = Ku− V∂ext

ν
ũ+ ũ∞ (2.16)

for some ũ∞ ∈ R. Exploiting the two different representations for ũ we get 0 = −V(∂ext
ν
ũ−φ)+ũ∞−

u∞ on Ωext; applying ∂ext
ν

yields (cf. (2.5)) 0 = (1/2−K ′)(∂ext
ν
ũ− φ). The assertion ∂ext

ν
ũ− φ = 0

is obtained from ∂ext
ν
ũ− φ ∈ H

−1/2
∗ (Γ) and the fact that 1/2 −K ′ is one-to-one on H

−1/2
∗ (Γ) (cf.,

e.g., [29, Thm. 4.2] for the case d = 2 and [29, Thm. 3.3] for d ≥ 3). �

2.2. Reformulation of (RMP ) using boundary integrals. With the boundary integral op-
erators in hand, we can rephrase the minimization Problem 1.1, which involves the function u as
a function on the full space Rd, as a problem posed on the bounded domain Ω and the boundary
Γ = ∂Ω. This is achieved with the integration by parts formula (2.14). In Proposition 2.5 below,

we will formally show the equivalence of Problems (RMP ) and (R̃MP ).

Problem 2.4 (R̃MP ). Find a function

u ∈ H1
∗ (Ω) := {v ∈ H1(Ω) : 〈v ; 1〉Γ = 0},

a magnetization state m ∈ A, and a function φ ∈ H
−1/2
∗ (Γ) that minimize the energy functional

Ẽ∗∗
f
(u,m, φ) :=

∫

Ω
ϕ∗∗ ◦m−

∫

Ω
f ·m+

1

2

∫

Ω
|∇u|2 −

1

2
〈φ ; u〉Γ, (2.17)

under the side constraints

〈∇u−m ; ∇η〉Ω − 〈φ ; η〉Γ = 0 for all η ∈ D(Rd), (2.18)

〈V φ+ (1/2 −K)(γintu) ; ψ〉Γ = 0 for all ψ ∈ H
−1/2
∗ (Γ), (2.19)

where 〈· ; ·〉Ω denotes the L2(Ω) scalar-product.

Proposition 2.5. Problem 1.1 (RMP ) and Problem 2.4 (R̃MP ) are equivalent in the following
sense:

(1) Let (u,m) ∈ ḂL
1,2

(Rd)×A be a solution of (RMP ). Then (u|Ω,m, ∂ext
ν
u) solves (R̃MP ).

(2) Let (u,m, φ) ∈ H1
∗ (Ω)×A×H

−1/2
∗ (Γ) be a solution of (R̃MP ). Then there exists u∞ ∈ R

such that (ũ,m) solves (RMP ), where ũ is defined by

ũ(x) :=

{
u(x) if x ∈ Ω̄,

(Kγintu)(x) − (Vφ)(x) + u∞ if x ∈ Rd \ Ω̄.
(2.20)

Proof. Step 1: We prove that the side constraint (1.2) of Problem 1.1 (RMP ) is equivalent to

the side constraints (2.18)–(2.19) of Problem 2.4 (R̃MP ). More precisely, we show that a pair

(u,m) ∈ (ḂL
1,2

(Rd),A) satisfies (1.2) if and only if (u|Ω,m, ∂ext
ν
u) satisfies (2.18)–(2.19). Let
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(u,m) ∈ (ḂL
1,2

(Rd),A) satisfy (1.2). Then, u|Ω ∈ H1
∗ (Ω). Since ∇u − mχΩ ∈ H(div;Rd), the

following Green identity for the exterior domain Ωext is valid, (cf., e.g., [17]):

〈∂ext
ν
u ; η〉Γ = −〈∆u ; η〉Ωext − 〈∇u ; ∇η〉Ωext for all η ∈ D(Rd). (2.21)

With ∆u = 0 in Ωext, a direct consequence of (1.2), this leads to

0 = 〈∇u−mχΩ ; ∇η〉Rd = 〈∇u−m ; ∇η〉Ω − 〈∂ext
ν
u ; η〉Γ, for all η ∈ D(Rd). (2.22)

Note that (2.22) can be extended continuously to H1(Ω) by density of the space of test functions.

The choice η ≡ 1 then shows ∂ext
ν
u ∈ H

−1/2
∗ (Γ).

With Lemma 2.2 applied to u|Ωext we deduce (2.19) from (2.12) together with γintu = γextu, since

u ∈ ḂL
1,2

(Rd) is continuous across Γ.

Conversely, let (u,m, φ) ∈ H1
∗ (Ω)×A×H

−1/2
∗ (Γ) be a solution of (2.18)–(2.19). By Lemma 2.3,

we can find u∞ ∈ R such that the function ũ defined in (2.20) is continuous across Γ, i.e., γextũ =
γintu. Furthermore, ∂ext

ν
ũ = φ. Using this identity and u = ũ on Ω in (2.18) gives

〈∇ũ−mχΩ ; ∇η〉Rd = 〈∇u−m ; ∇η〉Ω − 〈∂ext
ν
ũ ; η〉Γ = 0 for all η ∈ D(Rd). (2.23)

Step 2: We have to prove the property of minimization. Let (u1,m1) be a solution of (RMP )

and (u2,m2, φ2) be a solution of (R̃MP ). Using the formula (2.20), we can construct an extension

ũ2 ∈ ḂL
1,2

(Rd) of u2 from the pair (u2, φ2). Then we have by the arguments of Step 1 that
φ2 = ∂ext

ν
ũ2 and (ũ2,m2) solves (1.2). Together with the integration by parts formula (2.14), we

get

Ẽ∗∗
f (u2,m2, φ2) = E∗∗

f (ũ2,m2) ≥ E∗∗
f (u1,m1) = Ẽ∗∗

f (u1|Ω,m1, ∂
ext
ν
u1), (2.24)

due to the minimality of (u1,m1) as a solution of (RMP ). The converse case is completely analo-
gous. This ends the proof. �

Various FEM-BEM coupling methods could be formulated starting from (R̃MP ) following the
techniques proposed and discussed in [31, 6, 21, 11, 12]. Here, we focus on the symmetric FEM-BEM
coupling due to [11], in which the second equation of the exterior Calderón system (2.13),

φ = −W (γintu) + (1/2 −K ′)φ, (2.25)

is substituted for the variable φ in (2.17) and (2.18).

3. The Continuous Problem

3.1. The Saddle Point Problem. En route to a numerical scheme, we reformulate in this

section the minimization problem (R̃MP) as a saddle point problem, denoted (SPP). In the following
Proposition 3.2, we show their equivalence and the unique solvability in the case of uniaxial materials
of Example 1.2. One of our reasons for presenting the uniqueness assertions of Proposition 3.1 on
the continuous level is to be able to highlight for the discrete setting in Theorem 4.6 the need of a
suitable stabilization.

Problem 3.1 (SPP). Find u = (u,m, φ) ∈ X := H1
∗ (Ω)× L2(Ω)d ×H

−1/2
∗ (Γ), p = (p, ζ) ∈ M :=

H1
∗ (Ω)×H

−1/2
∗ (Γ) and λm ∈ L2(Ω,R≥0) such that

a(u; v) + b(v; p) = 〈f ; n〉Ω for all v = (v,n, ψ) ∈ X, (3.1)

b(u; q) = 0 for all q = (q, θ) ∈M, (3.2)

λm(x)(1 − |m(x)|) = 0 for almost every x ∈ Ω, (3.3)
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under the constraint |m(x)| ≤ 1 almost everywhere in Ω, where

a(u; v) := 〈∇u ; ∇v〉Ω + 〈Wu+ 1/2(K ′ − 1/2)φ ; v〉Γ + 〈∇ϕ∗∗ ◦m+ λmm ; n〉Ω

+ 1/2〈(K − 1/2)u ; ψ〉Γ,
(3.4)

b(u; q) := −〈∇u−m ; ∇q〉Ω − 〈Wu+ (K ′ − 1/2)φ ; q〉Γ + 〈V φ− (K − 1/2)u ; θ〉Γ. (3.5)

Proposition 3.2 (Equivalence of (SPP) and (R̃MP) & (unique) solvability). The following state-
ments are true:

(i) The relaxed minimization problem (R̃MP) has solutions.

(ii) The minimization problem (R̃MP) and the saddle point problem (SPP) are equivalent in the fol-

lowing sense: for every solution (u,m, φ) of (R̃MP) there exist p, λm such that (u,m, φ, p, λm)
solves (SPP) and conversely, the components (u,m, φ) of a solution (u,m, φ, p, λm) of (SPP)

solve (R̃MP).
(iii) The magnetic potential u, its exterior normal derivative φ and the Lagrangians p and ζ are

uniquely determined in (SPP).

(iv) If ϕ∗∗ is given as in Example 1.2 (“uniaxial case”), then problems (R̃MP) and (SPP) are
uniquely solvable.

Proof. Proof of (i): [27] proves that (RMP) has solution. Since (RMP) and (R̃MP) are equivalent,
by Proposition 2.5, this proves (i).

Proof of (ii): [27] shows the equivalence of the minimization problem (RMP) with the corre-
sponding Euler-Lagrange equation (3.6a) and the side constraints (3.6b) and (3.6c): Find (u,m) ∈

ḂL
1,2

(Rd)× L2(Ω)d and λm ∈ L2(Ω,R≥0) such that

〈∇u+∇ϕ∗∗ ◦m+ λmm ; n〉Ω = 〈f ; n〉Ω for all n ∈ L2(Ω)d, (3.6a)

〈∇u−mχΩ ; ∇η〉Rd = 0 for all η ∈ D(Rd), (3.6b)

λm(x)(1 − |m(x)|) = 0 for almost every x ∈ Ω. (3.6c)

We show the equivalence of (SPP ) with (3.6). To that end let (u,m, λm) be a solution of (3.6).
Recalling equation (2.25) the equivalence of (3.6b) and (3.2) can be shown similarly as in the proof
of Proposition 2.5. Setting p = u|Ω and ζ = 1

2φ and, of course, φ = ∂ext
ν
u shows that the tuple

(u|Ω,m, φ, λm; p, ζ) satisfies equation (3.1).
Consider now in turn a solution (u,m, φ, λm; p, ζ) of (SPP ). We first show p = u and ζ = 1

2φ.
Subtract equation (3.2) tested with q = (0, ψ) and multiplied with 1/2 from equation (3.1) tested
with v = (0,0, ψ) and set ψ = φ− 2ζ afterward. This gives

1

2
〈(K − 1/2)(u − p) ; φ− 2ζ〉Γ −

1

4
〈V (φ− 2ζ) ; φ− 2ζ〉Γ = 0. (3.7)

Subtracting this equation from equation (3.1) tested with v = (u− p,0, 0) leads us to

‖∇(u− p)‖2Ω + |u− p|2W +
1

4
‖φ− 2ζ‖2V = 0, (3.8)

from which we deduce the claimed p = u and ζ = 1
2φ. Here, ‖ · ‖Ω denotes the usual norm in L2(Ω).

With p = u equation (3.1) tested with v = (0,n, 0) results in equation (3.6a).
Proof of (iii): To prove uniqueness of the magnetic potential u and its exterior normal derivative

φ we follow the lines of [9]. Let ui = (ui,mi, φi) ∈ X, pi = (pi, ζi) ∈ M and λmi ∈ L2(Ω;R≥0),
i = 1, 2, be two solutions of (SPP ). Subtracting equations (3.1) and (3.2) yields together with the
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test functions v = (u2 − u1,m2 −m1, φ2 − φ1) ∈ X and q = (p2 − p1, ζ2 − ζ1) ∈M

‖∇(u2 − u1)‖
2
Ω + |u2 − u1|

2
W + 〈∇ϕ∗∗ ◦m2 −∇ϕ∗∗ ◦m1 ; m2 −m1〉Ω

+ 〈λm2m2 − λm1m1 ; m2 −m1〉Ω + 〈(K − 1/2)(u2 − u1) ; φ2 − φ1〉Γ = 0,
(3.9)

where the last term can be replaced by ‖φ2 − φ1‖
2
V in view of (3.2). From the convexity of ϕ∗∗,

we get the non-negativity of the third term, and pointwise non-negativity of the fourth term was
proved in [9]. Hence, all terms vanish, and we deduce u2 = u1 and φ2 = φ1.

To show the uniqueness of p and ζ let two solutions (u,m, φ, λm; pi, ζi) ∈ X ×M , i = 1, 2, be
given and set u = (u,m, φ) and pi = (pi, ζi), i = 1, 2. From (3.1) we get

b(v, p2 − p1) = 0 for all v = (v,n, ψ) ∈ X, (3.10)

and the desired conclusion p1 = p2 follows from the fact that the bilinear form b satisfies an inf-sup
condition. Indeed, with the norms

‖u‖2X := ‖∇u‖2Ω + ‖m‖2Ω + ‖φ‖2−1/2,Γ and ‖p‖2M := ‖∇p‖2Ω + ‖ζ‖2−1/2,Γ (3.11)

we get for arbitrary p = (p, ζ) ∈M \ {0} by Lemma 2.1

sup
u∈X\{0}

|b(u; p)|

‖u‖X‖p‖M
≥

|b(−p,0, ζ; p, ζ)|

‖(−p,0, ζ)‖X‖(p, ζ)‖M

=
1

‖(p, ζ)‖2M

{
‖∇p‖2Ω + 〈Wp ; p〉Γ + 〈V ζ ; ζ〉Γ

}
≥ min{1, cV1 } > 0.

(3.12)

This implies

inf
p∈M\{0}

sup
u∈X\{0}

|b(u; p)|

‖u‖X‖p‖M
≥ min{1, cV1 } > 0. (3.13)

Proof of (iv): This assertion was proved in [8]. We repeat here the essential arguments to give
an idea of what the key properties are that the stabilization term for the discrete method should
have. As explained above, equation (3.9) yields 〈∇ϕ∗∗ ◦m2 −∇ϕ∗∗ ◦m1 ; m2 −m1〉Ω = 0. Using
the explicit formula for ∇ϕ∗∗ given in Example 1.2 we get

d−1∑

i=1

‖(m2 −m1) · zi‖
2
Ω = 0. (3.14)

Equation (3.2) together with the knowledge of uniquely determined u and φ (see (3.9)), gives by
linearity b(0,m2−m1, 0; q) = 0 for all q ∈M . In other words there holds (0,m2−m1, 0) ∈ ker b ⊆ X.
From this we deduce

div (m2 −m1)χΩ = 0 in D(Rd)′. (3.15)

Combining (3.14) and (3.15) implies m2 − m1 = 0: For sufficiently smooth magnetizations this
follows by classical calculus. In the present setting of distributions, smoothing arguments have to
be employed as shown in [23, Satz 2.12] or [15, Lemma 14]. This concludes the proof. �

3.2. Penalization. The pointwise side constraint |m(x)| ≤ 1 is difficult to enforce numerically.
We will therefore relax this condition using a penalty method as originally used in [9] and later also
in [8, 16]. We assume from now on that ϕ∗∗ ist the restriction to Bd of a convex and continuous
differentiable function defined in the full space Rd.

Given a function ε ∈ L∞(Ω,R>0) the penalized problem (RMPε) is:
8



Problem 3.3 (penalized problem (RMPε)). Find minimizer(s) u ∈ H1
∗ (Ω), m ∈ L2(Ω)d and

φ ∈ H
−1/2
∗ (Γ) of

E∗∗
f ,ε(u,m, φ) = Ẽ∗∗

f (u,m, φ) +
1

2

∫

Ω

(|m| − 1)2+
ε

, (3.16)

under the side constraints (2.18) and (2.19).

Later on, the penalization parameter ε will be related to be the local mesh size in the discrete
version of (3.16). We mention that E∗∗

f ,ε is convex, continuous, Gâteaux differentiable and coercive.

In particular, the direct method of the calculus of variations proves that (RMPε) has solutions, and
Proposition 3.2 holds accordingly. Related arguments can be found in [2, 8, 9, 16]. We omit the
details.

4. The Discrete Problem

4.1. Notations. Let T := {K1, . . . ,KM} denote an affine, regular, γ-shape regular triangulation
of Ω and T |Γ := set of all edges (d = 2) or faces (d = 3) of elements of T on Γ. The spaces of
scalar-valued or vector-valued polynomials of (total) degree k on an element K are denoted Pk(K)
and Pk(K)d. We introduce the linear space

S1,1
∗ (T ) = {u ∈ H1

∗ (Ω) : ∀K ∈ T : u|K ∈ P1(K)} (4.1)

of all T -piecewise affine, globally continuous scalar fields with vanishing integral mean on Γ. By

S0,0(T ) = {v ∈ L2(Ω) : ∀K ∈ T : v|K ∈ P0(K)} and (4.2)

S0,0(T )d = {m ∈ L2(Ω)d : ∀K ∈ T : m|K ∈ P0(K)d} (4.3)

we denote the linear space of all T -piecewise constant scalar fields and vector fields, respectively.
The linear space of all T |Γ-piecewise constant scalar fields with vanishing integral mean is denoted
by

S0,0
∗ (T |Γ) := {φ ∈ H

−1/2
∗ (Γ) : ∀e ∈ T |Γ : φ|e ∈ P0(e)}. (4.4)

In addition we use the abbreviations XN := S1,1
∗ (T ) × S0,0(T )d × S0,0

∗ (T |Γ) ⊆ X and MN :=

S1,1
∗ (T )× S0,0

∗ (T |Γ) ⊆M .

4.2. An unstable saddle point formulation. We formulate now a discrete version of the saddle
point problem (SPP ). The starting point is the minimization of the penalized energy functional
E∗∗

f ,ε(u) on the discrete space XN . To be precise, the minimization problem (RMPN
ε ) is: Find

uN = (uN ,mN , φN ) ∈ XN such that E∗∗
f ,ε is minimized under the side constraint

b(uN ; qN ) = 0 for all qN = (qN , θN ) ∈MN . (4.5)

The Lagrangian associated with this constrained minimization problem is, with pN = (pN , ζN ) ∈
MN ,

Lε(uN ; pN ) = E∗∗
f ,ε(uN ) + b(uN ; pN ), (uN ; pN ) ∈ XN ×MN . (4.6)

The solution of the constrained minimization problem is the stationary point of the Lagrangian Lε.
If we choose the penalization parameter ε to be a T -piecewise constant function, we can compute
the derivatives of Lε explicitly. This leads us to the following formulation.
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Problem 4.1 (SPPN
ε ). Let ε ∈ S0,0(T ) and ε > 0. Find (uN ; pN ) = (uN ,mN , φN ; pN , ζN ) ∈

XN ×MN such that

aN (uN ; v) + b(v; pN ) = 〈f ; n〉Ω for all v = (v,n, ψ) ∈ XN , (4.7)

b(uN ; q) = 0 for all q = (q, θ) ∈MN , (4.8)

where we set

aN (uN ; v) := 〈∇uN ; ∇v〉Ω + 〈WuN + 1/2(K ′ − 1/2)φN ; v〉Γ

+ 〈∇ϕ∗∗ ◦mN + λNmN ; n〉Ω +
1

2
〈(K − 1/2)uN ; ψ〉Γ,

(4.9)

λN :=
(|mN | − 1)+

ε|mN |
. (4.10)

Compared with the continuous formulation in Problem 3.1, the main difference is that the con-
tinuous Lagrange multiplier λm ∈ L2(Ω,R≥0), characterized by the condition (3.3), is replaced by
the term (4.10).

Since the minimization problem (RMPN
ε ) has solutions, it is easy to show via the Euler-Lagrange

equation that (SPPN
ε ) has solutions, too. Here, the unique existence of the Lagrange parameters

pN and ζN follows from a discrete inf-sup condition of the bilinear form b in the same way as in the
proof of Proposition 3.2. Reviewing the arguments of this proof also shows the unique existence of
uN and φN . However, uniqueness of the magnetization mN cannot be ensured in the same way as
in the proof of Proposition 3.2, since kerN b * ker b, where

ker b := {u ∈ X : b(u; q) = 0 for all q ∈M} ⊆ X and (4.11)

kerN b := {uN ∈ XN : b(uN ; q) = 0 for all q ∈MN} ⊆ XN . (4.12)

This lack of uniqueness expresses the fact that the discrete formulation is unstable, cf. [9, 16]. In the
next section we show how to enforce stability in the discrete case by adding a suitable stabilization
term. We close this section by making more explicit some properties of ker b:

Lemma 4.2. A triple u = (u,m, φ) ∈ ker b satisfies:

(i) ∇u−m ∈ H(div; Ω) and additionally div(∇u−m) = 0 ∈ L2(Ω)

(ii) (∇u−m) · ν ∈ H
−1/2
∗ (Γ) and (∇u−m) · ν = φ, where ν denotes the exterior normal vector

on Γ.

Proof. u ∈ ker b implies div(∇u−m) = 0 ∈ H−1(Ω) so that div(∇u−m) = 0 ∈ L2(Ω) follows, which

gives us ∇u−m ∈ H(div; Ω). Hence, (∇u−m) · ν ∈ H−1/2(Γ). To see (∇u−m) · ν ∈ H
−1/2
∗ (Γ),

we note 〈(∇u−m) · ν; 1〉Γ = −〈div(∇u−m); 1〉Ω = 0. Finally, the assertion (∇u− µ) · ν − φ = 0

is seen as follows. First, the condition 〈V φ − (K − 1/2)u; θ〉Γ = 0 for all θ ∈ H
−1/2
∗ (Γ) implies by

Lemma 2.3 the relation φ = −Wu+ (1/2 −K ′)φ. Thus, in view of div(∇u−m) = 0 we obtain

0 = −〈(∇u−m) · ν; q〉Γ − 〈Wu+ (K ′ − 1/2)φ, θ〉Γ = −〈(∇u−m) · ν − φ; q〉Γ ∀q ∈ H
1/2
∗ (Γ).

Since (∇u−m) · ν − φ ∈ H
−1/2
∗ (Γ), this implies (∇u−m) · ν − φ = 0. �

4.3. A stable saddle point formulation. The aim of this consistently stabilized formulation
is to ensure also the uniqueness of the magnetization mN in a solution (uN ,mN , φN ; pN , ζN ); in
other words, the formulation provides unique solvability of the modified saddle point formulation.
We introduce the augmented Lagrangian as

Laug
ε (uN ; pN ) := E∗∗

f ,ε(uN ) + b(uN ; pN ) +
1

2
σ(uN ; uN ), (4.13)
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where the stabilizing bilinear form σ : (ker b+XN )× (ker b+XN ) → R is defined by

σ(u; v) :=
∑

e∈EΩ(T )

he〈[(∇u−m) · ν]e ; [(∇v − n) · ν]e〉e

+
∑

e∈T |Γ

he〈(∇u−m) · ν − φ ; (∇v − n) · ν − ψ〉e
(4.14)

with v = (v,n, ψ). Here, EΩ(T ) denotes the set of edges (d = 2) or faces (d = 3) of the elements of
the triangulation T of Ω. For elements e ∈ T |Γ, the vector ν is the outer normal vector on Γ. The
expression 〈· ; ·〉e denotes the integral over an edge (or face) e. Moreover, for e ∈ EΩ(T ) the bracket
[·]e denotes the jump across e and ν is a normal vector of e, i.e.,

[(∇u−m) · ν]e := (∇u−m)|K ′ · νK ′ + (∇u−m)|K ′′ · νK ′′

on the edge (or face) e = K ′∩K ′′ ∈ EΩ(T ), which is the intersection of uniquely determined elements
K ′,K ′′ ∈ T . νK ′ and νK ′′ denote the exterior normal vectors of K ′ and K ′′ respectively. Finally,
we denote with he the diameter of an edge (or face) e. The bilinear form σ is indeed well-defined
as is shown as part of the consistency assertion of the following Lemma 4.3.

Lemma 4.3 (Stabilizing bilinear form). The bilinear form σ(·; ·) as defined in (4.14) is symmetric,
positive semi-definit, and consistent, i.e., the exact solution u = (u,m, φ) ∈ X satisfies σ(u; v) = 0
for all v ∈ XN . Moreover there holds the estimate

sup
q∈H1(Ω)\{0}

|〈mN ; ∇q〉Ω|

‖q‖H1(Ω)
. σ(0,mN , 0; 0,mN , 0)

1/2 for all uN = (0,mN , 0) ∈ kerN b.

(4.15)

Remark 4.4. m ∈ L2(Ω)d together with supq∈H1(Ω)\{0}
|〈m ;∇q〉Ω|
‖q‖H1(Ω)

= 0 implies

div (mχΩ) = 0 in D(Rd)′, (4.16)

since for ϕ ∈ D(Rd) we have 〈div (mχΩ) ; ϕ〉Rd = −〈mχΩ ; ∇ϕ〉Rd = −〈m ; ∇ϕ〉Ω.

Proof of Lemma 4.3. Clearly, σ is a symmetric and positive semi-definite bilinear form. To see that
it is well-defined and consistent it is sufficient to note that by Lemma 4.2 the jump terms and the
boundary terms in (4.14) vanish for u = (u,m, φ) ∈ ker b.

To prove the estimate (4.15), we employ the Clément interpolation operator IN : H1(Ω) −→
S1,1(T ) := {u ∈ H1(Ω) : ∀K ∈ T : u|K ∈ P1(K)} of [10]. For uN = (0,mN , 0) ∈ kerN b we have

0 = b(0,mN , 0; q, 0) = 〈mN ; ∇q〉Ω for all q ∈ S1,1
∗ (Ω),

and this equation also holds for all q ∈ S1,1(T ). Observe now for q ∈ H1(Ω)
∣∣〈mN ; ∇(q − INq)〉Ω

∣∣ =
∣∣∣
∑

K∈T

〈mN ; ∇(q − INq)〉K

∣∣∣ =
∣∣∣
∑

K∈T

〈mN · ν ; q − INq〉∂K

∣∣∣

=
∣∣∣

∑

e∈EΩ(T )

〈[mN · ν]e ; q − INq〉e +
∑

e∈T |Γ

〈mN · ν ; q − INq〉e

∣∣∣

Application of standard properties of the Clément interpolant yields the claimed estimate

sup
q∈H1(Ω)\{0}

∣∣〈mN ; ∇q〉Ω
∣∣

‖q‖H1(Ω)
= sup

q∈H1(Ω)\{0}

∣∣〈mN ; ∇(q − INq)〉Ω
∣∣

‖q‖H1(Ω)

.
{ ∑

e∈EΩ(T )

he‖[mN · ν]e‖
2
e

}1/2
+

{ ∑

e∈T |Γ

he‖mN · ν‖2e

}1/2
. σ(0,mN , 0; 0,mN , 0)

1/2.
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We formulate now the stabilized discrete saddle point problem (SPPN
ε,σ).

Problem 4.5 (SPPN
ε,σ). Find uN = (uN ,mN , φN ) ∈ XN and pN = (pN , ζN ) ∈MN such that

aσN (uN ; v) + b(v; pN ) = 〈f ; n〉Ω for all v = (v,n, ψ) ∈ XN , (4.17)

b(uN ; q) = 0 for all q = (q, θ) ∈MN , (4.18)

with aσN (uN ; v) := aN (uN ; v) + σ(uN ; v).

The following theorem states existence and uniqueness of the solution (uN ,mN , φN ; pN , ζN ) of
the stabilized discrete saddle point problem.

Theorem 4.6 (Stability and (unique) solvability of the discrete saddle point problem (SPPN
ε,σ)).

The following statements are true:

(1) The discrete problem (SPPN
ε,σ) has solutions.

(2) The variables uN and φN as well as the Lagrangians pN and ζN are uniquely determined in
(SPPN

ε,σ).

(3) If ϕ∗∗ is given as in Example 1.2 (“uniaxial case”), the discrete problem (SPPN
ε,σ) is uniquely

solvable.

Proof. Existence of solutions (uN ,mN , φN ; pN , ζN ) for (SPPN
ε,σ) as well as uniqueness of the vari-

ables uN and φN and the Lagrange multipliers pN and ζN follow as in the continuous case, cf.
Proposition 3.2. Let (uN,i; pN,i) := (uN,i,mN,i, φN,i; pN,i, ζN,i), for i = 1, 2 be two solutions of

(SPPN
ε,σ). We use the abbreviations eu := uN,2 − uN,1, em := mN,2 − mN,1, eφ := φN,2 − φN,1,

ep := pN,2 − pN,1 and eζ := ζN,2 − ζN,1. From (4.18) we obtain

−〈∇eu − em ; ∇q〉Ω − 〈Weu + (K ′ − 1/2)eφ ; q〉Γ + 〈V eφ − (K − 1/2)eu ; θ〉Γ = 0 (4.19)

for all q = (q, θ) ∈ MN , and hence (eu, em, eφ) ∈ kerN b. The key step consists in showing
(eu, em, eφ) ∈ ker b, since then the same arguments as in the continuous can be employed to show
uniqueness.

Equation (4.17) with v := uN,2 − uN,1 = (eu, em, eφ) yields together with (4.19)

‖∇eu‖
2
Ω + 〈Weu ; eu〉Γ +

1

2
〈(K ′ − 1/2)eφ ; eu〉Γ +

d−1∑

i=1

‖em · zi‖
2
Ω

+ 〈λN,2mN,2 − λN,1mN,1 ; em〉Ω +
1

2
〈(K − 1/2)eu ; eφ〉Γ + σ(uN,2 − uN,1; uN,2 − uN,1) = 0.

(4.20)

Now (4.19) with q = (0, eφ) gives 〈V eφ − (K − 1/2)eu ; eφ〉Γ = 0 and (4.20) simplifies to

‖∇eu‖
2
Ω + 〈Weu ; eu〉Γ + 〈V eφ ; eφ〉Γ +

d−1∑

i=1

‖em · zi‖
2
Ω

+ 〈λN,2mN,2 − λN,1mN,1 ; em〉Ω + σ(uN,2 − uN,1; uN,2 − uN,1) = 0.

(4.21)

In [9, Theorem 3.1], it is shown that (λN,2mN,2 − λN,1mN,1) · em ≥ 0 pointwise almost everywhere
in Ω. The non-negativity of the bilinear form σ together with the semi-ellipticity of W and the

ellipticity of V on H
−1/2
∗ (Γ) leads to eu = 0, em · zi = 0, for i = 1, . . . , d − 1, and eφ = 0. From

estimate (4.15) we have

sup
q∈H1(Ω)\{0}

∣∣〈em ; ∇q〉Ω
∣∣

‖q‖H1(Ω)
. σ(0, em, 0; 0, em, 0)

1/2 = 0, (4.22)
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which implies (eu, em, eφ) = (0, em, 0) ∈ ker b. Furthermore, we deduce div (emχΩ) = 0 in D(Rd)′

and hence emχΩ ∈ H(div;Rd) with div (emχΩ) = 0 in L2(Rd). This observation combined with
em · zi = 0, for i = 1, . . . , d − 1 enables us to prove emχΩ = 0 on Rd by smoothing techniques as
first noted in [23, Satz 2.12]. This yields uniqueness of mN . Finally, the discrete inf-sup condition
of the bilinear form b ensures uniqueness of the Lagrange multiplier pN = (pN , ζN ). �

Remark 4.7. The stabilization terms employed here are closely related to the ideas discussed
in [3, 4, 5]. Whereas the primary concern of these references is to enhance the stability for the
Lagrange multiplier, the bilinear form b here is trivially inf-sup stable. The purpose of our term σ
is to increase stability for the primal variables (u,m, φ).

4.4. A priori error estimation. In this section, we present a full a priori error analysis – in
Theorem 4.8 for general functions ϕ∗∗ and in Theorem 4.9 for the special case of uniaxial materials
given in Example 1.2. In both theorems, the continuous problem is understood to be (SPP ) and
the discrete problem (SPPN

ε,σ).
We start in Theorem 4.8 with a general a priori estimate for arbitrary anisotropy densities ϕ∗∗,

which gives convergence O(h2 + ε) (given sufficient regularity).
Define the seminorm | · |a on X by

|u|2a := ‖∇u‖2Ω + ‖u‖21/2,Γ + ‖φ‖2−1/2,Γ. (4.23)

The seminorm | · |σ is induced by the symmetric positive semi-definite bilinear form σ of (4.14) in
the standard way by

|u|2σ := σ(u; u). (4.24)

Theorem 4.8 (A priori estimate). Let (u; p) = (u,m, φ; p, ζ) and (uN ; pN ) = (uN ,mN , φN ; pN , ζN )
be solutions of Problem 3.1 (SPP ) and Problem 4.5 (SPPN

ε,σ). Fix c2, c3 > 0. The following a

priori estimate holds for all (uT ; pT ) = (uT ,mT , φT ; pT , ζT ) ∈ XN ×MN :

|u− uN |2a + 〈∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN ; m−mN 〉Ω + |u− uN |2σ + ‖p− pN‖2M

≤ Cγ

{
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p− pT ‖

2
T̃
+ ‖p− pT ‖

2
M + ‖ε1/2λmm‖2Ω − ‖ε1/2λNmN‖2Ω

}

+ c2‖∇ϕ
∗∗ ◦m−∇ϕ∗∗ ◦mN‖2Ω + c3‖λmm− λNmN‖2Ω.

(4.25)

The constant Cγ > 0 depends on the domain Ω, the shape regularity of the triangulation T , and
properties of the boundary integral operators V , K, K ′,W . Furthermore, it depends on Cσ > 0
of Lemma 4.12 and the reciprocals of the arbitrary, chosen c2, c3 > 0. The mesh-dependent norm
‖p− pT ‖T̃ is defined by

‖p− pT ‖
2
T̃
:= ‖p− pT ‖

2
T + ‖p − pT ‖

2
1/2,Γ + ‖ζ − ζT ‖

2
−1/2,Γ

:=
∑

e∈E(T )

h−1
e ‖p− pT ‖

2
e + ‖p− pT ‖

2
1/2,Γ + ‖ζ − ζT ‖

2
−1/2,Γ.

(4.26)

Given sufficient regularity, the right-hand side of (4.25) is O(h2 + ε). In the uniaxial case, this
upper bound is improved to O(h2 + ε2) in the following Theorem 4.9. The power of h is optimal
for lowest-order elements, and the power of ε is observed to be optimal in the numerical studies in
Subsection 4.5 ahead.

Theorem 4.9 (A priori estimate for the uniaxial case). Assume in addition to the assumptions of
Theorem 4.8 that

C0‖∇ϕ
∗∗ ◦m1 −∇ϕ∗∗ ◦m2‖

2
Ω ≤ 〈∇ϕ∗∗ ◦m1 −∇ϕ∗∗ ◦m2 ; m1 −m2〉Ω. (4.27)
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Then there holds the a priori estimate

|u− uN |2a + ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖2Ω + ‖λmm− λNmN‖2Ω + |u− uN |2σ + ‖p− pN‖2M

≤
(
C1 + C2‖ε‖L∞(Ω)

){
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p − pT ‖

2
T̃
+ ‖p− pT ‖

2
M

+ ‖λmm−Π(λmm)‖2Ω
}

+ C3‖ε‖L∞(Ω)‖ε
1/2λmm‖2Ω,

(4.28)

where Π : L2(Ω)d ։ S0,0(T )d denotes the L2(Ω)d-orthogonal projection. The constants C1, C2,
C3 > 0 depend on the domain Ω, the shape regularity of the triangulation T , properties of the
boundary integral operators V , K, K ′,W , and on Cσ > 0 of Lemma 4.12.

Corollary 4.10. In addition to the hypotheses of Theorems 4.8 and 4.9, assume for the solution
(u,m, φ, λm, p, ζ) of problem (SPP ) the regularity assertions u, p ∈ H2(Ω) ∩H1

∗ (Ω), m ∈ H1(Ω)d,

λmm ∈ H1(Ω)d and φ, ζ ∈ H
1/2
∗ (Γ). Then, with h := maxK∈T hK , there holds

|u− uN |a + ‖∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN‖Ω + ‖λmm− λNmN‖Ω + |u− uN |σ + ‖p− pN‖M

= O(h+ ‖ε‖L∞(Ω)).
(4.29)

Proof. The result follows from (4.28) with the choices uT = I∗,Γu, pT = I∗,Γp, mT = Πm, φT = Qφ,

and ζT = Qζ. Here, Q : H
1/2
∗ (Γ) ։ S0,0

∗ (τ) denotes the usual L2-orthogonal projection. The

operator I∗,Γ : H1
∗ (Ω) ։ S1,1

∗ (T ) is a quasi interpolation operator, which can be constructed with

techniques introduced in [26]. For example, letting ISZ : H1(Ω) ։ S1,1(T ) be the Scott-Zhang
operator and NΓ be the nodes of the triangulation on Γ with corresponding hat functions ϕz , one
can set

I∗,Γu := ISZu−
∑

z∈NΓ

ϕz
〈u− ISZu;ϕz〉Γ

〈ϕz ; 1〉Γ
.

Since the functions (ϕz)z∈NΓ
form a partition of unity on Γ, this operator has the desired mapping

property I∗,Γ : H1
∗ (Ω) → S1,1

∗ (T ). The local approximation properties of I∗,Γ follow from the

local approximation properties of ISZ . We refer to [1] for an alternative construction with tighter
locality. �

We start by formulating the Galerkin orthogonalities available to us: Subtracting (4.17) from
(3.1) and (4.18) from (3.2) yields together with the consistency of σ the two relations

abl(u− uN ; vN ) + 〈∇ϕ∗∗ ◦m−∇ϕ∗∗ ◦mN ; nN 〉Ω + 〈λmm− λNmN ; nN 〉Ω

+ σ(u− uN ; vN ) + b(vN ; p− pN ) = 0 for all vN = (vN ,nN , ψN ) ∈ XN ,
(4.30)

and

b(u− uN ; qN ) = 0 for all qN = (qN , θN ) ∈MN , (4.31)

where we set

abl(u; v) := 〈∇u ; ∇v〉Ω + 〈Wu+ 1/2(K ′ − 1/2)φ ; v〉Γ +
1

2
〈(K − 1/2)u ; ψ〉Γ. (4.32)

We have the following estimates.

Lemma 4.11. With the definition of abl(·; ·) in (4.32) there holds

|abl(u; v)| ≤ Ca|u|a|v|a for all u ∈ X. (4.33)
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If u ∈ ker b or u ∈ kerN b then

abl(u; u) ≃ |u|2a. (4.34)

Furthermore, there holds

|u|a ≤ Ca,X‖u‖X for all u ∈ X. (4.35)

Proof. Estimates (4.33) and (4.35) are straight forward. We show (4.34). From u ∈ ker b or u ∈

kerN b we get 〈(K−1/2)u ; φ〉Γ = 〈V φ ; φ〉Γ. The ellipticity of W on H
1/2
∗ (Γ) and of V on H

−1/2
∗ (Γ)

now yields

abl(u; u) = ‖∇u‖2Ω + 〈Wu ; u〉Γ + 〈(K − 1/2)u ; φ〉Γ = ‖∇u‖2Ω + 〈Wu ; u〉Γ + 〈V φ ; φ〉Γ

& ‖∇u‖2Ω + ‖u‖21/2,Γ + ‖φ‖2−1/2,Γ.

�

Lemma 4.12. There exists Cσ > 0 depending only on the shape-regularity of T such that

|σ(u; v)| ≤ |u|σ |v|σ. ∀u, v ∈ XN + ker b, (4.36)

|uN |σ ≤ Cσ‖uN‖X ∀uN ∈ XN . (4.37)

Proof. (4.36) is again straight forward. We prove (4.37).

|uN |2σ =
∑

e∈EΩ(T )

he‖[(∇uN −mN ) · ν]e‖
2
e +

∑

e∈T |Γ

he‖(∇uN −mN ) · ν − φN‖2e

=
∑

e∈EΩ(T )

he‖[(∇uN −mN ) · ν]e‖
2
e + 2

∑

e∈T |Γ

he‖(∇uN −mN ) · ν‖2e

+ 2
∑

e∈T |Γ

he‖φN‖2e.

(4.38)

To estimate the first two sums we use transformation to the reference element and norm equivalence
on finite dimensional spaces on the reference element. This yields

∑

e∈EΩ(T )

he‖[(∇uN −mN ) · ν]e‖
2
e + 2

∑

e∈T |Γ

he‖(∇uN −mN ) · ν‖2e ≤ C̃2
σ‖∇uN −mN‖2Ω.

(4.39)

The last term in the sum (4.38) is estimated as he‖φN‖e . ‖φN‖H−1/2(Γ) by by an inverse estimate

(cf. [18, Thm. 3.5], [13, Thm. 4.6], [19, Thm. 3.6]). Together with (4.39) this yields

|uN |2σ ≤ C2
σ

(
‖∇uN‖2Ω + ‖mN‖2Ω + ‖φN‖2

H−1/2(Γ)

)
= C2

σ‖uN‖2X . (4.40)

�

In the proofs of Theorem 4.9 and Theorem 4.8 we will use the following abbreviations:

d := ∇ϕ∗∗ ◦m, dN := ∇ϕ∗∗ ◦mN , (4.41)

ℓ := λmm, ℓN := λNmN . (4.42)

Moreover, we denote with lower case letters constants that can be chosen arbitrarily small, whereas
upper case letters denote constants that are independent of mesh parameters but depend on the
chosen lower case constants.
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Proof of Theorem 4.8. The proof follows an often employed path in saddle point theory. First, a
best approximation result is obtained in the constrained space kerN b. This is done in Steps 1–7.
In the final Step 8, this restriction is lifted.

In Steps 1–7, we consider u⋆T = (u⋆T ,m
⋆
T , φ

⋆
T ) ∈ kerN b ⊂ XN and define d

⋆
T := ∇ϕ∗∗ ◦m⋆

T .
Step 1: Claim: There exists 0 < C1 ≤ 1 such that

S1 :=C1|u
⋆
T − uN |2a + 〈d⋆

T − dN ; m⋆
T −mN 〉Ω + 〈ℓ− ℓN ; m−mN 〉Ω + σ(u⋆T − uN ; u⋆T − uN )

≤ abl(u
⋆
T − u; u⋆T − uN ) + 〈d⋆

T − d ; m⋆
T −mN 〉Ω + 〈ℓ− ℓN ; m−m

⋆
T 〉Ω

+ σ(u⋆T − u; u⋆T − uN )− b(u⋆T − uN ; p− pN ).
(4.43)

Indeed, since u⋆T − uN ∈ kerN b the proof of Lemma 4.11 showed

S1 ≤ abl(u
⋆
T − u; u⋆T − uN ) + abl(u− uN ; u⋆T − uN ) + 〈d⋆

T − d ; m⋆
T −mN 〉Ω

+ 〈d− dN ; m⋆
T −mN 〉Ω + 〈ℓ− ℓN ; m−m

⋆
T 〉Ω + 〈ℓ− ℓN ; m⋆

T −mN 〉Ω

+ σ(u⋆T − u; u⋆T − uN ) + σ(u− uN ; u⋆T − uN ).

(4.44)

The Galerkin orthogonality (4.30) with vN = u⋆T − uN then proves (4.43).
Step 2: Claim: For arbitrary pT ∈ MN and arbitrary cY,1 > 0 the last term in (4.43), can be

estimated as follows:

|b(u⋆T − uN ; p− pN )| ≤ Ca,b

{
cY,1

{
σ(u⋆T − uN ; u⋆T − uN ) + abl(u

⋆
T − uN ; u⋆T − uN )

}

+
1

cY,1
‖p− pT ‖

2
T̃

}
.

(4.45)

To see this, observe that u⋆T , uN ∈ kerN b implies

b(u⋆T − uN ; p− pN ) = b(u⋆T − uN ; p− pT ) + b(u⋆T − uN ; pT − pN )︸ ︷︷ ︸
=0

. (4.46)

In order to estimate b(u⋆T − uN ; p − pT ), let vN := u⋆T − uN ∈ kerN b ⊂ XN and q := p− pT ∈ M .
Then

|b(vN ; q)| ≤ |〈∇vN − nN ; ∇q〉Ω|+ |〈WvN + (K ′ − 1/2)ψN ; q〉Γ|

+ |〈V ψN − (K − 1/2)vN ; θ〉Γ|

≤ |〈∇vN − nN ; ∇q〉Ω|+ ‖WvN‖−1/2,Γ‖q‖1/2,Γ + ‖(K ′ − 1/2)ψN‖−1/2,Γ‖q‖1/2,Γ

+ ‖V ψN‖1/2,Γ‖θ‖−1/2,Γ + ‖(K − 1/2)vN‖1/2,Γ‖θ‖−1/2,Γ.
(4.47)
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We next introduce the bilinear form σ by integrating by parts in the first term and using the
Cauchy-Schwarz inequality twice:

|〈∇vN − nN ; ∇q〉Ω| =
∣∣∣
∑

K∈T

〈∇vN − nN ; ∇q〉K

∣∣∣

=
∣∣∣

∑

e∈EΩ(T )

〈[(∇vN − nN ) · ν]e ; q〉e + 〈(∇vN − nN ) · ν ; q〉Γ

∣∣∣

=
∣∣∣

∑

e∈EΩ(T )

〈[(∇vN − nN ) · ν]e ; q〉e +
∑

e∈EΓ(T )

{
〈(∇vN − nN ) · ν − ψN ; q〉e + 〈ψN ; q〉e

}∣∣∣

≤
{ ∑

e∈EΩ(T )

he‖[(∇vN − nN ) · ν]e‖
2
e

}1/2{ ∑

e∈EΩ(T )

h−1
e ‖q‖2e

}1/2

+
{ ∑

e∈EΓ(T )

he‖(∇vN − nN ) · ν − ψN‖2e

}1/2{ ∑

e∈EΓ(T )

h−1
e ‖q‖2e

}1/2
+ ‖ψN‖−1/2,Γ‖q‖1/2,Γ

≤

[{ ∑

e∈EΩ(T )

he‖[(∇vN − nN ) · ν]e‖
2
e

}1/2

+
{ ∑

e∈EΓ(T )

he‖(∇vN − nN ) · ν − ψN‖2e

}1/2
]{ ∑

e∈E(T )

h−1
e ‖q‖2e

}1/2
+ ‖ψN‖−1/2,Γ‖q‖1/2,Γ

≤ 21/2σ(vN ; vN )1/2
{ ∑

e∈E(T )

h−1
e ‖q‖2e

}1/2

︸ ︷︷ ︸
=‖q‖T

+‖ψN‖−1/2,Γ‖q‖1/2,Γ

= 21/2σ(vN ; vN )1/2‖q‖T + ‖ψN‖−1/2,Γ‖q‖1/2,Γ.
(4.48)

Substituting into (4.47) gives together with a Young inequality and Lemma 4.11 the claimed esti-
mate, namely,

|b(vN ; q)| ≤ Cb

{
σ(vN ; vN )1/2‖q‖T + ‖ψN‖−1/2,Γ‖q‖1/2,Γ + ‖vN‖1/2,Γ‖q‖1/2,Γ

+ ‖ψN‖−1/2,Γ‖q‖1/2,Γ + ‖ψN‖−1/2,Γ‖θ‖−1/2,Γ + ‖vN‖1/2,Γ‖θ‖−1/2,Γ

}

≤ Cb

[
cY,1

{
σ(vN ; vN ) + ‖ψN‖2−1/2,Γ + ‖vN‖21/2,Γ

}
+

1

cY,1

{
‖q‖2T + ‖q‖21/2,Γ + ‖θ‖2−1/2,Γ︸ ︷︷ ︸

=‖q‖2
T̃

}]

≤ Ca,b

{
cY,1

[
σ(vN ; vN ) + abl(vN ; vN )

}
+

1

cY,1
‖q‖2

T̃

]
.

(4.49)

Step 3: Claim: With constants C2, C3, C4, C5, C6 arising from Young inequalities there holds:

C2|u
⋆
T − uN |2a + 〈d⋆

T − dN ; m⋆
T −mN 〉Ω + C3|u

⋆
T − uN |2σ

≤ C4|u
⋆
T − u|2a + 〈d⋆

T − d ; m⋆
T −mN 〉Ω + 〈ℓ− ℓN ; m−m

⋆
T 〉Ω

+ C5|u
⋆
T − u|2σ + C6‖p− pT ‖

2
T̃
+

1

2
‖ε1/2ℓ‖2L2(Ω) −

1

2
‖ε1/2ℓN‖2L2(Ω).

(4.50)
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From Steps 1 and 2 we have

S3 :=C1|u
⋆
T − uN |2a + 〈d⋆

T − dN ; m⋆
T −mN 〉Ω + 〈ℓ− ℓN ; m−mN 〉Ω + |u⋆T − uN |2σ

≤ abl(u
⋆
T − u; u⋆T − uN ) + 〈d⋆

T − d ; m⋆
T −mN 〉Ω

+ 〈ℓ− ℓN ; m−m
⋆
T 〉Ω + σ(u⋆T − u; u⋆T − uN )

+ Ca,b

[
cY,1

{
σ(u⋆T − uN ; u⋆T − uN ) + abl(u

⋆
T − uN ; u⋆T − uN )

}
+

1

cY,1
‖p− pT ‖

2
T̃

]
.

(4.51)

With Lemmas 4.11, 4.12 and the Young inequality we get

abl(u
⋆
T − u; u⋆T − uN ) ≤ Ca|u

⋆
T − u|a|u

⋆
T − uN |a ≤ Ca

{ 1

2cY,2
|u⋆T − u|2a +

cY,2
2

|u⋆T − uN |2a

}
,

abl(u
⋆
T − uN ; u⋆T − uN ) ≤ Ca|u

⋆
T − uN |2a,

σ(u⋆T − u; u⋆T − uN ) ≤ |u⋆T − u|σ|u
⋆
T − uN |σ ≤

1

2cY,3
|u⋆T − u|2σ +

cY,3
2

|u⋆T − uN |2σ,

σ(u⋆T − uN ; u⋆T − uN ) ≤ |u⋆T − uN |2σ,
(4.52)

which leads to

S3 ≤
Ca

2cY,2
|u⋆T − u|2a +

CacY,2
2

|u⋆T − uN |2a + 〈d⋆
T − d ; m⋆

T −mN 〉Ω

+ 〈ℓ− ℓN ; m−m
⋆
T 〉Ω +

1

2cY,3
|u⋆T − u|2σ +

cY,3
2

|u⋆T − uN |2σ

+ Ca,b

[
cY,1

{
|u⋆T − uN |2σ + Ca|u

⋆
T − uN |2a

}
+

1

cY,1
‖p− pT ‖

2
T̃

]
.

(4.53)

We use the bound

1

2
‖ε1/2ℓN‖2L2(Ω) −

1

2
‖ε1/2ℓ‖2L2(Ω) ≤ 〈ℓ− ℓN ; m−mN 〉L2(Ω), (4.54)

of [9, Proof of Thm 4.3] and absorb the terms |u⋆T − uN |2a and |u⋆T − uN |2σ of the right-hand side of
(4.53) in the corresponding terms in S3 by taking cY,1, cY,3 sufficiently small. This yields (4.50).

Step 4: Claim: For any function uT ∈ S1,1
∗ (T ) there holds the estimate

S4 :=
C2

2
|u− uN |2a + 〈d− dN ; m−mN 〉Ω + C3|u

⋆
T − uN |2σ

≤ C7|u
⋆
T − u|2a + 〈d− dN ; m−m

⋆
T 〉Ω + 〈ℓ− ℓN ; m−m

⋆
T 〉Ω

+ C5|u
⋆
T − u|2σ + C6‖p− pT ‖

2
T̃
+

1

2
‖ε1/2ℓ‖2L2(Ω) −

1

2
‖ε1/2ℓN‖2L2(Ω).

(4.55)

First, a triangle inequality and a Young inequality give

C2

2
|u− uN |2a ≤ C2|u− u

⋆
T |

2
a + C2|u

⋆
T − uN |2a. (4.56)

Second, we have the identity

〈d− dN ; m−mN 〉Ω = 〈d− dN ; m−m
⋆
T 〉Ω + 〈d− d

⋆
T ; m⋆

T −mN 〉Ω

+ 〈d⋆
T − dN ; m⋆

T −mN 〉Ω.
(4.57)
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Using these two expressions, we get together with (4.50) the claimed estimate (4.55):

S4 ≤ (C4 + C2)|u
⋆
T − u|2a + 〈d− dN ; m−m

⋆
T 〉Ω + 〈ℓ− ℓN ; m−m

⋆
T 〉Ω

+ C5|u
⋆
T − u|2σ + C6‖p− pT ‖

2
T̃
+

1

2
‖ε1/2ℓ‖2L2(Ω) −

1

2
‖ε1/2ℓN‖2L2(Ω),

(4.58)

if we set C7 := C4 + C2.
Step 5: Claim: For arbitrary c9, c10 > 0 there holds

min

{
1,
C2

2
, C3

}
S4 ≤ |u− uN |2a + 〈d− dN ; m−mN 〉Ω + |u⋆T − uN |2σ

≤ C8

{
|u⋆T − u|2a + ‖m−m

⋆
T ‖

2
Ω + |u⋆T − u|2σ + ‖p− pT ‖

2
T̃

}

+ c9‖d− dN‖2Ω + c10‖ℓ− ℓN‖2Ω + C11

{
‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}
.

(4.59)

Apply first a Cauchy-Schwarz inequality and a Young inequality to get

〈d− dN ; m−m
⋆
T 〉Ω ≤

cY,4
2

‖d− dN‖2Ω +
1

2cY,4
‖m−m

⋆
T ‖

2
Ω

〈ℓ− ℓN ; m−m
⋆
T 〉Ω ≤

cY,5
2

‖ℓ− ℓN‖2Ω +
1

2cY,5
‖m−m

⋆
T ‖

2
Ω.

(4.60)

Next, recall the convexivity of ϕ∗∗ which guarantees 〈d−dN ; m−mN 〉Ω to be non-negative. Hence
the left-hand side cf. (4.58) can be reduced and multiplied with an appropriate constant, so that
the second inequality in (4.59) holds.

Step 6: Claim:

|u− uN |2a + 〈d− dN ; m−mN 〉Ω + |u− uN |2σ

≤ 2C8

{
|u⋆T − u|2a + ‖m−m

⋆
T ‖

2
Ω + ‖p − pT ‖

2
T̃

}
+ 2(C8 + 1)|u⋆T − u|2σ

+ 2c9‖d− dN‖2Ω + 2c10‖ℓ− ℓN‖2Ω + 2C11

{
‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}
.

(4.61)

Add the term |u− u⋆T |
2
σ to both sides of (4.59), use the triangle inequality

1

2
|u− uN |2σ ≤ |u− u

⋆
T |

2
σ +

|u⋆T − uN |2σ and multiply the whole inequality by 2. This shows (4.61).
Step 7: In this step we estimate p− pN . The proof of the inf-sup condition for the bilinear form

b (cf. (3.12)) shows for arbitrary qN = (qN , θN ) ∈MN the validity of

b(vN ; qN )

‖vN‖X
≥ β‖qN‖M (4.62)

for positive β = min{1, cV1 }, if one sets vN = (−qN ,0, θN ). Inserting pN − qN = (pN − qN , ζN − θN )
in place of qN in (4.62) and letting qN still be arbitrary shows with vN = (−(pN − qN ),0, ζN − θN )

b(vN ; pN − qN )

‖vN‖X
≥ β‖pN − qN‖M . (4.63)

Next we split the bilinear form b into two terms and set qN = pT , that is

β‖pN − pT ‖M ≤
b(vN ; pN − pT )

‖vN‖X
=
b(vN ; pN − p) + b(vN ; p− pT )

‖vN‖X
. (4.64)

Note that nN = 0 in the second component of vN . The Galerkin orthogonality (4.30) then yields

b(vN ; pN − p) = abl(u− uN ; vN ) + σ(u− uN ; vN ) (4.65)
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and therefore

β‖pN − pT ‖M ≤
abl(u− uN ; vN ) + σ(u− uN ; vN ) + b(vN ; p− pT )

‖vN‖X

≤
Ca|u− uN |a|vN |a + |u− uN |σ|vN |σ + Cb,2‖p− pT ‖M‖vN‖X

‖vN‖X
.

(4.66)

Due to Lemma 4.11 and Lemma 4.12 we estimate further with C̃ = max{CaCa,X , Cσ, Cb,2}/β

‖pN − pT ‖M ≤ C̃
|u− uN |a‖vN‖X + |u− uN |σ‖vN‖X + ‖p− pT ‖M‖vN‖X

‖vN‖X
(4.67)

≤ C
{
|u− uN |a + |u− uN |σ + ‖p− pT ‖M

}
. (4.68)

A triangle inequality together with a Young inequality yields

‖p− pN‖2M ≤
(
‖p− pT ‖M + ‖pT − pN‖M

)2
≤ C

{
|u− uN |2a + |u− uN |2σ + ‖p− pT ‖

2
M

}
,

(4.69)

with a new constant C. We multiply this last equation with a constant and add it to (4.61).
Choosing this constant sufficiently small to be able to absorb the terms |u − uN |2a and |u − uN |2σ
from the right-hand side, we end up with the new estimate

|u− uN |2a + 〈d− dN ; m−mN 〉Ω + |u− uN |2σ + ‖p− pN‖2M

≤ C12

{
|u⋆T − u|2a + ‖m−m

⋆
T ‖

2
Ω + ‖p− pT ‖

2
T̃
+ |u⋆T − u|2σ + ‖p− pT ‖

2
M

}

+ c13‖d− dN‖2Ω + c14‖ℓ− ℓN‖2Ω + C15

{
‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}
.

(4.70)

Step 8: Step 7 shows that for arbitrary pT ∈MN , we have the best approximation result in the
constrained space kerN b

|u− uN |2a + 〈d− dN ; m−mN 〉Ω + |u− uN |2σ + ‖p− pN‖2M

≤ C12 inf
u∗
T
∈kerN b

{
|u⋆T − u|2a + ‖m−m

⋆
T ‖

2
Ω + |u⋆T − u|2σ

}
+ C12

{
‖p − pT ‖

2
T̃
+ ‖p− pT ‖

2
M

}

+ c13‖d− dN‖2Ω + c14‖ℓ− ℓN‖2Ω + C15

{
‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}
.

(4.71)

To finish the proof, we need to estimate

inf
u∗
T
∈kerN b

{
|u⋆T − u|2a + ‖m−m

⋆
T ‖

2
Ω + |u⋆T − u|2σ

}
. (4.72)

Let uT = (uT ,mT , φT ) ∈ XN be arbitrary but fixed and u = (u,m, φ) be the exact solution of
Problem 3.1 (SPP ). We now construct a correction rN = (rN , sN , τN ) ∈ XN such that uT + rN ∈
kerN b. That is, we have to satisfy

b(rN ; qN ) = b(u− uT ; qN ) for all qN ∈MN . (4.73)

The discrete inf-sup condition ensures solvability of (4.73), i.e., there exists a rN ∈ XN such that

β‖rN‖X ≤ sup
qN∈MN\{0}

b(rN ; qN )

‖qN‖M
≤ sup

qN∈MN\{0}

Cb,2‖u− uT ‖X‖qN‖M
‖qN‖M

= Cb,2‖u− uT ‖X ,

(4.74)
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with the inf-sup constant β = min{1, cV1 }. This result and uT +rN = (uT +rN ,mT +sN , φT +τN ) ∈
kerN b yields together with Lemmas 4.11 and 4.12

inf
u⋆
T
∈kerN b

{
|u− u

⋆
T |

2
a + ‖m−m

⋆
T ‖

2
Ω + |u− u

⋆
T |

2
σ

}

≤ |u− (uT + rN )|2a + ‖m− (mT + sN )‖2Ω + |u− (uT + rN )|2σ

≤ 2
{
|u− uT |

2
a + |rN |2a + ‖m−mT ‖

2
Ω + ‖sN‖2Ω + |u− uT |

2
σ + |rN |2σ

}

≤ 2
{
2C2

a,X‖u− uT ‖
2
X + 2C2

a,X‖rN‖2X + |u− uT |
2
σ + C2

σ‖rN‖2X
}

≤ C
{
‖u− uT ‖

2
X + |u− uT |

2
σ

}
,

with an appropriate constant C. Plugging this into (4.71) leads us to

|u− uN |2a + 〈d− dN ; m−mN 〉Ω + |u− uN |2σ + ‖p− pN‖2M

≤ C16

{
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p− pT ‖

2
T̃
+ ‖p − pT ‖

2
M + ‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}

+ c13‖d− dN‖2Ω + c14‖ℓ− ℓN‖2Ω,
(4.75)

which ends the proof. �

Proof of Theorem 4.9. Step 1: With the additional assumption (4.27) we absorb the term ‖d −
dN‖2Ω on the right-hand side of (4.25) of Theorem 4.8 in the left-hand side:

|u− uN |2a + ‖d− dN‖2Ω + |u− uN |2σ + ‖p− pN‖2M

≤ C1

{
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p− pT ‖

2
T̃
+ ‖p− pT ‖

2
M + ‖ε1/2ℓ‖2Ω − ‖ε1/2ℓN‖2Ω

}

+ c2‖ℓ− ℓN‖2Ω;

(4.76)

here, c2 > 0 is still arbitrary.
Step 2: We claim

|u− uN |2a + ‖d− dN‖2Ω + ‖ℓ− ℓN‖2Ω + |u− uN |2σ + ‖p− pN‖2M

≤ C2

{
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p− pT ‖

2
T̃
+ ‖p− pT ‖

2
M + ‖ε1/2ℓ‖2Ω − ‖ε1/2ℓN‖2Ω

+ ‖ℓ−Πℓ‖2Ω
}
.

(4.77)

Indeed, using the L2(Ω)d-orthogonal projection, the Galerkin orthogonality (4.30) with vN =
(0,Πℓ − ℓN , 0), Lemma 4.12, and the Cauchy-Schwarz inequality, we get

‖Πℓ− ℓN‖2Ω = 〈ℓ− ℓN ; Πℓ− ℓN 〉Ω

= −〈d− dN ; Πℓ− ℓN 〉Ω − σ(u− uN ; vN )− 〈Πℓ− ℓN ; ∇(p− pN )〉Ω.

≤
(
‖d− dN‖Ω + Cσ|u− uN |σ + ‖∇(p − pN )‖Ω

)
‖Πℓ− ℓN‖Ω.

(4.78)

Cancelling the factor ‖Πℓ− ℓN‖Ω on both sides and squaring the inequality gives

‖Πℓ− ℓN‖2Ω ≤ 3C2
σ

{
‖d− dN‖2Ω + |u− uN |2σ + ‖∇(p− pN )‖2M

}
. (4.79)

Using now the triangle inequality ‖ℓ − ℓN‖2Ω ≤ 2‖ℓ − Πℓ‖2Ω + 2‖Πℓ − ℓN‖2Ω together with (4.76)
yields (4.77).

Step 3: In this last step, the claimed estimate (4.28) is proved. The following relation, valid for
all positive constants C, was proven in [23, Lemma 2.32], see also [9]:

C
{
‖ε1/2ℓ‖2L2(Ω) − ‖ε1/2ℓN‖2L2(Ω)

}

≤ C2
{
‖ε‖L∞(Ω)‖ε

1/2
ℓ‖2L2(Ω) + ‖ε‖L∞(Ω)‖ε

1/2
ℓN‖2L2(Ω)

}
+

1

2
‖ℓ− ℓN‖2L2(Ω).

(4.80)
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Plugging this into (4.77) with C = C2 and absorbing the term 1
2‖ℓ− ℓN‖2L2(Ω) gives

|u− uN |2a + ‖d− dN‖2Ω + ‖ℓ− ℓN‖2Ω + |u− uN |2σ + ‖p− pN‖2M

≤ 2C2

{
‖u− uT ‖

2
X + |u− uT |

2
σ + ‖p− pT ‖

2
T̃
+ ‖p− pT ‖

2
M + ‖ℓ−Πℓ‖2Ω

}

+ 2C2
2‖ε‖L∞(Ω)

{
‖ε1/2ℓ‖2Ω + ‖ε1/2ℓN‖2Ω

}
.

(4.81)

Finally, the term ‖ε1/2ℓN‖2Ω can be estimated using (4.77) resulting in the claimed bound (4.28). �

Remark 4.13 (choice of penalty parameter ε). The estimate (4.29) is optimal with respect to
the local mesh size h and suggests the choice ε = O(hα) with α = 1 in order to balance the
upper estimate in (4.29). Numerical experiments (not shown here) reveal that the choice α ∈ (0, 1)
dominates the error in the sense that, for smooth exact solution (u,m), one observes numerically
a convergence behavior O(hα). In the experiment in Sec. 4.5, we choose the T -piecewise constant
penalization function ε = h, where h ∈ L∞(Ω) is defined by h|K := diamK.

4.5. Numerical example. For Ω = (−0.05, 0.05) × (−0.25, 0.25) ⊂ R2 we consider the case of
uniaxial materials discussed in Example 1.2 with easy axis e = [1, 0] and correspondingly z1 =
z = [0, 1]. The exterior applied field f = [0.6, 0] is constant and parallel to e. Up to a scaling,
this set of data coincides with an example already studied in [9]. Fig. 1 shows the isolines of the
magnetic potential uN on the magnetic rod Ω whereas Fig. 2 presents the magnetization mN on
a rather coarse mesh. Fig. 3 indicates the area of the rod Ω, where the penalization λN is active.
The convergence studies in Figs. 4–6 correspond to computations on a sequence of uniformly refined
meshes Tℓ, ℓ = 0, 1, . . . , ℓmax − 1. The error is computed using a reference solution obtained on the
finest mesh Tℓmax. Fig. 4 presents the convergence ‖(m −mN ) · e‖L2(Ω) and ‖(m −mN ) · z‖L2(Ω)

versus the number of elements in Ω. Although our a priori estimates do not provide control over
‖(m−mN )·e‖L2(Ω), we observe good convergence. Fig. 5 shows the convergence of ‖∇(u−uN )‖L2(Ω)

and ‖∇(p − pN )‖L2(Ω) versus the number of elements in Ω. Finally, Fig. 6 shows the performance
for the errors φ− φN and ζ − ζN . We measure the error in the norm ‖ · ‖V induced by the simple
layer operator (see (2.7)) and plot the error versus the number of boundary elements.

Appendix A. Proof of Lemma 2.2

Proof of Lemma 2.2.
• Equations (2.12)–(2.13) are a direct consequence of (2.11), see, e.g., [22, 25, 28, 20].

• Proof of Equation (2.14). Since u ∈ ḂL
1,2

(Ωext) and ∆u = 0 in Ωext the Green identity for an
exterior domain, cf. e.g. [17], simplifies to

〈∇u ; ∇η〉L2(Ωext) = −〈∂ext
ν
u ; η〉Γ for all η ∈ D(Rd). (A.1)

Since D(Rd) ⊆ ḂL
1,2

(Rd) is dense, [14], and each function in ḂL
1,2

(Ωext) can be extended to a

function in ḂL
1,2

(Rd), equation (A.1) even holds for ḂL
1,2

(Ωext). Setting η = u in (A.1) gives (2.14).
• The formulas (2.10) and (2.11) are shown in the following Lemma A.1. �

Lemma A.1. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain and Ωext := Rd \Ω. Then any
u satisfying

−∆u = 0 in Ωext

u|Ω+∩BR
∈ H1(Ωext ∩BR) ∀R > 0 sufficiently large

‖∇u‖L2(Ωext) < ∞ “finite energy”

satisfies the radiation condition (2.10) and the representation formula (2.11).
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Figure 1. Potential uN .
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Figure 2. Magnetization mN .
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Figure 3. Penalization λN .
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Proof. 1. step: We claim that

lim
R→∞

R1/2‖∇u‖L2(∂BR) = 0. (A.2)

To see this, let R be sufficiently large and denote by BR the ball of radius R centered at the origin.
Using the multiplicative trace inequality and a standard scaling argument, we get

‖∇u‖2L2(∂BR) ≤ C
[
R−1‖∇u‖2L2(B2R\BR) + ‖∇u‖L2(B2R\BR)|∇u|H1(B2R\BR)

]
.

Since the components of ∇u are harmonic functions on B3R \ BR/2 (for R sufficiently large), we
get by the Caccioppoli inequality (see, e.g., [30, eqn. (5.3.12)]) the bound |∇u|H1(B2R\BR) ≤

CR−1‖∇u‖L2(B3R\BR/2)
. We therefore conclude ‖∇u‖2L2(∂BR) ≤ CR−1‖∇u‖2L2(B3R\BR/2)

. The as-

sumption ‖∇u‖L2(Ωext) <∞ implies lim
R→∞

‖∇u‖L2(Ωext\BR) = 0, which in turn implies (A.2).

2. step: We claim the existence of a constant u∞ ∈ R such that for x ∈ Ωext we have the following
representation formula

u(x) =

∫

∂Ω
G(x, y)∂ext

ν
u dsy −

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy + u∞. (A.3)

To see the representation (A.3), fix x ∈ Ωext, assume x ∈ BR, and compute with the representation
formula for the “annulus” BR \ Ω:

u(x) =

∫

∂Ω
G(x, y)∂ext

ν
u dsy −

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy

−

∫

∂BR

G(x, y)∂
ν(y)u dsy +

∫

∂BR

∂
ν(y)G(x, y)u dsy ,

where ∂ν denote the (outer) normal derivative. Let uR =
1

|∂BR|

∫

∂BR

u dsy be the average of u

on ∂BR. Since x ∈ BR, we have by the jump relations satisfied by the double layer potential∫
∂BR

∂
ν(y)G(x, y) dsy = −1. Hence, we can compute

∫

∂BR

∂
ν(y)G(x, y)u dsy =

∫

∂BR

∂
ν(y)G(x, y)(u − uR) dsy − uR

so that we obtain the representation

u(x) =

∫

∂Ω
G(x, y)∂ext

ν
u dsy −

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy − (A.4)

∫

∂BR

G(x, y)∂
ν(y)u dsy +

∫

∂BR

∂
ν(y)G(x, y)(u − uR) dsy − uR.

Let us first consider the case d = 3. By the decay properties of G and ∂
ν(y)G:

∣∣∣∣
∫

∂BR

G(x, y)∂
ν(y)u dsy

∣∣∣∣ ≤ C(x)R−(d−2)R(d−1)/2‖∇u‖L2(∂BR)

≤ C(x)R−(d−2)Rd/2−1R1/2‖∇u‖L2(∂BR), (A.5)
∣∣∣∣
∫

∂BR

∂
ν(y)G(x, y)(u − uR) dsy

∣∣∣∣ ≤ C(x)R−(d−1)R(d−1)/2‖u− uR‖L2(∂BR)

≤ C(x)R−(d−1)R(d−1)/2R‖∇u‖L2(∂BR); (A.6)

in view of (A.2), we conclude that, as R→ ∞, the third and fourth integral in (A.4) tends to zero.
The first two integrals are (for fixed x) constant as is the left-hand side u(x). This shows that
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limR→∞ uR exists:

u∞ := − lim
R→∞

uR = u(x)−

∫

∂Ω
G(x, y)∂ext

ν
u dsy +

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy.

This is the desired representation formula.
We now consider the case d = 2, which requires a more delicate reasoning due to the logarith-

mic growth of the fundamental solution G. We proceed by using pointwise estimates for ∇u(x).
Differentiating (A.4) yields

∇xu(x) = ∇x

∫

∂Ω
G(x, y)∂ext

ν
u dsy −∇x

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy −

∫

∂BR

∇xG(x, y)∂ν(y)u dsy +

∫

∂BR

∇x∂ν(y)G(x, y)(u − uR) dsy.

The explicit formula for G yields for a C > 0 that depends on γextu, ∂ext
ν
u, and ∂Ω

∣∣∣∣∇x

∫

∂Ω
G(x, y)∂ext

ν
u dsy

∣∣∣∣ ≤ C|x|−(d−1),

∣∣∣∣∇x

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy

∣∣∣∣ ≤ C|x|−d.

Furthermore, we get for fixed x with the Cauchy-Schwarz inequality and (A.2)

∣∣∣∣∇x

∫

∂BR

∂
ν(y)G(x, y)(u − uR) dsy

∣∣∣∣ ≤ ‖∇x∇yG(x, ·)‖L2(∂BR)‖u− uR‖L2(∂BR)

≤ C(x)R−dR(d−1)/2R‖∇u‖L2(∂BR) → 0 as R→ ∞,
∣∣∣∣∇x

∫

∂BR

G(x, y)∂
ν(y)u dsy

∣∣∣∣ ≤ ‖∇xG(x, ·)‖L2(∂BR)‖∇u‖L2(∂BR)

≤ C(x)R−(d−1)R(d−1)/2‖∇u‖L2(∂BR) → 0 as R→ ∞

The above developments show two things, namely, a representation formula for ∇u and an estimate:

∇u(x) = ∇x

∫

∂Ω
G(x, y)∂ext

ν
u dsy −∇x

∫

∂Ω
∂ext
ν(y)G(x, y)γ

extu dsy, (A.7)

|∇u(x)| ≤ Cu|x|
−(d−1) as x→ ∞. (A.8)

The representation of the gradient (A.7) and an expansion of G yield for large x the asymptotic
expression

∇u(x) = c
x

|x|2

∫

∂Ω
∂ext
ν
u dsy +O(|x|−2) as |x| → ∞,

where c 6= 0. Since we assume that ∇u ∈ L2(Ωext), we conclude

∫

∂Ω
∂ext
ν
u dsy = 0. (A.9)

This implies that we can sharpen the estimate (A.8) to

|∇u(x)| ≤ C|x|−d, |x| → ∞. (A.10)
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This sharper bound can be fed back into (A.4): the third and fourth integral can now be estimated
by

∣∣∣∣
∫

∂BR

G(x, y)∂
ν(y)u dsy

∣∣∣∣ ≤ C(x) lnRR(d−1)/2‖∇u‖L2(∂BR),

≤ C(x) lnRRd−1R−d

∣∣∣∣
∫

∂BR

∂
ν(y)G(x, y)(u − uR) dsy

∣∣∣∣ ≤ C(x)R−(d−1)R(d−1)/2‖u− uR‖L2(∂BR)

≤ C(x)R−(d−1)Rd−1RR−d.

These two terms tend to zero as R→ ∞. Therefore, as in the case d = 3, we obtain that limR→∞ uR
exists and conclude the argument in this case in exactly the same manner as in the case d = 3.

3. step: It remains to show u = u∞ + O(1/r). For the case d = 3, this follows directly from
the representation formula (A.3) and the decay properties of the potentials. For the case d = 2, it
follows from the representation formula (A.3) and the addition properties

∫
∂Ω ∂

ext
ν
u dsy = 0, which

we proved in (A.9). �
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