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On the Convergence of Filon Quadrature

J.M. Melenk

Institute for Analysis and Scientific Computing, Vienna University of Technology
Wiedner Hauptstrasse 8–10, A-1040 Vienna

Abstract

We analyze the convergence behavior of Filon-type quadrature rules by making ex-
plicit the dependence on both k, the parameter that controls the oscillatory behav-
ior of the integrand, and n, the number of function evaluations. We provide explicit
conditions on the domain of analyticity of the integrand to ensure convergence for
n → ∞.

Key words: highly oscillatory integrals, Filon quadrature

1 Introduction and Filon-type quadrature

For a given k ∈ R with |k| large, we seek to evaluate

Q(f) :=
∫ 1

−1
eikg(x)f(x) dx. (1)

Here, f and g are assumed to satisfy:

Assumption 1.1 Gg ⊂ Gf ⊂ C are open neighborhoods of [−1, 1]. The func-
tion f ∈ L∞(Gf) is holomorphic on Gf , the function g is real-valued on [−1, 1],
g′ 6= 0 on [−1, 1], g and 1/g′ are holomorphic on Gg, and 1/g′ ∈ L∞(Gg).

Filon-type quadrature (see [4–6]) assumes that integrals
∫ 1
−1 eikg(x)π(x) dx can

be evaluated for polynomials π. Hence, a quadrature rule for the integral
(1) can be obtained by replacing the integrand x 7→ eikg(x)f(x) with x 7→
eikg(x)I∆f(x), where I∆f is a polynomial (Hermite-)interpolant of f ; that is,
we obtain the Filon-type quadrature rule

Q∆(f) :=
∫ 1

−1
eikg(x)I∆f(x) dx. (2)

Throughout this note, we will associate with a sequence ∆ = (z0, . . . , zn)
of n + 1 nodes the (Hermite-)interpolation operator I∆ that maps f to the
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polynomial I∆f ∈ Pn of degree n that interpolates in the n + 1 nodes; the
implicit understanding of Hermite interpolation is that if a nodes ξ appears
m + 1 times in ∆, then (f − I∆f)(j)(ξ) = 0 for j = 0, . . . , m.

For a sequence (∆n)∞n=0 of interpolation points ∆n = (z
(n)
0 , . . . , z(n)

n ) we can
study the convergence behavior of Q(f) − Q∆n(f) as a function of k and n.
This analysis is the purpose of the present note.

It is well-known that for large |k|, the most important contribution to the
integral comes from the endpoints. Hence, it is sensible to include as much
endpoint information in the choice of the interpolant I∆f as possible. The
extreme case is to take I∆ as the interpolation operator of Hermite type as-
sociated with the endpoints ±1; that is, ∆ = ∆2p−1

H = (−1, . . . ,−1, 1, . . . , 1),
where each of the nodes ±1 appears p times. The Filon quadrature Q∆2p−1

H
,

which we call “pure Filon quadrature” in this note, is shown to satisfy

|Q(f) − Q∆2p−1
H

(f)| ≤ C min

{
q,

γ(p + 1)

|k|

}p+1

(3)

for some constants C, q, γ > 0 independent of k and p (combine Thms. 2.1,
2.2). The parameter q is in general ≥ 1 so that convergence as p → ∞ is
not guaranteed—however, good approximations can be expected if |k| is large
compared to p. Theorem 2.2 gives explicit conditions on the domains of ana-
lyticity of f and g to ensure q ∈ (0, 1), namely:

Assumption 1.2 In addition to Assumption 1.1, the domain Gf satisfies

Gf ⊃ W H
r for some r > 1, W H

r := {z ∈ C | |z2 − 1| < r2}. (4)

If Assumption 1.2 is satisfied, then q ∈ (0, 1) in (3) so that the pure Filon
quadrature is a convergent (as p → ∞) method whose preasymptotic behavior
improves as |k| becomes large.

Assumption 1.2 is seen in numerical examples (see Section 4) to be neces-
sary for convergence of the pure Filon quadrature. Section 3.1 shows that
the limitations imposed by Assumption 1.2 can be overcome with composite
quadrature rules; an alternative, discussed in Section 3.2, is to insert additional
quadrature points in the interior of the integration domain. Section 2.3 finally
shows that by suitably clustering the quadrature points near the endpoints,
Filon-type quadrature rules can be designed that do not require derivative
information but still lead to convergent methods under Assumption 1.2.

Concluding this introduction, we mention that our analysis ignores several
important aspects: Firstly, we do not discuss the issue of numerical stability;
in particular, our numerical experiments in Section 4 are done in Maple with
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high precision arithmetic. Secondly, we skirt the so-called moment problem,
i.e., the question of how to evaluate integrals

∫ 1
−1 eikg(x)π(x) dx for polynomials

π; one option is to use the classical method of steepest descent coupled with
Gauß-Laguerre quadrature (see, e.g., [3] for a recent account of this procedure).
Concerning notation: Bδ(z) ⊂ C denotes an (open) ball of radius δ centered
at z; for sets A ⊂ C, we set Bδ(A) := ∪z∈ABδ(z).

1.1 Reduction to interpolation error analysis

The simplest quadrature error estimate is

|Q(f)−Q∆(f)| = |Q(f−I∆f)| ≤ ‖f−I∆f‖L1(−1,1) ≤ 2‖f−I∆f‖L∞(−1,1). (5)

Integration by parts yields sharper bounds in terms of k:

Lemma 1.3 Let Assumption 1.1 be valid. Set γg := ‖1/g′‖L∞(Gg). Let ∆ =
(z0, . . . , zn) ⊂ [−1, 1] be given. Let J0 ∈ N0 be such that (f − I∆f)(j)(±1) = 0
for j = 0, . . . , J0 − 1. Then, for every J ∈ N0 and 0 < δ ≤ dist({±1}, ∂Gg)
and 0 < d ≤ dist([−1, 1], ∂Gg):

|Q(f) − Q∆(f)| ≤
γg

|k|
J−1∑

j=J0

(
jγg

|k|δ

)j

‖f − I∆f‖L∞(Bδ({±1})) +

(
Jγg

d|k|

)J

‖f − I∆f‖L∞(Bd([−1,1])).

Proof: Let η0 := f − I∆f and define the sequence (ηj)
∞
j=0 of holomorphic

functions by the recursion

ηj+1 =

(
1

g′
ηj

)′

, j = 0, 1, . . . , (6)

Integrating Q(f)−Q∆(f) = Q(f − I∆f) = Q(η0) by parts J ∈ N0 times gives

Q(η0) =
1

ik

J−1∑

j=0

(−1

ik

)j

eikg ηj

g′

∣∣∣∣∣

1

−1

+
(−1

ik

)J ∫ 1

−1
eikg(x)ηJ(x) dx. (7)

The result now follows from Lemma 1.4 applied to η0 = f − I∆f . 2

Lemma 1.4 Let G ⊂ C be open and g, η0 be holomorphic on G. Set γg :=
‖1/g′‖L∞(G). For δ > 0 define Gδ := {z ∈ G | dist(z, ∂G) > δ}. Starting from
the function η0, define the functions ηj, j = 1, . . . recursively by (6). Then:

‖ηj‖L∞(Gδ) ≤
(

γgj

δ

)j

‖η0‖L∞(G), j = 0, 1, . . . . (8)
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Here, we employ the convention 00 = 1. If additionally η(j)(z0) = 0 for j =
0, . . . , p for a fixed z0 ∈ G, then ηj(z0) = 0 for j = 0, . . . , p.

Proof: We proceed by induction on j. The statement is true for j = 0 by
definition. Assuming it to be true for some j ∈ N0 and all δ > 0, we get for
every x ∈ Gδ and every 0 < ε < δ by Cauchy’s integral representation formula

|ηj+1(x)|=
∣∣∣∣∣

1

2πi

∫

∂Bε(x)

ηj(t)

g′(t)(t − x)2
dt

∣∣∣∣∣ ≤
1

ε
‖1/g′‖L∞(G)‖ηj‖L∞(Gδ−ε) (9)

≤ γg

ε

(
γgj

δ − ε

)j

‖η0‖L∞(G). (10)

If j = 0, we let ε → δ in (9) to see that (8) is true for j = 1. For j ≥ 1, we
select ε := δ 1

j+1
< δ to get from (10)

|ηj+1(x)| ≤
(

γg(j + 1)

δ

)j+1

‖η0‖L∞(G).

Noting that x ∈ Gδ is arbitrary, we can conclude the induction step. Finally,
if η0 and its derivatives up to order p vanish at z0, then ‖η0‖L∞(Br(z0)) ≤ Crp+1

for all sufficiently small r > 0. Taking G = Br(z0) and δ = r/2 and letting
r → 0, the bound (8) then implies ηj(z0) = 0 for j = 0, . . . , p. 2

1.2 Polynomial interpolation

The following result is classical in polynomial interpolation of holomorphic
functions and can be found, for example, in [1, Chap. IV]:

Proposition 1.5 [Hermite] Let f ∈ L∞(D(f)) be holomorphic on the domain
D(f). Let ∆ = (z0, . . . , zn) and set ω∆(z) :=

∏n
i=0(z − zi). Then for every z ∈

D(f) and every simple, closed Jordan curve C ⊂ D(f) with {z, z0, . . . , zn} ∈
Int(C) ⊂ D(f) there holds

f(z) − I∆f(z) =
1

2πi

∫

t∈C

ω∆(z)

ω∆(t)

f(t)

t − z
dt. (11)

Furthermore, for every compact K ⊂ D(f) there exist C, γ > 0 depending
solely on K and D(f) such that if ∆ ⊂ K then

|f(z) − I∆f(z)| ≤ C|ω∆(z)|γn+1‖f‖L∞(D(f)) ∀z ∈ K. (12)
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Proof: The representation (11) is taken from [1, Chap. IV]; to see (12), select
a Jordan curve C ⊂ D(f) with K ⊂ Int(C). Then, dist(C, ∆) ≥ dist(C, K) > 0.
Hence, |ω∆(t)| ≥ C dist(C, K)n+1, and (12) follows from (11). 2

Of particular interest here is Hermite interpolation in the endpoints given by

∆2p−1
H := (−1, . . . ,−1︸ ︷︷ ︸

p times

, 1, . . . , 1︸ ︷︷ ︸
p times

). (13)

The Hermite interpolation operator I∆2p−1
H

: Cp−1([−1, 1]) → P2p−1 is charac-

terized by the conditions

f (j)(±1) = (I∆2p−1
H

f)(j)(±1) j = 0, . . . , p − 1. (14)

Lemma 1.6 below will express the approximation properties of I∆2p−1
H

in terms

of the functions ωH
2p, ωH , and the sets W H

r :

ωH
2p(z) = (z + 1)p(z − 1)p = (z2 − 1)p, ωH(z) := |z2 − 1|1/2, (15)

W H
r = {z ∈ C |ωH(z) =

√
|z2 − 1| < r}. (16)

The sets W H
r are nested: clo(W H

r′ ) ⊂ W H
r for r′ < r. We note that the interval

[−1, 1] is only contained in the sets W H
r for r > 1. Then, however, already the

interval [−
√

2,
√

2] is contained in W H
r . The error representation (11) gives us:

Lemma 1.6 Let f be holomorphic on the domain D(f), and let r > 1 be
such that clo(W H

r ) ⊂ D(f). Then for every 0 < r′ < r there exists C > 0
(depending only on r, r′) such that for every δ with Bδ({±1}) ⊂ W H

r′ :

‖f − I∆2p−1
H

f‖L∞(W H
r′

) ≤C

(
r′

r

)2p

‖f‖L∞(W H
r ) ∀p ∈ N0,

|(f − I∆2p−1
H

f)(z)| ≤C

(
δ(2 + δ)

r2

)p

‖f‖L∞(W H
r ), ∀z ∈ Bδ({±1}).

A perturbation argument allows us to infer from Lemma 1.6 error bounds for
interpolation that clusters points near the endpoints:

Lemma 1.7 Let 1 < r′ < r and q ∈ ((r′/r)2, 1). Then there exist constants
δ0, C, γ > 0, which depend only on r, r′, q, such that the following is true:
For any δ ∈ (0, δ0] and ∆2p−1 with 2p points satisfying

∆2p−1 has exactly p points in Bδ(−1) and exactly points p in Bδ(1) (17)
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the interpolation error f − I∆f satisfies

‖f − I∆f‖L∞(W H
r′

) ≤Cqp‖f‖L∞(W H
r ), (18)

|(f − I∆f)(z)| ≤ (δγ)p‖f‖L∞(W H
r ) ∀z ∈ Bδ({±1}). (19)

Proof: Let zi, i = 0, . . . , p − 1 be the points of ∆2p−1 in Bδ(−1) and Let z̃i,
i = 0, . . . , p − 1 be the points of ∆2p−1 in Bδ(1). We then write for z 6= ±1:

ω∆2p−1(z)=
p−1∏

i=0

(z−zi)
p−1∏

i=0

(z−z̃i) = (z2−1)p
p−1∏

i=0

(
1 +

−1 − zi

z + 1

) p−1∏

i=0

(
1 +

1 − z̃i

z − 1

)
.

Hence, we can find γ > 0 depending only on r, r′ such that for any p ∈ N0

(1 − γδ)2p|ωH
2p(z)| ≤ |ω∆2p−1(z)| ≤ (1 + γδ)2p|ωH

2p(z)| ∀z ∈ W H
r \ W H

r′ . (20)

Choosing δ sufficiently small, we can make |ω∆2p−1(z)/ωH
2p(z)|1/(2p) arbitrarily

close to 1 uniformly in z ∈ W H
r \ W H

r′ . By the maximum modulus principle
for holomorphic functions (18) is shown once |f(z)− I∆f(z)| can be bounded
by the right-hand side of (18) for z ∈ ∂W H

r′ . However, this follows from (15),
(20) and (11) with C = ∂W H

r . For (19), we insert into the error formula (11)
the bound |ω∆2p−1(z)| ≤ (2δ)p(2 + 2δ)p together with (20) and (15). 2

2 Quadrature error analysis

2.1 k-asymptotics

Theorem 2.1 (k-asymptotics) Let Assumption 1.1 be valid and let [−1, 1] ⊂
K ⊂ Gg be compact. Set γg := ‖1/g′‖L∞(Gg). Fix δ0 < min{1, dist({±1}, ∂Gg)}.
Then there exist constants C, γ > 0 that depend solely on K, dist(K, ∂Gg) > 0,
and δ0 such that for arbitrary interpolation points ∆ = (z0, . . . , zn) with ∆ ⊂ K
the following holds:

(i) Let p ∈ N0 be such that (f − I∆f)(j)(±1) = 0 for 0 ≤ j ≤ p − 1. Then

|Q(f) − Q∆(f)| ≤ Cγn+1 min




1,

(
γg(p + 1)

|k|

)p+1



 ‖f‖L∞(Gg).

(ii) For δ > 0 such that δ/|k| ≤ δ0 denote by p−1,δ := card{i | 0 ≤ i ≤ n, zi ∈
Bδ/|k|(−1)} and p1,δ := card{i | 0 ≤ i ≤ n, zi ∈ Bδ/|k|(1)} the number of
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interpolation points in the δ/|k|-neighborhoods of −1 and 1, respectively.
Set pδ := min{p−1,δ, p1,δ}. Then

|Q(f) − Q∆(f)| ≤ Cγn+1 γg

|k| min

{
1,

(
δ + γg(pδ + 1)

|k|

)pδ
}
‖f‖L∞(Gg).

Proof: (5) together with (12) gives |Q(f) − Q∆(f)| ≤ Cγn+1‖f‖L∞(Gg). To
complete the proof of (i), we apply Lemma 1.3 with J0 = p, J = p+1, δ = d =
1/2 dist([−1, 1], ∂Gg) and again (12) (with the compact set clo(Bd([−1, 1])).

To see (ii), let K ′ ⊂ Gg be compact such that Bδ0({±1}) ∪ Bd([−1, 1]) ⊂ K ′

for some 0 < d < 1/2. (12) provides a constant (again denoted γ) such that
for z ∈ Bδ/|k|({±1}) we have |(f − I∆f)(z)| ≤ C(2δ/|k|)pδγn+1‖f‖L∞(Gg) and
‖f − I∆f‖L∞(K ′) ≤ Cγn+1‖f‖L∞(Gg). Lemma 1.3 with J0 = 0, J = 1 gives

E := |Q(f) − Q∆(f)| ≤ Cγn+1 γg

|k|‖f‖L∞(Gg).

This is the first bound. Lemma 1.3 with J0 = 0 and J = pδ + 1 gives

E ≤Cγn+1‖f‖L∞(Gg)


 γg

|k|
pδ∑

j=0

|k|−j

(
γgj

δ/|k|

)j (
2δ

|k|

)pδ

+

(
(pδ + 1)γg

d|k|

)pδ+1



≤Cγn+1 γg

|k|

(
γg

|k|

)pδ

‖f‖L∞(Gg)




pδ∑

j=0

(
γgj

δ

)j
(

2δ

γg

)pδ

+
(

pδ + 1

d

)pδ+1

 .

The convexity of the function j 7→ (jγg/δ)
j(2δ/γg)

pδ then gives us

E ≤ Cγn+1 γg

|k|

(
γg

|k|

)pδ

‖f‖L∞(Gg)

×
(

(pδ + 1) max

{(
2δ

γg

)pδ

, (2pδ)
pδ

}
+
(

pδ + 1

d

)pδ+1
)

≤ Cγn+1(pδ + 1)
γg

|k|

(
γg

|k|

)pδ

‖f‖L∞(Gg)

(
max{2δ

γg
,
pδ + 1

d
, 2pδ}

)pδ

.

Noting pδ ≤ n + 1 and adjusting the constant γ gives the desired bound. 2

2.2 Convergent Filon quadrature

As Theorem 2.1 shows, it is advantageous to cluster interpolation points near
the endpoints ±1 for large |k|. Convergence (as n → ∞) of Filon quadrature
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that is based on such interpolation point distribution can only be expected
under suitable conditions on the size of the domain of analyticity of f . The
following theorem shows that in the case of pure Filon quadrature the domain
of analyticity Gf of f should contain W H

1 :

Theorem 2.2 (pure Filon quadrature) Let ∆2p−1
H be given by (13). Let

Assumption 1.2 be valid. Set γg := ‖1/g′‖L∞(Gg). Then there exist C, γ > 0
(depending only on r and dist([−1, 1], ∂Gg)) such that

|Q(f) − Q∆2p−1
H

(f)| ≤ C

(
min

{
r−2, γ

γg(p + 1)

|k|

})p+1

‖f‖L∞(W H
r ).

Proof: (5) and Lemma 1.6 with r′ = 1 (note: [−1, 1] ⊂ clo(W H
1 )) give the

error bound |Q(f) − Q∆2p−1
H

(f)| ≤ Cr−2p‖f‖L∞(W H
r ). Adjusting the constant

by the factor r2 gives the first estimate. For the second one, select 0 < d ≤
dist([−1, 1], ∂Gg) such that Bd([−1, 1]) ⊂ W H

r′ for some r′ < r (e.g., r′ =
(1 + r)/2) and apply Lemma 1.6 to Lemma 1.3 with J0 = p, J = p + 1. 2

2.3 Derivative-free Filon quadrature

Quadrature formulas that avoid knowledge of derivatives are of interest. [4]
proposes to cluster the interpolation points near the endpoints ±1. As in
the case of the pure Filon quadrature, Assumption 1.2 is the key to ensure
convergence as n → ∞:

Theorem 2.3 Let Assumption 1.2 be valid. Fix q ∈ (1/r2, 1). Set γg :=
‖1/g′‖L∞(Gg). Then there exist δ0, C, γ > 0 (all depending only on r, q,
dist([−1, 1], ∂Gg)) such that for any δ with δ/|k| ≤ δ0 and any ∆2p−1 satisfying

∆2p−1 has exactly p points in Bδ/|k|(−1) and exactly p points in Bδ/|k|(1) (21)

the corresponding Filon quadrature Q∆2p−1 satisfies

|Q(f) − Q∆2p−1(f)| ≤ C
γg

|k| min

{
q, γ

δ + γg(p + 1)

|k|

}p

‖f‖L∞(W H
r ).

Proof: The proof follows from the arguments given in the proof of Theorem 2.1
and an appeal to Lemma 1.7. 2

The following point distribution guarantees a smooth transition from an ex-
treme clustering near the endpoints ±1 to the asymptotic distribution that
essentially coincides with the Chebyshev points:

8



∆2p−1
C := (z0, . . . , zp−1,−zp−1,−zp−2, . . . ,−z0), (22a)

zi = cos θi, θi := iδC , δC :=
π

2
min

{
λ

|k| ,
1

p − 1/2

}
; (22b)

here λ > 0 is a user-chosen parameter. The Filon quadrature based on ∆2p−1
C

converges under the same conditions on f and g as the pure Filon quadrature:

Theorem 2.4 Let Assumption 1.2 be valid. Then there exist q ∈ (0, 1), C,
γ > 0, and an open neighborhood U of [−1, 1] (depending only on r and
dist([−1, 1], ∂Gg)) such that f − I∆2p−1

C
f with ∆2p−1

C given by (22) satisfies

‖f − I∆2p−1
C

f‖L∞(U) ≤ Cqp‖f‖L∞(W H
r ) ∀p ∈ N0. (23)

Upon setting γg := ‖1/g′‖L∞(Gg), the Filon quadrature based on ∆2p−1
C satisfies

|Q(f) − Q∆2p−1
C

(f)| ≤ C
γg

|k| min

{
q, γ

δCp|k| + γg(p + 1)

|k|

}p

‖f‖L∞(Gf ). (24)

Proof: See Appendix A. The result shows that the parameter λ should be
chosen proportional to γg. The constants C, q, γ are independent of λ. 2

3 Integrands with small domain of analyticity

Theorem 2.2 shows that the pure Filon quadrature converges as n → ∞ pro-
vided the domain of analyticity Gf is sufficiently large—the numerical exper-
iments in Section 4 indicate sharpness of the result. Theorem 2.4 shows that
convergent derivative-free quadrature rules can be devised under the same reg-
ularity assumptions. As pointed out above, the condition [−1, 1] ⊂ W H

r is only
satisfied for r > 1, in which case already [−

√
2,
√

2] ⊂ W H
r . Thus, the domain

of analyticity of f and g cannot be an arbitrary open neighborhood of [−1, 1].
We now discuss two options to create convergent Filon-type quadrature for
integrands f whose domain of analyticity is just an open neighborhood of
[−1, 1]: In Section 3.1, we present composite Filon-type quadratures, and in
Section 3.2 we insert additional quadrature points in the interval [−1, 1].

3.1 Composite Filon-type quadratures

Assumption 3.1 Qref
k,p (f, g) is a quadrature rule for integration on [−1, 1]

such that for every f , g satisfying Assumption 1.2 there exist constants C,

9



γ > 0, q ∈ (0, 1) (all depending only on r > 1 and dist([−1, 1], ∂Gg)) such
that, upon setting γg := ‖1/g′‖L∞(Gg), there holds

|Q(f) − Qref
k,p (f, g)| ≤ C min

{
q, γ

γg(p + 1)

|k|

}p+1

‖f‖L∞(Gf ) ∀p ∈ N0. (25)

Assumption 3.1 is satisfied in the settings of Theorems 2.2 and 2.4 (if the
parameter λ is chosen proportional to γg). A composite quadrature rule is
obtained in the usual way: For a partition T of [−1, 1] into elements K of
size hK and affine bijections FK : [−1, 1] → K the composite quadrature rule
QT ,k,p is defined as

QT ,k,p(f, g) :=
∑

K∈T

hK

2
Qref

k,p (f |K ◦ FK , g|K ◦ FK).

Theorem 3.2 Let Qref
k,p satisfy Assumption 3.1. Let f , g satisfy Assump-

tion 1.1. Set γg := ‖1/g′‖L∞(Gg). Assume that T satisfies, for some r > 1,

F−1
K (Gf) ⊃ W H

r ∀K ∈ T . (26)

Then, there exist constant C, γ > 0 depending only on the constants appearing
in Assumption 3.1 and dist([−1, 1], ∂Gg) such that

|Q(f) − QT ,k,p(f, g)| ≤ C
∑

K∈T

hK min

{
q, γ

γg(p + 1)

hK |k|

}p+1

‖f‖L∞(Gf ). (27)

Proof: We observe that (g|K ◦ FK)′ = hK

2
g′ ◦ FK . Hence, the constants γg

appearing in (25) is adjusted by a factor 2/hK , which gives the claim. 2

Geometric considerations give an easy sufficient condition for (26) to be met:
Denoting mK ∈ K the mid point of the element K, then (26) is fulfilled if

clo(B√
2

2
hK

(mK)) ⊂ Gf ∀K ∈ T . (28)

3.2 Stabilized Filon-type quadratures

The composite quadrature that satisfies (26) can be viewed as inserting addi-
tional quadrature points in the interior of the integration domain. A similar
effect can be achieved by combining Hermite interpolation with interpolation
in, for example, the Gauß points. To fix ideas, denote by ∆n

G the n + 1 Gauß
points and define, for a parameter m ∈ N0 to be chosen, the stabilized rule

10



with points ∆mp+2p
S := ∆mp

G ∪ ∆2p−1
H . That is, we use mp + 2p + 1 evaluations

of f or its derivatives in the quadrature. The quadrature error then satisfies:

Theorem 3.3 (stabilized Filon-type quadrature) Let Assumption 1.1 be
valid. Set γg := ‖1/g′‖L∞(Gg). Then there exist constants C, γ > 0, q ∈ (0, 1),
and m ∈ N0 depending only on Gf and Gg such that

|Q(f) − Q∆mp+2p
S

(f)| ≤ C

(
min

{
q, γ

γg(p + 1)

|k|

})p+1

‖f‖L∞(Gf ).

We note that the number of evaluations of f and its derivatives is (2+m)p+1.

Proof: Proceed as in the proof of Theorem 2.2. The key observation is that
the asymptotic distribution of the Gauß points is known, [1, Thm. 12.4.5].

Specifically, for the Gauß points z
(n)
i , i = 0, . . . , n and ωG

n+1(z) :=
∏n

i=0(z−z
(n)
i )

we have limn→∞ |ωG
n+1(z)|1/(n+1) = 1

2
ρ(z); here, ρ(z) > 1 is determined by the

condition z ∈ ∂Eρ(z), where the ellipse Eρ is given by Eρ = {z ∈ C | |z − 1| +
|z + 1| = ρ + 1/ρ}. For ω

∆
(m+2)p
S

(z) := ωH
2p(z)ωG

mp+1(z) we compute

ωS
m(z) := lim

p→∞
|ω

∆
(m+2)p
S

(z)|1/(2p+mp+1) =
(
ωH(z)

)2/(m+2)
(

1

2
ρ(z)

)m/(m+2)

. (29)

The representation ρ(z) = ζ +
√

ζ2 − 1 where 2ζ = |z − 1| + |z + 1| shows
that ωS

m is a continuous function. Thus, the sets W S
r := {z ∈ C |ωS

m(z) <
r} are open. Note [−1, 1] ⊂ W S

r for r > 2−m/(m+2). Fix 1 < ρ such that
clo(Eρ) ⊂ D(f). Fix 1/2 < r < ρ/2 and note that Eρ′ ⊂ Eρ for ρ′ < ρ. Then
(29) implies that for m sufficiently large, we have [−1, 1] ⊂ W S

r ⊂ Eρ ⊂ D(f).
The approximation properties of the interpolation operator I

∆
(2+m)p
S

now follow

from Proposition 1.5. Noting (f − I
∆

(2+m)p
S

f)(j)(±1) = 0 for 0 ≤ j ≤ p − 1

allows us to complete the proof by arguing as in the proof of Theorem 2.2. 2

Remark 1 Analogous results hold for Gauß-Lobatto or Chebyshev points.

4 Numerical examples

All calculations in this section are done in Maple using a sufficient number of
digits to be able to focus on the convergence properties of the Filon quadrature.
In the Examples 4.1–4.3 we consider

g(x) = 1, f1(x) = (a − x2)1/2 = (
√

a + x)1/2(
√

a − x)1/2, a > 1. (30)

11



Example 4.1 (pure Filon quadrature based on ∆2p−1
H ) Assumption 1.2

is only satisfied for a > 2. For the pure Filon quadrature, we therefore expect
convergence (as p → ∞) only for a > 2. In this case, we expect the initial
convergence to be the more rapid the larger |k| is. This is indeed visible in
Fig. 1. For a < 2 Theorem 2.1 suggests, for a problem-dependent constant γ,
rapid error decay for p ≤ γ|k| and error increase for p > γ|k|. This behavior
is also visible in Fig. 1 for the case a = 1.5.

Example 4.2 (Filon quadrature based on ∆2p−1
C ) Theorem 2.4 ensures uni-

form (in k) convergence of the method Q∆2p−1
C

for a > 2. This is visible in Fig. 2

for the case a = 3. For a < 2, Theorem 2.4 leads us to expect good results
for k large compared to p and, since for p ≥ |k|/λ the points essentially co-
incide with the classical Chebyshev points, also good results in that regime.
In the intermediate regime, the estimates of Theorem 2.4 permit large errors;
indeed, these arise as shown in Fig. 2 for the case a = 1.01. The parameter λ
appearing in (22) is chosen as λ = 1.

Example 4.3 (composite pure Filon quadrature) Section 3.1 shows that
composite Filon rules can make Filon quadrature applicable to integrands with
singularities near the domain of integration. The condition to be satisfied is
(26), or, more simply, (28). It is desirable to minimize the number of ele-
ments in the mesh T under the constraint (26). For the integrand given by
(30), this can be achieved with geometric meshes that are refined towards the
singularities of f : Let the mesh T geo be defined by the points

{−1,−1 + σi, | i = 0, . . . , L} ∪ {1, 1 − σi | i = 1, . . . , L}. (31)

If σ > (
√

2 − 1)2, then—with the exception of the elements K abutting the
endpoints ±1—condition (26) is satisfied by all K ∈ T regardless of a > 1.
Condition (26) is satisfied by the boundary elements only if L is sufficiently
small. Sufficiently conditions for T geo to perform well are therefore:

σ > (
√

2 − 1)2, L ≥ L0 with

√
2

2
σL0 <

√
a − 1 = dist([−1, 1], ∂D(f)).

The numerical example shown in the bottom right part of Fig. 1 is done
with a = 1.01, σ = 0.2, and L = 4 and a pure Filon quadrature on each
element. Since we show relative errors, we mention that Q(f) ≈ 1.4 for k = 1,
Q(f) ≈ 0.01 for k = 10, Q(f) ≈ −0.0025 for k = 100.

Example 4.4 (stabilized Filon quadrature) We consider the case

g(x) = 1, f2(x) = (
√

a + x)1/2, a > 1. (32)

We employ the stabilized Filon quadrature ∆mp+2p
SC based on Hermite interpo-
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Fig. 1. Top row and bottom left: pure Filon quadrature based on ∆2p−1
H for a = 1.5,

a = 2, and a = 3. Bottom right: composite Filon quadrature with geometric mesh
(31) for L = 4, σ = 0.2, a = 1.01.

lation in the endpoints and in the Chebyshev points:

∆mp+2p
SC := ∆2p−1

H ∪
{

cos

(
2i + 1

mp + 1

π

2

)
| i = 0, . . . , mp

}
. (33)

Assumption 1.2 is only satisfied for a > 2. Hence, convergence (as p → ∞)
cannot be guaranteed for a = 1.7 and m = 0; indeed Fig. 3 suggests divergence
as p → ∞ for m = 0. Convergence is ensured by selecting m ≥ 1, which is
visible in Fig. 3.
The error bound of Theorem 3.3 is of the form u(p) := (min{q, γ(p+1)/|k|})p+1

for some q ∈ (0, 1) and γ > 0. For q close to 1 the function u is decreasing on

(0, |k|
eγ

), increasing on ( |k|
eγ

, q|k|
γ

) and decreasing on ( q|k|
γ

,∞). Qualitatively, such
a behavior is visible in Fig. 3 for the case a = 1.7 and m = 1. It is worth noting
that the range of p in which this undesirable behavior occurs is proportional to
|k|. For sufficiently small q the function u is monotone. Indeed, the numerical
experiment in the right part of Fig. 4 with a = 4 and m = 1 shows a better
behavior.
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0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

p

ab
so

lu
te

 e
rr

or

f(x) = (a1/2+x)1/2, a = 1.7, stabilized Filon, m=0

 

 

k=1

k=10

k=20

k=25

5 10 15 20 25 30 35
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

p

ab
so

lu
te

 e
rr

or

f(x) = (a1/2+x)1/2, a = 1.7, stabilized Filon, m=1

 

 

k=1
k=10
k=20
k=25
k=30

0 5 10 15 20
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

p

ab
so

lu
te

 e
rr

or

f(x) = (a1/2+x)1/2, a = 1.7, stabilized Filon, m=2

 

 

k=1

k=10

k=20

k=30

2 4 6 8 10 12 14 16 18 20
10

−25

10
−20

10
−15

10
−10

10
−5

p

ab
so

lu
te

 e
rr

or

f(x) = (a1/2+x)1/2, a = 1.7, k=100, stabilized Filon

 

 

m=0

m=1

m=2

Fig. 3. Stabilized Filon quadrature based on ∆mp+2p
SC for a = 1.7. Top row and

bottom left: m = 0, m = 1, m = 2. Bottom right: k = 100 and m ∈ {0, 1, 2}.

A Proof of Theorem 2.4

Proof of Theorem 2.4: We start with the quadrature error analysis under
the assumption that (23) is true. (23) together with Lemma 1.3 with J0 = 0
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Fig. 4. Left: composite pure Filon quadrature based on 2 elements of equal length,
a = 1.7. Right: stabilized Filon quadrature based on ∆mp+2p

SC with a = 4, m = 1.

and J = 1 implies immediately implies

|Q(f) − Q∆2p−1
C

(f)| ≤ Cqp γg

|k|‖f‖L∞(Gf ) ∀p ∈ N0.

Next, we can apply Theorem 2.3 to infer the existence of δ0 > 0 such that for
pδC ≤ δ0, we have

|Q(f) − Q∆2p−1
C

(f)| ≤ C
γg

|k|

(
γ
pδC |k| + γg(p + 1)

|k|

)p

‖f‖L∞(Gf ).

Finally, for pδC > δ0 we have

γ
pδC |k| + γg(p + 1)

|k| ≥ γδ0 ≥ min{q, γδ0} ≥ q,

which completes the proof of the error bound (24).

It remains to show the bound (23). This is done in the classical way. First, we
define for the points zi given in (22) the functions

ω∆2p−1
C

(z) :=
p−1∏

i=0

(z − zi)(z + zi) =
p−1∏

i=0

(z2 − z2
i ) (A.1)

The result now follows by inserting Lemma A.1 in Proposition 1.5. 2

Lemma A.1 Let the points zi be given by (22) and let r > 1. Then there
exist constants C > 0 and q ∈ (0, 1) and an open neighborhood U of [−1, 1]
independent of p, k such that for all z ∈ U and all t ∈ ∂W H

r

∣∣∣∣∣∣

ω∆2p−1
C

(z)

ω∆2p−1
C

(t)

∣∣∣∣∣∣
≤ Cqp,
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where ω∆2p−1
C

is defined in (A.1).

Proof: 1. step: From (15) we infer that for every 1 < r′ < r

∣∣∣∣∣∣

ω∆2p−1
H

(z)

ω∆2p−1
H

(t)

∣∣∣∣∣∣
≤
(

r′

r

)2p

∀z ∈ ∂W H
r′ , t ∈ ∂W H

r .

(20) then implies the existence of A0 > 0 and q ∈ (0, 1) such that pδC ≤ A0

we have ∣∣∣∣∣∣

ω∆2p−1
C

(z)

ω∆2p−1
C

(t)

∣∣∣∣∣∣
≤ qp ∀z ∈ ∂W H

r′ , t ∈ ∂W H
r .

By the maximum modulus principle for holomorphic functions, the lemma is
therefore true if pδC ≤ A0 for some A0 > 0 depending on r > 1. Since by
definition of δC , we have pδC ≤ π/2 for all p ∈ N0, we are left with studying
the case 0 < A0 ≤ pδC ≤ π/2 for some fixed A0 > 0.
2. step: In order to control the function

ωp,C(z) :=
∣∣∣ω∆2p−1

C
(z)
∣∣∣
1/(2p)

we introduce the function fz(θ) := ln |z2 − cos2 θ| to get

ln ωp,C(z) =
1

2pδC
δC

p−1∑

i=0

ln |z2 − z2
i | =

1

2pδC

∫ δCp

0
fz(θ) dθ +

1

2pδC
R(z)

where R satisfies

|R(z)| ≤ 1

2
δCpδC‖f ′

z‖L∞(0,pδC).

3. step: We consider

1

pδC

∫ pδC

0
ln |t2 − cos2 θ| − ln |z2 − cos2 θ| dθ

for t ∈ ∂W H
r and z in a neighborhood U of [−1, 1] to be fixed below. From

t ∈ ∂W H
r we conclude |t2−1| = r2; hence, |t2−cos2 θ| ≥ |t2−1|−(1−cos2 θ) =

r2 − 1 + cos2 θ. Thus,

1

pδC

∫ pδC

0
ln |t2 − cos2 θ| − ln |z2 − cos2 θ| dθ ≥ 1

pδC

∫ pδC

0
ln

r2 − 1 + cos2 θ

|z2 − cos2 θ| dθ.

From Lemma A.2 we infer the existence of an open neighborhood U of [−1, 1]
and a constant c > 0 such that this last integral is bounded from below by
c > 0 uniformly in z ∈ U and pδC ∈ [A0, π/2]. It is now easy to show the
existence of a constant C > 0 independent of z ∈ ∂U and t ∈ ∂Wr such that

|R(z)| ≤ Cδ2
Cp, |R(t)| ≤ Cδ2

Cp.
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We conclude that

ln
ωp,C(z)

ωp,C(t)
≤ 1

2pδC

∫ pδC

0
fz(θ) − ft(θ) dθ + CδC ≤ −c + CδC

and therefore
|ω∆2p−1

C
(z)|

|ω∆2p−1
C

(t)| ≤ e−c2pe2pCδC .

Since δCp ≤ π/2, we conclude the desired result for z ∈ ∂U and t ∈ ∂Wr. By
the maximum modulus principle for holomorphic functions, we may extend
the bound to all z ∈ U . 2

Lemma A.2 Let r > 1 and A0 > 0. Then there exists a constant c > 0 and
an open neighborhood U ⊂ C of [−1, 1] such that

1

A

∫ A

0
ln

∣∣∣∣∣
r − 1 + cos2 θ

z2 − cos2 θ

∣∣∣∣∣ dθ ≥ c > 0 ∀(A, z) ∈ [A0, π/2] × U .

Proof: In view of the continuity assertion in Lemma A.3 and the fact that
(−z)2 = z2, it suffices to ascertain

1

A

∫ A

0
ln

∣∣∣∣∣
r − 1 + cos2 θ

z2 − cos2 θ

∣∣∣∣∣ dθ > 0 ∀(A, z) ∈ [A0, π/2] × [0, 1].

To see this pointwise bound, we start with some simple observations: First, if
a function g is monotone increasing, then the function A 7→ 1

A

∫ A
0 g(t) dt is like-

wise monotone increasing; if g is monotone decreasing, then A 7→ 1
A

∫A
0 g(t) dt

is monotone decreasing. Next, for fixed z ∈ [0, 1], we write z = cos θ̃ and
compute the integral

I :=
2

π

∫ π/2

0
ln |z2 − cos2 θ| dθ =

2

4π

∫ 2π

0
ln | cos2 θ̃ − cos2 θ| dθ

=
2

4π

∫ 2π

0
ln
∣∣∣sin(θ + θ̃)

∣∣∣+ ln
∣∣∣sin(θ − θ̃)

∣∣∣ dθ

=
1

π

∫ 2π

0
ln | sin x| dx =

2

π

∫ π

0
ln | sin x| dx = −2 ln 2, (A.2)

where we used
∫ π
0 ln sin x dx = −π ln 2 by [2, (4.38.19)]. Next, we observe that

the function

θ 7→ h(θ) :=

(
r − 1 + cos2 θ

z2 − cos2 θ

)2

is monotone increasing on the interval (0, θ̃) and monotone decreasing on the
interval (θ̃, π/2). Hence, we conclude immediately that for 0 < A ≤ θ̃ (note:
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this implies z 6= 1):

1

A

∫ A

0
lnh(θ) dθ ≥ lim

A→0

1

A

∫ A

0
lnh(θ) dθ = ln h(0) = ln

(
r

z2 − 1

)2

> 0.

Additionally, the calculation in (A.2) shows that
∫ π/2
0 ln h(θ) dθ is independent

of z. Hence,
∫ π/2
0 ln h(θ) dθ can be evaluated by selecting z = 0 to arrive at

Ih :=
∫ π/2

0
ln h(θ) dθ =

∫ π/2

0
ln

(
r − 1 + cos2 θ

cos2 θ

)2

dθ

=
∫ π/2

0
ln
(
1 +

r − 1

cos2 θ

)2

dθ > 0.

We turn to the case θ̃ < A ≤ π/2. Since h is monotone decreasing on (θ̃, π/2),
ln h is likewise monotone decreasing on (θ̃, π/2) and therefore

1

A

∫ A

0
ln h(θ) dθ =

1

A

∫ θ̃

0
lnh(θ) dθ +

1

A

∫ A

θ̃
lnh(θ) dθ

=
1

A

∫ θ̃

0
ln h(θ) dθ +

A − θ̃

A

1

A − θ̃

∫ A

θ̃
ln h(θ) dθ

≥ 1

A

∫ θ̃

0
ln h(θ) dθ +

A − θ̃

A

1

π/2 − θ̃

∫ π/2

θ̃
ln h(θ) dθ

=
1

A

∫ θ̃

0
ln h(θ) dθ +

A − θ̃

A

1

π/2 − θ̃

[∫ π/2

0
lnh(θ) dθ −

∫ θ̃

0
ln h(θ) dθ

]

=

[
1

A
− A − θ̃

A

1

π/2 − θ̃

] ∫ θ̃

0
ln h(θ) dθ +

A − θ̃

A

1

π/2 − θ̃

∫ π/2

0
ln h(θ) dθ

=
1

A




π/2 − A

π/2 − θ̃

∫ θ̃

0
ln h(θ)
︸ ︷︷ ︸

>0

dθ +
A − θ̃

π/2 − θ̃
︸ ︷︷ ︸

>0

∫ π/2

0
ln h(θ) dθ

︸ ︷︷ ︸
=Ih>0




This last expression is therefore positive. This concludes the proof. 2

Lemma A.3 Let A0 > 0 and K ⊂ C be compact. Then the function

g : (A, z) 7→ 1

A

∫ A

0
ln |z2 − cos2 θ| dθ

is continuous on [A0, π/2] × K.
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Proof: 1. step: For each z ∈ K define fz : [0, 1] → R ∪ {±∞} by fz(x) :=
ln |z2 − x|. For η > 0 define

f η
z (x) :=






fz(x) if |fz(x)| ≤ η

−η if fz(x) ≤ −η

η if fz(x) ≥ η

The Lebesgue dominated convergence theorem together with A ≥ A0 > 0
then easily implies that the function

gη : (A, z) 7→ 1

A

∫ A

0
f η

z (cos2 θ) dθ =
1

A

∫ π/2

0
χ[0,A]f

η
z (cos2 θ) dθ

is continuous on [A0, π/2] × K. Here, χE denotes the characteristic function
of the set E.

2. step: Denote Eη := {x ∈ [0, 1] | |fz(x)| ≥ η}. Then

|g(A, z) − gη(A, z)| ≤ 1

A0

∫ π/2

0
χEη(cos2 θ)|fz(cos2 θ)| dθ

=
1

A0

∫ 1

0
χEη |fz(x)| 1

√
x(1 − x)

dx =
1

A0
‖χEηfz

1
√

x(1 − x)
‖L1(0,1).

Fix p, q, r ∈ (1,∞) such that r ∈ (1, 2) and 1/p + 1/q + 1/r = 1. The Hölder
inequality then gives

|g(A, z) − gη(A, z)| ≤ 1

A0

|Eη|1/p‖fz‖Lq(0,1)‖
1

√
x(1 − x)

‖Lr(0,1).

By the choice r ∈ (1, 2) we have ‖ 1√
x(1−x)

‖Lr(0,1) < ∞. Next, an elementary

calculation shows

‖fz‖q
Lq(0,1) =

∫ 1

0

∣∣∣ln |z2 − x|
∣∣∣
q

dx ≤ C

for a constant C > 0 that depends solely on K and the choice of q. Finally,
for η sufficiently large (depending only on K) we have

|Eη| = |{x : |z2 − x| ≤ e−η}| ≤ |{x : |Re z2 − x| ≤ e−η/2}| ≤ 2e−η/2.

We conclude the existence of a constant C > 0 such that

|g(A, z) − gη(A, z)| ≤ Ce−η/(2p) ∀(A, z) ∈ [A0, π/2] × K.

3. step: combining the result of the first and second step gives us that g is
continuous on [A0, π/2] × K. 2
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Fig. B.1. Case a = 1.1. Left: pure Filon quadrature Q∆2p−1
H

. Right: Filon quadrature

on geometric mesh (31) with L = 2, σ = 0.2

B Further numerical examples

Fig. B.1 shows the behavior of the pure Filon quadrature Q∆2p−1
H

for the case
a = 1.1.

Fig. B.2 shows the behavior of the Filon quadrature based on ∆2p−1
C of (22)

(with λ = 1) for a = 1.01 and a = 2. Additionally, Fig. B.2 displays the
behavior of Q∆2p−1

C
as a function of k for fixed p ∈ {1, 2, 3, 4}.

C The Moment Problem

There are several ways to compute efficiently the moments

mn(k) :=
∫ 1

−1
eikxLn(x) dx.

One way is to employ the method of steepest descent as described in [3]. For
the case g(x) = x, an alternative is to make use of three-term recurrence
relations for orthogonal polynomials. For example, in exact arithmetic, there
holds for the Legendre polynomials Ln:

∫ 1

−1
eikxLn+1(x) dx = −2n + 1

ik

∫ 1

−1
eikxLn(x) dx +

∫ 1

−1
eikxLn−1(x) dx.

This recursion appears to be stable for polynomial degrees up to the order of
|k|. To illustrate this, let mrec

m (k) be the approximation to mm(k) obtained from
the recurrence relation. We show in Table C.1 the errors maxn=0,...,p |mn(k)−
mrec

n (k)| for different choices of p and k. The calculations are done in Matlab;
the “exact” values mn(k) is obtained by an overkill Gaussian quadrature.
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Fig. B.2. Numerical results for Q
∆2p−1

C

. Top: a = 101 and a = 2. Bottom: the case

a = 2 for different values of fixed p.

k = −10 k = −100

p = |k| + 0 1.6−16 1.8−16

p = |k| + 10 1.1−13 3.4−16

p = |k| + 20 3.7−7 2.8−14

p = |k| + 30 6.31 2.4−11

p = |k| + 40 — 7.1−8

p = |k| + 50 — 6.0−4

p = |k| + 60 — 1.31

Table C.1
Stability of 3-term recurrence relation to determine moments.

D Stabilized Hermite interpolation

In this appendix, we work out some of the details of the proof of Theorem 3.3.
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From [1, Chap. IV] we have the following result:

Lemma D.1 Let (∆n)∞n=0 be a sequence of interpolation points such that the
pointwise limit

ω(z) := lim
n→∞

|ω∆n(z)|1/(n+1), ω∆n(z) :=
n∏

i=0

(z − z
(n)
i )

exists. Set
Wr := {z ∈ C |ω(z) < r}

and assume that ∂Wr is a simple, closed Jordan curve. Assume additionally
that Wr ⊂ D(f) for some r > 0. Then for every r′ < r and r′/r < q < 1 there
exists a constant C > 0 (independent of f) such that

‖f − I∆nf‖L∞(Wr′)
≤ Cr,r′,q

1

dist(∂Wr, Wr′)
qn+1‖f‖L∞(Wr) ∀n ∈ N0 (D.1)

Denote by ∆n
G the n + 1 Gauß points 1 . We augment the interpolation points

∆2p−1
H of (13) with ∆mp

G for a parameter m ∈ N0. That is, we consider ∆
(2+m)p
S :=

∆2p−1
H ∪∆mp

G . Define ωG
mp+1(z) :=

∏mp
i=0(z−zi). From [1, Thm. 12.4.5], we know

that the Legendre polynomials Ln satisfy

lim
n→∞

|Ln(z)|1/n = ρ ∀z ∈ Eρ,

where the ellipse Eρ is defined as

Eρ = {z ∈ C | |z − 1| + |z + 1| = ρ + 1/ρ}.

Since the leading coefficient of Ln is given by

(2n)!

2n(n!)2
∼ 2n

we get

ωG
n (z) =

2n+1((n + 1)!)2

(2n + 2)!
Ln+1(z)

and may conclude

ωG(z) := lim
n→∞

|ωG
n (z)|1/(n+1) =

1

2
ρ(z), ρ(z) > 1 s.t. z ∈ ∂Eρ(z). (D.2)

Elementary considerations show that ωG can alternatively be written as

2ωG(z) = ζ +
√

ζ2 − 1, ζ =
1

2
{|z − 1| + |z + 1|} . (D.3)

1 analogous results can be obtained for Chebyshev or Gauß-Lobatto points
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We remark that I
∆

(2+m)p
S

f ∈ P2p+mp is determined by

f (j)(±1) = (I
∆

(2+m)p
S

f)(j)(±1), j = 0, . . . , p − 1, (D.4a)

f(xi) = (I
∆

(2+m)p
S

f)(xi), i = 0, . . . , mp. (D.4b)

The function ω
∆

(2+m)p
S

associated with this interpolation operator is

ω
∆

(2+m)p
S

(z) = ωH
2p(z)ωG

mp+1(z) = (z2 − 1)p
mp∏

i=0

(z − xi). (D.5)

We can compute ωS
m(z) := limp→∞ |ω

∆
(2+m)p
S

(z)|1/((2+m)p+1) as follows:

lim
p→∞

|ω
∆

(2+m)p
S

(z)|1/(2p+1+mp) = lim
p→∞

|ωH
2p(z)|1/(2p+1+mp)|ωG

mp+1(z)|1/(2p+mp+1)

= lim
p→∞

|
√

z2 − 1|2p/(2p+1+mp) lim
p→∞

(
|ωG

mp+1(z)|1/(mp+1)
)(mp+1)/(2p+mp+1)

=(ωH(z))2/(2+m)(ωG(z))m/(2+m). (D.6)

The parameter m allows us now to control the form of the sets W S
r,m = {z ∈

C |ωS
m(z) < r}:

Lemma D.2 Let ωS
m be as defined above. Then:

(i) For each z ∈ C \ {±1} there holds limm→∞ ωS
m(z) = 1

2
ρ(z). The conver-

gence is uniform in z ∈ K for compact K ⊂ C \ {±1}.
(ii) For fixed 1 < ρ1 < ρ < ρ2 and sufficiently large m we have Eρ1 ⊂ W S

2ρ,m ⊂
Eρ2.

Proof: For illustration purposes, we compare in Fig. D.1 the level lines of the
sets W H

r (corresponding to Hermite interpolation) with those of interpolation
in the Gauß points.

For every compact K ⊂ C \ {±1} we have limm→∞

(
ωH(z)

)2/(2+m)
= 1 uni-

formly in z ∈ K. Since ωG(z) = 1
2
ρ(z) by (D.2) and ρ is continuous on K and

bounded away from 0, the claim (i) follows.

For the second claim, we note that {z ∈ C |ωG(z) < r} = Er/2. (ii) then
follows from (i). 2

Lemma D.3 One can choose m ∈ N0 sufficiently large such that the following
holds: One can find constants C > 0, q ∈ (0, 1) (depending on D(f) and m)
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Fig. D.1. level lines of ωH and ωG.

such that in an open neighborhood G ⊂ C with [−1, 1] ⊂ G ⊂ D(f) there holds

‖f − I
∆

(2+m)p
S

f‖L∞(G) ≤ Cqp‖f‖L∞(D(f)).

Here, the set ∆(2+m)p has n = 2p + 1 + mp point. In particular,

(f − I∆(2+m)pf)(j)(±1) = 0, j = 0, . . . , p − 1.

Proof: Follows from Lemma D.2. 2
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