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On stability of discretizations of the Helmholtz
equation (extended version)

S. Esterhazy and J.M. Melenk

Abstract We review the stability properties of several discretizations of the Helmholtz

equation at large wavenumbers. For a model problem in a polygon, a complete k-

explicit stability (including k-explicit stability of the continuous problem) and con-

vergence theory for high order finite element methods is developed. In particular,

quasi-optimality is shown for a fixed number of degrees of freedom per wavelength

if the mesh size h and the approximation order p are selected such that kh/p is suf-
ficiently small and p = O(logk), and, additionally, appropriate mesh refinement is

used near the vertices. We also review the stability properties of two classes of nu-

merical schemes that use piecewise solutions of the homogeneous Helmholtz equa-

tion, namely, Least Squares methods and Discontinuous Galerkin (DG) methods.

The latter includes the Ultra Weak Variational Formulation.

1 Introduction

A fundamental equation describing acoustic or electromagnetic phenomena is the

time-dependent wave equation

∂ 2w

∂ t2
− c2∆w= g,

given here for homogeneous, isotropic media whose propagation speed of waves

is c. It arises in many applications, for example, radar/sonar detection, noise fil-

tering, optical fiber design, medical imaging and seismic analysis. A commonly

encountered setting is the time-harmonic case, in which the solution w (and corre-

spondingly the right-hand side g) is assumed to be of the form Re
(
e−iωtu(x)

)
for

a frequency ω . Upon introducing the wavenumber k = ω/c and the wave length
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λ := 2π/k, the resulting equation for the function u, which depends solely on the

spatial variable x, is then the Helmholtz equation

−∆u− k2u= f . (1)

In many high frequency situations of large k the solution u is highly oscillatory

but has some multiscale character that can be captured, for example, by means of

asymptotic analysis; a classical reference in this direction is [7].

In this article, we concentrate on numerical schemes for the Helmholtz equation

at large wavenumbers k. Standard discretizations face several challenges, notably:

(I) For large wavenumber k, the solution u is highly oscillatory. Its resolution,

therefore, requires fine meshes, namely, at least N = kd degrees of freedom,

where d is the spatial dimension.

(II) The standard H1-conforming variational formulation is indefinite, and stabil-

ity on the discrete level is therefore an issue. A manifestation of this problem

is the so-called “pollution”, which expresses the observation that much more

stringent conditions on the discretization have to be met than the minimal

N = O(kd) to achieve a given accuracy.

The second point, which will be the focus of the article, is best seen in the following,

one-dimension example:

Example 1.1. For the boundary value problem

−u′′− k2u= 1 in (0,1), u(0) = 0 u′(1)− iku(1) = 0 (2)

we consider the h-version finite element method (FEM) on uniform meshes with

mesh size h for different approximation orders p ∈ {1,2,3,4} and wavenumbers

k ∈ {1,10,100}. Fig. 1 shows the relative error in the H1(Ω)-semi norm (i.e.,

|u− uN |H1(Ω)/|u|H1(Ω), where uN is the FEM approximation) versus the number

of degrees of freedom per wavelength Nλ := N/λ = 2πN/k with N being the di-

mension of the finite element space employed. We observe several effects in Fig. 1:

Firstly, since the solution u of (2) is smooth, higher order methods lead to higher

accuracy for a given number of degrees of freedom per wavelength than lower order

methods. Secondly, asymptotically, the FEM is quasioptimal with the finite element

error |u− uN|H1(Ω) satisfying

|u− uN|H1(Ω) ≈CpN
−p

λ |u|H1(Ω) (3)

for a constant Cp independent of k. Thirdly, the performance of the FEM as mea-

sured in “error vs. number of degrees of freedom per wavelength” does depend on

k: As k increases, the preasymptotic range with reduced FEM performance becomes

larger. Fourthly, higher order methods are less sensitive to k than lower order ones,

i.e., for given k, high order methods enter the asymptotic regime in which (3) holds

for smaller values of Nλ than lower order methods.
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Fig. 1 Performance of h-FEM for (2). Top: p= 1, p= 2. Bottom: p= 3, p= 4 (see Example 1.1).

The behavior of the FEM in Example 1.1 has been analyzed in [47,49], where error

bounds of the form (see [47, Thm. 4.27])

|u− uN|H1(Ω) ≤Cp

(
1+ kp+1hp

)
hp|u|H p+1(Ω) (4)

are established for a constant Cp depending only on the approximation order p. In

this particular example, it is also easy to see that |u|H p+1(Ω)/|u|H1(Ω) ∼ kp, so that

(4) can be recast in the form

|u− uN|H1(Ω) ≤Cp

(
1+ kp+1hp

)
(kh)p|u|H1(Ω) ∼

(
1+ kN

−p

λ

)
N
−p

λ |u|H1(Ω). (5)

This estimate goes a long way to explain the above observations. The presence of

the factor 1+ kN
−p

λ
explains the “pollution effect”, i.e., the observation that for

fixed Nλ , the (relative) error of the FEM as compared with the best approximation

(which is essentially proportional to N
−p

λ in this example) increases with k. The es-

timate (5) also indicates that the asymptotic convergence behavior (3) is reached for

Nλ = O(k1/p). This confirms the observation made above that higher order meth-

ods are less prone to pollution than lower order methods. Although Example 1.1

is restricted to 1D, similar observations have been made in the literature also for
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multi-d situations as early as [15]. We emphasize that for uniform meshes (as in Ex-

ample 1.1) or, more generally, translation invariant meshes, complete and detailed

dispersion analyses are available in an h-version setting, [2, 27, 47, 49], and in a

p/hp-setting, [2–4], that give strong mathematical evidence for the superior ability

of high order methods to cope with the pollution effect.

The present paper, which discusses and generalizes the work [61,62], proves that

also on unstructured meshes, high order methods are less prone to pollution. More

precisely, for a large class of Helmholtz problems, stability and quasi-optimality is

given under the scale resolution condition

kh

p
≤ c1 and p≥ c2 logk, (6)

where c1 is sufficiently small and c2 sufficiently large. For piecewise smooth geome-

tries (e.g., polygons), additionally appropriatemesh refinement near the singularities

is required.

We close our discussion of Example 1.1 by remarking that its analysis and, in

fact, the analysis of significant parts of this article rests on H1-like norms. Largely,

this choice is motivated by the numerical scheme, namely, an H1-conforming FEM.

1.1 Non-standard FEM

The limitations of the classical FEM mentioned above in (I) and (II) have sparked a

significant amount of research in the past decades to overcome or at least mitigate

them. This research focuses on two techniques that are often considered in tandem:

firstly, the underlying approximation by classical piecewise polynomials is replaced

with special, problem-adapted functions such as systems of plane waves; secondly,

the numerical scheme is based on a variational formulation different from the classi-

calH1-conformingGalerkin approach. Before discussing these ideas in more detail,

we point the reader to the interesting work [12], which shows for a model situation

on regular, infinite grids in 2D that no 9-point stencil (i.e., a numerical method based

on connecting the value at a node with those of the 8 nearest neighbors) generates a

completely pollution-free method; the 1D situation is special and discussed briefly

in Section 7.

Work that is based on a new or modified variational formulation but rests on

the approximation properties of piecewise polynomials includes the Galerkin Least

Squares Method [39, 40], the methods of [9], and Discontinuous Galerkin Methods

( [33–35] and references there). Several methods have been proposed that are based

on the approximation properties of special, problem-adapted systems of functions

such as systems of plane waves. In an H1-conforming Galerkin setting, this idea has

been pursued in the Partition of Unity Method/Generalized FEM by several authors,

e.g., [5, 45, 50, 51, 56, 60, 68, 69, 81]. A variety of other methods that are based on

problem-adapted ansatz functions leave theH1-conformingGalerkin setting and en-
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force the jump across element boundaries in a weak sense. This can be done by least

squares techniques ( [14,53,65,70,80] and references there), by Lagrangemultiplier

techniques as in the Discontinuous Enrichment Method [31, 32, 82] or by Discon-

tinuous Galerkin (DG) type methods, [19–21, 36, 42, 43, 46, 55, 63,64]; in these last

references, we have included the work on the Ultra Weak Variational Formulation

(UWVF) since it can be understood as a special DG method as discussed in [19,36].

1.2 Scope of the article

The present article focuses on the stability properties of numerical methods for

Helmholtz problems and exemplarily discusses three different approaches in more

detail for their differences in techniques. The first approach, studied in Section 4, is

that of the classicalH1-based Galerkin method for Helmholtz problems. The setting

is that of a Gårding inequality so that stability of a numerical method can be inferred

from the stability of the continuous problem by perturbation arguments. This moti-

vates us to study for problem (9), which will serve as our model Helmholtz problem

in this article, the stability properties of the continuous problem in Section 2. In

order to make the perturbation argument explicit in the wavenumber k, a detailed, k-

explicit regularity analysis for Helmholtz problems is necessary. This is worked out

in Section 3 for our model problem (9) posed on polygonal domains. These results

generalize a similar regularity theory for convex polygons or domains with analytic

boundary of [61, 62]. Structurally similar results have been obtained in connection

with boundary integral formulations in [54, 59].

We discuss in Sections 6.2 and 6.3 somewhat briefly a second and a third ap-

proach to stability of numerical schemes. In contrast to the setting discussed above,

where stability is only ensured asymptotically for sufficiently fine discretizations,

these methods are stable by construction and can even feature quasioptimality in

appropriate residual norms. We point out, however, that relating this residual norm

to a more standard norm such as the L2-norm for the error is a non-trivial task. Our

presentation for these methods will follow the works [19, 36, 43, 65].

Many aspects of discretizations for Helmholtz problems are not addressed in this

article. For recent developments in boundary element techniques for this problem

class, we refer to the survey article [22]. The model problem (9) discussed here

involves the rather simple boundary condition (9b), which can be understood as

an approximation to a Dirichlet-to-Neumann operator that provides a coupling to

a homogeneous Helmholtz equation in an exterior domain together with appropri-

ate radiation conditions at infinity. A variety of techniques for such problems are

discussed in [37]. Further methods include FEM-BEM coupling, the PML due to

Bérenger (see [17, 24] and references therein), infinite elements [26], and methods

based on the pole condition, [44]. Another topic not addressed here is the solution

of the arising linear system; we refer the reader to [28, 30] for a discussion of the

state of the art. Further works with survey character includes [29, 47, 48, 83].
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1.3 Some notation

We employ standard notation for Sobolev spaces, [1,18,67,77]. For domains ω and

k 6= 0 we denote

‖u‖21,k,ω := k2‖u‖2
L2(ω)+ ‖∇u‖2

L2(ω). (7)

This norm is equivalent to the standardH1-norm. The presence of the weight k in the

L2-part leads to a balance between the H1-seminorm and the L2-norm for functions

with the expected oscillatory behavior such as plane waves eikd·x (with d being a unit

vector). Additionally, the bilinear form B considered below is bounded uniformly in

k with respect to this (k-dependent) norm.

Throughout this work, a standing assumption will be

|k| ≥ k0 > 0; (8)

our frequently used phrase “independent of k” will still implicitly assume (8). We

denote by C a generic constant. If not stated otherwise, C will be independent of

the wavenumber k but may depend on k0. For smooth functions u defined on a d-

dimensionalmanifold, we employ the notation |∇nu(x)|2 := ∑
α∈Nd

0 : |α |=n

|α|!
α!

|Dαu(x)|2.

1.4 A model problem

In order to fix ideas, we will use the following, specific model problem: For a

bounded Lipschitz domain Ω ⊂ R
d , d ∈ {2,3}, we study for k ∈ R, |k| ≥ k0, the

boundary value problem

−∆u− k2u = f in Ω , (9a)

∂nu+ iku = g on ∂Ω . (9b)

Henceforth, to simplify the notation, we assume k ≥ k0 > 0 but point out that the

choice of the sign of k is not essential. The weak formulation for (9) is:

Find u ∈ H1(Ω) s.t. B(u,v) = l(v) ∀v ∈ H1(Ω), (10)

where, for f ∈ L2(Ω) and g ∈ L2(∂Ω), B and l are given by

B(u,v) :=

∫

Ω
(∇u ·∇v−k2uv)+ ik

∫

∂Ω
uv, l(v) := ( f ,v)L2(Ω)+(g,v)L2(∂Ω). (11)

As usual, if f ∈ (H1(Ω))′ and g∈H−1/2(∂Ω), then the L2-inner products (·, ·)L2(Ω)

and (·, ·)L2(∂Ω) are understood as duality pairings. The multiplicative trace inequal-

ity proves continuity of B; in fact, there exists CB > 0 independent of k such that

(see, e.g., [62, Cor. 3.2] for details)
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|B(u,v)| ≤CB‖u‖1,k,Ω‖v‖1,k,Ω ∀u,v ∈H1(Ω). (12)

2 Stability of the continuous problem

Helmholtz problems can often be cast in the form “coercive + compact perturbation”

where the compact perturbation is k-dependent. In other words, a Gårding inequality

is satisfied. For example, the sesquilinear form B of (11) is of this form since

ReB(u,u)+ 2k2(u,u)L2(Ω) = ‖u‖21,k,Ω (13)

and the embedding H1(Ω) ⊂ L2(Ω) is compact by Rellich’s theorem. Classical

Fredholm theory (the “Fredholm alternative”) then yields unique solvability of (10)

for all f ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω), if one can show uniqueness. Uniqueness

in turn is often obtained by exploiting analyticity of the solutions of homogeneous

Helmholtz equation, or, more generally, the unique continuation principle for elliptic

problems, (see, e.g., [52, Chap. 4.3]):

Example 2.1 (Uniqueness for (9)). Let f = 0 and g = 0 in (9). Then, any solu-

tion u ∈ H1(Ω) of (9) satisfies u|∂Ω = 0 since 0 = ImB(u,u) = k‖u‖2
L2(∂Ω)

(see

Lemma 2.2). Hence, the trivial extension ũ to R
2 satisfies ũ ∈ H1(R2). The obser-

vations B(u,v) = 0 for all v ∈H1(Ω) and u|∂Ω = 0 show

∫

R2
∇ũ ·∇v− k2ũv= 0 ∀v ∈C∞

0 (R
2).

Hence, ũ is a solution of the homogeneous Helmholtz equation and ũ vanishes on

R
2 \Ω . Analyticity of ũ (or, more generally, the unique continuation principle pre-

sented in [52, Chap. 4.3]) then implies that ũ≡ 0, which in turn yields u≡ 0.

The arguments based on the Fredholm alternative do not give any indication of how

the solution operator depends on the wavenumber k. Yet, it is clearly of interest

to know how k enters bounds for the solution operator. It turns out that both the

geometry and the type of boundary conditions strongly affect these bounds. For ex-

ample, for an exterior Dirichlet problem, [16] exhibits a geometry and a sequence of

wavenumber (kn)n∈N tending to infinity such that the norm of the solution operator

for these wavenumbers is bounded from below by an exponentially growing term

Cebkn for some C, b > 0. These geometries feature so-called “trapping” or near-

trapping and are not convex. For convex or at least star-shaped geometries, the k-

dependence is much better behaved. An important ingredient of the analysis on such

geometries are special test functions in the variational formulation. For example, as-

suming in the the model problem (10) that Ω is star-shaped with respect to the ori-

gin (and has a smooth boundary), one may take as the test function v(x) = x ·∇u(x),
where u is the exact solution. An integration by parts (more generally, the so-called

“Rellich identities” [67, p. 261] or an identity due to Pohožaev, [71]) then leads to

the following estimate for the model problem (10):
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‖u‖1,k,Ω ≤C

[
‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

]
; (14)

this was shown in [56, Prop. 8.1.4] (for d = 2) and subsequently by [25] for d = 3.

Uniform in k bounds were established in [41] for star-shaped domains and certain

boundary conditions of mixed type by related techniques. The same test function

was also crucial for a boundary integral setting in [23]. A refined version of this

test function that goes back to Morawetz and Ludwig, [66] was used recently in a

boundary integral equations context (still for star-shaped domains), [78].

While (14) does not make minimal assumptions on the regularity of f and g, the

estimate (14) can be used to show that (for star-shaped domains) the sesquilinear

form B of (10) satisfies an inf-sup condition with inf-sup constant γ =O(k−1)—this

can be shown using the arguments presented in the proof Theorem 2.5.

An important ingredient of the regularity and stability theory will be the concept

of polynomial well-posedness by which we mean polynomial-in-k-bounds for the

norm of the solution operator. The model problem (9) on star-shaped domains with

the a priori bound (14) is an example. The following Section 2.1 shows polynomial

well-posedness for the model problem (9) on general Lipschitz domains (Thm. 2.4).

It is thus not the geometry but the type of boundary conditions in our model problem

(9), namely, Robin boundary conditions that makes it polynomially well-posed. In

contrast, the Dirichlet boundary conditions in conjunction with the lack of star-

shapedness in the examples given in [16] make these problem not polynomially

well-posed.

2.1 Polynomial well-posedness for the model problem (9)

Lemma 2.2. Let Ω ⊂R
d be a bounded Lipschitz domain. Let u ∈H1(Ω) be a weak

solution of (9) with f = 0 and g ∈ L2(∂Ω). Then ‖u‖L2(∂Ω) ≤ k−1‖g‖L2(∂Ω).

Proof. Selecting v= u in the weak formulation (10) and considering the imaginary

part yields

k‖u‖2
L2(∂Ω) = Im

∫

∂Ω
gu≤ ‖g‖L2(∂Ω)‖u‖L2(∂Ω).

This concludes the argument. ⊓⊔
Next we use results on layer potentials for the Helmholtz equation from [59] to

prove the following lemma:

Lemma 2.3. Let Ω ⊂R
d be a bounded Lipschitz domain, u∈H1(Ω) solve (9) with

f = 0. Assume u|∂Ω ∈ L2(∂Ω) and ∂nu∈ L2(∂Ω). Then there exists C> 0 indepen-

dent of k and u such that

‖u‖L2(Ω) ≤ Ck

(
‖u‖L2(∂Ω)+ ‖∂nu‖H−1(∂Ω)

)
,

‖u‖1,k,Ω ≤ C
[
k2‖u‖L2(∂Ω)+ k2‖∂nu‖H−1(∂Ω)+ k−2‖∂nu‖L2(∂Ω)

]
.
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Proof. With the single layer and double layer potentials Ṽk and K̃k we have the

representation formula u= Ṽk∂nu−K̃ku. From [59, Lemmata 2.1, 2.2, Theorems 4.1,

4.2] we obtain

‖Ṽk∂nu‖L2(Ω) ≤Ck‖∂nu‖H−1(∂Ω), ‖K̃ku‖L2(Ω) ≤Ck‖u‖L2(∂Ω).

Thus,

‖u‖L2(Ω) ≤Ck
(
‖u‖L2(∂Ω)+ ‖∂nu‖H−1(∂Ω)

)
.

Next, using v= u in the weak formulation (10) yields

‖∇u‖2
L2(Ω) ≤C

[
k2‖u‖2

L2(Ω)+ ‖∂nu‖L2(∂Ω)‖u‖L2(∂Ω)

]

and therefore

‖∇u‖2
L2(Ω)+ k2‖u‖2

L2(Ω) ≤ C
[
k4‖u‖2

L2(∂Ω)+ k4‖∂nu‖2H−1(∂Ω)+ k−4‖∂nu‖2L2(∂Ω)

]
,

which concludes the proof. ⊓⊔

Theorem 2.4. Let Ω ⊂ R
d , d ∈ {2,3} be a bounded Lipschitz domain. Then there

exists C> 0 (independent of k) such that for f ∈ L2(Ω) and g∈ L2(∂Ω) the solution
u ∈ H1(Ω) of (9) satisfies

‖u‖1,k,Ω ≤C
[
k2‖g‖L2(∂Ω)+ k5/2‖ f‖L2(Ω)

]
.

Proof. We first transform the problem to one with homogeneous right-hand side f

in the standard way. A particular solution of the equation (9a) is given by the Newton

potential u0 :=Gk ⋆ f ; here,Gk is a Green’s function for the Helmholtz equation and

we tacitly extend f by zero outside Ω . Then u0 ∈ H2
loc(R

d) and by the analysis of

the Newton potential given in [62, Lemma 3.5] we have

k−1‖u0‖H2(Ω)+ ‖u0‖H1(Ω)+ k‖u0‖L2(Ω) ≤C‖ f‖L2(Ω). (15)

The difference ũ := u− u0 then satisfies

−∆ ũ− k2ũ = 0 in Ω , (16a)

∂nũ+ ikũ = g− (∂nu0+ iku0) =: g̃. (16b)

We have with the multiplicative trace inequality

‖g̃‖L2(∂Ω) ≤ C

[
‖g‖L2(∂Ω)+ ‖u0‖1/2H2(Ω)

‖u0‖1/2H1(Ω)
+ k‖u0‖1/2H1(Ω)

‖u0‖1/2L2(Ω)

]

≤ C
[
‖g‖L2(∂Ω)+ k1/2‖ f‖L2(Ω)

]
. (17)

To get bounds on ũ, we employ Lemma 2.2 and (17) to conclude
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‖ũ‖L2(∂Ω) ≤ Ck−1‖g̃‖L2(∂Ω) ≤C

[
k−1‖g‖L2(∂Ω)+ k−1/2‖ f‖L2(Ω)

]
, (18)

‖∂nũ‖L2(∂Ω) ≤ C
[
‖g̃‖L2(∂Ω)+ k‖ũ‖L2(∂Ω)

]
≤C

[
‖g‖L2(∂Ω)+ k1/2‖ f‖L2(Ω)

]
. (19)

Lemma 2.3 and the generous estimate ‖∂nũ‖H−1(∂Ω) ≤C‖∂nũ‖L2(∂Ω) produce

‖ũ‖H1(Ω)+ k‖ũ‖L2(Ω) ≤ C
[
k2‖g‖L2(∂Ω)+ k5/2‖ f‖L2(Ω)

]
. (20)

Combining (15), (20) finishes the argument. ⊓⊔

The a priori estimate of Theorem 2.4 does not make minimal assumptions on the

regularity of f and g. However, it can be used to obtain estimates on the inf-sup and

hence a priori bounds for f ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω) as we now show:

Theorem 2.5. Let Ω ⊂ R
d , d ∈ {2,3} be a bounded Lipschitz domain. Then there

exists C > 0 (independent of k) such that the sesquilinear form B of (11) satisfies

inf
0 6=u∈H1(Ω)

sup
0 6=v∈H1(Ω)

ReB(u,v)

‖u‖1,k,Ω‖v‖1,k,Ω
≥Ck−7/2. (21)

Furthermore, for every f ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω) the problem (10) is

uniquely solvable, and its solution u ∈ H1(Ω) satisfies the a priori bound

‖u‖1,k,Ω ≤Ck7/2
[
‖ f‖(H1(Ω))′ + ‖g‖H−1/2(∂Ω)

]
. (22)

If Ω is convex or if Ω is star-shaped and has a smooth boundary, then the following,

sharper estimate holds:

inf
0 6=u∈H1(Ω)

sup
0 6=v∈H1(Ω)

ReB(u,v)

‖u‖1,k,Ω‖v‖1,k,Ω
≥Ck−1. (23)

Proof. The proof relies on standard arguments for sesquilinear forms satisfying a

Gårding inequality. For simplicity of notation, we write ‖ · ‖1,k for ‖ · ‖1,k,Ω .

Given u ∈ H1(Ω) we define z ∈H1(Ω) as the solution of

2k2(·,u)L2(Ω) = B(·,z).

Theorem 2.4 implies ‖z‖1,k ≤Ck9/2‖u‖L2(Ω), and v= u+ z satisfies

ReB(u,v) = ReB(u,u)+ReB(u,z) = ‖u‖21,k− 2k2‖u‖2
L2(Ω)+ReB(u,z) = ‖u‖21,k.

Thus,

ReB(u,v) = ‖u‖21,k,
‖v‖1,k = ‖u+ z‖1,k ≤ ‖u‖1,k+ ‖z‖1,k ≤ ‖u‖1,k+Ck9/2‖u‖L2(Ω) ≤Ck7/2‖u‖1,k.
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Therefore,

ReB(u,v) = ‖u‖21,k ≥ ‖u‖1,kCk−7/2‖v‖1,k,
which concludes the proof of (21). Example 2.1 provides unique solvability for (9)

so that (21) gives the a priori estimate (22). Finally, (23) is shown by the same

arguments using (14). ⊓⊔

3 k-explicit regularity theory

3.1 Regularity by decomposition

Since the Sobolev regularity of elliptic problems is determined by the leading order

terms of the differential equation and the boundary conditions, the Sobolev regu-

larity properties of our model problem (9) are the same as those for the Laplacian.

However, regularity results that are explicit in the wavenumber k are clearly of in-

terest; for example, we will use them in Section 4.2 below to quantify how fine the

discretization has to be (relative to k) so that the FEM is stable and quasi-optimal.

The k-explicit regularity theory developed in [61,62] (and, similarly, for integral

equations in [54, 59]) takes the form of an additive splitting of the solution into

a part with finite regularity but k-independent bounds and a part that is analytic

and for which k-explicit bounds for all derivatives are available. Below, we will

present a similar regularity theory for the model problem (9) for polygonalΩ ⊂R
2,

thereby extending the results of [61], which restricted its analysis of polygons to the

convex case. In order to motivate the ensuing developments, we quote from [62] a

result that shows in a simple setting the key features of our k-explicit “regularity by

decomposition”:

Lemma 3.1 ( [62, Lemma 3.5]). Let BR(0)⊂R
d , d ∈ {1,2,3} be the ball of radius

R centered at the origin. Then, there exist C, γ > 0 such that for all k (with k ≥ k0)

the following is true: For all f ∈ L2(Rd) with supp f ⊂ BR(0) the solution u of

−∆u− k2u= f in Rd ,

subject to the Sommerfeld radiation condition

lim
|x|→∞

|x| d−1
2

( ∂u

∂ |x| − iku
)
= 0 for |x| → ∞,

has the following regularity properties:

(i) u|B2R(0) ∈ H2(B2R(0)) and ‖u‖H2(B2R(0))
≤Ck‖ f‖L2(BR(0)).

(ii) u|B2R(0) can be decomposed as u = uH2 + uA for a uH2 ∈ H2(B2R) and an

analytic uA together with the bounds
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k‖uH2‖1,k,B2R(0)+ ‖uH2‖H2(B2R(0))
≤ C‖ f‖L2(BR(0)),

‖∇nuA ‖L2(B2R(0)) ≤ Cγnmax{n,k}n−1‖ f‖L2(BR(0)) ∀n ∈N0.

A few comments concerning Lemma 3.1 are in order. For general f ∈ L2(BR(0)),
one cannot expect better regularity than H2-regularity for the solution u and, in-

deed, both regularity results (i) and (ii) assert this. The estimate (i) is sharp in

its dependence on k as the following simple example shows: For the fundamen-

tal solution Gk (with singularity at the origin) and a cut-off function χ ∈ C∞
0 (R

d)
with suppχ ⊂ B2R(0) and χ ≡ 1 on BR(0), the functions u := (1− χ)Gk and

f := −∆u− k2u satisfy ‖u‖H2(B2R(0))
= O(k2) and ‖ f‖L2(BR(0)) = O(k). Compared

to (i), the regularity assertion (ii) is finer in that its H2-part uH2 has a better k-

dependence. The k-dependence of the analytic part uA is not improved (indeed,

‖uA ‖H2(B2R(0))
≤Ck‖ f‖L2(BR(0))), but the analyticity of uA is a feature that higher

order methods can exploit.

The decomposition in (ii) of Lemma 3.1 is obtained by a decomposition of the

datum f using low pass and high pass filters, i.e., f = Lηk f +Hηk f , where the low

pass filter Lηk cuts off frequencies beyond ηk (here, η > 1) and Hηk eliminates

the frequencies small than ηk. Similar frequency filters will be important tools in

our analysis below as well (see Sec. 3.3.1). The regularity properties stated in (ii)

then follow from this decomposition and the explicit solution formula u = Gk ⋆ f

(see [62, Lemma 3.5] for details).

Lemma 3.1 serves as a prototype for “regularity theory by decomposition”. Sim-

ilar decompositions have been developed recently for several Helmholtz problems

in [61] and [54, 59]. Although they vary in their details, these decomposition are

structurally similar in that they have the form of an additive splitting into a part with

finite regularity with k-independent bounds and an analytic part with k-dependent

bounds. The basic ingredients of these decomposition results are (a) (piecewise)

analyticity of the geometry (or, more generally, the data of the problem) and (b) a

priori bounds for solution operator. The latter appear only in the estimate for the

analytic part of the decomposition, and the most interesting case is that of polyno-

mially well-posed problems.We illustrate the construction of the decomposition for

the model problem (9) in polygonal domains Ω ⊂ R
2. This result is an extension

to general polygons of the results [61], which restricted its attention to the case of

convex polygons. We emphasize that the choice of the boundary conditions (9b) is

not essential for the form of the decomposition and other boundary conditions could

be treated using similar techniques.

3.2 Setting and main result

Let Ω ⊂R
2 be a bounded, polygonal Lipschitz domainwith verticesA j, j= 1, . . . ,J,

and interior angles ω j, j = 1, . . . ,J. We will require the countably normed spaces

introduced in [8,57]. These space are designed to capture important features of solu-
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tions of elliptic partial differential equations posed on polygons, namely, analyticity

of the solution and the singular behavior at the vertices. Their characterization in

terms of these countably normed spaces also permits proving exponential conver-

gence of piecewise polynomial approximation on appropriately graded meshes.

These countably normed spaces are defined with the aid of weight functions

Φ
p,
−→
β ,k

that we now define. For β ∈ [0,1), n ∈ N0, k > 0, and
−→
β ∈ [0,1)J, we set

Φn,β ,k(x) = min



1,

|x|
min

{
1, |n|+1

k+1

}





n+β

,

Φ
n,
−→
β ,k

(x) =
J

∏
j=1

Φn,β j ,k(x−A j). (24)

Finally, we denote by H
1/2
pw (∂Ω) the space of functions whose restrictions of the

edges of ∂Ω are in H1/2.

We furthermore introduce the constantCsol(k) as a suitable norm of the solution

operator for (9). That is, Csol(k) is such that for all f ∈ L2(Ω), g ∈ L2(∂Ω) and
corresponding solution u of (9) there holds

‖u‖1,k,Ω ≤Csol(k)
[
‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

]
. (25)

We recall that Theorem 2.4 gives Csol(k) = O(k5/2) for general polygons and

Csol(k) = O(1) by [56, Prop. 8.1.4] for convex polygons. Our motivation for using

the notation Csol(k) is emphasize in the following theorem how a priori estimates

for Helmholtz problems affect the decomposition result:

Theorem 3.2. Let Ω ⊂ R
2 be a polygon with vertices A j, j = 1, . . . ,J. Then there

exist constants C, γ > 0, β ∈ [0,1)J independent of k ≥ k0 such that for every f ∈
L2(Ω) and g ∈H

1/2
pw (∂Ω) the solution u of (9) can be written as u= uH2 +uA with

k‖uH2‖1,k,Ω + ‖uH2‖H2(Ω) ≤ CC f ,g

‖uA ‖H1(Ω) ≤ (Csol(k)+ 1)C f ,g

k‖uA ‖L2(Ω) ≤ (Csol(k)+ k)C f ,g

‖Φ
n,
−→
β ,k

∇n+2uA ‖L2(Ω) ≤ C(Csol(k)+ 1)k−1max{n,k}n+2γnC f ,g ∀n ∈ N0

with C f ,g := ‖ f‖L2(Ω)+ ‖g‖
H
1/2
pw (∂Ω)

and Csol(k) introduced in (25).

Proof. The proof is relegated to Section 3.4. We mention that the k-dependence of

our bounds on ‖uA ‖L2(Ω) is likely to be suboptimal due to our method of proof. ⊓⊔

Theorem 3.2 may be viewed as the analog of Lemma 3.1, (ii); we conclude this

section with the analog of Lemma 3.1, (i):
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Corollary 3.3. Assume the hypotheses of Theorem 3.2. Then there exist constants

C > 0, β ∈ [0,1)J independent of k such that for all f ∈ L2(Ω), g ∈ H
1/2
pw (∂Ω) the

solution u of (9) satisfies ‖u‖1,k,Ω ≤CCsol(k)
[
‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

]
as well as

‖Φ
0,
−→
β ,k

∇2u‖L2(Ω) ≤Ck(Csol(k)+ 1)

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
.

Proof. The estimate for ‖u‖1,k,Ω expresses (25). The estimate for the second deriva-

tives of u follows from Theorem 3.2 since u= uH2 + uA . ⊓⊔

3.3 Auxiliary results

Just as in the proof of Lemma 3.1, an important ingredient of the proof of Theo-

rem 3.2 are high and low pass filters. The underlying reason is that the Helmholtz

operator −∆ − k2 acts very differently on low frequency and high frequency func-

tions. Here, the dividing line between high and low frequencies is at O(k). For
this reason, appropriate high and low pass filters are defined and analyzed in Sec-

tion 3.3.1. Furthermore, when applied to high frequency functions the Helmholtz

operator behaves similarly to the Laplacian−∆ or the modified Helmholtz operator

−∆ + k2. This latter operator, being positive definite, is easier to analyze and yet

provides insight into the behavior of the Helmholtz operator restricted to high fre-

quency functions. The modified Helmholtz operator will therefore be a tool for the

proof of Theorem 3.2 and is thus analyzed in Section 3.3.3.

3.3.1 High and low pass filters, auxiliary results

For the polygonal domain Ω ⊂ R
2 we introduce for η > 1 the following two low

and high pass filters in terms of the Fourier transform F :

1. The low and high pass filters LΩ ,η f : L2(Ω) → L2(Ω) and HΩ ,η : L2(Ω) →
L2(Ω) are defined by

LΩ ,η f = (F−1χBηk(0)F (EΩ f ))|Ω , HΩ ,η f = (F−1χ
R2\Bηk(0)

F (EΩ f ))|Ω ;

here, Bηk(0) is the ball of radius ηk with center 0, the characteristic function of
a set A is χA, and EΩ denotes the Stein extension operator of [79, Chap. VI].

2. Analogously, we define L∂Ω ,η f : L2(∂Ω) → L2(∂Ω) and H∂Ω ,η : L2(∂Ω) →
L2(∂Ω) in an edgewise fashion. Specifically, identifying an edge e of Ω with

an interval and letting Ee be the Stein extension operator for the interval e⊂ R

to the real line R, we can define with the univariate Fourier transformation F

the operators Le,η and He,η by
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Le,ηg= (F−1χBηk(0)
F (Eeg))|e, He,ηg= (F−1χR\Bηk(0)

F (Ee f ))|e;

the operators L∂Ω ,η andH∂Ω ,η are then defined edgewise by (L∂Ω ,ηg)|e = Le,ηg

and (H∂Ω ,ηg)|e = He,ηg for all edges e⊂ ∂Ω .

These operators provide stable decompositions of L2(Ω) and L2(∂Ω). For example,

one has LΩ ,η +HΩ ,η = Id on L2(Ω) and the bounds

‖LΩ ,η f‖L2(Ω)+ ‖HΩ ,η f‖L2(Ω) ≤C‖ f‖L2(Ω) ∀ f ∈ L2(Ω),

where C > 0 depends solely on Ω (via the Stein extension operator EΩ ). The op-

erators HΩ ,η and H∂Ω ,η have furthermore approximation properties if the function

they are applied to has some Sobolev regularity. We illustrate this for H∂Ω ,η :

Lemma 3.4. Let Ω ⊂ R
2 be a polygon. Then there exists C > 0 independent of k

and η > 1 such that for all g ∈ H
1/2
pw (∂Ω)

k1/2(1+η1/2)‖H∂Ω ,ηg‖L2(∂Ω)+ ‖H∂Ω ,ηg‖H1/2
pw (∂Ω)

≤ C‖g‖
H
1/2
pw (∂Ω)

.

Proof. We only show the estimate for ‖H∂Ω ,ηg‖L2(∂Ω). We consider first the case of

an interval I⊂R. We defineHI,ηg byHI,ηg=F−1χR\Bηk(0)FEIg, where χR\Bηk(0)

is the characteristic function forR\(−ηk,ηk) and EI is the Stein extension operator

for the interval I. Since, by Parseval, F is an isometry on L2(R) we have

‖HI,ηg‖2L2(I) ≤ ‖HI,ηg‖2L2(R) =
∫

R\Bηk(0)
|FEIg|2 dξ

=
∫

R\Bηk(0)

(1+ |ξ |2)1/2
(1+ |ξ |2)1/2 |FEIg|2dξ ≤ 1

(1+(ηk)2)1/2

∫

R

(1+ |ξ |2)1/2|FEIg|2dξ .

The last integral can be bounded by C‖EIg‖2H1/2(R)
. The stability properties of the

extension operator EI then imply furthermore ‖EIg‖H1/2(R) ≤C‖g‖
H1/2(I). In total,

‖HI,ηg‖L2(I) ≤C
1

(1+(ηk)2)1/4
‖g‖

H1/2(I) ≤Ck−1/2(1+η)−1/2‖g‖
H1/2(I),

where, in the last estimate, the constant C depends additionally on k0. From this

estimate, we obtain the desired bound for ‖H∂Ω ,ηg‖L2(∂Ω) by identifying each edge

of Ω with an interval. ⊓⊔

3.3.2 Corner singularities

We recall the following result harking back to the work by Kondratiev and Grisvard:

Lemma 3.5. Let Ω ⊂ R
d be a polygon with vertices A j, j = 1, . . . ,J, and interior

angles ω j, j = 1, . . . ,J. Define for each vertex A j the singularity function S j by
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S j(r j,ϕ j) = r
π/ω j

j cos

(
π

ω j

ϕ j

)
, (26)

where (r j,ϕ j) are polar coordinates centered at the vertex A j such that the edges of

Ω meeting at A j correspond to ϕ j = 0 and ϕ j = ω j. Then every solution u of

−∆u= f in Ω , ∂nu= g on ∂Ω ,

can be written as u= u0+∑J
j=1 a

∆
j ( f ,g)S j with the a priori bounds

‖u0‖H2(Ω)+
J

∑
j=1

|a∆
j ( f ,g)| ≤C

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

+ ‖u‖H1(Ω)

]
. (27)

The a∆
j are linear functionals, and a∆

j = 0 for convex corners A j (i.e., if ω j < π).

Proof. This classical result is comprehensively treated in [38]. ⊓⊔

3.3.3 The modified Helmholtz equation

We consider the modified Helmholtz equation in both a bounded domain with Robin

boundary conditions and in the full space R2. The corresponding solution operators

will be denoted S+Ω and S+
R2 :

1. The operator S+Ω : L2(Ω)×H
1/2
pw (∂Ω)→ H1(Ω) is the solution operator for

−∆u+ k2u= f in Ω , ∂nu+ iku= g on ∂Ω . (28)

2. The operator S+
R2 : L

2(R2)→ H1(R2) is the solution operator for

−∆u+ k2u= f in R2. (29)

Lemma 3.6 (properties of S+Ω ). Let Ω ⊂ R
2 be a polygon and f ∈ L2(Ω), g ∈

H
1/2
pw (∂Ω). Then the solution u := S+Ω ( f ,g) satisfies

‖u‖1,k,Ω ≤ k−1/2‖g‖L2(∂Ω)+ k−1‖ f‖L2(Ω). (30)

Furthermore, there exists C > 0 independent of k and the data f , g, and there exists

a decomposition u= uH2 +∑J
i=1 a

+
i ( f ,g)Si for some linear functionals a

+
i with

‖uH2‖H2(Ω)+
J

∑
i=1

|a+i ( f ,g)| ≤C

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

+ k1/2‖g‖L2(∂Ω)

]
. (31)

Proof. The estimate (30) for ‖u‖1,k,Ω follows by Lax-Milgram– see [61, Lemma 4.6]

for details. Since u satisfies

−∆u= f − k2u in Ω , ∂nu= g− iku on ∂Ω ,
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the standard regularity theory for the Laplacian (see Lemma 3.5) permits us to de-

compose u = uH2 +∑J
i=1 a

∆
i ( f − k2u,g− iku)Si. The continuity of the linear func-

tionals a∆
i reads

J

∑
i=1

|a∆
i ( f − k2u,g− iku)| ≤C

[
‖ f − k2u‖L2(Ω)+ ‖g− iku‖

H
1/2
pw (∂Ω)

]
.

Since ( f ,g) 7→ S+Ω ( f ,g) is linear, the map ( f ,g) 7→ a+i ( f ,g) := a∆
i ( f −k2u,g− iku)

is linear, and (30), (27) give the desired estimates for uH2 and a+i ( f ,g). ⊓⊔

Lemma 3.7 (properties of S+
R2). There exists C > 0 such that for every η > 1 and

every f ∈ L2(R2) whose Fourier transform F f satisfies suppF f ⊂ R
2 \Bηk(0),

the solution u= S+
R2 f of (29) satisfies

‖u‖1,k,R2 ≤ k−1 1√
1+η2

‖ f‖L2(R2), ‖u‖H2(R2) ≤C‖ f‖L2(R2).

Proof. The result follows from Parseval’s theorem and the weak formulation for u

as follows (we abbreviate the Fourier transforms by f̂ = F f and û= Fu):

‖u‖2
1,k,R2 = ( f ,u)L2(R2) = ( f̂ , û)L2(R2)

≤
√∫

R2
(|ξ |2+ k2)−1| f̂ |2 dξ

√∫

R2
(|ξ |2+ k2)|û|2 dξ

=

√∫

R2\Bηk(0)
(|ξ |2+ k2)−1| f̂ |2 dξ‖u‖1,k,R2 ≤ 1

k
√
1+η2

‖ f̂‖L2(R2)‖u‖1,k,R2 ,

where, in the penultimate step, we used the support properties of f̂ . Appealing again

to Parseval, we get the desired claim for ‖u‖1,k,R2 . The estimate for ‖u‖H2(R2) now

follows from f ∈ L2(R2) and the standard interior regularity for the Laplacian. ⊓⊔

3.4 Proof of Theorem 3.2

We denote by S : ( f ,g) 7→ S( f ,g) the solution operator for (9). Concerning some of

its properties, we have the following result taken essentially from [61, Lemma 4.13]:

Lemma 3.8 (analytic regularity of S( f ,g)). Let Ω be a polygon. Let f be analytic

on Ω and g ∈ L2(∂Ω) be piecewise analytic and satisfy for some constants C̃ f , C̃g,

γ f , γg > 0

‖∇n f‖L2(Ω) ≤ C̃ f γ
n
f max{n,k}n ∀n ∈ N0 (32a)

‖∇n
Tg‖L2(e) ≤ C̃gγng max{n,k}n ∀n ∈ N0 ∀e ∈ E , (32b)
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where E denotes the set of edges of Ω and ∇T tangential differentiation. Then there

exist
−→
β ∈ [0,1)J (depending only on Ω ) and constants C, γ > 0 (depending only on

Ω , γ f , γg, k0) such that the following is true for the constant Csol(k) of (25):

‖u‖1,k,Ω ≤ Csol(k)(C̃ f + C̃g) (33)

‖φ
n,
−→
β ,k

∇n+2u‖L2(Ω) ≤ CCsol(k)k
−1(C̃ f + C̃g)γ

nmax{n,k}n+2 ∀n ∈ N0. (34)

Proof. The estimate (33) is simply a restatement of the definition of Csol(k). The
estimate (34) will follow from [57, Prop. 5.4.5]. To simplify the presentation, we

assume by linearity that g vanishes on all edges of Ω with the exception of one edge

Γ . Furthermore, we restrict our attention to the vicinity of one vertex, which we take

to be the origin, we assume Γ ⊂ (0,∞)×{0}, and that near the origin, Ω is above

(0,∞)×{0}, i.e., {(rcosϕ ,r sinϕ) : 0< r< ρ ,0< ϕ <ω} ⊂Ω for some ρ , ω > 0.

Upon setting ε := 1/k, we note that u solves

−ε2∆u− u= ε2 f on Ω , ε2∂nu= ε(εg− iu) on ∂Ω .

On the edge Γ , the function g is the restriction of G1,0(x,y) := g(x)e−y/ε to Γ . The

assumptions on f and g then imply that [57, Prop. 5.4.5] is applicable with the

following choice of constants appearing in [57, Prop. 5.4.5]:

C f = ε2C̃ f , CG1
= εε1/2C̃g, CG2

= ε, Cb = 0, Cc = 1,
γ f = O(1), γG1

= O(1), γG2
= O(1), γb = 0, γc = 0,

resulting in the existence of constantsC, K > 0 and
−→
β ∈ [0,1)J with

‖Φ
n,
−→
β ,k

∇n+2u‖L2(Ω) ≤CKn+2max{n+ 2,k}n+2
(
k−2C̃ f + k−1‖u‖1,k,Ω + k−3/2C̃g

)

for all n ∈ N0. We conclude the argument by inserting (33) and estimating gener-

ously k−1C̃ f + k−1/2C̃g ≤C
(
C̃ f + C̃g

)
.

We remark that this last generous estimate comes from the precise form of our

stability assumption (25). Its form (25) is motivated by the estimates available for

the star-shaped case, but could clearly be replaced with other assumptions. ⊓⊔

Corollary 3.9 (analytic regularity of S(LΩ ,η f ,L∂Ω ,ηg)). Let Ω be a polygon and

η > 1. Then there exist β ∈ [0,1)J (depending only on Ω ) and C, γ > 0 (depending

only on Ω , k0, and η > 1) such that for every f ∈ L2(Ω) and g ∈ L2(∂Ω), the
function u= S(LΩ ,η f ,L∂Ω ,ηg) satisfies with C f ,g := ‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

‖u‖1,k,Ω ≤ CCsol(k)C f ,g (35)

‖Φ
n,
−→
β ,k

∇n+2u‖L2(Ω) ≤ CCsol(k)k
−1γnmax{n,k}n+2C f ,g ∀n ∈ N0. (36)

Proof. The definitions of LΩ ,η f and L∂Ω ,η imply with Parseval
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‖∇nLΩ ,η f‖L2(Ω) ≤ C(ηk)n‖ f‖L2(Ω) ∀n ∈ N0,

‖∇n
TL∂Ω ,ηg‖L2(∂Ω) ≤ C(ηk)n‖g‖L2(∂Ω) ∀n ∈N0,

where again ∇T is the (edgewise) tangential gradient. The desired estimates now

follow from Lemma 3.8. ⊓⊔

Key to the proof of Theorem 3.2 is the following contraction result:

Lemma 3.10 (contraction lemma). Let Ω ⊂ R
2 be a polygon. Fix q ∈ (0,1). Then

one can find
−→
β ∈ [0,1)J (depending solely on Ω ) and constants C, γ > 0 indepen-

dent of k such that for every f ∈ L2(Ω) and every g ∈ H
1/2
pw (∂Ω), the solution u of

(9) can be decomposed as u= uH2 +∑J
i=1ai( f ,g)Si+uA + r, where uH2 ∈ H2(Ω),

the ai are linear functionals, and uA ∈C∞(Ω). These functions satisfy

k‖uH2‖1,k,Ω + ‖uH2‖H2(Ω)+
J

∑
i=1

|ai( f ,g)| ≤C

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
,

‖uA ‖1,k,Ω ≤CCsol(k)
[
‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

]
,

‖Φ
n,
−→
β ,k

∇n+2uA ‖L2(Ω) ≤CCsol(k)k
−1γnmax{n,k}n+2

[
‖ f‖L2(Ω)+ ‖g‖L2(∂Ω)

]

for all n ∈ N0. Finally, the remainder r satisfies

−∆r− k2r = f̃ on Ω , ∂nr+ ikr = g̃

for some f̃ ∈ L2(Ω) and g̃ ∈ H
1/2
pw (∂Ω) with

‖ f̃‖L2(Ω)+ ‖g̃‖
H
1/2
pw (∂Ω)

≤ q

(
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

)
.

Proof. We start by decomposing ( f ,g) = (LΩ ,η f ,L∂Ω ,ηg)+(HΩ ,η f ,H∂Ω ,ηg) with
a parameter η > 1 that will be selected below. We set

uA := S(LΩ ,η f ,L∂Ω ,ηg), u1 := S+
R2(HΩ ,η f ),

where we tacitly extended HΩ ,η f (which is only defined on Ω ) by zero outside

Ω . Then uA satisfies the desired estimates by Corollary 3.9. For u1 we have by

Lemma 3.7 and the stability ‖HΩ ,η f‖L2(Ω) ≤ C‖ f‖L2(Ω) (we note that C > 0 is

independent of k and η) the a priori estimates

‖u1‖1,k,R2 ≤ Ck−1(1+η2)−1/2‖HΩ ,η f‖L2(Ω) ≤Ck−1(1+η)−1‖ f‖L2(Ω),

‖u1‖H2(R2) ≤ C‖HΩ ,η f‖L2(Ω) ≤C‖ f‖L2(Ω).

The trace and the multiplicative trace inequalities imply for g1 := ∂nu1+ iku1:

k1/2(1+η)1/2‖g1‖L2(∂Ω)+ ‖g1‖
H
1/2
pw (∂Ω)

≤ C‖ f‖L2(Ω).
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For g2 := H∂Ω ,ηg− g1 we then get from Lemma 3.4 and the triangle inequality

k1/2(1+η)1/2‖g2‖L2(∂Ω)+ ‖g2‖
H
1/2
pw (∂Ω)

≤ C

[
‖g‖

H
1/2
pw (∂Ω)

+ ‖ f‖L2(Ω)

]
.

Lemma 3.6 yields for u2 := S+Ω (0,g2),

‖u2‖1,k,Ω ≤Ck−1/2‖g2‖L2(∂Ω) ≤Ck−1(1+η)−1/2

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
,

and furthermore we can write u2 = uH2 +∑J
i=1 a

+
i (0,g2)Si, with

‖uH2‖H2(Ω)+
J

∑
i=1

|a+i (0,g2)| ≤C

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
.

We then define ai( f ,g) := a+i (0,g2) and note that ( f ,g) 7→ ai( f ,g) is linear by lin-

earity of the maps a+i and ( f ,g) 7→ g2. The above shows that uH2 and the ai satisfy

the required estimates. Finally, the function ũ := u− (uA + u1+ u2) satisfies

−∆ ũ− k2ũ= 2k2(u1+ u2) =: f̃ , ∂nũ+ ikũ= 0=: g̃,

together with

‖ f̃‖L2(Ω) ≤ 2k2
(
‖u1‖L2(Ω)+ ‖u2‖L2(Ω)

)
≤C(1+η)−1/2

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
.

Hence, selecting η > 1 sufficiently large so that for the chosen q ∈ (0,1) we have
C(1+η)−1/2 ≤ q allows us to conclude the proof. ⊓⊔

Proof of Theorem 3.2. The contraction property of Lemma 3.10 can be restated

as S( f ,g) = uH2 +∑J
i=1 ai( f ,g)Si + uA + S( f̃ , g̃), where, for a chosen q ∈ (0,1),

we have ‖ f̃‖L2(Ω) + ‖g̃‖
H
1/2
pw (∂Ω)

≤ q

[
‖ f‖L2(Ω)+ ‖g‖

H
1/2
pw (∂Ω)

]
together with ap-

propriate estimates for uH2 , ai( f ,g), and uA . This consideration can be repeated

for S( f̃ , g̃). We conclude that a geometric series argument can be employed to write

u = S( f ,g) = uH2 +∑J
i=1 ãi( f ,g)Si+ ũA , where uH2 ∈ H2(Ω), ũA ∈ C∞(Ω), and

the coefficients ãi are in fact linear functionals of the data ( f ,g). Furthermore, we

have with the abbreviationC f ,g := ‖ f‖L2(Ω)+ ‖g‖
H
1/2
pw (∂Ω)

‖ũA ‖1,k,Ω ≤CC f ,g

‖Φ
n,
−→
β ,k

∇n+2ũA ‖L2(Ω) ≤CCsol(k)k
−1C f ,gγnmax{n,k}n+2 ∀n ∈ N0,

k‖uH2‖1,k,Ω + ‖uH2‖H2(Ω)+
J

∑
i=1

|ãi( f ,g)| ≤CC f ,g.
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Finally, Lemma 3.11 below allows us to absorb the contribution ∑J
i=1 ãi( f ,g)Si in

the analytic part by setting uA := ũA +∑J
i=1 ãi( f ,g)Si. In view of βi < 1, we have

2−βi ≥ 1 and arrive at

‖uA ‖H1(Ω) ≤ C(Csol(k)+ 1)C f ,g, k‖uA ‖L2(Ω) ≤CC f ,g(Csol(k)+ k),

‖Φ
n,
−→
β ,k

∇n+2uA ‖L2(Ω) ≤ CC f ,g

[
Csol(k)k

−1+ k−1
]
max{n,k}n+2 ∀n ∈ N0,

which concludes the argument. ⊓⊔
Lemma 3.11. Let βi ∈ [0,1) satisfy βi> 1− π

ωi
. Then, for someC, γ > 0 independent

of k, the singularity functions Si of (26) satisfy ‖Si‖H1(Ω) ≤C and

‖Φ
n,
−→
β ,k

∇n+2Si‖L2(Ω) ≤ Ck−(2−βi)γnmax{n,k}n+2 ∀ ∈ N0

Proof. Follows by a direct calculation. See Lemma A.3 for details. ⊓⊔

4 Stability of Galerkin discretizations

4.1 Abstract results

We consider the model problem (9) and a sequence (VN)N∈N ⊂ H1(Ω) of finite-
dimensional spaces. Furthermore, we assume that (VN)N∈N is such that for every

v ∈ H1(Ω) we have limN→∞ infvN∈VN ‖v− vN‖H1(Ω) = 0. The conforming approxi-

mations uN to the solution u of (9) are then defined by:

Find uN ∈VN s.t. B(uN ,v) = l(v) ∀v ∈VN . (37)

Since the sesquilinear form B satisfies a Gårding inequality, general functional an-

alytic argument show that asymptotically, the discrete problem (37) has a unique

solution uN and are quasi-optimal (see, e.g., [73, Thm. 4.2.9], [74]). More precisely,

there exist N0 > 0 andC > 0 such that for all N ≥ N0

‖u− uN‖1,k,Ω ≤C inf
v∈VN

‖u− v‖1,k,Ω . (38)

This general functional analytic argument does not give any indication of how C

and N0 depend on discretization parameters and the wavenumber k. Inspection of

the arguments reveals that it is the approximation properties of the spacesVN for the

approximation of the solution of certain adjoint problems that leads to the quasi-

optimality result (38). For the reader’s convenience, we repeat the argument, which

has been used previously in, e.g., [6, 13, 56, 61, 62, 72, 74] and is often attributed to

Schatz, [74]:

Lemma 4.1 ( [61, Thm. 3.2]). Let Ω ⊂ R
d be a bounded Lipschitz domain and B

be defined in (11). Denote by S⋆ : L2(Ω) → H1(Ω) the solution operator for the
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problem

Find u⋆ ∈ H1(Ω) s.t. B(v,u⋆) = (v, f )L2(Ω) ∀v ∈ H1(Ω). (39)

Define the adjoint approximation property η(VN) by

η(VN) := sup
f∈L2(Ω)

inf
v∈VN

‖S⋆( f )− v‖1,k,Ω
‖ f‖L2(Ω)

.

If, for the continuity constant CB of (12), the space VN satisfies

2CBkη(VN)≤ 1, (40)

then the solution uN of (37) exists and satisfies

‖u− uN‖1,k,Ω ≤ 2 inf
v∈VN

‖u− v‖1,k,Ω . (41)

Proof. We will not show existence of uN but restrict our attention on the quasi-

optimality result (41); we refer to [54, Thm. 3.9] for the demonstration that (41) in

fact implies existence and uniqueness of uN . Letting e = u− uN be the error, we

start with an estimate for ‖e‖L2(Ω): Using the definition of the operator S⋆ and the

Galerkin orthogonality satisfied by e, we have for arbitrary v ∈VN

‖e‖2
L2(Ω) = (e,e)L2(Ω) = B(e,S⋆e) = B(e,S⋆e− v)≤CB‖e‖1,k,Ω‖S⋆e− v‖1,k,Ω .

Infimizing over all v ∈VN yields with the adjoint approximation property η(VN)

‖e‖L2(Ω) ≤CBη(VN)‖e‖1,k,Ω .

The Gårding inequality and the Galerkin orthogonality yield for arbitrary v ∈VN :

‖e‖21,k,Ω = ReB(e,e)+ 2k2‖e‖2
L2(Ω) = ReB(e,u− v)+ 2k2‖e‖2

L2(Ω)

≤ CB‖e‖1,k,Ω‖u− v‖1,k,Ω +(CBkη(VN))
2 ‖e‖21,k,Ω .

The assumptionCBkη(VN)≤ 1/2 allows us to rearrange this bound to get ‖e‖1,k,Ω ≤
2CB‖u− v‖1,k,Ω . Since v ∈VN is arbitrary, we arrive at (41). ⊓⊔
Lemma 4.1 informs us that the convergence analysis for the Galerkin discretization

of (9) can be reduced to the study of the adjoint approximation property η(VN),
which is purely a question of approximation theory. In the context of piecewise

polynomial approximation spaces VN this requires a good regularity theory for the

operator S⋆. The strong form of the equation satisfied by u⋆ := S⋆ f is

−∆u⋆− k2u⋆ = f in Ω , ∂nu
⋆− iku⋆ = 0 on ∂Ω , (42)

which is again a Helmholtz problem of the type considered in Section 3. More for-

mally, with the solution operator S of Section 3, we have S⋆ f = S( f ,0), where an
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overbar denotes complex conjugation. Thus, the regularity theory of Section 3 is

applicable.

4.2 Stability of hp-FEM

The estimates of Theorem 3.2 suggest that the effect of the corner singularities is

essentially restricted to an O(1/k)-neighborhood of the vertices. This motivates us

to consider meshes that are refined in a small neighborhood of the vertices. To fix

ideas, we restrict our attention to meshes T
geo

h,L that are obtained in the following

way: First, a quasi-uniform triangulation Th with mesh size h is selected. Then,

the elements abutting the vertices A j, j = 1, . . . ,J, are refined further with a mesh

that is geometrically graded towards these vertices. These geometric meshes have L

layers and use a grading factor σ ∈ (0,1) (see [77, Sec. 4.4.1] for a precise formal

definition). Furthermore, for any regular, shape-regular mesh T , we define

Sp(T ) := {u ∈ H1(Ω) : u|K ∈ Pp ∀K ∈ T }, (43)

where Pp denotes the space of polynomials of degree p. We now show that on

the geometric meshes T
geo
h,L , stability of the FEM is ensured if the mesh size h and

the polynomial degree p satisfy the scale resolution condition (6) and, additionally,

L= O(p) layers of geometric refinement are used near the vertices:

Theorem 4.2 (quasi-optimality of hp-FEM). LetT
geo

h,L denote the geometric meshes

on the polygon Ω ⊂R
2 as described above. Fix c3 > 0. Then there are constants c1,

c2 > 0 depending solely on Ω and the shape-regularity of the mesh T
geo
h,L such that

the following is true: If h, p, and L satisfy the conditions

kh

p
≤ c1 and p≥ c2 logk and L≥ c3p (44)

then the hp-FEMbased on the space Sp(T geo
h,L ) has a unique solution uN ∈ Sp(T geo

h,L )
and

‖u− uN‖1,k,Ω ≤ 2 inf
v∈Sp(T geo

h,L )
‖u− v‖1,k,Ω . (45)

Proof. By Lemma 4.1, we have to estimate kη(VN) with VN = Sp(T geo
h,L ). Recalling

the definition of η(VN)we let f ∈ L2(Ω) and observe that we can decompose S⋆ f =
uH2 + uA , where uH2 and uA satisfy the bounds

‖uH2‖H2(Ω) ≤ C‖ f‖L2(Ω),

‖Φ
n,
−→
β ,k

∇n+2uA ‖L2(Ω) ≤ C(Csol(k)+ 1)k−1γnmax{k,n}n+2‖ f‖L2(Ω) ∀n ∈ N0.

Piecewise polynomial approximation on T
geo
h,L as discussed in [61, Prop. 5.6] gives

under the assumptions kh/p ≤ C and L ≥ c3p: (inspection of the proof of [61,
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Prop. 5.6] shows that only bounds on the derivatives of order≥ 2 are needed):

inf
v∈VN

‖uH2 − v‖1,k,Ω ≤ C
h

p
‖ f‖L2(Ω),

inf
v∈VN

‖uA − v‖1,k,Ω ≤ C

[
(kh)1−βmaxeckh−bp+

(
kh

σ0p

)p]
(Csol(k)+ 1)‖ f‖L2(Ω),

where βmax =max j=1,...,J β j < 1, andC, c, b> 0 are constants independent of h, p,

and k. From this, we can easily infer

kη(VN)≤C

{
kh

p
+ k(Csol(k)+ 1)

[
(kh)1−βmaxeckh−bp+

(
kh

σ0p

)p]}
.

Noting that Theorem 2.4 givesCsol(k) =O(k5/2), and selecting c1 sufficiently small

as well as c2 sufficient large allows us to make kη(VN) so small that the condition

(40) in Lemma 4.1 is satisfied. ⊓⊔

Corollary 4.3 (exponential convergence on geometric meshes). Let f be analytic

on Ω and g be piecewise analytic, i.e., f , g satisfy (32). Given c3 > 0, there exist

c1, c2 > 0 such that under the scale resolution conditions (44) of Theorem 4.2, the

finite element approximation uN ∈ Sp(T geo
h,L ) exists, and there are constantsC, b> 0

independent of k such that the error u− uN satisfies

‖u− uN‖1,k,Ω ≤Ce−bp.

Proof. In view of Theorem 4.2, estimating ‖u− uN‖1,k,Ω is purely a question of

approximability for c1 sufficiently small and c2 sufficiently large. Lemma 3.8 gives

that the solution u = S( f ,g) satisfies the bounds given there and, as in the proof of

Theorem 4.2, we conclude from [61, Prop. 5.6] (more precisely, this follows from

its proof)

inf
v∈VN

‖uA − v‖1,k,Ω ≤ C

[
(kh)1−βmaxeckh−bp+

(
kh

σ0p

)p]
(Csol(k)+ 1)(C̃ f + C̃g).

Theorem 2.4 asserts Csol(k) = O(k5/2), which implies the result by suitably adjust-

ing c1 and c2 if necessary. ⊓⊔

Remark 4.4. 1. The problem size N = dimSp(T geo
h,L ) is N =O((L+h−2)p2). The

particular choice of L = c3p layers of geometric refinement, approximation

order p = c2 logk, and mesh size h = c1p/k in Theorem 4.2 ensures quasi-

optimality of the hp-FEM with problem size N = O(k2), i.e., quasi-optimality

can be achieved with a fixed number of degrees of freedom per wavelength.

2. The sparsity pattern of the system matrix is that of the classical hp-FEM, i.e.,

each row/column has O(p2) non-zero entries. Noting that the scale resolution

conditions (6), (44) require p = O(logk), we see that the number of non-zero

entries entries per row/column is not independent of k. It is worth relating this



On stability of discretizations of the Helmholtz equation (extended version) 25

observation to [12]. It is shown there for a model problem in 2D that no 9 point

stencil can be found that leads to a pollution-free method.

3. Any space VN that contains Sp(T
geo

h,L ), where h, p, and L satisfy the scale reso-

lution condition (44) also features quasi-optimality.

4. The factor 2 on the right-hand side of (45) is arbitrary and can be replaced by

any number greater than 1.

5. The stability analysis of Theorem 4.2 requires quite a significant mesh refine-

ment near the vertices, namely, L ∼ p. It is not clear whether this is an artifact

of the proof. For a more careful numerical analysis of this issue, more detailed

information about the stability properties of the solution operator S is needed,

e.g., estimates for ‖S( f ,g)‖1,k,B1/k(A j).

4.3 Numerical examples: hp-FEM

All calculations reported in this section are performed with the hp-FEM code NET-

GEN/NGSOLVE by J. Schöberl, [75, 76].

Example 4.5. In this 2D analog of Example 1.1, we consider the model problem

(9) with exact solution being a plane wave ei(k1x+k2y), where k1 = −k2 =
1√
2
k and

k ∈ {4,40,100,400}. For fixed p ∈ {1,2,3}, we show in Fig. 2 the performance

of the h-version FEM for p ∈ {1,2,3} on quasi-uniform meshes by displaying the

relative error in the H1-seminorm versus the number of degrees of freedom per

wavelength. We observe that higher order methods are less prone to pollution. We

note that the meshes are quasi-uniform, i.e., no geometric mesh refinement near the

vertices is performed in contrast to the requirements of Theorem 4.2.

Example 4.6. On the L-shaped domainΩ = (−1,1)2\(0,1)×(−1,0)with Γ being

the union of the two edges meeting at (0,0), we consider

−∆u− k2u= 0 in Ω , ∂nu= 0 on Γ , ∂nu− iku= g on ∂Ω \Γ , (46)

where the Robin data g are such that the exact solution is u(x,y) = ei(k1x+k2y)

with k1 = −k2 =
1√
2
k, and k ∈ {10,100,1000}. We consider two kinds of meshes,

namely, quasi-uniform meshes Th with mesh size h such that kh ≈ 4 and meshes

T geo that are geometrically refined near the origin. The meshes T geo are derived

from the quasi-uniform mesh Th by introducing a geometric grading on the ele-

ments abutting the origin; the grading factor is σ = 0.125 and the number of refine-

ment levels is L = 10. Fig. 3 shows the relative errors in the H1-seminorm for the

p-version of the FEM where for fixed mesh the approximation order p ranges from

1 to 10. It is particularly noteworthy that the refinement near the origin has hardly

any effect on the convergence behavior of the FEM; this is quite in contrast to the

stability result Theorem 4.2, which requires geometric refinement near all vertices

of Ω .
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Fig. 2 Top: h-FEM with p = 1 (left) and p = 2 (right) as described in Example 4.5. Bottom left:

h-FEM with p = 3 as described in Example 4.5. Bottom right: p-FEM for singular solution on

quasi-uniform mesh as described in Example 4.7.

Example 4.7. The geometry and the boundary conditions are as described in Exam-

ple 4.6. The data g are selected such that the exact solution is u = J2/3(kr)cos
2
3ϕ ,

where (r,ϕ) denote polar coordinates and Jα is a first kind Bessel function. k ∈
{1,10,20,100,200}. Our calculations are p-FEMs with p ∈ {1, . . . ,10} on the qua-
siuniform mesh Th described in Example 4.7. The results are displayed in the bot-

tom right part of Fig. 2. The numerics illustrate that the singularity at the origin

is rather weak: we observe that the asymptotic algebraic convergence behavior is

|u− uN|H1(Ω) ≈Ckp
−4/3|u|H1(Ω), where the constantCk depends favorably on k.

4.4 Stability of Partition of Unity Method/Generalized FEM

The abstract stability result of Lemma 4.1 only assumes certain approximation prop-

erties of the spaces VN . Particularly in an “h-version” setting, even non-polynomial,

operator-adapted spaces may have sufficient approximation properties to ensure the

important condition (40) for stability. We illustrate this effect for the PUM/gFEM,
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Fig. 3 p-FEM for plane wave solution as described in Example 4.6. Left: quasiuniform mesh Th

with kh ≈ 4. Right: Mesh T geo obtained from Th by strong geometric refinement near origin.

[56, 60] with local approximation spaces consisting of systems of plane waves or

generalized harmonic polynomials (see Section 5 below) and the classical FEM

shape functions as the partition of unity. The key observation is that for h sufficiently

small, the resulting space has approximation properties similar to the classical (low

order) FEM space:

Lemma 4.8. Let T be a shape-regular triangulation of the polygon Ω ⊂ R
2. Let

h be its mesh size; let (xi)
M
i=1 be the nodes of the triangulation and (ϕi)

M
i=1 be the

piecewise linear hat functions associated with the nodes (xi)
M
i=1. Assume kh ≤ C1

for some C1 > 0. Let Vmaster be either the space V
p
GHP with p ≥ 0 (see (49) below)

or the space W
p
PW with p ≥ 2 (see (50) below). Define, for each i = 1, . . . ,M, the

local approximation Vi by Vi := span{b(x− xi) : b ∈Vmaster}. Then the space VN :=

∑M
i=1 ϕiVi has the following approximation property: There exists C > 0 depending

only on the shape regularity of T , the constant C1, and V
master such that

inf
v∈VN

‖u−v‖L2(Ω)+h‖u−v‖H1(Ω) ≤C
[
h2‖u‖H2(Ω)+(kh)2‖u‖L2(Ω)

]
∀u∈H2(Ω).

Proof. We first show that each local space Vi has an element ψi ∈Vi with

h‖∇ψi‖L∞(ω̃i)
+ ‖1−ψi‖L∞(ω̃i)

≤Capp(kh)
2 (47)

for some Capp > 0 independent of i and h; here, ω̃i = suppϕi has diameter O(h).
It suffices to show (47) for the set Vmaster. For the space of generalized har-

monic polynomials, this follows from J0(kr) = 1+O((kr)2), and for the space

of plane waves, Taylor expansion shows that for p = 2m (m ∈ N) the function
1
2

[
eikx+ e−ikx

]
= 1+O((kx)2) has the desired property whereas for odd p= 2m+1

(m ∈ N) the observation

eikω0·x− 1

2c

[
eikωm·x+ eikωm+1·x

]
=

(
1− 1

c

)
+O((kh)2), c= cos

2πm

2m+ 1
,
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can be utilized to construct ψi. We recall (see, e.g., [18, Thm. 4.8.7]) that for each

u ∈ H2(Ω) there is a function w= ∑iw(xi)ϕi ∈ S1(Th) with

‖w‖L2(Ω) ≤C‖u‖L2(Ω), ‖w‖H1(Ω) ≤C‖u‖H1(Ω), (48a)

‖u−w‖L2(Ω) ≤Ch2‖u‖H2(Ω), ‖u−w‖H1(Ω) ≤Ch‖u‖H2(Ω). (48b)

Upon setting v := ∑iwi(xi)ψiϕi ∈ VN , we get in view of ∑i ϕi ≡ 1 for the error

u− v= u−∑iwi(xi)ψiϕi = (u−w)+∑i ϕiw(xi)(1−ψi). The estimates (48) imply

‖u−w‖L2(Ω)+ h‖u−w‖H1(Ω) ≤Ch2‖u‖H2(Ω). For the sum, we have

‖∑
i

wi(xi)(1−ψi)ϕi‖L2(Ω) ≤ C(kh)2‖w‖L2(Ω) ≤C(kh)2‖u‖L2(Ω),

h‖∇∑
i

wi(xi)(1−ψi)ϕi‖L2(Ω) ≤ C(kh)2‖w‖L2(Ω) ≤C(kh)2‖u‖L2(Ω),

which concludes the proof. ⊓⊔

Remark 4.9. The approximation result of Lemma 4.8 can generalized in various

directions. For example, interpolation arguments allow one to construct, for v ∈
H1+θ (Ω) with θ ∈ (0,1) an approximation vapp ∈ VN such that ‖v− vapp‖L2(Ω)+

h‖v− vapp‖H1(Ω) ≤ C1

(
h1+θ +(kh)2hθ

)
‖v‖H1+θ (Ω)+C2(kh)

2‖u‖L2(Ω). (We refer

the reader to the Appendix for the proof of this results.) Furthermore, the approxi-

mation result of Lemma 4.8 can be localized, which is of interest if T is not quasi-

uniform.

Lemma 4.8 shows that the spaceVN , which is derived from solutions of the homoge-

neous Helmholtz equation, nevertheless has some approximation power for arbitrary

functions with some Sobolev regularity. Hence, the condition (40) can be met for

sufficiently small mesh sizes:

Corollary 4.10 ( [56, Prop. 8.2.7]). Assume the hypotheses of Lemma 4.8; in par-

ticular, let the space VN be constructed from systems of plane waves or generalized

harmonic polynomials. Assume additionally that Ω is a convex polygon. Then there

exists C> 0 independent of k such that for k2h≤C the Galerkin method for (9) with

f = 0 is quasi-optimal, i.e., the solution uN ∈VN of (37) exists and satisfies

‖u− uN‖1,k,Ω ≤ 2 inf
v∈VN

‖u− v‖1,k,Ω .

Proof. In view of Lemma 4.1, we have to estimate η(VN). To that end, we consider
(9) with f ∈ L2(Ω) and g= 0. In view of the convexity of Ω , we haveCsol(k) =O(1)
and elliptic regularity then yields for the solution u of (9)

‖u‖1,k,Ω + k−1‖u‖H2(Ω) ≤C‖ f‖L2(Ω).

This allows us to conclude with Lemma 4.8 that
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inf
v∈VN

‖u− v‖1,k,Ω ≤ C

[
(kh2+ h)‖u‖H2(Ω)+(k(kh)2+ k2h)‖u‖L2(Ω)

]

≤ C((kh)2+ kh))‖ f‖L2(Ω) ≤Ckh(1+ kh)‖ f‖L2(Ω).

Hence, kη(VN) can be made sufficiently small if k2h is sufficiently small. We point

out that convexity of Ω is assumed for convenience—under more stringent condi-

tions on the mesh size h, quasioptimality holds for general polygons. ⊓⊔

5 Approximation with plane, cylindrical, and spherical waves

Systems of functions that are solutions of a (homogeneous) differential equation are

often called “Trefftz systems”. Prominent examples in the context of the Helmholtz

equation are, in the two-dimensional setting, “generalized harmonic polynomials”

and systems of plane waves given by

V
p
GHP := span{Jn(kr)einϕ : − p≤ n≤ n}, (49)

W
p
PW := span{eikωn·(x,y) : n= 0, . . . , p− 1}, ωn = (cos

2πn

p
,sin

2πn

p
);(50)

here, Jn is a first kind Bessel function, the functions in V
p
GHP are described in polar

coordinates and the functions of W
p
PW in Cartesian coordinates. We point out that

analogous systems can be developed in 3D. These functions are solutions of the ho-

mogeneous Helmholtz equation. For the approximation of a function u that satisfies

the homogeneous Helmholtz equation on a domain Ω ⊂ R
2, one may study the “p-

version”, i.e., study how well u can be approximated from the spaces V
p
GHP orW

p
PW

as p → ∞; alternatively, one may study the “h-version”, in which, for fixed p, the

approximation properties of the spaces V
p
GHP orW

p
PW are expressed in terms of the

diameter h= diamΩ of a domain under consideration. In the way of illustration, we

present two types of results:

Lemma 5.1 ( [56]). Let Ω ⊂ R
2 be a simply connected domain and Ω ′ ⊂⊂ Ω be

a compact subset. Let u solve −∆u− k2u = 0 on Ω . Then there exist constants C,

b> 0 (possibly depending on k) such that for all p≥ 2:

inf
v∈V p

GHP

‖u− v‖H1(Ω ′) ≤Ce−bp, inf
v∈W p

PW

‖u− v‖H1(Ω ′) ≤Ce−bp/ ln p.

Proof. See, e.g., [56] or [58, Thm. 5.3]. ⊓⊔

Remark 5.2. Analogs of Lemma 5.1 hold if u has only some finite Sobolev regular-

ity. Then, the convergence rates are algebraic, [56], [58, Thm. 5.4], [42].

The approximation properties of the spacesV
p
GHP andW

p
PW can be also be studied in

an h-version setting:
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Proposition 5.3 ( [42, Thm. 3.2.2]). Let Ω ⊂ R
2 be a domain with diameter h and

inscribed circle of radius ρh. Let p = 2µ + 1. Assume kh ≤ C1. Then there exist

Cp > 0 (depending only on C1, ρ > 0, m, and p) and v ∈W
2µ+1
PW such that

‖u− v‖ j,k,Ω ,Σ ≤Cph
µ− j+1‖u‖µ+1,k,Ω ,Σ , 0≤ j ≤ µ + 1,

where ‖v‖2j,k,Ω ,Σ = ∑
j
m=0 k

2( j−m)|v|2
Hm(Ω).

Several comments concerning Proposition 5.3 are in order:

1. The constantCp in Proposition 5.3 depends favorably on p, and its dependence

on p can be found in [42, Thm. 3.2.3].

2. Proposition 5.3 is formulated for the space W
p
PW of plane waves—analogous

results are valid for generalized harmonic polynomials, see [42, Thm. 2.2.1] for

both the h and hp-version.

3. Proposition 5.3 is formulated for the two-dimensional case. Similar results are

available in 3D, [42].

4. The approximation properties of plane waves in terms of the element size have

previously been studied in slightly different norms in [20].

Remark 5.4. Plane waves and generalized harmonic polynomials represent by no

means the only operator adapted system used in practice. Especially for polygo-

nal domains, the functions Jnα(kr)sin(αnϕ), n ∈ N, or Jnα(kr)sin(αnϕ), n ∈ N0,

for suitable α can combine good approximation properties with the option to re-

alize homogeneous boundary conditions, [14]. Further possibilities include linear

combinations of fundamental solutions or, more generally, discretizations of layer

potentials. We refer to [14] for a concrete example.

6 Stability of Least Squares and DG methods

Discrete stability in Section 4 is obtained from stability of the continuous prob-

lem by a perturbation argument. This approach does not seem to work very well

if one aims at using approximation spaces that have special features linked to the

differential equation under consideration. The reason can be seen from the proof of

Lemma 4.1: The adjoint approximation property η(VN) (which needs to be small)

measures how well certain solutions to the inhomogeneous equation can be approx-

imated from the test space. If the ansatz space is based on solutions of the homoge-

neous equation, then its capabilities to approximate solutions of the inhomogeneous

equation are clearly limited. In an h-version, the situation is not as severe as we have

just seen in Section 4.4 for the PUM/gFEM. In a pure p-version setting, however,

the techniques of Section 4.4 do not seem applicable.

An option is to leave the setting of Galerkin methods and to work with formu-

lations with built-in stability properties. Such approaches can often be understood

as minimizing some residual norm, which then provides automatically stability and
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quasi-optimality (in this residual norm). We will illustrate this procedure here by

two examples, namely, Least Squares methods and DG-methods. Our presentation

will highlight an issue stemming from this approach, namely, the fact that error es-

timates in this residual norm do not easily lead to error estimates in more classical

norms such as the L2(Ω)-norm.

6.1 Some notation for spaces of piecewise smooth functions

Let T be a regular, shape-regular triangulation of the polygon Ω ⊂R
2. We decom-

pose the set of edges E as E = EI∪̇EB, where EI is the set of edges in Ω and EB

consists of the edges on ∂Ω . For functions u : Ω → R and σ : Ω → R
2 that are

smooth on the elements K ∈T , we define the jumps and averages as it is customary

in DG-settings:

• For e ∈ EI , let K
+
e and K−

e be the two elements sharing e and denote by n+ and

n− the normal vectors on e pointing out of K+
e and K−

e . Correspondingly, we let

u+, u− and σ+ and σ− be traces on e of u and σ from K+
e and K−

e . We set:

{{u}}|e :=
1

2

(
u++ u−

)
, {{σ}}|e :=

1

2

(
σ++σ−) ,

[[u]]|e := u+n++ u−n−, [[σ ]]|e := σ+ ·n++σ− ·n−.

• For boundary edges e ∈ EB we define

{{σ}}|e := σ |e [[u]]|e := u|en

With this notation, one can conveniently rearrange certain sums over edges:

Lemma 6.1 (“DG magic formula”). Let v : Ω → R and σ : Ω → R
2 be piecewise

smooth on the triangulation T . Then:

∑
K∈T

∫

∂K
vσ ·n=

∫

EI

[[v]] · {{σ}}+
∫

EI

{{v}} · [[σ]]+
∫

EB

[[v]] · {{σ}},

where
∫
EI

and
∫
EB

are shorthand notations for the sums of integrals over all edges

in EI and EB.

Finally, for piecewise smooth functions, ∇h denotes the piecewise defined gradient.

6.2 Stability of least squares methods

Although Least Squares methods could be based on any space of approximation

spaces, we will concentrate here on the approximation by piecewise solutions of

the homogeneous Helmholtz equation. With varying focus, this is the setting of
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[14, 53, 65, 70, 80] and references therein. We illustrate the procedure for the model

problem (9) with f = 0. The approximation space has the form

VN = {u ∈ L2(Ω) : u|K ∈VN,K ∀K ∈ T }, (51)

where the spacesVN,K are spaces of solutions of the homogeneous Helmholtz equa-

tion, e.g., systems of plane waves. For each edge e ∈ E , we select weights w1,e,

w2,e > 0 and define the functional J :VN →R by

J(v) := ∑
e∈EI

w2
1,e‖[v]‖2L2(e)+w2

2,e‖[∂nu]‖2L2(e)+ ∑
e∈EB

w2
2,e‖g− (∂nv+ ikv)‖2

L2(e);

here [v]|e := [[v]]|e and [∂nv]|e := [[∇hv]]|e represent the jumps of v and ∂nv across the
edge e. If the exact solution u of (9) is sufficiently regular, then it is a minimizer of J

with J(u) = 0. In a Least Squares method, J is minimizer over a finite dimensional

space VN of the form (51). Its variational form reads:

find uN ∈VN s.t.〈uN ,v〉J,N = ∑
e∈EB

(g,∂nv+ ikv)L2(e) ∀v ∈VN , (52)

where

〈u,v〉J,N :=

∑
e∈EI

w2
1,e([u], [v])L2(e)+w2

2,e([∂nu], [∂nv])L2(e)+ ∑
e∈EB

w2
2,e(∂nu+ iku,∂nv+ ikv)L2(e).

The positive semidefinite sesquilinear form 〈·, ·〉J,N induces in fact a norm on VN :

To see the definiteness of 〈·, ·〉J,N , we note that v ∈ VN and J(v) = 0 implies that v

is in C1(Ω) and elementwise a solution of the homogeneous Helmholtz equation.

Thus, it is a classical solution of the Helmholtz equation on Ω and satisfies ∂nv+
ikv = 0 on ∂Ω . The uniqueness assertion for (9) with f = 0 and g = 0 worked out

in Example 2.1 then implies v = 0. Therefore, the minimization problem (52) is

well-defined. If the solution u of (9) satisfies u ∈ H3/2+ε(Ω) for some ε > 0, then

J(u) = 0, and we get quasi-optimality of the Least Squares method in the norm

‖ · ‖J,N = J(·)1/2:

‖u− uN‖2J,N = J(u− uN) = J(uN) = min
v∈VN

J(v) = ‖u− v‖2J,N. (53)

We mention here that estimates for this minimum can be obtained from (local) es-

timates in classical Sobolev norms as given in Section 5 using appropriate trace

estimates. Turning estimates for ‖u− uN‖J,N = J(uN)
1/2 into estimates in terms of

more familiar norms such as ‖u− uN‖L2(Ω) is not straight forward. It may be ex-

pected that the norm of the solution operator of the continuous problem appears

again; the next result, which is closely related to [19, 42, 43, 63], illustrates the kind

of result one can obtain, in particular in a p-version setting:
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Lemma 6.2 ( [65, Thm. 3.1]). Let Ω ⊂ R
2 be a polygon. Let w1,e = k and w2,e = 1

for all edges and g ∈ L2(∂Ω). Let uN ∈ VN be the minimizer of J, where VN , given

by (51), consists of elementwise solutions of the homogeneous Helmholtz equation.

(i) If Ω is convex, then ‖u− uN‖2L2(Ω)
≤Ck−1

(
(kh)−1+(kh)1

)
J(uN).

(ii) If Ω is not convex, then

‖u− uN‖2L2(Ω) ≤

Ck−1
[
(kh)−1+(kh)1

{
1+min{1,kh}−2βmax

}]
(Csol(k)+ 1)2J(uN),

where Csol(k) is defined in (25) and satisfies Csol(k) =O(k5/2) by Theorem 2.4.

The parameter βmax ≥ 0 can be selected arbitrarily to satisfy the condition

βmax > 1−mini
π
ωi
, where the ωi are the interior angles of the polygon.

Proof. The result (i) is essentially the statement of [65, Thm. 3.1] in a refined form

as given in [43, Lemma 3.7]. The statement The statement (ii) is a slightly modifi-

cation of (i), and we restrict our presentation to that case. The key idea is to obtain

L2(Ω)-bounds by a duality argument and use the fact that u− uN solves the homo-

geneous Helmholtz equation elementwise. More precisely, given ϕ ∈ L2(Ω) we let
v ∈ H1(Ω) solve the adjoint problem

−∆v− k2v= ϕ in Ω , ∂nv− ikv= 0 on ∂Ω .

By Corollary 3.3, the function v is in a weighted H2-space with

‖v‖1,k,Ω + k−1‖Φ
0,
−→
β ,k

∇2v‖L2(Ω) ≤C(Csol(k)+ 1)‖ϕ‖L2(Ω). (54)

Inspection of the arguments underlying the proof of Corollary 3.3 shows that the ex-

ponents β j ∈ [0,1) stem from the regularity theory for the Laplacian with Neumann

boundary conditions. Hence, in fact β j ∈ [0,1/2) so that ∇hv has an L2-trace on all

edges of the triangulation (cf. Lemma A.2). For each K ∈ T we then have

‖w‖2
L2(∂K) ≤ C

[
h−1‖w‖2

L2(K)+ h|w|2
H1(K)

]
∀w ∈ H1(K), (55)

‖∇w‖2
L2(∂K) ≤ C

[
h−1|w|2

H1(K)+ h|w|2
H2(K)

]
∀w ∈H2(K), (56)

‖∇w‖2
L2(∂K) ≤ C

[
h−1|w|2

H1(K)+ h1−2β‖rβ ∇2w‖2
L2(K)

]
∀w ∈H

2,2
β (K), (57)

where, in the last estimate we assume that the origin is at one corner of K and r

denotes the distance from that corner. These estimates are obtained with the aid of

scaling arguments, the multiplicative trace inequality (see [18, Prop. 1.6.3]), and,

in the case of (57) additionally Lemma A.2. From ab = max{a,b}min{a,b} (for

a, b ≥ 0), we get rβ = k−β (rk)β = k−β min{1,rk}β max{1,rk}β . Hence, if Tcorner

denotes the set of elements that abut on the corners of Ω , we get
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∑
K∈Tcorner

‖∇v‖2
L2(∂K) ≤C

[
h−1|v|2

H1(Bh)
+ hmin{1,hk}−2βmax‖Φ

0,
−→
β ,k

∇2v‖2
L2(Bh)

]
,

where Bh = ∪K∈Tcorner
K. Noting that the elements K ∈ T \Tcorner are at least O(h)

away from the corners allows us to estimate with (56)

∑
K∈T \Tcorner

‖∇v‖2
L2(∂K)≤C

[
h−1|v|2

H1(Ω\Bh)+ h1min{1,kh}−2βmax‖Φ
0,
−→
β ,k

∇2v‖2
L2(Ω\Bh)

]
.

Hence, we have the two bounds

∑
K∈T

‖∇v‖2
L2(∂K) ≤ Ch−1|v|2

H1(Ω)+Ch1min{1,kh}−2βmax‖Φ
0,
−→
β ,k

∇2v‖2
L2(Ω),

∑
K∈T

‖v‖2
L2(∂K) ≤ Ch−1‖v‖2

L2(Ω)+ h|v|2
H1(Ω).

Therefore, recalling w1,e = k and w2,e = 1, we obtain from these estimates and the

a priori estimate (54) the bound

∑
e∈E

w−2
2,e‖v‖2L2(e)+w−2

1,e‖∇v‖2
L2(e)

≤ Ck−1

[
1

kh
+ kh

{
1+min{1,kh}−2βmax

}]
(Csol(k)+ 1)2‖ϕ‖2

L2(Ω). (58)

The estimate (58) can be used to bound |(u− uN ,ϕ)L2(Ω)|: Writing the integral as

a sum over elements, integrating by parts twice and using that u− uN solves the

homogeneous Helmholtz equation elementwise yields

(u− uN,ϕ)L2(Ω) = ∑
K∈T

(u− uN,−∆v− k2v)L2(K)

= ∑
K∈T

(∂n(u− uN),v)L2(∂K)− ∑
K∈T

(u− uN,∂nv)L2(∂K) =: Σ1−Σ2.

The “DG magic formulas” of Lemma 6.1 produce

Σ1=∑
e∈EI

({{∇(u− uN)}}, [[v]])L2(e)+([[∇(u− uN)]],{{v}})L2(e)+∑
e∈EB

({{∇(u− uN)}}, [[v]])L2(e)

Σ2=∑
e∈EI

([[u− uN]],{{∇v}})L2(e)+({{u− uN}}, [[∇v]])L2(e)+∑
e∈EB

([[u− uN]],{{∇v}})L2(e).

For interior edges e ∈ EI we have [[v]] = 0 and [[∇v]] = 0 as well as [[u]] = 0 and

[[∇u]] = 0; on boundary edges e∈ EB we have with the boundary conditions satisfied

by u and v (i.e., ∂nu+ iku= g and ∂nv− ikv= 0)

({{∇(u− uN)}}, [[v]])L2(e)− ([[u− uN]],{{∇v}})L2(e) =−((∂n+ ik)uN − g,v)L2(e).

These observations lead to
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∣∣∣−(u− uN,ϕ)L2(Ω)

∣∣∣=
∣∣∣∣∣∑
e∈EI

([[uN ]],{{∇v}})L2(e)+ ∑
e∈EI

([[∇uN ]],{{v}})L2(e)+ ∑
e∈EB

((∂n+ ik)uN − g,v)L2(e)

∣∣∣∣∣

≤ C
√
J(uN)

√
∑
e∈E

w−2
2,e‖{{v}}‖2L2(e)+w−2

1,e‖{{∇v}}‖2
L2(e)

,

where, in the last step, we employed the Cauchy-Schwarz inequality for sums. From

(58) we therefore get

|(u− uN,ϕ)L2(Ω)|
‖ϕ‖L2(Ω)

≤

C
√
J(uN)k

−1/2
[
(kh)−1/2+(kh)1/2min{1,kh}−βmax

]
(Csol(k)+ 1).

Since ϕ ∈ L2(Ω) is arbitrary, we get the result. ⊓⊔

Remark 6.3. Lemma 6.2 assumes quasi-uniform meshes and the weights w1,e, w2,e

do not take the edge length into account. This limits somewhat it applicability in

an h-version context. However, the result is very suitable for a p-version setting.

We point out that in a case where the p-version features only algebraic rates of

convergence, one would have to give the parametersw1,e,w2,e a p-dependent relative

weight as opposed to the situation studied in Lemma 6.2.

6.3 Stability of plane wave DG and UWVF

The framework of Discontinuous Galerkin (DG) methods permits another way of

deriving numerical schemes that are inherently stable. In a classical, piecewise poly-

nomial setting, this is pursued in [33–35]; related work is in [64]. Here, we concen-

trate on a setting where the ansatz functions satisfy the homogeneous Helmholtz

equation. In particular, we study the plane wave DG method, [36, 43, 63], and the

closely related Ultra Weak Variational Formulation (UWVF), [19–21, 46, 55]. We

point out that the UWVF can be derived in different way. Here, we follow [19, 36]

in viewing it as a special DG method.

Our model problem (9) can be reformulated as a first order system by introducing

the flux σ := (1/ik)∇u:

ikσ = ∇u in Ω , (59a)

iku−∇ ·σ = 0 in Ω , (59b)

ikσ ·n+ iku = g on ∂Ω . (59c)

For a mesh T , the weak elementwise formulation of (59a), (59b) is for every K ∈
T :
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∫

K
ikσ · τ +

∫

K
u∇ · τ −

∫

∂K
uτ ·n = 0 ∀τ ∈ H(div,K),

∫

K
ikuv+

∫

K
σ ·∇v−

∫

∂K
σ ·nv = 0 ∀v ∈ H1(K),

where H(div,K) = {u ∈ L2(K) : divu ∈ L2(K)} and n is the outward pointing nor-

mal vector. Replacing the spaces H1(K) and H(div,K) by finite-dimensional sub-

sets VN,K ⊂ H1(K) and ΣN,K ⊂ H(div,K) and, additionally, imposing a coupling

between neighboring elements by replacing the multivalued traces u and σ on the

element edges by single-valued numerical fluxes ûN , σ̂N to be specified below, leads

to the problem: Find (uN ,σN) ∈VN,K ×ΣN,K such that

∫

K
ikσN · τ +

∫

K
uN∇ · τ −

∫

∂K
ûNτ ·n = 0 ∀τ ∈ ΣN,K ,

∫

K
ikuNv+

∫

K
σN ·∇v−

∫

∂K
σ̂N ·nv = 0 ∀v ∈VN,K .

The variable σN can be eliminated by making the assumption that ∇VN,K ⊂ ΣN,K

for all K ∈ T and then selecting the test function τ = ∇v on each element. This

yields after an integration by parts:

∫

K
∇uN∇v− k2uNv−

∫

∂K
(uN − ûN)∂nv− ikσ̂N ·nv= 0 ∀K ∈ T . (60)

Since VN = {u ∈ L2(Ω) : u|K ∈ VN,K∀K ∈ T } consists of discontinuous functions

without any interelement continuity imposed across the element edges, (60) is

equivalent to the sum over the elements: Find uN ∈VN such that for all v ∈VN

∑
K∈T

∫

K
∇uN ·∇v− k2uNv+

∫

∂K
(ûN − uN)∇v ·n−

∫

∂K
ikσ̂N ·nv= 0. (61)

This formulation is now completed by specifying the fluxes ûN and σ̂N , which at

the same time takes care of the boundary condition (59c):

• For interior edges e ∈ EI

σ̂N =
1

ik
{{∇huN}}−α[[uN]], ûN = {{uN}}−β

1

ik
[[∇huN ]]. (62a)

• For boundary edges e ∈ EB

σ̂N =
1

ik
∇huN − 1− δ

ik
(∇huN+ ikuNn− gn) . (62b)

ûN = uN−
δ

ik
(∇hu ·n+ ikuN− g) . (62c)

Different choices of the parameters α , β , δ lead to different methods analyzed in

the literature. For example:
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1. α = β = δ = 1/2: this is the UWVF as analyzed in [19–21,46,55] if the spaces

VN,K consist of a spaceW
p
PW of plane waves.

2. α =O(p/(kh log p)), β =O((kh log p)/p), δ =O((kh log p)/p): this choice
is introduced and advocated in [43, 63] in conjunction with VN,K =W

p
PW .

With these choices of fluxes, the formulation (61) takes the form

Find uN ∈VN s.t. AN(uN ,v) = l(v) ∀v ∈VN , (63)

where the sesquilinear form AN and the linear form l are given by

AN(u,v)=

∫

Ω
∇hu ·∇hv−k2uv−

∫

EI

[[u]]{{∇hv}}−
∫

EI

{{∇hu}}[[v]]−
∫

EB

δu∂nv−
∫

EB

δ∂nuv

− 1

ik

∫

EI

β [[∇hu]][[∇hv]]−
1

ik

∫

EB

δ∂nu∂nv+ ik

∫

EI

α[[u]][[v]]+ ik

∫

EB

(1− δ )uv (64)

l(v) =− 1

ik

∫

EB

δg∂nv+

∫

EB

(1− δ )gv.

So far, the choice of the spaces VN,K is arbitrary. If the approximation spaces VN,K
(more precisely: the test spaces) consist of piecewise solutions of the homogeneous

Helmholtz equation, then a further integration by parts is possible to eliminate all

volume contributions in AN . Indeed, Lemma 6.1 produces

∑
K∈T

∫

K
∇u ·∇v− k2uv = ∑

K∈T

∫

∂K
u∇vn=

∫

EI

[[u]]{{∇v}}+ {{u}}[[∇v]]+

∫

EB

[[u]]{{∇v}}

so that AN simplifies to

AN(u,v) =

∫

EI

{{u}}[[∇hv]]+ i
1

k

∫

EI

β [[∇hu]][[∇hv]]−
∫

EI

{{∇hu}}[[v]]+ ik

∫

EI

α[[u]][[v]]

+

∫

EB

(1− δ )u∂nv+ i
1

k

∫

EB

δ∂nu∂nv−
∫

EB

δ∂nuv+ ik

∫

EB

(1− δ )uv.

Next, we make the important observation that ImAN induces a norm on the space

VN if α , β > 0 and δ ∈ (0,1). Indeed:

1. α , β > 0 and δ ∈ (0,1) implies ImAN(v,v)≥ 0 ∀v∈VN by inspection of (64).

2. ImAN(v,v) = 0 and the fact thatVN consists of elementwise solutions of the ho-

mogeneous Helmholtz equation implies as in the case of 〈·, ·〉J,N in Section 6.2

that v ∈ C1(Ω) solves the homogeneous Helmholtz equation and ∂nv = v = 0

on ∂Ω ; the uniqueness assertion of Example 2.1 then proves v≡ 0.

This is at the basis of the convergence analysis. Introducing
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‖u‖2DG :=
√
ImAN(u,u) =

1

k
‖β 1/2[[∇hu]]‖2L2(EI)+ ‖α1/2[[u]]‖2

L2(EI)

+
1

k
‖δ 1/2∂nu‖2L2(EB)+ k‖(1− δ )1/2u‖2

L2(EB)
,

‖u‖2DG,+ := ‖u‖2DG+ k‖β−1/2{{u}}‖2
L2(EI)

+ k−1‖α−1/2{{u}}‖2
L2(EI)

+ k‖δ−1/2u‖2
L2(EB)

,

we can formulate coercivity and continuity results:

Proposition 6.4 ( [19, 43]). Let VN consist of piecewise solutions of the homoge-

neous Helmholtz equation. Then ‖ · ‖DG is a norm on VN and for some C > 0 de-

pending solely on the choice of α , β > 0, and δ ∈ (0,1):

ImAN(u,u) = ‖u‖2DG ∀u ∈VN ,

|AN(u,v)| ≤ C‖u‖DG,+‖v‖DG ∀u,v ∈VN

Let the solution of u of (9) (with f = 0) satisfy u ∈ H3/2+ε(Ω) for some ε > 0.

Then, by consistency of AN , the solution uN ∈ VN of (63) satisfies the following

quasioptimality estimate for some C > 0 independent of k:

‖u− uN‖DG ≤C inf
v∈VN

‖u− v‖DG,+. (65)

Several comments are in order:

1. The UWVF of [20] featured quasi-optimality in a residual type norm. We recall

that the UWVF is a DG method for the particular choice α = β = δ = 1/2.
2. When VN consists (elementwise) of systems of plane waves or generalized har-

monic polynomials, then the infimum in (65) can be estimated using approxi-

mation results on the elements by taking appropriate traces. This is worked out

in detail in [42,43,63] and earlier in an h-version setting in [20] (see also [19]).

3. The ‖ · ‖DG-norm controls the error on the skeleton E only. The proof of

Lemma 6.2 shows how error estimates in such norms can be used to obtain

estimates for ‖u− uN‖L2(Ω); we refer again to [19] where this worked out for

the UWVF and to [42, 43, 63] where the case of the plane wave DG is studied.

As pointed out in Remark 6.3, quasi-uniformity of the underlying mesh T is an

important ingredient for the arguments of Lemma 6.2.

It is noteworthy that Proposition 6.4 does not make any assumptions on the mesh

size h and the space VN except that it consist of piecewise solutions of the homo-

geneous Helmholtz equation. Optimal error estimates are possible in an h-version

setting, where the number of plane waves per element is kept fixed:

Proposition 6.5 ( [36]). Let Ω be convex. Assume that VN,K =W
2µ+1
Pw (µ ≥ 1 fixed)

for all K ∈T . Assume that α is of the form α = a/(kh) and that β > 0, δ ∈ (0,1/2).
Then there exist a0, c0, C > 0 (all independent of h and k) such that if a ≥ a0 and

k2h≤ c0, then following error bound is true:

‖u− uN‖1,DG ≤C inf
v∈VN

‖u− v‖1,DG,+;
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here, ‖ ·‖1,DG and ‖ ·‖1,DG,+ are given by ‖v‖21,DG := ∑K∈T |v|2
H1(K)

+k2‖v‖2
L2(K)

+

‖v‖2DG and ‖v‖21,DG,+ := ∑K∈T |v|2
H1(K)

+ k2‖v‖2
L2(K)

+ ‖v‖2DG,+.

Proof. The proof follows by inspection of the procedure in [36, Sec. 5] and is stated

in [63, Props. 4.2, 4.3]. The essential ingredients of the proof are: (a) inverse esti-

mates for systems of plane waves that have been made in available in [36] so that

techniques of standard DG methods can be used to treat AN ; (b) use of duality ar-

guments as in Lemma 4.1 to treat the L2-norm of the error; (c) the fact that in an

h-version setting, plane waves have some approximation power for arbitrary func-

tions in H2 (this is analogous to Lemma 4.8). ⊓⊔

7 Remarks on 1D

The 1D situation is rather special in that pollution can be completely eliminated;

the underlying reason is that the space of solutions of the homogeneous Helmholtz

equation is finite-dimensional (two dimensional, in fact). We illustrate this for the

following model problem:

−u′′− k2u= f in Ω = (0,1), u(0) = 0, u′(1)− iku(1) = 0. (66)

Let T be a mesh on Ω with nodes 0= x0 < x1 < · · ·< xN = 1. We assume that the

mesh size h := maxi(xi+1− xi) satisfies kh < π . For each node xi, let ψi ∈ H1(Ω)
be defined by the conditions

ψi(x j) = δi j, (−ψ ′′
i − k2ψi)|K = 0 ∀K ∈ T

and letV
opt
N = span{ψi : i= 1, . . . ,N}. Thus, the functionsψi are piecewise solutions

of the homogeneous Helmholtz equation. The Galerkin method based onV
opt
N is:

Find uN ∈V
opt
N s.t.

∫

Ω
u′Nv

′−k2uNv− ikuN(1)v(1) =

∫

Ω
f v ∀v∈V

opt
N . (67)

The Galerkin method based on V
opt
N is nodally exact:

Lemma 7.1. There exist constants C1, C2 > 0 independent of k such that the follow-

ing is true for kh≤C1:

(i) The functions ψi are well-defined.

(ii) The method (67) is nodally exact.

(iii) For f ∈ L2(Ω) there holds ‖u− uN‖1,k,Ω ≤C2(hk)‖ f‖L2(Ω).

Proof. Elementary considerations show that for kh < π , the functions ψi are well-

defined.

The most interesting feature of Lemma 7.1 is the nodal exactness. To that end,

we note that the Green’s function for (66) is
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G(x,y) =
1

k

{
sinkxeiky 0< x< y

sinkyeikx y< x< 1.

Let e ∈ H1(Ω) satisfy e(0) = 0 and the Galerkin orthogonality condition

C(e,v) :=

∫

Ω
e′v′− k2ev− ike(1)v(1) = 0 ∀v ∈V

opt
N . (68)

The key observation is that for each xi, i= 1, . . . ,N, the function vi :=G(·,xi)∈V
opt
N

since is a solution of the homogeneous Helmholtz equation on (0,xi)∪ (xi,1), it
satisfies G(0,xi) = 0. Furthermore, we have v′i(xN)− ikvi(xN) = 0. Hence, we get

from the Galerkin orthogonality (68) by an integration by parts:

0 =

∫

Ω
e′v′i− k2evi+ ike(1)vi(1)

=

∫ xi

0
e′v′i− k2evi+

∫ xN

xi

e′v′i− k2evi− ike(1)vi(1)

=

∫ xi

0
e(−v′′i − k2vi)+ e(xi)v

′
i(xi)− e(xi)v

′
i(xi)

+
∫ 1

xi

e(−v′′i − k2vi)+ e(1)v′i(1)− ike(1)vi(1)

= e(xi)[v
′](xi)+ e(1)v′i(1)− ike(1)vi(1)

= e(xi)[v
′
i](xi);

here, we have employed the standard notation for the jump of a piecewise smooth

function w: [w′](xi) := limx→xi−w′(x)− limx→xi+w′(x). Since [v′i](xi) 6= 0, we con-

clude

e(xi) = 0 ∀i ∈ {1, . . . ,N}.
Hence, the FEM (67) is nodally exact.

The above argument also shows that any e ∈ V
opt
N satisfying (68) must satisfy

e(xi) = 0 for all i ∈ {1, . . . ,N}. Hence, by the definition of V
opt
N as the span of the

functions ψi, we conclude e≡ 0. Thus, the kernel of the linear systems described by

(67) is trivial. By the usual dimension argument, we have unique solvability.

We have the a priori bound

‖u‖1,k,Ω ≤C‖ f‖L2(Ω) (69)

for the solution u of (66) (as for the model problem (9), this can be shown using

the test function v= xu′; an alternative proof based on the Green’s function and the

representation

u(x) =
∫

Ω
G(x,y) f (y)dy

is given in [47, Thm. 4.4]). If one denotes by ϕi the classical piecewise linear hat

function associated with node xi, then one has by Taylor expansion
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‖ϕi−ψi‖L∞(K) ≤C(khK)
2, ‖(ϕi−ψi)

′‖L∞(K) ≤Ck2hK , ∀K ∈ T , (70)

where hK = diamK. The approximation properties follow easily from the nodal

exactness. Specifically, denoting by Iu the classical piecewise linear interpolant of

u and by Ĩu ∈ V
opt
N the nodal interpolant determined by Ĩu(xi) = u(xi) for all i ∈

{0, . . . ,N}, we have the well-known estimate

‖u− Iu‖1,k,Ω ≤C(kh2+ h)‖u′′‖L2(Ω) ≤Ckh(1+ kh)‖ f‖L2(Ω),

where we used the differential equation and the bound (69) to estimate ‖u′′‖L2(Ω) ≤
‖ f‖L2(Ω)+k2‖u‖L2(Ω) ≤Ck‖ f‖L2(Ω). Next, we estimate the difference Iu− Ĩu. The

multiplicative trace inequality takes the form

hK‖w‖2L∞(K) ≤C
[
‖w‖2

L2(K)+ hK‖w‖L2(K)‖w′‖L2(K)
]

∀w ∈ H1(K). (71)

Hence, the estimates (70), (71) imply

‖Iu− Ĩu‖21,k,Ω ≤ C ∑
K∈T

k2(khK)
2(1+(khK)

2)hK‖u‖2L∞(K)

≤ C(kh)2(1+(kh)2)
[
k2‖u‖2

L2(Ω)+ k2h2‖u′‖2
L2(Ω)

]

≤ C(kh)2(1+(kh)2)2‖u‖21,k,Ω .

An appeal to (69) concludes the argument. ⊓⊔

Several comments are in order concerning the stability of the method:

1. In the 1D situation, the good stability properties of high order Galerkin FEM

can alternatively be understood in light of Lemma 7.1: Applying the Galerkin

method to a classical high order method and then condensing out the degrees

of freedom corresponding to internal shape functions (“bubbles”), leads to a

linear system that is identical to the one obtained by using shape functions ψ p
i ,

i= 0, . . . ,N, that satisfy ψ p
i (x j) = δi j and additionally

∫

K
(ψ p

i )
′v′− k2ψ p

i v= 0 ∀v ∈ H1
0 (K)∩Pp

Since on a fixed mesh T , we have limp→∞ ψ p
i = ψi, better stability properties

of higher order methods may reasonably be hoped for.

2. The system matrix of the Galerkin FEM based on the spaceV
opt
N is a tridiagonal

matrix. The same matrix can also be obtained in different ways. Consider, for

example, the sesquilinear form

B(u,v) :=

∫

Ω
u′v′− kuv− iku(1)v(1)+ ∑

K∈T

τK

∫

Ω
LkuLkv, (72)
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where Lk =− d2

dx2
−k2. For a suitable choice of the parameters τK in dependence

on k and hK , the system matrix resulting from this B using the classical piece-

wise linear hat functions leads to the same matrix as the Galerkin method based

on the shape functions ψi, i = 1, . . . ,N. In 1D, it is therefore possible to design

nodally exact methods based on the stabilization techniques in the from (72).

In [12], a nodally exact method is derived using other techniques.

Appendix

For the reference triangle K̂ := {(x,y) : 0 < x < 1,0 < y < 1− x} and β ∈ [0,1)

the following two lemmas require the spaces H
1,1
β

(K̂), H2,2
β

(K̂) as well as the

Besov spaces Bs
2,∞(K̂). The spaces Bs

2,∞(K̂) are defined by interpolation using the

K-functional (see, e.g., [18, Chap. 12]). For m ∈ {1,2}, the spaces Hm,m
β

(K̂) are de-

termined by the norm ‖u‖2
H
m,m
β

(K̂)
:= ‖u‖2

Hm−1(K̂)
+ ‖rβ ∇mu‖2

L2(K̂)
, where r denotes

the distance from the origin.

Lemma A.1. Let K̂ be the reference triangle. Let β ∈ [0,1). Then the embed-

dings H
2,2
β

(K̂)⊂B
2−β
2,∞ (K̂) and H1,1

β
(K̂)⊂B

1−β
2,∞ (K̂) are continuous. The embeddings

H
2,2
β (K̂)⊂ H2−β−ε(K̂) and H1,1

β (K̂)⊂ H1−β−ε(K̂) are compact for all ε > 0.

Proof. Since the case β = 0 corresponds to classical Sobolev spaces, we restrict

our attention here to the situation β ∈ (0,1). The argument follows ideas presented

in [11, Thm. 2.1] and [10]. We start with the following two Hardy inequalities for

sufficiently smooth functions

‖rβ−1∇u‖
L2(K̂) ≤ C‖u‖

H
2,2
β

(K̂)
, (A.1)

‖rβ−2(u− u(0))‖
L2(K̂) ≤ C‖u‖

H
2,2
β

(K̂)
; (A.2)

here, (A.1) is shown, for example, in [57, Lemma A.1.7] and (A.2) follows from

combining [10, Lemma 4.2] with (A.1). Noting that [10, (2.2)] states the continuous

embedding H
2,2
β

(K̂)⊂C(K̂), we have that u(0) in (A.2) is indeed well-defined.

We employ the real method of interpolation and write B
2−β
2,∞ = (L2,H2)1−β/2,∞.

Our method of proof consists in showing that for θ = 1−β/2 we have

sup
t∈(0,1)

t−θK(t, ũ)≤C‖u‖
H
2,2
β

(K̂)
, ũ := u− u(0),

for some C > 0 independent of u. To that end, we proceed as in the proof of [10,

Lemma 2.1]. For every δ > 0, let χδ ∈C∞
0 (R

2) with χ ≡ 1 on Bδ/2(0) and supp⊂
χδBδ (0) as well as ‖∇ jχδ‖L∞(R2) ≤Cδ− j, j ∈ {0,1,2}. We define the splitting
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ũ= χδ ũ+(1− χδ)ũ=: u1+ u2

Then from (A.1) and (A.2)

‖χδ ũ‖L2(K̂) ≤C‖ũ‖
L2(K̂∩Bδ (0))

≤ δ 2−β‖rβ−2ũ‖
L2(K̂) ≤Cδ 2−β‖u‖

H
2,2
β

(K̂)
,

|(1− χδ)ũ|H2(K̂) ≤
Cδ−2‖ũ‖

L2((K̂∩Bδ (0))\Bδ/2(0))
+Cδ−1‖∇ũ‖

L2((K̂∩Bδ (0))\Bδ/2(0))
+C‖∇2ũ‖

L2(K̂\Bδ/2(0))

≤Cδ−2+2−β‖rβ−2ũ‖
L2(K̂)+Cδ−1+1−β‖rβ−1∇ũ‖

L2(K̂)+Cδ−β‖rβ ∇2ũ‖
L2(K̂)

≤Cδ−β‖u‖
H
2,2
β

(K̂)
.

From this, we can infer for any δ ∈ (0,1)

K(t, ũ)≤ ‖u1‖L2(K̂)+ t‖u2‖H2(K̂) ≤C‖u‖
H
2,2
β

(K̂)

[
δ 2−β + tδ−β

]
.

Selecting δ = t1/2 gives K(t, ũ) ≤ Ct1−β/2‖u‖
H
2,2
β

(K̂)
. Finally, the compactness

assertions of the embeddings follows from the compactness of the embeddings

Bs
2,∞ ⊂ Bs′

2,2 = Hs′ for s′ < s. ⊓⊔

Lemma A.2. Let β ∈ [0,1/2) and K̂ be the reference triangle. Then there exists C>

0 such that for all u∈H
1,1
β

(K̂) there holds ‖u‖
L2(∂ K̂) ≤C

[
‖u‖

L2(K̂)+ ‖rβ ∇u‖
L2(K̂)

]
.

Proof. For each s > 1/2, we have the inequality ‖u‖
L2(∂ K̂) ≤ Cs‖u‖Hs(K̂). From

the embedding H
1,1
β

(K̂) ⊂ H1−β (K̂) of Lemma A.1, we then get ‖u‖
L2(∂ K̂) ≤

C‖u‖
Hs(K̂) ≤C

[
‖u‖

L2(K̂)+ ‖rβ ∇u‖
L2(K̂)

]
. ⊓⊔

Lemma A.3. Let β ∈ [0,1) and Ω ⊂ R
2 be a finite sector with apex at the origin.

Let u ∈C∞(Ω) satisfy

‖Φn,β ,1∇
n+2u‖L2(Ω) ≤ Cuγun! ∀n ∈ N0.

Then, for k ≥ k0 > 0, there exist constants C, γ > 0 (depending only on β , Ω , γu,
and k0) such that

‖Φn,β ,k∇
n+2u‖L2(Ω) ≤ CCuk

−(2−β )γnmax{n,k}n+2 ∀n ∈ N0.

Proof. Lemma A.4 yields

1

max{n,k}n+2
Φn,β ,k(x)≤Ck−(2−β )γn

1

n!
Φn,β ,1(x) ∀x ∈ Ω ,

whereC, γ > 0 are independent of n and k. The result now follows. ⊓⊔
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Lemma A.4. Let β ∈ [0,1). Then for 0< r < R and all n ∈N0

min

(
1,

r

min
{
1, n+1

k+1

}
)n+β

1

max{n,k}n+2
≤Ck−(2−β )γnrn+β 1

nn+2

Proof. We denote the left-hand side by lhs and consider several cases.

case 1: n≤ k and r(k+ 1)≤ n+ 1:

lhs =

(
(k+ 1)r

n+ 1

)n+β
1

kn+2

= rn+β 1

nn+2

(
n

n+ 1

)n+2

(n+ 1)2−β

(
k+ 1

k

)n+2

(k+ 1)−(2−β )

≤ Cγnk−(2−β )rn+β 1

nn+2

for suitableC, γ > 0 if we assume that k ≥ k0 > 0.

case 2: n≤ k and r(k+ 1)> n+ 1:

lhs =
1

kn+2
=

1

k2−β

1

kn+β
=

1

k2−β

(
k+ 1

k

)n+β
1

(k+ 1)n+β

≤ 1

k2−β

(
k+ 1

k

)n+β (
r

n+ 1

)n+β

≤ Cγnk−(2−β )rn+β 1

nn+2

for suitableC, γ > 0.

case 3: n> k: Then, for 0< r < R

lhs = (min{1,r})n+β 1

nn+2
≤ rn+β 1

nn+2
≤ k−(2−β )rn+β 1

nn+2
n2−β

≤ Ck−(2−β )rn+β 1

nn+2
γn

for suitableC, γ > 0. ⊓⊔

Further results and proofs

Example A.5. In Example 1.1, we studied the convergence behavior of the h-FEM

in the H1(Ω)-seminorm. In Fig. 4 we present the corresponding results for the con-

vergence in the L2(Ω)-norm by plotting ‖u− uN‖L2(Ω)/‖u‖L2(Ω) vs. the number of

degrees of freedom per wavelength Nλ . For p= 1, we observe
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‖u− uN‖L2
‖u‖L2

≈CkN−2
λ , Nλ → ∞,

which is in agreement with the analysis given in [47, Sec. 4.6.4]. The cases p > 1

seem to behave differently as we observe

‖u− uN‖L2
‖u‖L2

≈CN
−(p+1)
λ

, Nλ → ∞
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Fig. 4 Performance of h-FEM for (2). Top: p= 1, p= 2. Bottom: p= 3, p= 4 (cf. Examples A.5,

1.1).

Proof of Remark 4.9. By interpolation using the K-functional we can write

H1+θ = (H1,H2)θ ,2 for θ ∈ (0,1). Hence, every u ∈ H1+θ (Ω) can be decomposed

as u= u1+ u2 with

‖u1‖H1(Ω) ≤ tθ‖u‖H1+θ (Ω), ‖u2‖H2(Ω) ≤ tθ−1‖u‖H1+θ (Ω), (A.3)

where t > 0 is arbitrary. The proof of Lemma 4.8 shows that u1 and u2 can be

approximated from VN as follows:
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inf
v∈VN

‖u2− v‖L2(Ω)+ h‖∇(u2− v)‖L2(Ω) ≤ h2‖u2‖H2(Ω)+(kh)2‖u2‖L2(Ω)

inf
v∈VN

‖u1− v‖L2(Ω)+ h‖∇(u1− v)‖L2(Ω) ≤ h‖u1‖H1(Ω)+(kh)2‖u1‖L2(Ω).

Using t = h in (A.3) we therefore get

inf
v∈VN

‖u− v‖L2(Ω)+ h‖∇(u− v)‖L2(Ω) ≤ h1+θ‖u‖H1+θ (Ω)+(kh)2
[
‖u1‖L2(Ω)+ ‖u2‖L2(Ω)

]
.

The decomposition u= u1+u2 and the triangle inequality yield ‖u1‖L2(Ω)+‖u2‖L2(Ω) ≤
‖u‖L2(Ω)+2‖u1‖L2(Ω)≤‖u‖L2(Ω)+2‖u1‖H1(Ω) ≤‖u‖L2(Ω)+2hθ‖u‖H1+θ (Ω). Com-

bining these estimates, we obtain

inf
v∈VN

‖u− v‖L2(Ω)+ h‖∇(u2− v)‖L2(Ω) ≤
(
h1+θ +(kh)2hθ

)
‖u‖H1+θ (Ω)+(kh)2‖u‖L2(Ω),

which concludes the proof. ⊓⊔
Lemma A.6. Let β ∈ [0,1). Then, for every p ∈ N there exists a linear operator

πp :H
2,2
β

(K̂)→ Pp that admits an “element-by-element construction” in the sense

of [62, Def. 5.3] with the following approximation property:

p‖u−πpu‖L2(K̂)+ ‖u−πpu‖H1(K̂) ≤Cp−(1−β )‖rβ ∇2u‖
L2(K̂),

where C > 0 is independent of p and u.

Proof. Inspection of the proof of [62, Thm. B.4] shows that the operator πp con-

structed there does in fact not depend on the regularity parameter s > 1. It has (as

stated in [62, Thm. B.4]), the approximation property

p‖u−πpu‖L2(K̂)+ ‖u−πpu‖H1(K̂) ≤Cp−(s−1)|u|
Hs(K̂) ∀u ∈ Hs(K̂), (A.4)

if p ≥ s− 1. Upon writing the Besov space Bs
2,∞ as an interpolation space Bs

2,∞ =

(H2(K̂),H1(K̂))s−1,∞ for s∈ (1,2), we can infer for s∈ (1,2) from (A.4) the slightly

stronger statement

p‖u−πpu‖L2(K̂)+‖u−πpu‖H1(K̂) ≤Cp−(s−1)‖u‖
Bs2,∞(K̂)

∀u∈ Bs
2,∞(K̂). (A.5)

Appealing to Lemma A.1 then yields

p‖u−πpu‖L2(K̂)+ ‖u−πpu‖H1(K̂) ≤Cp−(s−1)‖u‖
H
2,2
β

(K̂)
. (A.6)

We replace the full H
2,2
β (K̂) norm by the seminorm in the standard way by a com-

pactness argument. Since H
2,2
β

(K̂) is compactly embedded in H1(K̂) (see, e.g., [77,

Lemma 4.19]) one obtains infv∈P1
‖u− v‖

H
2,2
β

(K̂)
≤ C‖rβ ∇2u‖

L2(K̂). The proof is

completed by noting that (A.4) implies that πp reproduces linear polynomials. ⊓⊔
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