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On stability of discretizations of the Helmholtz
equation (extended version)

S. Esterhazy and J.M. Melenk

Abstract We review the stability properties of several discretizations of the Helmholtz
equation at large wavenumbers. For a model problem in a polygon, a complete k-
explicit stability (including k-explicit stability of the continuous problem) and con-
vergence theory for high order finite element methods is developed. In particular,
quasi-optimality is shown for a fixed number of degrees of freedom per wavelength
if the mesh size / and the approximation order p are selected such that ki/p is suf-
ficiently small and p = O(logk), and, additionally, appropriate mesh refinement is
used near the vertices. We also review the stability properties of two classes of nu-
merical schemes that use piecewise solutions of the homogeneous Helmholtz equa-
tion, namely, Least Squares methods and Discontinuous Galerkin (DG) methods.
The latter includes the Ultra Weak Variational Formulation.

1 Introduction

A fundamental equation describing acoustic or electromagnetic phenomena is the
time-dependent wave equation

— —PAw=g,

given here for homogeneous, isotropic media whose propagation speed of waves
is c. It arises in many applications, for example, radar/sonar detection, noise fil-
tering, optical fiber design, medical imaging and seismic analysis. A commonly
encountered setting is the time-harmonic case, in which the solution w (and corre-
spondingly the right-hand side g) is assumed to be of the form Re (e’i“”u(x)) for
a frequency . Upon introducing the wavenumber k = ®/c and the wave length
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2 S. Esterhazy and J.M. Melenk

A := 27 /k, the resulting equation for the function u, which depends solely on the
spatial variable x, is then the Helmholtz equation

—Au—ku=f. )

In many high frequency situations of large k the solution u is highly oscillatory
but has some multiscale character that can be captured, for example, by means of
asymptotic analysis; a classical reference in this direction is [7].

In this article, we concentrate on numerical schemes for the Helmholtz equation
at large wavenumbers k. Standard discretizations face several challenges, notably:

(I) For large wavenumber k, the solution u is highly oscillatory. Its resolution,
therefore, requires fine meshes, namely, at least N = K degrees of freedom,
where d is the spatial dimension.

(IT) The standard H'-conforming variational formulation is indefinite, and stabil-
ity on the discrete level is therefore an issue. A manifestation of this problem
is the so-called “pollution”, which expresses the observation that much more
stringent conditions on the discretization have to be met than the minimal
N = O(k%) to achieve a given accuracy.

The second point, which will be the focus of the article, is best seen in the following,
one-dimension example:

Example 1.1. For the boundary value problem
—u" —Ku=1 1in(0,1), u(0)=0 (1) —iku(1)=0 ()

we consider the A-version finite element method (FEM) on uniform meshes with
mesh size h for different approximation orders p € {1,2,3,4} and wavenumbers
k € {1,10,100}. Fig. 1 shows the relative error in the H'(£)-semi norm (i.e.,
lu —un|p1 @)/ Ul (), Where uy is the FEM approximation) versus the number
of degrees of freedom per wavelength Nj := N/A = 22N /k with N being the di-
mension of the finite element space employed. We observe several effects in Fig. 1:
Firstly, since the solution u of (2) is smooth, higher order methods lead to higher
accuracy for a given number of degrees of freedom per wavelength than lower order
methods. Secondly, asymptotically, the FEM is quasioptimal with the finite element
error [u — uy| 1 (q) satisfying

u—un|p1 (@) = CoN, P lul g (q) 3)

for a constant C,, independent of k. Thirdly, the performance of the FEM as mea-
sured in “error vs. number of degrees of freedom per wavelength” does depend on
k: As k increases, the preasymptotic range with reduced FEM performance becomes
larger. Fourthly, higher order methods are less sensitive to k than lower order ones,
1.e., for given k, high order methods enter the asymptotic regime in which (3) holds
for smaller values of N, than lower order methods. =
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Fig. 1 Performance of #-FEM for (2). Top: p =1, p = 2. Bottom: p =3, p = 4 (see Example 1.1).

The behavior of the FEM in Example 1.1 has been analyzed in [47,49], where error
bounds of the form (see [47, Thm. 4.27])

|t — g1 () < Cp (1+KPTRP) BP ul i 4)
are established for a constant C;, depending only on the approximation order p. In

this particular example, it is also easy to see that [u|yp+1(q)/|uly1(q) ~ k¥, so that
(4) can be recast in the form

lu— g1 () < Cp (14HKPTRP) (kh)P || g ) ~ (1 +kN;") Ny lulg o). (5)

This estimate goes a long way to explain the above observations. The presence of
the factor 1+ &N, P explains the “pollution effect”, i.e., the observation that for
fixed N,, the (relative) error of the FEM as compared with the best approximation
(which is essentially proportional to N, ? in this example) increases with k. The es-
timate (5) also indicates that the asymptotic convergence behavior (3) is reached for
N, = O(kl/ P). This confirms the observation made above that higher order meth-
ods are less prone to pollution than lower order methods. Although Example 1.1
is restricted to 1D, similar observations have been made in the literature also for
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multi-d situations as early as [15]. We emphasize that for uniform meshes (as in Ex-
ample 1.1) or, more generally, translation invariant meshes, complete and detailed
dispersion analyses are available in an h-version setting, [2,27,47,49], and in a
plhp-setting, [2-4], that give strong mathematical evidence for the superior ability
of high order methods to cope with the pollution effect.

The present paper, which discusses and generalizes the work [61,62], proves that
also on unstructured meshes, high order methods are less prone to pollution. More
precisely, for a large class of Helmholtz problems, stability and quasi-optimality is
given under the scale resolution condition

% <c and p > cxlogk, (6)
where c| is sufficiently small and ¢, sufficiently large. For piecewise smooth geome-
tries (e.g., polygons), additionally appropriate mesh refinement near the singularities
is required.

We close our discussion of Example 1.1 by remarking that its analysis and, in
fact, the analysis of significant parts of this article rests on H'-like norms. Largely,
this choice is motivated by the numerical scheme, namely, an H ! -conforming FEM.

1.1 Non-standard FEM

The limitations of the classical FEM mentioned above in (I) and (IT) have sparked a
significant amount of research in the past decades to overcome or at least mitigate
them. This research focuses on two techniques that are often considered in tandem:
firstly, the underlying approximation by classical piecewise polynomials is replaced
with special, problem-adapted functions such as systems of plane waves; secondly,
the numerical scheme is based on a variational formulation different from the classi-
cal H'-conforming Galerkin approach. Before discussing these ideas in more detail,
we point the reader to the interesting work [12], which shows for a model situation
on regular, infinite grids in 2D that no 9-point stencil (i.e., a numerical method based
on connecting the value at a node with those of the 8 nearest neighbors) generates a
completely pollution-free method; the 1D situation is special and discussed briefly
in Section 7.

Work that is based on a new or modified variational formulation but rests on
the approximation properties of piecewise polynomials includes the Galerkin Least
Squares Method [39, 40], the methods of [9], and Discontinuous Galerkin Methods
( [33-35] and references there). Several methods have been proposed that are based
on the approximation properties of special, problem-adapted systems of functions
such as systems of plane waves. In an H'-conforming Galerkin setting, this idea has
been pursued in the Partition of Unity Method/Generalized FEM by several authors,
e.g., [5,45,50,51,56,60,68,69,81]. A variety of other methods that are based on
problem-adapted ansatz functions leave the H'-conforming Galerkin setting and en-
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force the jump across element boundaries in a weak sense. This can be done by least
squares techniques ( [14,53,65,70,80] and references there), by Lagrange multiplier
techniques as in the Discontinuous Enrichment Method [31, 32, 82] or by Discon-
tinuous Galerkin (DG) type methods, [19-21,36,42,43,46,55,63,64]; in these last
references, we have included the work on the Ultra Weak Variational Formulation
(UWVF) since it can be understood as a special DG method as discussed in [19,36].

1.2 Scope of the article

The present article focuses on the stability properties of numerical methods for
Helmholtz problems and exemplarily discusses three different approaches in more
detail for their differences in techniques. The first approach, studied in Section 4, is
that of the classical H'-based Galerkin method for Helmholtz problems. The setting
is that of a Garding inequality so that stability of a numerical method can be inferred
from the stability of the continuous problem by perturbation arguments. This moti-
vates us to study for problem (9), which will serve as our model Helmholtz problem
in this article, the stability properties of the continuous problem in Section 2. In
order to make the perturbation argument explicit in the wavenumber k, a detailed, k-
explicit regularity analysis for Helmholtz problems is necessary. This is worked out
in Section 3 for our model problem (9) posed on polygonal domains. These results
generalize a similar regularity theory for convex polygons or domains with analytic
boundary of [61, 62]. Structurally similar results have been obtained in connection
with boundary integral formulations in [54, 59].

We discuss in Sections 6.2 and 6.3 somewhat briefly a second and a third ap-
proach to stability of numerical schemes. In contrast to the setting discussed above,
where stability is only ensured asymptotically for sufficiently fine discretizations,
these methods are stable by construction and can even feature quasioptimality in
appropriate residual norms. We point out, however, that relating this residual norm
to a more standard norm such as the L>-norm for the error is a non-trivial task. Our
presentation for these methods will follow the works [19, 36,43, 65].

Many aspects of discretizations for Helmholtz problems are not addressed in this
article. For recent developments in boundary element techniques for this problem
class, we refer to the survey article [22]. The model problem (9) discussed here
involves the rather simple boundary condition (9b), which can be understood as
an approximation to a Dirichlet-to-Neumann operator that provides a coupling to
a homogeneous Helmholtz equation in an exterior domain together with appropri-
ate radiation conditions at infinity. A variety of techniques for such problems are
discussed in [37]. Further methods include FEM-BEM coupling, the PML due to
Bérenger (see [17,24] and references therein), infinite elements [26], and methods
based on the pole condition, [44]. Another topic not addressed here is the solution
of the arising linear system; we refer the reader to [28, 30] for a discussion of the
state of the art. Further works with survey character includes [29,47,48, 83].
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1.3 Some notation

We employ standard notation for Sobolev spaces, [1,18,67,77]. For domains w and
k # 0 we denote
1l o = K12 g + V] 22 - 7)

This norm is equivalent to the standard H'-norm. The presence of the weight k in the
L?-part leads to a balance between the H'-seminorm and the L?-norm for functions
with the expected oscillatory behavior such as plane waves *4* (with d being a unit
vector). Additionally, the bilinear form B considered below is bounded uniformly in
k with respect to this (k-dependent) norm.

Throughout this work, a standing assumption will be

k| > ko > 0; ®)

our frequently used phrase “independent of k¥ will still implicitly assume (8). We
denote by C a generic constant. If not stated otherwise, C will be independent of
the wavenumber k but may depend on ky. For smooth functions u defined on a d-

of!
dimensional manifold, we employ the notation | V"u(x)|* := ) 4 |D%u(x)|?.
aeNg: |al=n

1.4 A model problem

In order to fix ideas, we will use the following, specific model problem: For a
bounded Lipschitz domain Q C R4, d € {2,3}, we study for k € R, |k| > ko, the
boundary value problem

—Au—Ku = fin Q, (9a)
Ot +iku = g on Q. (9b)

Henceforth, to simplify the notation, we assume k > ko > O but point out that the
choice of the sign of k is not essential. The weak formulation for (9) is:

Findu € H'(Q) s.t. B(u,v) =1(v) e H'(Q), (10)
where, for f € L*>(Q) and g € L*(dR), B and [ are given by

Buv) = [ (Vu-Vo-Rum) ik [ am, 10)i= (£)i0) +(89) 20 (1D

As usual, if f € (H'(Q))' and g € H~'/2(9Q), then the L?-inner products (-, )2
and (-,-) 2(0Q) are understood as duality pairings. The multiplicative trace inequal-

ity proves continuity of B; in fact, there exists Cg > 0 independent of k such that
(see, e.g., [62, Cor. 3.2] for details)
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1Bu)| < Calluliialvline  VuveH'(2). (12)

2 Stability of the continuous problem

Helmbholtz problems can often be cast in the form “coercive + compact perturbation”
where the compact perturbation is k-dependent. In other words, a Garding inequality
is satisfied. For example, the sesquilinear form B of (11) is of this form since

Re B(u,u) +2k*(u,10) 12 ) = [lui . (13)

and the embedding H'(Q) C L?() is compact by Rellich’s theorem. Classical
Fredholm theory (the “Fredholm alternative”) then yields unique solvability of (10)
forall f € (H'(R))" and g € H~'/2(9Q), if one can show uniqueness. Uniqueness
in turn is often obtained by exploiting analyticity of the solutions of homogeneous
Helmholtz equation, or, more generally, the unique continuation principle for elliptic
problems, (see, e.g., [52, Chap. 4.3]):

Example 2.1 (Uniqueness for (9)). Let f = 0 and g = 0 in (9). Then, any solu-
tion u € H'(Q) of (9) satisfies u|yo = 0 since 0 = ImB(u,u) = k||u||i2(ag) (see
Lemma 2.2). Hence, the trivial extension # to R? satisfies # € H'(R?). The obser-
vations B(u,v) = 0 for all v € H'(Q) and u;o = 0 show

/2%7- Vi Rim=0  WeC(RY).
R

Hence, u is a solution of the homogeneous Helmholtz equation and # vanishes on
R?\ Q. Analyticity of i (or, more generally, the unique continuation principle pre-
sented in [52, Chap. 4.3]) then implies that u = 0, which in turn yields u = 0. =

The arguments based on the Fredholm alternative do not give any indication of how
the solution operator depends on the wavenumber k. Yet, it is clearly of interest
to know how k enters bounds for the solution operator. It turns out that both the
geometry and the type of boundary conditions strongly affect these bounds. For ex-
ample, for an exterior Dirichlet problem, [16] exhibits a geometry and a sequence of
wavenumber (k,),cn tending to infinity such that the norm of the solution operator
for these wavenumbers is bounded from below by an exponentially growing term
CeP*n for some C, b > 0. These geometries feature so-called “trapping” or near-
trapping and are not convex. For convex or at least star-shaped geometries, the k-
dependence is much better behaved. An important ingredient of the analysis on such
geometries are special test functions in the variational formulation. For example, as-
suming in the the model problem (10) that Q is star-shaped with respect to the ori-
gin (and has a smooth boundary), one may take as the test function v(x) = x- Vu(x),
where u is the exact solution. An integration by parts (more generally, the so-called
“Rellich identities” [67, p. 261] or an identity due to PohoZaev, [71]) then leads to
the following estimate for the model problem (10):
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lullike <CllIfll2@ + 8llrea)]: (14)

this was shown in [56, Prop. 8.1.4] (for d = 2) and subsequently by [25] for d = 3.
Uniform in k£ bounds were established in [41] for star-shaped domains and certain
boundary conditions of mixed type by related techniques. The same test function
was also crucial for a boundary integral setting in [23]. A refined version of this
test function that goes back to Morawetz and Ludwig, [66] was used recently in a
boundary integral equations context (still for star-shaped domains), [78].

While (14) does not make minimal assumptions on the regularity of f and g, the
estimate (14) can be used to show that (for star-shaped domains) the sesquilinear
form B of (10) satisfies an inf-sup condition with inf-sup constant y = O(k~!)—this
can be shown using the arguments presented in the proof Theorem 2.5.

An important ingredient of the regularity and stability theory will be the concept
of polynomial well-posedness by which we mean polynomial-in-k-bounds for the
norm of the solution operator. The model problem (9) on star-shaped domains with
the a priori bound (14) is an example. The following Section 2.1 shows polynomial
well-posedness for the model problem (9) on general Lipschitz domains (Thm. 2.4).
It is thus not the geometry but the type of boundary conditions in our model problem
(9), namely, Robin boundary conditions that makes it polynomially well-posed. In
contrast, the Dirichlet boundary conditions in conjunction with the lack of star-
shapedness in the examples given in [16] make these problem not polynomially
well-posed.

2.1 Polynomial well-posedness for the model problem (9)

Lemma 2.2. Let Q C R? be a bounded Lipschitz domain. Let u € H' () be a weak
solution of (9) with f =0 and g € L*(R). Then [ull200) < k! gl z200)-

Proof. Selecting v = u in the weak formulation (10) and considering the imaginary
part yields
k|lu|? =1Im / u< u .
lullf200) oSS lgll200)lull 200
This concludes the argument. [

Next we use results on layer potentials for the Helmholtz equation from [59] to
prove the following lemma:

Lemma 2.3. Let Q C R? be a bounded Lipschitz domain, u € H'(Q) solve (9) with
f=0. Assume u|yo € L*(9Q) and dyu € L*(dR). Then there exists C > 0 indepen-
dent of k and u such that

Jull 22y < €k (llz0) + I19mll 100 )

fuli ko <C [kZHMHE(aQ) +k2|\an“|\y4(ag) +k72|‘an”||L2(8Q):| :
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Proof. With the single layer and double layer potentials \7k and I?k we have the
representation formula u = V. d,u — K u. From [59, Lemmata 2.1, 2.2, Theorems 4.1,
4.2] we obtain

Vidutl ) < CRlIGutl -1 |Ruall 2y < Chlll a0
Thus,
Jull 22y < Ck (lltll2a) + 19nelr-1 9y )

Next, using v = u in the weak formulation (10) yields

V622 0 <€ [K¥1uliZ2iq) + 1m0 200 |
and therefore
HV”HiZ(Q) +k2HMHi2(_Q) <C [k4||”||i2(ag) +k4||an”||%rl(ag) +k74||an””i2(ag)} )
which concludes the proof. 0O

Theorem 2.4. Let Q C RY, d € {2,3} be a bounded Lipschit; domain. Then there
exists C > 0 (independent of k) such that for f € L*(Q) and g € L*(dQ) the solution
u € H'(Q) of (9) satisfies

lullixe < € [Rlglzoa) + K1 |2

Proof. We first transform the problem to one with homogeneous right-hand side f
in the standard way. A particular solution of the equation (9a) is given by the Newton
potential ug := Gy * f; here, Gy is a Green’s function for the Helmholtz equation and
we tacitly extend f by zero outside 2. Then ug € lOC(Rd ) and by the analysis of
the Newton potential given in [62, Lemma 3.5] we have

K ol (@) + ol @) +Klluoll 2@ < Cllfll 2o (15)
The difference u := u — ug then satisfies
—AI—Ki=0 inQ, (16a)
Opti +iku = g — (Qyuo +ikug) =: g. (16b)
We have with the multiplicative trace inequality
1/2

1/2 1/2

1/2
oy 10ll 51+ Klloll 15l 55

18 200) < € lgll2a) + luolls
< ¢|llgl 2o +k'/2||f|\Lz<g>} - a7)

To get bounds on u, we employ Lemma 2.2 and (17) to conclude
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1.220) < CE 8200 < € (K7 lgll2ae) +6~ 21 i) (18)
19nitlz2a) < € 18l 2(00) + Kl 200y | <€ [I82g00) + 5 I flz@)] - 19

Lemma 2.3 and the generous estimate |d,it||;;-1(9q) < Cl|9nil]|2(9g) pProduce

]| g1 () + k[l 20) < C [k2||g||L2(ag) Jrks/z”mem} - (20)
Combining (15), (20) finishes the argument. O

The a priori estimate of Theorem 2.4 does not make minimal assumptions on the
regularity of f and g. However, it can be used to obtain estimates on the inf-sup and
hence a priori bounds for f € (H'())" and g € H'/?(dQ) as we now show:

Theorem 2.5. Let Q C R, d € {2,3} be a bounded Lipschit; domain. Then there
exists C > 0 (independent of k) such that the sesquilinear form B of (11) satisfies

ReB
inf sup eB(u,v)

=25 s 1)
0FueH (Q) 0£veH! (Q) lull1 k2llvx0

Furthermore, for every f € (H'(Q)) and g € H"'?(3Q) the problem (10) is
uniquely solvable, and its solution u € H'(Q) satisfies the a priori bound

ul|1 .0 < CK'? [HfH(H'(Q))' + ||g||H7l/2(ag)} : (22)

If Q is convex or if Q is star-shaped and has a smooth boundary, then the following,
sharper estimate holds:

ReB
inf sup _ ReBuy) o o1, (23)
0£ueH! (Q) 0£ver! (Q) lulli ke lVlixe

Proof. The proof relies on standard arguments for sesquilinear forms satisfying a

Garding inequality. For simplicity of notation, we write || - |1 x for || - ||1 x.-
Given u € H'(Q) we define z € H' () as the solution of

2 (- u) 1210y = B(:,2).
Theorem 2.4 implies ||zl 4 < CK%/?||ul| 2(q), and v = u+z satisfies
ReB(u,v) = ReB(u,u) +ReB(u,z) = ||”||%,k*2k2”“”i2(g) +ReB(u,z) = ||u||%k
Thus,

2
ReB(u,v) = ||“||1,k7

Ve = N+ zlla < lulle+ lzlhe < JullcH CE ull 2 gy < CK7 lull i
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Therefore,
ReB(u,v) = [[ullf > [lull1 xCk~"|[v]]1 .

which concludes the proof of (21). Example 2.1 provides unique solvability for (9)
so that (21) gives the a priori estimate (22). Finally, (23) is shown by the same
arguments using (14). O

3 k-explicit regularity theory
3.1 Regularity by decomposition

Since the Sobolev regularity of elliptic problems is determined by the leading order
terms of the differential equation and the boundary conditions, the Sobolev regu-
larity properties of our model problem (9) are the same as those for the Laplacian.
However, regularity results that are explicit in the wavenumber k are clearly of in-
terest; for example, we will use them in Section 4.2 below to quantify how fine the
discretization has to be (relative to k) so that the FEM is stable and quasi-optimal.

The k-explicit regularity theory developed in [61,62] (and, similarly, for integral
equations in [54, 59]) takes the form of an additive splitting of the solution into
a part with finite regularity but k-independent bounds and a part that is analytic
and for which k-explicit bounds for all derivatives are available. Below, we will
present a similar regularity theory for the model problem (9) for polygonal Q C R?,
thereby extending the results of [61], which restricted its analysis of polygons to the
convex case. In order to motivate the ensuing developments, we quote from [62] a
result that shows in a simple setting the key features of our k-explicit “regularity by
decomposition™:

Lemma 3.1 ([62, Lemma 3.5]). Let B(0) C R?, d € {1,2,3} be the ball of radius
R centered at the origin. Then, there exist C, v > 0 such that for all k (with k > ko)
the following is true: For all f € L*(R?) with supp f C Bg(0) the solution u of

—Au—RKu=f inR?,

subject to the Sommerfeld radiation condition
1/ 0
lim |x|% (_u — iku) =0 for |x|— oo,
|| e d|x
has the following regularity properties:

(i) ul gy (0) € H*(B2r(0)) and ||ul| g2, 0)) < CKIIS || 1284 0)):
(ii) u|pye(0) can be decomposed as u = uyp +uy for a uyp € H?(Bog) and an
analytic ug together with the bounds
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Kl 11 & Bor(0) + 142 | 2 Bog0)) < CIFIl2(8r(0))
IVt || 12(8y(0y) < CV max{n, k" fl 2509 V1 € No.

A few comments concerning Lemma 3.1 are in order. For general f € L*(Bg(0)),
one cannot expect better regularity than H>-regularity for the solution u and, in-
deed, both regularity results (i) and (ii) assert this. The estimate (i) is sharp in
its dependence on k as the following simple example shows: For the fundamen-
tal solution Gy (with singularity at the origin) and a cut-off function y € Cg(RY)
with suppy C Bag(0) and x = 1 on Bg(0), the functions u := (1 — x)Gy and
f = —Au — k?u satisfy ]l 128 (0)) = O(k?) and 1 £1l22(Bx(0)) = O(k). Compared
to (i), the regularity assertion (ii) is finer in that its H>-part uy> has a better k-
dependence. The k-dependence of the analytic part u,, is not improved (indeed,
e | 2Byg 0)) < CKIIS 1|12 (84 (0)))- but the analyticity of u,y is a feature that higher
order methods can exploit.

The decomposition in (ii) of Lemma 3.1 is obtained by a decomposition of the
datum f using low pass and high pass filters, i.e., f = Lyt f + Hyi f, where the low
pass filter Ly cuts off frequencies beyond nk (here, n > 1) and Hy; eliminates
the frequencies small than nk. Similar frequency filters will be important tools in
our analysis below as well (see Sec. 3.3.1). The regularity properties stated in (ii)
then follow from this decomposition and the explicit solution formula u = Gy * f
(see [62, Lemma 3.5] for details).

Lemma 3.1 serves as a prototype for “regularity theory by decomposition”. Sim-
ilar decompositions have been developed recently for several Helmholtz problems
in [61] and [54, 59]. Although they vary in their details, these decomposition are
structurally similar in that they have the form of an additive splitting into a part with
finite regularity with k-independent bounds and an analytic part with k-dependent
bounds. The basic ingredients of these decomposition results are (a) (piecewise)
analyticity of the geometry (or, more generally, the data of the problem) and (b) a
priori bounds for solution operator. The latter appear only in the estimate for the
analytic part of the decomposition, and the most interesting case is that of polyno-
mially well-posed problems. We illustrate the construction of the decomposition for
the model problem (9) in polygonal domains  C R2. This result is an extension
to general polygons of the results [61], which restricted its attention to the case of
convex polygons. We emphasize that the choice of the boundary conditions (9b) is
not essential for the form of the decomposition and other boundary conditions could
be treated using similar techniques.

3.2 Setting and main result

Let Q C R? be a bounded, polygonal Lipschitz domain with vertices A =1,
and interior angles w;, j =1,...,J. We will require the countably normed spaces
introduced in [8,57]. These space are designed to capture important features of solu-
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tions of elliptic partial differential equations posed on polygons, namely, analyticity
of the solution and the singular behavior at the vertices. Their characterization in
terms of these countably normed spaces also permits proving exponential conver-
gence of piecewise polynomial approximation on appropriately graded meshes.
These countably normed spaces are defined with the aid of weight functions

%
CDP i that we now define. For § € [0,1), n € No, k>0, and 8 € [0,1)/, we set

n+pB
: [+
dbn[;k(x):mm l, ————— ,
P . +1
mln{l, ‘Z‘H }
J
P 5, = ng Dy p; (X —Aj). (24)

Finally, we denote by H ,%2 (dQ) the space of functions whose restrictions of the
edges of 0Q are in H'/2.

We furthermore introduce the constant Cs,,; (k) as a suitable norm of the solution
operator for (9). That is, Cy;(k) is such that for all f € L?(Q), g € L*(dQ) and
corresponding solution u of (9) there holds

el k2 < Coor (k) [ 2+ 200 25)

We recall that Theorem 2.4 gives Cy, (k) = O(k5/ %) for general polygons and
Cso1(k) = O(1) by [56, Prop. 8.1.4] for convex polygons. Our motivation for using
the notation Cy,;(k) is emphasize in the following theorem how a priori estimates
for Helmholtz problems affect the decomposition result:

Theorem 3.2. Let Q C R? be a polygon with vertices Aj, j=1,...,J. Then there
exist constants C, Y >0, B € [0,1)’ independent of k > ko such that for every f €

L*(Q)andg € H,%?(&.Q) the solution u of (9) can be written as u = uy + u g with

Kllugz |1 k.0 + lupe | g2(0) < CCrg
[l @) < (Csor(k) +1)Cr g
Klluesll2@) < (Coor(k) +k)Cr g
||€Dn7E>VkV”+2up¢HL2(Q) < C(Cyp (k) + 1)k max{n,k}”“)/’Cf,g Vn € Ny

)+
)+

with Cre = || fll12(0) + HgHH]%?(aQ) and Cy, (k) introduced in (25).

Proof. The proof is relegated to Section 3.4. We mention that the k-dependence of
our bounds on ||u || 12() 1s likely to be suboptimal due to our method of proof. [

Theorem 3.2 may be viewed as the analog of Lemma 3.1, (ii); we conclude this
section with the analog of Lemma 3.1, (i):
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Corollary 3.3. Assume the hypotheses of Theorem 3.2. Then there exist constants
C >0, B €0,1) independent of k such that for all f € L*(R2), g € H,%?(&.Q) the
solution u of (9) satisfies ||u||1 x.o0 < CCsp(k) |:Hf||L2(Q) + HgHLZ(aQ):| as well as

12,5, i) < CKCar®+ 1) [ 1200 + el 0

Proof. The estimate for |[u||; x o expresses (25). The estimate for the second deriva-
tives of u follows from Theorem 3.2 since u = uy2 +uy. O

3.3 Auxiliary results

Just as in the proof of Lemma 3.1, an important ingredient of the proof of Theo-
rem 3.2 are high and low pass filters. The underlying reason is that the Helmholtz
operator —A — k2 acts very differently on low frequency and high frequency func-
tions. Here, the dividing line between high and low frequencies is at O(k). For
this reason, appropriate high and low pass filters are defined and analyzed in Sec-
tion 3.3.1. Furthermore, when applied to high frequency functions the Helmholtz
operator behaves similarly to the Laplacian —A or the modified Helmholtz operator
—A + k2. This latter operator, being positive definite, is easier to analyze and yet
provides insight into the behavior of the Helmholtz operator restricted to high fre-
quency functions. The modified Helmholtz operator will therefore be a tool for the
proof of Theorem 3.2 and is thus analyzed in Section 3.3.3.

3.3.1 High and low pass filters, auxiliary results

For the polygonal domain  C R? we introduce for 7 > 1 the following two low
and high pass filters in terms of the Fourier transform .%:

1. The low and high pass filters Lo p f : L*(Q) — L*(Q) and Hg , : L*(2) —
L?(Q) are defined by

Lonf=(F "4, 07 Eaf)la,  Haonf= (ﬁ’”mz\gnk(oyff(Eaf))Ia:

here, By (0) is the ball of radius nk with center 0, the characteristic function of
aset A is 4, and Eg denotes the Stein extension operator of [79, Chap. VI].

2. Analogously, we define Lyq , f : L*(0Q) — L*(9Q) and Hyg , : L*(92) —
L?(dQ) in an edgewise fashion. Specifically, identifying an edge e of Q with
an interval and letting E, be the Stein extension operator for the interval e C R
to the real line R, we can define with the univariate Fourier transformation .%
the operators L, 5 and H, 5 by
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—1 —1 .
Leng=(F xB,,k(O)y(Eeg))le, Heng=(F XR\Bnk(O)y(Eefme»

the operators Ly  and Hyq , are then defined edgewise by (Lyo 18)le = Leng
and (Hyg p8)le = Heng for all edges e C 9Q.

These operators provide stable decompositions of L?(£2) and L*(d ). For example,
one has Lo 5 + Ho n = 1d on L?(2) and the bounds

ILanfllz) +1Hon iz <Clflze) — VfeLX(Q),

where C > 0 depends solely on £ (via the Stein extension operator Eq). The op-
erators Ho y and Hygq 5 have furthermore approximation properties if the function
they are applied to has some Sobolev regularity. We illustrate this for Hyq -

Lemma 3.4. Let Q C R? be a polygon. Then there exists C > 0 independent of k
and M > 1 such that for all g € H;v/vz(c?_())

1/2 1/2
k (1 +77 )||H¢99,ngHL2(aQ) + ||H397ng||H[],y/Vz(aQ) S C”gHH[]W/VZ(a_Q)

Proof. We only show the estimate for ||H3_Q’ngHL2(aQ). We consider first the case of
an interval I C R. We define H; g by Hy ng = 7~ : XR\B (0) FErg, where XR\B (0)
is the characteristic function for R\ (—nk, nk) and E; is the Stein extension operator
for the interval 1. Since, by Parseval, .% is an isometry on L?(IR) we have

Hipngll? < ||Hrngl? :/ FEigl*d
| I,Tlg”LZ([)_” I,Tlg”LZ(R) 2\ (0)| 18| g

(1+EP) 2

= 271/2 2
Sy (1 EP) LIS T Ergl de.

| FEgl*dé <

o
EEraA

The last integral can be bounded by C ||E1g||il1 2w+ Lhe stability properties of the

(R)
extension operator E; then imply furthermore | E;g||,1/2 ® <C llgll ;172 (1)- In total,

1 _ _
1Hrn8ll 2 < Cwﬂgﬂmﬁ(z) <k P (140) gl gy,

where, in the last estimate, the constant C depends additionally on kg. From this
estimate, we obtain the desired bound for || Hjyq 5| 12(9) by identifying each edge
of  with an interval. O

3.3.2 Corner singularities

We recall the following result harking back to the work by Kondratiev and Grisvard:

Lemma 3.5. Let Q C R? be a polygon with vertices Aj, j=1,....J, and interior
angles wj, j=1,...,J. Define for each vertex A; the singularity function S; by
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T/o; T

Sj(rj,@;)=r;" " cos (;‘Pj) ; (26)
J

where (rj, @;) are polar coordinates centered at the vertex A such that the edges of
£ meeting at A correspond to @; =0 and ¢; = ;. Then every solution u of

—Au=f inQ, =g onaf,

can be written as u = ug + 25:1 af (f,8)S; with the a priori bounds

J
luollz2(0) + Y laf (f.8)| <€ 1 ll2(2) + 18l iz o0, + 1ulane) |- @D
=1 '

The aJA~ are linear functionals, and aJA = 0 for convex corners Aj (i.e., if ®; < ).

Proof. This classical result is comprehensively treated in [38]. O

3.3.3 The modified Helmholtz equation
We consider the modified Helmholtz equation in both a bounded domain with Robin

boundary conditions and in the full space R?. The corresponding solution operators
will be denoted S, and S7:

1. The operator S§ : L*(Q) x H,}V/Vz(&Q) — H'(Q) is the solution operator for
—Au+kKu=f in®Q, hu+iku=g onoQ. (28)
2. The operator S;RSZ : L*(R?) — H'(R?) is the solution operator for
—Au+ku=f inR2 (29)

Lemma 3.6 (properties of S}). Let 2 C R* be a polygon and f € L*(Q), g €
H,Ev/vz(aﬂ). Then the solution u := S§(f,g) satisfies

lull e <k Plgloa) +k " Ifl2@)- (30)

Furthermore, there exists C > 0 independent of k and the data f, g, and there exists
a decomposition u = uy + ):{:1 a;r (f,8)Si for some linear functionals a;r with

J
g i)+ Y lai (.0 < € | 1Fll200) 118l 12 0y + K 8 l1200) | - BD
i=1 v

Proof. The estimate (30) for ||ul|; x ¢ follows by Lax-Milgram —see [61, Lemma 4.6]
for details. Since u satisfies

—Au=f—ku inQ, dhu=g—iku ondQ,
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the standard regularity theory for the Laplacian (see Lemma 3.5) permits us to de-
compose u = ug> + Y, a? (f — kK*u,g — iku)S;. The continuity of the linear func-

tionals a? reads

J
Ll Rusg k)] < 17 =Rl iy + g =ikl

Since (f,8) — S§(f,g) is linear, the map (f,g) — a; (f,g) := a?* (f — k*u,g —iku)
is linear, and (30), (27) give the desired estimates for u;> and ai+ (f,g). O

Lemma 3.7 (properties of S];{Sz). There exists C > 0 such that for every n > 1 and
every f € L*(R?) whose Fourier transform F f satisfies supp.Z f C R?\ By (0),
the solution u = SIEQf of (29) satisfies

_ 1
lJully ko m2 < & lﬁ”ﬂ‘ﬁ(ﬂ&z)’ ul 2 r2) < ClIF Nl 2 r2) -

Proof. The result follows from Parseval’s theorem and the weak formulation for u
as follows (we abbreviate the Fourier transforms by f = % f and u = .Z u):

||u||%,k,R2 = (f,M)Lz(IR@) = (]/(\7 i‘\)LZ(Rz)

< \//Rz(lé|2+k2)1|f|2d5 \//Rz(|§|2+k2)|ﬁlzd§
117 1 —~
= \/ A N (R e e [ LTS

where, in the penultimate step, we used the support properties of f Appealing again
to Parseval, we get the desired claim for |[ul|; ; g2. The estimate for |[ul|2(z2) now

follows from f € L?>(R?) and the standard interior regularity for the Laplacian. O

3.4 Proof of Theorem 3.2

We denote by S: (f,g) — S(f,g) the solution operator for (9). Concerning some of
its properties, we have the following result taken essentially from [61, Lemma 4.13]:

Lemma 3.8 (analytic regularity of S(f,g)). Let Q be a polygon. Let f be analytic
on Q and g € L*(9) be piecewise analytic and satisfy for some constants Cy, C,,
Ys ¥e >0
V" fll2() < CrYimax{nk}"  ¥neN, (32a)
V38l < Co¥ymax{n,k}"  VneNy Veeé, (32b)
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where_> & denotes the set of edges of Q and V1 tangential differentiation. Then there
exist B €[0,1)? (depending only on Q) and constants C, y > 0 (depending only on
Q, Yt. Yo, ko) such that the following is true for the constant Cy, (k) of (25):

lull 1.0 < Coat(K)(Cr+C) (33)
19,5 " ulliz(a) < CCar (k™ (Cr+Co)Y max{n k)™ ¥ € No. (34)

Proof. The estimate (33) is simply a restatement of the definition of Cy,; (k). The

estimate (34) will follow from [57, Prop. 5.4.5]. To simplify the presentation, we

assume by linearity that g vanishes on all edges of  with the exception of one edge

I'. Furthermore, we restrict our attention to the vicinity of one vertex, which we take

to be the origin, we assume I" C (0,00) x {0}, and that near the origin,  is above

(0,00) x {0}, 1.e., {(rcos@,rsing): 0<r<p,0< ¢ <w} CQ forsomep, ®>0.
Upon setting € := 1/k, we note that u solves

—’Au—u=¢*f onQ, e20,u=¢e(eg—iu) ondQ.

On the edge I', the function g is the restriction of Gy o(x,y) := g(x)e /€ to I'. The
assumptions on f and g then imply that [57, Prop. 5.4.5] is applicable with the
following choice of constants appearing in [57, Prop. 5.4.5]:

Cy=€2Cy, Cg, = €€'2Cy, Cg, =€, Cp=0,Ce=1,
')/fZO(l), YGI 20(1)7 ’sz :0(1)5 yb:Oa YC 207

_)
resulting in the existence of constants C, K > 0 and f € [0,1)’ with
| an,?,kV”H”HU(Q) < CK"?max{n+2,k}"*? (kiszvf +k ull g0+ /(3/2@)

for all n € Ny. We conclude the argument by inserting (33) and estimating gener-
ously k’léf + k’l/zag <C (Ef +5g).
We remark that this last generous estimate comes from the precise form of our

stability assumption (25). Its form (25) is motivated by the estimates available for
the star-shaped case, but could clearly be replaced with other assumptions. O

Corollary 3.9 (analytic regularity of S(Lo  f,Ly0 1g))- Let Q be a polygon and
N > 1. Then there exist B € [0,1)’ (depending only on Q) and C, y > 0 (depending
only on Q, ko, and n > 1) such that for every f € L*(Q) and g € L*(dQ), the
functionu = S(Lo nf,Laq yg) satisfies with Cy ¢ := || fll2(0) + I8l 1200)
l[ull1 .0 < CCsoi(k)Cr.g 35)
||¢”’F’kv"+2u||y(m < CCyo(K)k 'y max{n,k}"Cr,  VneNy. (36)

Proof. The definitions of Lg  f and Lyq 5 imply with Parseval
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HV"LQ.,anL2(Q)
VLo nglli2(00)

Cnk)"flz@)  Vn €N,

<
< Ck)"liglz@0)  VneNo,

where again V7 is the (edgewise) tangential gradient. The desired estimates now
follow from Lemma 3.8. O

Key to the proof of Theorem 3.2 is the following contraction result:

Lemma 3.10 (contraction lemma). Let Q C R? be a polygon. Fix q € (0,1). Then

é
one can find B € [0,1)’ (depending solely on Q) and constants C, y > 0 indepen-

dent of k such that for every f € L*(Q) and every g € H,‘,é?(ag), the solution u of

(9) can be decomposed as u = uy> + Z{:] ai(f,8)Si + iy +r, where uy € H*(Q),
the a; are linear functionals, and u € C*(Q). These functions satisfy

J
e s+ i e+ 35 1)1 <€ Wiz + el |
i=1 :

lter 1 k.2 < CCat (k) [ /1200 + lgliziam |
|\¢n,3’,kvn+2”ﬂ||L2(Q) < CCyor (k)k™ "y max{n, k}"+ [HfHU(.Q) + H8HL2(99)}
for all n € Ny. Finally, the remainder r satisfies
—Ar—kKr=f onQ, Opr+ikr=g

for some f € [2(Q) and g € H,EV/VZ((?.Q) with

1@+ 1812 0 < (1000 + ey )

Proof. We start by decomposing (f,g) = (Lonf,Laang) + (Hanf Hyo ng) wWith
a parameter 17 > 1 that will be selected below. We set

Uy ::S(Lﬂ,nfvl«?ﬂ,ng)a ui ::S];{Sz(HQ,nf)v

where we tacitly extended Hq p f (which is only defined on Q) by zero outside
Q. Then u,, satisfies the desired estimates by Corollary 3.9. For u; we have by
Lemma 3.7 and the stability ||Ho nfll;2(0) < Cllf[l;2(0) (We note that C > 0 is
independent of k and 1)) the a priori estimates
larlly e < CK~' (1402 Han fll2@) < CKH (141 If 20,
lurll 2 (r2) < CllHanfl2@) < Cllfll2(0)-

The trace and the multiplicative trace inequalities imply for g := dyu + iku,:

K721+ m'2lgill200)+ ||81|\H;4;(99) < Clfll2q)-
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For g := Hyq ng — g1 we then get from Lemma 3.4 and the triangle inequality

E20 1) Plgalizon + 12l 0y < € Il pn + Wiz |

Lemma 3.6 yields for u; := S§(0,2),

luzll1 .0 < Ck’l/ZngHU(aQ) <Ck'(14+n)7'? [|f||L2(Q) + |8|H;£2(39)} )

and furthermore we can write uy = u + Y., a; (0,82)S;, with

J
+
e+ 3 0,820 < 1z + el |

We then define a;(f,g) := a; (0,g2) and note that (f,g) + a;(f,g) is linear by lin-
earity of the maps ai+ and (f,g) — g». The above shows that u;» and the g; satisfy
the required estimates. Finally, the function # := u — (1. +u; + uy) satisfies

—AU— K =2k +up) =1 f,  Oui+iki=0=:g,

together with

1Fll2c) < 28 (a2 + 22y ) < C1+m) Y2 {nfmm 18l 00

Hence, selecting 1 > 1 sufficiently large so that for the chosen ¢ € (0,1) we have
C(1+1n)~"/2 < g allows us to conclude the proof. O

Proof of Theorem 3.2. The contraction property of Lemma 3.10 can be restated
as S(f,g) = up2 + YL ai(f,8)Si + uoy + S(f,8), where, for a chosen ¢ € (0,1),

we have | Fl2(a) + 1811250y < 4 [|f||m) + |g|,,%;(m)] together with ap-
propriate estimates for u;.2, a;(f,g), and u. . This consideration can be repeated
for § (f~, g). We conclude that a geometric series argument can be employed to write
u=S(f,g) = uy + Y@ (f,8)Si + iy, where uy> € H*(Q), iy € C(Q), and
the coefficients a; are in fact linear functionals of the data (f,g). Furthermore, we
have with the abbreviation Cr ¢ := || f|l;2() + Hg”H},{f(aQ)

s |1 .2 < CCrg
1D, 5 V" Pierlli2 ) < CCu (kK Crey max{n,k}"** Ve N,

J
klluga lk,e + gl g2 ) + Y lai(f,8)| < CCry.
i—1

=
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Finally, Lemma 3.11 below allows us to absorb the contribution Y'_, @;(f,g)S; in
the analytic part by setting u, := iy + Y, ai(f,8)S:. In view of B; < 1, we have
2 —B; > 1 and arrive at

[ter |1 (@) < C(Coo(k) +1)Cr, kllucr|l 20y < CCrg(Coor (k) + k),
||¢”’F’kv"+2u%|\mm < CCyg [Cor (k)™ + k' max{n,k}"**  Vn e Ny,

which concludes the argument. [

Lemma 3.11. Let 3; € [0, 1) satisfy B; > 1 — % Then, for some C, y > 0 independent
of k, the singularity functions S; of (26) satisfy ||Si|| ;1 o) < C and

12, 5 V" Sillz() < CkC Py max{n )" ¥ e Ny

Proof. Follows by a direct calculation. See Lemma A.3 for details. O

4 Stability of Galerkin discretizations

4.1 Abstract results

We consider the model problem (9) and a sequence (Vi )yeny C H' () of finite-
dimensional spaces. Furthermore, we assume that (Viy)yen is such that for every
v € H'(Q) we have limy_e inf,ev, ||V — VN1 (@) = 0. The conforming approxi-
mations uy to the solution u of (9) are then defined by:

Find uy € Vy s.t. B(MN,V) = l(v) Vv € Vy. (37)

Since the sesquilinear form B satisfies a Garding inequality, general functional an-
alytic argument show that asymptotically, the discrete problem (37) has a unique
solution uy and are quasi-optimal (see, e.g., [73, Thm. 4.2.9], [74]). More precisely,
there exist Ny > 0 and C > 0 such that for all N > N,

| —unl[1 o < C inf [lu—v]ix0. (38)
veVy

This general functional analytic argument does not give any indication of how C
and Ny depend on discretization parameters and the wavenumber k. Inspection of
the arguments reveals that it is the approximation properties of the spaces Vy for the
approximation of the solution of certain adjoint problems that leads to the quasi-
optimality result (38). For the reader’s convenience, we repeat the argument, which
has been used previously in, e.g., [6,13,56,61,62,72,74] and is often attributed to
Schatz, [74]:

Lemma 4.1 ([61, Thm. 3.2]). Ler Q C RY be a bounded Lipschitz domain and B
be defined in (11). Denote by S* : L*(Q) — H'(Q) the solution operator for the
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problem

Find u* € H'(Q) s.t. Bv,u*) = (v, f)12(0) weH (Q). (39
Define the adjoint approximation property 1(Vy) by

n(Vy) := sup infw
feLz(.Q)VGVN HfHLZ(_Q)

If; for the continuity constant Cg of (12), the space Vy satisfies
2Cgkn (V) <1, (40)
then the solution uy of (37) exists and satisfies

[u—unlli ke <2 inf [lu—v]ixo. (41)
veVy

Proof. We will not show existence of uy but restrict our attention on the quasi-
optimality result (41); we refer to [54, Thm. 3.9] for the demonstration that (41) in
fact implies existence and uniqueness of uy. Letting ¢ = u — uy be the error, we
start with an estimate for [le|[;2(q): Using the definition of the operator S* and the
Galerkin orthogonality satisfied by e, we have for arbitrary v € Vy

lell2(q) = (¢.€)12(a) = B(e,S"e) = B(e,5"e —v) < Cpllell1 1.llS"e — Vi1 1.0
Infimizing over all v € Vy yields with the adjoint approximation property 1 (Vy)

lell 2@y < Can(Vn)llell1k.a-
The Gérding inequality and the Galerkin orthogonality yield for arbitrary v € Viy:
lell} .0 = ReBle,e) + 202 el ) = ReBle,u—v) + 24l 2 0
< Callelli kallu—vlira+(Cskn(V)* llellf .o

The assumption Cgkn (V) < 1/2 allows us to rearrange this bound to get |[e||1 x o <
2Cg||u —vl|1 k.- Since v € Vy is arbitrary, we arrive at (41). O

Lemma 4.1 informs us that the convergence analysis for the Galerkin discretization
of (9) can be reduced to the study of the adjoint approximation property 1(Vy),
which is purely a question of approximation theory. In the context of piecewise
polynomial approximation spaces Vy this requires a good regularity theory for the
operator S*. The strong form of the equation satisfied by u* := S*f is

—Au*—Ku =f inQ, Ouut* —iku* =0 ondQ, (42)

which is again a Helmholtz problem of the type considered in Section 3. More for-

mally, with the solution operator S of Section 3, we have S*f = S(f,0), where an
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overbar denotes complex conjugation. Thus, the regularity theory of Section 3 is
applicable.

4.2 Stability of hp-FEM

The estimates of Theorem 3.2 suggest that the effect of the corner singularities is
essentially restricted to an O(1/k)-neighborhood of the vertices. This motivates us
to consider meshes that are refined in a small neighborhood of the vertices. To fix
ideas, we restrict our attention to meshes ﬂth that are obtained in the following
way: First, a quasi-uniform triangulation .7, with mesh size & is selected. Then,
the elements abutting the vertices A, j = 1,...,J, are refined further with a mesh
that is geometrically graded towards these vertices. These geometric meshes have L
layers and use a grading factor o € (0, 1) (see [77, Sec. 4.4.1] for a precise formal
definition). Furthermore, for any regular, shape-regular mesh .7, we define

SP(T):={ucH (Q): ulx € P, VKcIT}, (43)

where &7, denotes the space of polynomials of degree p. We now show that on
the geometric meshes 7%/, stability of the FEM is ensured if the mesh size h and
the polynomial degree p satisfy the scale resolution condition (6) and, additionally,
L = O(p) layers of geometric refinement are used near the vertices:

Theorem 4.2 (quasi-optimality of 1p-FEM). Let Zfzo denote the geometric meshes

on the polygon  C R? as described above. Fix c3 > 0. Then there are constants cy,
¢y > 0 depending solely on Q and the shape-regularity of the mesh 3 8% such that
the following is true: If h, p, and L satisfy the conditions

kh
— <c¢; and p>cylogk and L>c3p (44)
p

then the hp-FEM based on the space SP (7,5, ) has a unique solution uy € S”(fgzo)
and '

[u—unllixe <2 inf fu—v]ixe. (45)
veSP(,ZfZ‘)

Proof. By Lemma 4.1, we have to estimate k1 (Vy) with Viy = SP(.7%°). Recalling

the definition of (Vi) we let f € L?>(2) and observe that we can decompose S* f =
Uy + Uy, where uyp and u, satisfy the bounds

||uH2HH2 < CHf||L2
19, 5 V" e 200 < ety DRy max{kn} 2 fllp)  YneNo.

Piecewise polynomial approximation on %fzo as discussed in [61, Prop. 5.6] gives
under the assumptions ki/p < C and L > c3p: (inspection of the proof of [61,
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Prop. 5.6] shows that only bounds on the derivatives of order > 2 are needed):

) h
vlenvaHqu —V[ikae < C;Hf”ﬁ(g)v

. e kh \”
vlenvlijMﬂ—VHl,k,Q <C [(kh)1 Bz gekh=bp (@) } (Csot (k) + DI £l 22(02)

where fax = maxj—;__;B; < 1,and C, ¢, b > 0 are constants independent of 7, p,
and k. From this, we can easily infer

kn(Vy) <C {% +k(Csor (k) +1) [(kh)‘ﬁmwred‘“" + (ﬁ) ,,} } .

Gop

Noting that Theorem 2.4 gives Cy,;(k) = O(k>/?), and selecting ¢ sufficiently small
as well as ¢, sufficient large allows us to make k1 (Vy) so small that the condition
(40) in Lemma 4.1 is satisfied. O

Corollary 4.3 (exponential convergence on geometric meshes). Let f be analytic
on Q and g be piecewise analytic, i.e., f, g satisfy (32). Given c3 > 0, there exist
c1, ¢ > 0 such that under the scale resolution conditions (44) of Theorem 4.2, the
finite element approximation uy € SP (fhgz") exists, and there are constants C, b > (0
independent of k such that the error u — uy satisfies

HufuNHl’kyQ S Ceibp.

Proof. In view of Theorem 4.2, estimating ||u — uy||1 ¢, is purely a question of
approximability for ¢; sufficiently small and ¢, sufficiently large. Lemma 3.8 gives
that the solution u = S(f,g) satisfies the bounds given there and, as in the proof of
Theorem 4.2, we conclude from [61, Prop. 5.6] (more precisely, this follows from
its proof)

. _ _ kh \? ~ o~
inf ity — vl 2 < C | (ki) Brasgethb (—) ](cmz<k>+1><cf+cg>.
veVy Oopp

Theorem 2.4 asserts Cy,; (k) = O(k>/2), which implies the result by suitably adjust-
ing ¢y and c; if necessary. O

Remark 4.4. 1. The problem size N = dimS?(.7,5%) is N = O((L+h~?)p*). The
particular choice of L = c3p layers of geometric refinement, approximation
order p = ¢plogk, and mesh size & = ¢ p/k in Theorem 4.2 ensures quasi-
optimality of the 2p-FEM with problem size N = O(k?), i.e., quasi-optimality
can be achieved with a fixed number of degrees of freedom per wavelength.

2. The sparsity pattern of the system matrix is that of the classical 1p-FEM, i.e.,
each row/column has O(p?) non-zero entries. Noting that the scale resolution
conditions (6), (44) require p = O(logk), we see that the number of non-zero
entries entries per row/column is not independent of k. It is worth relating this
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observation to [12]. It is shown there for a model problem in 2D that no 9 point
stencil can be found that leads to a pollution-free method.

3. Any space Vy that contains S”(.7,%”), where h, p, and L satisfy the scale reso-
lution condition (44) also features quasi-optimality.

4. The factor 2 on the right-hand side of (45) is arbitrary and can be replaced by
any number greater than 1.

5. The stability analysis of Theorem 4.2 requires quite a significant mesh refine-
ment near the vertices, namely, L ~ p. It is not clear whether this is an artifact
of the proof. For a more careful numerical analysis of this issue, more detailed
information about the stability properties of the solution operator S is needed,

e.g., estimates for ||S(f,g)|| Lk,By (A )

4.3 Numerical examples: hp-FEM

All calculations reported in this section are performed with the 2p-FEM code NET-
GEN/NGSOLVE by J. Schoberl, [75,76].

Example 4.5. In this 2D analog of Example 1.1, we consider the model problem
(9) with exact solution being a plane wave ei(klx“‘”), where k| = —ky = \/Lik and
k € {4,40,100,400}. For fixed p € {1,2,3}, we show in Fig. 2 the performance
of the h-version FEM for p € {1,2,3} on quasi-uniform meshes by displaying the
relative error in the H'-seminorm versus the number of degrees of freedom per
wavelength. We observe that higher order methods are less prone to pollution. We
note that the meshes are quasi-uniform, i.e., no geometric mesh refinement near the
vertices is performed in contrast to the requirements of Theorem 4.2. "

Example 4.6. On the L-shaped domain 2 = (—1,1)?\ (0,1) x (—1,0) with I" being
the union of the two edges meeting at (0,0), we consider

~Au—kPu=0 inQ, du=0 onl, du—iku=g ondQ\I', (46)

where the Robin data g are such that the exact solution is u(x,y) = ilkirthoy)
with k| = —k, = \/Lik’ and k € {10,100, 1000}. We consider two kinds of meshes,
namely, quasi-uniform meshes 7, with mesh size h such that ki =~ 4 and meshes
T8¢ that are geometrically refined near the origin. The meshes .78 are derived
from the quasi-uniform mesh .7, by introducing a geometric grading on the ele-
ments abutting the origin; the grading factor is ¢ = 0.125 and the number of refine-
ment levels is L = 10. Fig. 3 shows the relative errors in the H'-seminorm for the
p-version of the FEM where for fixed mesh the approximation order p ranges from
1 to 10. It is particularly noteworthy that the refinement near the origin has hardly
any effect on the convergence behavior of the FEM; this is quite in contrast to the
stability result Theorem 4.2, which requires geometric refinement near all vertices
of Q. ]
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Fig. 2 Top: i-FEM with p = 1 (left) and p = 2 (right) as described in Example 4.5. Bottom left:
h-FEM with p = 3 as described in Example 4.5. Bottom right: p-FEM for singular solution on
quasi-uniform mesh as described in Example 4.7.

Example 4.7. The geometry and the boundary conditions are as described in Exam-
ple 4.6. The data g are selected such that the exact solution is u = J53 (kr)cos %(p,
where (r,¢) denote polar coordinates and Jy is a first kind Bessel function. k €
{1,10,20,100,200}. Our calculations are p-FEMs with p € {1,...,10} on the qua-
siuniform mesh .7, described in Example 4.7. The results are displayed in the bot-
tom right part of Fig. 2. The numerics illustrate that the singularity at the origin
is rather weak: we observe that the asymptotic algebraic convergence behavior is
|t — upn]| g @) &~ Ckp*4/3|u|H1 (@)> Where the constant Cj depends favorably on k. =

4.4 Stability of Partition of Unity Method/Generalized FEM

The abstract stability result of Lemma 4.1 only assumes certain approximation prop-
erties of the spaces Vy. Particularly in an “A-version” setting, even non-polynomial,
operator-adapted spaces may have sufficient approximation properties to ensure the
important condition (40) for stability. We illustrate this effect for the PUM/gFEM,
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Fig. 3 p-FEM for plane wave solution as described in Example 4.6. Left: quasiuniform mesh .7,
with kh ~ 4. Right: Mesh .78 obtained from .7}, by strong geometric refinement near origin.

[56,60] with local approximation spaces consisting of systems of plane waves or
generalized harmonic polynomials (see Section 5 below) and the classical FEM
shape functions as the partition of unity. The key observation is that for 4 sufficiently
small, the resulting space has approximation properties similar to the classical (low
order) FEM space:

Lemma 4.8. Let .7 be a shape-regular triangulation of the polygon Q C R2. Let
h be its mesh size; let (x;)!| be the nodes of the triangulation and (¢;)"., be the
piecewise linear hat functions associated with the nodes (x;)!.|. Assume kh < C
for some Cy > 0. Let V"' pe either the space V(’;HP with p > 0 (see (49) below)
or the space W,I,’W with p > 2 (see (50) below). Define, for each i = 1,... .M, the
local approximation V; by V; := span{b(x —x;): b € V"'’ } Then the space Vy :=
Z?i] ©;V; has the following approximation property: There exists C > 0 depending
only on the shape regularity of 7, the constant Cy, and V""" such that

inf [[u—vl|2q)+hllu—v|mq) SC[”’QHI"”HZ(.Q) + (k) ull 200y | Vue HA(RQ).

veVy

Proof. We first show that each local space V; has an element y; € V; with
Vil =) + 11 = ill =@ < Capp(kh)? (47)

for some C,p, > 0 independent of i and &; here, @; = supp ¢; has diameter O(h).
It suffices to show (47) for the set V™" For the space of generalized har-
monic polynomials, this follows from Jo(kr) = 1+ O((kr)?), and for the space
of plane waves, Taylor expansion shows that for p = 2m (m € N) the function
i [ + 7] =14 O((kx)?) has the desired property whereas for odd p =2m+ 1
(m € N) the observation

2nm
2m—+1

. 1r. ) 1
ekeox _ % [e‘kw’"'x + e‘k“’m“'x} = <1 - E) + 0((kh)2)7 ¢ = cos

)
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can be utilized to construct ;. We recall (see, e.g., [18, Thm. 4.8.7]) that for each
u € H*(Q) there is a function w = ¥, w(x;)¢; € S'(.7},) with

Iwllr2@) < Cllull 2o Wl @) < Cllullm o (48a)

||“*W||L2(Q) < Chz”””yz(g)v ||”*W||H1(Q) < ChH“HHZ(Q)- (48b)

Upon setting v := Y, w;(x;)y;¢i € Vi, we get in view of Y, ¢; = 1 for the error

u—v=u—Y;wix)yiei= (u— )—i—Zl @iw(x;)(1 — ;). The estimates (48) imply
[ =wll2(0) + hllu—wll o <Ch |[ull 2 (@) For the sum, we have

||sz ) (1= i) @il 2(0) < Ckh)||Wll 120y < C(kh)?||ull 2 q)

hHVZWi ) (1= i) @il 2(0) < Ckh)||wll 120y < C(kh)?||ull 2 q)

which concludes the proof. O

Remark 4.9. The approximation result of Lemma 4.8 can generalized in various
directions. For example, interpolation arguments allow one to construct, for v €
H'*9(Q) with 6 € (0,1) an approximation v,,, € Vi such that v —=vappll2(0) +
Rl =vappllg gy < C1 (R0 + (kh)2h®) |[v]| grve q) + Ca(kh)* ||l 12(q)- (We refer
the reader to the Appendlx for the proof of this results ) Furthermore the approxi-
mation result of Lemma 4.8 can be localized, which is of interest if .7 is not quasi-
uniform. n

Lemma 4.8 shows that the space Vy, which is derived from solutions of the homoge-
neous Helmholtz equation, nevertheless has some approximation power for arbitrary
functions with some Sobolev regularity. Hence, the condition (40) can be met for
sufficiently small mesh sizes:

Corollary 4.10 ( [56, Prop. 8.2.7]). Assume the hypotheses of Lemma 4.8; in par-
ticular, let the space Viy be constructed from systems of plane waves or generalized
harmonic polynomials. Assume additionally that 2 is a convex polygon. Then there
exists C > 0 independent of k such that for k*h < C the Galerkin method for (9) with
f =0 is quasi-optimal, i.e., the solution uy € Vi of (37) exists and satisfies

_ <7 _ )
[|u MN||1,k,Q_2v1€anN||M vliike

Proof. In view of Lemma 4.1, we have to estimate 1(Vy). To that end, we consider
(9) with f € L*(2) and g = 0. In view of the convexity of 2, we have Cy,;(k) = O(1)
and elliptic regularity then yields for the solution u of (9)

el + & ull @) < Cliflla

This allows us to conclude with Lemma 4.8 that
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inf [lu—v[ixe < C|(kh*+h)|ull g a) + (k(kh)> +K2h)|lu] 2(q)
veVy
< C((kh)? +kh)) | fll 20y < Ckh(1+kR) | f]l12(a)-

Hence, kn(Vy) can be made sufficiently small if k%% is sufficiently small. We point
out that convexity of Q is assumed for convenience—under more stringent condi-
tions on the mesh size h, quasioptimality holds for general polygons. O

S Approximation with plane, cylindrical, and spherical waves

Systems of functions that are solutions of a (homogeneous) differential equation are
often called “Trefftz systems”. Prominent examples in the context of the Helmholtz
equation are, in the two-dimensional setting, “generalized harmonic polynomials”
and systems of plane waves given by

span{J, (kr)e"?: —p <n<n}, (49)

2 2
:n=0,...,p—1}, wn:(cosﬂ,sinﬂ);(SO)
p p

P
Vénp

Lo ik, (x.y)
Woy - "

span{e

here, J,, is a first kind Bessel function, the functions in VgH p are described in polar
coordinates and the functions of W,fW in Cartesian coordinates. We point out that
analogous systems can be developed in 3D. These functions are solutions of the ho-
mogeneous Helmholtz equation. For the approximation of a function u that satisfies
the homogeneous Helmholtz equation on a domain Q C R?, one may study the “p-
version”, i.e., study how well u can be approximated from the spaces Vé’H p Of W,I,’W
as p — oo; alternatively, one may study the “h-version”, in which, for fixed p, the
approximation properties of the spaces Vé’H p OF W}, are expressed in terms of the
diameter 4 = diam Q2 of a domain under consideration. In the way of illustration, we
present two types of results:

Lemma 5.1 ([56]). Ler Q C R? be a simply connected domain and Q' CC Q be
a compact subset. Let u solve —Au — kK*u =0 on Q. Then there exist constants C,
b > 0 (possibly depending on k) such that for all p > 2.

inf lu—v|gq) < Ce P, inf [lu—v| g oy < Ce~bp/p
vEVGnp veWgy

Proof. See, e.g., [56] or [58, Thm. 5.3]. O

Remark 5.2. Analogs of Lemma 5.1 hold if « has only some finite Sobolev regular-
ity. Then, the convergence rates are algebraic, [56], [58, Thm. 5.4], [42]. n

The approximation properties of the spaces V(’;’HP and WIfW can be also be studied in
an h-version setting:
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Proposition 5.3 ( [42, Thm. 3.2.2]). Let Q C R? be a domain with diameter h and
inscribed circle of radius ph. Let p = 2u + 1. Assume kh < Cy. Then there exist
C, > 0 (depending only on C1, p >0, m, and p) and v € W,%#,H such that

=] jk0r < Coh* I ull yr1 k0.5, 0<j<u+1,
where HV“?,/(,Q,}: = %:0k2(j7n1)|V|zm(Q)'

Several comments concerning Proposition 5.3 are in order:

1. The constant C,, in Proposition 5.3 depends favorably on p, and its dependence
on p can be found in [42, Thm. 3.2.3].

2. Proposition 5.3 is formulated for the space W,fW of plane waves—analogous
results are valid for generalized harmonic polynomials, see [42, Thm. 2.2.1] for
both the A and hp-version.

3. Proposition 5.3 is formulated for the two-dimensional case. Similar results are
available in 3D, [42].

4. The approximation properties of plane waves in terms of the element size have
previously been studied in slightly different norms in [20].

Remark 5.4. Plane waves and generalized harmonic polynomials represent by no
means the only operator adapted system used in practice. Especially for polygo-
nal domains, the functions J,o (kr)sin(an@), n € N, or Jyq(kr)sin(ane), n € Ny,
for suitable @ can combine good approximation properties with the option to re-
alize homogeneous boundary conditions, [14]. Further possibilities include linear
combinations of fundamental solutions or, more generally, discretizations of layer
potentials. We refer to [14] for a concrete example. n

6 Stability of Least Squares and DG methods

Discrete stability in Section 4 is obtained from stability of the continuous prob-
lem by a perturbation argument. This approach does not seem to work very well
if one aims at using approximation spaces that have special features linked to the
differential equation under consideration. The reason can be seen from the proof of
Lemma 4.1: The adjoint approximation property 1(Vy) (which needs to be small)
measures how well certain solutions to the inhomogeneous equation can be approx-
imated from the test space. If the ansatz space is based on solutions of the homoge-
neous equation, then its capabilities to approximate solutions of the inhomogeneous
equation are clearly limited. In an h-version, the situation is not as severe as we have
just seen in Section 4.4 for the PUM/gFEM. In a pure p-version setting, however,
the techniques of Section 4.4 do not seem applicable.

An option is to leave the setting of Galerkin methods and to work with formu-
lations with built-in stability properties. Such approaches can often be understood
as minimizing some residual norm, which then provides automatically stability and
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quasi-optimality (in this residual norm). We will illustrate this procedure here by
two examples, namely, Least Squares methods and DG-methods. Our presentation
will highlight an issue stemming from this approach, namely, the fact that error es-
timates in this residual norm do not easily lead to error estimates in more classical
norms such as the L?()-norm.

6.1 Some notation for spaces of piecewise smooth functions

Let .7 be a regular, shape-regular triangulation of the polygon Q C R?. We decom-
pose the set of edges & as & = &U&p, where & is the set of edges in Q and &3
consists of the edges on 9. For functions u: Q — R and ¢ : Q — R? that are
smooth on the elements K € .7, we define the jumps and averages as it is customary
in DG-settings:

e Forec &, let K and K, be the two elements sharing e and denote by n™ and
n~ the normal vectors on e pointing out of K, and K, . Correspondingly, we let
ut,u” and 6" and 0~ be traces on e of u and ¢ from K, and K, . We set:

1 1
Lulle ::§(u++u7), {o}e ::§(G++67),
[W]le:=u"n"+un",  [o]le:=c"n"+0 -n".
e For boundary edges ¢ € & we define

{oble =0l [u]lle := ulen
With this notation, one can conveniently rearrange certain sums over edges:

Lemma 6.1 (“DG magic formula”). Let v: Q — R and ¢ : Q — R? be piecewise
smooth on the triangulation 7. Then:

K;y/aKVG'HZ/&[[V]]-{{c}}+./&{{v}}.[[a]]+/53[[v]].{{G}},

where |, g and /. &, are shorthand notations for the sums of integrals over all edges
in & and &p.

Finally, for piecewise smooth functions, V;, denotes the piecewise defined gradient.

6.2 Stability of least squares methods

Although Least Squares methods could be based on any space of approximation
spaces, we will concentrate here on the approximation by piecewise solutions of
the homogeneous Helmholtz equation. With varying focus, this is the setting of
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[14,53,65,70,80] and references therein. We illustrate the procedure for the model
problem (9) with f = 0. The approximation space has the form

Vy = {M GLZ(.Q)I M|K S VN,K VK € y}, (51)

where the spaces Vi g are spaces of solutions of the homogeneous Helmholtz equa-
tion, e.g., systems of plane waves. For each edge e € &, we select weights w .,
wy . > 0 and define the functional J : Viy — R by

J(v) = Z W%,e”["]”é@) +W%,e||[an”]||i2(e) + Z W%,e”é’ - (3nV+ikV)||iz(e);

eEsy e€Ep

here [v]| := [v])|. and [dyV]|e := [Viv]|. represent the jumps of v and d,v across the
edge e. If the exact solution u of (9) is sufficiently regular, then it is a minimizer of J
with J(u) = 0. In a Least Squares method, J is minimizer over a finite dimensional
space Vi of the form (51). Its variational form reads:

find uy € Vi s.t.(un,viyn = Z (g,0hv +ikv)Lz(e) Yy € W, (52)

e€Ep
where
(u, V>J’N =
Y wi e () ) 120y TW3 e (100t [0nV]) 2 o)+ Y W3 o (Ot + ikt Gy +ikv) 2 -
ecdy ecsp

The positive semidefinite sesquilinear form (-,-); 5 induces in fact a norm on Vy:
To see the definiteness of (-,-);x, we note that v € Vy and J(v) = 0 implies that v
is in C'(£) and elementwise a solution of the homogeneous Helmholtz equation.
Thus, it is a classical solution of the Helmholtz equation on 2 and satisfies d,v +
ikv = 0 on Q. The uniqueness assertion for (9) with f = 0 and g = 0 worked out
in Example 2.1 then implies v = 0. Therefore, the minimization problem (52) is
well-defined. If the solution u of (9) satisfies u € H>/>*¢(Q) for some & > 0, then
J(u) =0, and we get quasi-optimality of the Least Squares method in the norm

-l = I ()12

e —unll7 = I (u—un) = J(uy) = minJ(v) = lu— V17 n- (53)

We mention here that estimates for this minimum can be obtained from (local) es-
timates in classical Sobolev norms as given in Section 5 using appropriate trace
estimates. Turning estimates for ||u — uy||;y = J(uy)'/? into estimates in terms of
more familiar norms such as |ju — uy|| 12() 18 not straight forward. It may be ex-
pected that the norm of the solution operator of the continuous problem appears
again; the next result, which is closely related to [19,42,43,63], illustrates the kind
of result one can obtain, in particular in a p-version setting:



On stability of discretizations of the Helmholtz equation (extended version) 33

Lemma 6.2 ([65, Thm. 3.1]). Let @ C R? be a polygon. Let wi . =k and w; , = 1
for all edges and g € L*(0Q). Let uy € Vy be the minimizer of J, where Vy, given
by (51), consists of elementwise solutions of the homogeneous Helmholtz equation.

(i) If Q is convex, then ||u — uN||%2(_Q) < Ck ((kh) ="+ (kh)") T (uy).
(ii) If Q is not convex, then

2
H“*”NHIJ(Q) <

k() o (k) {1 ming 1, Ky~ L] (Cop (k) 4 1) (),

where Cyoy (k) is defined in (25) and satisfies Cypy (k) = 0(k5/2) by Theorem 2.4.
The parameter Byqc > 0 can be selected arbitrarily to satisfy the condition
Binax > 1 — min; %, where the w; are the interior angles of the polygon.

Proof. The result (i) is essentially the statement of [65, Thm. 3.1] in a refined form
as given in [43, Lemma 3.7]. The statement The statement (ii) is a slightly modifi-
cation of (i), and we restrict our presentation to that case. The key idea is to obtain
L*(Q)-bounds by a duality argument and use the fact that u — uy solves the homo-
geneous Helmholtz equation elementwise. More precisely, given ¢ € L?(Q) we let
v € H'(Q) solve the adjoint problem

—Av—Iilv=¢ inQ, ow—ikv=0 ondQ.
By Corollary 3.3, the function v is in a weighted H>-space with
Whixa+5 19,5, z@ < CCa® + D9z 69

Inspection of the arguments underlying the proof of Corollary 3.3 shows that the ex-
ponents B; € [0, 1) stem from the regularity theory for the Laplacian with Neumann
boundary conditions. Hence, in fact 8; € [0,1/2) so that Vv has an L*-trace on all
edges of the triangulation (cf. Lemma A.2). For each K € .7 we then have

IWl22 k) < C[H Il + B )]  vwe B! (), (55)
1V k) < C [ 1w + g | vw € HE(K), (56)

1YWl Z2ax) < € [h*1|w|%,l(,() +h1*2ﬁ|\rﬁv2wn§2(,{)} ww € Hy*(K), (57)
where, in the last estimate we assume that the origin is at one corner of K and r
denotes the distance from that corner. These estimates are obtained with the aid of
scaling arguments, the multiplicative trace inequality (see [18, Prop. 1.6.3]), and,
in the case of (57) additionally Lemma A.2. From ab = max{a,b} min{a,b} (for
a, b > 0), we get P = k’B(rk)ﬁ =k P min{1, rk}ﬁ max{1, rk}B. Hence, if Tprmer
denotes the set of elements that abut on the corners of 2, we get
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. ; ||VV||?‘2(8K) S C |:h7] |v|ill(Bh) +hmin{l,hk}fzﬁmax”@O’F’szVHith)} ,
€ Tcorner

where B;, = Uke 7., K- Noting that the elements K € .7\ Tomer are at least O(h)
away from the corners allows us to estimate with (56)

2 12 1. 2B max 2 12
9\29 19V k) SC 191 (015, + 1 min{ 1 k2P| o V20|12, ]
Ke 'comer

Hence, we have the two bounds

Y IVl 0k < Ch’l|v|%,1(g)+Ch1min{l,kh}’zﬁdeJOFkvzvﬂiz(m,
KeT Y

Z ||V|‘1%2(3K) < ChilHVH%Z(_Q) +h|v|%{1(9).
KeT

Therefore, recalling wy . = k and wy , = 1, we obtain from these estimates and the
a priori estimate (54) the bound

—24,112 211w 12
Y Wy elVllz2e +wiel Vvl
ecé

1 . -
<ck! {k—thkh{lerm{l,kh} Zﬁw}] (Coot () + 12972y (58)

The estimate (58) can be used to bound |(u — uy, ¢);2(q)|: Writing the integral as
a sum over elements, integrating by parts twice and using that u — uy solves the
homogeneous Helmholtz equation elementwise yields

(u—un, @20y = Y. (u—un, —Av—k*v) 2

KeT
= Z (8,,(u7uN),v)Lz(3K) - Z (ufuN,8nv)Lz(3K) = 21 722.
KeT KeT

The “DG magic formulas” of Lemma 6.1 produce

Zi=) ({V @ —un) VD 2o+ [V (= uw)] ) 2o+ 1 [V (= aw) 3 VD 2

ecéy ecéy
= %([[u —un], EVvE) 2 + (Ru—un}, [V 2 + %([[M —un], V)2

For interior edges e € & we have [[v]] =0 and [Vv]] = 0 as well as [u]] =0 and
[Vu]] = 0; on boundary edges e € & we have with the boundary conditions satisfied
by u and v (i.e., dyu + iku = g and d,v — ikv = 0)

(V@ —um) ¥ VD 2oy = ([ = un]l, £V 120 = = (O +ik)un — g,v) 12, -

These observations lead to
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’*(“ —un, 9)12(9) ’ =

Y ([un] AV D2 + X (Vun] v 2+ X (On+ik)uy —g.v) 12

ecéy = e€lp

<CVI(un), | Y wrdll VI +wie VR T

ecé

where, in the last step, we employed the Cauchy-Schwarz inequality for sums. From
(58) we therefore get

[(u—un, @) 12(0)]

o2
C\/T(un)k /2 [(kh)*'/2 + (kh)?min{1 ,kh}*ﬁmax} (Cyor (k) +1).

Since ¢ € L?(Q) is arbitrary, we get the result. [

Remark 6.3. Lemma 6.2 assumes quasi-uniform meshes and the weights wi ., wa .
do not take the edge length into account. This limits somewhat it applicability in
an h-version context. However, the result is very suitable for a p-version setting.
We point out that in a case where the p-version features only algebraic rates of
convergence, one would have to give the parameters wi ., w> . a p-dependentrelative
weight as opposed to the situation studied in Lemma 6.2. =

6.3 Stability of plane wave DG and UWVF

The framework of Discontinuous Galerkin (DG) methods permits another way of
deriving numerical schemes that are inherently stable. In a classical, piecewise poly-
nomial setting, this is pursued in [33-35]; related work is in [64]. Here, we concen-
trate on a setting where the ansatz functions satisfy the homogeneous Helmholtz
equation. In particular, we study the plane wave DG method, [36, 43, 63], and the
closely related Ultra Weak Variational Formulation (UWVF), [19-21, 46, 55]. We
point out that the UWVF can be derived in different way. Here, we follow [19, 36]
in viewing it as a special DG method.

Our model problem (9) can be reformulated as a first order system by introducing
the flux o := (1/ik)Vu:

iko =Vu inQ, (59a)
iku—-V-6=0 inQ, (59b)
ikoc-n+iku=g ondQ. (59¢)

For a mesh .77, the weak elementwise formulation of (59a), (59b) is for every K €

T
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/ikc~?+/uV~?—/ WFn=0 vt € H(div, K),
K K K
/ikuV—l—/G-VV—/ c-nv=0 W e H'(K),
K K JdK

where H(div,K) = {u € L*(K): divu € L>(K)} and n is the outward pointing nor-
mal vector. Replacing the spaces H'(K) and H(div,K) by finite-dimensional sub-
sets Vyx C H'(K) and Xy x C H(div,K) and, additionally, imposing a coupling
between neighboring elements by replacing the multivalued traces # and ¢ on the
element edges by single-valued numerical fluxes iy, O to be specified below, leads
to the problem: Find (uy,0n) € Vv x X Zn,k such that

/ikGN'?+/MNV'?7/ uyT-n=20 VTGZNJ(,

K K oK
/ikuNVﬁL/GN'VVf/ 8N~nV:O VVEVNJ(.
K K oK

The variable o can be eliminated by making the assumption that VVy ¢ C Xy g
for all K € .7 and then selecting the test function T = Vv on each element. This
yields after an integration by parts:

/ Viun Vi — Kuyt— /a (uy —iin) 07— kGy - P =0  VKET.  (60)
K K

Since Vy = {u € L*(Q): ulx € VyxVK € T} consists of discontinuous functions
without any interelement continuity imposed across the element edges, (60) is
equivalent to the sum over the elements: Find uy € Vi such that for all v € Vi

Z/VMN-VV—]CQMNV—I—/ (it\N—uN)VV-Il—/ ikoy -nv =0. 61)
Ik IK IK

This formulation is now completed by specifying the fluxes iy and &y, which at
the same time takes care of the boundary condition (59c):

e For interior edges e € &1

Sy =z Vi)~ ol v =fux) B[V (620

e For boundary edges e € &3

~ 1 1-6

Oy = EthN — T (thN + ikuyn — gn) . (62b)
15}

Uy = uy — 7 (Vou-n+ikuy —g). (62¢)

Different choices of the parameters ¢, 3, 0 lead to different methods analyzed in
the literature. For example:
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1. = =06 =1/2:this is the UWVF as analyzed in [19-21,46,55] if the spaces
Vv k consist of a space W}, of plane waves.

2. a=0(p/(khlogp)), B =O0((khlogp)/p), &=O0((khlogp)/p):thischoice
is introduced and advocated in [43,63] in conjunction with Vy g = W,fW.

With these choices of fluxes, the formulation (61) takes the form
Find uy € Vi s.t. AN(MN,V) = I(V) Vv € Vy, (63)

where the sesquilinear form Ay and the linear form [ are given by
An(u,v) = / Vit Vo — K / 14V,7} / (Vi [7] / Sud,v / v
Q

IL ﬁ[[th]][[th]]——k [ souaym ik | aful[s] + ik /gg(l—a)uv (64)

—ﬁ/gg5g8ﬁ+/g}g(l —0)gv

So far, the choice of the spaces Vy  is arbitrary. If the approximation spaces Vi x
(more precisely: the test spaces) consist of piecewise solutions of the homogeneous
Helmholtz equation, then a further integration by parts is possible to eliminate all
volume contributions in Ay. Indeed, Lemma 6.1 produces

m/ Vi vk =}, | uvm— / W {5} + fu} [V9] + / v}

so that Ay simplifies to

(u,v) /{{u}} Vv +1—/ BIVru][Viv] /{{th}} 1k/

(1 5)u8nv+l— 00,ud,v— [ 0duv+ik [ (1—8)uv
&R k &p ép ép

Next, we make the important observation that ImAy induces a norm on the space

Vyifo, B>0and§ € (0,1). Indeed:

1. a,B>0andd € (0,1) implies InAy(v,v) >0 Vv € Vy by inspection of (64).

2. ImAy(v,v) = 0 and the fact that Vi consists of elementwise solutions of the ho-
mogeneous Helmholtz equation implies as in the case of (-,-); x in Section 6.2
that v € C' () solves the homogeneous Helmholtz equation and d,v =v = 0
on d<2; the uniqueness assertion of Example 2.1 then proves v = 0.

This is at the basis of the convergence analysis. Introducing
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1
el = v/ImAn ) = 21829032 s + o 2] 2
1
2 18202 gy KU1 = 8) Pl
B+ = llulpg+KIB " {ullFa s + 5 o™ P Lub 7o) + K16 2wl 72 g,
(¢1) (¢1) (€B)
we can formulate coercivity and continuity results:

Proposition 6.4 ( [19,43]). Let Vi consist of piecewise solutions of the homoge-
neous Helmholtz equation. Then || - ||pG is a norm on Vy and for some C > 0 de-
pending solely on the choice of &, B >0, and 6 € (0,1):

ImAy (u,u) = ||ul|3g Vu € Vy,
[An(u,v)| < Cllullpg +[[vIpg  Yu,v € Vy

Let the solution of u of (9) (with f = 0) satisfy u € H>**€(Q) for some € > 0.
Then, by consistency of Ay, the solution uy € Vy of (63) satisfies the following
quasioptimality estimate for some C > 0 independent of k:

Hu—uNHDGSC inf HuvaDGﬂL. (65)
veVy

Several comments are in order:

1. The UWVF of [20] featured quasi-optimality in a residual type norm. We recall
that the UWVF is a DG method for the particular choice o = = § = 1/2.

2. When Vy consists (elementwise) of systems of plane waves or generalized har-
monic polynomials, then the infimum in (65) can be estimated using approxi-
mation results on the elements by taking appropriate traces. This is worked out
in detail in [42,43,63] and earlier in an A-version setting in [20] (see also [19]).

3. The | - ||[pg-norm controls the error on the skeleton & only. The proof of
Lemma 6.2 shows how error estimates in such norms can be used to obtain
estimates for ||u — uy||;2(o); we refer again to [19] where this worked out for
the UWVF and to [42,43,63] where the case of the plane wave DG is studied.
As pointed out in Remark 6.3, quasi-uniformity of the underlying mesh .7 is an
important ingredient for the arguments of Lemma 6.2.

It is noteworthy that Proposition 6.4 does not make any assumptions on the mesh
size h and the space Vy except that it consist of piecewise solutions of the homo-
geneous Helmholtz equation. Optimal error estimates are possible in an A-version
setting, where the number of plane waves per element is kept fixed:

Proposition 6.5 ([36]). Let Q2 be convex. Assume that Vy g = W,%V’f,“ (1 >1 fixed)
forall K € . Assume that o is of the form a = a/(kh) and that >0, § € (0,1/2).
Then there exist ay, co, C > 0 (all independent of h and k) such that if a > ag and
k?h < ¢y, then following error bound is true:

lu—unl1.p6 <C inf |lu—v|1.p6+;
veVy
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here, |- l11.06 and |- 1.0, are given by [V} pg = T W2s o KV e +

V13 and VI3 g = Txer M ) + K1V + V1B

Proof. The proof follows by inspection of the procedure in [36, Sec. 5] and is stated
in [63, Props. 4.2, 4.3]. The essential ingredients of the proof are: (a) inverse esti-
mates for systems of plane waves that have been made in available in [36] so that
techniques of standard DG methods can be used to treat Ay; (b) use of duality ar-
guments as in Lemma 4.1 to treat the [*-norm of the error; (c) the fact that in an
h-version setting, plane waves have some approximation power for arbitrary func-
tions in H? (this is analogous to Lemma 4.8). O

7 Remarks on 1D

The 1D situation is rather special in that pollution can be completely eliminated;
the underlying reason is that the space of solutions of the homogeneous Helmholtz
equation is finite-dimensional (two dimensional, in fact). We illustrate this for the
following model problem:

' —Ku=f inQ=(0,1), u0)=0, u(1)—iku(1)=0. (66)

Let .7 be a mesh on Q2 with nodes 0 = xy < x; < -+ < xy = 1. We assume that the
mesh size i := max;(x; | — x;) satisfies kh < 7. For each node x;, let y; € H'(Q)
be defined by the conditions

vilx) =8;,  (—y' -RKw)lk=0 VKeT

and let V,f,p = span{y;: i=1,...,N}. Thus, the functions y; are piecewise solutions
of the homogeneous Helmholtz equation. The Galerkin method based on Vy"" is:

Find uy € Vi s.t. / U — KPunv —ikuy (1)9(1) = / 7 Wwewv (67)
Q Q

The Galerkin method based on Vy"" is nodally exact:

Lemma 7.1. There exist constants Cy, C; > 0 independent of k such that the follow-
ing is true for kh < Cy:

(i) The functions y; are well-defined.
(ii) The method (67) is nodally exact.
(iii) For f € L*(Q) there holds ||u — un||1 a0 < C(hR)[| £l 2()-

Proof. Elementary considerations show that for kh < 7, the functions y; are well-
defined.

The most interesting feature of Lemma 7.1 is the nodal exactness. To that end,
we note that the Green’s function for (66) is
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1 [sinkxe® 0<x<y
Glry) =7 sinky e**
ye y<x<l.

Lete € H'(Q) satisfy ¢(0) = 0 and the Galerkin orthogonality condition
Cle,y) == / OV — R —ike()F(1) =0  Wwe V. (68)
Q
The key observation is that for each x;, i = 1,..., N, the function v; := G(-,x;) € Vy/"'
since is a solution of the homogeneous Helmholtz equation on (0,x;) U (x;, 1), it

satisfies G(0,x;) = 0. Furthermore, we have v.(xy) — ikvi(xy) = 0. Hence, we get
from the Galerkin orthogonality (68) by an integration by parts:

O:/ 'V — K2 ev; +ike(1)7;(1)
Q
X XN
= / vl — kPev; + / 'Vl — kP ev; — ike(1)7;(1)
0 X;

:/ o(—
+/]e — 1) + e(1)Vi(1) —ike(1)7;(1)
= e(x) '] (x;) + e(1)i(1) — ike(1)7i(1)
[

V! — %) + e ()7 () — e(x) Vi (x:)

here, we have employed the standard notation for the jump of a piecewise smooth
function w: [w'](x;) 1= limy_,y,— w'(x) — lim,,,,+ W' (x). Since [v/](x;) # 0, we con-
clude

e(xi)=0 Vie{l,...,N}.
Hence, the FEM (67) is nodally exact.

The above argument also shows that any e € V,G” " satisfying (68) must satisfy
e(x;) =0 for all i € {1,...,N}. Hence, by the definition of V5" as the span of the
functions y;, we conclude e = 0. Thus, the kernel of the linear systems described by
(67) is trivial. By the usual dimension argument, we have unique solvability.

We have the a priori bound

lull1 k.0 < Cllfll 20 (69)

for the solution u of (66) (as for the model problem (9), this can be shown using
the test function v = xu'; an alternative proof based on the Green’s function and the

representation .
)= [ Glen)f)dy

is given in [47, Thm. 4.4]). If one denotes by ¢; the classical piecewise linear hat
function associated with node x;, then one has by Taylor expansion
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9 = ill o) < Ckhx)?, (9= W) =) < CRPhg, VK € T, (70)

where hg = diam K. The approximation properties follow easily from the nodal
exactness. Specifically, denoting by /u the classical piecewise linear interpolant of
u and by Tu € V"' the nodal interpolant determined by Tu(x;) = u(x;) for all i €
{0,...,N}, we have the well-known estimate

Tl .0 < €O + W) 2y < CRR(L+ k) |12

where we used the differential equation and the bound (69) to estimate ||u”|| @) <

1£ll2 +k2H”HL2 < Ck||f]l;2()- Next, we estimate the difference /u — Iu. The
multlphcatlve trace 1nequahty takes the form

il Wiy < C [IW122 g+ Bl W2y | vwe ' (K). @)
Hence, the estimates (70), (71) imply
lu—Tull} g < € Y K2 (k) (1+ (ke 2Vl e

KeT
< CUkRP(1+ (k) [kl ) + K024 122 g

< C(k)*(1+ (kh)*)?[ull? 1 0-
An appeal to (69) concludes the argument. [

Several comments are in order concerning the stability of the method:

1. In the 1D situation, the good stability properties of high order Galerkin FEM
can alternatively be understood in light of Lemma 7.1: Applying the Galerkin
method to a classical high order method and then condensing out the degrees
of freedom corresponding to internal shape functions (“bubbles”), leads to a
linear system that is identical to the one obtained by using shape functions y?,
i=0,...,N, that satisfy y’(x;) = &; and additionally

/ (W)F -2y’ =0  WweHN(K)N2P,
K

Since on a fixed mesh .7, we have lim,_.. l//ip =y, better stability properties
of higher order methods may reasonably be hoped for.

2. The system matrix of the Galerkin FEM based on the space V" "is a tridiagonal
matrix. The same matrix can also be obtained in different ways. Consider, for
example, the sesquilinear form

Blu,v) := / W'V — kv —iku(1)(1) + Y / LuLy,  (72)
Q KeT Q
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where L, = — % — k. For a suitable choice of the parameters Tx in dependence
on k and hg, the system matrix resulting from this B using the classical piece-
wise linear hat functions leads to the same matrix as the Galerkin method based
on the shape functions y;, i = 1,...,N. In 1D, it is therefore possible to design
nodally exact methods based on the stabilization techniques in the from (72).
In [12], a nodally exact method is derived using other techniques.

Appendix

For the reference triangle K= {(x,y): 0<x<1,0<y<1—x}and B €]0,1)

~

the following two lemmas require the spaces Hé’](l?), Hé’z(l() as well as the

Besov spaces B (K). The spaces Biw(l? ) are defined by interpolation using the

K-functional (see, e.g., [18, Chap. 12]). For m € {1,2}, the spaces HE”"(K) are de-
2

termined by the norm Hqumm o= HMHH’"*](I?) + [P V'"u||i2(l?)7 where r denotes

(K)
the distance from the origin.

Lemma A.1. Let K be the reference triangle. Let B € [0,1). Then the embed-
dings Héz(l?) C B;;ﬁ (K) and H[;’l (K)c B;;ﬁ (K) are continuous. The embeddings
Hé’z(l?) Cc H> B-¢(Kk) andH[;’] (K) € H'"B~¢(K) are compact for all € > 0.

Proof. Since the case f = 0 corresponds to classical Sobolev spaces, we restrict
our attention here to the situation 3 € (0, 1). The argument follows ideas presented
in [11, Thm. 2.1] and [10]. We start with the following two Hardy inequalities for
sufficiently smooth functions

Hrﬁ*lvthLz(E) < C”””Hé‘z(l? (A.1)

)5
1772 = u(0)) | 2y < Cllulyzaqey (A2)

here, (A.1) is shown, for example, in [57, Lemma A.1.7] and (A.2) follows from
combining [10, Lemma 4.2] with (A.1). Noting that [10, (2.2)] states the continuous

embedding Hé’z(l?) © C(K), we have that u(0) in (A.2) is indeed well-defined.
We employ the real method of interpolation and write Bg;ﬁ = (I*,H Z)I,B /2,00
Our method of proof consists in showing that for & = 1 — /2 we have

_0 ~
sup 1~YK(t,u) < Cllul, 22,5, u:=u—u(0),
1€(0.1) Hy™(K)

for some C > 0 independent of u. To that end, we proceed as in the proof of [10,
Lemma 2.1]. For every & > 0, let x5 € Cg (R?) with x =1 on B >(0) and supp C
XsBs(0) as well as |\ij(;|\Lw(Rz) <C87, j€{0,1,2}. We define the splitting
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u=xsu—+ (1 —xs)u=:u+up
Then from (A.1) and (A.2)
2— —2~ 2—

1252l 2y < Cllitll 2 (g5 0y < BrP il 2z < C8 B||u||HE‘2(1?)
|(1 7%5)’7|H2(l?) <

2|~ “1us 2~
CO Nl 2((Rrs 00850000 T C8 IVl 2Ry 0085 00 T IVl 2808 500
<CE PP o gy +C§ PPV o gy + € PPV o

B

<Cé~ H”HH;J([?)

From this, we can infer for any 6 € (0,1)
K(0,8) < a2 gy + ezl gy <l [P 5P

Selecting & = /% gives K(t,i1) < Ct'~P/2|[u| . 22k - Finally, the compactness

assertions of the embeddings follows from the compactness of the embeddings
/! /!

B CB,=H’ fors’<s. O

Lemma A.2. Let B € [0,1/2) and K be the reference triangle. Then there exists C >
11,7

0 such that for allu € Hy (K) there holds ||ul| 25z < C [llull 25 + ||rﬁVu||L2(E)} .

Proof. For each s > 1/2, we have the inequality ||u||L2(a,?) < CSHMHHS(,?). From

the embedding Hél(l?) C H'"B(K) of Lemma A.1, we then get lull 20) <

Cllul s gy < € [Nl 2z + 1P Vall g - O

Lemma A.3. Let 3 € [0,1) and Q C R? be a finite sector with apex at the origin.
Let u € C*(R2) satisfy

Hénaﬁvlvrh%u”[?([)) < CyYun! Vn € Np.

Then, for k > ko > 0, there exist constants C, ¥ > 0 (depending only on B, Q, ¥,
and ko) such that

1,54V 2t 2(q) < CCuk™ Py max{n,k}"™*  Vn e N,.
Proof. Lemma A.4 yields

1

1
— . 2 < Clk—2=B)ap
max{n,k}n+2 qbn,ﬁ,k(x) <Ck V’n!@”’ﬁ’](x) Vxe Q,

where C, ¥ > 0 are independent of n and k. The result now follows. O
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Lemma A4. Let € [0,1). Then for 0 <r <R and all n € Ny

P 1 1
-
min | 1 < CkCBlyrpth

m( "min {1, 25 ) max{n,k}+2 ~ nt2

Proof. We denote the left-hand side by /As and consider several cases.
case I:n<kandr(k+1)<n+1:

Ihs = (<k+1>r)”*’3 1

n+1 Jen+2

1 n n+2 k+1 n+2
— B 2B 1)~ (2-8)

1

—(2-B),n+p
= C’)f"k r nht2

for suitable C, ¥ > 0 if we assume that k > ky > 0.
case2:n<kandr(k+1)>n+1:

n 1 11 1 [(k+1\"P 1
S =
k (k+1)n+P

for suitable C, y > 0.
case 3: n > k: Then, forO < r <R

Lot

— (mi n+B
lhs = (min{1,7}) nt2 — 2 — nt2

for suitable C, y > 0. O

Further results and proofs

Example A.5. In Example 1.1, we studied the convergence behavior of the #-FEM
in the H' (Q)-seminorm. In Fig. 4 we present the corresponding results for the con-
vergence in the L?(£)-norm by plotting ||u — unl12()/ llull;2(@) vs- the number of
degrees of freedom per wavelength N, . For p = 1, we observe
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[l — |2

~ CkN; 2,
[[ull 2 A

N;L —> 00,

which is in agreement with the analysis given in [47, Sec. 4.6.4]. The cases p > 1
seem to behave differently as we observe

l[u—unl 2 —(p+1
LA\ 1) S AP CNA (p ), Nl oo
[l 2
[ ]
- p=2;-u- K2u=
p=1;-u- kK°u=1 ’
0 - ——k=10
o 5 ‘
10° k- e
~§ ‘~
s, e
= a2l "\ e
8 10 Y
-_ ‘5
® 107 .
.
—~—k=10 R
107~ +-k=100 .
-o- k=1000
10° 10’ 10° 10° 10° 10° 10’ 10° 10°
N, = DOF per wave length NX = DOF per wave length
72 .
p=3;-u- K u=1 p=4; -u'— KZu=1
0 | . one ——k=10 0 ‘ " [~—k=10
107 poe-ov, .. -e-k=100 10 frePug 7% o —e-k=100
o S =
. X - k=1000 et - k=1000
10°r 1 107 \ ]
s . 5
G 107 5107
NJ N_‘
T 10 N
107° 108}
10° 10’ 10° 10° 10° 10’ 10° 10°
NX = DOF per wave length N, = DOF per wave length

Fig.4 Performance of 4-FEM for (2). Top: p = 1, p = 2. Bottom: p =3, p =4 (cf. Examples A.5,
1.1).

Proof of Remark 4.9. By interpolation using the K-functional we can write
H'""% = (H',H?)g for 6 € (0,1). Hence, every u € H'"%(Q) can be decomposed

as u = uj + up with

lerllr @) < 10llullgsoy,  lallegg) < lullmvogq), (A3)

where t > 0 is arbitrary. The proof of Lemma 4.8 shows that u; and u, can be
approximated from Vy as follows:
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nf [luz —v2(9) + V(2= V)l 20) < Wzl ) + (k) 2| 2

inf [Jur = vl 2(0) + IV =)ll2@) < hllutllg @)+ En)? uill 2
veVy
Using ¢ = h in (A.3) we therefore get

inf {|u—v2(0) + AV (=) 2iq) < B lullieo q) + (Kh)? [||u1||L2(Q)+HM2||L2(Q)

veVy

The decomposition u = u; +u, and the triangle inequality yield [|u1[| 2 (o) + [|u2/[12(0) <
ull 200y + 2l llr2(0) < lullr2i@)+ 21l @) < lullr2q) +2h%||ull gi+o ). Com-

bining these estimates, we obtain

nf =iy + BV (2 =)l ey < (#1404 (20 oy + (6] g

which concludes the proof. O

Lemma A.6. Let € [0,1). Then, for every p € N there exists a linear operator
Ty Hé 2( K) — &, that admits an “element-by-element construction” in the sense
of [62, Def. 5.3] with the following approximation property:

Pl — ol gy + e = Tty < Co PPVl 2 .

where C > 0 is independent of p and u.

Proof. Inspection of the proof of [62, Thm. B.4] shows that the operator 7, con-
structed there does in fact not depend on the regularity parameter s > 1. It has (as
stated in [62, Thm. B.4]), the approximation property

pllu—mpull o) + llu — mpul| 1 ) <cp! |u|Hy Vue H'(K), (A4)

if p > s— 1. Upon writing the Besov space B} , as an interpolation space B, , =
(H*(K),H' (I?))s,],w fors € (1,2), we can infer for s € (1,2) from (A.4) the slightly

stronger statement
pllu— ”ﬂ“”LZ(/?) +[Ju— ”p””yl(l?) < Cpi(sil)H”HBg‘w(l?) Vu € By (K). (A5)
Appealing to Lemma A.1 then yields

Pl = ol 2 gy + = il gy < Cp~ H”HH *(K)’ (Ao

We replace the full Hﬁ ( ) norm by the seminorm in the standard way by a com-
pactness argument. Since Hp (K ) is compactly embedded in H'(K ) (see, e.g., [77,
VHH;Z o < C||rPv? “HL2 . The proof is
completed by noting that (A.4) implies that 7, reproduces linear polynomials. a

Lemma 4.19]) one obtains inf,c », ||u —
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