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Abstract

The hp-version of the finite element method is applied to a singularly perturbed
reaction-diffusion equation posed in one- and two-dimensional domains with analytic
boundary. On suitably designed Spectral Boundary Layer meshes, robust exponential
convergence in a balanced norm is shown. This balanced norm is stronger than the en-
ergy norm in that the boundary layers are O(1) uniformly in the singular perturbation
parameter. Robust exponential convergence in the maximum norm is also established.
The theoretical findings are illustrated with two numerical experiments.

1 Introduction

The numerical solution of singularly perturbed problems has been studied extensively over
the last decades (see, e.g., the books [8, 11] and the references therein). These problems
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typically feature boundary layers (and, more generally, also internal layers). Their resolution
requires the use of strongly refined, layer-adapted meshes. In the context of fixed order
methods, well-known representatives of such meshes include the Bakhvalov mesh [1] and
the Shishkin mesh [14]. For the p/hp-version Finite Element Method (FEM) or for spectral
methods, the Spectral Boundary Layer mesh [13, 3, 4] is essentially the smallest mesh that
permits the resolution of boundary layers (see Definition 2.2 ahead for the 1D version and
Section 3.1 for a realization in 2D).

The use of the above mentioned meshes can lead to robust convergence, i.e., convergence
uniform in the singular perturbation parameter. For the reaction-diffusion equations (2.1),
(3.1) under consideration here, the FEM is naturally analyzed in the energy norm (2.6);
robust convergence of the h-FEM on Shishkin meshes can be found, for example, in [11] and
robust exponential convergence on Spectral Boundary Layer meshes is shown in [3, 4]. The
(natural) energy norm associated with this boundary value problem is rather weak in that the
layer contributions are not “seen” by the energy norm; that is, the energy norm of the layer
contribution vanishes as the singular perturbation parameter ε tends to zero whereas the
energy norm of the smooth part of the solution does not. This has sparked the recent work
[2, 9, 10] to study the convergence of the h-FEM in norms stronger than the energy norm.
The analysis of [2, 9, 10] is performed in an ε-weighted H1-norm which is balanced in the
sense that both the smooth part and the layer part are (generically) bounded away from zero
uniformly in ε. Robust convergence of fixed order methods in this balanced norm is shown in
[2, 9, 10] if Shishkin meshes are employed. We show in the present work that this analysis in
balanced norms can be extended to the hp-version FEM on Spectral Boundary Layer meshes
to give robust exponential convergence of the hp-version FEM. An additional outcome of
our convergence analysis in the balanced norm is the robust exponential convergence in the
maximum norm.

It is worth mentioning that robust exponential convergence of the hp-FEM on Spectral
Boundary Layer meshes in the balanced norm was shown earlier in special cases. For ex-
ample, for the case of equations with constant coefficients and polynomial right-hand sides,
[13] observes that the smooth part of the asymptotic expansion is again polynomial and
therefore in the finite element space. It follows that a factor ε1/2 is gained in the convergence
estimate and leads to robust exponential convergence in the balanced norm. A more detailed
discussion of similar effects can be found in the concluding remarks of [5] and in the section
with numerical results in [6].

Let us briefly discuss the ideas underlying our analysis. Asymptotic expansions may be
viewed as a tool to decompose the solution into components associated with different length
scales. Roughly speaking, our analysis in balanced norms mimicks this technique on the
discrete level in that the Galerkin approximation is likewise decomposed into components
associated with different length scales. In total, our analysis involves the following ideas:

1. An analysis of the difference between the FEM approximation and a Galerkin approx-
imation to a reduced problem.
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2. A stable decomposition of the FEM space on the layer-adapted mesh into fine and
coarse components. This decomposition relies essentially on strengthened Cauchy-
Schwarz inequalities.

Throughout the paper we will utilize the usual Sobolev space notation Hk (Ω) to denote the
space of functions on Ω with weak derivatives up to order k in L2 (Ω), equipped with the norm
‖·‖k,Ω and seminorm |·|k,Ω. We will also use the space H1

0 (Ω) = {u ∈ H1 (Ω) : u|∂Ω = 0},
where ∂Ω denotes the boundary of Ω. The norm of the space L∞(Ω) of essentially bounded
functions is denoted by ‖ · ‖∞,Ω. The letters C, c will be used to denote generic positive
constants, independent of any discretization or singular perturbation parameters and possibly
having different values in each occurrence. Finally, the notation A . B means the existence
of a positive constant C, which is independent of the quantities A and B under consideration
and of the singular perturbation parameter ε, such that A ≤ CB.

2 The one-dimensional case

We start with the one-dimensional case as many of the ideas can be seen in this setting
already.

2.1 Problem formulation and solution regularity

We consider the following model problem: Find u such that

−ε2u′′ + bu = f in I = (0, 1), (2.1a)

u(0) = u(1) = 0. (2.1b)

The parameter 0 < ε ≤ 1 is given, as are the functions b > 0 and f , which are assumed to
be analytic on I = [0, 1]. In particular, we assume that there exist constants Cf , γf , Cb, γb,
cb > 0 such that 




∥∥f (n)
∥∥
∞,I

≤ Cfγ
n
f n! ∀ n ∈ N0,∥∥b(n)

∥∥
∞,I

≤ Cbγ
n
b n! ∀ n ∈ N0,

b(x) ≥ cb > 0 ∀x ∈ I.

(2.2)

The variational formulation of (2.1) reads: Find u ∈ H1
0 (I) such that

Bε (u, v) = F (v) ∀ v ∈ H1
0 (I) , (2.3)

where, with 〈·, ·〉I the usual L2(I) inner product,

Bε (u, v) = ε2 〈u′, v′〉I + 〈bu, v〉I , (2.4)

F (v) = 〈f, v〉I . (2.5)
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It follows that the bilinear form Bε (·, ·) given by (2.4) is coercive with respect to the energy
norm

‖u‖2E,I := Bε (u, u) , (2.6)

i.e.,
Bε (u, u) ≥ ‖u‖2E,I ∀ u ∈ H1

0 (I) .

The solution u is analytic in I and features boundary layers at the endpoints. Its regularity
was described in [3] both in terms of classical differentiability (see Proposition 2.1, (i)) as
well as asymptotic expansions (see Proposition 2.1, (ii)):

Proposition 2.1 ([3]). Assume (2.2) and let u ∈ H1
0 (I) be the solution of (2.1) Then:

(i) There are constants C, K > 0 independent of ε ∈ (0, 1] such that ‖u(n)‖L2(I) ≤
CKn max{n+ 1, ε−1}n for all n ∈ N0.

(ii) u can be decomposed as u = w+ uBL + r where, for some constants Cw, γw, CBL, γBL,
Cr, γr, b > 0 independent of ε ∈ (0, 1],

∥∥w(n)
∥∥
∞,I

≤ Cwγ
n
wn

n, ∀ n ∈ N0, (2.7a)
∣∣∣
(
uBL

)(n)
(x)

∣∣∣ ≤ CBLγ
n
BLε

−ne−b dist(x,∂I)/ε, ∀ n ∈ N0, ∀ x ∈ I, (2.7b)

‖r(n)‖0,I ≤ Crε
2−ne−γr/ε, n ∈ {0, 1, 2}. (2.7c)

2.2 High order FEM

The discrete version of the variational formulation (2.3) reads: Given VN ⊂ H1
0 (Ω) find

uFEM ∈ VN such that
Bε (uFEM , v) = F (v) ∀v ∈ VN . (2.8)

In order to define the FEM space VN , let ∆ = {0 = x0 < x1 < ... < xN = 1} be an arbitrary
partition of I = (0, 1) and set

Ij = [xj−1, xj] , hj = xj − xj−1, j = 1, ..., N.

Also, define the reference element IST = [−1, 1] and note that it can be mapped onto the jth

element Ij by the standard affine mapping x = Qj(t) =
1

2
(1− t) xj−1 +

1

2
(1 + t)xj . With

Πp (IST ) the space of polynomials of degree ≤ p on IST (and with ◦ denoting composition of
functions), we define the finite dimensional subspace as

Sp(∆) =
{
v ∈ H1 (I) : v ◦Q−1

j ∈ Πpj (IST ), j = 1, ...,M
}
,

Sp
0 (∆) = Sp(∆) ∩H1

0 (I).

We restrict our attention here to constant polynomial degree p for all elements, i.e., pj = p,
j = 1, . . . , N ; clearly, more general settings with variable polynomial degree are possible.
The following Spectral Boundary Layer mesh is essentially the minimal mesh that yields
robust exponential convergence.
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Definition 2.2 (Spectral Boundary Layer mesh). For λ > 0, p ∈ N and 0 < ε ≤ 1, define
the Spectral Boundary Layer mesh ∆BL(λ, p) as

∆BL(λ, p) :=

{
{0, λpε, 1− λpε, 1} if λpε < 1/4

{0, 1} if λpε ≥ 1/4.

The spaces S(λ, p) and S0(λ, p) of piecewise polynomials of degree p are given by

S(λ, p) := Sp(∆BL(λ, p)),

S0(λ, p) := Sp
0 (∆BL(λ, p)) = S(λ, p) ∩H1

0 (I).

We quote the following result from [3].

Proposition 2.3. Assume that (2.2) holds. Let u be the solution to (2.3) and uFEM ∈
S0(λ, p) be its finite element approximation based on the Spectral Boundary Layer mesh.
Then, there exists λ0 > 0 (depending only on b and f) such that for every λ ∈ (0, λ0) there
are positive constants C, σ, independent of ε and p such that

‖uFEM − u‖E,I ∼ ‖uFEM − u‖0,I + ε
∥∥(uFEM − u)′

∥∥
0,I

≤ Ce−σp.

Proposition 2.3 follows from an approximation result for the solution u of (2.3) on Spectral
Boundary Layer meshes. The following result Lemma 2.5 slightly sharpens [3, Thm. 16] in
that the approximation of the layer contribution is handled differently. This modification is
due to [13] and is needed for a robust exponential convergence in the balanced norm. For
future reference, we formulate this result as a separate lemma:

Lemma 2.4. Let ε ∈ (0, 1]. Let the function uBL satisfy on I = (0, 1) the estimate

|(uBL)(n)(x)| ≤ CBLγ
n
BLε

−ne−x/ε ∀x ∈ I, ∀n ∈ N0. (2.9)

Then there are constants C, β, η > 0 (depending only on γBL) such that the following is
true: Let ∆ be any mesh with a mesh point ξ ∈ (0, 1] that satisfies

ξε

p
≤ η. (2.10)

Then there exists an approximation Ipu
BL ∈ Sp(∆) with Ipu

BL(0) = uBL(0) and Ipu
BL(1) =

uBL(1) having the approximation properties

‖uBL − Ipu
BL‖∞,(0,ξ) + ξ−1/2‖uBL − Ipu

BL‖0,(0,ξ) + ξ1/2‖uBL − Ipu
BL‖1,(0,ξ)

≤ CCBL

[
ξ

pε
e−βp + e−ξ/ε

]
, (2.11)

‖uBL − Ipu
BL‖∞,(ξ,1) ≤ CCBLe

−ξ/ε, (2.12)

‖uBL − Ipu
BL‖0,(ξ,1) + ε‖uBL − Ipu

BL‖1,(ξ,1) ≤ CCBL

√
εe−ξ/ε. (2.13)
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Proof. We will assume that ξ ∈ (0, 1/2); in the converse, “asymptotic” case we have ε−1 . p
so that a suitable approximation on a single element may be taken (e.g., the operator Ip of
[5]).

It suffices to assume that the mesh consists of the two elements I1 := (0, ξ) and I2 := (ξ, 1).
We will construct Ipu

BL separately on the two elements, starting with I1.

On I1, we construct Ipu
BL in two steps. First, we let π1 ∈ Πp be defined (on I1) in terms of

the operator Ip described in [5, Sec. 3.2.1]. This operator interpolates at the endpoints 0, ξ.
From [5, Cor. 3.9] we get the existence of η > 0 such that the constraint (2.10) implies

ξ−1‖π1 − uBL‖0,I1 + |π1 − uBL|1,I1 ≤ CCBL
ξ1/2

pε
e−βp.

The 1D Sobolev embedding theorem in the form ‖v‖∞,J . |J |−1/2‖v‖0,J+|J |1/2‖v′‖0,J (where
|J | denotes the length of the interval J) gives

ξ−1/2‖π1 − uBL‖∞,I1 + ξ−1‖π1 − uBL‖0,I1 + |π1 − uBL|1,I1 ≤ CCBL
ξ1/2

pε
e−βp.

Next, we modify π1 as proposed in [13] in order to obtain a better approximation on the
element I2. We define π2 ∈ Πp on I1 as

π2(x) := π1(x)− x

ξ
(1−

√
ε)uBL(ξ),

so that π2(ξ) =
√
εuBL(ξ). In view of |uBL(ξ)| ≤ CBLe

−ξ/ε, this modification leads to

ξ−1/2‖π2 − uBL‖∞,I1 + ξ−1‖π2 − uBL‖0,I1 + |π2 − uBL|1,I1 ≤ CCBL

[
ξ1/2

pε
e−βp + ξ−1/2e−ξ/ε

]
.

We take (Ipu
BL)|I1 = π2, and this shows (2.11). On I2, we take (Ipu

BL)|I2 as the linear
interpolant between the values

√
εuBL(ξ) at ξ and uBL(1) at 1. We immediately get

‖IpuBL‖∞,I2 + ‖(IpuBL)′‖∞,I2 ≤ C
√
ε|uBL(ξ)| ≤ CCBL

√
εe−ξ/ε. (2.14)

Furthermore, for uBL we have

‖uBL‖∞,I2 + ε−1/2‖uBL‖0,I2 +
√
ε‖uBL‖1,I2 ≤ CCBLe

−ξ/ε. (2.15)

(2.14) and (2.15) imply, along with the triangle inequality, then (2.12), (2.13).

Lemma 2.5. Assume that (2.2) holds. Let u be the solution to (2.3). Then there are
constants λ0, C, β > 0 (depending only on the constants appearing in (2.2)) such that for
every λ ∈ (0, λ0] there exists an approximant Ipu ∈ Sp

0 (∆BL(λ, p)) that satisfies

‖u− Ipu‖∞,I ≤ Ce−βλp, (2.16a)

‖u− Ipu‖0,I +
√
λpε‖(u− Ipu)

′‖0,I ≤ Ce−βλp. (2.16b)
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Proof. The proof follows the lines of [3, Thm. 16] (which, however, was based on the piece-
wise Gauss-Lobatto interpolant instead of the operator I of [5]). There, the solution u is
decomposed into the smooth part w, the boundary layer part uBL, and the remainder r as
in Proposition 2.1. The approximation of w and r is done as in [3, Thm. 16]. The treatment
of the boundary layer part of [3, Thm. 16] is replaced with an appeal to Lemma 2.4. We
remark in passing that slightly sharper estimates are possible if one studies the error u− Ipu
on the two elements (0, λpε) and (λpε, 1) separately.

2.3 Robust exponential convergence in a balanced norm

The goal of this article is to improve on Proposition 2.3 by showing the following result:

Theorem 2.6. Assume (2.2). Let u solve (2.3) and uFEM ∈ S0(λ, p) be obtained by (2.8)
based on the Spectral Boundary Layer mesh ∆BL(λ, p). Then there exists λ0 > 0 independent
of ε ∈ (0, 1] such that for every λ ∈ (0, λ0) there are constants C, σ > 0 such that

‖uFEM − u‖0,I + ε1/2
∥∥(uFEM − u)′

∥∥
0,I

≤ Ce−σp. (2.17)

The remainder of this section is devoted to the proof of Theorem 2.6. Before that, we note
a consequence of Theorem 2.6:

Corollary 2.7. Under the assumptions of Theorem 2.6 there is λ0 > 0 such that for every
λ ∈ (0, λ0) there are constants C, σ > 0 such that

‖u− uFEM‖∞,I ≤ Ce−σp.

Proof. We first observe that standard inverse estimates yield the result when λpε ≥ 1/4, in
which case the mesh consists of a single element. Let us therefore consider the 3-element
case λpε < 1/4. Using the boundary condition at x = 0 we can write

|u(x)− uFEM(x)| =
∣∣∣∣
∫ x

0

(u(t)− uFEM(t))′ dt

∣∣∣∣ .

Assume first that x ∈ (0, λpε]. Then by the Cauchy-Schwarz inequality and (2.17)

|u(x)− uFEM(x)| ≤
√
λpε

∥∥(u− uFEM)′
∥∥
0,I

≤
√
λpε

(
Cε−1/2e−σp

)
≤ C

√
λpe−σp.

The same technique works if x ∈ [1−λpε, 1). For x ∈ [λpε, 1−λpε], we write with the approx-
imation Ipu of Lemma 2.5 and the triangle inequality |u(x)− uFEM(x)| ≤ |u(x)− Ipu(x)|+
|Ipu(x) − uFEM(x)|. Lemma 2.5 takes care of |u(x) − Ipu(x)| while |Ipu(x) − uFEM(x)|
is treated with the standard polynomial inverse inequality ‖Ipu − uFEM‖∞,[λpε,1−λpε] ≤
Cp2‖Ipu− uFEM‖0,I and the energy estimate of Proposition 2.3.
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Proof of Theorem 2.6

Since the desired estimate in the “asymptotic” case λpε ≥ 1/4 is easily shown (see the formal
proof of Theorem 2.6 at the end of the section) we will focus in the following analysis on the
3-element case, i.e., λpε < 1/4.

We begin by defining the bilinear form

B0 (u, v) = 〈bu, v〉I , (2.18)

corresponding to the reduced/limit problem. We also introduce the operator P0 : L2(I) →
S0(λ, p) by the orthogonality condition1

B0 (u− P0u, v) = 0 ∀ v ∈ S0(λ, p). (2.19)

Then, by Galerkin orthogonality satisfied by u − uFEM (with respect to the bilinear form
Bε) and by u− P0u (with respect to the bilinear form B0) we have

‖uFEM − P0u‖2E,I = Bε (uFEM −P0u, uFEM − P0u) (2.20)

= Bε (u−P0u, uFEM − P0u)

= ε2
〈
(u−P0u)

′ , (uFEM −P0u)
′〉

I
.

Hence
ε
∥∥(uFEM − P0u)

′
∥∥
0,I

≤ ‖uFEM − P0u‖E,I ≤ ε
∥∥(u− P0u)

′
∥∥
0,I
.

The triangle inequality will then allow us to infer from this the exponential convergence
result (2.17) provided we can show that

∥∥(u− P0u)
′
∥∥
0,I

≤ Cε−1/2e−σp,

for some positive constants C and σ independent of ε and p. This calculation shows that we
have to study the H1-stability of the operator P0 on Spectral Boundary Layer meshes .

Asymptotic expansions are a tool to decompose the solution u into components on the
different length scales. We need to mimick this on the discrete level for P0u. We define
(implicitly assuming λpε < 1/4) the layer region

Iε := [0, λpε] ∪ [1− λpε, 1]

and the following two subspaces of S(λ, p):

S1 = Sp(∆), ∆ = {0, 1}, (2.21)

Sε = {u ∈ S(λ, p) : supp u ⊂ Iε}. (2.22)

1Note the subtle point that S0(λ, p) ⊂ H1

0
(I); in contrast, the reduced problem doesn’t involve boundary

conditions.
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Note that the spaces S1 and Sε do not carry any boundary conditions at the endpoints of I
– this is a reflection of the fact that the reduced problem does not satisfy the homogeneous
Dirichlet boundary conditions. It is important for the further developments to observe that
for the three-element mesh of sufficiently small λpε, there holds S(λ, p) = S1 ⊕ Sε. In other
words, each z ∈ S(λ, p) has a unique decomposition z = z1 + zε with z1 ∈ S1 and zε ∈ Sε,
when λpε < 1/4. We also have the inverse estimates

‖z′‖0,I ≤ Cp2‖z‖0,I ∀z ∈ S1, (2.23)

‖z′‖0,I ≤ C
p2

λpε
‖z‖0,I ∀z ∈ Sε, (2.24)

by [12, Thm. 3.91]. Furthermore, we have the following strengthened Cauchy-Schwarz in-
equality:

Lemma 2.8 (Strengthened Cauchy-Schwarz inequality). Let B0 be given by (2.18). Then,
there is a constant C > 0 depending solely on ‖b‖∞,I and infx∈I b(x) such that

|B0 (u, v)| ≤ Cmin{1,
√
λpεp} ‖u‖0,I ‖v‖0,Iε ∀u ∈ S1, v ∈ Sε.

Proof. The standard Cauchy-Schwarz inequality yields |B0(u, v)| ≤ ‖b‖∞,I‖u‖0,I‖v‖0,I , which
accounts for the “1” in the minimium.

Let I1 = (0, δ1) and I2 = (0, δ2) be two intervals with δ1 < δ2. Consider polynomials π1 and
π2 of degree p. Then, using an inverse inequality [12, Thm. 3.92],

∣∣∣∣
∫

I1

π1(x)π2(x) dx

∣∣∣∣ ≤
∫

I1

|π1(x)| |π2(x)| dx ≤ C

√
δ1
δ2
p‖π1‖0,I2‖π2‖0,I1.

The result follows by taking δ1 = λpε, δ2 = 1.

As already mentioned, since S(λ, p) = S1 ⊕ Sε when λpε < 1/4, we can uniquely decom-
pose P0u into components in S1 and Sε. The Strengthened Cauchy-Schwarz inquality of
Lemma 2.8 allows us to quantify the size of these contributions:

Lemma 2.9. There exist constants C, c > 0 depending solely on infx∈I b(x) > 0 and ‖b‖∞,I

such that the following is true under the assumption
√
λpεp ≤ c : (2.25)

For each z ∈ L2(I), the (unique) decomposition of

P0z = z1 + zε

into the components z1 ∈ S1 and zε ∈ Sε satisfies

‖z1‖0,I ≤ C‖z‖0,I , (2.26)

‖zε‖0,I ≤ C{‖z‖0,Iε +
√
λpεp‖z‖0,I}. (2.27)
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Proof. Write P0z = z1 + zε with z1 ∈ S1 and zε ∈ Sε. We define the auxiliary function

ψ1,ε :=

{(
1− x

λpε

)p

if x ∈ [0, λpε]

0 otherwise.

Then supp ψ1,ε ⊂ [0, λpε], ψ1,ε(0) = 1 and ‖ψ1,ε‖0,Iε ∼ p−1/2
√
λpε. For the right endpoint we

define ψ2,ε(x) := ψ1,ε(1− x), x ∈ [1− λpε, 1]. We also define

z̃ε := zε + ψ1,εz1(0) + ψ2,εz1(1),

and note that P0z ∈ S0(λ, p). Thus, (z1+ zε)|∂Ω = 0 so that z̃ε ∈ Sε ∩H1
0 (I) ⊂ Sε ∩S0(λ, p).

Utilizing the inverse estimate [12, Thm. 3.92]

‖π‖∞,I ≤ Cp ‖π‖0,I ∀ π ∈ S1,

we arrive at
‖z̃ε‖0,I = ‖z̃ε‖0,Iε ≤ C

{
‖zε‖0,Iε + p1/2

√
λpε ‖z1‖0,I

}
.

The representation P0z = z1 + zε ∈ S0(λ, p) also implies

B0(z1, v1) + B0(zε, v1) = B0(P0z, v1) ∀ v1 ∈ S1, (2.28)

B0(z1, vε) + B0(zε, vε) = B0(P0z, vε) = B0(z, vε) ∀ vε ∈ Sε ∩ S0(λ, p), (2.29)

where in (2.29) we used the fact that P0 is the B0–projection onto S0(λ, p). Taking v1 = z1
in (2.28) and vε = z̃ε ∈ Sε∩S0(λ, p) in (2.29) yields, together with the Strengthened Cauchy
Schwarz inequality of Lemma 2.8,

‖z1‖20,I ≤ C{‖P0z‖0,I‖z1‖0,I + p
√
λpε‖zε‖0,I‖z1‖0,I}, (2.30a)

‖zε‖20,I ≤ C{‖z‖0,Iε‖z̃ε‖0,Iε + p
√
λpε‖z̃ε‖0,I‖z1‖0,I + ‖zε‖0,I‖z1‖0,I

√
λpεp1/2}

≤ C{‖zε‖0,I
[
‖z‖0,Iε + p

√
λpε‖z1‖0,I +

√
λpεp1/2‖z1‖0,I

]

+
[
‖z‖0,Iε + p

√
λpε‖z1‖0,I

]√
λpεp1/2‖z1‖0,I}. (2.30b)

Estimating generously
√
λpεp1/2 ≤ √

λpεp and using an appropriate Young inequality in
(2.30b) we get

‖z1‖0,I ≤ C{‖P0z‖0,I + p
√
λpε‖zε‖0,I}, (2.31a)

‖zε‖0,I ≤ C{‖z‖0,Iε + p
√
λpε‖z1‖0,I}. (2.31b)

Inserting (2.31b) in (2.31a), assuming that
√
λpεp is sufficiently small and using the stability

‖P0z‖0,I ≤ C‖z‖0,I gives ‖z1‖0,I ≤ C‖z‖0,I . Inserting this bound in (2.31b) concludes the
proof.

We are now in the position to prove the following
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Lemma 2.10. Assume (2.2), let u be the solution of (2.3) and let λ0 be given by Lemma 2.5.
Let λ ∈ (0, λ0] and assume that λ, p, ε satisfy (2.25). Then there exist constants C, β > 0
(independent of ε and p but dependent on λ) such that

‖(u−P0u)
′‖0,I ≤ Cε−1/2e−βp. (2.32)

Proof. By Lemma 2.5 we can find an approximation Ipu ∈ S0(λ, p) with

‖u− Ipu‖0,I +
√
ε‖(u− Ipu)

′‖0,I ≤ Ce−βp. (2.33)

We stress that, while the estimate (2.16) is explicit in the parameter λ, we have absorbed
this dependence here in the constants C and β for simplicity of exposition.

Since P0 is a projection on S0(λ, p), we can write u−P0u = u− Ipu−P0(u− Ipu). The first
term is already treated in (2.33). For the second term, P0(u−Ipu) ∈ S0(λ, p), we decompose
P0(u− Ipu) = z1 + zε and use the inverse estimates (2.23), (2.24) to get, with Lemma 2.9,

‖z′1‖0,I . p2‖z1‖0,I . p2‖(u− Ipu)‖0,I ≤ Ce−βp,

‖z′ε‖0,I .
p2

λpε
‖zε‖0,Iε .

p2

λpε

[
‖(u− Ipu)‖0,Iε +

√
λpεp‖(u− Ipu)‖0,I

]
.

There are several possible ways to treat the term ‖(u−Ipu)‖0,Iε. A rather generous approach
exploits the fact that (u − Ipu)(0) = (u − Ipu)(1) = 0 so that a Poincaré inequality on the
intervals (0, λpε) and (1− λpε, 1) yields

‖u− Ipu‖0,Iε ≤ Cλpε‖(u− Ip)
′‖0,Iε.

Hence,

‖z′ε‖0,I .
p2

λpε

[
λpε‖(u− Ipu)

′‖0,Iε +
√
λpεp‖u− Ipu‖0,I

]
. ε−1/2e−βp.

Proof of Theorem 2.6: In view of ‖u− uFEM‖0,I ≤ C‖u− uFEM‖E,I ≤ Ce−σp by Propo-
sition 2.3, we focus on the control of

√
ε‖(u− uFEM)′‖0,I . We distinguish two cases:

Case 1: Assume that (2.25) is satisfied. Then (2.32) and Lemma 2.10 yield the result.

Case 2: Assume that
√
λpεp ≥ c for the constant c appearing in (2.25). Then ε ≥ c2p−3λ−1

so that

√
ε‖(u− uFEM)′‖0,I ≤ ε−1/2‖u− uFEM‖Eε,I ≤

1

c

√
λp3/2‖u− uFEM‖Eε,I . e−σp,

which concludes the proof. �
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2.4 Numerical example

To illustrate the theoretical findings presented above, we show in Figure 1 the results of
numerical computations for the following problem:

−ε2u′′(x) + u(x) =

(
x+

1

2

)−1

, x ∈ (0, 1), (2.34a)

u(0) = u(1) = 0. (2.34b)

We use the Spectral Boundary Layer mesh ∆BL(λ, p) with λ = 1 and polynomials of degree p
which we increase from 1 to 4 to improve accuracy. We select ε = 10−j, j ∈ {4, 6, 8, 10, 12}.
We note dimS0(λ, p) = 2 + 3(p− 1). Since no exact solution is available, we use a reference
solution and show the estimated error in the balanced norm versus the polynomial degree p in
a semi-log scale. Figure 1 clearly shows the predicted robustness and exponential convergence
rate.
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Figure 1: Balanced norm convergence on Spectral Boundary Layer meshes for (2.34).

3 The two-dimensional case

The ideas of the previous section carry over to the two-dimensional case. We consider the
following boundary value problem: Find u such that

−ε2∆u+ bu = f in Ω ⊂ R
2, (3.1a)

u = 0 on ∂Ω, (3.1b)
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where ε ∈ (0, 1], and the functions b, f are given with b > 0 on Ω. We assume that the data
of the problem is analytic, i.e., ∂Ω is an analytic curve and that there exist constants Cf ,
γf , Cb, γb, cb > 0 such that





‖∇nf‖∞,Ω ≤ Cfγ
n
f n! ∀ n ∈ N0,

‖∇nb‖∞,Ω ≤ Cbγ
n
b n! ∀ n ∈ N0,

infx∈Ω b(x) ≥ cb > 0.

(3.2)

The variational formulation of (3.1a), (3.1b) reads: Find u ∈ H1
0 (Ω) such that

Bε(u, v) := ε2 〈∇u,∇v〉Ω + 〈bu, v〉Ω = F (v) := 〈f, v〉Ω ∀v ∈ H1
0 (Ω) , (3.3)

where 〈·, ·〉Ω denotes the usual L2(Ω) inner product. Again, the bilinear form Bε induces the
energy norm ‖ · ‖E,Ω by

‖v‖2E,Ω := Bε(v, v).

The discrete version of (3.3) reads: find uFEM ∈ VN ⊂ H1
0 (Ω) such that (3.3) holds for all

v ∈ VN ⊂ H1
0 (Ω), with u replaced by uFEM , where the subspace VN will be defined shortly.

3.1 Meshes and spaces

Concerning the meshes and the hp-FEM space based on these meshes, we adopt the simplest
case that generalizes our 1D analysis to 2D: The elements are (curvilinear) quadrilaterals
and the needle elements required to resolve the boundary layer are obtained as mappings of
needle elements of a reference configuration. This approach is discussed in more detail in [7,
Sec. 3.1.2] and expanded as the notion of “patchwise structured meshes” in [4, Sec. 3.3.2].

Our hp-FEM spaces have the following general structure: Let ∆ = {Ωi}Ni=1 be a mesh
consisting of curvilinear quadrilaterals Ωi, i = 1, . . . , N , subject to the usual restrictions
(see, e.g., [7]) and associate with each Ωi a differentiable, bijective element mapping Mi :
SST → Ωi, where SST = [0, 1]2 denotes the usual reference square. With Qp(SST ) the space
of polynomials of degree p (in each variable) on SST , we set

Sp(∆) =
{
u ∈ H1 (Ω) : u|Ωi

= ϕp ◦M−1
i , i = 1, ..., N, for some ϕp ∈ Qp(SST )

}
,

Sp
0 (∆) = Sp(∆) ∩H1

0 (Ω).

We now describe the mesh ∆ and the element maps that we will use (see Fig. 2). Our
starting point is a fixed mesh ∆A (the subscript “A” stands for “asymptotic”) consisting of
curvilinear quadrilateral elements Ωi, i = 1, . . . , N ′. These elements Ωi are the images of the
reference square SST = [0, 1]2 under the element maps MA,i, i = 1, . . . , N ′ (we added the
subscript “A” to emphasize that they correspond to the asymptotic mesh ∆A). They are
assumed to satisfy the conditions (M1)–(M3) of [7] in order to ensure that the space Sp(∆A)
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has suitable approximation properties. The element maps MA,i are assumed to be analytic
with analytic inverse; that is, as in [7] we require

‖(M ′
A,i)

−1‖∞,SST
≤ C1, ‖DαMA,i‖∞,SST

≤ C2α!γ
|α| ∀α ∈ N

2
0, i = 1, . . . , N ′

for some constants C1, C2, γ > 0. We furthermore assume that elements do not have a single
vertex on the boundary ∂Ω but only complete, single edges, i.e., the following dichotomy
holds:

either Ωi ∩ ∂Ω = ∅ or Ωi ∩ ∂Ω is a single edge of Ωi. (3.4)

Edges of curvilinear quadrilaterals are, of course, the images of the edges of SST under the
element maps. For notational convenience, we assume that these edges are the image of the
edge {0} × [0, 1] under the element map. It then follows that these elements have one edge
on ∂Ω and the images of the edges {y = 1} and {y = 0} of SST are shared with elements
that likewise have one edge on ∂Ω. For notational convenience, we assume that the elements
at the boundary are numbered first, i.e., they are the elements Ωi, i = 1, . . . , n < N ′. For a
parameter λ > 0 and a degree p ∈ N, the boundary layer mesh ∆BL = ∆BL(λ, p) is defined
as follows.

Definition 3.1 (Spectral Boundary Layer mesh ∆BL(λ, p)). Given parameters λ > 0, p ∈ N,
ε ∈ (0, 1] and the asymptotic mesh ∆A, the mesh ∆BL(λ, p) is defined as follows:

1. λpε ≥ 1/2. In this case we are in the asymptotic regime, and we use the coarse mesh
∆A defined above.

2. λpε < 1/2. In this regime, we need to define so-called needle elements. This is done by
splitting the elements Ωi, i = 1, . . . , n into two elements Ωneed

i and Ωreg
i . To that end,

split the reference square SST into two elements

Sneed = [0, λpε]× [0, 1], Sreg = [λpε, 1]× [0, 1],

and define the elements Ωneed
i , Ωreg

i as the images of these two elements under the
element map MA,i and the corresponding element maps as the concatination of the
affine maps

Aneed : SST → Sneed, (ξ, η) → (λpεξ, η),

Areg : SST → Sreg, (ξ, η) → (λpε+ (1− λpε)ξ, η)

with the element map MA,i, i.e., M
need
i =MA,i ◦Aneed and M reg

i =MA,i ◦Areg. Explic-
itly:

Ωneed
i =MA,i

(
Sneed

)
, Ωreg

i =MA,i (S
reg) ,

Mneed
i (ξ, η) =MA,i (λpεξ, η) , M reg

i (ξ, η) =MA,i (λpε+ (1− λpε)ξ, η) .

In Figure 2 we show an example of such a mesh construction on the unit circle. In total,
the mesh ∆BL(λ, p) consists of N = N ′ + n elements if λpε < 1/2. By construction, the
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Figure 2: Example of an admissible mesh. Left: asymptotic mesh ∆A. Right: BL mesh ∆BL

resulting mesh ∆BL = ∆BL(λ, p) =
{
Ωneed

1 , ...,Ωneed
n ,Ωreg

1 , ...,Ωreg
n ,Ωn+1, ...,ΩN

}
is a regular

admissible mesh in the sense of [7]. Therefore, [7] gives that the space

S0(λ, p) := Sp
0 (∆BL(λ, p))

has the following approximation properties:

Proposition 3.2 ([7]). Let u be the solution to (3.3) and assume that (3.2) holds. Then there
exist constants λ0, λ1, C, β > 0 independent of ε ∈ (0, 1] and p ∈ N such that the following
is true: For every p and every λ ∈ (0, λ0] with λp ≥ λ1 there exists a πpu ∈ Sp

0 (∆BL(λ, p))
such that

‖u− πpu‖∞,Ω + ε1/2 |u− πpu|1,Ω ≤ Cp2 (ln p+ 1)2 e−βpλ.

We mention in passing that Proposition 3.2 provides robust exponential convergence in the
energy norm.

Anticipating that we will need, for the case λpε < 1/2, a decomposition of

S(λ, p) := Sp(∆BL(λ, p))

into two spaces reflecting the two scales present, we proceed as follows: With ∆A the asymp-
totic (coarse) mesh that resolves the geometry we set

S1 := Sp(∆A), (3.5)

Sε := {v ∈ Sp(∆BL(λ, p)) | supp v ⊂ Ωλpε}, (3.6)

where the boundary layer region Ωλpε is defined as

Ωλpε =
n∪

i=1
Ωneed

i . (3.7)
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As in the 1D situation, our approximation space Sp(∆BL(λ, p) can be written as a direct
sum of S1 and Sε if λpε < 1/2:

Lemma 3.3. Let λpε < 1/2. Then Sp(∆BL(λ, p)) is the direct sum S1 ⊕ Sε. Furthermore,
we have the inverse estimates

‖u‖0,∂Ωi
≤ Cp‖u‖0,Ωi

∀u ∈ S1, i = 1, ..., N ′, (3.8)

|u|1,Ωi
≤ Cp2‖u‖0,Ωi

∀u ∈ S1, i = 1, ..., N ′, (3.9)

|u|1,Ωi
≤ C

p2

λpε
‖u‖0,Ωi

∀u ∈ Sε, i = 1, ..., n, (3.10)

Proof. The claim that Sp(∆BL(λ, p)) = S1⊕Sε follows from the way ∆BL(λ, p) is constructed.
Let z ∈ Sp(∆BL(λ, p)). Define z1 ∈ S1 as follows: For the internal elements Ωi with i =
n + 1, . . . , N ′ take z1|Ωi

:= z|Ωi
. For Ωi, i ∈ {1, . . . , n}, which is further decomposed into

Ωneed
i and Ωreg

i , we consider the pull-back z̃i := z|Ωi
◦MA,i. This pull-back z̃i is a piecewise

polynomial on SST = Sneed ∪ Sreg. Define the polynomial ẑi ∈ Q(SST ) on the full reference
element SST by the condition

ẑi|Sreg = z̃i|Sreg

and then set z1|Ωi
:= ẑi ◦ M−1

A,i; that is, the restriction z̃i|Sreg is extended polynomially
to SST . In this way, the function z1 is defined elementwise, and the assumptions on the
element maps MA,i of the asymptotic mesh ∆A ensure that z1 ∈ H1(Ω), i.e., z1 ∈ S1. Since
by construction z|Ωreg

i
= z1|Ωreg

i
for i = 1, . . . , n, we conclude that supp(z − z1) ⊂ Ωλpε and

therefore zε := z−z1 ∈ Sε. The construction also shows the uniqueness of the decomposition.

The inverse estimates (3.8), (3.9), (3.10) can be seen as follows. The estimate (3.9) is an easy
consequence of the assumptions on the element maps MA,i of the asymptotic mesh ∆A and
the polynomial inverse estimates [12, Thm. 4.76]. In a similar manner, the inverse estimate
(3.8), which estimates the L2-norm on the boundary ∂Ωi of Ωi by the L2-norm on Ωi follows
from a suitable application of 1D inverse estimates.

For the estimate (3.10), we note that for an element Ωneed
i , we can estimate for any v ∈ Sε

again with assumptions on the element maps MA,i

‖∇v‖0,Ωneed
i

∼ ‖∇(v ◦MA,i)‖0,Sneed ≤ C
p

λpε
‖v ◦MA,i‖0,Sneed ∼ C

p

λpε
‖v‖0,Sneed,

where we exploited that v ◦MA,i is a polynomial of degree p.

We mention already at this point that we will quantify the contributions z1 and zε of this
decomposition in Lemma 3.7 below. We close this section by pointing out that in our setting,
one has very good control over the element maps: There exists C > 0 (depending solely on
the asymptotic mesh ∆A) such that

‖M ′
A,i‖∞,SST

+ ‖(M ′
A,i)

−1‖∞,SST
≤ C, i = 1, . . . , N ′, (3.11a)

‖(M reg
i )′‖∞,SST

+ ‖((M reg
i )′)−1‖∞,SST

≤ C, i = 1, . . . , n, (3.11b)

‖((Mneed
i )′)−1‖∞,SST

≤ C
1

λpε
, i = 1, . . . , n. (3.11c)
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3.2 Robust exponential convergence in balanced norms

The main result of the paper is the following robust exponential convergence in the balance
norm:

Theorem 3.4. There is a λ0 > 0 depending only on the functions b, f and the asymptotic
mesh ∆A such that for every λ ∈ (0, λ0], the hp-FEM space Sp

0 (∆BL(λ, p)) leads to a finite
element approximation uFEM ∈ Sp

0 (∆BL(λ, p)) satisfying

√
ε‖∇(u− uFEM)‖0,Ω + ‖u− uFEM‖0,Ω ≤ Ce−βp,

where the constants C, β > 0 depend on the choice of λ but are independent of ε and p.

The proof is deferred to the end of the section. As a corollary, we get exponential converge-
nence in the maximum norm.

Corollary 3.5. Let u be the solution of (3.3) and let uFEM ∈ Sp
0 (∆BL(λ, p)) be its finite

element approximation. Then there exist constants C, σ > 0 independent of ε and p such
that

‖u− uFEM‖∞,Ω ≤ Ce−σp.

Proof. First we note that Proposition 3.2 provides an approximation πpu ∈ Sp
0 (∆BL(λ, p))

with
‖u− πpu‖∞,Ω ≤ Ce−βλp.

In view of the triangle inequality ‖u− uFEM‖∞,Ω ≤ ‖u− πpu‖∞,Ω + ‖πpu− uFEM‖∞,Ω , we
may focus on the term ‖πp − uFEM‖∞,Ω. It suffices to prove the result in the layer region,

i.e., for the elements Ωneed
i , since outside Ωλpε standard inverse estimates (bounding the L∞-

norm of polynomials by their L2-norm up to powers of p) yield the desired bound in view of
(3.11a), (3.11b).

For a needle element Ωneed
i we introduce π̃pu := πpu|Ωneed

i
◦MA,i and ũFEM := uFEM |Ωneed

i
◦

MA,i. The polynomial inverse estimate of [12, Thm. 4.76] and an affine scaling argument
(between SST and Sneed) yield

‖πpu− uFEM‖∞,Ωneed
i

= ‖π̃pu− ũFEM‖∞,Sneed ≤ C
p2√
λpε

‖π̃pu− ũFEM‖0,Sneed

∼ p2√
λpε

‖πpu− uFEM‖0,Ωneed
i

,

where in the last step we used the assumptions on the element maps MA,i. The triangle
inequality then gives

‖πpu− uFEM‖∞,Ωneed
i

≤ p2√
λpε

[
‖πpu− u‖0,Ωneed

i
+ ‖u− uFEM‖0,Ωneed

i

]
. (3.12)
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For the first term in (3.12) we obtain from the L∞-bound of Proposition 3.2 and the fact
that |Ωneed

i | ∼ λpε

‖πpu− u‖0,Ωneed
i

.
√
λpεe−βp. (3.13)

For the second term in (3.12) we exploit the fact that uFEM = 0 = πpu on ∂Ω and a 1D
Poincaré inequality. To that end, we note that for any function ṽ ∈ H1(Sneed) with v = 0
on the edge {(0, y) | 0 ≤ y ≤ 1} of Sneed = {(x, y) | 0 ≤ x ≤ λpε, 0 ≤ y ≤ 1}, we obtain from
a 1D Poincáre inequality

‖ṽ‖0,Sneed ≤ C
√
λpε‖∂xṽ‖0,Sneed ≤ C

√
λpε‖∇ṽ‖0,Sneed. (3.14)

Upon setting ṽ := (u − uFEM)|Ωneed
i

◦MA,i, we may use (3.14) together with the properties
of MA,i to get

‖u− uFEM‖0,Ωneed
i

∼ ‖ṽ‖0,Sneed ≤ C
√
λpε‖∇ṽ‖0,Sneed ∼

√
λpε‖∇(u− uFEM)‖0,Ωneed

i
. (3.15)

Combining (3.12), (3.13), (3.15) gives the desired result.

3.3 Proof of Theorem 3.4

The proof of Theorem 3.4 parallels that of the 1D case in Section 2. We begin by defining
the bilinear form for the reduced problem,

B0(u, v) = 〈bu, v〉Ω . (3.16)

We also introduce the projection operator P0 : L
2(Ω) → Sp

0 (∆BL(λ, p)) by the condition

B0 (u−P0u, v) = 0 ∀v ∈ Sp
0 (∆BL(λ, p)).

Then, by reasoning as in (2.20) with Galerkin orthogonalities, we get

‖uFEM −P0u‖2E,Ω = ε2 〈∇ (u− P0u) ,∇ (uFEM − P0u)〉Ω .
Hence

ε ‖∇ (uFEM − P0u)‖0,Ω ≤ ‖uFEM −P0u‖E,Ω ≤ ε ‖∇ (u−P0u)‖0,Ω .
The key step towards showing robust exponential convergence in balanced norms is therefore
to show

‖∇ (u−P0u)‖0,Ω ≤ Cε−1/2e−σp,

for some positive constants C and σ independent of ε and p. Completely analogous to the
one-dimensional case, we are therefore led to studying the H1-stability of the projection
operator P0 on the (admissible) mesh described in Definition 3.1.

Lemma 3.6 (Strengthened Cauchy-Schwarz inequality in 2D). Let B0 be given by (3.16).
Then,

|B0 (u, v)| ≤ Cmin{1,
√
λpεp} ‖u‖0,Ω ‖v‖0,Ωλpε

∀u ∈ S1, v ∈ Sε,

with S1, Sε given by (3.5) and (3.6), respectively. The constant C > 0 depends solely on
‖b‖∞,Ω, infx∈Ω b(x) > 0, and the element maps of the asymptotic mesh ∆A.
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Proof. We restrict our attention to the case λpε < 1/2 as the “1” in the minimum is a simple
consequence of the Cauchy-Schwarz inequality. With u ∈ S1, v ∈ Sε there holds B0(u, v) =∫∫

Ωλpε
buv. Fix Ωneed

i and recall that it is obtained from an element Ωi (i ∈ {1, . . . , n}) by
a splitting, i.e., Ωi = Ωneed

i ∪ Ωreg
i . The construction of ∆BL(λ, p) implies that the pull-back

π1 := u|Ωi
◦MA,i to SST is a polynomial of degree p (in each variable) whereas the pull-back

π2 := v|Ωi
◦MA,i is a piecewise polynomial of degree p (in each variable) with supp π2 ⊂ Sneed.

Upon setting b̂ := b|Ωneed
i

◦MA,i, which is uniformly bounded on Sneed, we calculate

∫∫

Ωi

buv dx dy =

∫∫

Ωneed
i

buv dx dy =

∫∫

Sneed

π1(x, y)π2(x, y) b̂ | detM ′
A,i| dx dy.

Since | detM ′
A,i| is bounded uniformly (in (x, y)), we obtain

∣∣∣∣∣

∫∫

Ωneed
i

buv

∣∣∣∣∣ ≤ C

∫∫

Sneed

|π1(x, y)||π2(x, y)|dxdy = C

∫ 1

0

∫ λpε

0

|π1(x, y)||π2(x, y)|dxdy.

Now, fix y ∈ [0, 1] and consider

∫ λpε

0

|π1(x, y)||π2(x, y)|dx ≤ Cp
√
λpε

[∫ 1

0

|π1(x, y)|2dx
]1/2 [∫ λpε

0

|π2(x, y)|2dx
]1/2

by Lemma 2.8. Integrating in y from 0 to 1, gives

∫ 1

0

∫ λpε

0

|π1(x, y)||π2(x, y)|dxdy ≤ Cp
√
λpε

∫ 1

0

[∫ 1

0

|π1(x, y)|2dx
]1/2 [∫ λpε

0

|π2(x, y)|2dx
]1/2

dy.

Using once more the Cauchy-Schwarz inequality, we arrive at
∫∫

Sneed

|π1(x, y)||π2(x, y)|dxdy ≤ Cp
√
λpε‖π1‖0,SST

‖π2‖0,Sneed .

The assumptions on the element mapMA,i allows us to infer ‖π1‖0,SST
‖π2‖0,Sneed ∼ ‖u‖0,Ωi

‖v‖0,Ωneed
i

,
which concludes the proof.

Lemma 3.7. There exist constants C, c > 0 depending solely on ‖b‖∞,Ω, infx∈Ω b(x) > 0,
and the element maps of the asymptotic mesh ∆A such that the following is true under the
assumption √

λpεp ≤ c : (3.17)

For each z ∈ L2(Ω), the (unique) decomposition

P0z = z1 + zε

into the components z1 ∈ S1 and zε ∈ Sε satisfies

‖z1‖0,Ω ≤ C‖z‖0,Ω, (3.18)

‖zε‖0,Ω ≤ C{‖z‖0,Ωλpε
+
√
λpεp‖z‖0,Ω}. (3.19)
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Proof. The proof parallels that of Lemma 2.9. With Lemma 3.3 we can write P0z = z1+ zε.
We define the auxiliary function ψε on SST by

ψε(x, y) :=

{(
1− 2x

λpε

)p

if (x, y) ∈ Sneed

0 otherwise.

Then supp ψε ⊂ Sneed, ψε(0, y) = 1 and ‖ψε‖0,SST
= ‖ψε‖0,Sneed ∼ p−1/2

√
λpε. We define the

function z̃ε ∈ Sε on the needle elements Ωneed
i by prescribing its pull-back to Sneed:

(z̃ε|Ωneed
i

◦MA,i)(x, y) := (zε|Ωneed
i

◦MA,i)(x, y)+ψε(x, y)(z1|Ωi
◦MA,i)(0, y), (x, y) ∈ Sneed;

here, Ωi and Ωneed
i are related to each other by Ωi = Ωneed

i ∪ Ωreg
i . It is an effect of the

assumptions on the asymptotic mesh ∆A that the elementwise defined function z̃ε is in fact
in H1(Ω) and therefore indeed zε ∈ Sε. By construction, z̃ε|∂Ω = (z1+ zε)|∂Ω = (P0z)|∂Ω = 0
so that z̃ε ∈ Sε ∩S0(λ, p). Noting the product structure of (zε− z̃ε)|Ωneed

i
◦MA,i on S

need and
the above estimate on ‖ψε‖0,Sneed, we get for z̃ε with the inverse estimate (3.8)

‖z̃ε‖0,Ω = ‖z̃ε‖0,Ωλpε
≤ C

{
‖zε‖0,Ωλε

+ p1/2
√
λpε ‖z1‖0,Ω

}
.

We also have in view of P0z = z1 + zε

B0(z1, v1) +B0(zε, v1) = B0(P0z, v1) ∀v1 ∈ S1, (3.20)

B0(z1, vε) +B0(zε, vε) = B0(P0z, vε) = B0(z, vε) ∀vε ∈ Sε ∩ Sp
0 (∆BL(λ, p)) , (3.21)

where in (3.21) we used the fact that P0 is the B0–projection onto Sp
0 (∆BL(λ, p)). Taking

v1 = z1 in (3.20) and vε = z̃ε ∈ Sε ∩ Sp
0 (∆BL(λ, p)) in (3.21) yields, together with the

Strengthened Cauchy Schwarz inequality of Lemma 2.9, just like in the 1D case

‖z1‖20,Ω ≤ C
[
‖P0z‖0,Ω‖z1‖0,Ω +

√
λpεp‖zε‖0,Ω‖z1‖0,Ω

]

‖zε‖20,Ω ≤ C
[
‖z‖0,Ω‖z̃ε‖0,Ω +

√
λpεp‖z̃ε‖0,Ω‖z1‖0,Ω + ‖zε‖0,Ω‖z1‖0,Ω

√
λpεp1/2

]
,

≤ C
[
‖zε‖0,Ωλpε

{‖z‖0,Ωλpε
+
√
λpεp‖z1‖0,Ω +

√
λpεp‖z1‖0,Ω}

+ {‖z‖0,Ωλpε
+
√
λpεp‖z1‖0,Ω}

√
λpεp1/2‖z1‖0,Ω

]
.

Estimating
√
λpεp1/2 ≤ √

λpεp and using an appropriate Young inequality we get

‖z1‖0,Ω ≤ C
[
‖P0z‖0,Ω +

√
λpεp‖zε‖0,Ω

]
, (3.22a)

‖zε‖0,Ω ≤ C
[
‖z‖0,Ωλpε

+
√
λpεp‖z1‖0,Ω

]
. (3.22b)

Inserting (3.22b) in (3.22a), assuming that
√
λpεp is sufficiently small and using the stability

‖P0z‖0,Ω ≤ C‖z‖0,Ω gives ‖z1‖0,Ω ≤ C‖z‖0,Ω. Inserting this bound in (3.22b) concludes the
proof.
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We are now in the position to prove the following

Lemma 3.8. Assume (3.2) and let u be the solution of (3.3). Let λ0 > 0 be given by
Proposition 3.2. Assume that λ ≤ λ0 and that λ, p, ε satisfy (3.17). Then, for constants C,
β > 0 independent of ε and p (but depending on λ)

‖∇(u− P0u)‖0,Ω ≤ Cε−1/2e−βp. (3.23)

Proof. By Proposition 3.2 we can find an approximation πpu ∈ Sp
0 (∆BL(λ, p)) with (u −

πpu)|∂Ω = 0 such that √
ε |u− πpu|1,Ω ≤ Cp2 (ln p+ 1)2 e−βλp.

Since P0(u−πpu) ∈ Sp
0 (∆BL(λ, p)), we decompose P0(u−πpu) = z1+ zε and use the inverse

estimates (3.9), (3.10) to get, with Lemma 3.7,

|z1|1,Ω . p2‖z1‖0,Ω . p2‖u− πpu‖0,Ω . Ce−bp, (3.24)

|zε|1,Ω .
p2

λpε
‖zε‖0,Ωλpε

.
p2

λpε

[
‖u− πpu‖0,Ωλpε

+
√
λpεp‖u− πpu‖0,Ω

]
. (3.25)

Let us treat the term ‖u − πpu‖0,Ωλpε
above. Recall that Ωλpε = ∪n

i=1Ω
need
i ; from (3.13) we

therefore get ‖u − πpu‖0,Ωλpε
.

√
λpεe−βp. Furthermore, from Proposition 3.2 we readily

have ‖u− πpu‖0,Ω . e−βp. Inserting these two estimates into (3.25) produces

|zε|1,Ω .
p2

λpε

√
λpεe−βp +

√
λpεpe−βp . ε−1/2e−βp,

where the constant β > 0 is suitably adjusted in each estimate. The result follows.

Proof of Theorem 3.4: Again, we focus only on the control of
√
ε‖∇(u− uFEM)‖0,Ω. We

distinguish two cases:

Case 1: Assume that (3.17) is satisfied. Then (3.23) and Lemma 2.10 yield the result.

Case 2: Assume (3.17) is not satisfied. Then ε ≥ c2p−3λ−1 so that

√
ε‖∇(u− uN)‖0,Ω ≤ ε−1/2‖u− uN‖E,Ω ≤ 1

c

√
λp3/2‖u− uN‖E,Ω . e−bp.

�

3.4 Numerical example

We close with a numerical example in two dimensions: We consider the problem

−ε2∆u+ u = 1 in Ω :=

{
(x, y) | 0 ≤

(x
2

)2

+ y2 < 1

}
⊂ R

2, (3.26a)

u = 0 on ∂Ω, (3.26b)
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Deviating from the use of the boundary layer mesh ∆BL(λ, p), we approximate the solution
to this problem on a fixed mesh where the needle elements have width pmaxε on the semiaxes
of the ellipse, as shown in Figure 3. On this fixed mesh, we employ the p-version FEM
with degrees p = 1, . . . , pmax − 1. The reference solution, with which the FEM solutions are
compared is taken as the FEM solution corresponding to p = pmax. Throughout, we take
pmax = 8 and we utilize the commercial FEM code StressCheck (E.S.R.D. St. Louis, MO),
which is a p-version package allowing for the polynomial degree to vary from 1 to 8.

 

Figure 3: Mesh used for the two-dimensional example.

In Figures 4 we present the error

max
1≤i≤M

|u(ri)− uFEM(ri)| , M := 20,

versus the polynomial degree p, in a semi-log scale. The M points ri were uniformly dis-
tributed first on the mesh line connecting the points (1−pmaxε, 0), (1, 0), and second on line
of length of approximately pmaxε, which is the intersection of the needle element in the first
quadrant and the line through the origin at an angle of 60 degrees. Figure 4 clearly shows
the robust exponential convergence in the L∞(Ω)-norm of the hp-FEM.
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