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Dissipative quantum fluid models

26/2010 Sabine Hittmeir, Ansgar Jüngel
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Abstract

This bachelor thesis deals with the stability and approximation of the trace of the
polynomial L2-projection on triangles. We consider the L2-projection Π2D

N : L2(T )→
PN (T ) onto PN (T ), where T is the reference triangle {(x, y) : −1 < x < 1,−1 < y <
−x} and show the following result

‖Π2D
N u‖2L2(Γ) ≤ C‖u‖L2(T )‖u‖H1(T ), ∀u ∈ H1(T ),

where we denote by Γ one edge of ∂T .
At the end we will present a method to compute numerically the stability constant
C in the estimate above and show the computational results. We will also compute
two related stability constants, namely, the stability constant for the corresponding
one-dimensional statement

|(Π1D
N u)(±1)|2 ≤ C‖u‖L2(−1,1)‖u‖H1(−1,1), ∀u ∈ H1(−1, 1),

where Π1D
N : L2(−1, 1)→ PN (−1, 1) is the L2-projection onto the space of polynomi-

als of degree N , and the stability constant CN in the two-dimensional bound

‖Π2D
N u‖2L2(Γ) ≤ CN‖u‖2H1(T ), ∀u ∈ H1(T ).

Here, CN is seen to be O(N).
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1 Introduction
Polynomial approximation plays an important role in high order numerical methods such
as spectral-, hp- and hp-Discontinuous Galerkin Finite Element Methods. Basic building
blocks of these numerical methods and polynomial approximation in general are projection
operators that map into spaces of polynomials. In this work, we study in more detail a
specific projection operator, namely, the L2-projection Π2D

N : L2(T ) → PN(T ) onto the
space of polynomials PN(T ) of degree N on a triangle T ⊂ R2. For this operator, we show
in Theorem 2.17 the following estimate, where Γ denotes an edge of the triangle T :

‖Π2D
N u‖2

L2(Γ) ≤ C‖u‖L2(T )‖u‖H1(T ), (1.0.1)

As an application of this result we show that the restriction to the edge Γ of the polynomial
approximation Π2D

N u of a function u is an optimal order approximation in L2(Γ):

Theorem 1.1 For N ∈ N0 denote by Π2D
N the L2(T )-projection onto PN(T ). Then there

exists a constant C > 0 independent of N and u such that

‖u− Π2D
N u‖L2(Γ) ≤ CN−s+1/2‖u‖Hs(T ) ∀u ∈ Hs(T ), s ∈ N.

Proof. Before proving Theorem 1.1, we mention that relevant notation is introduced below
in Section 1.1.

Since Π2D
N : L2(T ) → PN(T ) is a projection onto PN , there holds for any polynomial

p ∈ PN that Π2D
N p = p. Using this and the triangle inequality we have

‖u− Π2D
N u‖L2(Γ) ≤ ‖u− p‖L2(Γ) + ‖Π2D

N (u− p)‖L2(Γ).

By applying (1.0.1) we get

‖u− p‖L2(Γ) + ‖Π2D
N (u− p)‖L2(Γ) . ‖u− p‖L2(Γ) + ‖u− p‖1/2

L2(T )‖u− p‖
1/2

H1(T ).

Now the estimate ‖u‖2
L2(Γ).‖u‖L2(T )‖u‖H1(T ) (see [3, Thm. 1.6.6]) yields

‖u− Π2D
N u‖L2(Γ) . ‖u− p‖1/2

L2(T )‖u− p‖
1/2

H1(T ).

Further, for u ∈ Hs(T ) we have the following two estimates taken from [11, Thm. B.4]

‖u− ΠH1

N u‖H1(T ) . N−(s−1)‖u‖Hs(T )

‖u− ΠH1

N u‖L2(T ) . N−s‖u‖Hs(T ),

where we denote by ΠH1

N : H1(T ) → H1(T ) ∩ PN(T ) the H1-projection. Since p was
arbitrary we conclude

‖u− Π2D
N u‖L2(Γ) . N−(s−1)/2N−s/2‖u‖Hs(T )

. N−s+1/2‖u‖Hs(T )
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We close this introduction by mentioning that the analog of (1.0.1) for tensor product
domains such as intervals, squares, and cubes has been established in [7]. Likewise, the
analog of Theorem 1.1 for these geometries can be found there. We mention that for tensor
product domains, Theorem 1.1 was established earlier in [12] for special case s ≥ 1. The
novel aspect of the present work is the non-trivial generalization to triangles.

1.1 General Notation

We will denote points in Rn, n ∈ N, by underlined letters, i.e., x = (x1, x2, . . . , xn).

An n-dimensional multi-index is a n-tuple s = (s1, . . . , sn) ∈ Nn
0 . For a sufficiently smooth

function u we define

Dsu :=
∂|s|u

∂xs11 · · · ∂xsnn
,

where |s| :=
∑n

i=1 si is called the order of the multi-index.

Furthermore, we introduce the reference square S := (−1, 1)2, the reference triangle T :=
{(ξ1, ξ2) : −1 < ξ1 < 1,−1 < ξ2 < −ξ1} and denote one edge of T by Γ := (−1, 1)× {−1}.

Figure 1: reference square Figure 2: reference triangle

In the following estimates, there will also occur constants, which we will denote by a capital
C. We do not consider C as a fixed constant that has the same value every time it appears
in a proof. In fact, we will regard C as an expression that absorbs all the constants that
arise in the current step. However, C will be always independent of critical parameters and
functions involved. Sometimes we will also abbreviate notations like a ≤ Cb by writing
a . b.

Furthermore, we define the space of polynomials of degree N by

PN := {xi : i ≤ N, i ∈ N0},
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and the restriction to a set D by

PN(D) := {p ∈ PN : p : D → R}.

1.2 Sobolev Spaces

A standard reference for Sobolev spaces is [1]. We also refer to [2, p.62, 1.25].

Let Ω be an open set in Rn and k ∈ N0. We define an inner product on C∞(Ω), the
space of all infinitely differentiable functions on Ω:

〈u, v〉Hk(Ω) :=
∑
|s|≤k

∫
Ω

DsuDsvdx,

where s is a multi-index. The expression

‖u‖Hk(Ω) :=
√
〈u, v〉Hk(Ω)

turns the space
{u ∈ C∞(Ω) : ‖u‖Hk(Ω) <∞}

into a normed space. Now we can define Sobolev spaces.

Definition 1.2 Let Ω ⊂ Rn open. The Sobolev space Hk(Ω) is the closure of the set
{u ∈ C∞(Ω) : ‖u‖Hk(Ω) <∞} with respect to the norm ‖.‖Hk(Ω). Hence,

Hk(Ω) := {u ∈ C∞(Ω) : ‖u‖Hk(Ω) <∞}
‖.‖

Hk(Ω) .

1.3 Jacobi Polynomials

For the estimate on triangles it will be convenient to use Jacobi polynomials P (α,β)
n (x),

which form a family of polynomial solutions of appropriate Sturm-Liouville problems. Fur-
thermore, they form a class of orthogonal polynomials on the interval (−1, 1) with respect
to the weight functions (1−x)α, (1−x)β (α, β > −1). We have the following orthogonality
property (see, e.g. [9, p. 351])∫ 1

−1

(1− x)α(1− x)βP (α,β)
p P (α,β)

q dx =

{
0 , p 6= q

2α+β+1

2p+α+β+1
Γ(p+α+1)Γ(p+β+1)
p!Γ(p+α+β+1)

, p = q
(1.3.1)

where p, q ∈ N0. We abbreviate

γ(α,β)
p :=

2α+β+1

2p+ α + β + 1

Γ(p+ α + 1)Γ(p+ β + 1)

p!Γ(p+ α + β + 1)
. (1.3.2)
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In further proofs we will need several properties of Jacobi polynomials. We have the fol-
lowing useful fomulas (see [9, p. 350 f]):

Recursion Relations

a1
nP

(α,β)
n+1 (x) = (a2

n + a3
nx)P (α,β)

n (x)− a4
nP

(α,β)
n−1 (x) (1.3.3)

with

a1
n := 2(n+ 1)(n+ α + β + 1)(2n+ α + β)

a2
n := (2n+ α + β + 1)(α2 − β2)

a3
n := (2n+ α + β)(2n+ α + β + 1)(2n+ α + β + 2)

a4
n := 2(n+ α)(n+ β)(2n+ α + β + 2)

b1
n(x)

d

dx
P (α,β)
n (x) = b2

n(x)P (α,β)
n (x) + b3

n(x)P
(α,β)
n−1 (x) (1.3.4)

with

b1
n(x) := (2n+ α + β)(1− x2)

b2
n(x) := n (α− β − (2n+ α + β)x)

b3
n(x) := 2(n+ α)(n+ β)

Special Values

P (α,β)
n (1) =

(
n+ α

n

)
(1.3.5)

P (α,β)
n (−x) = (−1)nP (β,α)

n (x) (1.3.6)

Special Cases For the Legendre Polynomial Ln(x) there holds

Ln(x) = P (0,0)
n (x) (1.3.7)

Miscellaneous Relations

d

dx
P (α,β)
n (x) =

1

2
(α + β + n+ 1)P

(α+1,β+1)
n−1 (x) (1.3.8)

2n

∫ x

−1

(1− t)α(1 + t)βP (α,β)
n (t) dt = −(1− x)α+1(1 + x)β+1P

(α+1,β+1)
n−1 (x) (1.3.9)
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1.4 Orthogonal Polynomials on Triangles

To introduce orthogonal polynomials on the triangle we need the transformation

D :

{
S → T

(η1, η2) 7→ (ξ1, ξ2) =
(

(1+η1)(1−η2)
2

− 1, η2

)
,

(1.4.1)

sometimes referred to as Duffy transformation (see e.g. [5]), which maps the reference
square S onto the reference triangle T .
Hence, the inverse is

D−1 :

{
T → S

(ξ1, ξ2) 7→ (η1, η2) =
(

2 (1+ξ1)
1−ξ2 − 1, ξ2

)
.

(1.4.2)

Using Jacobi polynomials we define the following polynomials on S:

ψ̃pq(η1, η2) := P (0,0)
p (η1)

(
1− η2

2

)p
P (2p+1,0)
q (η2) (1.4.3)

Applying definition (1.4.3) we define the functions

ψpq := ψ̃pq ◦D−1. (1.4.4)

The subsequent lemma taken from [10] now shows that ψpq are orthogonal polynomials of
degree p+ q on the reference triangle T .

Lemma 1.3 (orthogonal polynomials on the triangle) The functions ψpq defined in (1.4.4)
satisfy ψpq ∈ Pp+q(T ), they are L2(T )-orthogonal, and they fulfill∫

T

ψpq(ξ1, ξ2)ψkl(ξ1, ξ2)dξ1dξ2 = δpkδql
2

2p+ 1

1

p+ q + 1
.

Proof. We start with the assertion that ψpq is a polynomial of degree p + q. With D−1

defined in (1.4.2), we get

ψpq(ξ1, ξ2) = ψ̃pq(2
1 + ξ1

1− ξ2

, ξ2) = P (0,0)
p

(
2

1 + ξ1

1− ξ2

, ξ2

)(
1− ξ2

2

)p
P (2p+1,0)
q (ξ2).

Expanding the Legendre polynomial P (0,0)
p as P (0,0)

p (x− 1) =
∑p

k=0 ckx
k, we get

ψpq(ξ1, ξ2) =

p∑
k=0

ck2
k−p(1 + ξ1)k(1− ξ2)p−kP (2p+1,0)

q (ξ2).
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Since P (2p+1,0)
q is a polynomial of degree q, we get ψpq ∈ Pp+q(T ).

Next we demonstrate the orthogonality. By transforming to S we get using (1.3.1) twice∫
T

ψpq(ξ1, ξ2)ψkl(ξ1, ξ2)dξ1dξ2 =

∫
S

ψ̃pq(η1, η2)ψ̃kl(η1, η2)
1− η2

2
dη1dη2

=

∫ 1

−1

∫ 1

−1

P (0,0)
p (η1)P

(0,0)
k (η1)

(
1− η2

2

)p+k+1

P (2p+1,0)
q (η2)P

(2k+1,0)
l (η2)dη1dη2

=
2

2p+ 1
δpk2

−(2p+1)

∫ 1

−1

(1− η2)2p+1P (2p+1,0)
q (η2)P

(2k+1,0)
l (η2)dη2

=
2

2p+ 1
δpkδql

2

2p+ 2q + 2
.
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2 Trace Stability of L2-Projection
The main result in this section will be Theorem 2.17, where we will bound the L2-norm of
the L2-projection onto PN(T ) of a function u ∈ H1(T ) on the edge Γ. To do so, we will
first present some additional properties Jacobi polynomials have in connection with special
functions h1, h2 and h3 and list useful information gathered from the features of the Duffy
transformation. These properties are used in the proofs of several lemmata, which finally
lead the proof of the main theorem.

2.1 Preliminaries

2.1.1 Properties of h1, h2 and h3

We define

h1(q, α) := − 2(q + 1)

(2q + α + 1)(2q + α + 2)

h2(q, α) :=
2α

(2q + α + 2)(2q + α)
(2.1.1)

h3(q, α) :=
2(q + α)

(2q + α + 1)(2q + α)
,

where α > −1 and q ∈ N0. The following lemma establishes a connection between the
integral of weighted Jacobi polynomials and the terms in (2.1.1).

Lemma 2.1 Let α > −1 and q ≥ 1. With the terms h1, h2 and h3 defined in (2.1.1) there
holds∫ x

−1

(1− t)αP (α,0)
q (t) dt = −(1− x)α

(
h1(q, α)P

(α,0)
q+1 (x) + h2(q, α)P (α,0)(x)

q + h3(q, α)P
(α,0)
q−1 (x)

)
Proof. The proof relies on the relations satisfied by Jacobi polynomials explained in Sec-
tion 1.3. Using rearranged versions of (1.3.4), (1.3.8) and (1.3.9) we obtain∫ x

−1

(1− t)αP (α,0)
q (t) dt

(1.3.9)
= − 1

2q
(1 + x)(1− x)α+1P

(α+1,1)
q−1 (x)

= − 1

2q
(1− x2)(1− x)αP

(α+1,1)
q−1 (x)

(1.3.8)
= −(1− x)α

1

2q
(1− x2)

2

q + α + 1

d

dx
P (α,0)
q (x)

(1.3.4)
= −(1− x)α

1

q

1

q + α + 1

q(α− (2q + α)x)P
(α,0)
q (x) + 2q(q + α)P

(α,0)
q−1 (x)

2q + α

= −(1− x)α
αP

(α,0)
q (x) + 2(q + α)P

(α,0)
q−1 (x)− (2q + α)xP

(α,0)
q (x)

(q + α + 1)(2q + α)
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(1.3.3) allows us now to replace the term xP
(α,0)
q (x) by terms involving P (α,0)

q+1 (x), P (α,0)
q (x)

and P (α,0)
q−1 (x). Hence, we get∫ x

−1

(1− t)αP (α,0)
q (t) dt = −(1− x)α

1

(q + α + 1)(2q + α)

{
αP (α,0)

q (x) + 2(q + α)P
(α,0)
q−1 (x)

− 1

(2q + α + 1)(2q + α + 2)

(
2(q + 1)(q + α + 1)(2q + α)P

(α,0)
q+1 (x)

+ 2q(q + α)(2q + α + 2)P
(α,0)
q−1 (x)− (2q + α + 1)α2P (α,0)

q (x)
)}

Rearranging terms gives∫ x

−1

(1− t)αP (α,0)
q (t) dt

= −(1− x)α
1

(q + α + 1)(2q + α)

{
− 2(q + 1)(q + α + 1)(2q + α)

(2q + α + 1)(2q + α + 2)
P

(α,0)
q+1 (x)

+ α
2q + 2α + 2

2q + α + 2
P (α,0)
q (x) + 2(q + α)

q + α + 1

2q + α + 1
P

(α,0)
q−1 (x)

}

= −(1− x)α

{
− 2(q + 1)

(2q + α + 1)(2q + α + 2)︸ ︷︷ ︸
h1(q, α)

P
(α,0)
q+1 (x)

+
2α

(2q + α + 2)(2q + α)︸ ︷︷ ︸
h2(q, α)

P (α,0)
q (x) +

2(q + α)

(2q + α + 1)(2q + α)︸ ︷︷ ︸
h3(q, α)

P
(α,0)
q−1 (x)

}

Essential in further proofs is also the following observation.

Lemma 2.2 (magic cancellation) Let the functions h1, h2 and h3 be defined as in (2.1.1)
and let α > −1. Then there holds for q ≥ 0

(−1)q
1

γ
(α,0)
q

h1(q, α) + (−1)q+1 1

γ
(α,0)
q+1

h2(q + 1, α) + (−1)q+2 1

γ
(α,0)
q+2

h3(q + 2, α) = 0

and

h2(q, a)− h1(q, a) = h3(q, a).
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Proof. We recall the definition of γ(α,β)
p in (1.3.2) and obtain in particular

γ(α,0)
q =

2α+1

2q + α + 1
,

which leads together with the definition of h1, h2 and h3 to

(−1)q
1

γ
(α,0)
q

h1(q, α) + (−1)q+1 1

γ
(α,0)
q+1

h2(q + 1, α) + (−1)q+2 1

γ
(α,0)
q+2

h3(q + 2, α)

= (−1)q
2q + α + 1

2α+1
(−1)

2q + 2

(2q + α + 1)(2q + α + 2)

+ (−1)q+1 2q + α + 3

2α+1

2α

(2q + α + 4)(2q + α + 2)

+ (−1)q+2 2q + α + 5

2α+1

2(q + α + 2)

(2q + α + 5)(2q + α + 4)

=
(−1)q+1

2α

(
q + 1

2q + α + 2
+

(2q + α + 3)α

(2q + α + 4)(2q + α + 2)
− q + α + 2

2q + α + 4

)
=

(−1)q+1

2α

(
(q + 1)(2q + α + 4) + (2q + α + 3)α− (q + α + 2)(2q + α + 2)

(2q + α + 4)(2q + α + 2)

)
Simply multiplying out the numerator concludes the proof regarding the first equation.

Inserting the definition of h1, h2 and h3 also leads in the case of the second equation
to the conclusion

h2(q, α)− h1(q, α) =
2α(2q + α + 1) + 2(q + 1)(2q + α)

(2q + α)(2q + α + 1)(2q + α + 2)

=
4q2 + 4q + 6qα + 2α2 + 4α

(2q + α)(2q + α + 1)(2q + α + 2)

=
(2q + α + 2)(2q + 2α)

(2q + α)(2q + α + 1)(2q + α + 2)
= h3(q, α)

2.1.2 Properties of the Duffy Transformation

Regarding the use of the Duffy transformation when integrating over T we have the fol-
lowing basic information.
The Jacobian matrix is constituted by

JD =
1

2

(
(1− η2) −(1 + η1)

0 2

)
(2.1.2)
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and therefore we have the Jacobian determinant

det(JD) =
1− η2

2
. (2.1.3)

Furthermore for sufficiently smooth functions u on T we define the transformed function
by

ũ := u ◦D (2.1.4)

we have

∂η1ũ(η1, η2) =
1− η2

2
(∂1u) ◦D (2.1.5)

∂η2ũ(η1, η2) = −1 + η1

2
(∂1u) ◦D + (∂2u) ◦D, (2.1.6)

where ∂1 is the partial derivative in the first argument.
In particular, we have according to the theorem of integration by substitution for multiple
variables ∫

S

|ũ(η1, η2)|2 1− η2

2
dη1dη2 = ‖u‖2

L2(T ) (2.1.7)∫
S

|∂η1ũ(η1, η2)|2 2

(1− η2)
dη1dη2

(2.1.5)
=

∫
S

|(∂1u) ◦D(η1, η2)|2 1− η2

2
dη1dη2

= ‖∂ξ1u‖2
L2(T ) ≤ ‖∇u‖2

L2(T ) (2.1.8)∫
S

|∂η2ũ(η1, η2)|2 1− η2

2
dη1dη2

(2.1.6)

.
∫
S

|(∂2u) ◦D(η1, η2)|2 1− η2

2
(2.1.9)

+ |(∂1u) ◦D(η1, η2)|2 (1 + η1)2(1− η2)

2
dη1dη2

. ‖∇u‖2
L2(T ). (2.1.10)

Next we want to present a lemma concerning the properties of the Duffy transformation
on an edge of the reference triangle T .

Lemma 2.3 Let D be the transformation defined in (1.4.1) and Γ = (−1, 1)×{−1}. Then
D(Γ) = Γ and D is an isometric isomorphism with respect to the L2(Γ)-norm.

Proof. Obviously D is an isomorphism, so we will only show the isometry property.
Let u be a quadratic integrable function on T and reconsider the transformed function ũ
as defined in (2.1.4). We have

‖ũ‖2
L2(Γ) =

∫
Γ

|ũ(η1, η2)|2 dη1dη2 =

∫ 1

−1

∣∣u(D(η1,−1)
)∣∣2 dη1

=

∫ 1

−1

∣∣∣∣u((1 + η1) 2

2
− 1,−1

)∣∣∣∣2 dη1 =

∫ 1

−1

|u(η1,−1)|2 dη1 = ‖u‖2
L2(Γ)
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2.2 Expansion in terms of ψpq

It is essential to expand functions u ∈ L2(T ) in terms of orthogonal polynomials on the
triangle as introduced in the Section 1.4. This will be the basis for further calculations.

At first we have to introduce orthogonal systems.

Definition 2.4 Let H be an inner product space with an inner product 〈., .〉. A sequence
(vn) ⊂ H is called orthogonal system, if any two elements of (vn) are orthogonal to each
other, i.e. 〈vi, vj〉 = 0, ∀i 6= j.

In view of this defnition we have the following well-known fact:

Lemma 2.5 Let H be an inner product space and let (vn) ⊂ H be an orthogonal system
with respect to the inner product 〈., .〉. Furthermore, let {vn : n ∈ N0} be dense in H and
let ‖.‖ be the norm induced by the inner product. Then any u ∈ H can be expanded as

u =
∞∑
n=0

〈u, vn〉
〈vn, vn〉

vn

and we have the following equality also known as Parseval’s identity

‖u‖2 = 〈u, u〉 =
∞∑
n=0

1

〈vn, vn〉
| 〈u, vn〉 |2.

Proof. see [6, p. 236ff]

Applying Lemma 2.5 to the set of orthogonal polynomials on the triangle (ψpq)p,q∈N0 we
obtain that any u ∈ L2(T ) can be expanded as

u =
∞∑

p,q=0

1

〈ψpq, ψpq〉
upqψpq, (2.2.1)

where the coefficients upq are given by

upq :=

∫
T

u(ξ1, ξ2)ψpq(ξ1, ξ2)dξ1dξ2. (2.2.2)

Using Lemma 1.3 we have

〈ψpq, ψpq〉 =

∫
T

|ψpq(ξ1, ξ2)|2 dξ1dξ2 =
2

2p+ 1

1

p+ q + 1
= γ(0,0)

p γ(2p+1,0)
q 2−(2p+1)

and therefore

u =
∞∑

p,q=0

1

γ
(0,0)
p

22p+1

γ
(2p+1,0)
q

upqψpq. (2.2.3)
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Furthermore, we want to rearrange the coefficients upq. If we define

Up(η2) :=

∫ 1

−1

ũ(η1, η2)P (0,0)
p (η1)dη1, (2.2.4)

we have

upq =

∫
S

ũ(η1, η2)P (0,0)
p (η1)

(
1− η2

2

)p+1

P (2p+1,0)
q (η2)

=

∫ 1

−1

(
1− η2

2

)p+1

Up(η2)P (2p+1,0)
q (η2)dη2.

Introducing

Ũp(η2) :=
Up(η2)

(1− η2)p
, (2.2.5)

we arrive at

upq = 2−(p+1)

∫ 1

−1

(1− η2)2p+1Ũp(η2)P (2p+1,0)
q (η2)dη2. (2.2.6)

Next we will try to extract information about the properties of the above defined Up and
Ũp in terms of the L2 and H1-norm.

Lemma 2.6 (properties of Up) Let u ∈ H1(T ) and Up be defined in (2.2.4). Then there
exists a constant C > 0 independent of p and u such that

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

|Up(η2)|2 1− η2

2
dη2 = ‖u‖2

L2(T ), (2.2.7)

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

|U ′p(η2)|2 1− η2

2
dη2 ≤ C‖∇u‖2

L2(T ), (2.2.8)

∞∑
p=0

p2

γ
(0,0)
p

∫ 1

−1

|Up(η2)|2 2

1− η2

dη2 ≤ C‖∇u‖2
L2(T ). (2.2.9)

Furthermore, we have for Γ = (−1, 1)× {−1}
∞∑
p=0

1

γ
(0,0)
p

|Up(−1)|2 = ‖u‖2
L2(Γ). (2.2.10)

Proof. (2.2.7) follows from the definition of Up, since the definition of Up implies (for fixed
η2) the representation

ũ(η1, η2) =
∞∑
p=0

1

γ
(0,0)
p

Up(η2)P (0,0)
p (η1),
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which in turn gives∫ 1

−1

|ũ(η1, η2)|2dη1 =
∞∑
p=0

1(
γ

(0,0)
p

)2 |Up(η2)|2
∫ 1

−1

∣∣P (0,0)
p (η1)

∣∣2 dη1

=
∞∑
p=0

1

γ
(0,0)
p

2p+ 1

2
|Up(η2)|2 2

2p+ 1

=
∞∑
p=0

1

γ
(0,0)
p

|Up(η2)|2. (2.2.11)

(2.1.7) yields that multiplication with 1−η2

2
and integration in η2 gives (2.2.7).

Likewise, (2.2.8) is a consequence of the fact that ∂η2ũ has the representation

∂η2ũ(η1, η2) =
∞∑
p=0

1

γ
(0,0)
p

U ′p(η2)P (0,0)
p (η1).

Similar argumentations as in case of (2.2.7) with the difference that we have to use (2.1.9)
instead of (2.1.7) then yield

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

∣∣U ′p(η2)
∣∣2 1− η2

2
dη2 . ‖∂ξ2u‖2

L2(T ),

which immediatedly leads to (2.2.8).

According the third estimate, the abbreviation zp(η2) :=
∫
η1

(∂η1ũ)(η1, η2)P
(0,0)
p (η1)dη1 leads

us to the representation

∂η1ũ(η1, η2) =
∞∑
p=0

1

γ
(0,0)
p

zp(η2)P (0,0)
p (η1).

Similar argumentations as in case of (2.2.7) lead to∫ 1

−1

|∂η1ũ|
2 dη1 =

∞∑
p=0

1

γ
(0,0)
p

|zp(η2)|2.

Multiplication with 2
1−η2

, integration in η2 and application of (2.1.8) yields

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

2

1− η2

|zp(η2)|2dη2 =

∫ 1

−1

∫ 1

−1

2

1− η2

|∂η1ũ|
2 dη1dη2

(2.1.8)

≤ ‖∇u‖2
L2(T ). (2.2.12)

15



We do now use Lemma 2.1 with α = 0. For p ≥ 1 we have∫ x

−1

P (0,0)
p (t) dt =

1

2p+ 1

(
P

(0,0)
p+1 (x)− P (0,0)

p−1 (x)
)

and integrate by parts. Hence, we get (note that
∫ 1

−1
P

(0,0)
p (t) dt = 0)

Up(η2) =

∫ 1

−1

ũ(η1, η2)P (0,0)
p (η1)dη1

= − 1

2p+ 1

(∫ 1

−1

∂η1ũ(η1, η2)P
(0,0)
p+1 (η1)dη1 −

∫ 1

−1

∂η1ũ(η1, η2)P
(0,0)
p−1 (η1)dη1

)
= − 1

2p+ 1
(zp+1(η2)− zp−1(η2))

Therefore we have p|Up(ηz)| . |zp−1(η2)| + |zp+1(η2)| and we conclude by inserting into
(2.2.12):

∞∑
p=1

p2 1

γ
(0,0)
p

∫ 1

−1

|Up(η2)|2 2

1− η2

dη2 . ‖∇u‖2
L2(T ).

Starting at p = 0 finally gives (2.2.9).

For the estimate (2.2.10), we use (2.2.11) with η2 = −1. Noting Lemma 2.3 we have

‖u‖2
L2(Γ) = ‖ũ( . ,−1)‖2

L2(−1,1) =

∫ 1

−1

|ũ(η1,−1)|2 dη1

and therefore the result follows.

Lemma 2.7 (properties of Ũp) Let u ∈ H1(T ) and Ũp be defined in (2.2.5). Then there
exists a constant C > 0 independent of p and u such that

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

(1− η2)2p+1

2

∣∣∣Ũp(η2)
∣∣∣2 dη2 = ‖u‖2

L2(T ), (2.2.13)

∞∑
p=0

1

γ
(0,0)
p

∫ 1

−1

(1− η2)2p+1

2

∣∣∣Ũ ′p(η2)
∣∣∣2 dη2 ≤ C‖∇u‖2

L2(T ). (2.2.14)

Proof. We recall

Ũp(η2) = (1− η2)−pUp(η2),

Ũ ′p(η2) = (1− η2)−pU ′p(η2) + p(1− η2)−(p+1)Up(η2)

16



Hence,

1

2

∫ 1

−1

(1− η2)2p+1
∣∣∣Ũp(η2)

∣∣∣2 dη2 =

∫ 1

−1

1− η2

2
|Up(η2)|2 dη2

1

2

∫ 1

−1

(1− η2)2p+1
∣∣∣Ũ ′p(η2)

∣∣∣2 dη2 .
∫ 1

−1

1− η2

2

∣∣U ′p(η2)
∣∣2 dη2 + p2

∫ 1

−1

2

1− η2

|Up(η2)|2 dη2

Inserting now the results of Lemma 2.6 concludes the argument.

Corollary 2.8 Assume the hypotheses of Lemma 2.7. Then there exists a constant C
independent of p and u such that, by defining

ũpq :=

∫ 1

−1

(1− η2)2p+1Ũp(η2)P (2p+1,0)
q (η2)dη2 = 2p+1upq, (2.2.15)

ũ′pq :=

∫ 1

−1

(1− η2)2p+1Ũ ′p(η2)P (2p+1,0)
q (η2)dη2, (2.2.16)

we have
∞∑

p,q=0

1

γ
(0,0)
p

1

γ
(2p+1,0)
q

|ũpq|2 = 2‖u‖2
L2(T ), (2.2.17)

∞∑
p,q=0

1

γ
(0,0)
p

1

γ
(2p+1,0)
q

|ũ′pq|2 ≤ C‖∇u‖2
L2(T ). (2.2.18)

Proof. Expanding Ũp in terms of orthogonal polynomials P (2p+1,0)
q yields the representation

Ũp(η2) =
∞∑
q=0

1

γ
(2p+1,0)
q

ũpqP
(2p+1,0)
q (η2).

Since we have from Lemma 2.5∫ 1

−1

(1− η2)2p+1|Ũp(η2)|2dη2 =
∞∑
q=0

1

γ
(2p+1,0)
q

|ũpq|2

the statement (2.2.17) follows directly from Lemma 2.7. Analogously, we deal with (2.2.18),
where we expand Ũ ′p and again conclude with (2.2.14) of Lemma 2.7.

2.3 Connections between ũpq and ũ′pq

A key ingredient of the proof of Theorem 2.17 are connections between ũpq and ũ′pq. We
start with a one-dimensional situation:

17



Lemma 2.9 Let U ∈ C1(−1, 1) and let (1− x)αU(x) be integrable. Furthermore, let

lim
x→1

(1− x)1+αU(x) = 0 and lim
x→−1

(1 + x)U(x) = 0.

Let h1, h2 and h3 be defined in (2.1.1). We define

uq :=

∫ 1

−1

(1− x)αU(x)P (α,0)
q (x)dx,

bq :=

∫ 1

−1

(1− x)αU ′(x)P (α,0)
q (x)dx.

Then for q ≥ 1 and α > −1 the following relationship holds:

uq = h1(q, α)bq+1 + h2(q, α)bq + h3(q, α)bq−1

Proof. From (1.3.9) we have for x→ −1∫ x

−1

(1− t)αP (α,0)
q (t)dt = O(1 + x)

and for x→ 1∫ x

−1

(1− t)αP (α,0)
q (t)dt = −

∫ 1

x

(1− t)αP (α,0)
q (t)dt

= −
(

(1− t)α+1

α + 1
P (α,0)
q (t)

) ∣∣∣∣1
x

+

∫ 1

x

(1− t)α+1

α + 1

d

dt
P (α,0)
q (t)dt = O

(
(1− x)α+1

)
.

Hence, using the stipulated behavior of U at the endpoints, the following integration by
parts can be justified:

uq =

∫ 1

−1

(1− x)αU(x)P (α,0)
q (x)dx

=

(
U(x)

∫ x

−1

(1− t)αP (α,0)
q (x)

)∣∣∣∣1
−1

−
∫ 1

−1

U ′(x)

∫ x

−1

(1− t)αP (α,0)
q (t)dtdx.

In particular, we note that bq is well-defined. Furthermore,

uq = −
∫ 1

−1

U ′(x)

∫ x

−1

(1− t)αP (α,0)
q (t)dtdx

=

∫ 1

−1

(1− x)αU ′(x)
(
h1(q, α)P

(α,0)
q+1 (x) + h2(q, α)P (α,0)

q (x) + h3(q, α)P
(α,0)
q−1 (x)

)
dx

= h1(q, α)bq+1 + h2(q, α)bq + h3(q, α)bq−1,

where in the third equation we appealed to Lemma 2.1.
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According to Lemma 2.9 the following corollary makes a connection between ũpq and ũ′pq:

Corollary 2.10 Let ũpq and ũ′pq be defined in (2.2.15) and (2.2.16), and let h1, h2 and h3

be defined in (2.1.1). Then for q ≥ 1 and p ≥ 0 there holds

ũpq = h1(q, 2p+ 1)ũ′p,q+1 + h2(q, 2p+ 1)ũ′p,q + h3(q, 2p+ 1)ũ′p,q−1.

Proof. To prove this corollary we want to make use of Lemma 2.9. Therefore, we have to
clarify that the conditions in the lemma are satisfied. We proceed in two steps. First, we
require u ∈ C∞(R2) and show the statement in this case and then we argue by density to
achieve results in H1(T ).
Step 1: By assuming that u ∈ C∞(R2) we get ũ ∈ C1([−1, 1]2). Hence, for fixed p, if we
recall the definition of Up in (2.2.4), we see that the map η2 7→ Up(η2) is smooth on [−1, 1].
Considering the definition of Ũp

Ũp(η2) =
Up(η2)

(1− η2)p
,

we see that Ũp ∈ C1([−1, 1)) and that Ũp has at most one pole of maximal order p at the
point η2 = 1. In view of these preliminary considerations we conclude that the following
limits exist and that the conditions in Lemma 2.9 are satisfied:

lim
η2→1

(1− η2)2p+2Ũp(η2) = lim
η2→1

(1− η2)p+2Up(η2) = 0.

and

lim
η2→−1

(1 + η2)Ũp(η2) = 0.

Now the statement follows directly from Lemma 2.9 when looking at the definition of ũpq
and ũ′pq and consequently replacing U with Ũp and α with 2p+ 1.
Step 2: Let u ∈ H1(T ). Since C∞(R2) is dense in H1(T ), there exists a sequence (un)n∈N ⊂
C∞(R2) such that un → u in H1(T ) for n → ∞. Because we have already proved that
un, n ∈ N satisfies our statement, ensuring that the sequences of coefficients ũpq and ũ′pq
converge for fixed p and q will conclude the proof:
We recall that

ũpq = 2p+1upq = 2p+1

∫
T

u(ξ1, ξ2)ψpq(ξ1, ξ2)dξ1dξ2.

Since (ψpq)p,q∈N0 forms an orthogonal basis for L2(T ) and since H1(T ) ⊂ L2(T ), the maps
F : u 7→ ũpq are continuous linear functionals on H1(T ) and thus limn→∞ F (un) = F (u).
In case of ũ′pq we study the functionals F̃ : u 7→ ũ′pq that map C∞(R2) into R. Since F̃ is
a linear functional that is continuous with respect to the H1(T )-norm we see by density
of C∞(R2) in H1(T ) that it is indeed a well-defined continuous linear functional on H1(T )

and thus again limn→∞ F̃ (un) = F̃ (u).
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Next, we show a short lemma that will be useful in the proof of Lemma 2.12.

Lemma 2.11 Let α ≥ 0 and q ≥ 1. Then there exists a constant C > 0 independent of q
and α such that

α
N∑

j=q+α

1

j2
≤ C

α

q + α
, ∀N = q + α, q + α + 1, . . .

Proof. For n ∈ N we have, since x 7→ 1
x2 is monotone decreasing

∞∑
j=n

1

j2
=

1

n2
+

∞∑
j=n+1

1

j2
≤ 1

n2
+

∫ ∞
n

1

x2
dx =

1

n2
+

1

n
≤ 2

n
,

where, in the last step, we used n ≥ 1. Hence we conclude since q + α ≥ 1

α
∞∑

j=q+α

1

j2
≤ 2

α

q + α
.

The following lemma is very technical, but it will lead to Corollary 2.13 which will yield,
in combination with Lemma 2.8, the tool to the conclusion in Theorem 2.17.

Lemma 2.12 Assume the hypotheses of Lemma 2.9. Let α ≥ 0. Let uq and bq be defined
as in Lemma 2.9. Then for q ≥ 1 there exists a constant C independent of q and α such
that

|bq−1|2 + |bq|2 ≤ C2α+1

(∑
j≥q

1

γ
(α,0)
j

u2
j

)1/2( ∑
j≥q−1

1

γ
(α,0)
j

b2
j

)1/2

.

Proof. We may assume that the right-hand side of the estimate in the lemma is finite.

In view of the sign properties of h1, h2, h3 and Lemma 2.2 we have

|h1(q, α)|+ |h2(q, α)| = |h3(q, α)|. (2.3.1)

We introduce the abbreviation

αq :=
h2(q, α)

h3(q, α)
=

α(2q + α + 1)

(2q + α + 2)(q + α)
,

εq := αq(1− αq+1) =
α(q + 2)(2q + α + 1)

(2q + α + 4)(q + 1 + α)(q + α)
.

By rearranging terms in Lemma 2.9 and using the triangle inequality we get

|h3(q, α)| |bq−1| ≤ |uq|+ |h2(q, α)| |bq|+ |h1(q, α)| |bq+1|.
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We set

zq :=
|uq|

|h3(q, α)|
(2.3.2)

and by applying (2.3.1) we arrive at

|bq−1| ≤ zq + αq|bq|+ (1− αq)|bq+1|. (2.3.3)

Iterating (2.3.3) once gives

|bq−1| ≤ zq + αq
(
zq+1 + αq+1|bq+1|+ (1− αq+1)|bq+2|

)
+ (1− αq)|bq+1|

≤ zq + αqzq+1 +
(
1− αq(1− αq+1)

)
|bq+1|+ αq(1− αq+1)|bq+2|

= zq + αqzq+1 + (1− εq)|bq+1|+ εq|bq+2|

Squaring and Cauchy-Schwarz yields

b2
q−1 ≤ (zq + αqzq+1)2 + 2(zq + αqzq+1)

(
(1− εq)|bq+1|+ εq|bq+2|

)
+ (1− εq)2b2

q+1 + ε2
qb

2
q+2 + 2εq(1− εq)|bq+1| |bq+2|

≤ (zq + αqzq+1)2 + 2(zq + αqzq+1)
(
(1− εq)|bq+1|+ εq|bq+2|

)
+
(
(1− εq)2 + εq(1− εq)

)
b2
q+1 +

(
ε2
q + εq(1− εq)

)
b2
q+2.

If we abbreviate for the first two addends

fq := (zq + αqzq+1)2 + 2(zq + αqzq+1)
(
(1− εq)|bq+1|+ εq|bq+2|

)
(2.3.4)

we obtain

b2
q−1 ≤ fq + (1− εq)b2

q+1 + εqb
2
q+2,

which we rewrite as

b2
q−1 − b2

q+1 ≤ fq + εq
(
b2
q+2 − b2

q+1

)
. (2.3.5)

Next, we want to employ a telescoping sum. Since we assume that the sums in the right
side of the statement of this lemma are finite, i.e.∑

j

1

γ
(α,0)
j

u2
j <∞,

∑
j

1

γ
(α,0)
j

b2
j <∞, (2.3.6)

and since 1

γ
(α,0)
j

. (j + α)2−α we have

√
q |bq| → 0 for q →∞.
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Hence, we can write

b2
q−1 + b2

q =
∞∑
j=0

b2
q−1+2j − b2

q−1+2j+2 + b2
q+2j − b2

q+2j+2

≤
∞∑
j=0

fq+2j + εq+2j

(
b2
q+2+2j − b2

q+1+2j

)
+ fq+1+2j + εq+1+2j

(
b2
q+3+2j − b2

q+2+2j

)
=
∞∑
j=0

fq+j −
∞∑
j=0

εq+2jb
2
q+1+2j +

∞∑
j=0

(εq+2j − εq+2j+1) b2
q+2+2j +

∞∑
j=0

εq+1+2jb
2
q+3+2j

=
∞∑
j=0

fq+j − εqb2
q+1 −

∞∑
j=0

εq+2+2jb
2
q+3+2j

+
∞∑
j=0

(εq+2j − εq+2j+1) b2
q+2+2j +

∞∑
j=0

εq+1+2jb
2
q+3+2j

=
∞∑
j=0

fq+j − εqb2
q+1 +

∞∑
j=0

(εq+1+2j − εq+2+2j) b
2
q+3+2j +

∞∑
j=0

(εq+2j − εq+2j+1) b2
q+2+2j

=
∞∑
j=0

fq+j − εqb2
q+1 +

∞∑
j=0

(εq+j − εq+j+1) b2
q+2+j.

We conclude, noting that εq ≥ 0,

b2
q−1 + b2

q ≤ b2
q−1 + b2

q + εqb
2
q+1 ≤ Fq + Sq+2, (2.3.7)

where

Fq :=
∑
j≥q

fj, (2.3.8)

Sq :=
∑
j≥q

ε′jb
2
j with ε′j := |εj−2 − εj−1|. (2.3.9)

By positivity of ε′j and fj we have Sq+1 ≤ Sq as well as Fq+1 ≤ Fq. Therefore, we get from
(2.3.7) and the definition of Sq

Sq = ε′qb
2
q + ε′q+1b

2
q+1 + Sq+2

≤ Sq+2 + max{ε′q, ε′q+1}Sq+3 + max{ε′q, ε′q+1}Fq+1

≤ (1 + max{ε′q, ε′q+1})Sq+2 + max{ε′q, ε′q+1}Fq.

Applying the notation

ε′′q := max{ε′q, ε′q+1}
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we have

Sq ≤ (1 + ε′′q)Sq+2 + ε′′qFq. (2.3.10)

Iterating (2.3.10) N times leads to

Sq ≤ Sq+2N+2

N∏
j=0

(1 + ε′′q+2j) +
N∑
j=0

ε′′q+2jFq+2j

j−1∏
i=0

(1 + ε′′q+2i). (2.3.11)

A calculation shows

ε′j .
α(α + j)3

(α + j)5
=

α

(α + j)2
(2.3.12)

From the definition of Sq in (2.3.9), (2.3.6), and (2.3.12) it follows that limq→∞ Sq = 0.
Furthermore, we can bound the product uniformly in N :

N∏
j=0

(1 + ε′′q+2j) = exp

(
N∑
j=0

ln(1 + ε′′q+2j)

)
≤ exp

(
N∑
j=0

ε′′q+2j

)
, (2.3.13)

where in the last estimate we used the fact that ln(1 + x) ≤ x for x ≥ 0. From (2.3.12) we
get

N∑
j=0

ε′′q+2j .
N∑
j=0

α

(α + q + 2j)2
. α

N∑
j=q

1

(α + j)2
.

α

α + q
, ∀N = q, q + 1, . . . , (2.3.14)

where we have used Lemma 2.11 in the last step. Since α
α+q

< 1, inserting (2.3.14) in
(2.3.13) gives

N∏
j=0

(1 + ε′′q+2j) ≤ C. (2.3.15)

Now, by passing to the limit N →∞ in (2.3.11), we conclude a closed form bound for Sq:

Sq ≤
∞∑
j=0

ε′′q+2jFq+2j

j−1∏
i=0

(1 + ε′′q+2i).

Applying (2.3.14), (2.3.15), (2.3.12) and the definition of Fq we can simplify

Sq .
∞∑
j=0

ε′′q+2jFq+2j .
∑
j≥q

∑
i≥j

fi
α

(α + j)2
=
∑
i≥q

fi

i∑
j=q

α

(α + j)2
.

α

α + q
Fq.
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Inserting this estimate in (2.3.7) and using α
α+q+2

< 1, we arrive at

b2
q−1 + b2

q . Fq +
α

α + q + 2
Fq+2 . Fq + Fq+2 . Fq. (2.3.16)

We are left with estimating Fq. By the definition of Fq in (2.3.8) and the definition of fq
in (2.3.4) we have

Fq =
∑
j≥q

(zj + αjzj+1)2 + 2
∑
j≥q

(zj + αjzj+1)
(
(1− εj)|bj+1|+ εj|bj+2|

)
. (2.3.17)

Now we estimate both sums separately starting with the first one:∑
j≥q

(zj + αjzj+1)2 .
∑
j≥q

z2
j + α2

j︸︷︷︸
≤ 1

z2
j+1 .

∑
j≥q

z2
j . (2.3.18)

Next, we use the relation between uq and bq from Lemma 2.9. Furthermore, we note that
h3(q, α) & 2−(α+1)γ

(α,0)
q . Consequently we obtain

z2
q =

|uq|2

|h3(q, α)|2
. 2α+1 |uq|

γ
(α,0)
q

|uq|
h3(q, α)

= 2α+1 |uq|
γ

(α,0)
q

1

h3(q, α)
|h1(q, α)bq+1 + h2(q, α)bq + h3(q, α)bq−1|

. 2α+1 |uq|
γ

(α,0)
q

(
(1− αq)|bq+1|+ αq|bq|+ |bq−1|

)
.

Inserting this in the bound (2.3.18), we get by applying the Cauchy-Schwarz inequality for
sums ∑

j≥q

(zj + αjzj+1)2 . 2α+1
∑
j≥q

1

γ
(α,0)
j

|uj|
(
(1− αj)|bj+1|+ αj|bj|+ |bj−1|

)
. 2α+1

(∑
j≥q

1

γ
(α,0)
j

|uj|2
)1/2( ∑

j≥q−1

1

γ
(α,0)
j

|bj|2
)1/2

.

We continue by estimating the second sum in (2.3.17). Using again z2
q . 2α+1|uq|/γ(α,0)

q
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we get ∑
j≥q

(zj + αjzj+1)
(
(1− εj)|bj+1|+ εj|bj+2|

)
. 2α+1

∑
j≥q

1

γ
(α,0)
j

(
|uj|+ αj︸︷︷︸

≤ 1

|uj+1|
)(

(1− εj)︸ ︷︷ ︸
≤ 1

|bj+1|+ εj︸︷︷︸
≤ 1

|bj+2|
)

. 2α+1
∑
j≥q

1

γ
(α,0)
j

(|uj|+ |uj+1|) (|bj+1|+ |bj+2|)

. 2α+1

(∑
j≥q

1

γ
(α,0)
j

|uj|2
)1/2(∑

j≥q

1

γ
(α,0)
j+1

|bj+1|2
)1/2

. 2α+1

(∑
j≥q

1

γ
(α,0)
j

|uj|2
)1/2( ∑

j≥q−1

1

γ
(α,0)
j

|bj|2
)1/2

.

In view of (2.3.16) the last two estimates conclude the proof.

Corollary 2.13 Assume the same hypotheses as in Lemma 2.12. Then for every p ≥ 0
there exists a constant C > 0 independent of p and α such that

|bp|2 ≤ C2α+1

( ∑
j≥p+1

1

γ
(α,0)
j

u2
j

)1/2(∑
j≥p

1

γ
(α,0)
j

b2
j

)1/2

.

Proof. The proof follows directly from Lemma 2.12. For p = 0 we apply Lemma 2.12 with
q = 1. Then we have

|b0|2 ≤ |b0|2 + |b1|2 . 2α+1

(∑
j≥1

1

γ
(α,0)
j

u2
j

)1/2(∑
j≥0

1

γ
(α,0)
j

b2
j

)1/2

.

Analogously, for p ≥ 1 we apply Lemma 2.12 correspondingly with q ≥ 2.

2.4 Trace Results for Triangles

In this section we will provide the final spadework to Theorem 2.17, especially regarding
results on the edge Γ. Then, at last, we will write down Theorem 2.17 and present the proof.

First, we want to show a representation for the transformed function ũ on the edge
Γ = (−1, 1)× {−1}, where u ∈ L2(T ). By (1.3.5) and (1.3.6) we note

P (2p+1,0)
q (−1) = (−1)qP (0,2p+1)

q (1) = (−1)q.
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Since the Duffy transformation reduces on Γ to the identity we obtain:

ψpq(ξ1,−1) = ψ̃pq
(
D−1(ξ1,−1)

)
= ψ̃pq(η1,−1) = P (0,0)

p (η1)P (2p+1,0)
q (−1) = (−1)qP (0,0)

p (η1).

By applying the representation of u in (2.2.3) we arrive at

ũ(η1,−1) = u(ξ1,−1) =
∞∑
p=0

P (0,0)
p (η1)

22p+1

γ
(0,0)
p

(∑
q

(−1)qupq
1

γ
(2p+1,0)
q

)
. (2.4.1)

In particular, we have

‖u‖2
L2(Γ) = ‖ũ‖2

L2(Γ) =
∞∑
p=0

1

γ
(0,0)
p

∣∣∣∣∣
∞∑
q=0

(−1)qupq
22p+1

γ
(2p+1,0)
q

∣∣∣∣∣
2

. (2.4.2)

Next, we will see that the infinite sum over q in (2.4.1) and (2.4.2) can be expressed as a
finite sum:

Lemma 2.14 Let N ≥ 1. There holds
∞∑
q=N

(−1)q
22p+1

γ
(2p+1,0)
q

upq = (−1)Nh2(N, 2p+ 1)
2p

γ
(2p+1,0)
N

ũ′p,N

+
N∑

q=N−1

(−1)q+1h3(q + 1, 2p+ 1)
2p

γ
(2p+1,0)
q+1

ũ′p,q.

Proof. We have in view of Corollary 2.10
∞∑
q=N

(−1)q
22p+1

γ
(2p+1,0)
q

upq
(2.2.15)

=
∞∑
q=N

(−1)q
2p

γ
(2p+1,0)
q

ũpq

=
∞∑
q=N

(−1)q
2p

γ
(2p+1,0)
q

(
h1(q, 2p+ 1)ũ′p,q+1 + h2(q, 2p+ 1)ũ′p,q + h3(q, 2p+ 1)ũ′p,q−1

)
=

∞∑
q=N+1

(−1)q−1h1(q − 1, 2p+ 1)
2p

γ
(2p+1,0)
q−1

ũ′p,q

+
∞∑
q=N

(−1)qh2(q, 2p+ 1)
2p

γ
(2p+1,0)
q

ũ′p,q +
∞∑

q=N−1

(−1)q+1h3(q + 1, 2p+ 1)
2p

γ
(2p+1,0)
q+1

ũ′p,q

=
∞∑

q=N+1

(−1)qũ′p,q2
p

[
−h1(q − 1, 2p+ 1)

γ
(2p+1,0)
q−1

+
h2(q, 2p+ 1)

γ
(2p+1,0)
q

− h3(q + 1, 2p+ 1)

γ
(2p+1,0)
q+1

]

+ (−1)Nh2(N, 2p+ 1)
2p

γ
(2p+1,0)
N

ũ′p,N +
N∑

q=N−1

(−1)q+1h3(q + 1, 2p+ 1)
2p

γ
(2p+1,0)
q+1

ũ′p,q

By Lemma 2.2, the expression in brackets vanishes and that concludes the proof.
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Since Lemma 2.14 assumes N ≥ 1, the terms corresponding to q = 0 in (2.4.2) are not
included. We study this case in Lemma 2.16 below. But first, we have to provide the
following short lemma.

Lemma 2.15 For a, b ∈ R there holds

min{a2, b2} ≤ |a| · |b|

Proof. W.l.o.g. we assume that |a| ≤ |b|. Hence, we have

min{a2, b2} = a2 ≤ |a| · |b|.

Lemma 2.16 Let u ∈ H1(T ) and consider the representation of the norms in (2.4.2).
For p ≥ 1 and q = 0 there exists a constant C > 0 independent of p and u such that

∞∑
p=1

1

γ
(0,0)
p

∣∣∣∣∣up0 22p+1

γ
(2p+1,0)
0

∣∣∣∣∣
2

≤ C‖u‖L2(T )‖u‖H1(T )

Proof. Since γ(2p+1,0)
0 = 22p+1

p+1
and γ(0,0)

p = 2
2p+1

. 1
p+1

, we get

∞∑
p=1

1

γ
(0,0)
p

∣∣∣∣∣up0 22p+1

γ
(2p+1,0)
0

∣∣∣∣∣
2

.
∞∑
p=1

(p+ 1)3 |up0|2 .

To bound the sum on the right-hand side, we note that an integration by parts gives

2p+1up0 =

∫ 1

−1

(1− η2)p+1Up(η2)dη2

=
1

p+ 2

(
2p+2Up(−1) +

∫ 1

−1

(1− η2)p+2U ′p(η2)dη2

)
,

where the first equation is due to (2.2.6). These two equations yield two representations
for up0. Considering the first one, we get by employing the Cauchy-Schwarz inequality

|2p+1up0|2 =

∣∣∣∣∫ 1

−1

(1− η2)p+1Up(η2)dη2

∣∣∣∣2
≤
(∫ 1

−1

(
(1− η2)p+

1
2

)2

dη2

)(∫ 1

−1

(1− η2)|Up(η2)|2dη2

)
=

22p+2

p+ 1

∫ 1

−1

1− η2

2
|Up(η2)|2dη2 (2.4.3)
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Once again we make use of the Cauchy-Schwarz inequality and obtain for the second
representation

|2p+1up0|2 ≤
2

(p+ 2)2

(
22p+4|Up(−1)|2 +

∣∣∣∣∫ 1

−1

(1− η2)p+2U ′p(η2)dη2

∣∣∣∣2
)
,

where∣∣∣∣∫ 1

−1

(1− η2)p+2U ′p(η2)dη2

∣∣∣∣2 ≤ (∫ 1

−1

(
(1− η2)p+

3
2

)2

dη2

)(∫ 1

−1

(1− η2)|U ′p(η2)|2dη2

)
=

22p+4

p+ 2

∫ 1

−1

1− η2

2
|U ′p(η2)|2.

Inserting this in the bound before yields

|2p+1up0|2 ≤ 2
22p+4

(p+ 2)2

(
|Up(−1)|2 +

1

p+ 2

∫ 1

−1

1− η2

2
|U ′p(η2)|2dη2

)
≤ 2

22p+4

(p+ 1)2

(
|Up(−1)|2 +

1

p+ 1

∫ 1

−1

1− η2

2
|U ′p(η2)|2dη2

)
. (2.4.4)

Next, we abbreviate

σ2
p :=

∫ 1

−1

1− η2

2
|Up(η2)|2dη2,

τ 2
p :=

∫ 1

−1

1− η2

2
|U ′p(η2)|2dη2.

Hence, applying (2.4.3) and (2.4.4) we have

|2p+1up0|2 ≤ min

{
22p+2

p+ 1
σ2
p , 2

22p+4

(p+ 1)2

(
|Up(−1)|2 +

1

p+ 1
τ 2
p

)}
≤ 2

22p+4

(p+ 1)2
|Up(−1)|2 + 2 min

{
22p+2

p+ 1
σ2
p ,

22p+4

(p+ 1)3
τ 2
p

}
≤ 2

22p+4

(p+ 1)2
|Up(−1)|2 + 2

22p+3

(p+ 1)2
σpτp,

where we used Lemma 2.15 in the last step. This leads us to the following:

|up0|2 .
1

(p+ 1)2
|Up(−1)|2 +

1

(p+ 1)2
σpτp. (2.4.5)
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Hence, we conclude
∞∑
p=1

(p+ 1)3|up0|2 .
∞∑
p=1

(p+ 1)|Up(−1)|2 +
∞∑
p=1

(p+ 1)σpτp

.
∞∑
p=1

(p+ 1)|Up(−1)|2 +

(
∞∑
p=1

(p+ 1)σ2
p

)1/2( ∞∑
p=1

(p+ 1)τ 2
p

)1/2

. ‖u‖2
L2(Γ) + ‖u‖L2(T )‖∇u‖L2(T )

where, in the last inequality, we appealed to Lemma 2.6. Since there is the non-trivial
estimate ‖u‖2

L2(Γ) . ‖u‖L2(T )‖u‖H1(T ) of [3, Thm. 1.6.6] and ‖∇u‖L2(T ) ≤ ‖u‖H1(T ) the
statement follows.

Now at the end of this section we finally arrive at the main theorem as we have all tools
ready to prove it.

Theorem 2.17 (trace stability of L2-projection) For N ∈ N0 denote by ΠN the L2(T )-
projection onto PN(T ). There exists a constant C > 0 independent of N and u such that

‖ΠNu‖2
L2(Γ) ≤ C‖u‖L2(T )‖u‖H1(T ) ∀u ∈ H1(T ).

Proof. Since ‖u‖2
L2(Γ).‖u‖L2(T )‖u‖H1(T ) (see [3, Thm. 1.6.6]) we will show instead the

statement ‖u− ΠNu‖2
L2(Γ).‖u‖L2(T )‖u‖H1(T ). By (2.4.2), we have to bound

‖u− ΠNu‖2
L2(Γ) =

∞∑
p=0

1

γ
(0,0)
p

∣∣∣∣∣∣
∞∑

q=max{0,N+1−p}

(−1)q
22p+1

γ
(2p+1,0)
q

upq

∣∣∣∣∣∣
2

=
N∑
p=0

1

γ
(0,0)
p

∣∣∣∣∣
∞∑

q=N+1−p

(−1)q
22p+1

γ
(2p+1,0)
q

upq

∣∣∣∣∣
2

+
∞∑

p=N+1

1

γ
(0,0)
p

∣∣∣∣∣
∞∑
q=0

(−1)q
22p+1

γ
(2p+1,0)
q

upq

∣∣∣∣∣
2

.
N∑
p=0

1

γ
(0,0)
p

∣∣∣∣∣
∞∑

q=N+1−p

(−1)q
22p+1

γ
(2p+1,0)
q

upq

∣∣∣∣∣
2

︸ ︷︷ ︸
=: S1

+
∞∑

p=N+1

1

γ
(0,0)
p

∣∣∣∣∣
∞∑
q=1

(−1)q
22p+1

γ
(2p+1,0)
q

upq

∣∣∣∣∣
2

︸ ︷︷ ︸
=: S2

+
∞∑

p=N+1

1

γ
(0,0)
p

∣∣∣∣∣ 22p+1

γ
(2p+1,0)
0

up0

∣∣∣∣∣
2

︸ ︷︷ ︸
=: S3

Lemma 2.16 immediately gives S3 . ‖u‖L2(T )‖u‖H1(T ). From Lemma 2.14, the estimates

h2(N + 1− p, 2p+ 1) .
p

N2
.

1

N
, ∀p = 0, . . . , N

h3(N + 1− p, 2p+ 1), h3(N + 2− p, 2p+ 1) .
N + p

N2
.

1

N
∀p = 0, . . . , N
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and

1

γ
(2p+1,0)
N+1−p

=
N + 2

22p+1
,

1

γ
(2p+1,0)
N+2−p

=
N + 3

22p+1

we obtain for S1

S1 .
N∑
p=0

1

γ
(0,0)
p

(∣∣2−(p+1)ũ′p,N+1−p
∣∣2 +

∣∣2−(p+1)ũ′p,N−p
∣∣2)

Analogously, we get for S2

S2 .
∞∑

p=N+1

1

γ
(0,0)
p

(∣∣2−(p+1)ũ′p,1
∣∣2 +

∣∣2−(p+1)ũ′p,0
∣∣2)

Applying Corollary 2.13 the powers of two in the estimates above and in the corollary
annihilate each other. Hence, S1 + S2 gives

S1 + S2 .
N∑
p=0

1

γ
(0,0)
p

( ∑
q≥N+1−p

1

γ
(2p+1,0)
q

|ũpq|2
)1/2( ∑

q≥N−p

1

γ
(2p+1,0)
q

|ũ′pq|2
)1/2

+
∞∑

p=N+1

1

γ
(0,0)
p

(∑
q≥1

1

γ
(2p+1,0)
q

|ũpq|2
)1/2(∑

q≥0

1

γ
(2p+1,0)
q

|ũ′pq|2
)1/2

. ‖u‖L2(T )‖∇u‖L2(T ),

where in the last estimate, we have used the Cauchy-Schwarz inequality for sums and
Corollary 2.8. Since ‖∇u‖L2(T ) ≤ ‖u‖H1(T ) this concludes the proof.
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3 Numerical computations

3.1 Description of the numerical method

In this section, we test numerically the stability properties of the L2-projection onto the
space of polynomials of degree N . To do so, we want to compute the constant C in the
estimate ‖ΠNu‖2

L2(Γ) ≤ C‖u‖L2(T )‖u‖H1(T ) of Theorem 2.17. Our discretization of this
problem takes the form of a maximization problem given by

sup
u∈PkN

‖ΠNu‖2
L2(Γ)

‖u‖L2(T )‖u‖H1(T )

(3.1.1)

or, equivalently,

sup
u∈PkN

{‖ΠNu‖2
L2(Γ) : ‖u‖L2(T )‖u‖H1(T ) = 1}, (3.1.2)

where k ∈ N, but usually we will use k ∈ {1, 2, 3}.
As we see in (3.1.2), we want to solve a maximization problem with respect to the side
condition ‖u‖L2(T )‖u‖H1(T ) = 1. The method of Lagrange multipliers provides a strategy
to tackle this task.

Theorem 3.1 (method of Lagrange multipliers) Let f : D ⊂ Rn → R and g : D ⊂ Rn →
Rm with m < n. If f has in y a local constrained extremum with the side condition g = 0
and the differential ∇yg(y) ∈ Rm×n has rank m, then there exists λ ∈ Rm such that (λ, y)
is a stationary point for the function L : D × Rm → R

L(x, µ) := f(x) + µTg(x).

I.e. we have

∇yL(y, λ) = 0

∇λL(y, λ) = 0.

Proof. See [8, Thm. 10.6.1].

We define the Lagrange function L(u, λ) with Lagrange multiplier λ as follows:

L(u, λ) := ‖ΠNu‖2
L2(Γ) − λ(‖u‖L2(T )‖u‖H1(T ) − 1). (3.1.3)

To handle the norms, we want to employ the expansion of u in (2.2.3):

u =
∞∑

p,q=0

1

γ
(0,0)
p

22p+1

γ
(2p+1,0)
q

upqψpq.
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With the abbreviation

cpq =

(∫
T

|ψpq(ξ1, ξ2)|2dξ1dξ2

)−1

=
1

γ
(0,0)
p

22p+1

γ
(2p+1,0)
q

=
1

2
(2p+ 1)(p+ q + 1),

we arrive at

u =
∞∑

p,q=0

cpqupqψpq,

Since we take the supremum of u ∈ PkN , we have

u =
kN∑
p,q=0

cpqupqψpq. (3.1.4)

We can now approach the computation of the norms. We want to express every norm as
a vector-matrix-vector multiplication, i.e. ‖u‖2 = uTAu, with a vector u that contains
the coefficients upq. Therefore, we need to convert double indices (p, q) into single indices.
Defining a map

num :

{
N0 × N0 → N0

(p, q) 7→ num(p, q) = 1
2
(p+ q + 2)(p+ q + 1)− (1− p),

(3.1.5)

where p+q ≤ kN , leads us to the triangular look-up matrix I, which gives the corresponding
single index. We define the matrix by

Ipq := num(p, q). (3.1.6)

In particular, we have

I =


num(0, 0) num(0, 1) num(0, 2) · · · num(0, kN)
num(1, 0) num(1, 1) · · ·
num(2, 0) · · ·

...
num(kN, 0)

 =


0 1 3 · · ·
2 4 · · ·
5 · · ·
...


Hence, we get the conversion of the double index (p, q) to a single index by looking up the
entry Ipq = num(p, q).

In order to set up the Lagrangian L, we need to realize the expressions ‖u‖2
L2(T ), ‖∇u‖2

L2(T ),
and ‖ΠNu‖2

L2(Γ), for u ∈ PkN .
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Matrix representation of ‖u‖2
L2(T )

We have

‖u‖2
L2(T ) = 〈u, u〉L2(T )

=
kN∑

p,q,k,l=0

cpqcklupqukl 〈ψpq, ψkl〉L2(T )

=
kN∑

p,q,k,l=0

cpqcklupquklδpkδql
2

2p+ 1

1

p+ q + 1
, (3.1.7)

where in the last step we applied to Lemma 1.3. We get

‖u‖2
L2(T ) = uTMu, (3.1.8)

with the vector u that satisfies uIpq = upq and the matrix M , whose entries are given by

MIpqIkl = cpqcklδpkδql
2

2p+ 1

1

p+ q + 1
, p+ q, k + l ≤ kN.

Matrix representation of ‖ΠNu‖2
L2(Γ)

Analogous to the procedure above, we obtain for ‖ΠNu‖2
L2(Γ):

‖ΠNu‖2
L2(Γ) = 〈ΠNu,ΠNu〉L2(T )

=
kN∑

p,q,k,l=0
p+q≤N, k+l≤N

cpqcklupqukl 〈ψpq, ψkl〉L2(Γ)

We use (1.3.5), (1.3.6) and the fact that the Legendre polynomials Ln(x) = P
(0,0)
n satisfy∫ 1

−1
Li(x)Lj(x)dx = 2

2i+1
δij to obtain

〈ψpq, ψkl〉L2(Γ) =

∫
Γ

ψpq(ξ1, ξ2)ψkl(ξ1, ξ2)dξ1dξ2

=

∫ 1

−1

ψpq(ξ1,−1)ψkl(ξ1,−1)dξ1

=

∫ 1

−1

ψpq(2
(1 + ξ1)

1− (−1)
− 1,−1)ψkl(2

(1 + ξ1)

1− (−1)
− 1,−1)dξ1

=

∫ 1

−1

ψ̃pq(ξ1,−1)ψ̃kl(ξ1,−1)dξ1
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=

∫ 1

−1

P (0,0)
p (ξ1)P (2p+1,0)

q (−1)P
(0,0)
k (ξ1)P

(2k+1,0)
l (−1)dξ1

= (−1)q
(
q
q

)
(−1)l

(
l
l

)∫ 1

−1

Lp(ξ1)Lk(ξ1)dξ1

= (−1)q+l
2

2p+ 1
δpk

Hence,

‖ΠNu‖2
L2(Γ) =

kN∑
p,q,k,l=0

p+q≤N, k+l≤N

cpqcklupqukl(−1)q+l
2

2p+ 1
δpk. (3.1.9)

In particular, we have

‖ΠNu‖2
L2(Γ) = uTTu, (3.1.10)

where the entries of the matrix T are given by

TIpqIkl = cpqckl(−1)q+l
2

2p+ 1
δpk, p+ q, k + l ≤ N.

Matrix representation of ‖∇u‖2
L2(T )

To examine ‖∇u‖2
L2(T ) we introduce the transformed function ũ = u ◦D. We have

∇ũ(η1, η2) = ∇(u ◦D)(η1, η2) = (∇u) ◦D(η1, η2) · JD,

where JD is the Jacobian matrix defined in (2.1.2) and ∇u is thought of as a row vector.
Therefore

∇ũ(η1, η2) · J−1
D = (∇u) ◦D(η1, η2), (3.1.11)

with J−1
D = 1

det JD

(
1 1+η1

2

0 1−η2

2

)
. Using (3.1.11) we achieve

‖∇u‖2
L2(T ) =

∫
T

|∇u(ξ1, ξ2)|2dξ1dξ2

=

∫
S

|(∇u) ◦D(η1, η2)|2| det JD|dη1dη2

=

∫
S

[
(∇u) ◦D(η1, η2)

][
(∇u) ◦D(η1, η2)

]T | det JD|dη1dη2

=

∫
S

[
∇ũ(η1, η2) · J−1

D

][
∇ũ(η1, η2) · J−1

D

]T | det JD|dη1dη2

=

∫
S

∇ũ(η1, η2)J−1
D J−TD ∇ũ(η1, η2)T | det JD|dη1dη2.
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For the matrix product we have

D̃ := | det JD|J−1
D J−TD =

1

| det JD|

(
1 1+η1

2

0 1−η2

2

)(
1 0

1+η1

2
1−η2

2

)
=

2

1− η2

(
1 + (1+η1)2

4
(1+η1)(1−η2)

4
(1+η1)(1−η2)

4
(1−η2)2

4

)

=

(
4+(1+η1)2

2(1−η2)
1+η1

2
1+η1

2
1−η2

2

)
.

Since ũ(η1, η2) =
∑kN

p,q=0 cpqupqψ̃pq(η1, η2) we arrive at

‖∇u‖2
L2(T ) =

∫
S

∇ũ(η1, η2)D̃∇ũ(η1, η2)Tdη1dη2

=
kN∑

p,q,k,l=0

cpqcklupqukl

∫
S

∂η1ψ̃pq∂η1ψ̃kl
4 + (1 + η1)2

2(1− η2)
+ ∂η2ψ̃pq∂η1ψ̃kl

1 + η1

2

+ ∂η1ψ̃pq∂η2ψ̃kl
1 + η1

2
+ ∂η2ψ̃pq∂η2ψ̃kl

1− η2

2
dη1dη2. (3.1.12)

Applying (1.4.3) and the fact that dk

dxk
P

(α,β)
n = Γ(α+β+n+1+k)

2kΓ(α+β+n+1)
P

(α+k,β+k)
n−k we get

∂η1ψ̃pq(η1, η2)

=
d

dη1

P (0,0)
p (η1)

(
1− η2

2

)p
P (2p+1,0)
q (η2)

=
p+ 1

2
P

(1,1)
p−1 (η1)

(
1− η2

2

)p
P (2p+1,0)
q (η2)

∂η2ψ̃pq(η1, η2)

= P (0,0)
p (η1)

[(
−p

2

)(1− η2

2

)p−1

P (2p+1,0)
q (η2) +

(
1− η2

2

)p
d

dη2

P (2p+1,0)
q (η2)

]

=
(
−p

2

)
P (0,0)
p (η1)

(
1− η2

2

)p−1

P (2p+1,0)
q (η2)

+
2p+ q + 2

2
P (0,0)
p (η1)

(
1− η2

2

)p
P

(2p+2,1)
q−1 (η2).
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Therefore

∂η1ψ̃pq∂η1ψ̃kl
4 + (1 + η1)2

2(1− η2)

=
(p+ 1)(k + 1)

2p+k+3
(4 + (1 + η1)2)P

(1,1)
p−1 (η1)P

(1,1)
k−1 (η1) (1− η2)p+k−1P (2p+1,0)

q (η2)P
(2k+1,0)
l (η2)

∂η2ψ̃pq∂η1ψ̃kl
1 + η1

2

= −p(k + 1)

2p+k+2
(1 + η1)P (0,0)

p (η1)P
(1,1)
k−1 (η1) (1− η2)p+k−1P (2p+1,0)

q (η2)P
(2k+1,0)
l (η2)

+
(2p+ q + 2)(k + 1)

2p+k+3
(1 + η1)P (0,0)

p (η1)P
(1,1)
k−1 (η1) (1− η2)p+kP

(2p+2,1)
q−1 (η2)P

(2k+1,0)
l (η2)

∂η1ψ̃pq∂η2ψ̃kl
1 + η1

2

= −(p+ 1)k

2p+k+2
(1 + η1)P

(1,1)
p−1 (η1)P

(0,0)
k (η1) (1− η2)p+k−1P (2p+1,0)

q (η2)P
(2k+1,0)
l (η2)

+
(p+ 1)(2k + l + 2)

2p+k+3
(1 + η1)P

(1,1)
p−1 (η1)P

(0,0)
k (η1) (1− η2)p+kP (2p+1,0)

q (η2)P
(2k+2,1)
l−1 (η2)

∂η2ψ̃pq∂η2ψ̃kl
1− η2

2

=
p k

2p+k+1
P (0,0)
p (η1)P

(0,0)
k (η1) (1− η2)p+k−1P (2p+1,0)

q (η2)P
(2k+1,0)
l (η2)

− p(2k + l + 2)

2p+k+2
P (0,0)
p (η1)P

(0,0)
k (η1) (1− η2)p+kP (2p+1,0)

q (η2)P
(2k+2,1)
l−1 (η2)

− (2p+ q + 2)k

2p+k+2
P (0,0)
p (η1)P

(0,0)
k (η1) (1− η2)p+kP

(2p+2,1)
q−1 (η2)P

(2k+1,0)
l (η2)

+
(2p+ q + 2)(2k + l + 2)

2p+k+3
P (0,0)
p (η1)P

(0,0)
k (η1) (1− η2)p+k+1P

(2p+2,1)
q−1 (η2)P

(2k+2,1)
l−1 (η2).

Thus, we have a total of 9 addends in the integral of (3.1.12). Furthermore, we can see, all
the terms on the right side of the equations do have coordinatewise product structure and
are polynomials.
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Defining

g̃1(η1) := (4 + (1 + η1)2)P
(1,1)
p−1 (η1)P

(1,1)
k−1 (η1)

h̃1(η2) := (1− η2)p+k−1P (2p+1,0)
q (η2)P

(2k+1,0)
l (η2)

the first equation, for instance, can be decribed as follows:

∂η1ψ̃pq∂η1ψ̃kl
4 + (1 + η1)2

2(1− η2)
=

(p+ 1)(k + 1)

2p+k+3
g̃1(η1)h̃1(η2). (3.1.13)

The other representations follow similarily.
To tackle the integral in (3.1.12), we will use two-dimensional Gauss-Legendre quadrature
with kN + 1 points for every addend. Let w be the vector of the weights and let x = y
be the vectors of the nodes on the x resp. y-axis. Using (3.1.13) the integral of the first
addend in (3.1.12) can be realized through

Cm wT
(
g̃m(x)h̃m(y)T

)
w = Cm

kN∑
i=0

kN∑
j=0

wiwj g̃k(xi)h̃k(yj), m = 1, . . . , 9, (3.1.14)

where Cm is the constant in (3.1.13) which generally depends on p, q, k and l. Proceeding
analogously for the other addends, we arrive at

‖∇u‖2
L2(T ) =

kN∑
p,q,k,l=0

(
cpqcklupqukl

9∑
m=1

Cm wT
(
g̃m(x)h̃m(y)T

)
w

)
. (3.1.15)

In particular, we have

‖∇u‖2
L2(T ) = uTHu, (3.1.16)

where the entries of the matrix H are given by

HIpqIkl = cpqckl

9∑
m=1

Cm wT
(
g̃m(x)h̃m(y)T

)
w.

We can now combine all the matrix representations (3.1.8), (3.1.10) and (3.1.16) and recall
the Lagrange function L(u, λ) to obtain

L(u, λ) = uTTu− λ
(√

(uTMu)(uT (H +M)u)− 1
)
. (3.1.17)

To compute the stationary points of the Lagrangian L, we have to differentiate the function
with respect to λ and u and solve ∇u,λL = 0.
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Lemma 3.2 Let A ∈ Rn×n be symmetric and u ∈ Rn. Define the function

f :

{
Rn → R
u 7→ uTAu.

Then we have

∇uf(u) = 2uTA. (3.1.18)

Proof. We have

∂f

∂uk
(u) =

n∑
i=1

n∑
j=1

∂

∂uk
(uiujAij) =

n∑
j=1

ujAkj +
n∑
j=1

ujAjk = 2
n∑
j=1

ujAjk.

According to the definition of the gradient (3.1.18) is obvious.

Considering the symmetry of T ,H and M and defining H̃ := H +M , Lemma 3.2 yields

∂L
∂λ

(u, λ) =

√
(uTMu)(uT (H̃)u)− 1

∇uL(u, λ) = 2uTT − λ

2uTM(uT H̃u) + 2uT H̃(uTMu)

2

√
(uTMu)(uT H̃u)


= 2uTT − λ

√ uT H̃u

uTMu
uTM +

√
uTMu

uT H̃u
uT H̃


To solve the system of equations ∇u,λL = 0 we apply the MATLAB function fsolve. fsolve

requires an initial guess
(
u0

λ0

)
that should be sufficiently close to a stationary point of

the Lagrangian L. Our basic strategy is:

1. Use the solution for polynomial degree N − 1 as the initial guess for the case of
polynomial degree N .

2. For small values of N (e.g. N = 1 or N = 2) use the solution of the following
maximization problem as the initial guess:

sup
u∈PkN

‖ΠNu‖2
L2(Γ)

‖u‖2
H1(T )

= λ. (3.1.19)

This maximization problem can be solved with Matlab since it can be recast as an
eigenvalue problem. Let

f(u) := ‖ΠNu‖2
L2(Γ) − λ‖u‖2

H1(T ).
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>From (3.1.10),(3.1.16) and Lemma 3.2 we get

f(u) = uTTu− λuT H̃u
∇uf(u) = 2uTT − 2λuT H̃.

To search for maxima of f we set ∇uf = 0. Rearranging terms and considering the
symmetry of T and H̃ gives the generalized eigenvalue problem

Tu = λ H̃u,

which can be solved with the MATLAB function eig. The maximum eigenvalue and
the corresponding eigenvector then give the starting vector as required.

3.1.1 Pseudocode

For a better understanding of the algorithm described above we will write it down in
pseudocode. Algorithm 3.3 needs as input the current polynomial degree N, the starting
vector x0 = (u0, λ0) and the factor k that is multiplied with N. For the initial polynomial
degree we will set u0 = 0. The output is the stability constant λ that satisfies

sup
u∈PkN

‖ΠNu‖2
L2(Γ)

‖u‖L2(T )‖u‖H1(T )

= λ.

Algorithm 3.3 ( l2proj2D_lagrange)

( 1) h = kN , T,M,H = 0 ∈ R 1
2

(h+1)(h+2)

( 2) generate matrix I as defined in (3.1.6)

( 3) generate Gauss-Legendre nodes and weights x, y, w ∈ Rh+1

( 4) for p ∈ {0, . . . , h} do {

( 5) for q ∈ {0, . . . , h− p} do {

( 6) for k ∈ {0, . . . , h} do {

( 7) for l ∈ {0, . . . , h− k} do {

( 8) if (p+ q ≤ N) & (k + l ≤ N) {

( 9) TIpqIkl = cpqckl(−1)q+l 2
2p+1

δpk

( 10) }

( 11) MIpqIkl = cpqcklδpkδql
2

2p+1
1

p+q+1
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( 12) HIpqIkl = cpqckl
∑9

m=1 Cm wT
(
g̃m(x)h̃m(y)T

)
w

( 13) }

( 14) }

( 15) }

( 16) }

( 17) H = H +M

( 18) if u0 = 0 do {

( 19) solve Tu = λHu with Matlab function eig
(
i.e.

[
(µi)i, (vi)i

]
= eig(T, H)

)
( 20) set λ0 = µi0 = maxi µi and u0 = vi0

( 20) }

( 21) x0 = (u0, λ0)

( 22) solve ∇u,λL = 0 with Matlab function fsolve with initial value x0(
i.e. x = fsolve(∇u,λL, x0)

)
( 23) λ = x end

3.2 Computational Results

In this section we will show our computational results regarding the computed stability
constants of several similar one-dimensional and two-dimensional bounds.

First of all we present the results to our main estimate from Theorem 2.17

‖ΠNu‖2
L2(Γ) ≤ C‖u‖L2(T )‖u‖H1(T ), (3.2.1)

which we discretized to the maximization problem in (3.1.1). Alongside we also show the
results to estimate C in the following bound:

‖ΠNu‖2
L2(Γ) ≤ C‖u‖2

H1(T ). (3.2.2)

Both results are collected in Table 1. In the numerical calculations, we have taken the
supremum over all u ∈ P2N+5 instead of simply using u ∈ P2N . We have done this in
order better approximations for low polynomial degrees. In the left coloumn of Table 1
for instance, this modification produced an improvement of approximately 0.05 for N = 1
and 0.002 for N = 2.
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supu∈P2N+5

‖ΠNu‖2L2(Γ)

‖u‖L2(T )‖u‖H1(T )
supu∈P2N+5

‖ΠNu‖2L2(Γ)

‖u‖2
H1(T )

N C C
1 1.89127927875177 1.51217158397383
2 2.48492724094763 1.70653711817479
3 2.84078999271727 1.71576980258930
4 3.06972913803173 1.69882999609302
5 3.22148699691258 1.68145886970881
6 3.32827973990691 1.66837798998617
7 3.40793969705832 1.65851935763366
8 3.47015236302314 1.65088391474287
9 3.52039680138236 1.64480277602405
10 3.56198608661588 1.63984713663359
11 3.59705680658713 1.63573210199244
12 3.62706330324132 1.63226133451629
13 3.65303935848581 1.62929514033592
14 3.67574554579823 1.62673141969948
15 3.69575709815906 1.62449382302297
16 3.71351893955889 1.62252412030053
17 3.72938166137221 1.62077713211213
18 3.74362586798005 1.61921727177212
19 3.75647917306558 1.61781613110706
20 3.76812835132416 1.61655075997341
21 3.77872823341705 1.61540241759010
22 3.78840832510274 1.61435565138111
23 3.79727782704123 1.61339760733066
24 3.80542948466692 1.61251750675473
25 3.81294258939904 1.61170624444197

Table 1: Computed constants C for the 2-dimensional maximization problems above

The constants in the right column show a slightly unexpected behaviour since they rise
in the first three polynomial degrees, but then decrease slowly. Still, this behaviour is
underpinned by the corresponding one-dimensional results in Table 3.
In the left coloumn of Table 1 we see that the values for the stability constant in (3.2.1)
show for higher polynomial degrees a slight convergence behaviour. Since Algorithm 3.3
has complexity O(N6) we did not go beyond polynomial degree N = 25, but it seems that
the exact value for the constant lies somewhere around 4.
This is also underpinned by the following graphic (Fig. 3). In a loglog-plot we show the
difference of our expected exact value 4 to the stability constants in the left coloumn of
Tabel 1 as well as to extrapolated values of these constants denoted by extrapol. Further-
more, we assumed the leading order behavior to be O(N−1), which is mapped as a green
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line. However, we have to qualify the statement of the plot and be cautious when talking
about convergence to 4 since the computational errors are still relatively high.

Figure 3: Convergence behaviour of extrapolation for results of Table 1.

The strange behaviour of the error curve for the extrapolated values (cyan line) at higher
polynomial degrees is due to the fact that at N = 17 the extrapolated values get very close
to the exact value 4 and finally exceed it. To counteract this behaviour we implemented the
same extrapolation using less points instead of all the data in the left coloumn (magenta
line). In particular, we have chosen the values belonging to N = 2, 4, 8, 20, 25. We denote
the corresponding extrapolated values by extrapol_less. In this case, we observe a more
regular behavior of the convergence graph.

Next we test the H1(T )-stability of the L2-projection. I.e. we consider the estimate

‖ΠNu‖2
H1(T ) ≤ CN‖u‖2

H1(T ), (3.2.3)

where CN will be seen to be O(N). In this case, the computation of the norm ‖ΠNu‖2
H1(T )

is very simple compared to ‖ΠNu‖2
L2(Γ) since we just have to cut off the N ×N -submatrix

from the matrix representation of ‖u‖2
H1(T ) and fill the rest of the matrix with zeros. This

is due to the fact that from our expansion of u (see (3.1.4))

u =
kN+5∑
p,q=0

cpqupqψpq
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and from the properties of the L2-projection we obtain

ΠNu =
N∑

p,q=0

cpqupqψpq.

Similar to the maximization problem in (3.1.19) the dicretization of the estimate (3.2.3)
can be recast as an eigenvalue problem. Thus, we can compute the stability constants
by applying the Matlab function eig as already mentioned in the section subsequent to
equation (3.1.19).

supu∈P2N+5

‖ΠNu‖2H1(T )

‖u‖2
H1(T )

supu∈P2N+5

‖ΠNu‖2H1(T )

‖u‖2
H1(T )

(N+1)

N CN CN/(N + 1)
1 1.44342468965527 0.72171234482763
2 1.66384487682417 0.55461495894139
3 2.01676948808509 0.50419237202127
4 2.35066910857151 0.47013382171430
5 2.70952348807897 0.45158724801316
6 3.10052717355358 0.44293245336480
7 3.51997252826326 0.43999656603291
8 3.94549105887804 0.43838789543089
9 4.37344658206461 0.43734465820646
10 4.80329996183314 0.43666363289392
11 5.23408675671248 0.43617389639271
12 5.66544853736716 0.43580373364363
13 6.09706606518657 0.43550471894189
14 6.52879509572547 0.43525300638169
15 6.96053045736136 0.43503315358509
16 7.39223100383616 0.43483711787272
17 7.82387326013005 0.43465962556279
18 8.25545984396632 0.43449788652454
19 8.68699945511594 0.43434997275579
20 9.11851181498960 0.43421484833284
21 9.55001765514877 0.43409171159767
22 9.98154228840591 0.43398009949591
23 10.41311006906840 0.43387958621119
24 10.84474708933944 0.43378988357358
25 11.27647786452010 0.43371068709693

Table 2: Computed constants CN for 2-dimensional problem (3.2.3)
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The computed values of CN are listed in the left column of Table 2. These values increase
monotonically as N increases.
The right column shows the results of the left one multiplied by a factor 1/(N + 1). Since
the computed values slowly decrease and are bounded by 1, we observe numerically the
behaviour CN = O(N). We mention that for tensor product geometries such as intervals
and squares the bound CN = O(N) has been rigorously established in [4]. These numerical
experiments indicate that this result of [4] also holds for triangles.
For better illustration, we emphasize again the dependence on N of CN in the graphic
Fig. 4 below. The blue line simply shows the constants in the left coloumn of Table 2 plot-
ted against N . For the green graph we did the following: Applying the Matlab function
polyfit we tried to fit a first order polynomial p to the data for CN . polyfit then yields
the polynomial coefficients a0 and a1 that satisfy p(x) = a1x+ a0. Since a1 gives the slope
of p we plot a1N against N and see that this graph fits to the graph for the CN . Hence,
a1 gives the constant C with CN ∼ C ·N .

Figure 4: computed value of CN in (3.2.3).

At last we present one-dimensional results, corresponding to the two-dimensional compu-
tations above. The rather difficult computations on the boundary of T do now, in the
1D setting, simplify to a simple evaluation of the 1D L2-projection at the point x = 1.
Since the 1D calculations have also much less complexity, we can actually go much further
concerning the polynomial degree than in the two-dimensional case.
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supu∈P2N+5

|(ΠNu)(1)|2
‖u‖L2‖u‖H1

supu∈P2N+5

|(ΠNu)(1)|2
‖u‖2

H1

N C C
1 1.23955678848166 0.87500000000000
2 1.83060420722495 1.14361283167718
3 2.15356301758515 1.15072048261852
4 2.34107634418767 1.13538600864567
5 2.45950440857071 1.11992788388317
10 2.72197669756981 1.08267283507986
15 2.82210388094874 1.06853381605478
20 2.87406416225027 1.06111064764886
25 2.90512455645280 1.05653834380496
30 2.92540310256414 1.05343954290018
35 2.93948150346736 1.05120092371494
40 2.94971129296227 1.04950802550192
45 2.95741139670208 1.04818299976127
50 2.96337279789142 1.04711769879646
55 2.96809547801163 1.04624257963827
60 2.97190920471166 1.04551089085115
65 2.97503926131727 1.04489004319026
70 2.97764417211457 1.04435662477469
75 2.97983833781377 1.04389338318215
80 2.98170613800169 1.04348732490767
85 2.98331100621829 1.04312847760604
90 2.98470143645123 1.04280906028005
95 2.98591505801295 1.04252291272595
100 2.98698146107878 1.04226509441461
105 2.98792419448650 1.04203159687688
110 2.98876220322098 1.04181913380901
115 2.98951087919072 1.04162498545355
120 2.99018284042289 1.04144688155757

Table 3: Computed constants C for 1-dimensional maximization problems above

Recalling the two-dimensional results in Table 1, we do see again convergence in the left
column, where here the exact value of the constant seems to be close to 3, as well as the
already mentioned unexpected behaviour in the right coloumn.

Also in the one-dimensional case we want to show a graphic (Fig. 5) that indicates the
convergence to suspected value 3. The plot is similar to the 2D case but we changed our
assumption of the leading order behaviour to O(N−3/2) since we realized that O(N−1)
does not fit properly. Furthermore, to obtain extrapol_less we extrapolated with values
corresponding to N = 2, 4, 10, 30, 60, 120.
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Figure 5: Convergence behaviour of extrapolation for results of Table 3.
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