ASC Report No. 15/2008

Convergence Analysis for Finite Element Discretizations of the Helmholtz Equation. Part I: the Full Space Problem

Jens Markus Melenk, Stefan Sauter

Most recent ASC Reports

14/2008 Anton Arnold, Franco Fagnola, Lukas Neumann
Quantum Fokker-Planck Models: the Lindblad and Wigner Approaches
13/2008 Jingzhi Li, Jens Markus Melenk, Barbara Wohlmuth, Jun Zou Optimal Convergence of Higher Order Finite Element Methods for Elliptic Interface Problems
12/2008 Samuel Ferraz-Leite, Christoph Ortner, Dirk Praetorius Adaptive Boundary Element Method: Simple Error Estimators and Convergence
11/2008 Gernot Pulverer, Gustaf Söderlind, Ewa Weinmüller Automatic Grid Control in Adaptive BVP Solvers
10/2008 Othmar Koch, Roswitha März, Dirk Praetorius, Ewa Weinmüller Collocation Methods for Index 1 DAEs with a Singularity of the First Kind
09/2008 Anton Arnold, Eric Carlen, Qiangchang Ju Large-Time Behavior on Non-Symmetric Fokker-Planck Type Equations
08/2008 Jens Markus Melenk On the Convergence of Filon Quadrature
07/2008 Dirk Praetorius, Ewa Weinmüller, Philipp Wissgott A Space-Time Adaptive Algorithm for Linear Parabolic Problems
06/2008 Bilgehan Karabay, Gernot Pulverer, Ewa Weinmüller Foreign Ownership Restrictions: A Numerical Approach
05/2008 Othmar Koch Approximation of Meanfield Terms in MCTDHF Computations by H-Matrices

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8-10
1040 Wien, Austria
E-Mail: admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at
FAX: +43-1-58801-10196

ISBN 978-3-902627-00-1
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

Convergence Analysis for Finite Element Discretizations of the Helmholtz equation. Part I: The Full Space Problem.

J.M. Melenk ${ }^{*} \quad$ S. Sauter ${ }^{\dagger}$

Abstract

A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in $\mathbb{R}^{d}, d \in\{1,2,3\}$ is presented. General conditions on the approximation properties of the approximation space are stated that ensure quasi-optimality of the method. As an application of the general theory, a full error analysis of the classical $h p$-version of the finite element method ($h p$-FEM) is presented where the dependence on the mesh width h, the approximation order p, and the wave number k is given explicitly. In particular, it is shown that quasi-optimality is obtained under the conditions that $k h / p$ is sufficiently small and the polynomial degree p is at least $O(\log k)$.

AMS Subject Classification: 35J05, 65N12, 65N30
Key Words: Helmholtz equation at high wave number, stability, convergence, $h p$-finite elements

1 Introduction

We consider the numerical solution of the Helmholtz equation by the finite element method or generalizations thereof, which are based on non-standard approximation spaces. Clearly, the derivation of stability and convergence estimates for the classical $h p$-version of the FEM that are explicit in the wave number, the mesh width, and the approximation order, are of great practical importance. Additionally, such results are also useful for the design and the understanding of generalized finite element methods. Partial results such as sharp estimates for the inf-sup constant of the continuous equations, lower estimates for the convergence rates, one-dimensional analysis by using the discrete Green's function as well as a dispersion analysis for finite element discretizations and generalizations thereof have been derived by many researchers in the past decades (see, e.g., $[2,4,6,7,9-11,14,16-18,21-27,31,34,36,37$, 41, 42]).

The main goal of the present paper is to derive quite general stability and convergence estimates that are:

[^0]- explicit in the wave number, the mesh width, and the polynomial degree of the $h p$-FEM space;
- valid for problems in d spatial dimensions, $d=1,2,3$;
- only based on approximation properties of the (generalized) finite element space; the rationale behind this requirement is that it is easier to verify such an approximation property than to perform a full-fledged convergence analysis for a given approximation space.

Such types of estimates require the development of new powerful analytical tools and cannot be achieved in one stroke. As a first step, we consider in this paper the Helmholtz equation in a bounded d-dimensional domain with non-reflecting boundary conditions and analyze its finite element discretization. We derive stability and convergence estimates that are explicit in the wave number, the mesh width and the polynomial degree of the finite element space. Forthcoming papers will address more general situations such as the scattering of waves by bounded smooth objects and later the scattering by polygonal/polyhedral domains. The results which we derive in this paper will form the basis for such generalizations.

The outline of this paper is as follows: Section 2 formulates the model problem. Section 3 provides an analysis of the model problem. In particular, the k-dependence of the solution is made explicit (Lemmata 3.7, 3.4). Section 4 analyzes the discrete stability and states explicit conditions on the properties of the approximation space to ensure quasi-optimality of the Galerkin scheme (Theorems 4.2, 4.3). Section 5 applies the results of Section 4 to the $h p$-version of the FEM. In particular, we show in Corollary 5.5 that quasi-optimality of the $h p$-FEM can be achieved under the assumption that

$$
\begin{equation*}
\frac{k h}{p}+k\left(\frac{k h}{\sigma p}\right)^{p} \leq C \tag{1.1}
\end{equation*}
$$

where the constants $C, \sigma>0$ are sufficiently small but independent of h, p, and k. Appendix A provides detailed properties of Bessel functions that are needed in Section 3. Appendix B provides $h p$-approximation results for functions in the Sobolev spaces H^{s} which allow simultaneous approximation in the L^{2} - and H^{1}-norm. It will turn out that such estimates are essential for the error analysis of Helmholtz problems in the high frequency regime. Appendix C finally provides $h p$-approximation results for functions that are analytic. These latter approximation results are tailored to regularity properties of solution of Helmholtz-type problems.

2 Formulation of the model Helmholtz problem

The Helmholtz problem in the full space \mathbb{R}^{d} with Sommerfeld radiation condition is given by: Find $U \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{array}{cl}
\left(-\Delta-k^{2}\right) U=f & \text { in } \mathbb{R}^{d} \\
\left|\frac{\partial U}{\partial r}-\mathrm{i} k U\right|=o\left(\|\mathbf{x}\|^{\frac{1-d}{2}}\right) & \|\mathbf{x}\| \rightarrow \infty \tag{2.1}
\end{array}
$$

is satisfied in a weak sense (cf. [33]). Here, $\partial / \partial r$ denotes the derivative in radial direction $\mathbf{x} /\|\mathbf{x}\|$. We assume throughout the paper that the wave number is positive and bounded away from zero, i.e.,

$$
\begin{equation*}
k \geq k_{0}>0 \tag{2.2}
\end{equation*}
$$

We assume that f is local in the sense that there exists a bounded, simply connected domain $\Omega \subset \mathbb{R}^{d}$ that satisfies supp $f \subset \Omega$. The complement of Ω is denoted by $\Omega^{+}:=\mathbb{R}^{d} \backslash \bar{\Omega}$ and the interface by $\Gamma:=\bar{\Omega} \cap \overline{\Omega^{+}}$. Then (2.1) can be formulated in an equivalent way as a transmission problem by seeking functions $u \in H^{1}(\Omega)$ and $u^{+} \in H_{\mathrm{loc}}^{1}\left(\Omega^{+}\right)$such that

$$
\begin{array}{cl}
\left(-\Delta-k^{2}\right) u=f & \text { in } \Omega, \\
\left(-\Delta-k^{2}\right) u^{+}=0 & \text { in } \Omega^{+}, \\
u=u^{+} \tag{2.3}\\
\text {and } \partial u / \partial n=\partial u^{+} / \partial n & \text { on } \Gamma, \\
\left|\frac{\partial u^{+}}{\partial r}-\mathrm{i} k u^{+}\right|=o\left(\|\mathbf{x}\|^{\frac{1-d}{2}}\right) & \|\mathbf{x}\| \rightarrow \infty .
\end{array}
$$

Here, n denote the normal vector pointing into the exterior domain Ω^{+}.
It can be shown that, for given $g \in H^{1 / 2}(\Gamma)$, the problem:

$$
\text { find } w \in H_{\mathrm{loc}}^{1}\left(\Omega^{+}\right) \text {such that }\left\{\begin{array}{cl}
\left(-\Delta-k^{2}\right) w=0 & \text { in } \Omega^{+} \\
w=g & \text { on } \partial \Omega \\
\left|\frac{\partial w}{\partial r}-\mathrm{i} k w\right|=o\left(\|\mathbf{x}\|^{\frac{1-d}{2}}\right) & \|\mathbf{x}\| \rightarrow \infty
\end{array}\right.
$$

has a unique weak solution. The mapping $g \mapsto w$ is called the Steklov-Poincaré operator and denoted by $S_{P}: H^{1 / 2}(\Gamma) \rightarrow H_{\mathrm{loc}}^{1}\left(\Omega^{+}\right)$. The Dirichlet-to-Neumann map is given by $T:=\gamma_{1} S_{P}: H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$, where $\gamma_{1}:=\partial / \partial n$ is the normal trace operator. Hence, problem (2.3) can be reformulated as: Find $u \in H^{1}(\Omega)$ such that

$$
\begin{array}{cl}
\left(-\Delta-k^{2}\right) u=f & \text { in } \Omega \tag{2.4}\\
\partial u / \partial n=T u & \text { on } \Gamma .
\end{array}
$$

The weak formulation of this equation is given by: Find $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v):=\int_{\Omega}\langle\nabla u, \nabla \bar{v}\rangle-k^{2} u \bar{v}-\int_{\Gamma}(T u) \bar{v}=\int_{\Omega} f \bar{v} \quad \forall v \in H^{1}(\Omega) \tag{2.5}
\end{equation*}
$$

The exact solution of (2.1) can be written as the acoustic volume potential. Let G_{k} : $\mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{C}$ denote the fundamental solution to the operator $\mathcal{L}_{k}:=-\Delta-k^{2}$, i.e., $G_{k}(z)=$ $g_{k}(\|z\|)$, where

$$
g_{k}(r):= \begin{cases}-\frac{\mathrm{e}^{\mathrm{i} k r}}{2 \mathrm{i} k} & d=1 \\ \frac{\mathrm{i}}{4} H_{0}^{(1)} & (k r) \\ \frac{\mathrm{e}^{\mathrm{i} k r}}{4 \pi r} & d=2,\end{cases}
$$

Then, the solution of (2.1) is given by

$$
\begin{equation*}
U(x):=\left(N_{k} f\right)(x):=\int_{\Omega} G_{k}(x-y) f(y) d y \quad \forall x \in \mathbb{R}^{d} \tag{2.6}
\end{equation*}
$$

Consequently, the solution of (2.4) and (2.5) is given by

$$
u(x):=\left(N_{k} f\right)(x):=\int_{\Omega} G_{k}(x-y) f(y) d y \quad \forall x \in \Omega
$$

Finally, we recall that a Galerkin method for (2.5) is given as follows: For a (typically finite dimensional) space $S \subset H^{1}(\Omega)$, the Galerkin approximation $u_{S} \in S$ to the exact solution u is given by:

$$
\begin{equation*}
\text { Find } u_{S} \in S \text { s.t. } \quad a\left(u_{S}, v\right)=\int_{\Omega} f \bar{v} \quad \forall v \in S \tag{2.7}
\end{equation*}
$$

3 Analysis of the continuous problem

The analysis of the continuous problem is split into three parts. First, we provide some estimates for the Dirichlet-to-Neumann map T. Then, we prove some mapping properties of the solution operator and, finally, state the existence and uniqueness of the continuous problem.

3.1 Estimates for the operator T

We equip the space $H^{1}(\Omega)$ with the norm

$$
\|u\|_{\mathcal{H}}:=\left(|u|_{1, \Omega}^{2}+k^{2}\|u\|_{0, \Omega}^{2}\right)^{1 / 2}
$$

which is obviously equivalent to the H^{1}-norm. For $d=1$, the boundary $\partial \Omega$ consists of the two endpoint of Ω and the $L^{2}(\partial \Omega)$ - and $H^{1 / 2}(\partial \Omega)$-scalar product and norm is understood as

$$
(u, v)_{L^{2}(\Gamma)}:=\sum_{x \in\{-R, R\}} u(x) \overline{v(x)} \text { and }\|u\|_{L^{2}(\Gamma)}=\|u\|_{H^{1 / 2}(\Gamma)}=\sqrt{\sum_{x \in\{-R, R\}}|u(x)|^{2}} .
$$

For Lipschitz domains, it is well known that a trace estimate holds.
Lemma 3.1 There exists a constant $C_{\text {tr }}$ depending only on Ω and k_{0} such that

$$
\begin{equation*}
\forall u \in H^{1}(\Omega): \quad\|u\|_{H^{1 / 2}(\Gamma)} \leq C_{\operatorname{tr}}\|u\|_{\mathcal{H}} \tag{3.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall u \in H^{1}(\Omega): \quad\|u\|_{L^{2}(\Gamma)} \leq C_{\operatorname{tr}}\|u\|_{L^{2}(\Omega)}^{1 / 2}\|u\|_{H^{1}(\Omega)}^{1 / 2} \tag{3.1b}
\end{equation*}
$$

Corollary 3.2 For $u \in H^{1}(\Omega)$, we have

$$
\sqrt{k}\|u\|_{L^{2}(\Gamma)} \leq \tilde{C}_{\mathrm{tr}}\|u\|_{\mathcal{H}} \quad \text { with } \quad \tilde{C}_{\mathrm{tr}}:=\frac{C_{\mathrm{tr}}}{\sqrt{2}} \frac{\sqrt{1+k_{0}^{2}}}{k_{0}}
$$

where k_{0} is as in (2.2).
Proof. There holds

$$
\begin{align*}
k\|u\|_{L^{2}(\Gamma)}^{2} & \leq C_{\mathrm{tr}}^{2} k\|u\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)} \leq \frac{C_{\mathrm{tr}}^{2}}{2}\left(k^{2}\|u\|_{L^{2}(\Omega)}^{2}+\|u\|_{H^{1}(\Omega)}^{2}\right) \\
& =\frac{C_{\mathrm{tr}}^{2}}{2}\left(\left(1+k^{2}\right)\|u\|_{L^{2}(\Omega)}^{2}+|u|_{H^{1}(\Omega)}^{2}\right) \leq \tilde{C}_{\mathrm{tr}}^{2}\|u\|_{\mathcal{H}}^{2} . \tag{3.2}
\end{align*}
$$

Since the right-hand side f in (2.3) has compact support, we may always choose Ω to be a ball $B(0, R)$ of radius R centered at the origin. In the following analysis we will always restrict our attention to this case and assume that

$$
\begin{equation*}
R \geq R_{0}>0 \tag{3.3}
\end{equation*}
$$

Lemma 3.3 Let $\Omega \subset \mathbb{R}^{d}$ be the ball of radius R centered at the origin and let (3.3) and (2.2) be satisfied. For $d=2$, we assume, in addition, that $k_{0} \geq 1$ holds. Then, there exist constants $c, C>0$ that only depend on R_{0} and k_{0} such that the following is true:
1.

$$
\begin{equation*}
\left|(T u, v)_{L^{2}(\Gamma)}\right| \leq C\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}} \quad \forall u, v \in H^{1}(\Omega) . \tag{3.4a}
\end{equation*}
$$

2. For $d \in\{2,3\}$ and all $u \in H^{1 / 2}(\Gamma)$ the real and imaginary parts of ($\left.T u, u\right)$ satisfy

$$
\begin{align*}
-\operatorname{Re}(T u, u)_{L^{2}(\Gamma)} & \geq c \frac{\|u\|_{L^{2}(\Gamma)}^{2}}{R} \tag{3.4b}\\
\operatorname{Im}(T u, u)_{L^{2}(\Gamma)} & >0 \quad \text { for } u \neq 0 . \tag{3.4c}
\end{align*}
$$

For $d=1$, instead of (3.4b), (3.4c), there holds

$$
\begin{align*}
-\operatorname{Re}(T u, u)_{L^{2}(\Gamma)} & =0, \tag{3.4d}\\
\quad \operatorname{Im}(T u, u)_{L^{2}(\Gamma)} & \geq k\|u\|_{L^{2}(\Gamma)}^{2} . \tag{3.4e}
\end{align*}
$$

Proof. Case $d=3$.
The Dirichlet data on $\Gamma=\partial B(0, R)$ can be expanded according to

$$
\begin{equation*}
u(x)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} u_{\ell}^{m} Y_{\ell}^{m}(\theta, \phi), \tag{3.5}
\end{equation*}
$$

where (R, θ, ϕ) are the spherical coordinates for $x \in \Gamma$ and the functions Y_{ℓ}^{m} are the standard spherical harmonics. The solution to the exterior homogeneous Helmholtz problem with Sommerfeld radiation conditions at infinity and prescribed Dirichlet data at Γ can be expanded in the form

$$
\begin{equation*}
u(x)=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} u_{\ell}^{m} Y_{\ell}^{m}(\theta, \phi) \frac{h_{\ell}^{(1)}(k r)}{h_{\ell}^{(1)}(k R)}, \tag{3.6}
\end{equation*}
$$

where (r, θ, ϕ) are the spherical coordinates of $x \in \mathbb{R}^{3} \backslash \bar{\Omega}$. By taking the normal derivative at the boundary we end up with a representation of the Dirichlet-to-Neumann map

$$
\begin{equation*}
T u=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} u_{\ell}^{m} Y_{\ell}^{m}(\theta, \phi) \frac{z_{\ell}(k R)}{R} \tag{3.7}
\end{equation*}
$$

with the functions $z_{\ell}(r):=r \frac{\left(h_{\ell}^{(1)}\right)^{\prime}(r)}{h_{\ell}^{(1)}(r)}$. These functions have been analyzed in [33, Theorem 2.6.1] where it is shown that

$$
\begin{equation*}
1 \leq-\operatorname{Re}\left(z_{\ell}(r)\right) \leq \ell+1 \quad \text { and } \quad 0<\operatorname{Im}\left(z_{\ell}(r)\right) \leq r \tag{3.8}
\end{equation*}
$$

(In [33, Theorem 2.6.1], only $\operatorname{Im} z_{\ell}(r) \geq 0$ is stated, while the strict positivity follows from the positivity of the function q_{ℓ} in $[33,(2.6 .34)]$.) It follows from (3.7) that

$$
\int_{\Gamma}(T u) \bar{v}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{z_{\ell}(k R)}{R} u_{\ell}^{m} \overline{v_{\ell}^{m}}
$$

and from (3.8) we conclude that

$$
\begin{aligned}
\left|\operatorname{Re} \int_{\Gamma}(T u) \bar{v}\right| & =\left|\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left\{\frac{\operatorname{Re} z_{\ell}(k R)}{R} \operatorname{Re}\left(u_{\ell}^{m} \overline{v_{\ell}^{m}}\right)-\frac{\operatorname{Im} z_{\ell}(k R)}{R} \operatorname{Im}\left(u_{\ell}^{m} \overline{v_{\ell}^{m}}\right)\right\}\right| \\
& \leq \frac{1}{R} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left\{\left|\operatorname{Re} z_{\ell}(k R)\right|+\left|\operatorname{Im} z_{\ell}(k R)\right|\right\}\left|u_{\ell}^{m}\right|\left|v_{\ell}^{m}\right| \\
& \leq \frac{1}{R} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\{|\ell+1|+k R\}\left|u_{\ell}^{m}\right|\left|v_{\ell}^{m}\right| \\
& \leq C\left(R^{-1}\|u\|_{H^{1 / 2}(\Gamma)}\|v\|_{H^{1 / 2}(\Gamma)}+k\|u\|_{L^{2}(\Gamma)}\|v\|_{L^{2}(\Gamma)}\right) .
\end{aligned}
$$

Using Corollary 3.2 we get

$$
\left|\operatorname{Re} \int_{\Gamma}(T u) \bar{v}\right| \leq C \tilde{C}_{\operatorname{tr}}^{2}\left(1+\frac{1}{R_{0} k_{0}}\right)\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}} .
$$

By repeating these steps for the imaginary part we get the same upper bound and, hence,

$$
\left|\int_{\Gamma}(T u) \bar{v}\right| \leq C\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}},
$$

where C only depends on R_{0} and k_{0}.
The lower estimate of the real part follows from

$$
-\operatorname{Re} \int_{\Gamma}(T u) \bar{u}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{-\operatorname{Re} z_{\ell}(k R)}{R}\left|u_{\ell}^{m}\right|^{2} \geq \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{R}\left|u_{\ell}^{m}\right|^{2}=\frac{\|u\|_{L^{2}(\Omega)}^{2}}{R} .
$$

The upper estimate for the imaginary part is just a repetition of the previous arguments.
For the lower estimate of the imaginary part, we consider $u \in H^{1 / 2}(\Gamma) \backslash\{0\}$. Hence, there exists $\left(m_{\star}, \ell_{\star}\right)$ in the expansion (3.5) so that $u_{\ell_{\star}}^{m_{\star}} \neq 0$. This leads to

$$
\operatorname{Im} \int_{\Gamma}(T u) \bar{u}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\operatorname{Im} z_{\ell}(k R)}{R}\left|u_{\ell}^{m}\right|^{2} \geq\left|u_{\ell_{\star}}^{m_{\star}}\right|^{2}>0
$$

and the lower bound is proved.
Case $d=2$.
We expand the Dirichlet data on Γ in polar coordinates

$$
u(x)=\sum_{m \in \mathbb{Z}} u_{m} \mathrm{e}^{\mathrm{i} m \theta},
$$

where (R, θ) are the polar coordinates of $x \in \Gamma$. It follows (see, e.g., $[12,(2.10)])$ that

$$
\begin{equation*}
T u=\sum_{m \in \mathbb{Z}} u_{m} \frac{w_{m}(k R)}{R} \mathrm{e}^{\mathrm{i} m \theta} \quad \text { with } \quad w_{m}(r):=r \frac{\left(H_{|m|}^{(1)}\right)^{\prime}(r)}{H_{|m|}^{(1)}(r)} \tag{3.9}
\end{equation*}
$$

Obviously, it is sufficient to analyze w_{m} only for $m \in \mathbb{N}_{0}$. By decomposing w_{m} into its real and imaginary part we get

$$
w_{\ell}=r \frac{J_{\ell}^{\prime} J_{\ell}+Y_{\ell}^{\prime} Y_{\ell}+\mathrm{i}\left(Y_{\ell}^{\prime} J_{\ell}-J_{\ell}^{\prime} Y_{\ell}\right)}{J_{\ell}^{2}+Y_{\ell}^{2}}
$$

For the imaginary part, we obtain

$$
Y_{\ell}^{\prime} J_{\ell}-J_{\ell}^{\prime} Y_{\ell} \stackrel{[1,9.1 .27]}{=} Y_{\ell-1} J_{\ell}-J_{\ell-1} Y_{\ell} \stackrel{[1,9.1 .16]}{=} \frac{2}{\pi r}
$$

We set $M_{\ell}:=\left|H_{\ell}^{(1)}\right|$ and obtain

$$
\begin{equation*}
w_{\ell}=r \frac{J_{\ell}^{\prime} J_{\ell}+Y_{\ell}^{\prime} Y_{\ell}}{M_{\ell}^{2}}+\mathrm{i} \frac{2}{\pi M_{\ell}^{2}}=\frac{r}{2} \frac{\frac{d}{d r} M_{\ell}^{2}}{M_{\ell}^{2}}+\mathrm{i} \frac{2}{\pi M_{\ell}^{2}} \tag{3.10}
\end{equation*}
$$

In the next step, we derive estimates for the coefficients w_{ℓ}.
Case $d=2$ and $\ell \in \mathbb{N}_{\geq 2}$.
Let

$$
\begin{equation*}
M_{\ell, n}^{2}(r):=\frac{2}{\pi r} \sum_{m=0}^{n} \frac{\delta_{\ell, m}}{r^{2 m}} \quad \text { with } \quad \delta_{\ell, m}:=\frac{(2 m)!\gamma_{\ell, m}}{(m!)^{2} 16^{m}} \text { and } \gamma_{\ell, m}:=\prod_{k=1}^{m}\left(4 \ell^{2}-(2 k-1)^{2}\right) \tag{3.11}
\end{equation*}
$$

and define $R_{\ell, n}^{M}:=M_{\ell}^{2}-M_{\ell, n}^{2}$. Note that

$$
\begin{equation*}
\gamma_{\ell, \ell}=\frac{(4 \ell)!}{2^{2 \ell}(2 \ell)!} \geq 0 \quad \text { and } \quad \gamma_{\ell, \ell+1}=-(4 \ell+1) \gamma_{\ell, \ell}<0 \tag{3.12}
\end{equation*}
$$

We conclude from [44, §13.75] that, for the choice $n=\ell-1 \geq 0$, there holds $R_{\ell, \ell-1}^{M}(r) \geq 0$. Thus,

$$
\begin{equation*}
M_{\ell}^{2}(r) \geq M_{\ell, \ell-1}^{2}(r) \quad \forall r \geq 0 \tag{3.13}
\end{equation*}
$$

Let K_{ν} be the modified Bessel function of order ν. From [44, §13.75] we obtain

$$
N_{\ell}^{2}:=\frac{d}{d r} M_{\ell}^{2}=-\frac{16}{\pi^{2}} \int_{0}^{\infty} K_{1}(2 r \sinh t) \sinh t \cosh (2 \ell t) d t
$$

and

$$
\frac{\cosh (2 \ell t)}{\cosh t}=\sum_{m=0}^{n} \frac{\gamma_{\ell, m}}{(2 m)!} \sinh ^{2 m} t+\tilde{R}_{\ell, n}^{2}
$$

If $n>\ell-3 / 2$, the remainder $\tilde{R}_{\ell, n}$ satisfies

$$
\tilde{R}_{\ell, n}^{2} \in \begin{cases}{\left[0, \frac{\gamma_{\ell, n+1}}{(2 n+2)!} \sinh ^{2(n+1)} t\right]} & \text { if } \gamma_{\ell, n+1}>0 \tag{3.14}\\ {\left[\frac{\gamma_{\ell, n+1}}{(2 n+2)!} \sinh ^{2(n+1)} t, 0\right]} & \text { otherwise. }\end{cases}
$$

We introduce

$$
\begin{aligned}
N_{\ell, n}^{2} & :=-\frac{16}{\pi^{2}} \sum_{m=0}^{n} \frac{\gamma_{\ell, m}}{(2 m)!} \int_{0}^{\infty} K_{1}(2 r \sinh t)(\cosh t)\left(\sinh ^{2 m+1} t\right) d t \\
& =-\frac{16}{\pi^{2}} \sum_{m=0}^{n} \frac{\gamma_{\ell, m}}{(2 m)!(2 r)^{2 m+2}} \int_{0}^{\infty} K_{1}(z) z^{2 m+1} d z \\
& =-\frac{2}{\pi r^{2}} \sum_{m=0}^{n}(2 m+1) \frac{\delta_{\ell, m}}{r^{2 m}}=\frac{d}{d r} M_{\ell, n}^{2}
\end{aligned}
$$

Note that $M_{\ell}^{2}(r)$ is monotone decreasing for $r>0$ (cf. [35, §9-7.3]) and hence $N_{\ell}^{2}(r)<0$ for $r>0$. Thus,

$$
\left|N_{\ell}^{2}(r)\right|=-N_{\ell, n}^{2}(r)+R_{\ell, n}^{N} \quad \text { with } \quad R_{\ell, n}^{N}:=-N_{\ell}^{2}(r)+N_{\ell, n}^{2}(r)
$$

and $R_{\ell, n}^{N}$ has the explicit representation

$$
R_{\ell, n}^{N}(r)=\frac{16}{\pi^{2}} \int_{0}^{\infty} K_{1}(2 r \sinh t)(\sinh t)(\cosh t) \tilde{R}_{\ell, n}^{2}(t) d t
$$

Note that sinh, cosh, and K_{1} are positive on the positive real axes (cf. [1, 9.6.23]). We choose $n=\ell$ and obtain from (3.12) and (3.14) that $\tilde{R}_{\ell, \ell}(t)$ is negative for $t>0$ and hence

$$
\begin{equation*}
\left|N_{\ell}^{2}(r)\right| \leq-N_{\ell, \ell}^{2}(r) \quad \forall r>0 \tag{3.15}
\end{equation*}
$$

In summary, we have proved that

$$
\begin{align*}
\left|\operatorname{Re} w_{\ell}\right| & \leq-\frac{r}{2} \frac{N_{\ell, \ell}^{2}}{M_{\ell, \ell-1}^{2}}=\frac{1}{2} \frac{\sum_{m=0}^{\ell}(2 m+1) \frac{\delta_{\ell, m}}{r^{2 m}}}{\sum_{m=0}^{\ell-1} \frac{\delta_{\ell, m}^{2 m}}{r^{2 m}}} \leq \frac{2 \ell-1}{2}+\frac{2 \ell+1}{2} \frac{\frac{\delta_{\ell, \ell}}{r^{2 \ell}}}{\frac{\delta_{\ell,-1}}{r^{2 \ell-2}}} \tag{3.16}\\
& =\frac{2 \ell-1}{2}+\frac{(4 \ell-1)\left(4 \ell^{2}-1\right)}{16 \ell r^{2}} .
\end{align*}
$$

Hence, for $\ell \geq 2$ and $r \geq C_{1} \sqrt{\ell}$, the estimate

$$
\left|\operatorname{Re} w_{\ell}\right| \leq \frac{2 \ell-1}{2}\left(1+\frac{9}{8 C_{1}^{2}}\right)
$$

follows.
It remains to consider the case

$$
\begin{equation*}
r \leq C_{1} \sqrt{\ell} \tag{3.17}
\end{equation*}
$$

We derive from (3.10) and [1, 9.1.27]

$$
\left|\frac{r}{2} N_{\ell}^{2}(r)\right|=-\frac{r}{2} N_{\ell}^{2}(r)=\ell M_{\ell}^{2}(r)-r\left(J_{\ell-1} J_{\ell}+Y_{\ell} Y_{\ell-1}\right)
$$

and this leads to

$$
\begin{equation*}
\left|\operatorname{Re} w_{\ell}\right|=\frac{\left|\frac{r}{2} N_{\ell}^{2}(r)\right|}{M_{\ell}^{2}(r)}=\ell-\frac{r\left(J_{\ell} J_{\ell-1}+Y_{\ell} Y_{\ell-1}\right)}{M_{\ell}^{2}(r)} \tag{3.18}
\end{equation*}
$$

We deduce from $[1,9.5 .2,9.1 .7,9.1 .9]$ that

$$
J_{\ell}(r)>0 \quad \text { and } \quad Y_{\ell}(r)<0 \quad \forall 0 \leq r \leq \ell
$$

and, thus,

$$
J_{\ell} J_{\ell-1}+Y_{\ell} Y_{\ell-1}>0 \quad \forall 0 \leq r \leq \ell-1 .
$$

If $C_{1} \leq 2^{-1 / 2}$ there holds $C_{1} \sqrt{\ell} \leq \ell-1$ for all $\ell \geq 2$ and we have proved $\left|\operatorname{Re} w_{\ell}\right| \leq \ell$.
To derive a lower bound of ($-\operatorname{Re} w_{\ell}$), we proceed as for (3.16) and obtain, for $r \geq k_{0}$,

$$
\begin{align*}
-\operatorname{Re} w_{\ell}(r) & \geq-\frac{r}{2} \frac{N_{\ell, \ell-1}^{2}(r)}{M_{\ell, \ell}^{2}(r)}=\frac{1}{2} \frac{\sum_{m=0}^{\ell-1}(2 m+1) \frac{\delta_{\ell, m}}{r^{2} m}}{\sum_{m=0}^{\ell} \frac{\delta_{\ell, m}}{r^{2 m}}} \geq \frac{1}{2} \frac{1}{1+\frac{\frac{\delta_{\ell, \ell}}{r^{2}}}{\left(2 \ell-1 \frac{\delta_{\ell, \ell-1}}{r^{2} \ell-2}\right.}} \tag{3.19}\\
& =\frac{1}{2} \frac{1}{1+\frac{4 \ell-1}{8 \ell r^{2}}} \geq \frac{1}{2} \frac{1}{1+\frac{1}{2 k_{0}^{2}}} .
\end{align*}
$$

For the imaginary part we get

$$
\begin{equation*}
\operatorname{Im} w_{\ell}(r)=\frac{2}{\pi M_{\ell}^{2}(r)}>0 \quad \forall \ell \in \mathbb{N}_{0} \quad \forall r \geq k_{0} \tag{3.20}
\end{equation*}
$$

because M_{ℓ}^{2} is non-negative and decreasing for $r>0$ (cf. [35, §9-7.3]). For the upper bound, we combine $[19,8.479]$ with the fact that M_{ℓ}^{2} is decreasing to obtain for $\ell \in \mathbb{N}_{\geq 1}$

$$
\begin{equation*}
M_{\ell}^{2}(r) \geq \frac{2}{\pi r} \quad \forall r \geq 1 \tag{3.21a}
\end{equation*}
$$

Hence, the upper bound

$$
\begin{equation*}
\operatorname{Im} w_{\ell}(r)=\frac{2}{\pi M_{\ell}^{2}(r)} \leq r \tag{3.22}
\end{equation*}
$$

follows.
Case $d=2$ and $\ell=0,1$.
For $\ell=0$, we use $[44, \S 13.75]$ and get

$$
M_{0}^{2}(r) \geq M_{0,1}^{2}(r)=\frac{2}{\pi r}\left(1-\frac{1}{8 r^{2}}\right) .
$$

For $d=2$, there holds $k_{0}>1 / 2$ by our assumptions and, thus, for $r \geq k_{0}$ we get

$$
\begin{equation*}
M_{0}^{2}(r) \geq \frac{1}{\pi r} . \tag{3.21b}
\end{equation*}
$$

The combination of (3.10) and (3.21) implies

$$
\left|\operatorname{Re} w_{\ell}(r)\right| \leq \frac{\pi r^{2}}{2}\left|N_{\ell}^{2}(r)\right|
$$

We deduce from (3.15) (which is also valid for $\ell=0,1$)

$$
\left|N_{\ell}^{2}(r)\right| \leq\left|N_{\ell, \ell}^{2}(r)\right| \leq \frac{2}{\pi r^{2}} \sum_{m=0}^{\ell}(2 m+1) \frac{\delta_{\ell, m}}{r^{2 m}} \leq \frac{2}{\pi r^{2}} \begin{cases}1 & \ell=0 \\ 1+\frac{9}{8 r^{2}} & \ell=1\end{cases}
$$

This implies, for $r \geq k_{0}$ (cf. (2.2))

$$
\left|N_{\ell}^{2}(r)\right| \leq C \frac{2}{\pi r^{2}}
$$

where C depends solely on k_{0}. Thus, for $\ell=0,1$,

$$
\left|\operatorname{Re} w_{\ell}\right| \leq C \leq C(\ell+1)
$$

Since M_{ℓ}^{2} is monotone decreasing (see [35, §9-7.3]), it follows from (3.9) that $\operatorname{Re} w_{\ell}(r)<0$ for all $r>0$.

In (3.19) we have derived a lower bound for $\left(-\operatorname{Re} w_{\ell}\right)$ provided $\ell \geq 1$. It remains to consider the case $\ell=0$. The assumption on k_{0} implies $r \geq k_{0} \geq \frac{1}{2} \sqrt{3}$ so that

$$
-\operatorname{Re} w_{0}(r) \geq-\frac{r}{2} \frac{N_{0,1}^{2}(r)}{M_{0,0}^{2}(r)}=\frac{1}{2}\left(1-\frac{3}{8 r^{2}}\right) \geq \frac{1}{4} .
$$

To summarize both cases, we have proved that

$$
\begin{equation*}
0<c \leq-\operatorname{Re} w_{\ell}(r) \leq C(\ell+1) \quad \forall r \geq k_{0} \quad \forall \ell \in \mathbb{N}_{0} \tag{3.23a}
\end{equation*}
$$

where c, C only depends on k_{0}.
For the imaginary part, it remains (cf. (3.21a), (3.22)) to prove the upper bound for ($\operatorname{Im} w_{0}$) and employ (3.10) and (3.21b) to obtain

$$
\begin{equation*}
\operatorname{Im} w_{0}=\frac{2}{\pi M_{0}^{2}} \leq 2 r \tag{3.23b}
\end{equation*}
$$

By proceeding as for $d=3$ (after (3.8)) the estimates (3.4) follow from (3.23).
Case $d=1$
For boundary values $\psi:\{-R, R\} \rightarrow \mathbb{R}$, the Dirichlet-to-Neumann operator is given by

$$
T \psi=\mathrm{i} k \psi .
$$

The trace theorem (in one dimension) leads to

$$
\begin{aligned}
\left|\operatorname{Re} \int_{\Gamma}(T u) \bar{v}\right| & =\left|\operatorname{Re}\left(\mathrm{i} k \sum_{r= \pm R} u(r) \bar{v}(r)\right)\right| \\
& \leq k\left|\operatorname{Im} \sum_{r= \pm R} u(r) \bar{v}(r)\right| \leq k \sum_{r= \pm R}|u(r)||\bar{v}(r)| \\
& \quad \text { Cor. } 3.2 C\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}},
\end{aligned}
$$

where C only depends on R_{0} and k_{0}. By the same techniques we can estimate the imaginary part and, thus, obtain (3.4a). The lower bounds (3.4d), (3.4e) follow from

$$
\begin{array}{r}
-\operatorname{Re} \int_{\Gamma}(T u) \bar{u}=-\operatorname{Re}\left(\mathrm{i} k \sum_{r= \pm R}|u(r)|^{2}\right)=0 \\
\operatorname{Im} \int_{\Gamma}(T u) \bar{u}=k \sum_{r= \pm R}|u(r)|^{2} \geq k\|u\|_{L^{2}(\Gamma)}^{2} .
\end{array}
$$

3.2 Local estimates for the solution operator

In this section, we derive some explicit bounds for the solution operator under the assumption that the right-hand side is in $L^{2}(\Omega)$. These estimates will be the basic tool for proving the discrete stability of the finite element discretization and the convergence. The key step for the analysis of the $h p$-FEM in Section 5 is the following decomposition result:

Lemma 3.4 (decomposition lemma) Let Ω be contained in a ball of radius $R>0$. Then there exist constants $C, \gamma>0$ depending only R and k_{0} such that for $f \in L^{2}(\Omega)$ the function v given by

$$
v(x)=N_{k} f(x)=\int_{\Omega} G_{k}(x-y) f(y) d y, \quad x \in \Omega
$$

satisfies

$$
\|v\|_{H^{1}(\Omega)}+k\|v\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

and can be decomposed as $v=v_{H^{2}}+v_{\mathcal{A}}$ with

$$
\begin{align*}
\left\|v_{H^{2}}\right\|_{H^{2}(\Omega)} & \leq C\|f\|_{L^{2}(\Omega)} \tag{3.24a}\\
\left\|\nabla^{p} v_{\mathcal{A}}\right\|_{L^{2}(\Omega)} & \leq C(\gamma|k|)^{p-1}\|f\|_{L^{2}(\Omega)} \quad \forall p \in \mathbb{N}_{0} \tag{3.24b}
\end{align*}
$$

Here, $\nabla^{p} v_{\mathcal{A}}$ stands for a sum over all derivatives of order p (see (5.1) for details).
Proof. We start by recalling the definition of the Fourier transform for functions with compact support

$$
\hat{u}(\xi)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i}\langle\xi, x\rangle} u(x) d x \quad \forall \xi \in \mathbb{R}^{d}
$$

and the inversion formula

$$
u(x)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}\langle x, \xi\rangle} \hat{u}(\xi) d \xi \quad \forall x \in \mathbb{R}^{d}
$$

Let $B_{\Omega} \subset \mathbb{R}^{d}$ be a ball of radius R containing Ω. Extend f by zero outside of Ω and denote this extended function again by f. Let $\mu \in C^{\infty}\left(\mathbb{R}_{\geq 0}\right)$ be a cutoff function such that

$$
\begin{array}{ll}
\operatorname{supp} \mu \subset[0,4 R], & \left.\mu\right|_{[0,2 R]}=1,
\end{array}|\mu|_{W^{1, \infty}\left(\mathbb{R}_{\geq 0}\right)} \leq \frac{C}{R}, ~ \begin{array}{ll}
\\
\forall x \in \mathbb{R}_{\geq 0}: 0 \leq \mu(x) \leq 1, & \left.\mu\right|_{[4 R, \infty[}=0, \quad|\mu|_{W^{2, \infty}\left(\mathbb{R}_{\geq 0}\right)} \leq \frac{C}{R^{2}} \tag{3.25}
\end{array}
$$

Define $M(z):=\mu(\|z\|)$ and

$$
v_{\mu}(x):=\int_{B_{\Omega}} G_{k}(x-y) M(x-y) f(y) d y \quad \forall x \in \mathbb{R}^{d}
$$

The properties of μ guarantee $\left.v_{\mu}\right|_{B_{\Omega}}=\left.v\right|_{B_{\Omega}}$ so that we may restrict our attention to the function v_{μ}. Since $\operatorname{supp} f \subset B_{\Omega}$ we may write

$$
\begin{equation*}
v_{\mu}=\left(G_{k} M\right) \star f \tag{3.26}
\end{equation*}
$$

where " \star " denotes the convolution in \mathbb{R}^{d}. We will define a decomposition of v_{μ} (which will determine the decomposition of v on B_{Ω}) by decomposing its Fourier transform, i.e.,

$$
\begin{equation*}
\widehat{v}_{\mu}=\widehat{v}_{H^{2}}+\widehat{v}_{\mathcal{A}} . \tag{3.27}
\end{equation*}
$$

In order to define the two terms on the right-hand side of (3.27), we let $B_{3 k / 2}(0)$ denote the ball of radius $3 k / 2$ centered at the origin. The characteristic function of $B_{3 k / 2}(0)$ is denoted by χ_{k}. The Fourier transform of f is then decomposed as

$$
\widehat{f}=\widehat{f} \chi_{k}+\left(1-\chi_{k}\right) \widehat{f}=: \widehat{f}_{k}+\widehat{f}_{k}^{c} .
$$

By the inverse Fourier transformation, this decomposition of \widehat{f} entails a decomposition of f into f_{k} and f_{k}^{c} given by

$$
\begin{equation*}
f_{k}(x):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}\langle x, \xi\rangle} \chi_{k}(\xi) \hat{f}(\xi) d \xi \quad \text { and } \quad f_{k}^{c}(x):=f-f_{k} \tag{3.28}
\end{equation*}
$$

Accordingly, we define the decomposition of v_{μ} in

$$
\begin{equation*}
v_{\mu, H^{2}}:=\left(G_{k} M\right) \star f_{k}^{c} \quad \text { and } \quad v_{\mu, \mathcal{A}}:=\left(G_{k} M\right) \star f_{k} . \tag{3.29}
\end{equation*}
$$

The functions $v_{H^{2}}$ and $v_{\mathcal{A}}$ in (3.27) are then obtained by setting $v_{H^{2}}:=\left.v_{\mu, H^{2}}\right|_{\Omega}$ and $v_{\mathcal{A}}:=$ $\left.v_{\mu, \mathcal{A}}\right|_{\Omega}$. We will obtain the desired estimates by showing the following, stronger estimates:

$$
\begin{align*}
\left\|v_{\mu, H^{2}}\right\|_{H^{2}\left(\mathbb{R}^{d}\right)} & \leq C\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \tag{3.30a}\\
\left\|D^{\alpha} v_{\mu, \mathcal{A}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} & \leq C \gamma^{|\alpha|}|k|^{|\alpha|-1}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \quad \forall \alpha \in \mathbb{N}_{0}^{d} \tag{3.30b}
\end{align*}
$$

The estimates (3.30) are obtained by Fourier techniques. To that end, we compute the Fourier transform of $G_{k} M$:

$$
\begin{aligned}
\left(\widehat{G_{k} M}\right)(\xi) & =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i}\langle\zeta, x\rangle} G_{k}(x) M(x) d x \\
& =(2 \pi)^{-d / 2} \int_{0}^{\infty} g_{k}(r) \mu(r) r^{d-1}\left(\int_{\mathbb{S}_{d-1}} \mathrm{e}^{-\mathrm{i} r\langle\xi, \zeta\rangle} d S_{\zeta}\right) d r \\
& =(2 \pi)^{-d / 2} I(\xi) .
\end{aligned}
$$

The integral $I(\xi)$ can be evaluated analytically and $I(\xi)=\iota(\|\xi\|)$ with

$$
\iota(s)= \begin{cases}2 \int_{0}^{\infty} g_{k}(r) \mu(r) \cos (s r) d r & d=1 \tag{3.32}\\ 2 \pi \int_{0}^{\infty} g_{k}(r) \mu(r) r J_{0}(r s) d r & d=2 \\ 4 \pi \int_{0}^{\infty} g_{k}(r) \mu(r) r^{2} \frac{\sin (r s)}{(r s)} d r & d=3\end{cases}
$$

Applying the Fourier transform to the convolutions (3.29) leads to

$$
\begin{aligned}
\widehat{v}_{\mu, H^{2}} & =(2 \pi)^{d / 2} \widehat{G_{k} M} \widehat{f_{k}^{c}}=(2 \pi)^{d / 2} \widehat{G_{k} M} \widehat{f}\left(1-\chi_{k}\right), \\
\widehat{v}_{\mu, \mathcal{A}} & =(2 \pi)^{d / 2} \widehat{G_{k} M} \widehat{f_{k}}=(2 \pi)^{d / 2} \widehat{G_{k} M} \widehat{f} \chi_{k} .
\end{aligned}
$$

To estimate higher order derivatives of $v_{\mu, H^{2}}$ and $v_{\mu, \mathcal{A}}$ we define for a multi-index $\alpha \in \mathbb{N}_{0}^{d}$ the function $P_{\alpha}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $P_{\alpha}(\xi):=\xi^{\alpha}$ and obtain - by using standard properties of the Fourier transformation and the support properties of χ_{k} - for all $|\alpha| \leq 2$

$$
\begin{align*}
\left\|\partial^{\alpha} v_{\mu, H^{2}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} & =(2 \pi)^{d / 2}\left\|P_{\alpha} \widehat{G_{k} M}\left(1-\chi_{k}\right) \widehat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \tag{3.33}\\
& \leq(2 \pi)^{d / 2}\left(\max _{\xi \in \mathbb{R}^{d}:|\xi| \geq 3 k / 2}\left|P_{\alpha} I(\xi)\right|\right)\left\|\left(1-\chi_{k}\right) \widehat{f}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
& \leq(2 \pi)^{d / 2}\left(\max _{s \geq 3 k / 2}\left|s^{|\alpha|} \iota(s)\right|\right)\|f\|_{L^{2}(\Omega)} .
\end{align*}
$$

Completely analogously, we derive for all $\alpha \in \mathbb{N}_{0}^{d}$

$$
\left\|\partial^{\alpha} v_{\mu, \mathcal{A}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq(2 \pi)^{d / 2}\left(\max _{s \leq 3 k / 2}\left|s^{|\alpha|} \iota(s)\right|\right)\|f\|_{L^{2}(\Omega)}
$$

We can complete the proof of the lemma using the bounds on the function ι given in Lemma 3.5 below.

Lemma 3.5 For the function ι defined in (3.32) the quantity $s^{m} \iota(s)$ can be estimated
(i) for $m=0$ by

$$
|\iota(s)| \leq C \frac{R}{k}
$$

(ii) for $m=1$ by

$$
s|\iota(s)| \leq C R\left\{\begin{array}{lll}
1+(R k)^{-1} & d=1 \\
|\log k R| & d=2 \quad \text { and } \quad 4 R k \leq 1 \\
1 & d=2 & \text { and } \quad 4 R k>1 \\
1 & d=3
\end{array}\right.
$$

(iii) and for $m=2$ by

$$
s^{2}|\iota(s)| \leq C\left\{\begin{array}{lll}
R k+\frac{1}{R k} & d=1 \\
|\log (k R)| & d=2 & \text { and } \quad 4 R k \leq 1 \\
R k & d=2 & \text { and } \quad 4 R k>1 \\
1+k R & d=3
\end{array}\right.
$$

(iv) For fixed $R_{0}, R_{1}>0$ there exists $C>0$ such that for $R_{0} \leq R \leq R_{1}$ and any $|s| \geq 3 k / 2$

$$
s^{2}|\iota(s)| \leq C
$$

(v) For $m \in \mathbb{N}_{0},|s| \leq 3 k / 2$, and $0<R_{0} \leq R \leq R_{1}$, we have

$$
|s|^{m}|\iota(s)| \leq C\left(\frac{3 k}{2}\right)^{m-1}
$$

Proof. In this proof, C denotes a generic constant which may vary from term to term. It suffices to prove the estimates (i)-(iv) because (v) follows directly from (i). We discuss the cases $d=3, d=1$, and $d=2$ in turn.

Case 1: $d=3$.
There holds

$$
|s \iota(s)|=C\left|\int_{0}^{\infty} \mathrm{e}^{\mathrm{i} k r} \mu(r) \sin (r s) d r\right| \leq C R
$$

Applying integration by parts we obtain

$$
\begin{aligned}
|\iota(s)| & =\frac{C}{k}\left|\int_{0}^{\infty} \mathrm{e}^{\mathrm{i} k r}\left(\mu^{\prime}(r) \frac{\sin (r s)}{s}+\mu(r) \sin (r s)\right) d r\right| \\
& \leq \frac{C}{k} \int_{0}^{4 R}\left(\frac{C}{R} r+1\right) d r=C \frac{R}{k}
\end{aligned}
$$

For the product $s^{2} \iota(s)$, we get

$$
\begin{aligned}
\left|s^{2} \iota(s)\right| & =C\left|\int_{0}^{\infty} \mathrm{e}^{\mathrm{i} k r} \mu(r) s \sin (r s) d r\right|=C\left|\int_{0}^{\infty} \mathrm{e}^{\mathrm{i} k r} \mu(r) \partial_{r} \cos (r s) d r\right| \\
& \leq C\left(\left|\int_{0}^{\infty} \cos (r s) \partial_{r}\left(\mathrm{e}^{\mathrm{i} k r} \mu(r)\right) d r\right|+1\right) \\
& \leq C k\left|\int_{0}^{\infty} \cos (r s) \mathrm{e}^{\mathrm{i} k r} \mu(r) d r\right|+C\left(\left|\int_{0}^{\infty} \cos (r s) \mathrm{e}^{\mathrm{i} k r} \mu^{\prime}(r) d r\right|+1\right) \\
& =: T^{\mathrm{I}}+T^{\mathrm{II}} .
\end{aligned}
$$

The estimates $T^{\mathrm{I}} \leq C^{\mathrm{I}} k R$ and $T^{\mathrm{II}} \leq C^{\mathrm{II}}$ follows from the properties of μ (cf. (3.25)). For $|s| \geq 3 k / 2$, the estimate of T^{I} can be refined by using integration by parts

$$
\begin{aligned}
T^{\mathrm{I}} & \leq C k\left|\int_{0}^{\infty} \cos (r s) \mathrm{e}^{\mathrm{i} k r} \mu(r) d r\right|=C \frac{k}{2}\left|\int_{0}^{\infty}\left(\mathrm{e}^{\mathrm{i}(k+s) r}+\mathrm{e}^{\mathrm{i}(k-s) r}\right) \mu(r) d r\right| \\
& \leq C^{\prime}\left(\frac{k^{2}}{s^{2}-k^{2}}+\int_{0}^{\infty} \frac{k^{2}}{s^{2}-k^{2}}\left|\mu^{\prime}(r)\right| d r\right) \leq C^{\prime \prime}
\end{aligned}
$$

Case 2: $d=1$.
There holds

$$
|\iota(s)| \leq \frac{1}{k} \int_{0}^{\infty} \mu(r) d r \leq C \frac{R}{k}
$$

To estimate $s \iota(s)$, we apply integration by parts to obtain

$$
|s \iota(s)| \leq\left|\int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu(r) \partial_{r} \sin (s r) d r\right|=\left|\int_{0}^{\infty} \sin (s r) \partial_{r}\left(\frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu(r)\right) d r\right| \leq C \frac{1+R k}{k} .
$$

Similarly, we get by two-fold integration by parts

$$
\begin{aligned}
\left|s^{2} \iota(s)\right| & \leq\left|\int_{0}^{\infty} \frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu(r) \partial_{r}^{2} \cos (s r) d r\right|=\left|\int_{0}^{\infty}\left\{\partial_{r} \cos (s r)\right\}\left\{\partial_{r}\left(\frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu(r)\right)\right\} d r\right| \\
& \leq\left|\int_{0}^{\infty} \cos (s r)\left\{\partial_{r}^{2}\left(\frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu(r)\right)\right\} d r+1\right| \\
& \leq k\left|\int_{0}^{\infty} \cos (s r) \mathrm{e}^{\mathrm{i} k r} \mu(r) d r\right|+\left|\int_{0}^{\infty} \cos (s r)\left(2 \mathrm{i}^{\mathrm{i} k r} \mu^{\prime}(r)+\frac{\mathrm{e}^{\mathrm{i} k r}}{k} \mu^{\prime \prime}(r)\right) d r+1\right| \\
& =: T^{\mathrm{I}}+T^{\mathrm{III}}
\end{aligned}
$$

The estimate $T^{\text {III }} \leq C\left(1+\frac{1}{k R}\right)$ directly follows from the properties of the cutoff function μ (3.25). The term T^{I} was estimated already in Case 1 so that the proof of the case $d=1$ is complete.

Case 3a: $d=2$ and $r \leq 4 R \leq 1 / k$.
For brevity, we write

$$
h_{k}(r):=H_{0}^{(1)}(k r) \quad \text { and } \quad j_{\nu, s}(r):=J_{\nu}(s r)
$$

Estimate (A.3c) implies

$$
\forall 0<r<4 R \leq 1 / k:\left|h_{k}(r)\right| \leq C(1+|\log k r|) \quad \text { and } \quad \forall r \geq 0:\left|J_{0}(r)\right| \stackrel{[1,9.1 .60]}{\leq} 1
$$

Hence,

$$
|\iota(s)| \leq C \int_{0}^{4 R}(1+|\log k r|) r d r=C R^{2}(1+|\log (4 k R)|)
$$

For the estimate of $s^{m} \iota(s)$, we employ the relations (see [1, 9.1.30], [1, 9.1.1])

$$
\begin{equation*}
\left(r j_{1, s}(r)\right)^{\prime}=r s j_{0, s}(r) \quad \text { and } \quad\left(r j_{0, s}^{\prime}(r)\right)^{\prime}=-r s^{2} j_{0, s}(r) \tag{3.34}
\end{equation*}
$$

Integration by parts results in

$$
\begin{aligned}
|s \iota(s)| & \leq C\left|\int_{0}^{\infty} h_{k} \mu\left(r j_{1, s}\right)^{\prime} d r\right|=C\left|\int_{0}^{\infty} r j_{1, s}\left(\mu^{\prime} h_{k}+\mu h_{k}^{\prime}\right) d r\right| \\
& \text { (A.8), (A.3c), (A.11) } C \int_{0}^{4 k R} r\left\{\frac{(1+|\log k r|)}{R}+\frac{1}{r}+k^{2} r\right\} d r \\
& \leq C R\left\{1+|\log k R|+k^{2} R^{2}\right\} \leq C R(1+|\log k R|) \leq C R|\log k R|
\end{aligned}
$$

Finally, we estimate $s^{2} \iota(s)$ by two-fold integration by parts

$$
\begin{equation*}
\left|s^{2} \iota(s)\right|=C\left|\int_{0}^{\infty} h_{k} \mu\left(r j_{0, s}^{\prime}\right)^{\prime}\right| \leq C\left(\left|\int_{0}^{4 R} j_{0, s}\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right|+\left|\lim _{r \rightarrow 0}\left(r h_{k}^{\prime}(r)\right)\right|\right) \tag{3.35}
\end{equation*}
$$

Note that $\lim _{r \rightarrow 0} r h_{k}^{\prime}(r)=2 \mathrm{i} / \pi$. For the first term, we use

$$
\begin{equation*}
\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}=\mu\left(r h_{k}^{\prime}\right)^{\prime}+2 r \mu^{\prime} h_{k}^{\prime}+\left(r \mu^{\prime}\right)^{\prime} h_{k} \tag{3.36}
\end{equation*}
$$

We employ (A.12) for the first, (3.25), (A.11) for the second, (3.25), and (A.3c) for the third term on the right-hand side in (3.36) to obtain

$$
\left|\left(r\left(h_{k} \mu\right)^{\prime}(r)\right)^{\prime}\right| \leq C k^{2} r(1+|\log (k r)|)+\frac{1}{R}+\frac{R+r}{R^{2}}(1+|\log (k r)|) .
$$

Hence,

$$
\begin{aligned}
\left|s^{2} \iota(s)\right| & \leq C\left((k R)^{2}(1+|\log (k R)|)+1+|\log (k R)|\right) \\
& \leq C(1+|\log (k R)|)
\end{aligned}
$$

Case 3b: $d=2$ and $4 R k>1$.
We define $\varphi_{k}(r):=h_{k}(r) \mu(r) r$ and denote its antiderivative by $\Phi_{k}(r):=\int_{1 / k}^{r} \varphi_{k}(t) d t$. We use the splitting

$$
\iota(s)=\frac{\pi \mathrm{i}}{2} \int_{0}^{1 / k} \varphi_{k} j_{0, s}+\frac{\pi \mathrm{i}}{2} \int_{1 / k}^{4 R} \varphi_{k} j_{0, s}=: \iota_{\mathrm{I}}(s)+\iota_{\mathrm{II}}(s)
$$

For $\iota_{\mathrm{I}}(s)$, we employ the estimates as in Case 3a (with $4 R$ replaced by $1 / k$ therein) to obtain

$$
\left|\iota_{\mathrm{I}}(s)\right| \leq \frac{C}{k^{2}}
$$

It remains to estimate $\iota_{\text {II }}(s)$. Note that $j_{0, s}^{\prime}=-s j_{1, s}$. There holds

$$
\begin{equation*}
\iota_{\text {II }}(s)=\frac{\pi \mathrm{i}}{2} \int_{1 / k}^{\infty} \varphi_{k} j_{0, s}=\frac{\pi \mathrm{i}}{2} \int_{1 / k}^{4 R} \Phi_{k} s j_{1, s}+\left.\frac{\pi \mathrm{i}}{2} \Phi_{k} j_{0, s}\right|_{r=1 / k} ^{4 R} \tag{3.37}
\end{equation*}
$$

In the next step, we will estimate Φ_{k}. Let $\tilde{\varphi}_{k}(r):=\mathrm{e}^{-\mathrm{i} k r} \varphi_{k}(r)$ so that Φ_{k} can be written as

$$
\begin{aligned}
\Phi_{k}(r) & :=\int_{1 / k}^{r} \mathrm{e}^{\mathrm{i} k t} \tilde{\varphi}_{k}(t) d t=-\int_{1 / k}^{r} \frac{\mathrm{e}^{\mathrm{i} k t}}{\mathrm{i} k} \tilde{\varphi}_{k}^{\prime}(t) d t+\left.\frac{\varphi_{k}(t)}{\mathrm{i} k}\right|_{t=1 / k} ^{r} \\
& =-\underbrace{\int_{1 / k}^{r} \frac{\mathrm{e}^{\mathrm{i} k t}}{\mathrm{i} k} \tilde{\varphi}_{k}^{\prime}(t) d t}_{=: \Phi_{k}^{\mathrm{I}}(r)}+\underbrace{\left.\frac{1}{\mathrm{i} k} t h_{k} \mu\right|_{t=1 / k} ^{r}}_{=: \Phi_{k}^{\mathrm{I}}(r)} .
\end{aligned}
$$

By using (A.6) and

$$
\forall t>0: \quad\left|(t \mu(t))^{\prime}\right| \leq C
$$

we obtain

$$
\begin{aligned}
\left|\Phi_{k}^{\mathrm{I}}(r)\right| & \leq \frac{1}{k} \int_{1 / k}^{r}\left|\tilde{\varphi}_{k}^{\prime}\right| d t=\frac{1}{k} \int_{1 / k}^{r}\left|t \mu\left(\mathrm{e}^{-\mathrm{i} k t} h_{k}\right)^{\prime}+(t \mu)^{\prime} \mathrm{e}^{-\mathrm{i} k t} h_{k}\right| d t \\
& \leq \frac{C}{k} \int_{1 / k}^{r} \frac{1}{\sqrt{k t}} d t \leq \frac{C}{k} \sqrt{\frac{r}{k}} .
\end{aligned}
$$

The function Φ_{k}^{II} can be estimated by using (A.3a)

$$
\left|\Phi_{k}^{\mathrm{II}}(r)\right|=\left|\frac{1}{\mathrm{i} k} t h_{k} \mu\right|_{t=1 / k}^{r} \left\lvert\, \leq C\left(\frac{1}{k} \sqrt{\frac{r}{k}}+\frac{1}{k^{2}}\right) \stackrel{\sqrt{\frac{1}{k}} \leq \sqrt{r}}{\leq} \frac{C}{k} \sqrt{\frac{r}{k}}\right.
$$

In summary we have proved

$$
\left|\Phi_{k}(r)\right| \leq \frac{C}{k} \sqrt{\frac{r}{k}}
$$

By inserting this estimate and (A.3b) into (3.37) we get

$$
\begin{aligned}
\left|\iota_{\mathrm{II}}(s)\right| & \leq C \frac{\sqrt{s}}{k^{3 / 2}} \int_{0}^{4 R} \sqrt{\frac{s r}{1+r s}} d r+\left.\frac{C}{k} \sqrt{\frac{r}{k}}\right|_{r=1 / k} ^{4 R} \\
& \leq C\left(\frac{4 R \sqrt{s}}{k^{3 / 2}}+\frac{1}{k} \sqrt{\frac{4 R}{k}}+\frac{1}{k^{2}}\right) .
\end{aligned}
$$

This leads to

$$
\begin{equation*}
|\iota(s)| \leq C \frac{R}{k} \sqrt{\frac{s}{k}}+\frac{R}{k} \tag{3.38}
\end{equation*}
$$

Next, we estimate $s^{2} \iota(s)$ by two-fold integration by parts

$$
\begin{align*}
\left|s^{2} \iota(s)\right| & =C\left|\int_{0}^{\infty} h_{k} \mu\left(r j_{0, s}^{\prime}\right)^{\prime}\right| \\
& \leq C(\left|\int_{0}^{4 R} j_{0, s}\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right|+\underbrace{\left|\lim _{r \rightarrow 0} r h_{k}^{\prime}(r)\right|}_{=2 / \pi}) \tag{3.39}
\end{align*}
$$

The first summand can be split according to

$$
\begin{equation*}
\left|\int_{0}^{4 R} j_{0, s}\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right| \leq \underbrace{\left|\int_{0}^{1 / k} j_{0, s}\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right|}_{=: I_{1}}+\underbrace{\left|\int_{1 / k}^{4 R} j_{0, s}\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right|}_{=: I_{2}} . \tag{3.40}
\end{equation*}
$$

We conclude from Case 3a that $\left|I_{1}\right| \leq C$ holds. For the second integral, we employ (A.3a), (3.25), (A.5), (A.7) to get

$$
\begin{align*}
\left|\left(r\left(h_{k} \mu\right)^{\prime}\right)^{\prime}\right| & =\left|h_{k}\left(\mu^{\prime}+r \mu^{\prime \prime}\right)+h_{k}^{\prime}\left(\mu+2 r \mu^{\prime}\right)+r h_{k}^{\prime \prime} \mu\right| \leq C\left(\frac{1}{r \sqrt{k r}}+\sqrt{\frac{k}{r}}+r k \sqrt{\frac{k}{r}}\right) \tag{3.41}\\
& \leq C\left(\frac{1}{r \sqrt{k r}}+k \sqrt{k r}\right) .
\end{align*}
$$

The combination of (3.40), (3.41), and (A.3b) leads to

$$
I_{2} \leq C k R \sqrt{\frac{R k}{1+R s}}
$$

Thus, we have proved

$$
\begin{equation*}
\left|s^{2} \iota(s)\right| \leq C k R \sqrt{\frac{R k}{1+R s}} . \tag{3.42}
\end{equation*}
$$

For $0 \leq s \leq k$, we employ (3.38) and for $s>k$ we use (3.42) to obtain for $m=0,1,2$

$$
s^{m}|\iota(s)| \leq C R k^{m-1}
$$

For $|s| \geq 3 k / 2$ and $R \leq C$, the result can further be improved. In view of the assumption $R_{0} \leq R \leq R_{1}$, we may take as our starting point (3.35), which leads immediately to the expression (3.40). The integral I_{1} in (3.40) is already seen to be bounded independent of k. Since, by [1, 9.1.1],

$$
\left(r h_{k}^{\prime}\right)^{\prime}=-k^{2} r h_{k}
$$

we can write the integral I_{2} as

$$
I_{2}=\left|\int_{1 / k}^{4 R} j_{0, s}\left(-k^{2} r h_{k} \mu+2 r h_{k}^{\prime} \mu^{\prime}+\left(r \mu^{\prime}\right)^{\prime} h_{k}\right)\right| .
$$

Recalling that $\mu^{\prime} \equiv 0$ on $(0,2 R)$, we can estimate I_{2} by

$$
I_{2} \leq \underbrace{\left|\int_{1 / k}^{4 R} j_{0, s} k^{2} r h_{k} \mu\right|}_{=: I_{2}^{I}}+C R \sup _{r \in(2 R, 4 R)}\left\{\left|j_{0, s} h_{k}^{\prime}\right|+\left|j_{0, s} h_{k}\right|\right\} .
$$

We conclude from (A.3), (A.5), and (A.1) together with (A.2)

$$
C R \sup _{r \in(2 R, 4 R)}\left\{\left|j_{0, s} h_{k}^{\prime}\right|+\left|j_{0, s} h_{k}\right|\right\} \leq C R \frac{1}{\sqrt{|s| R}}\left(\frac{1}{R \sqrt{R k}}+\sqrt{\frac{k}{R}}+\frac{1}{\sqrt{R k}}\right) \leq C
$$

where we used $|s| \geq 3 / 2 k$ and the fact that $k \geq k_{0}$. It remains to bound I_{2}^{I}. Lemma A. 1 allows us to write

$$
I_{2}^{I}=\frac{2 k^{2}}{\pi \sqrt{k|s|}}\left|\int_{1 / k}^{4 R} g^{I}(k r) \mu(r)\left\{e^{\mathrm{i}(s+k) r} f^{I}(s r)+e^{\mathrm{i}(s-k) r} f^{I I}(s r)\right\}\right| .
$$

Since $f^{I}, f^{I I}, g^{I}$ are bounded functions by Lemma A.1, an integration by parts leads to

$$
\begin{aligned}
I_{2}^{I} & \leq C k\left(\frac{1}{|s+k|}+\frac{1}{|s-k|}\right) \\
& +C k\left|\int_{1 / k}^{4 R} \frac{e^{\mathrm{i}(s+k) r}}{s+k} \partial_{r}\left(f^{I}(s r) g^{I}(k r) \mu(r)\right)+\frac{e^{\mathrm{i}(s-k) r}}{s-k} \partial_{r}\left(f^{I I}(s r) g^{I}(k r) \mu(r)\right)\right| .
\end{aligned}
$$

Since $|s| \geq 3 / 2 k$, Lemma A. 1 provides the estimates

$$
\left|\partial_{r}\left(f^{I}(s r) g^{I}(k r) \mu(r)\right)\right|+\left|\partial_{r}\left(f^{I I}(s r) g^{I}(k r) \mu(r)\right)\right| \leq C, \quad r \geq 1 / k
$$

Combining these results, we arrive at the desired $I_{2}^{I} \leq C$.

3.3 Existence and uniqueness

Existence, uniqueness, and well-posedness of problem (2.5) has been studied in much more generality (concerning the assumption on the domain Ω) in [12] by using different techniques.

The main goal of the estimates which we have derived in the previous sections is their application to the proof of the discrete stability for the finite element discretization and the convergence rates. However, since existence, uniqueness, and well-posedness for our model problem are simple by-products we state them in passing.

Theorem 3.6 Let Ω be a ball of radius $R>0$. Then, there exists a constant $C(\Omega, k)>0$ such that for all $f \in\left(H^{1}(\Omega)\right)^{\prime}$ the unique solution u of problem (2.5) satisfies

$$
\|u\|_{\mathcal{H}} \leq C(\Omega, k)\|f\|_{H^{1}(\Omega)^{\prime}}
$$

Proof. The coercivity of the bilinear form $a(u, v)$ follows from the compact embedding $H^{1}(\Omega) \stackrel{c}{\hookrightarrow} L^{2}(\Omega)$ and $(3.4 \mathrm{~b}),(3.4 \mathrm{~d})$:

$$
\operatorname{Re} a(u, u) \geq\|u\|_{\mathcal{H}}^{2}-2 k^{2}\|u\|_{L^{2}(\Omega)}^{2}-\operatorname{Re} \int_{\Gamma}(T u) \bar{u} \geq\|u\|_{\mathcal{H}}^{2}-2 k^{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

Next, we show uniqueness of the adjoint problem:

$$
\overline{a(v, u)}=0 \quad \forall v \in H^{1}(\Omega) \Longrightarrow u=0
$$

Let $u \in H^{1}(\Omega)$ be a solution of the homogeneous adjoint problem. We choose $v=u$ and consider the imaginary part:

$$
0=\operatorname{Im} \overline{a(u, u)}=-\operatorname{Im} \overline{\int_{\Gamma}(T u) \bar{u}}=\operatorname{Im} \int_{\Gamma}(T u) \bar{u} .
$$

Lemma 3.3 implies $u=0$ on Γ. Hence, $u \in H_{0}^{1}(\Omega)$ and satisfies

$$
\begin{equation*}
\int_{\Omega}\langle\nabla u, \nabla \bar{v}\rangle=k^{2} \int_{\Omega} u \bar{v} \quad \forall v \in H^{1}(\Omega) \tag{3.43}
\end{equation*}
$$

This means in particular that $u \in H_{0}^{1}(\Omega)$ is an eigenfunction of $(-\Delta)^{-1}$ with eigenvalue k^{-2}. However, for any $\tilde{\Omega} \supset \Omega$, equation (3.43) implies that the extension

$$
\tilde{u}(x):= \begin{cases}u(x) & x \in \Omega \\ 0 & x \notin \Omega\end{cases}
$$

satisfies (3.43) with Ω replaced by $\tilde{\Omega}$, i.e., \tilde{u} is also an eigenfunction of $(-\Delta)^{-1}$ with eigenvalue k^{-2} on any domain $\tilde{\Omega} \supset \Omega$. A simple scaling argument shows that this is impossible.

Note that the proof of Theorem 3.6 does not provide how the constant $C(\Omega, k)$ depends on the wave number. In [12], this question has been investigated in much more generality and, hence, will not be discussed here. The Fourier analysis which we developed in Section 3.2 give explicit bounds on this constant provided the right-hand side is in $L^{2}(\Omega)$.

Lemma 3.7 For any $f \in L^{2}(\Omega)$ and $v:=N_{k} f$, there holds

$$
\|v\|_{\mathcal{H}} \leq C\|f\|_{L^{2}(\Omega)},
$$

where C only depends on k_{0} and R_{0} (cf. (2.2), (3.3)).

Proof. The radius of the minimal ball that contains Ω is denoted by R_{Ω}. If $4 k R_{\Omega}>1$, the estimates

$$
\|v\|_{L^{2}(\Omega)} \leq C \frac{R_{\Omega}}{k}\|f\|_{L^{2}(\Omega)}
$$

and

$$
\|\nabla v\|_{L^{2}(\Omega)} \leq C\left(\frac{1}{k_{0}}+R_{\Omega}\right)\|f\|_{L^{2}(\Omega)}
$$

follow from Lemma 3.5. If $\alpha<4 k R_{\Omega} \leq 1$, then $\left|\log k R_{\Omega}\right| \leq|\log \alpha|$. Hence, both estimates remain valid (cf. Lemma 3.5), possibly with a different constant C which, in addition, depend on α.

Theorem 3.8 Let Ω be a ball of radius R and boundary Γ. Then, there exists $C_{c}>0$ that only depend on k_{0} and R_{0} (cf. (2.2), (3.3)) such that for all $u, v \in H^{1}(\Omega)$

$$
|a(u, v)| \leq C_{c}\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}} .
$$

Proof. The estimate

$$
|a(u, v)| \leq|u|_{H^{1}(\Omega)}|v|_{H^{1}(\Omega)}+k^{2}\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}+\left|\int_{\Gamma}(T u) \bar{v}\right|
$$

is obvious. Hence, the assertion follows from Lemma 3.3.

4 Stability and convergence analysis

This section is devoted to the analysis of the discrete problem (2.7) for the finite-dimensional space $S \subset H^{1}(\Omega)$; we will provide conditions on S under which unique solvability and quasioptimality of (2.7) can be guaranteed.

We employ the generalization of the theory of [31] that has been developed in [37]. There, a measure of "almost invariance" of the approximation space S under the solution operator of an adjoint Helmholtz problem has been introduced.

Adjoint Problem:

For given $f \in L^{2}(\Omega)$, find $z \in H^{1}(\Omega)$ such that

$$
a(v, z)=(f, v)_{L^{2}(\Omega)} \quad \forall v \in H^{1}(\Omega)
$$

Note that the strong formulation to this problem is: Find z such that

$$
\begin{array}{ll}
-\Delta z-k^{2} z=f & \text { in } \Omega \tag{4.1}\\
\frac{\partial z}{\partial n}=T^{\star} z & \text { on } \Gamma
\end{array}
$$

where T^{\star} is the adjoint of T. The operator T^{\star} can be expressed as the normal trace applied to the solution operator to the problem

$$
\text { find } w \in H_{\mathrm{loc}}^{1}\left(\Omega^{+}\right) \text {such that }\left\{\begin{array}{cl}
\left(-\Delta-k^{2}\right) w=0 & \\
w=g & \text { in } \Omega^{+}, \\
\left|\frac{\partial w}{\partial r}+\mathrm{i} k w\right|=o\left(\|\mathbf{x}\|^{\frac{1-d}{2}}\right) & \\
\text { on } \Gamma, \\
\|\mathbf{x}\| \rightarrow \infty
\end{array}\right.
$$

The solution operator $f \mapsto z$ for problem (4.1) is denoted by $N_{k}^{\star}: L^{2}(\Omega) \rightarrow H^{1}(\Omega)$ and explicitly given by

$$
\begin{equation*}
z:=N_{k}^{\star} f:=\int_{\Omega} \overline{G_{k}}(x-y) f(y) d s_{y} . \tag{4.2}
\end{equation*}
$$

Remark 4.1 The stability estimate

$$
\|z\|_{\mathcal{H}} \leq C\|f\|_{L^{2}(\Omega)}
$$

holds as in Lemma 3.7, because $\bar{z}=N_{k} \bar{f}$ and $\|z\|_{\mathcal{H}}=\|\bar{z}\|_{\mathcal{H}},\|\bar{f}\|_{L^{2}(\Omega)}=\|f\|_{L^{2}(\Omega)}$.
For the stability of the discrete problem, the following measure of almost invariance plays a crucial role

$$
\begin{equation*}
\eta(S):=\sup _{f \in L^{2}(\Omega) \backslash\{0\}} \inf _{v \in S} \frac{\left\|N_{k}^{\star} f-v\right\|_{\mathcal{H}}}{\|f\|_{L^{2}(\Omega)}} . \tag{4.3}
\end{equation*}
$$

(Note that the quantity $\eta(S)$ was denoted in [37] by $\tilde{\eta}(S)$.)

4.1 Discrete stability

In this section, we will prove the discrete stability in the form of an inf-sup condition.
Theorem 4.2 Let the assumptions of Lemma 3.3 be satisfied. Assume that the space S is chosen such that

$$
\begin{equation*}
k \eta(S) \leq \frac{1}{4 C_{c}} \tag{4.4}
\end{equation*}
$$

Then, the discrete inf-sup constant satisfies

$$
\inf _{u \in S} \sup _{v \in S \backslash\{0\}} \frac{|a(u, v)|}{\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}}} \geq \frac{1 / 2}{1+\left(2 C_{c}\right)^{-1}+k}
$$

and this ensures existence and uniqueness of the discrete problem (2.7).
Proof. Let $u \in S$ and set $z:=2 k^{2} N_{k}^{\star} u$. Then,

$$
\begin{aligned}
a(u, u+z) & =\left(\int_{\Omega}\langle\nabla u, \nabla \bar{u}\rangle+k^{2}|u|^{2}-\int_{\Gamma}(T u) \bar{u}\right)+a(u, z)-2 k^{2} \int_{\Omega}|u|^{2} \\
& =\int_{\Omega}\langle\nabla u, \nabla \bar{u}\rangle+k^{2}|u|^{2}-\int_{\Gamma}(T u) \bar{u} .
\end{aligned}
$$

We derive from Lemma 3.3

$$
\operatorname{Re} a(u, u+z) \geq\|u\|_{\mathcal{H}}^{2}
$$

Let $z_{S} \in S$ denote the best approximation of z with respect to the $\|\cdot\|_{\mathcal{H}}$-norm. Then,

$$
\begin{aligned}
\operatorname{Re} a\left(u, u+z_{S}\right) & \geq \operatorname{Re} a(u, u+z)-\left|a\left(u, z-z_{S}\right)\right| \stackrel{\text { Thm. }}{\geq}{ }^{3.8}\|u\|_{\mathcal{H}}^{2}-C_{c}\|u\|_{\mathcal{H}}\left\|z-z_{S}\right\|_{\mathcal{H}} \\
& \geq\|u\|_{\mathcal{H}}\left(\|u\|_{\mathcal{H}}-2 k^{2} C_{c} \eta(S)\|u\|_{L^{2}(\Omega)}\right) \geq\left(1-2 k C_{c} \eta(S)\right)\|u\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

The stability of the continuous problem (cf. Lemma 3.7) implies

$$
\begin{aligned}
\left\|u+z_{S}\right\|_{\mathcal{H}} & \leq\|u\|_{\mathcal{H}}+\left\|z-z_{S}\right\|_{\mathcal{H}}+\|z\|_{\mathcal{H}} \leq\|u\|_{\mathcal{H}}+2 k^{2} \eta(S)\|u\|_{L^{2}(\Omega)}+2 k^{2}\|u\|_{L^{2}(\Omega)} \\
& \leq(1+2 k \eta(S)+k)\|u\|_{\mathcal{H}}
\end{aligned}
$$

so that

$$
\operatorname{Re} a\left(u, u+z_{S}\right) \geq \frac{1-2 C_{c} k \eta(S)}{1+2 k \eta(S)+k}\|u\|_{\mathcal{H}}\left\|u+z_{S}\right\|_{\mathcal{H}}
$$

Thus, we have proved

$$
\inf _{u \in S} \sup _{v \in S \backslash\{0\}} \frac{|a(u, v)|}{\|u\|_{\mathcal{H}}\|v\|_{\mathcal{H}}} \geq \frac{C}{k} .
$$

4.2 Convergence analysis

The convergence of the finite element discretization is proved by applying the theory as developed in [37] (see also [7,31,38], [8, Sec.5.7]).

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied.
Then

$$
\begin{equation*}
\|e\|_{\mathcal{H}} \leq 2 C_{c} \inf _{v \in S}\|u-v\|_{\mathcal{H}} . \tag{4.5}
\end{equation*}
$$

The L^{2}-error satisfies

$$
\|e\|_{L^{2}(\Omega)} \leq C_{c} \eta(S)\|e\|_{\mathcal{H}} .
$$

Proof. In the first step, we will estimate the L^{2}-error by the H^{1}-error and employ the Aubin-Nitsche technique. The Galerkin error is denoted by $e=u-u_{S}$. We set $\psi:=N_{k}^{\star} e$ (cf. (4.2)) and denote by $\psi_{S} \in S$ the best approximation of ψ with respect to the \mathcal{H}-norm.

The L^{2}-error can be estimated by

$$
\begin{align*}
\|e\|_{L^{2}(\Omega)}^{2} & =a(e, \psi) \leq a\left(e, \psi-\psi_{S}\right) \leq C_{c}\|e\|_{\mathcal{H}}\left\|\psi-\psi_{S}\right\|_{\mathcal{H}} \\
& \leq C_{c} \eta(S)\|e\|_{\mathcal{H}}\|e\|_{L^{2}(\Omega)} \tag{4.6}
\end{align*}
$$

i.e.,

$$
\begin{equation*}
\|e\|_{L^{2}(\Omega)} \leq C_{c} \eta(S)\|e\|_{\mathcal{H}} . \tag{4.7}
\end{equation*}
$$

To estimate the \mathcal{H}-norm of the error we proceed as follows. Note that (3.4b), (3.4d) imply

$$
\begin{equation*}
\operatorname{Re}(T u, u)_{L^{2}(\Gamma)} \leq 0 \tag{4.8}
\end{equation*}
$$

Hence, for any $v_{S} \in S$

$$
\begin{aligned}
\|e\|_{\mathcal{H}}^{2} & =\operatorname{Re}(a(e, e))+\left\{\|e\|_{\mathcal{H}}^{2}-\operatorname{Re} a(e, e)\right\} \\
& =\operatorname{Re} a\left(e, u-v_{S}\right)+2 k^{2}\|e\|_{L^{2}(\Omega)}^{2}+\operatorname{Re} \int_{\Gamma}(T e) \bar{e} \\
& \stackrel{(4.7),(4.8)}{\leq} C_{c}\|e\|_{\mathcal{H}}\left\|u-v_{S}\right\|_{\mathcal{H}}+2\left(k C_{c} \eta(S)\right)^{2}\|e\|_{\mathcal{H}}^{2} .
\end{aligned}
$$

Note that (4.4) implies

$$
\begin{equation*}
2\left(k C_{c} \eta(S)\right)^{2} \leq \frac{1}{2} \tag{4.9}
\end{equation*}
$$

so that we arrive at the final estimate

$$
\|e\|_{\mathcal{H}} \leq 2 C_{c}\left\|u-v_{S}\right\|_{\mathcal{H}} .
$$

5 Example: $h p$-FEM

Theorem 4.2, 4.3 show quasi-optimality of arbitrary approximation spaces under the assumption (4.4) on the measure of almost invariance $\eta(S)$. However, for concrete finite element spaces, or generalizations thereof, the verification of condition (4.4) is far from trivial. The purpose of this section is two-fold: firstly, we show that for classical higher order FEM spaces the assumption (4.4) can be met under a relatively mild condition on the local polynomial order of the classical FEM space; in particular, we will demonstrate that for spaces consisting of piecewise polynomials of degree p on quasi-uniform meshes that satisfy the side condition $p \geq c \ln k$, the key condition (4.4) is satisfied. Secondly, we derive conditions on the approximation space that may be easier to ascertain in practice than the condition (4.4).

In view of the fact that the circle (in 2 D) and the sphere (in 3D) are relevant geometries for our theory (recall that Thm. 4.2, 4.3 have been shown for circles/spheres), we consider triangulations with curved elements that permit inclusion of these geometries. We adopt the setting of [13]. The triangulation \mathcal{T}_{h} consists of elements which are the image of the reference triangle (in 2 D) or the reference tetrahedron (in 3D). We do not allow hanging nodes and assume - as is standard - that the element maps of elements sharing an edge or a face induce the same parametrization on that edge or face. The maximal mesh width is denoted by $h:=\max _{K \in \mathcal{T}_{h}} \operatorname{diam} K$. Additionally, we make the following assumption on the element maps $F_{K}: \widehat{K} \rightarrow K$ but, first, have to introduce some notation. For a function $u: \Omega \rightarrow \mathbb{R}, \Omega \subset \mathbb{R}^{d}$, we write

$$
\begin{equation*}
\left|\nabla^{n} u(x)\right|^{2}=\sum_{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|=n} \frac{n!}{\alpha!}\left|D^{\alpha} u(x)\right|^{2} . \tag{5.1}
\end{equation*}
$$

For later purposes, we recall the multinomial formula and a simple fact that follows from the Cauchy-Schwarz inequality for sums:

$$
\begin{align*}
\frac{d^{n}}{n!} & =\sum_{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|=n} \frac{1}{\alpha!}, \tag{5.2}\\
\sum_{\alpha \in \mathbb{N}_{0}^{d}:|\alpha|=n} \frac{1}{\alpha!}\left|D^{\alpha} u(x)\right| & \leq \frac{1}{n!} d^{n / 2}\left|\nabla^{n} u(x)\right| . \tag{5.3}
\end{align*}
$$

Assumption 5.1 (quasi-uniform regular triangulation) Each element map F_{K} can be written as $F_{K}=R_{K} \circ A_{K}$, where A_{K} is an affine map and the maps R_{K} and A_{K} satisfy for constants $C_{\text {affine }}, C_{\text {metric }}, \gamma>0$ independent of h :

$$
\begin{aligned}
& \left\|A_{K}^{\prime}\right\|_{L^{\infty}(\widehat{K})} \leq C_{\text {affine }} h, \quad\left\|\left(A_{K}^{\prime}\right)^{-1}\right\|_{L^{\infty}(\widehat{K})} \leq C_{\text {affine }} h^{-1} \\
& \left\|\left(R_{K}^{\prime}\right)^{-1}\right\|_{L^{\infty}(\widetilde{K})} \leq C_{\text {metric }}, \quad\left\|\nabla^{n} R_{K}\right\|_{L^{\infty}(\widetilde{K})} \leq C_{\text {metric }} \gamma^{n} n!\quad \forall n \in \mathbb{N}_{0}
\end{aligned}
$$

Here, $\widetilde{K}=A_{K}(\widehat{K})$.
Remark 5.2 Triangulations satisfying Assumption 5.1 can be obtained by patchwise construction of the mesh: Let $\mathcal{T}^{\text {macro }}$ be a fixed triangulation (with curved elements) with analytic element maps that resolves the geometry. If the triangulation \mathcal{T}_{h} is obtained by quasi-uniform refinements of the reference element \widehat{K} and the final mesh is obtained by mapping the subdivisions of the reference element with the macro element maps, then the resulting element maps satisfy the assumptions of Assumption 5.1.

For meshes \mathcal{T}_{h} satisfying Assumption 5.1 with element maps F_{K} we denote the usual space of piecewise (mapped) polynomials by $S^{p, 1}\left(\mathcal{T}_{h}\right):=\left\{u \in H^{1}(\Omega)\left|\forall K \in \mathcal{T}_{h}: u\right|_{K} \circ F_{K} \in \mathcal{P}_{p}\right\}$, where \mathcal{P}_{p} denotes the space of polynomials of degree p. The construction of approximants of a given (sufficiently smooth) function from the space $S^{p, 1}\left(\mathcal{T}_{h}\right)$ is most conveniently achieved in an element-by-element fashion. To that end, we introduce the following definition:

Definition 5.3 (element-by-element construction) Let \widehat{K} be the reference simplex in $\mathbb{R}^{d}, d \in\{2,3\}$. A polynomial π is said to permit an element-by-element construction of polynomial degree p for $u \in H^{s}(\widehat{K}), s>d / 2$, if:
(i) $\pi(V)=u(V)$ for all $d+1$ vertices V of \widehat{K},
(ii) for every edge e the restriction $\left.\pi\right|_{e} \in \mathcal{P}_{p}$ is the unique minimizer of

$$
\begin{equation*}
\pi \mapsto p^{1 / 2}\|u-\pi\|_{L^{2}(e)}+\|u-\pi\|_{H_{00}^{1 / 2}(e)} \tag{5.4}
\end{equation*}
$$

under the constraint that π satisfies (i); here the Sobolev norm $H_{00}^{1 / 2}$ is defined in (B.1).
(iii) (for $d=3$) for every face f the restriction $\left.\pi\right|_{f} \in \mathcal{P}_{p}$ is the unique minimizer of

$$
\begin{equation*}
\pi \mapsto p\|u-\pi\|_{L^{2}(f)}+\|u-\pi\|_{H^{1}(f)} \tag{5.5}
\end{equation*}
$$

under the constraint that π satisfies (i), (ii) for all vertices and edges of the face f.
We are now in position to show that the solution $v=N_{k}^{\star} f$ can be approximated well by the FEM space $S^{p, 1}\left(\mathcal{T}_{h}\right)$ provided that $k h / p$ is sufficiently small and $p \geq c \ln k$.

Theorem 5.4 Let $d \in\{1,2,3\}$ and $\Omega \subset \mathbb{R}^{d}$ be a bounded domain. Then there exist constants $C, \sigma>0$ that depend solely on the constants appearing in Assumption 5.1 such that for every $f \in L^{2}(\Omega)$ the function $v:=N_{k}^{\star} f$ satisfies

$$
\inf _{w \in S^{p, 1}\left(\mathcal{T}_{h}\right)} k\|v-w\|_{\mathcal{H}} \leq C\|f\|_{L^{2}(\Omega)}\left(1+\frac{k h}{p}\right)\left\{\frac{k h}{p}+k\left(\frac{k h}{\sigma p}\right)^{p}\right\} .
$$

Proof. We will only prove the cases $d \in\{2,3\}$. The case $d=1$ follows by similar arguments where the appeal to Theorem B. 4 and Lemma C. 3 is replaced with that to [39, Thm. 3.17].

By Lemma 3.4, we write $v=v_{H^{2}}+v_{\mathcal{A}}$ with $v_{H^{2}} \in H^{2}(\Omega)$ and $v_{\mathcal{A}}$ analytic; we have the bounds (cf. Remark 4.1)

$$
\left\|v_{H^{2}}\right\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}, \quad\left\|\nabla^{p} v_{\mathcal{A}}\right\|_{L^{2}(\Omega)} \leq C(\gamma k)^{p-1}\|f\|_{L^{2}(\Omega)} \quad \forall p \in \mathbb{N}_{0}
$$

We approximate $v_{H^{2}}$ and $v_{\mathcal{A}}$ separately. Theorem B. 4 provides an approximant $w_{H^{2}} \in S^{p, 1}\left(\mathcal{T}_{h}\right)$ such that for every $K \in \mathcal{T}_{h}$ we have, for $q=0,1$,

$$
\left\|v_{H^{2}}-w_{H^{2}}\right\|_{H^{q}(K)} \leq C\left(\frac{h}{p}\right)^{2-q}\left\|v_{H^{2}}\right\|_{H^{2}(K)} \quad \forall K \in \mathcal{T}_{h}
$$

Hence, by summation over all elements, we arrive at

$$
k\left\|v_{H^{2}}-w_{H^{2}}\right\|_{\mathcal{H}} \leq C\left(\frac{k h}{p}+\left(\frac{k h}{p}\right)^{2}\right)\|f\|_{L^{2}(\Omega)}
$$

We now turn to the approximation of $v_{\mathcal{A}}$. Again, we construct the approximation $w_{\mathcal{A}} \in$ $S^{p, 1}\left(\mathcal{T}_{h}\right)$ in an element-by-element fashion. We start by defining for each element $K \in \mathcal{T}_{h}$ the constant C_{K} by

$$
\begin{equation*}
C_{K}^{2}:=\sum_{p \in \mathbb{N}_{0}} \frac{\left\|\nabla^{p} v_{\mathcal{A}}\right\|_{L^{2}(K)}^{2}}{(2 \gamma k)^{2 p}} \tag{5.6}
\end{equation*}
$$

and we note

$$
\begin{align*}
\left\|\nabla^{p} v_{\mathcal{A}}\right\|_{L^{2}(K)} & \leq C(2 \gamma k)^{p} C_{K} \quad \forall p \in \mathbb{N}_{0}, \tag{5.7}\\
\sum_{K \in \mathcal{T}_{h}} C_{K}^{2} & \leq \frac{4}{3}\left(\frac{C}{\gamma k}\right)^{2}\|f\|_{L^{2}(\Omega)}^{2} \tag{5.8}
\end{align*}
$$

Let the element map for K be $F_{K}=R_{K} \circ A_{K}$. Lemma C. 1 gives that the function $\tilde{v}:=$ $\left.v_{\mathcal{A}}\right|_{K} \circ R_{K}$ satisfies, for suitable constants \tilde{C}, C (which depend additionally on the constants describing the analyticity of the element maps R_{K})

$$
\left\|\nabla^{p} \tilde{v}\right\|_{L^{2}(\tilde{K})} \leq C \tilde{C}^{p} \max \{p, k\}^{p} C_{K} \quad \forall p \in \mathbb{N}_{0}
$$

Since A_{K} is affine, the function $\hat{v}:=\left.v_{\mathcal{A}}\right|_{K} \circ F_{K}=\tilde{v} \circ A_{K}$ therefore satisfies

$$
\left\|\nabla^{p} \hat{v}\right\|_{L^{2}(\widehat{K})} \leq C h^{-d / 2} \tilde{C}^{p} h^{p} \max \{p, k\}^{p} C_{K} \quad \forall p \in \mathbb{N}_{0}
$$

Hence, the assumptions of Lemma C. 3 are satisfied, and we get an approximation w on the element K that admits an element-by-element construction and satisfies for $q \in\{0,1\}$

$$
\left\|v_{\mathcal{A}}-w\right\|_{H^{q}(K)} \leq C h^{d / 2-q} h^{-d / 2} C_{K}\left\{\left(\frac{h}{h+\sigma}\right)^{p+1}+\left(\frac{k h}{\sigma p}\right)^{p+1}\right\}
$$

Summation over all elements $K \in \mathcal{T}_{h}$ gives

$$
\begin{equation*}
\left\|v_{\mathcal{A}}-w\right\|_{\mathcal{H}}^{2} \leq\left[\left(\frac{h}{h+\sigma}\right)^{2 p}+k^{2}\left(\frac{h}{h+\sigma}\right)^{2 p+2}+\frac{k^{2}}{p^{2}}\left(\frac{k h}{\sigma p}\right)^{2 p}+k^{2}\left(\frac{k h}{\sigma p}\right)^{2 p+2}\right] \sum_{K \in \mathcal{T}_{h}} C_{K}^{2} \tag{5.9}
\end{equation*}
$$

The combination of (5.9) and (5.8) yields

$$
k\left\|v_{\mathcal{A}}-w\right\|_{\mathcal{H}} \leq C\left[\left(\frac{h}{h+\sigma}\right)^{p}\left(1+\frac{h k}{h+\sigma}\right)+k\left(\frac{k h}{\sigma p}\right)^{p}\left(\frac{1}{p}+\frac{k h}{\sigma p}\right)\right]\|f\|_{L^{2}(\Omega)}
$$

Furthermore, we estimate using $h \leq \operatorname{diam} \Omega$ and $\sigma>0$ (independent of h)

$$
\left(\frac{h}{h+\sigma}\right)^{p}\left(1+\frac{k h}{\sigma+h}\right) \leq C h(1+k h)\left(\frac{h}{\sigma+h}\right)^{p-1} \leq C h(1+k h) p^{-2} \leq C \frac{h}{p}\left(\frac{1}{p}+\frac{k h}{p}\right)
$$

We therefore arrive at

$$
k\left\|v_{\mathcal{A}}-w\right\|_{\mathcal{H}} \leq C\left(\frac{1}{p}+\frac{k h}{p}\right)\left[\frac{k h}{p}+k\left(\frac{k h}{\sigma p}\right)^{p}\right]\|f\|_{L^{2}(\Omega)},
$$

which completes the proof of the theorem.
Combining Theorems 5.4, 4.3 produces the condition (1.1) for quasi-optimality of the $h p$ FEM announced in the Introduction. We extract from Theorem 5.4 that quasi-optimality of the h-version FEM can be achieved under the side condition that $p \geq C \log k$:

Corollary 5.5 Let the assumptions of Lemma 3.3 and Theorem 5.4 be satisfied. Then there exist constants $c_{1}, c_{2}>0$ independent of k, h, and p such that (4.4) is implied by the following condition:

$$
\begin{equation*}
\frac{k h}{p} \leq c_{1} \quad \text { together with } \quad p \geq c_{2} \ln k . \tag{5.10}
\end{equation*}
$$

Proof. Theorem 5.4 implies

$$
k \eta(S) \leq C\left(1+\frac{k h}{p}\right)\left(\frac{k h}{p}+k\left(\frac{k h}{\sigma p}\right)^{p}\right)
$$

The right-hand side needs to be bounded by $1 / C_{c}$. It is now easy to see that we can select c_{1}, c_{2} such that this can be ensured.

Remark 5.6 To the best of the authors' knowledge, discrete stability in 2D and 3D has only been shown under much more restrictive conditions than (5.10), e.g., the condition $k^{2} h \lesssim 1$. Even in one dimension, condition (5.10) improves the stability condition $k h \lesssim 1$ that was required in [26].

Next, we reformulate Theorem 5.4 by deriving the statement under some conditions on abstract approximation spaces that are easier to verify than a direct proof of (4.4).

The key step in Theorem 5.4 is the ability to decompose $v=N_{k}^{\star} f$ into an analytic, but oscillatory part and an H^{2}-regular part and to approximate each part separately. This gives rise to the definition of two types of approximation properties.
Definition 5.7 For given $C^{\mathrm{I}}, C^{\mathrm{II}}, \gamma>0$, and $k \geq k_{0}>0$ let

$$
\begin{aligned}
\mathcal{H}^{\mathrm{osc}}\left(C^{I}, \gamma, k\right) & :=\left\{v \in H^{1}(\Omega) \mid\left\|\nabla^{p} v\right\|_{L^{2}(\Omega)} \leq C^{\mathrm{I}}(\gamma|k|)^{p-1} \quad \forall p \in \mathbb{N}_{0}\right\} \\
\mathcal{H}^{H^{2}}\left(C^{\mathrm{II}}\right) & :=\left\{v \in H^{2}(\Omega) \mid\|v\|_{H^{2}(\Omega)} \leq C^{\mathrm{II}}\right\}
\end{aligned}
$$

Let $S \subset H^{1}(\Omega)$ be the—possibly k-dependent-finite dimensional approximation space for the Galerkin method. The approximation properties for the oscillatory and the H^{2}-part are then defined as:

$$
\begin{align*}
& \eta_{\mathrm{apx}}^{\mathrm{I}}(S, k):=\frac{k}{C^{\mathrm{I}}} \sup _{v \in \mathcal{H}^{\mathcal{A}}\left(C^{I}, \gamma, k\right)} \inf _{w \in S}\|v-w\|_{\mathcal{H}}, \tag{5.11}\\
& \eta_{\mathrm{apx}}^{\mathrm{II}}(S, k)
\end{align*}=\frac{k}{C^{\mathrm{II}}} \sup _{v \in \mathcal{H}^{H^{2}}\left(C^{\mathrm{II})}\right.} \inf _{w \in S}\|v-w\|_{\mathcal{H}} .
$$

Corollary 5.8 Let $d \in\{1,2,3\}$ and assume the hypotheses of Lemma 3.4. Let $S \subset H^{1}(\Omega)$ be a finite dimensional approximation space. Then

$$
k \eta(S) \leq C\left\{\eta_{\mathrm{apx}}^{\mathrm{I}}(S, k)+\eta_{\mathrm{apx}}^{\mathrm{II}}(S, k)\right\}
$$

Proof. We split $v=N_{k}^{\star} f$ as in the proof of Theorem 5.4: $v=v_{H^{2}}+v_{\mathcal{A}}$. Then, $v_{\mathcal{A}} \in$ $\mathcal{H}^{\mathcal{A}}\left(C^{\mathrm{I}}, \gamma, k\right)$ if we choose $C^{\mathrm{I}}=C\|f\|_{L^{2}(\Omega)}$ and C, γ as in (3.24b). Hence, the minimizer $w_{\mathrm{opt}}^{\mathrm{I}} \in S$ of the right-hand side in (5.11) satisfies

$$
k\left\|v_{\mathcal{A}}-w_{\mathrm{opt}}^{\mathrm{I}}\right\|_{\mathcal{H}} \leq C\|f\|_{L^{2}(\Omega)} \eta_{\mathrm{apx}}^{\mathrm{I}}(S, k)
$$

In a similar fashion, we obtain

$$
k\left\|v_{H^{2}}-w_{\mathrm{opt}}^{\mathrm{II}}\right\|_{\mathcal{H}} \leq C\|f\|_{L^{2}(\Omega)} \eta_{\mathrm{apx}}^{\mathrm{II}}(S, k)
$$

By the triangle inequality we get for $w_{\mathrm{opt}}=w_{\mathrm{opt}}^{\mathrm{I}}+w_{\mathrm{opt}}^{\mathrm{II}}$ the estimate

$$
k\left\|v-w_{\mathrm{opt}}\right\|_{\mathcal{H}} \leq C\left\{\eta_{\mathrm{apx}}^{\mathrm{I}}(S, k)+\eta_{\mathrm{apx}}^{\mathrm{II}}(S, k)\right\}\|f\|_{L^{2}(\Omega)}
$$

A Estimate of Bessel functions

In this appendix we derive some estimates for the Hankel and Bessel functions that are used in Subsection 3.2. First, we will consider the case of large arguments $z>1$ and then the case $0<z \leq 1$.

Case 1: $z=k r>1$.
From [1, 9.2.5-9.2.16], we conclude that the Hankel functions $H_{\ell}^{(1)}$ and Bessel functions J_{ℓ}, $\ell \in \mathbb{N}_{0}$, can be written in the form

$$
\begin{align*}
& J_{\ell}(z) \stackrel{[1,9.9 .5]}{=} \sqrt{\frac{2}{\pi z}}\left(P_{\ell}(z) \cos \chi-Q_{\ell}(z) \sin \chi\right) \tag{A.1a}\\
& H_{\ell}^{(1)}(z) \stackrel{[1,9.9 .2 .7]}{=} \sqrt{\frac{2}{\pi z}}\left(P_{\ell}(z)+\mathrm{i} Q_{\ell}(z)\right) \mathrm{e}^{\mathrm{i} \chi} \tag{A.1b}
\end{align*}
$$

where $\chi:=z-\pi / 4$. The functions P_{ℓ}, Q_{ℓ} have the following property: Upon defining

$$
\begin{align*}
& P_{\ell, m}(z):=\sum_{k=0}^{m} \frac{\beta_{\ell, 2 k}}{z^{2 k}} \tag{A.1c}\\
& Q_{\ell, m}(z)=-\mathrm{i} \sum_{k=0}^{m} \frac{\beta_{\ell, 2 k+1}}{z^{2 k+1}} \tag{A.1d}
\end{align*}
$$

with

$$
\beta_{\ell, k}:=\frac{\mathrm{i}^{k} \gamma_{\ell, k}}{2^{3 k} k!} \quad \text { and } \quad \gamma_{\ell, m} \text { as in (3.11) }
$$

there holds

$$
\forall z>0 \quad \forall m>\frac{\ell}{2}-\frac{1}{4}\left\{\begin{array}{l}
\left|\left(P_{\ell}-P_{\ell, m-1}\right)(z)\right| \leq \frac{\left|\gamma_{\ell, 2 m}\right|}{2^{6 m}(2 m)!} \frac{1}{z^{2 m}}, \\
\left|\left(Q_{\ell}-Q_{\ell, m-1}\right)(z)\right| \leq \frac{\gamma_{\ell, 2 m+1}}{2^{6 m+2}(2 m+1)!} \frac{1}{z^{2 m+1}}
\end{array}\right.
$$

Note that in Subsection 3.2 the order ℓ is always small, i.e., $\ell \in\{0,1\}$ and, hence, we do not analyze the dependence of the constants on ℓ in the following estimates.

We conclude that

$$
\begin{equation*}
\forall z \geq 1:\left|P_{\ell}(z)\right| \leq\left|P_{\ell,\left\lceil\frac{\ell}{2}\right\rceil-1}(z)\right|+\frac{\left|\gamma_{\ell, 2\left\lceil\frac{\ell}{2}\right\rceil}\right|}{2^{6\left\lceil\frac{\ell}{2}\right\rceil}\left(2\left\lceil\frac{\ell}{2}\right\rceil\right)!} \frac{1}{z^{2\left\lceil\frac{\ell}{2}\right\rceil}} \leq C \tag{A.2a}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\forall z \geq 1: \quad\left|Q_{\ell}(z)\right| \leq \frac{C}{z}, \quad\left|P_{\ell}^{\prime}(z)\right| \leq \frac{C}{z^{3}}, \quad\left|Q_{\ell}^{\prime}(z)\right| \leq \frac{C}{z^{2}} \tag{A.2b}
\end{equation*}
$$

Hence, for $f \in\left\{J_{\ell}, H_{\ell}^{(1)}\right\}, \ell \in \mathbb{N}_{0}$, there holds

$$
\begin{equation*}
\forall z \geq 1 \quad|f(z)| \leq \frac{C}{\sqrt{z}} \tag{A.3a}
\end{equation*}
$$

and the combination with $\left|J_{\ell}(z)\right| \stackrel{[1,9.1 .60]}{\leq} C$ for all $z \geq 0$ yields

$$
\begin{equation*}
\forall z \geq 0 \quad\left|J_{\ell}(z)\right| \leq C \sqrt{\frac{1}{1+z}} \tag{A.3b}
\end{equation*}
$$

We need an estimate of the derivative at the argument $z=k r$ for $z \geq 1$. The derivative of (A.1b) can be written in the form

$$
\begin{align*}
\frac{d}{d r} H_{0}^{(1)}(k r) & \stackrel{[1,9.9 .7]}{=} C \mathrm{e}^{\mathrm{i} k r} \sqrt{\frac{1}{k r}} \frac{d}{d r}\left(P_{0}(k r)+\mathrm{i} Q_{0}(k r)\right) \tag{A.4}\\
& +C\left(P_{0}(k r)+\mathrm{i} Q_{0}(k r)\right) \frac{d}{d r}\left(\mathrm{e}^{\mathrm{i} k r} \sqrt{\frac{1}{k r}}\right) .
\end{align*}
$$

The combination of (A.4) and (A.2) leads to

$$
\begin{equation*}
\left|\frac{d}{d r} H_{0}^{(1)}(k r)\right| \leq C\left(\frac{1}{r \sqrt{k r}}+\sqrt{\frac{k}{r}}\right) . \tag{A.5}
\end{equation*}
$$

We also need an estimate of $\partial_{r}\left(\mathrm{e}^{-\mathrm{i} k r} H_{0}^{(1)}(k r)\right)$. Employing (A.1b) we obtain

$$
\frac{d}{d r}\left(\mathrm{e}^{-\mathrm{i} k r} H_{0}^{(1)}(k r)\right)=C \frac{d}{d r}\left(\sqrt{\frac{1}{k r}}(P(0, k r)+\mathrm{i} Q(0, k r))\right) .
$$

Thus, for $k r \geq 1$, we get

$$
\begin{equation*}
\left|\partial_{r}\left(\mathrm{e}^{-\mathrm{i} k r} H_{0}^{(1)}(k r)\right)\right| \leq \frac{C}{r \sqrt{k r}} \tag{A.6}
\end{equation*}
$$

An estimate of the second derivative of $H_{0}^{(1)}$ is derived by using [1, 9.1.27, 9.1.28]

$$
\begin{equation*}
\left|\frac{d^{2}}{d r^{2}} H_{0}^{(1)}(k r)\right|=k^{2}\left|-H_{0}^{(1)}(k r)+\frac{H_{1}^{(1)}(k r)}{k r}\right| \stackrel{(\mathrm{A} .3 \mathrm{a})}{\leq} C k \sqrt{\frac{k}{r}} \tag{A.7}
\end{equation*}
$$

Case 2: $z=k r \in(0,1)$.
To estimate $H_{0}^{(1)}(z)$ in the range $(0,1)$ we employ

$$
H_{0}^{(1)}(z)=J_{0}(z)+i Y_{0}(z)
$$

and use for $Y_{0}(z)$ the expansion

$$
Y_{0}(z)=\frac{2}{\pi}\left(\log \frac{z}{2}\right) J_{0}(z)-\frac{2}{\pi} \sum_{k=0}^{\infty} \psi(k+1) \frac{\left(-\frac{z^{2}}{4}\right)^{k}}{(k!)^{2}}
$$

where

$$
\psi(n):=-\gamma+\sum_{k=1}^{n-1} k^{-1} \quad \text { and } \quad \gamma:=0.57721566 \ldots \text { is Euler's constant. }
$$

For $0 \leq z \leq 1$, we have

$$
\left|Y_{0}(z)\right| \leq \frac{2}{\pi}\left|\log \frac{z}{2}\right|+\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{\psi(k+1)}{4^{k}(k!)^{2}} .
$$

Furthermore

$$
|\psi(k+1)| \leq \gamma+1+\sum_{s=2}^{k} \frac{1}{s} \leq \gamma+1+\int_{1}^{k} \frac{1}{x} d x=\gamma+1+\log k=: \gamma^{\prime}+\log k .
$$

Thus, for $0 \leq z \leq 1$, we have

$$
\left|Y_{0}(z)\right| \leq \frac{2}{\pi}\left|\log \frac{z}{2}\right|+\frac{2}{\pi}\left(\gamma+\sum_{k=1}^{\infty} \frac{\gamma^{\prime}+\log k}{4^{k}(k!)^{2}}\right)
$$

Since $\frac{\gamma^{\prime}+\log k}{4^{k} k!} \leq 1$ we get

$$
\left|Y_{0}(z)\right| \leq \frac{2}{\pi}|\log z|+C .
$$

This leads to

$$
\begin{equation*}
\forall z \in] 0,1] \quad\left|H_{0}^{(1)}(z)\right| \leq \frac{2}{\pi}|\log z|+C . \tag{A.3c}
\end{equation*}
$$

The combination with (A.3a) finally results in

$$
\begin{equation*}
\left|H_{0}^{(1)}(z)\right| \leq \min \left\{\frac{2}{\pi}|\log z|+C, \frac{C}{\sqrt{z}}\right\} . \tag{A.3d}
\end{equation*}
$$

We will need further estimates of J_{1} and $\partial_{r} H_{0}^{(1)}$. From [1, 9.1.60], we conclude

$$
\begin{equation*}
\forall z \geq 0 \quad J_{1}(z) \leq 1 / \sqrt{2} \tag{A.8}
\end{equation*}
$$

For the derivative of Y_{0}, we obtain (by using $J_{0}^{\prime}=-J_{1}$)

$$
\begin{equation*}
Y_{0}^{\prime}(z)=\frac{2}{\pi}\left(\frac{J_{0}(z)}{z}-J_{1}(z) \log \frac{z}{2}\right)+\frac{z}{\pi} \sum_{k=0}^{\infty} \psi(k+2) \frac{\left(-\frac{z^{2}}{4}\right)^{k}}{k!(k+1)!} \tag{A.9}
\end{equation*}
$$

For $0 \leq z \leq 1$, we obtain

$$
\frac{z}{\pi} \sum_{k=0}^{\infty} \psi(k+2) \frac{\left(-\frac{z^{2}}{4}\right)^{k}}{k!(k+1)!} \leq \frac{z}{\pi} \sum_{k=0}^{\infty} \frac{\gamma^{\prime}+\log (k+1)}{k!4^{k}(k+1)!} \leq \frac{z}{\pi} \sum_{k=0}^{\infty} \frac{1}{k!}=C z
$$

Now,

$$
\begin{equation*}
\left|J_{1}(z)\right| \stackrel{[1,9.1 .62]}{\leq} z / 2 \tag{A.10}
\end{equation*}
$$

and we get

$$
Y_{0}^{\prime}(z) \leq \frac{2}{\pi}\left(z^{-1}+\frac{z}{2} \log \frac{z}{2}+\frac{\mathrm{e} z}{2}\right) \leq \frac{2}{\pi z}+C
$$

Hence, for $0 \leq r \leq 1 / k$, we get

$$
\begin{equation*}
\left|\partial_{r} H_{0}^{(1)}(k r)\right|=k\left(\left|J_{0}^{\prime}(k r)\right|+\left|Y_{0}^{\prime}(k r)\right|\right) \leq \frac{2}{\pi r}+C k+\frac{k^{2} r}{2} \leq C\left(\frac{1}{r}+\frac{k^{2} r}{2}\right) \tag{A.11}
\end{equation*}
$$

In addition, we need some weighted estimates for second order derivatives of $H_{0}^{(1)}$. From (A.9) we obtain

$$
\partial_{r}\left(r \partial_{r} Y_{0}(k r)\right)=\frac{2 k}{\pi}\left(-2 J_{1}(k r)-k r \log \frac{k r}{2} J_{0}(k r)+k r \sum_{k=0}^{\infty} \psi(k+2) \frac{\left(-\frac{(k r)^{2}}{4}\right)^{k}}{(k!)^{2}}\right)
$$

This leads to the estimate, for $0<z \leq 1$,

$$
\left|\partial_{r}\left(r \partial_{r} Y_{0}(k r)\right)\right| \leq \frac{2}{\pi} k^{2} r\left(C+\left|\log \frac{k r}{2}\right|\right)
$$

Note that

$$
\partial_{r}\left(r \partial_{r} H_{0}^{(1)}(k r)\right)=-r k^{2} J_{0}(k r)+\mathrm{i} \partial_{r}\left(r \partial_{r} Y_{0}(k r)\right)
$$

and, hence,

$$
\begin{equation*}
\forall 0 \leq k r \leq 1 \quad\left|\partial_{r}\left(r \partial_{r} H_{0}^{(1)}(k r)\right)\right| \leq \frac{2}{\pi} k^{2} r\left(C+\left|\log \frac{k r}{2}\right|\right) \tag{A.12}
\end{equation*}
$$

We finally state a lemma required for the proof of Lemma 3.5:

Lemma A. 1 Let $|s| \geq 3 / 2 k$ and $k \geq k_{0}>0$. Then

$$
r J_{0}(s r) H_{0}^{(1)}(k r)=\frac{2}{\pi \sqrt{k|s|}}\left\{e^{\mathrm{i}(s+k) r} f^{I}(s r)+e^{\mathrm{i}(s-k) r} f^{I I}(s r)\right\} g^{I}(k r)
$$

where the functions $f^{I}, f^{I I}, g^{I}$ satisfy for $r \geq 1$ and a $C>0$ depending solely on k_{0} :

$$
\begin{aligned}
\left|f^{I}(r)\right|+\left|f^{I I}(r)\right|+\left|g^{I}(r)\right| & \leq C \\
r^{2}\left(\left|\frac{d}{d r} f^{I}(r)\right|+\left|\frac{d}{d r} f^{I I}(r)\right|+\left|\frac{d}{d r} g^{I}(r)\right|\right) & \leq C
\end{aligned}
$$

Proof. (A.1a), (A.1b) imply the stated representation with $f^{I}(s r)=\frac{1}{2}\left(P_{0}(s r)-Q_{0}(s r)\right)$, $f^{I I}(s r)=\frac{1}{2}\left(P_{0}(s r)+Q_{0}(s r)\right)$, and $g^{I}(k r)=P_{0}(k r)+\mathrm{i} Q_{0}(k r)$. The estimates for $f^{I}, f^{I I}, g^{I}$ now follow from the bounds for $P_{0}, Q_{0}, P_{0}^{\prime}, Q_{0}^{\prime}$ given in (A.2a), (A.2b).

B Approximation by $h p$-finite elements. Case I: finite regularity

The purpose of the present section is the proof of Theorem B.4, which constructs a polynomial approximation to a function $u \in H^{s}, s>d / 2$, in an element-by-element fashion (see Def. 5.3). The novelty of the present construction over existing operators such as those of [3], [32] is that we obtain optimal rates (in p) simultaneously in the H^{1}-norm and the L^{2}-norm. Closely related results can be found in the recent [20], where similar duality arguments are employed to obtain estimates in L^{2}.

B. 1 Lifting operators

In the p-FEM, globally continuous, piecewise polynomial approximations to a function u are typically constructed in two steps: in a first step, discontinuous approximations are constructed element by element. In a second step, the jumps across the element interfaces are corrected by suitable lifting operators. The construction of these lifting operators is the purpose of the present section; the ensuing Section B. 2 is devoted to the analysis of polynomial approximation.

Before proceeding we recall the definition of the Sobolev space $H_{00}^{1 / 2}(\Omega)$. If Ω is an edge or a face of a triangle or a tetrahedron, then the Sobolev norm $\|\cdot\|_{H_{00}^{1 / 2}(\Omega)}$ is defined by

$$
\begin{equation*}
\|u\|_{H_{00}^{1 / 2}(\Omega)}^{2}:=\|u\|_{H^{1 / 2}(\Omega)}^{2}+\left\|\frac{u}{\sqrt{\operatorname{dist}(\cdot, \partial \Omega)}}\right\|_{L^{2}(\Omega)}^{2} \tag{B.1}
\end{equation*}
$$

Lemma B. 1 Let $\widehat{K}^{2 D}$ be the reference triangle in 2D. Vertex and edge lifting operators can be constructed with the following properties:

1. For each vertex V of $\widehat{K}^{2 D}$ there exists a polynomial $L_{V, p} \in \mathcal{P}_{p}$ that attains the value 1 at the vertex V and vanishes on the edge of $\widehat{K}^{2 D}$ opposite to V. Additionally, for every $s \geq 0$, there exists $C_{s}>0$ such that $\left\|L_{V, p}\right\|_{H^{s}\left(\widehat{K}^{2 D}\right)} \leq C_{s} p^{-1+s}$.
2. For every edge e of $\widehat{K}^{2 D}$ there exists a bounded linear operator $\pi_{e}: H_{00}^{1 / 2}(e) \rightarrow H^{1}\left(\widehat{K}^{2 D}\right)$ with the following properties:
(a) $\forall u \in \mathcal{P}_{p} \cap H_{00}^{1 / 2}(e): \quad \pi_{e} u \in \mathcal{P}_{p}$,
(b) $\forall u \in H_{00}^{1 / 2}(e):\left.\quad \pi_{e} u\right|_{\partial \widehat{K}^{2 D} \backslash e}=0$,
(c) $\forall u \in H_{00}^{1 / 2}(e): \quad p\left\|\pi_{e} u\right\|_{L^{2}\left(\widehat{K}^{2 D}\right)}+\left\|\pi_{e} u\right\|_{H^{1}\left(\widehat{K}^{2 D}\right)} \leq C\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right)$.

Proof. Let $\widehat{K}^{2 D}=\{(x, y) \mid 0<x<1,0<y<1-x\}$. Let $w_{q}^{1 D}(x)=(1-x)^{q}$. The vertex function $L_{V, p}$ for the vertex $V=(0,0)$ is defined as $L_{V, p}(x, y)=w_{\lfloor p / 2\rfloor}^{1 D}(x) w_{\lfloor p / 2\rfloor}^{1 D}(y)$ for $p \geq 2$ and taken as the standard linear hat function $L_{V, 1}(x)=(1-x-y)$ that is associated with the vertex V for the case $p=1$. A simple calculation then shows the result. The functions $L_{V, p}$ for the remaining 2 vertices are obtained by completely analogous constructions.

For the edge lifting, let e be the edge $e=\{(x, 1-x) \mid 0<x<1\}$. By [3] there exists a bounded linear operator $E: H_{00}^{1 / 2}(e) \rightarrow H^{1}\left(\widehat{K}^{2 D}\right)$ with the following properties: $\left.E u\right|_{e}=$ $u,\left.E u\right|_{\partial \widehat{K}^{2 D} \backslash e}=0$, and $E u \in \mathcal{P}_{p}$ if $u \in \mathcal{P}_{p} \cap H_{00}^{1 / 2}(e)$. Introduce the auxiliary operator $(G u)(x, y):=w_{p}^{1 D}(1-(x+y))(E u)(x, y)$. By [29, Lemma B.5], we have
$p\|G u\|_{L^{2}\left(\widehat{K}^{2 D}\right)}+\|G u\|_{H^{1}\left(\widehat{K}^{2 D}\right)} \leq C\left(|E u|_{H^{1}\left(\widehat{K}^{2 D}\right)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right) \leq C\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right)$.
Denote by $\Pi_{p}^{H^{1}}: H_{0}^{1}\left(\widehat{K}^{2 D}\right) \rightarrow H_{0}^{1}\left(\widehat{K}^{2 D}\right) \cap \mathcal{P}_{p}$ the H^{1}-projection and set $\pi_{e} u:=E u+\Pi_{p}^{H^{1}}(G u-$ $E u)$. Then by the stability of $\Pi_{p}^{H^{1}}$ and E

$$
\left\|\pi_{e} u\right\|_{H^{1}\left(\widehat{K}^{2 D}\right)} \leq\|G u\|_{H^{1}\left(\widehat{K}^{2 D}\right)}+2\|G u-E u\|_{H^{1}\left(\widehat{K}^{2 D}\right)} \leq C\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right),
$$

which is the desired H^{1}-stability result. For the L^{2}-bound, we use a duality argument as in [20]:

$$
\left\|G u-E u-\Pi_{p}^{H^{1}}(G u-E u)\right\|_{L^{2}\left(\widehat{K}^{2 D}\right)} \leq C p^{-1}\left\|(G u-E u)-\Pi_{p}^{H^{1}}(G u-E u)\right\|_{H^{1}\left(\widehat{K}^{2 D}\right)} .
$$

The H^{1}-stability of $\Pi_{p}^{H^{1}}$ together with stability properties of E and G produces the desired L^{2}-bound.

Lemma B. 2 Let $\widehat{K}^{3 D}$ be the reference tetrahedron in 3D. Vertex, edge, and face lifting operators can be constructed with the following properties:
(i) For each vertex V of $\widehat{K}^{3 D}$ there exists a polynomial $L_{V, p} \in \mathcal{P}_{p}$ that attains the value 1 at the vertex V and vanishes on the face opposite V. Additionally, for every $s \geq 0$ there exists $C_{s}>0$ such that $\left\|L_{V, p}\right\|_{H^{s}\left(\widehat{K}^{3 D}\right)} \leq C_{s} p^{-3 / 2+s}$.
(ii) For every edge e of $\widehat{K}^{3 D}$ there exists a bounded linear operator $\pi_{e}: H_{00}^{1 / 2}(e) \rightarrow H^{1}\left(\widehat{K}^{3 D}\right)$ with the following properties:
(a) $\pi_{e} u \in \mathcal{P}_{p}$ if $u \in \mathcal{P}_{p} \cap H_{00}^{1 / 2}(e)$
(b) $\left.\left(\pi_{e} u\right)\right|_{f}=0$ for the two faces f with $\bar{f} \cap e=\emptyset$
(c) for the two faces f adjacent to e (i.e., $\bar{f} \cap e=e$)

$$
\begin{aligned}
p\left\|\pi_{e} u\right\|_{L^{2}(f)}+\left\|\pi_{e} u\right\|_{H^{1}(f)} & \leq C\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}, \\
\left\|\pi_{e} u\right\|_{H^{1 / 2}\left(\partial \widehat{K}^{3 D}\right)} & \leq C\left(p^{-1 / 2}\|u\|_{H_{00}^{1 / 2}(e)}+\|u\|_{L^{2}(e)}\right), \\
p\left\|\pi_{e} u\right\|_{L^{2}\left(\widehat{K}^{3 D}\right)}+\left\|\pi_{e} u\right\|_{H^{1}\left(\widehat{K}^{3 D}\right)} & \leq C\left(p^{-1 / 2}\|u\|_{H_{00}^{1 / 2}(e)}+\|u\|_{L^{2}(e)}\right) .
\end{aligned}
$$

(iii) For every face f of $\widehat{K}^{3 D}$ there exists a bounded linear operator $\pi_{f}: H_{00}^{1 / 2}(f) \rightarrow H^{1}\left(\widehat{K}^{3 D}\right)$ with the following properties:
(a) $\pi_{f} u \in \mathcal{P}_{p}$ if $u \in \mathcal{P}_{p} \cap H_{00}^{1 / 2}(f)$
(b) $\left.\left(\pi_{e} u\right)\right|_{f^{\prime}}=0$ for the faces $f^{\prime} \neq f$

$$
p\left\|\pi_{f} u\right\|_{L^{2}\left(\widehat{K}^{3 D}\right)}+\left\|\pi_{f} u\right\|_{H^{1}\left(\widehat{K}^{3 D}\right)} \leq C\left(\|u\|_{H_{00}^{1 / 2}(f)}+p^{1 / 2}\|u\|_{L^{2}(f)}\right)
$$

Proof. We take the reference tetrahedron $\widehat{K}^{3 D}$ to be $\widehat{K}^{3 D}=\{(x, y, z) \mid 0<x<1,0<$ $y<1-x, 0<z<1-x-y\}$.

Proof of (i): We construct the function $L_{V, p}$ for the vertex $V=(0,0,0)$, the other cases being handled analogously. For $p \in\{1,2\}$ we take for $L_{V, p}$ the standard linear hat function associated with V. For $p \geq 3$ the function $L_{V, p}(x, y, z):=w_{\lfloor p / 3\rfloor}^{1 D}(x) w_{\lfloor p / 3\rfloor}^{1 D}(y) w_{\lfloor p / 3\rfloor}^{1 D}(z)$ with $w_{q}^{1 D}(x)=(1-x)^{q}$ has all the desired properties.

Proof of (iii): [32, Lemma 8] exhibits a bounded linear operator $F: H_{00}^{1 / 2}(f) \rightarrow H^{1}\left(\widehat{K}^{3 D}\right)$ with the additional property that $F u \in \mathcal{P}_{p}$ if $u \in \mathcal{P}_{p} \cap H_{00}^{1 / 2}(f)$. Let, without loss of generality, $f=\partial \widehat{K}^{3 D} \cap\{z=0\}$. Define the auxiliary operator $(G u)(x, y, z):=w_{p}^{1 D}(z)(F u)(x, y, z)$. This operator satisfies (see [29, Lemma B.5] where the analogous arguments are worked out in the 2D setting)
$p\|G u\|_{L^{2}\left(\widehat{K}^{3 D}\right)}+\|G u\|_{H^{1}\left(\widehat{K}^{3 D}\right)} \leq C\left(|F u|_{H^{1}\left(\widehat{K}^{3 D}\right)}+p^{1 / 2}\|F u\|_{L^{2}(f)}\right) \leq C\|u\|_{H_{00}^{1 / 2}(f)}+p^{1 / 2}\|u\|_{L^{2}(f)}$.
Letting again $\Pi_{p}^{H^{1}}: H_{0}^{1}\left(\widehat{K}^{3 D}\right) \rightarrow H_{0}^{1}\left(\widehat{K}^{3 D}\right) \cap \mathcal{P}_{p}$ be the H^{1}-projection, we can set $\pi_{f} u:=$ $F u+\Pi_{p}^{H^{1}}(G u-F u)$. The desired properties of π_{f} are then seen in exactly the same way as in the 2D case of Lemma B.1.

Proof of (ii): Set $f_{e, 1}=\partial \widehat{K}^{3 D} \cap\{z=0\}$ and $f_{e, 2}=\partial \widehat{K}^{3 D} \cap\{1-x-y-z=0\}$. The edge shared by the faces $f_{e, 1}$ and $f_{e, 2}$ is $e=\{(x, 1-x, 0) \mid 0<x<1\}$. By Lemma B. 1 a function $u \in H_{00}^{1 / 2}(e)$ can be lifted to a function $E u \in H^{1}\left(f_{e, 1}\right)$ such that $\left.E u\right|_{\partial f_{e, 1} \backslash e}=0$ and

$$
p\|E u\|_{L^{2}\left(f_{e, 1}\right)}+\|E u\|_{H^{1}\left(f_{e, 1}\right)} \leq C\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right)
$$

Additionally, if $u \in \mathcal{P}_{p}$, then $E u \in \mathcal{P}_{p}$. Since the same lifting can be done for the face $f_{e, 2}$, we can find a function, again denoted $E u \in H^{1}\left(\partial \widehat{K}^{3 D}\right)$, that vanishes on $\partial \widehat{K}^{3 D} \backslash\left(f_{e, 1} \cup f_{e, 2} \cup e\right)$, such that $p\|E u\|_{L^{2}\left(\partial \widehat{K}^{3 D}\right)}+\|E u\|_{H^{1}\left(\partial \widehat{K}^{3 D}\right)} \leq C\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right)$. Additionally, $E u$ is a piecewise polynomial of degree p if $u \in \mathcal{P}_{p}$. An interpolation inequality gives
$\|E u\|_{H^{1 / 2}\left(\partial \widehat{K}^{3 D}\right)} \leq C\|E u\|_{L^{2}\left(\partial \widehat{K}^{3 D}\right)}^{1 / 2}\|E u\|_{H^{1}\left(\partial \widehat{K}^{3 D}\right)}^{1 / 2} \leq C p^{-1 / 2}\left(\|u\|_{H_{00}^{1 / 2}\left(\partial \widehat{K}^{3 D}\right)}+p^{1 / 2}\|u\|_{L^{2}\left(\partial \widehat{K}^{3 D}\right)}\right)$.

For this function $E u,\left[32\right.$, Lemma 8] provides a lifting $F u \in H^{1}\left(\widehat{K}^{3 D}\right)$ with $\|F u\|_{H^{1}\left(\widehat{K}^{3 D}\right)} \leq$ $C\|E u\|_{H^{1 / 2}\left(\widehat{K}^{3 D}\right)}$. To get a better L^{2}-bound, we introduce the distance functions $d_{1}(\cdot):=$ $\operatorname{dist}\left(\cdot, f_{e, 1}\right)$ and $d_{2}(\cdot):=\operatorname{dist}\left(\cdot, f_{e, 2}\right)$ as well as $d(\cdot):=\operatorname{dist}\left(\cdot, f_{e, 1} \cup f_{e, 2}\right)=\min \left\{d_{1}(\cdot), d_{2}(\cdot)\right\}$ and set $w:=(1-d)^{p}$. Define $G u:=w F u$. Then $\left.(G u)\right|_{\partial \widehat{K}^{3 D}}=\left.(F u)\right|_{\partial \widehat{K}^{3 D}}$ since $\left.w\right|_{f_{e, 1} \cup f_{e, 2}} \equiv 1$ and $\left.F u\right|_{\partial \widehat{K}^{3 D} \backslash\left(f_{e, 1} \cup f_{e, 2}\right)}=0$. Additionally, $G u \in H^{1}\left(\widehat{K}^{3 D}\right)$ since w is Lipschitz continuous. Furthermore, we have

$$
\begin{equation*}
p\|G u\|_{L^{2}\left(\widehat{K}^{3 D}\right)}+\|G u\|_{H^{1}\left(\widehat{K}^{3 D}\right)} \leq C\left(\|F u\|_{H^{1}\left(\widehat{K}^{3 D}\right)}+p^{1 / 2}\|F u\|_{L^{2}\left(f_{e, 1} \cup f_{e, 2}\right)}\right) . \tag{B.2}
\end{equation*}
$$

To see this, we adapt the proof given in [29, Lemma B.5]. We split $\widehat{K}^{3 D}=K_{1} \cup K_{2}$ with $K_{i}=\left\{(x, y, z) \in \widehat{K}^{3 D} \mid d(x, y, z) \leq d_{i}(x, y, z)\right\}, i \in\{1,2\}$. We note that on K_{1}, we have $d(x, y, z)=d_{1}(x, y, z)=z$. Hence, by the arguments given in [29, Lemma B.5], we get

$$
p\|G u\|_{L^{2}\left(K_{1}\right)}+\|G u\|_{H^{1}\left(K_{1}\right)} \leq C\left(\|F u\|_{H^{1}\left(K_{1}\right)}+p^{1 / 2}\|F u\|_{L^{2}\left(f_{e, 1}\right)}\right) .
$$

Proceeding completely analogously for K_{2} gives us (B.2). Since $\left.F u\right|_{\partial K^{3 D}}$ coincides with $E u$, we conclude that $G u$ satisfies

$$
\begin{equation*}
p\|G u\|_{L^{2}\left(K_{1}\right)}+\|G u\|_{H^{1}\left(K_{1}\right)} \leq C p^{-1 / 2}\left(\|u\|_{H_{00}^{1 / 2}(e)}+p^{1 / 2}\|u\|_{L^{2}(e)}\right) . \tag{B.3}
\end{equation*}
$$

We recall that $\Pi_{p}^{H^{1}}: H_{0}^{1}\left(\widehat{K}^{3 D}\right) \rightarrow H_{0}^{1}\left(\widehat{K}^{3 D}\right) \cap \mathcal{P}_{p}$ denotes the H^{1}-projection and define

$$
\pi_{e} u:=F u+\Pi_{p}^{H^{1}}(G u-F u) .
$$

If u is a polynomial of degree p, then $\pi_{e} u$ is a polynomial of degree p. Additionally, $\pi_{e} u=F u$ on $\partial \widehat{K}^{3 D}$ so that the estimates for π_{e} on the faces of $\widehat{K}^{3 D}$ are satisfied. To see the $H^{1}\left(\widehat{K}^{3 D}\right)$ and $L^{2}\left(\widehat{K}^{3 D}\right)$-bounds we note that the stability of $\Pi_{p}^{H^{1}}$ together with (B.3) and the stability of F gives us the H^{1}-bound. The L^{2}-bound follows as in the proof of Lemma B. 1 and in [20] from Nitsche's trick: $\left\|\pi_{e} u\right\|_{L^{2}\left(\widehat{K}^{3 D}\right)} \leq\left\|\pi_{e} u-G u\right\|_{L^{2}\left(\widehat{K}^{3 D}\right)}+\|G u\|_{L^{2}\left(\widehat{K}^{3 D}\right)} \leq C p^{-1}\|F u-G u\|_{H^{1}\left(\widehat{K}^{3 D}\right)}+$ $\|G u\|_{L^{2}\left(\widehat{K}^{3 D}\right)}$.

B. 2 Approximation operators

Lemma B. 3 provides polynomial approximation results on triangles and tetrahedra. The lifting operators of the preceding subsection are employed in Theorem B. 4 to modify the approximations of Lemma B. 3 such that approximations are obtained that permit an element-by-element construction in the sense of Def. 5.3.

Lemma B. 3 Let \widehat{K} be the reference triangle or the reference tetrahedron. Let $s>d / 2$. Then there exists for every p a bounded linear operator $\pi_{p}: H^{s}(\widehat{K}) \rightarrow \mathcal{P}_{p}$ and for each $t \in[0, s] a$ constant $C>0$ (depending only on s and t) such that

$$
\begin{equation*}
\left\|u-\pi_{p} u\right\|_{H^{t}(\widehat{K})} \leq C p^{-(s-t)}|u|_{H^{s}(\widehat{K})}, \quad p \geq s-1 \tag{B.4}
\end{equation*}
$$

Additionally, we have $\left\|u-\pi_{p} u\right\|_{L^{\infty}(\widehat{K})} \leq C p^{-(s-d / 2)}|u|_{H^{s}(\widehat{K})}$. For the case $d=2$ we furthermore have $\left\|u-\pi_{p} u\right\|_{H^{t}(e)} \leq C p^{-(s-1 / 2-t)}|u|_{H^{s}(\widehat{K})}$ for $0 \leq t \leq s-1 / 2$ for every edge and for the case $d=3$ we have $\left\|u-\pi_{p} u\right\|_{H^{t}(f)} \leq C p^{-(s-1 / 2-t)}|u|_{H^{s}(\widehat{K})}$ for $0 \leq t \leq s-1 / 2$ for every face f and $\left\|u-\pi_{p} u\right\|_{H^{t}(e)} \leq C p^{-(s-1-t)}|u|_{H^{k}(\widehat{K})}$ for $0 \leq t \leq s-1$ for every edge.

Proof. The construction of π_{p} with the property (B.4) is fairly classical (see, e.g., [5]). One possible construction is worked out in [29, Appendix A] first for integers s, t and, then, interpolation arguments remove this restriction. Next, we consider the L^{∞}-bound, for which we need the assumption $s>d / 2$: We recall that for a Lipschitz domain $K \subset \mathbb{R}^{d}$ and $s>d / 2$ there exists $C>0$ such that

$$
\begin{equation*}
\|u\|_{L^{\infty}(K)} \leq C\|u\|_{L^{2}(K)}^{1-d /(2 s)}\|u\|_{H^{s}(K)}^{d /(2 s)} \quad \forall u \in H^{s}(K) \tag{B.5}
\end{equation*}
$$

From this, the desired L^{∞}-bound follows easily. The inequality (B.5) can be seen as follows: First, using an extension operator for K (e.g., the one given in [40, Chap. VI]) it suffices to show this estimate with K replaced with the full space \mathbb{R}^{d}. Next, [43, Thm. 4.6.1] asserts the embedding $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right) \subset C\left(\mathbb{R}^{d}\right)$. Finally, the Besov space $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)$ is recognized as an interpolation space between $L^{2}\left(\mathbb{R}^{d}\right)$ and $H^{s}\left(\mathbb{R}^{d}\right): B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)=\left(L^{2}\left(\mathbb{R}^{d}\right), H^{s}\left(\mathbb{R}^{d}\right)\right)_{d /(2 s), 1}$. The interpolation inequality then produces the desired result. The remaining estimates on the edges and faces follow from appropriate trace inequalities. Specifically: let $\omega \subset \partial \widehat{K}$ be an edge (for $d=2$) or a face (for $d=3$). By [43, Thm. 2.9.3] the trace operator γ is a continuous mapping in the following spaces:

$$
\gamma: B_{2,1}^{1 / 2}(\widehat{K}) \rightarrow L^{2}(\omega), \quad \text { and } \quad \gamma: H^{t}(\widehat{K}) \rightarrow H^{t-1 / 2}(\omega), \quad t>1 / 2
$$

Together with the observation $B_{2,1}^{1 / 2}(\widehat{K})=\left(L^{2}(\widehat{K}), H^{s}(\widehat{K})\right)_{s, 1}$ the desired estimates can be inferred. It remains to see the case of traces on an edge e of the tetrahedron in the case $d=3$. In this case [43, Thm. 2.9.4] asserts the continuity of the trace operator in the following spaces:

$$
\gamma: B_{2,1}^{1}(\widehat{K}) \rightarrow L^{2}(e), \quad \text { and } \quad \gamma: H^{t}(\widehat{K}) \rightarrow H^{t-1}(e), \quad t>1
$$

Again, these continuity properties are sufficient to establish the desired error estimates.
We conclude this section with the construction of an approximation operator that permits an easy element-by-element construction.

Theorem B. 4 Let $\widehat{K} \subset \mathbb{R}^{d}$ be the reference triangle or the reference tetrahedron. Let $s>d / 2$. Then there exists $C>0$ (depending only on s and d) and for every p a linear operator π : $H^{s}(\widehat{K}) \rightarrow \mathcal{P}_{p}$ that permits an element-by-element construction in the sense of Definition 5.3 such that

$$
\begin{equation*}
p\|u-\pi u\|_{L^{2}(\widehat{K})}+\|u-\pi u\|_{H^{1}(\widehat{K})} \leq C p^{-(s-1)}|u|_{H^{s}(\widehat{K})} \quad \forall p \geq s-1 \tag{B.6}
\end{equation*}
$$

Proof. We discuss only the case $d=3$ - the case $d=2$ is treated very similarly. Also, we will construct πu for a given u-inspection of the construction shows that $u \mapsto \pi u$ is in fact a linear operator.

Let $\pi^{1} \in \mathcal{P}_{p}$ be given by Lemma B.3. Then, for $p \geq s-1$ there holds

$$
\begin{array}{rlrl}
\left\|u-\pi^{1}\right\|_{H^{t}(\widehat{K})} & \leq C p^{-(s-t)}|u|_{H^{s}(\widehat{K})}, \quad 0 \leq t \leq s \\
\left\|u-\pi^{1}\right\|_{H^{t}(f)} \leq C p^{-(s-t-1 / 2)}|u|_{H^{s}(\widehat{K})}, & \forall \text { faces } f, \quad 0 \leq t \leq s-1 / 2 \\
\left\|u-\pi^{1}\right\|_{H^{t}(e)} & \leq C p^{-(s-t-1)}|u|_{H^{s}(\widehat{K})}, & \forall \text { edges } e, \quad 0 \leq t \leq s-1 \\
\left\|u-\pi^{1}\right\|_{L^{\infty}(\widehat{K})} \leq C p^{-(s-3 / 2)}|u|_{H^{s}(\widehat{K})} . & & \tag{B.10}
\end{array}
$$

From (B.10) and the vertex-lifting properties given in Lemma B.2, we may adjust π^{1} by vertex liftings to obtain a polynomial π^{2} satisfying (B.7)-(B.9) and additionally the condition (i) of Definition 5.3. We next adjust the edge values. The polynomial π^{2} coincides with u in the vertices and satisfies (B.9). By fixing a $t \in(1 / 2, s-1)$, we get from an interpolation inequality:

$$
\begin{aligned}
p^{1 / 2}\left\|u-\pi^{2}\right\|_{L^{2}(e)}+\left\|u-\pi^{2}\right\|_{H_{00}^{1 / 2}(e)} & \leq p^{1 / 2}\left\|u-\pi^{2}\right\|_{L^{2}(e)}+C\left\|u-\pi^{2}\right\|_{L^{2}(e)}^{1-1 /(2 t)}\left\|u-\pi^{2}\right\|_{H^{t}(e)}^{1 /(2 t)} \\
& \leq C p^{-(s-3 / 2)}|u|_{H^{s}(\widehat{K})} .
\end{aligned}
$$

Hence, for an edge e, the minimizer π^{e} of the functional (5.4) satisfies $p^{1 / 2}\left\|u-\pi^{e}\right\|_{L^{2}(e)}+$ $\left\|u-\pi^{e}\right\|_{H_{00}^{1 / 2}(e)} \leq C p^{-(s-3 / 2)}|u|_{H^{k}(\widehat{K})}$; the triangle inequality therefore gives that the correction $\pi^{e}-\pi^{2}$ needed to obtain condition (ii) of Def. 5.3 likewise satisfies $p^{1 / 2}\left\|\pi^{e}-\pi^{2}\right\|_{L^{2}(e)}+\| \pi_{e}-$ $\pi^{2} \|_{H_{00}^{1 / 2}(e)} \leq C p^{-(s-3 / 2)}|u|_{H^{s}(\widehat{K})}$. We conclude that the edge lifting of Lemma B. 2 allows us to adjust π^{2} to get a polynomial $\pi^{3} \in \mathcal{P}_{p}$ that satisfies the conditions (i) and (ii) of Def. 5.3. Additionally, we have

$$
\begin{aligned}
p\left\|u-\pi^{3}\right\|_{L^{2}(\widehat{K})}+\left\|u-\pi^{3}\right\|_{H^{1}(\widehat{K})} & \leq C p^{-(s-1)}|u|_{H^{s}(\widehat{K})} \\
p\left\|u-\pi^{3}\right\|_{L^{2}(f)}+\left\|u-\pi^{3}\right\|_{H^{1}(f)} & \leq C p^{-(s-3 / 2)}|u|_{H^{s}(\widehat{K})} \quad \text { for all faces } f .
\end{aligned}
$$

Since $\left.\pi^{3}\right|_{e}=\pi^{e}$ for the edges, the minimizer π^{f} of the functional (5.5) for each face f has to satisfy $p\left\|u-\pi^{f}\right\|_{L^{2}(f)}+\left\|u-\pi^{f}\right\|_{H^{1}(f)} \leq p\left\|u-\pi^{3}\right\|_{L^{2}(f)}+\left\|u-\pi^{3}\right\|_{H^{1}(f)} \leq C p^{-(s-3 / 2)}|u|_{H^{s}(\widehat{K})}$. From the triangle inequality, we conclude

$$
p\left\|\pi^{3}-\pi^{f}\right\|_{L^{2}(f)}+\left\|\pi^{3}-\pi^{f}\right\|_{H^{1}(f)} \leq C p^{-(s-3 / 2)}|u|_{H^{k}(\widehat{K})}, \quad \text { together with } \pi^{3}-\pi^{f} \in H_{0}^{1}(f)
$$

Hence, the face lifting of Lemma B. 2 allows us to correct the face values to achieve also condition (iii) of Definition 5.3. Lemma B. 2 also implies that the correction is such that (B.6) is true.

C Approximation by $h p$-finite elements. Case II: analytic regularity

In this section, we construct a polynomial approximation operator for analytic functions that permits element-by-element construction in the sense of Def. 5.3 and leads to exponential rates of convergence.

Lemma C. 1 Let $d \in\{2,3\}$. Let $G_{1}, G \subset \mathbb{R}^{d}$ be bounded open sets. Assume that $g: \overline{G_{1}} \rightarrow \mathbb{R}^{d}$ satisfies $g\left(G_{1}\right) \subset G$. Assume additionally that g is injective on $\overline{G_{1}}$, analytic on G_{1} and satisfies

$$
\left\|\nabla^{p} g\right\|_{L^{\infty}\left(G_{1}\right)} \leq C_{g} \gamma_{g}^{p} p!\quad \forall p \in \mathbb{N}_{0}, \quad\left|\operatorname{det}\left(g^{\prime}\right)\right| \geq c_{0}>0 \quad \text { on } G_{1}
$$

Let f be analytic on G and satisfy, for some $C_{f}, \gamma_{f}, \kappa>0$,

$$
\begin{equation*}
\left\|\nabla^{p} f\right\|_{L^{2}(G)} \leq C_{f} \gamma^{p} \max \{p, \kappa\}^{p} \quad \forall p \in \mathbb{N}_{0} \tag{C.1}
\end{equation*}
$$

Then, the function $f \circ g$ is analytic on G_{1} and there exist constants $C, \gamma_{1}>0$ that depend solely on γ_{g}, C_{g}, c_{0}, and γ_{f} such that

$$
\left\|\nabla^{p}(f \circ g)\right\|_{L^{2}(G)} \leq C C_{f} \gamma_{1}^{p} \max \{p, \kappa\}^{p} \quad \forall p \in \mathbb{N}_{0}
$$

Proof. This is essentially proved in [28, Lemma 4.3.1]. Specifically, [28, Lemma 4.3.1] analyzes the case $d=2$ and states that C, γ_{1} depends on the function g. Inspection of the proof shows that the case $d=3$ can be handled analogously and shows that the dependence on the function g can be reduced to a dependence on C_{g}, γ_{g}, and γ_{f}.

Lemma C. 2 Let $d \in\{1,2,3\}$, and let $\widehat{K} \subset \mathbb{R}^{d}$ be the reference simplex. Let $\bar{\gamma}, \widetilde{C}>0$ be given. Then there exist constants $C, \sigma>0$ that depend solely on $\bar{\gamma}$ and \widetilde{C} such that for any u that satisfies for some $C_{u}>0, h \in(0,1], \kappa \geq 1$ the conditions

$$
\begin{equation*}
\left\|\nabla^{p} u\right\|_{L^{2}(\widehat{K})} \leq C_{u}(\bar{\gamma} h)^{p} \max \{p, \kappa\}^{p} \quad \forall p \in \mathbb{N}_{0} \tag{C.2}
\end{equation*}
$$

there holds for all $p \in \mathbb{N}_{0}$ that satisfy

$$
\begin{equation*}
\kappa h / p \leq \widetilde{C} \tag{C.3}
\end{equation*}
$$

the bound

$$
\begin{equation*}
\inf _{\pi \in \mathcal{P}_{p}}\|u-\pi\|_{W^{2, \infty}(\widehat{K})} \leq C C_{u}\left[\left(\frac{h}{\sigma+h}\right)^{p+1}+\left(\frac{\kappa h}{\sigma p}\right)^{p+1}\right] . \tag{C.4}
\end{equation*}
$$

Proof. The Sobolev embedding theorem $H^{2}(\widehat{K}) \subset C(\overline{\widehat{K}})$ gives us for suitable $C>0$

$$
\begin{aligned}
\left\|\nabla^{n} u\right\|_{L^{\infty}(\widehat{K})} & \leq C_{u} C\left[(\bar{\gamma} h)^{n+2} \max \{n+2, \kappa\}^{n+2}+(\bar{\gamma} h)^{n} \max \{n+2, \kappa\}^{n}\right] \\
& \leq C C_{u}(\bar{\gamma} h)^{n} \max \{n+2, \kappa\}^{n}\left(1+\max \{(n+2) h, h \kappa\}^{2}\right) .
\end{aligned}
$$

In view of $h \kappa \leq \widetilde{C} p$, we may estimate for any $\gamma>1$ and appropriate $C>0$:

$$
\begin{equation*}
\left\|\nabla^{n} u\right\|_{L^{\infty}(\widehat{K})} \leq C C_{u} p^{2}(\bar{\gamma} \gamma h)^{n} \max \{n+2, \kappa\}^{n} \quad \forall n \in \mathbb{N}_{0} \tag{C.5}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mu:=\gamma \bar{\gamma} \sqrt{d} \mathrm{e}, \tag{C.6}
\end{equation*}
$$

and let $r_{0}=\operatorname{diam}(\widehat{K})$ and $b_{\widehat{K}}$ be the barycenter of \widehat{K}. The bounds (C.5), (5.2) and Stirling's formula in the form $n!\geq(n / \mathrm{e})^{n}$ imply that the Taylor series of u about $x \in \widehat{K}$ converges on a (complex) ball $B_{1 /(\mu h)}(x) \subset \mathbb{C}^{d}$ of radius $1 /(\mu h)$ and center $x \in \widehat{K}$. For the polynomial approximation of u, we distinguish the cases $\mu h \leq 1 /\left(2 r_{0}\right)$ and $\mu h>1 /\left(2 r_{0}\right)$.
The case $\mu h \leq 1 /\left(2 r_{0}\right)$: In this case the Taylor series of u about $b_{\widehat{K}}$ converges on an open ball that contains the closure of \widehat{K}. We may therefore approximate u by its truncated Taylor series $T_{p} u$. The error is then given by

$$
u(x)-T_{p} u(x)=\sum_{\alpha \in \mathbb{N}_{0}^{d}:|\alpha| \geq p+1} \frac{1}{\alpha!} D^{\alpha} u\left(b_{\widehat{K}}\right)\left(x-b_{\widehat{K}}\right)^{\alpha}, \quad x \in B_{1 /(\mu h)}\left(b_{\widehat{K}}\right) \subset \mathbb{C}^{d}
$$

Hence (5.2) implies

$$
\begin{aligned}
\left\|u-T_{p} u\right\|_{L^{\infty}\left(B_{r_{0}}\left(b_{\widehat{K}}\right)\right)} & \leq \sum_{|\alpha| \geq p+1} \frac{1}{\alpha!}\left|D^{\alpha} u\left(b_{\widehat{K}}\right)\right| r_{0}^{|\alpha|} \leq \sum_{n=p+1}^{\infty} r_{0}^{n} d^{n / 2} \frac{1}{n!}\left\|\nabla^{n} u\right\|_{L^{\infty}(\widehat{K})} \\
& \leq C C_{u} p^{2} \sum_{n=p+1}^{\infty} \frac{1}{n!} \max \{n+2, \kappa\}^{n} d^{n / 2}(\gamma \bar{\gamma} h)^{n} r_{0}^{n}=: S
\end{aligned}
$$

This last sum S is split further using Stirling's formula $n!\geq(n / \mathrm{e})^{n}$ and $(1+2 / n)^{n} \leq \mathrm{e}^{2}$:

$$
\begin{aligned}
S & =C C_{u} p^{2}\left(\sum_{p+1 \leq n \leq \kappa-2} \frac{1}{n!}\left(\sqrt{d} r_{0} \gamma \bar{\gamma} \kappa h\right)^{n}+\sum_{n \geq \max \{p+1, \kappa-2\}}\left(\gamma \bar{\gamma} h r_{0} \sqrt{d}\right)^{n} \frac{(n+2)^{n}}{n!}\right) \\
& \leq C C_{u} p^{2} \mathrm{e}^{2}(\sum_{n \geq p+1} \frac{1}{n!}\left(\sqrt{d} r_{0} \gamma \bar{\gamma} \kappa h\right)^{n}+\sum_{n \geq p+1}(\underbrace{\mathrm{e} \gamma \bar{\gamma} \sqrt{d}}_{=\mu} r_{0} h)^{n})=: S_{1}+S_{2} .
\end{aligned}
$$

We estimate these two sums separately. For S_{2}, we use the assumption $\mu r_{0} h \leq 1 / 2$, which allows us to estimate

$$
S_{2} \leq C C_{u} p^{2} \mathrm{e}^{2}\left(\mu r_{0} h\right)^{p+1}=C C_{u} p^{2} \mathrm{e}^{2}\left(\frac{h}{\frac{1}{2 \mu r_{0}}+\frac{1}{2 \mu r_{0}}}\right)^{p+1} \leq C C_{u} p^{2} \mathrm{e}^{2}\left(\frac{h}{\frac{1}{2 \mu r_{0}}+h}\right)^{p+1}
$$

For S_{1}, we recall that Taylor's formula gives, for $x>0$,

$$
\sum_{n \geq p+1} \frac{1}{n!} x^{n}=\mathrm{e}^{x}-\sum_{n=0}^{p} \frac{1}{n!} x^{n}=\frac{1}{p!} \int_{0}^{x}(x-t)^{p} \mathrm{e}^{t} d t \leq \frac{x^{p+1}}{p!} \mathrm{e}^{x}
$$

Hence, we can estimate S_{1} by (recall $\bar{\gamma} \gamma \sqrt{d}=\mu / \mathrm{e}$),

$$
S_{2} \leq C C_{u} p^{2} \frac{\left((\mu / \mathrm{e}) r_{0} \kappa h\right)^{p+1}}{p!} \mathrm{e}^{(\mu / \mathrm{e}) r_{0} \kappa h} \leq C C_{u} p^{3}\left(\frac{\mathrm{e}^{\theta} \mu r_{0} \kappa h}{p+1}\right)^{p+1}
$$

where, in the second inequality, we have used the assumption $h \kappa / p \leq \widetilde{C}$ and Stirling's formula $n!\geq(n / \mathrm{e})^{n}$ and have abbreviated $\theta:=\widetilde{C} \mu / \mathrm{er} r_{0}$. Combining the estimates for S_{1} and S_{2} we arrive at the following estimate for suitable $\sigma>0$ (depending only on μ, r_{0}, and \widetilde{C}):

$$
\left\|u-T_{p} u\right\|_{L^{\infty}\left(B_{r_{0}}\left(b_{\hat{K}}\right)\right)} \leq S \leq C C_{u}\left(\left(\frac{\kappa h}{\sigma p}\right)^{p+1}+\left(\frac{h}{\sigma+h}\right)^{p+1}\right)
$$

Since $\operatorname{dist}\left(\widehat{K}, \partial B_{r_{0}}\left(b_{\widetilde{K}}\right)\right)>0$, the Cauchy integral formula for derivatives then implies

$$
\left\|u-T_{p} u\right\|_{W^{2, \infty}(\widehat{K})} \leq C C_{u}\left(\left(\frac{\kappa h}{\sigma p}\right)^{p+1}+\left(\frac{h}{\sigma+h}\right)^{p+1}\right)
$$

The case $\mu h>1 /\left(2 r_{0}\right)$: In this case, h is bounded away from 0 , namely, $h_{0}:=1 /\left(2 r_{0} \mu\right) \leq$ $h \leq 1$. We recall that for every $x \in \widehat{K}$ the Taylor series of u about x converges on the (complex) ball $B_{1 /(\mu h)}(x) \subset \mathbb{C}^{d}$. Setting $r_{1}:=1 /(2 \mu)$, we infer from this that u is analytic on $B_{2 r_{1}}:=\cup_{x \in \widehat{K}} B_{2 r_{1}}(x) \subset \mathbb{C}^{d}$. The estimate (C.5) and a calculation analogous to the above reveals that on $B_{r_{1}}:=\cup_{x \in \widehat{K}} B_{r_{1}}(x)$ we have (note that $h \geq h_{0}$)

$$
\|u\|_{L^{\infty}\left(B_{r_{1}}\right)} \leq C C_{u} p^{2} \mathrm{e}^{\vartheta \kappa h}
$$

for a constant $\vartheta>0$ independent of p, κ, h. Approximation results for analytic functions on triangles/tetrahedra (see [28, Prop. 3.2.16] for the case $d=2$ and [15, Thm. 1] for the case $d=3$) imply the existence of $C, b>0$ that depend solely on r_{1} such that

$$
\inf _{\pi \in \mathcal{P}_{p+1}}\|u-\pi\|_{W^{2, \infty}(\widehat{K})} \leq C C_{u} p^{2} \mathrm{e}^{\vartheta \kappa h} \mathrm{e}^{-b p} \quad \forall p \in \mathbb{N}_{0}
$$

We finally distinguish two further cases: If $\vartheta \kappa h<p b / 2$, then we can estimate

$$
p^{2} \mathrm{e}^{\vartheta \kappa h p} \mathrm{e}^{-b p} \leq p^{2} \mathrm{e}^{-b / 2 p} \leq C\left(\frac{h_{0}}{\sigma+h_{0}}\right)^{p+1}
$$

for suitable constants $C, \sigma>0$ depending only on b and h_{0}. Since $h \geq h_{0}$ and the function $h \mapsto h /(\sigma+h)$ is monotone increasing, we have reached the desired bound. If, on the other hand, $\vartheta \kappa h \geq p b / 2$, then

$$
p^{2} \mathrm{e}^{\vartheta \kappa h} \mathrm{e}^{-b p} \leq C \mathrm{e}^{\vartheta \kappa h} \leq C \mathrm{e}^{\vartheta \widetilde{C} p}=C\left(\mathrm{e}^{\vartheta \widetilde{C}}\right)^{p} \leq C\left(\frac{\kappa h}{p} \frac{2}{b} \mathrm{e}^{\vartheta \widetilde{C}}\right)^{p}
$$

we recognize this bound to have the desired form.
Lemma C. 3 Assume the hypotheses of Lemma C.2. Then one can find a polynomial $\pi \in \mathcal{P}_{p}$ that satisfies

$$
\begin{equation*}
\|u-\pi\|_{W^{1, \infty}(\widehat{K})} \leq C C_{u}\left[\left(\frac{h}{\sigma+h}\right)^{p+1}+\left(\frac{\kappa h}{\sigma p}\right)^{p+1}\right] \tag{C.7}
\end{equation*}
$$

and additionally admits an element-by-element construction as defined in Definition 5.3.
Proof. The construction follows standard lines. We will only outline the arguments for the case $d=3$. In order to keep the notation compact, we introduce the expression

$$
E(C, \sigma):=C C_{u}\left[\left(\frac{h}{\sigma+h}\right)^{p+1}+\left(\frac{\kappa h}{\sigma p}\right)^{p+1}\right]
$$

In what follows, the constants $C_{i}, \sigma_{i}>0(i=1,2, \ldots)$ will be independent of C_{u}, h, p, and κ. Let $\pi \in \mathcal{P}_{p}$ be the polynomial given by Lemma C.2. It satisfies $\|u-\pi\|_{W^{2, \infty}(\widehat{K})} \leq E(C, \sigma)$. Therefore, we may correct π by a linear polynomial without sacrificing the approximation rate to ensure $u(V)-\pi(V)$ for all vertices $V \in \mathcal{V}$. This corrected polynomial, denoted π^{2}, vanishes in the vertices and still satisfies $\left\|u-\pi^{2}\right\|_{W^{2, \infty}(\widehat{K})} \leq E\left(C_{2}, \sigma_{2}\right)$. Next, we correct the edges. We illustrate the procedure only for one edge. Without loss of generality, we assume that $\widehat{K}=\{(x, y, z) \mid 0<x, y, z<1, x+y<1-z\}$ and that the edge e considered is $e=\{(0,0, z) \mid z \in(0,1)\}$. Let the univariate polynomial $\pi^{e} \in \mathcal{P}_{p}$ be the minimizer of the functional (5.4). From $\left\|u-\pi^{2}\right\|_{W^{2, \infty}(e)} \leq\left\|u-\pi^{2}\right\|_{W^{2, \infty}(\widehat{K})} \leq E\left(C_{2}, \sigma_{2}\right)$ we can conclude that $p^{1 / 2}\left\|u-\pi^{e}\right\|_{L^{2}(e)}+\left\|u-\pi^{e}\right\|_{H_{00}^{1 / 2}(e)} \leq C p^{1 / 2} E\left(C_{2}, \sigma_{2}\right)$. Hence, for the required correction $\pi^{c}:=\left.\pi^{2}\right|_{e}-\pi^{e}$, which vanishes in the two endpoints of e, we get from a triangle inequality and standard polynomial inverse estimates $\left\|\frac{1}{1-z} \pi^{c}\right\|_{L^{\infty}(e)}+\left\|\pi^{c}\right\|_{L^{\infty}(e)} \leq E\left(C_{3}, \sigma_{3}\right)$. We may lift this univariate function to \widehat{K} by

$$
\widetilde{\pi}^{e}(x, y, z):=\frac{1-x-y-z}{1-z} \pi^{c}(z)
$$

This is a polynomial of degree $\leq p$ that vanishes on all edges but the edge e; clearly, $\left\|\widetilde{\pi}^{e}\right\|_{L^{\infty}(\widehat{K})} \leq E\left(C_{3}, \sigma_{3}\right)$. The polynomial inverse estimate $\left\|\widetilde{\pi}^{e}\right\|_{W^{1, \infty}(\widehat{K})} \leq C p^{2}\left\|\widetilde{\pi}^{e}\right\|_{L^{\infty}(\widehat{K})}$ shows that $\left\|\widetilde{\pi}^{e}\right\|_{W^{2, \infty}(\widehat{K})} \leq E\left(C_{4}, \sigma_{4}\right)$. Proceeding in this fashion for all edges, we arrive at a polynomial π^{3} with the desired behavior on all edges of \widehat{K} and satisfies $\left\|u-\pi^{3}\right\|_{W^{2, \infty}(\widehat{K})} \leq E\left(C_{5}, \sigma_{5}\right)$.

It remains to construct a correction for the faces. To that end, the key issue is again that of a lifting from a face f. Without loss of generality, this face is $f:=\{(x, y, 0) \mid 0<x, y, x+y<$ $1\}$. For a polynomial π^{c} defined on f that additionally vanishes on ∂f, we define the lifting $\widetilde{\pi}^{f}$ by

$$
\widetilde{\pi}^{f}(x, y, z)=\frac{x y(1-x-y-z)}{x y(1-x-y)} \pi^{c}(x, y) .
$$

This is a polynomial that vanishes on all faces of \widehat{K} except on f. Additionally, it is a lifting, i.e., $\left.\widetilde{\pi}^{f}\right|_{f}=\pi^{c}$. As in the case of the lifting from the edge we see that if π^{c} is exponentially small on f, then the lifting is likewise exponentially small. To see that the required correction π^{c} is exponentially small, let π^{f} be the minimizer of the functional (5.5). Since π^{3} has the desired behavior on the edges of f, we have $\left.\pi^{3}\right|_{\partial f}=\left.\pi^{f}\right|_{\partial f}$ and therefore $\left\|u-\pi^{3}\right\|_{W^{2, \infty}(\widehat{K})} \leq E\left(C_{5}, \sigma_{5}\right)$ allows us to conclude $\left\|\pi^{3}-\pi^{f}\right\|_{H^{1}(f)} \leq C E\left(C_{5}, \sigma_{5}\right)$. Polynomial inverse estimates then imply for the lifting $\widetilde{\pi}^{f}$ that $\left\|\widetilde{\pi}^{f}\right\|_{W^{1, \infty}(\widehat{K})} \leq E\left(C_{6}, \sigma_{6}\right)$.

D comments on the proof of Lemma B. 3

We have heavily used "non standard" Besov spaces in the proof of Lemma B.3. The following two lemmas show these spaces, being intermediary in the proof anyway, can be avoided.

Lemma D. 1 Let $\Omega \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain. Let $s>d / 2$. Then there exists $C_{s}>0$ such that

$$
\|u\|_{L^{\infty}(\Omega)} \leq C_{s}\|u\|_{L^{2}(\Omega)}^{1-d /(2 s)}\|u\|_{H^{s}(\Omega)}^{d /(2 s)}
$$

Proof. A short proof is as follows: Let $E: L^{2}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ be the Stein extension operator. Then $\|E u\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{L^{2}(\Omega)}$ and $\|E u\|_{H^{s}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{H^{s}(\Omega)}$. By [43, Thm.4.6.1], we have the embedding estimate $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right) \subset C\left(\mathbb{R}^{d}\right)$; in particular, $\|u\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{B_{2,1}^{d / s}\left(\mathbb{R}^{d}\right)}$. Next, we recognize that $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)$ is obtained by interpolation between $L^{2}\left(\mathbb{R}^{d}\right)$ and $H^{s}\left(\mathbb{R}^{d}\right)$ via the K-method; specifically, $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)=\left(L^{2}\left(\mathbb{R}^{d}\right), H^{s}\left(\mathbb{R}^{d}\right)\right)_{\theta, 1}$ with $\theta=d /(2 s)$. Hence,

$$
\|u\|_{B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)} \leq C\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1-d /(2 s)}\|u\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{d /(2 s)} .
$$

We conclude

$$
\|u\|_{L^{\infty}(\Omega)} \leq C\|E u\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C\|E u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1-d /(2 s)}\|E u\|_{H^{s}\left(\mathbb{R}^{d}\right)}^{d /(2 s)} \leq C\|u\|_{L^{2}(\Omega)}^{1-d /(2 s)}\|u\|_{H^{s}(\Omega)}^{d /(2 s)}
$$

An alternative proof that avoids the Besov space $B_{2,1}^{d / 2}\left(\mathbb{R}^{d}\right)$ is as follows: We assume that s is not an integer (the case of s being an integer is shown analogously). For the unit cube $Q=(0,1)^{d}$, the Sobolev embedding theorem asserts

$$
\|u\|_{L^{\infty}(Q)} \leq C\|u\|_{H^{s}(Q)} \quad \forall u \in H^{s}(Q) .
$$

(This can be seen by expanding u in a Fourier series). For the norm $\|u\|_{H^{s}(Q)}$, we now use the equivalent norm (the Aronstein-Slobodeckij norm)
$\|u\|_{H^{s}(Q)}^{2}:=\|u\|_{L^{2}(Q)}^{2}+|u|_{H^{s}(Q)}^{2}, \quad$ where $\quad|u|_{H^{s}(Q)}^{2}:=\sum_{|\alpha|=\lfloor s\rfloor} \int_{Q} \int_{Q} \frac{\left|D^{\alpha} u(x)-D^{\alpha} u(y)\right|^{2}}{|x-y|^{2(s-\lfloor s\rfloor)}} d x d y$

We use the analogous expression for $|u|_{H^{s}\left(\mathbb{R}^{d}\right)}$. By covering \mathbb{R}^{d} with translates of the unit cube Q, we can infer

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C\left[\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}+|u|_{H^{s}\left(\mathbb{R}^{d}\right)}\right] \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \tag{D.1}
\end{equation*}
$$

We next proceed in the standard way to infer from this a multiplicative estimate. For $u \in$ $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ we define, for $R>0$ to be chosen below, the function $u_{R}(x):=u(R x)$. Then
$\|u\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}=\left\|u_{R}\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq C\left[\left\|u_{R}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}+\left|u_{R}\right|_{H^{s}\left(\mathbb{R}^{d}\right)}\right]=C\left[R^{d / 2}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}+R^{d / 2-s}|u|_{H^{s}\left(\mathbb{R}^{d}\right)}\right]$.
This estimate holds for every $R>0$ with $C>0$ independent of R and u. Selecting

$$
R=\left(\frac{|u|_{H^{s}\left(\mathbb{R}^{d}\right)}}{\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}}\right)^{1 / s}
$$

produces

$$
\|u\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq|u|_{H^{s}\left(\mathbb{R}^{d}\right)}^{d /(2 s)}\|u\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{1-d /(2 s)} \quad \forall v \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

From this estimate, the desired bound on Ω follows easily.
Lemma D. 2 Let $K=\mathbb{R}^{d}$ and $\omega=\mathbb{R}^{d-1} \times\{0\}$ be a hyperplane and $s>1 / 2$. Then there exists $C>0$ (depending s) such that

$$
\|u\|_{L^{2}(\omega)} \leq C\|u\|_{L^{2}(K)}^{1-1 /(2 s)}\|u\|_{H^{s}(K)}^{1 /(2 s)} \quad \forall u \in H^{s}(K)
$$

Proof. A proof based on the Besov space $B_{2,1}^{1 / 2}(K)$ can be found in [30, Thm. A.2]. An "elementary" proof based on the continuity of the trace operator $H^{s}(K) \rightarrow H^{s-1 / 2}(\omega)$ can be shown using the same techniques as in the proof of Lemma D.1-see [30, Exercise A.1] for details.

Lemma D. 3 Let $d \geq 3, K=\mathbb{R}^{d}, \omega=\mathbb{R}^{d-2} \times\{0\} \times\{0\}$ be a hyperplane of co-dimension 2 . Let $s>1$. Then

$$
\|u\|_{L^{2}(\omega)} \leq C\|u\|_{L^{2}(K)}^{(s-1) / s}\|u\|_{H^{s}(K)}^{1 / s} \quad \forall u \in H^{s}(K)
$$

Proof. The proof consists in iterating Lemma D.2. Let $\omega^{\prime}=\mathbb{R}^{d-1} \times\{0\}$. Applying Lemma D. 2 with $s^{\prime}=s-1 / 2>1 / 2$, we get in view of $1 /\left(2 s^{\prime}\right)=\frac{1}{2 s-1}$ and $1-1 /\left(2 s^{\prime}\right)=\frac{2 s-s}{2 s-1}$

$$
\|u\|_{L^{2}(\omega)} \leq C\|u\|_{L^{2}\left(\omega^{\prime}\right)}^{(2 s-2) /(2 s-1)}\|u\|_{H^{s-1 / 2}\left(\omega^{\prime}\right)}^{1 /(2 s-1)} .
$$

Applying again Lemma D. 2 and the trace theorem we arrive at

$$
\|u\|_{L^{2}(\omega)} \leq C\|u\|_{L^{2}(K)}^{\left(1-\frac{1}{2 s}\right)} \frac{2 s-2}{2 s-1}\|u\|_{H^{s}(K)}^{\frac{1}{2 s} \frac{2 s-2}{2 s-1}}\|u\|_{H^{s}(K)}^{\frac{1}{2 s-1}}
$$

elementary manipulations of the exponents produce the desired form.
Acknowledgments: We would like to thank Prof. R. Hiptmair for discussions concerning the choice of the model problem.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Applied Mathematics Series 55. National Bureau of Standards, U.S. Department of Commerce, 1972.
[2] M. Ainsworth. Discrete dispersion relation for $h p$-version finite element approximation at high wave number. SIAM J. Numer. Anal., 42(2):553-575, 2004.
[3] I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta. Efficient preconditioning for the p version finite element method in two dimensions. SIAM J. Numer. Anal., 28(3):624-661, 1991.
[4] I. Babuška and S. Sauter. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers. SIAM, J. Numer. Anal., 34(6):2392-2423, 1997.
[5] I. Babuška and M. Suri. The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal., 24:750-776, 1987.
[6] I. M. Babuška, F. Ihlenburg, E. T. Paik, and S. A. Sauter. A Generalized Finite Element Method for Solving the Helmholtz Equation in Two Dimensions with Minimal Pollution. Comp. Meth. Appl. Mech. Eng., 128:325-359, 1995.
[7] L. Banjai and S. Sauter. A Refined Galerkin Error and Stability Analysis for Highly Indefinite Variational Problems. SIAM J. Numer. Anal., 45(1):37-53, 2007.
[8] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. SpringerVerlag, New York, 1994.
[9] A. Buffa and P.Monk. Error estimates for the Ultra Weak Variational Formulation of the Helmholtz Equation. Math. Mod. Numer. Anal., page to appear, 2007.
[10] O. Cessenat and B. Després. Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal., 35:255-299, 1998.
[11] O. Cessenat and B. Després. Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Computational Acoustics, 11:227-238, 2003.
[12] S. Chandler-Wilde and P. Monk. Wave-Number-Explicit Bounds In Time-Harmonic Scattering. SIAM J. Numer. Anal., to appear.
[13] P. Ciarlet. The finite element method for elliptic problems. North-Holland, 1987.
[14] A. Deraemaeker, I. Babuška, and P. Bouillard. Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimesnions. Int. J. Numer. Meth. Eng., 46(4), 1999.
[15] T. Eibner and J. Melenk. An adaptive strategy for $h p$-FEM based on testing for analyticity. Computational Mechanics, 39:575-595, 2007.
[16] C. Farhat, I. Harari, and U. Hetmaniuk. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comp. Meth. Appl. Mech. Eng., 192:1389-1419, 2003.
[17] C. Farhat, R. Tezaur, and P. Weidemann-Goiran. Higher-order extensions of discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Eng., 61, 2004.
[18] C. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuous Galerkin methods. Technical Report NI07088-HOP, Isaac Newton Institute Cambridge, Cambridge, UK, 2007.
[19] I. S. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products. Academic Press, New York, London, 1965.
[20] B. Guo and J. Zhang. Stable and compatible polynomial extensions in three demensions and applications to the p and h-p finite element method. Technical report, 2006.
[21] I. Harari. Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Engrg., 140(1-2):39-58, 1997.
[22] I. Harari. Finite element dispersion of cylindrical and spherical acoustic waves. Comput. Methods Appl. Mech. Engrg., 190(20-21):2533-2542, 2001.
[23] I. Harari and D. Avraham. High-order finite element methods for acoustic problems. J. Comput. Acoust., 5(1):33-51, 1997.
[24] I. Harari and T. Hughes. Finite Element Methods for the Helmholtz Equation in an Exterior Domain: Model Problems. Computer Methods in Applied Mechanics and Engineering, 87:59-96, North Holland, 1991.
[25] T. Huttunen and P. Monk. The use of plane waves to approximate wave propagation in anisotropic media. J. Computational Mathematics, 25:350-367, 2007.
[26] F. Ihlenburg. Finite Element Analysis of Acousting Scattering. Springer, New York, 1998.
[27] F. Ihlenburg and I. Babuška. Finite Element Solution to the Helmholtz Equation with High Wave Number. Part II: The h-p version of the FEM. Siam J. Num. Anal., 34(1):315358, 1997.
[28] J. Melenk. hp finite element methods for singular perturbations, volume 1796 of Lecture Notes in Mathematics. Springer Verlag, 2002.
[29] J. Melenk. $h p$-interpolation of nonsmooth functions and an application to $h p$ a posteriori error estimation. SIAM J. Numer. Anal., 43:127-155, 2005.
[30] J. Melenk. On approximation in meshless methods. In J. Blowey and A. Craig, editors, Frontier in Numerical Analysis, Durham 2004. Springer Verlag, 2005.
[31] J. M. Melenk. On Generalized Finite Element Methods. PhD thesis, University of Maryland at College Park, 1995.
[32] R. Muñoz-Sola. Polynomial liftings on a tetrahedron and applications to the $h p$-version of the finite element method in three dimensions. SIAM J. Numer. Anal., 34(1):282-314, 1997.
[33] J. C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.
[34] A. Oberai and P. Pinsky. A numerical comparison of finite element methods for the Helmholtz equation. J. Comput. Acoust., 8(1):211-221, 2000.
[35] F. Olver. Asymptotics and Special Functions. A K Peters, Natick, 1997.
[36] E. Perrey-Debain, O. Laghrouche, and P. Bettess. Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A, 362:561-577, 2004.
[37] S. Sauter. A Refined Finite Element Convergence Theory for Highly Indefinite Helmholtz Problems. Computing, 78(2):101-115, 2006.
[38] A. Schatz. An obeservation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp., 28:959-962, 1974.
[39] C. Schwab. p-and hp-Finite Element Methods. Oxford University Press, 1998.
[40] E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970.
[41] M. Stojek. Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr., 41:831-849, 1998.
[42] R. Tezaur and C. Farhat. Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr., 66:796-815, 2006.
[43] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius Barth, 2 edition, 1995.
[44] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, 1922.

[^0]: *(melenk@tuwien.ac.at), Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.
 ${ }^{\dagger}$ (stas@math.uzh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland

