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Convergence Analysis for Finite Element Discretizations
of the Helmholtz equation.

Part I: The Full Space Problem.

J.M. Melenk∗ S. Sauter†

Abstract

A rigorous convergence theory for Galerkin methods for a model Helmholtz problem
in Rd, d ∈ {1, 2, 3} is presented. General conditions on the approximation properties of
the approximation space are stated that ensure quasi-optimality of the method. As an
application of the general theory, a full error analysis of the classical hp-version of the
finite element method (hp-FEM) is presented where the dependence on the mesh width
h, the approximation order p, and the wave number k is given explicitly. In particular, it
is shown that quasi-optimality is obtained under the conditions that kh/p is sufficiently
small and the polynomial degree p is at least O(log k).

AMS Subject Classification: 35J05, 65N12, 65N30
Key Words: Helmholtz equation at high wave number, stability, convergence, hp-finite ele-
ments

1 Introduction

We consider the numerical solution of the Helmholtz equation by the finite element method
or generalizations thereof, which are based on non-standard approximation spaces. Clearly,
the derivation of stability and convergence estimates for the classical hp-version of the FEM
that are explicit in the wave number, the mesh width, and the approximation order, are of
great practical importance. Additionally, such results are also useful for the design and the
understanding of generalized finite element methods. Partial results such as sharp estimates
for the inf-sup constant of the continuous equations, lower estimates for the convergence
rates, one-dimensional analysis by using the discrete Green’s function as well as a dispersion
analysis for finite element discretizations and generalizations thereof have been derived by
many researchers in the past decades (see, e.g., [2, 4, 6, 7, 9–11, 14, 16–18, 21–27, 31, 34, 36, 37,
41,42]).

The main goal of the present paper is to derive quite general stability and convergence
estimates that are:
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†(stas@math.uzh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich,
Switzerland
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• explicit in the wave number, the mesh width, and the polynomial degree of the hp-FEM
space;

• valid for problems in d spatial dimensions, d = 1, 2, 3;

• only based on approximation properties of the (generalized) finite element space; the
rationale behind this requirement is that it is easier to verify such an approximation
property than to perform a full-fledged convergence analysis for a given approximation
space.

Such types of estimates require the development of new powerful analytical tools and
cannot be achieved in one stroke. As a first step, we consider in this paper the Helmholtz
equation in a bounded d-dimensional domain with non-reflecting boundary conditions and
analyze its finite element discretization. We derive stability and convergence estimates that
are explicit in the wave number, the mesh width and the polynomial degree of the finite element
space. Forthcoming papers will address more general situations such as the scattering of waves
by bounded smooth objects and later the scattering by polygonal/polyhedral domains. The
results which we derive in this paper will form the basis for such generalizations.

The outline of this paper is as follows: Section 2 formulates the model problem. Section 3
provides an analysis of the model problem. In particular, the k-dependence of the solution
is made explicit (Lemmata 3.7, 3.4). Section 4 analyzes the discrete stability and states
explicit conditions on the properties of the approximation space to ensure quasi-optimality
of the Galerkin scheme (Theorems 4.2, 4.3). Section 5 applies the results of Section 4 to the
hp-version of the FEM. In particular, we show in Corollary 5.5 that quasi-optimality of the
hp-FEM can be achieved under the assumption that

kh

p
+ k

(
kh

σp

)p

≤ C (1.1)

where the constants C, σ > 0 are sufficiently small but independent of h, p, and k. Ap-
pendix A provides detailed properties of Bessel functions that are needed in Section 3. Ap-
pendix B provides hp-approximation results for functions in the Sobolev spaces Hs which
allow simultaneous approximation in the L2- and H1-norm. It will turn out that such esti-
mates are essential for the error analysis of Helmholtz problems in the high frequency regime.
Appendix C finally provides hp-approximation results for functions that are analytic. These
latter approximation results are tailored to regularity properties of solution of Helmholtz-type
problems.

2 Formulation of the model Helmholtz problem

The Helmholtz problem in the full space Rd with Sommerfeld radiation condition is given by:
Find U ∈ H1

loc(Rd) such that

(−∆− k2)U = f in Rd,∣∣∣∣∂U∂r − i kU

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞ (2.1)
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is satisfied in a weak sense (cf. [33]). Here, ∂/∂r denotes the derivative in radial direction
x/ ‖x‖. We assume throughout the paper that the wave number is positive and bounded away
from zero, i.e.,

k ≥ k0 > 0. (2.2)

We assume that f is local in the sense that there exists a bounded, simply connected
domain Ω ⊂ Rd that satisfies supp f ⊂ Ω. The complement of Ω is denoted by Ω+ := Rd\Ω
and the interface by Γ := Ω ∩ Ω+. Then (2.1) can be formulated in an equivalent way as a
transmission problem by seeking functions u ∈ H1 (Ω) and u+ ∈ H1

loc(Ω
+) such that

(−∆− k2)u = f in Ω, ,
(−∆− k2)u+ = 0 in Ω+,

u = u+ and ∂u/∂n = ∂u+/∂n on Γ,∣∣∣∣∂u+

∂r
− i ku+

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.

(2.3)

Here, n denote the normal vector pointing into the exterior domain Ω+.
It can be shown that, for given g ∈ H1/2 (Γ), the problem:

find w ∈ H1
loc

(
Ω+
)

such that


(−∆− k2)w = 0 in Ω+,

w = g on ∂Ω,∣∣∣∣∂w∂r − i kw

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.

has a unique weak solution. The mapping g 7→ w is called the Steklov-Poincaré operator
and denoted by SP : H1/2 (Γ) → H1

loc (Ω+). The Dirichlet-to-Neumann map is given by
T := γ1SP : H1/2 (Γ) → H−1/2 (Γ), where γ1 := ∂/∂n is the normal trace operator. Hence,
problem (2.3) can be reformulated as: Find u ∈ H1 (Ω) such that

(−∆− k2)u = f in Ω,
∂u/∂n = Tu on Γ.

(2.4)

The weak formulation of this equation is given by: Find u ∈ H1 (Ω) such that

a (u, v) :=

∫
Ω

〈∇u,∇v̄〉 − k2uv̄ −
∫

Γ

(Tu) v̄ =

∫
Ω

fv ∀v ∈ H1 (Ω) . (2.5)

The exact solution of (2.1) can be written as the acoustic volume potential. Let Gk :
Rd\ {0} → C denote the fundamental solution to the operator Lk := −∆− k2, i.e., Gk (z) =
gk (‖z‖), where

gk (r) :=


− ei kr

2 i k
d = 1,

i
4
H

(1)
0 (kr) d = 2,

ei kr

4πr
d = 3.

Then, the solution of (2.1) is given by

U (x) := (Nkf) (x) :=

∫
Ω

Gk (x− y) f (y) dy ∀x ∈ Rd. (2.6)

Consequently, the solution of (2.4) and (2.5) is given by

u (x) := (Nkf) (x) :=

∫
Ω

Gk (x− y) f (y) dy ∀x ∈ Ω.
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Finally, we recall that a Galerkin method for (2.5) is given as follows: For a (typically finite

dimensional) space S ⊂ H1(Ω), the Galerkin approximation uS ∈ S to the exact solution u is
given by:

Find uS ∈ S s.t. a(uS, v) =

∫
Ω

fv ∀v ∈ S. (2.7)

3 Analysis of the continuous problem

The analysis of the continuous problem is split into three parts. First, we provide some
estimates for the Dirichlet-to-Neumann map T . Then, we prove some mapping properties
of the solution operator and, finally, state the existence and uniqueness of the continuous
problem.

3.1 Estimates for the operator T

We equip the space H1 (Ω) with the norm

‖u‖H :=
(
|u|21,Ω + k2 ‖u‖2

0,Ω

)1/2

,

which is obviously equivalent to the H1-norm. For d = 1, the boundary ∂Ω consists of the
two endpoint of Ω and the L2 (∂Ω)- and H1/2 (∂Ω)-scalar product and norm is understood as

(u, v)L2(Γ) :=
∑

x∈{−R,R}

u (x) v (x) and ‖u‖L2(Γ) = ‖u‖H1/2(Γ) =

√ ∑
x∈{−R,R}

|u (x)|2.

For Lipschitz domains, it is well known that a trace estimate holds.

Lemma 3.1 There exists a constant Ctr depending only on Ω and k0 such that

∀u ∈ H1 (Ω) : ‖u‖H1/2(Γ) ≤ Ctr ‖u‖H (3.1a)

and
∀u ∈ H1 (Ω) : ‖u‖L2(Γ) ≤ Ctr ‖u‖1/2

L2(Ω) ‖u‖
1/2

H1(Ω) . (3.1b)

Corollary 3.2 For u ∈ H1 (Ω), we have

√
k ‖u‖L2(Γ) ≤ C̃tr ‖u‖H with C̃tr :=

Ctr√
2

√
1 + k2

0

k0

where k0 is as in (2.2).

Proof. There holds

k ‖u‖2
L2(Γ) ≤ C2

trk ‖u‖L2(Ω) ‖u‖H1(Ω) ≤
C2

tr

2

(
k2 ‖u‖2

L2(Ω) + ‖u‖2
H1(Ω)

)
=
C2

tr

2

((
1 + k2

)
‖u‖2

L2(Ω) + |u|2H1(Ω)

)
≤ C̃2

tr ‖u‖
2
H . (3.2)
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Since the right-hand side f in (2.3) has compact support, we may always choose Ω to be
a ball B (0, R) of radius R centered at the origin. In the following analysis we will always
restrict our attention to this case and assume that

R ≥ R0 > 0. (3.3)

Lemma 3.3 Let Ω ⊂ Rd be the ball of radius R centered at the origin and let (3.3) and (2.2)
be satisfied. For d = 2, we assume, in addition, that k0 ≥ 1 holds. Then, there exist constants
c, C > 0 that only depend on R0 and k0 such that the following is true:

1. ∣∣∣(Tu, v)L2(Γ)

∣∣∣ ≤ C ‖u‖H ‖v‖H ∀u, v ∈ H1 (Ω) . (3.4a)

2. For d ∈ {2, 3} and all u ∈ H1/2 (Γ) the real and imaginary parts of (Tu, u) satisfy

−Re (Tu, u)L2(Γ) ≥ c
‖u‖2

L2(Γ)

R
, (3.4b)

Im (Tu, u)L2(Γ) > 0 for u 6= 0. (3.4c)

For d = 1, instead of (3.4b), (3.4c), there holds

−Re (Tu, u)L2(Γ) = 0, (3.4d)

Im (Tu, u)L2(Γ) ≥ k ‖u‖2
L2(Γ) . (3.4e)

Proof. Case d = 3.
The Dirichlet data on Γ = ∂B (0, R) can be expanded according to

u (x) =
∞∑

`=0

∑̀
m=−`

um
` Y

m
` (θ, φ) , (3.5)

where (R, θ, φ) are the spherical coordinates for x ∈ Γ and the functions Y m
` are the standard

spherical harmonics. The solution to the exterior homogeneous Helmholtz problem with
Sommerfeld radiation conditions at infinity and prescribed Dirichlet data at Γ can be expanded
in the form

u (x) =
∞∑

`=0

∑̀
m=−`

um
` Y

m
` (θ, φ)

h
(1)
` (kr)

h
(1)
` (kR)

, (3.6)

where (r, θ, φ) are the spherical coordinates of x ∈ R3\Ω. By taking the normal derivative at
the boundary we end up with a representation of the Dirichlet-to-Neumann map

Tu =
∞∑

`=0

∑̀
m=−`

um
` Y

m
` (θ, φ)

z` (kR)

R
(3.7)

with the functions z` (r) := r

“
h
(1)
`

”′
(r)

h
(1)
` (r)

. These functions have been analyzed in [33, Theorem

2.6.1] where it is shown that

1 ≤ −Re (z` (r)) ≤ `+ 1 and 0 < Im (z` (r)) ≤ r. (3.8)
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(In [33, Theorem 2.6.1], only Im z` (r) ≥ 0 is stated, while the strict positivity follows from
the positivity of the function q` in [33, (2.6.34)].) It follows from (3.7) that∫

Γ

(Tu) v =
∞∑

`=0

∑̀
m=−`

z` (kR)

R
um

` v
m
`

and from (3.8) we conclude that∣∣∣∣Re

∫
Γ

(Tu) v

∣∣∣∣ =

∣∣∣∣∣
∞∑

`=0

∑̀
m=−`

{
Re z` (kR)

R
Re
(
um

` v
m
`

)
− Im z` (kR)

R
Im
(
um

` v
m
`

)}∣∣∣∣∣
≤ 1

R

∞∑
`=0

∑̀
m=−`

{|Re z` (kR)|+ |Im z` (kR)|} |um
` | |vm

` |

≤ 1

R

∞∑
`=0

∑̀
m=−`

{|`+ 1|+ kR} |um
` | |vm

` |

≤ C
(
R−1 ‖u‖H1/2(Γ) ‖v‖H1/2(Γ) + k ‖u‖L2(Γ) ‖v‖L2(Γ)

)
.

Using Corollary 3.2 we get∣∣∣∣Re

∫
Γ

(Tu) v

∣∣∣∣ ≤ CC̃2
tr

(
1 +

1

R0k0

)
‖u‖H ‖v‖H .

By repeating these steps for the imaginary part we get the same upper bound and, hence,∣∣∣∣∫
Γ

(Tu) v

∣∣∣∣ ≤ C ‖u‖H ‖v‖H ,

where C only depends on R0 and k0.

The lower estimate of the real part follows from

−Re

∫
Γ

(Tu)u =
∞∑

`=0

∑̀
m=−`

−Re z` (kR)

R
|um

` |
2 ≥

∞∑
`=0

∑̀
m=−`

1

R
|um

` |
2 =

‖u‖2
L2(Ω)

R
.

The upper estimate for the imaginary part is just a repetition of the previous arguments.

For the lower estimate of the imaginary part, we consider u ∈ H1/2 (Γ) \ {0}. Hence, there
exists (m?, `?) in the expansion (3.5) so that um?

`?
6= 0. This leads to

Im

∫
Γ

(Tu) ū =
∞∑

`=0

∑̀
m=−`

Im z` (kR)

R
|um

` |
2 ≥

∣∣um?
`?

∣∣2 > 0

and the lower bound is proved.

Case d = 2.
We expand the Dirichlet data on Γ in polar coordinates

u (x) =
∑
m∈Z

um ei mθ,
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where (R, θ) are the polar coordinates of x ∈ Γ. It follows (see, e.g., [12, (2.10)]) that

Tu =
∑
m∈Z

um
wm (kR)

R
ei mθ with wm (r) := r

(
H

(1)
|m|

)′
(r)

H
(1)
|m| (r)

. (3.9)

Obviously, it is sufficient to analyze wm only for m ∈ N0. By decomposing wm into its real
and imaginary part we get

w` = r
J ′`J` + Y ′

`Y` + i (Y ′
`J` − J ′`Y`)

J2
` + Y 2

`

.

For the imaginary part, we obtain

Y ′
`J` − J ′`Y`

[1, 9.1.27]
= Y`−1J` − J`−1Y`

[1, 9.1.16]
=

2

πr
.

We set M` :=
∣∣∣H(1)

`

∣∣∣ and obtain

w` = r
J ′`J` + Y ′

`Y`

M2
`

+ i
2

πM2
`

=
r

2

d

dr
M2

`

M2
`

+ i
2

πM2
`

. (3.10)

In the next step, we derive estimates for the coefficients w`.

Case d = 2 and ` ∈ N≥2.
Let

M2
`,n (r) :=

2

πr

n∑
m=0

δ`,m
r2m

with δ`,m :=
(2m)!γ`,m

(m!)2 16m
and γ`,m :=

m∏
k=1

(
4`2 − (2k − 1)2) (3.11)

and define RM
`,n := M2

` −M2
`,n. Note that

γ`,` =
(4`)!

22` (2`)!
≥ 0 and γ`,`+1 = − (4`+ 1) γ`,` < 0. (3.12)

We conclude from [44, §13.75] that, for the choice n = ` − 1 ≥ 0, there holds RM
`,`−1 (r) ≥ 0.

Thus,
M2

` (r) ≥M2
`,`−1 (r) ∀r ≥ 0. (3.13)

Let Kν be the modified Bessel function of order ν. From [44, §13.75] we obtain

N2
` :=

d

dr
M2

` = −16

π2

∫ ∞

0

K1 (2r sinh t) sinh t cosh (2`t) dt

and
cosh (2`t)

cosh t
=

n∑
m=0

γ`,m

(2m)!
sinh2m t+ R̃2

`,n.

If n > `− 3/2, the remainder R̃`,n satisfies

R̃2
`,n ∈



[
0,

γ`,n+1

(2n+ 2)!
sinh2(n+1) t

]
if γ`,n+1 > 0,

[
γ`,n+1

(2n+ 2)!
sinh2(n+1) t, 0

]
otherwise.

(3.14)
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We introduce

N2
`,n := −16

π2

n∑
m=0

γ`,m

(2m)!

∫ ∞

0

K1 (2r sinh t) (cosh t)
(
sinh2m+1 t

)
dt

= −16

π2

n∑
m=0

γ`,m

(2m)! (2r)2m+2

∫ ∞

0

K1 (z) z2m+1dz

= − 2

πr2

n∑
m=0

(2m+ 1)
δ`,m
r2m

=
d

dr
M2

`,n.

Note that M2
` (r) is monotone decreasing for r > 0 (cf. [35, §9-7.3]) and hence N2

` (r) < 0 for
r > 0. Thus, ∣∣N2

` (r)
∣∣ = −N2

`,n (r) +RN
`,n with RN

`,n := −N2
` (r) +N2

`,n (r)

and RN
`,n has the explicit representation

RN
`,n (r) =

16

π2

∫ ∞

0

K1 (2r sinh t) (sinh t) (cosh t) R̃2
`,n (t) dt.

Note that sinh, cosh, and K1 are positive on the positive real axes (cf. [1, 9.6.23]). We choose
n = ` and obtain from (3.12) and (3.14) that R̃`,` (t) is negative for t > 0 and hence∣∣N2

` (r)
∣∣ ≤ −N2

`,` (r) ∀r > 0. (3.15)

In summary, we have proved that

|Rew`| ≤ −r
2

N2
`,`

M2
`,`−1

=
1

2

∑`
m=0 (2m+ 1)

δ`,m

r2m∑`−1
m=0

δ`,m

r2m

≤ 2`− 1

2
+

2`+ 1

2

δ`,`

r2`

δ`,`−1

r2`−2

(3.16)

=
2`− 1

2
+

(4`− 1) (4`2 − 1)

16`r2
.

Hence, for ` ≥ 2 and r ≥ C1

√
`, the estimate

|Rew`| ≤
2`− 1

2

(
1 +

9

8C2
1

)
follows.

It remains to consider the case
r ≤ C1

√
`. (3.17)

We derive from (3.10) and [1, 9.1.27]∣∣∣r
2
N2

` (r)
∣∣∣ = −r

2
N2

` (r) = `M2
` (r)− r (J`−1J` + Y`Y`−1)

and this leads to

|Rew`| =

∣∣∣r
2
N2

` (r)
∣∣∣

M2
` (r)

= `− r (J`J`−1 + Y`Y`−1)

M2
` (r)

. (3.18)
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We deduce from [1, 9.5.2, 9.1.7, 9.1.9] that

J` (r) > 0 and Y` (r) < 0 ∀0 ≤ r ≤ `

and, thus,
J`J`−1 + Y`Y`−1 > 0 ∀0 ≤ r ≤ `− 1.

If C1 ≤ 2−1/2 there holds C1

√
` ≤ `− 1 for all ` ≥ 2 and we have proved |Rew`| ≤ `.

To derive a lower bound of (−Rew`), we proceed as for (3.16) and obtain, for r ≥ k0,

−Rew` (r) ≥ −r
2

N2
`,`−1 (r)

M2
`,` (r)

=
1

2

∑`−1
m=0 (2m+ 1)

δ`,m

r2m∑`
m=0

δ`,m

r2m

≥ 1

2

1

1 +
δ`,`

r2`

(2`−1)
δ`,`−1

r2`−2

(3.19)

=
1

2

1

1 + 4`−1
8`r2

≥ 1

2

1

1 + 1
2k2

0

.

For the imaginary part we get

Imw` (r) =
2

πM2
` (r)

> 0 ∀` ∈ N0 ∀r ≥ k0 (3.20)

because M2
` is non-negative and decreasing for r > 0 (cf. [35, §9-7.3]). For the upper bound,

we combine [19, 8.479] with the fact that M2
` is decreasing to obtain for ` ∈ N≥1

M2
` (r) ≥ 2

πr
∀r ≥ 1. (3.21a)

Hence, the upper bound

Imw` (r) =
2

πM2
` (r)

≤ r (3.22)

follows.
Case d = 2 and ` = 0, 1.
For ` = 0, we use [44, §13.75] and get

M2
0 (r) ≥M2

0,1 (r) =
2

πr

(
1− 1

8r2

)
.

For d = 2, there holds k0 > 1/2 by our assumptions and, thus, for r ≥ k0 we get

M2
0 (r) ≥ 1

πr
. (3.21b)

The combination of (3.10) and (3.21) implies

|Rew` (r)| ≤ πr2

2

∣∣N2
` (r)

∣∣ .
We deduce from (3.15) (which is also valid for ` = 0, 1)

∣∣N2
` (r)

∣∣ ≤ ∣∣N2
`,` (r)

∣∣ ≤ 2

πr2

∑̀
m=0

(2m+ 1)
δ`,m
r2m

≤ 2

πr2

{
1 ` = 0,
1 + 9

8r2 ` = 1.

9



This implies, for r ≥ k0 (cf. (2.2)) ∣∣N2
` (r)

∣∣ ≤ C
2

πr2
,

where C depends solely on k0. Thus, for ` = 0, 1,

|Rew`| ≤ C ≤ C (`+ 1) .

Since M2
` is monotone decreasing (see [35, §9-7.3]), it follows from (3.9) that Rew` (r) < 0 for

all r > 0.

In (3.19) we have derived a lower bound for (−Rew`) provided ` ≥ 1. It remains to
consider the case ` = 0. The assumption on k0 implies r ≥ k0 ≥ 1

2

√
3 so that

−Rew0 (r) ≥ −r
2

N2
0,1 (r)

M2
0,0 (r)

=
1

2

(
1− 3

8r2

)
≥ 1

4
.

To summarize both cases, we have proved that

0 < c ≤ −Rew` (r) ≤ C (`+ 1) ∀r ≥ k0 ∀` ∈ N0, (3.23a)

where c, C only depends on k0.

For the imaginary part, it remains (cf. (3.21a), (3.22)) to prove the upper bound for
(Imw0) and employ (3.10) and (3.21b) to obtain

Imw0 =
2

πM2
0

≤ 2r. (3.23b)

By proceeding as for d = 3 (after (3.8)) the estimates (3.4) follow from (3.23).

Case d = 1
For boundary values ψ : {−R,R} → R, the Dirichlet-to-Neumann operator is given by

Tψ = i kψ.

The trace theorem (in one dimension) leads to∣∣∣∣Re

∫
Γ

(Tu) v

∣∣∣∣ =

∣∣∣∣∣Re

(
i k
∑

r=±R

u (r) v (r)

)∣∣∣∣∣
≤ k

∣∣∣∣∣Im ∑
r=±R

u (r) v (r)

∣∣∣∣∣ ≤ k
∑

r=±R

|u (r)| |v (r)|

Cor. 3.2

≤ C ‖u‖H ‖v‖H ,

where C only depends on R0 and k0. By the same techniques we can estimate the imaginary
part and, thus, obtain (3.4a). The lower bounds (3.4d), (3.4e) follow from

−Re

∫
Γ

(Tu)u = −Re

(
i k
∑

r=±R

|u (r)|2
)

= 0

Im

∫
Γ

(Tu)u = k
∑

r=±R

|u (r)|2 ≥ k ‖u‖2
L2(Γ) .
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3.2 Local estimates for the solution operator

In this section, we derive some explicit bounds for the solution operator under the assumption
that the right-hand side is in L2 (Ω). These estimates will be the basic tool for proving the
discrete stability of the finite element discretization and the convergence. The key step for
the analysis of the hp-FEM in Section 5 is the following decomposition result:

Lemma 3.4 (decomposition lemma) Let Ω be contained in a ball of radius R > 0. Then
there exist constants C, γ > 0 depending only R and k0 such that for f ∈ L2(Ω) the function
v given by

v(x) = Nkf(x) =

∫
Ω

Gk(x− y)f(y) dy, x ∈ Ω

satisfies
‖v‖H1(Ω) + k‖v‖L2(Ω) ≤ C‖f‖L2(Ω)

and can be decomposed as v = vH2 + vA with

‖vH2‖H2(Ω) ≤ C‖f‖L2(Ω), (3.24a)

‖∇pvA‖L2(Ω) ≤ C (γ|k|)p−1 ‖f‖L2(Ω) ∀p ∈ N0. (3.24b)

Here, ∇pvA stands for a sum over all derivatives of order p (see (5.1) for details).

Proof. We start by recalling the definition of the Fourier transform for functions with
compact support

û (ξ) = (2π)−d/2

∫
Rd

e− i〈ξ,x〉 u (x) dx ∀ξ ∈ Rd

and the inversion formula

u (x) = (2π)−d/2

∫
Rd

ei〈x,ξ〉 û (ξ) dξ ∀x ∈ Rd.

Let BΩ ⊂ Rd be a ball of radius R containing Ω. Extend f by zero outside of Ω and denote
this extended function again by f . Let µ ∈ C∞ (R≥0) be a cutoff function such that

suppµ ⊂ [0, 4R] , µ|[0,2R] = 1, |µ|W 1,∞(R≥0) ≤
C

R
,

∀x ∈ R≥0 : 0 ≤ µ (x) ≤ 1, µ|[4R,∞[ = 0, |µ|W 2,∞(R≥0) ≤
C

R2
.

(3.25)

Define M (z) := µ (‖z‖) and

vµ (x) :=

∫
BΩ

Gk (x− y)M (x− y) f (y) dy ∀x ∈ Rd.

The properties of µ guarantee vµ|BΩ
= v|BΩ

so that we may restrict our attention to the
function vµ. Since supp f ⊂ BΩ we may write

vµ = (GkM) ? f, (3.26)

11



where “?” denotes the convolution in Rd. We will define a decomposition of vµ (which will
determine the decomposition of v on BΩ) by decomposing its Fourier transform, i.e.,

v̂µ = v̂H2 + v̂A. (3.27)

In order to define the two terms on the right-hand side of (3.27), we let B3k/2(0) denote the
ball of radius 3k/2 centered at the origin. The characteristic function of B3k/2(0) is denoted
by χk. The Fourier transform of f is then decomposed as

f̂ = f̂χk + (1− χk)f̂ =: f̂k + f̂ c
k .

By the inverse Fourier transformation, this decomposition of f̂ entails a decomposition of f
into fk and f c

k given by

fk (x) := (2π)−d/2

∫
Rd

ei〈x,ξ〉 χk (ξ) f̂ (ξ) dξ and f c
k (x) := f − fk. (3.28)

Accordingly, we define the decomposition of vµ in

vµ,H2 := (GkM) ? f c
k and vµ,A := (GkM) ? fk. (3.29)

The functions vH2 and vA in (3.27) are then obtained by setting vH2 := vµ,H2|Ω and vA :=
vµ,A|Ω. We will obtain the desired estimates by showing the following, stronger estimates:

‖vµ,H2‖H2(Rd) ≤ C‖f‖L2(Rd), (3.30a)

‖Dαvµ,A‖L2(Rd) ≤ Cγ|α||k||α|−1‖f‖L2(Rd), ∀α ∈ Nd
0. (3.30b)

The estimates (3.30) are obtained by Fourier techniques. To that end, we compute the Fourier
transform of GkM :(

ĜkM
)

(ξ) = (2π)−d/2

∫
Rd

e− i〈ξ,x〉Gk (x)M (x) dx

= (2π)−d/2

∫ ∞

0

gk (r)µ (r) rd−1

(∫
Sd−1

e− i r〈ξ,ζ〉 dSζ

)
dr

= (2π)−d/2 I (ξ) .

The integral I (ξ) can be evaluated analytically and I (ξ) = ι (‖ξ‖) with

ι (s) =


2

∫ ∞

0

gk (r)µ (r) cos (sr) dr d = 1,

2π

∫ ∞

0

gk (r)µ (r) rJ0 (rs) dr d = 2,

4π

∫ ∞

0

gk (r)µ (r) r2 sin (rs)

(rs)
dr d = 3.

(3.32)

Applying the Fourier transform to the convolutions (3.29) leads to

v̂µ,H2 = (2π)d/2 ĜkMf̂ c
k = (2π)d/2 ĜkMf̂(1− χk),

v̂µ,A = (2π)d/2 ĜkMf̂k = (2π)d/2 ĜkMf̂χk.
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To estimate higher order derivatives of vµ,H2 and vµ,A we define for a multi-index α ∈ Nd
0

the function Pα : Rd → Rd by Pα (ξ) := ξα and obtain – by using standard properties of the
Fourier transformation and the support properties of χk – for all |α| ≤ 2

‖∂αvµ,H2‖
L2(Rd) = (2π)d/2

∥∥∥PαĜkM (1− χk) f̂
∥∥∥

L2(Rd)
(3.33)

≤ (2π)d/2

(
max

ξ∈Rd:|ξ|≥3k/2
|PαI (ξ)|

)∥∥∥(1− χk) f̂
∥∥∥

L2(Rd)

≤ (2π)d/2

(
max

s≥3k/2

∣∣s|α|ι (s)∣∣) ‖f‖L2(Ω) .

Completely analogously, we derive for all α ∈ Nd
0

‖∂αvµ,A‖L2(Rd) ≤ (2π)d/2

(
max

s≤3k/2

∣∣s|α|ι (s)∣∣) ‖f‖L2(Ω) .

We can complete the proof of the lemma using the bounds on the function ι given in Lemma 3.5
below.

Lemma 3.5 For the function ι defined in (3.32) the quantity smι (s) can be estimated

(i) for m = 0 by

|ι (s)| ≤ C
R

k
,

(ii) for m = 1 by

s |ι (s)| ≤ CR


1 + (Rk)−1 d = 1,
|log kR| d = 2 and 4Rk ≤ 1,
1 d = 2 and 4Rk > 1,
1 d = 3,

(iii) and for m = 2 by

s2 |ι (s)| ≤ C


Rk +

1

Rk
d = 1,

|log(kR)| d = 2 and 4Rk ≤ 1,
Rk d = 2 and 4Rk > 1,
1 + kR d = 3.

(iv) For fixed R0, R1 > 0 there exists C > 0 such that for R0 ≤ R ≤ R1 and any |s| ≥ 3k/2

s2 |ι (s)| ≤ C.

(v) For m ∈ N0, |s| ≤ 3k/2, and 0 < R0 ≤ R ≤ R1, we have

|s|m |ι (s)| ≤ C

(
3k

2

)m−1

.
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Proof. In this proof, C denotes a generic constant which may vary from term to term. It
suffices to prove the estimates (i)–(iv) because (v) follows directly from (i). We discuss the
cases d = 3, d = 1, and d = 2 in turn.

Case 1: d = 3.
There holds

|sι (s)| = C

∣∣∣∣∫ ∞

0

ei kr µ (r) sin (rs) dr

∣∣∣∣ ≤ CR.

Applying integration by parts we obtain

|ι (s)| = C

k

∣∣∣∣∫ ∞

0

ei kr

(
µ′ (r)

sin (rs)

s
+ µ (r) sin (rs)

)
dr

∣∣∣∣
≤ C

k

∫ 4R

0

(
C

R
r + 1

)
dr = C

R

k
.

For the product s2ι (s), we get

∣∣s2ι (s)
∣∣ = C

∣∣∣∣∫ ∞

0

ei kr µ (r) s sin (rs) dr

∣∣∣∣ = C

∣∣∣∣∫ ∞

0

ei kr µ (r) ∂r cos (rs) dr

∣∣∣∣
≤ C

(∣∣∣∣∫ ∞

0

cos (rs) ∂r

(
ei kr µ (r)

)
dr

∣∣∣∣+ 1

)
≤ Ck

∣∣∣∣∫ ∞

0

cos (rs) ei kr µ (r) dr

∣∣∣∣+ C

(∣∣∣∣∫ ∞

0

cos (rs) ei kr µ′ (r) dr

∣∣∣∣+ 1

)
=: T I + T II.

The estimates T I ≤ CIkR and T II ≤ CII follows from the properties of µ (cf. (3.25)). For
|s| ≥ 3k/2, the estimate of T I can be refined by using integration by parts

T I ≤ Ck

∣∣∣∣∫ ∞

0

cos (rs) ei kr µ (r) dr

∣∣∣∣ = C
k

2

∣∣∣∣∫ ∞

0

(
ei(k+s)r + ei(k−s)r

)
µ (r) dr

∣∣∣∣
≤ C ′

(
k2

s2 − k2
+

∫ ∞

0

k2

s2 − k2
|µ′ (r)| dr

)
≤ C ′′.

Case 2: d = 1.
There holds

|ι (s)| ≤ 1

k

∫ ∞

0

µ (r) dr ≤ C
R

k
.

To estimate sι (s), we apply integration by parts to obtain

|sι (s)| ≤
∣∣∣∣∫ ∞

0

ei kr

k
µ (r) ∂r sin (sr) dr

∣∣∣∣ =

∣∣∣∣∫ ∞

0

sin (sr) ∂r

(
ei kr

k
µ (r)

)
dr

∣∣∣∣ ≤ C
1 +Rk

k
.
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Similarly, we get by two-fold integration by parts

∣∣s2ι (s)
∣∣ ≤ ∣∣∣∣∫ ∞

0

ei kr

k
µ (r) ∂2

r cos (sr) dr

∣∣∣∣ =

∣∣∣∣∫ ∞

0

{∂r cos (sr)}
{
∂r

(
ei kr

k
µ (r)

)}
dr

∣∣∣∣
≤
∣∣∣∣∫ ∞

0

cos (sr)

{
∂2

r

(
ei kr

k
µ (r)

)}
dr + 1

∣∣∣∣
≤ k

∣∣∣∣∫ ∞

0

cos (sr) ei kr µ (r) dr

∣∣∣∣+ ∣∣∣∣∫ ∞

0

cos (sr)

(
2 i ei kr µ′ (r) +

ei kr

k
µ′′ (r)

)
dr + 1

∣∣∣∣
=: T I + T III.

The estimate T III ≤ C
(
1 + 1

kR

)
directly follows from the properties of the cutoff function µ

(3.25). The term T I was estimated already in Case 1 so that the proof of the case d = 1 is
complete.

Case 3a: d = 2 and r ≤ 4R ≤ 1/k.
For brevity, we write

hk (r) := H
(1)
0 (kr) and jν,s (r) := Jν (sr) .

Estimate (A.3c) implies

∀0 < r < 4R ≤ 1/k : |hk (r)| ≤ C (1 + |log kr|) and ∀r ≥ 0 : |J0 (r)|
[1, 9.1.60]

≤ 1.

Hence,

|ι (s)| ≤ C

∫ 4R

0

(1 + |log kr|) rdr = CR2 (1 + |log (4kR)|) .

For the estimate of smι (s), we employ the relations (see [1, 9.1.30], [1, 9.1.1])

(rj1,s (r))′ = rsj0,s (r) and
(
rj′0,s (r)

)′
= −rs2j0,s (r) . (3.34)

Integration by parts results in

|sι (s)| ≤ C

∣∣∣∣∫ ∞

0

hkµ (rj1,s)
′ dr

∣∣∣∣ = C

∣∣∣∣∫ ∞

0

rj1,s (µ′hk + µh′k) dr

∣∣∣∣
(A.8), (A.3c), (A.11)

≤ C

∫ 4kR

0

r

{
(1 + |log kr|)

R
+

1

r
+ k2r

}
dr

≤ CR
{
1 + |log kR|+ k2R2

}
≤ CR (1 + |log kR|) ≤ CR |log kR| .

Finally, we estimate s2ι (s) by two-fold integration by parts

∣∣s2ι (s)
∣∣ = C

∣∣∣∣∫ ∞

0

hkµ
(
rj′0,s

)′∣∣∣∣ ≤ C

(∣∣∣∣∫ 4R

0

j0,s

(
r (hkµ)′

)′∣∣∣∣+ ∣∣∣limr→0
(rh′k (r))

∣∣∣) . (3.35)

Note that limr→0 rh
′
k (r) = 2 i /π. For the first term, we use(

r (hkµ)′
)′

= µ (rh′k)
′
+ 2rµ′h′k + (rµ′)

′
hk. (3.36)
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We employ (A.12) for the first, (3.25), (A.11) for the second, (3.25), and (A.3c) for the third
term on the right-hand side in (3.36) to obtain∣∣∣(r (hkµ)′ (r)

)′∣∣∣ ≤ Ck2r (1 + |log (kr)|) +
1

R
+
R + r

R2
(1 + |log (kr)|) .

Hence, ∣∣s2ι (s)
∣∣ ≤ C

(
(kR)2 (1 + |log(kR)|) + 1 + |log(kR)|

)
≤ C (1 + |log(kR)|) .

Case 3b: d = 2 and 4Rk > 1.
We define ϕk (r) := hk (r)µ (r) r and denote its antiderivative by Φk (r) :=

∫ r

1/k
ϕk (t) dt.

We use the splitting

ι (s) =
π i

2

∫ 1/k

0

ϕkj0,s +
π i

2

∫ 4R

1/k

ϕkj0,s =: ιI (s) + ιII (s) .

For ιI (s), we employ the estimates as in Case 3a (with 4R replaced by 1/k therein) to obtain

|ιI (s)| ≤
C

k2
.

It remains to estimate ιII (s). Note that j′0,s = −sj1,s. There holds

ιII (s) =
π i

2

∫ ∞

1/k

ϕkj0,s =
π i

2

∫ 4R

1/k

Φksj1,s +
π i

2
Φkj0,s

∣∣∣∣4R

r=1/k

. (3.37)

In the next step, we will estimate Φk. Let ϕ̃k (r) := e− i kr ϕk (r) so that Φk can be written as

Φk (r) :=

∫ r

1/k

ei kt ϕ̃k (t) dt = −
∫ r

1/k

ei kt

i k
ϕ̃′k (t) dt+

ϕk (t)

i k

∣∣∣∣r
t=1/k

= −
∫ r

1/k

ei kt

i k
ϕ̃′k (t) dt︸ ︷︷ ︸

=:ΦI
k(r)

+
1

i k
thkµ|rt=1/k︸ ︷︷ ︸
=:ΦII

k (r)

.

By using (A.6) and
∀t > 0 :

∣∣(tµ (t))′
∣∣ ≤ C,

we obtain ∣∣ΦI
k (r)

∣∣ ≤ 1

k

∫ r

1/k

|ϕ̃′k| dt =
1

k

∫ r

1/k

∣∣∣tµ (e− i kt hk

)′
+ (tµ)′ e− i kt hk

∣∣∣ dt
≤ C

k

∫ r

1/k

1√
kt
dt ≤ C

k

√
r

k
.

The function ΦII
k can be estimated by using (A.3a)

∣∣ΦII
k (r)

∣∣ =

∣∣∣∣ 1

i k
thkµ|rt=1/k

∣∣∣∣ ≤ C

(
1

k

√
r

k
+

1

k2

) √
1
k
≤
√

r

≤ C

k

√
r

k
.
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In summary we have proved

|Φk (r)| ≤ C

k

√
r

k
.

By inserting this estimate and (A.3b) into (3.37) we get

|ιII (s)| ≤ C

√
s

k3/2

∫ 4R

0

√
sr

1 + rs
dr +

C

k

√
r

k

∣∣∣∣4R

r=1/k

≤ C

(
4R
√
s

k3/2
+

1

k

√
4R

k
+

1

k2

)
.

This leads to

|ι (s)| ≤ C
R

k

√
s

k
+
R

k
. (3.38)

Next, we estimate s2ι (s) by two-fold integration by parts

∣∣s2ι (s)
∣∣ = C

∣∣∣∣∫ ∞

0

hkµ
(
rj′0,s

)′∣∣∣∣
≤ C

∣∣∣∣∫ 4R

0

j0,s

(
r (hkµ)′

)′∣∣∣∣+ ∣∣∣limr→0
rh′k (r)

∣∣∣︸ ︷︷ ︸
=2/π

 . (3.39)

The first summand can be split according to∣∣∣∣∫ 4R

0

j0,s

(
r (hkµ)′

)′∣∣∣∣ ≤
∣∣∣∣∣
∫ 1/k

0

j0,s

(
r (hkµ)′

)′∣∣∣∣∣︸ ︷︷ ︸
=:I1

+

∣∣∣∣∫ 4R

1/k

j0,s

(
r (hkµ)′

)′∣∣∣∣︸ ︷︷ ︸
=:I2

. (3.40)

We conclude from Case 3a that |I1| ≤ C holds. For the second integral, we employ (A.3a),
(3.25), (A.5), (A.7) to get

∣∣∣(r (hkµ)′
)′∣∣∣ = |hk (µ′ + rµ′′) + h′k (µ+ 2rµ′) + rh′′kµ| ≤ C

(
1

r
√
kr

+

√
k

r
+ rk

√
k

r

)
(3.41)

≤ C

(
1

r
√
kr

+ k
√
kr

)
.

The combination of (3.40), (3.41), and (A.3b) leads to

I2 ≤ CkR

√
Rk

1 +Rs
.

Thus, we have proved ∣∣s2ι (s)
∣∣ ≤ CkR

√
Rk

1 +Rs
. (3.42)
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For 0 ≤ s ≤ k, we employ (3.38) and for s > k we use (3.42) to obtain for m = 0, 1, 2

sm |ι (s)| ≤ CRkm−1.

For |s| ≥ 3k/2 and R ≤ C, the result can further be improved. In view of the assumption
R0 ≤ R ≤ R1, we may take as our starting point (3.35), which leads immediately to the
expression (3.40). The integral I1 in (3.40) is already seen to be bounded independent of k.
Since, by [1, 9.1.1],

(rh′k)
′ = −k2rhk

we can write the integral I2 as

I2 =

∣∣∣∣∫ 4R

1/k

j0,s

(
−k2rhkµ+ 2rh′kµ

′ + (rµ′)′hk

)∣∣∣∣ .
Recalling that µ′ ≡ 0 on (0, 2R), we can estimate I2 by

I2 ≤
∣∣∣∣∫ 4R

1/k

j0,sk
2rhkµ

∣∣∣∣︸ ︷︷ ︸
=:II

2

+CR sup
r∈(2R,4R)

{|j0,sh
′
k|+ |j0,shk|} .

We conclude from (A.3), (A.5), and (A.1) together with (A.2)

CR sup
r∈(2R,4R)

{|j0,sh
′
k|+ |j0,shk|} ≤ CR

1√
|s|R

(
1

R
√
Rk

+

√
k

R
+

1√
Rk

)
≤ C,

where we used |s| ≥ 3/2k and the fact that k ≥ k0. It remains to bound II
2 . Lemma A.1

allows us to write

II
2 =

2k2

π
√
k|s|

∣∣∣∣∫ 4R

1/k

gI(kr)µ(r)
{
ei(s+k)rf I(sr) + ei(s−k)rf II(sr)

}∣∣∣∣ .
Since f I , f II , gI are bounded functions by Lemma A.1, an integration by parts leads to

II
2 ≤ Ck

(
1

|s+ k|
+

1

|s− k|

)
+ Ck

∣∣∣∣∫ 4R

1/k

ei(s+k)r

s+ k
∂r

(
f I(sr)gI(kr)µ(r)

)
+
ei(s−k)r

s− k
∂r

(
f II(sr)gI(kr)µ(r)

)∣∣∣∣ .
Since |s| ≥ 3/2k, Lemma A.1 provides the estimates∣∣∂r

(
f I(sr)gI(kr)µ(r)

)∣∣+ ∣∣∂r

(
f II(sr)gI(kr)µ(r)

)∣∣ ≤ C, r ≥ 1/k

Combining these results, we arrive at the desired II
2 ≤ C.
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3.3 Existence and uniqueness

Existence, uniqueness, and well-posedness of problem (2.5) has been studied in much more
generality (concerning the assumption on the domain Ω) in [12] by using different techniques.

The main goal of the estimates which we have derived in the previous sections is their
application to the proof of the discrete stability for the finite element discretization and the
convergence rates. However, since existence, uniqueness, and well-posedness for our model
problem are simple by-products we state them in passing.

Theorem 3.6 Let Ω be a ball of radius R > 0. Then, there exists a constant C (Ω, k) > 0
such that for all f ∈ (H1 (Ω))

′
the unique solution u of problem (2.5) satisfies

‖u‖H ≤ C (Ω, k) ‖f‖H1(Ω)′ .

Proof. The coercivity of the bilinear form a (u, v) follows from the compact embedding

H1 (Ω)
c
↪→ L2 (Ω) and (3.4b), (3.4d):

Re a (u, u) ≥ ‖u‖2
H − 2k2 ‖u‖2

L2(Ω) − Re

∫
Γ

(Tu) ū ≥ ‖u‖2
H − 2k2 ‖u‖2

L2(Ω) .

Next, we show uniqueness of the adjoint problem:

a (v, u) = 0 ∀v ∈ H1 (Ω) =⇒ u = 0.

Let u ∈ H1 (Ω) be a solution of the homogeneous adjoint problem. We choose v = u and
consider the imaginary part:

0 = Im a (u, u) = − Im

∫
Γ

(Tu) ū = Im

∫
Γ

(Tu) ū.

Lemma 3.3 implies u = 0 on Γ. Hence, u ∈ H1
0 (Ω) and satisfies∫

Ω

〈∇u,∇v〉 = k2

∫
Ω

uv ∀v ∈ H1 (Ω) . (3.43)

This means in particular that u ∈ H1
0 (Ω) is an eigenfunction of (−∆)−1 with eigenvalue k−2.

However, for any Ω̃ ⊃ Ω, equation (3.43) implies that the extension

ũ (x) :=

{
u (x) x ∈ Ω
0 x /∈ Ω

satisfies (3.43) with Ω replaced by Ω̃, i.e., ũ is also an eigenfunction of (−∆)−1 with eigenvalue
k−2 on any domain Ω̃ ⊃ Ω. A simple scaling argument shows that this is impossible.

Note that the proof of Theorem 3.6 does not provide how the constant C (Ω, k) depends
on the wave number. In [12], this question has been investigated in much more generality
and, hence, will not be discussed here. The Fourier analysis which we developed in Section
3.2 give explicit bounds on this constant provided the right-hand side is in L2 (Ω).

Lemma 3.7 For any f ∈ L2 (Ω) and v := Nkf , there holds

‖v‖H ≤ C ‖f‖L2(Ω) ,

where C only depends on k0 and R0 (cf. (2.2), (3.3)).
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Proof. The radius of the minimal ball that contains Ω is denoted by RΩ. If 4kRΩ > 1,
the estimates

‖v‖L2(Ω) ≤ C
RΩ

k
‖f‖L2(Ω)

and

‖∇v‖L2(Ω) ≤ C

(
1

k0

+RΩ

)
‖f‖L2(Ω)

follow from Lemma 3.5. If α < 4kRΩ ≤ 1, then |log kRΩ| ≤ |logα|. Hence, both estimates
remain valid (cf. Lemma 3.5), possibly with a different constant C which, in addition, depend
on α.

Theorem 3.8 Let Ω be a ball of radius R and boundary Γ. Then, there exists Cc > 0 that
only depend on k0 and R0 (cf. (2.2), (3.3)) such that for all u, v ∈ H1 (Ω)

|a (u, v)| ≤ Cc ‖u‖H ‖v‖H .

Proof. The estimate

|a (u, v)| ≤ |u|H1(Ω) |v|H1(Ω) + k2 ‖u‖L2(Ω) ‖v‖L2(Ω) +

∣∣∣∣∫
Γ

(Tu) v̄

∣∣∣∣
is obvious. Hence, the assertion follows from Lemma 3.3. .

4 Stability and convergence analysis

This section is devoted to the analysis of the discrete problem (2.7) for the finite-dimensional
space S ⊂ H1(Ω); we will provide conditions on S under which unique solvability and quasi-
optimality of (2.7) can be guaranteed.

We employ the generalization of the theory of [31] that has been developed in [37]. There,
a measure of “almost invariance” of the approximation space S under the solution operator
of an adjoint Helmholtz problem has been introduced.

Adjoint Problem:

For given f ∈ L2 (Ω), find z ∈ H1 (Ω) such that

a (v, z) = (f, v)L2(Ω) ∀v ∈ H1 (Ω) .

Note that the strong formulation to this problem is: Find z such that

−∆z − k2z = f in Ω,
∂z

∂n
= T ?z on Γ,

(4.1)

where T ? is the adjoint of T . The operator T ? can be expressed as the normal trace applied
to the solution operator to the problem

find w ∈ H1
loc

(
Ω+
)

such that


(−∆− k2)w = 0 in Ω+,

w = g on Γ,∣∣∣∣∂w∂r + i kw

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞.
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The solution operator f 7→ z for problem (4.1) is denoted by N?
k : L2 (Ω) → H1 (Ω) and

explicitly given by

z := N?
kf :=

∫
Ω

Gk (x− y) f (y) dsy. (4.2)

Remark 4.1 The stability estimate

‖z‖H ≤ C ‖f‖L2(Ω)

holds as in Lemma 3.7, because z = Nkf and ‖z‖H = ‖z‖H,
∥∥f∥∥

L2(Ω)
= ‖f‖L2(Ω).

For the stability of the discrete problem, the following measure of almost invariance plays
a crucial role

η (S) := sup
f∈L2(Ω)\{0}

inf
v∈S

‖N?
kf − v‖H
‖f‖L2(Ω)

. (4.3)

(Note that the quantity η (S) was denoted in [37] by η̃ (S).)

4.1 Discrete stability

In this section, we will prove the discrete stability in the form of an inf-sup condition.

Theorem 4.2 Let the assumptions of Lemma 3.3 be satisfied. Assume that the space S is
chosen such that

kη (S) ≤ 1

4Cc

. (4.4)

Then, the discrete inf-sup constant satisfies

inf
u∈S

sup
v∈S\{0}

|a (u, v)|
‖u‖H ‖v‖H

≥ 1/2

1 + (2Cc)
−1 + k

and this ensures existence and uniqueness of the discrete problem (2.7).

Proof. Let u ∈ S and set z := 2k2N?
ku. Then,

a (u, u+ z) =

(∫
Ω

〈∇u,∇u〉+ k2 |u|2 −
∫

Γ

(Tu)u

)
+ a (u, z)− 2k2

∫
Ω

|u|2

=

∫
Ω

〈∇u,∇u〉+ k2 |u|2 −
∫

Γ

(Tu)u.

We derive from Lemma 3.3
Re a (u, u+ z) ≥ ‖u‖2

H .

Let zS ∈ S denote the best approximation of z with respect to the ‖·‖H-norm. Then,

Re a (u, u+ zS) ≥ Re a (u, u+ z)− |a (u, z − zS)|
Thm. 3.8

≥ ‖u‖2
H − Cc ‖u‖H ‖z − zS‖H

≥ ‖u‖H
(
‖u‖H − 2k2Ccη (S) ‖u‖L2(Ω)

)
≥ (1− 2kCcη (S)) ‖u‖2

H .
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The stability of the continuous problem (cf. Lemma 3.7) implies

‖u+ zS‖H ≤ ‖u‖H + ‖z − zS‖H + ‖z‖H ≤ ‖u‖H + 2k2η (S) ‖u‖L2(Ω) + 2k2 ‖u‖L2(Ω)

≤ (1 + 2kη (S) + k) ‖u‖H

so that

Re a (u, u+ zS) ≥ 1− 2Cckη (S)

1 + 2kη (S) + k
‖u‖H ‖u+ zS‖H .

Thus, we have proved

inf
u∈S

sup
v∈S\{0}

|a (u, v)|
‖u‖H ‖v‖H

≥ C

k
.

4.2 Convergence analysis

The convergence of the finite element discretization is proved by applying the theory as de-
veloped in [37] (see also [7, 31, 38], [8, Sec.5.7]).

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied.
Then

‖e‖H ≤ 2Cc inf
v∈S

‖u− v‖H . (4.5)

The L2-error satisfies
‖e‖L2(Ω) ≤ Ccη (S) ‖e‖H .

Proof. In the first step, we will estimate the L2-error by the H1-error and employ the
Aubin-Nitsche technique. The Galerkin error is denoted by e = u− uS. We set ψ := N?

ke (cf.
(4.2)) and denote by ψS ∈ S the best approximation of ψ with respect to the H-norm.

The L2-error can be estimated by

‖e‖2
L2(Ω) = a (e, ψ) ≤ a (e, ψ − ψS) ≤ Cc ‖e‖H ‖ψ − ψS‖H

≤ Ccη (S) ‖e‖H ‖e‖L2(Ω) , (4.6)

i.e.,
‖e‖L2(Ω) ≤ Ccη (S) ‖e‖H . (4.7)

To estimate the H-norm of the error we proceed as follows. Note that (3.4b), (3.4d) imply

Re (Tu, u)L2(Γ) ≤ 0. (4.8)

Hence, for any vS ∈ S

‖e‖2
H = Re (a (e, e)) +

{
‖e‖2

H − Re a (e, e)
}

= Re a (e, u− vS) + 2k2 ‖e‖2
L2(Ω) + Re

∫
Γ

(Te) ē

(4.7), (4.8)

≤ Cc ‖e‖H ‖u− vS‖H + 2 (kCcη (S))2 ‖e‖2
H .
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Note that (4.4) implies

2 (kCcη (S))2 ≤ 1

2
(4.9)

so that we arrive at the final estimate

‖e‖H ≤ 2Cc ‖u− vS‖H .

5 Example: hp-FEM

Theorem 4.2, 4.3 show quasi-optimality of arbitrary approximation spaces under the assump-
tion (4.4) on the measure of almost invariance η (S). However, for concrete finite element
spaces, or generalizations thereof, the verification of condition (4.4) is far from trivial. The
purpose of this section is two-fold: firstly, we show that for classical higher order FEM spaces
the assumption (4.4) can be met under a relatively mild condition on the local polynomial
order of the classical FEM space; in particular, we will demonstrate that for spaces consisting
of piecewise polynomials of degree p on quasi-uniform meshes that satisfy the side condi-
tion p ≥ c ln k, the key condition (4.4) is satisfied. Secondly, we derive conditions on the
approximation space that may be easier to ascertain in practice than the condition (4.4).

In view of the fact that the circle (in 2D) and the sphere (in 3D) are relevant geometries
for our theory (recall that Thm. 4.2, 4.3 have been shown for circles/spheres), we consider
triangulations with curved elements that permit inclusion of these geometries. We adopt the
setting of [13]. The triangulation Th consists of elements which are the image of the reference
triangle (in 2D) or the reference tetrahedron (in 3D). We do not allow hanging nodes and
assume – as is standard – that the element maps of elements sharing an edge or a face induce
the same parametrization on that edge or face. The maximal mesh width is denoted by
h := maxK∈Th

diamK. Additionally, we make the following assumption on the element maps

FK : K̂ → K but, first, have to introduce some notation. For a function u : Ω → R, Ω ⊂ Rd,
we write

|∇nu(x)|2 =
∑

α∈Nd
0:|α|=n

n!

α!
|Dαu(x)|2. (5.1)

For later purposes, we recall the multinomial formula and a simple fact that follows from the
Cauchy-Schwarz inequality for sums:

dn

n!
=

∑
α∈Nd

0:|α|=n

1

α!
, (5.2)

∑
α∈Nd

0:|α|=n

1

α!
|Dαu(x)| ≤ 1

n!
dn/2|∇nu(x)|. (5.3)

Assumption 5.1 (quasi-uniform regular triangulation) Each element map FK can be
written as FK = RK ◦ AK, where AK is an affine map and the maps RK and AK satisfy for
constants Caffine, Cmetric, γ > 0 independent of h:

‖A′
K‖L∞( bK) ≤ Caffineh, ‖(A′

K)−1‖L∞( bK) ≤ Caffineh
−1

‖(R′
K)−1‖L∞( eK) ≤ Cmetric, ‖∇nRK‖L∞( eK) ≤ Cmetricγ

nn! ∀n ∈ N0.
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Here, K̃ = AK(K̂).

Remark 5.2 Triangulations satisfying Assumption 5.1 can be obtained by patchwise construc-
tion of the mesh: Let T macro be a fixed triangulation (with curved elements) with analytic
element maps that resolves the geometry. If the triangulation Th is obtained by quasi-uniform
refinements of the reference element K̂ and the final mesh is obtained by mapping the subdivi-
sions of the reference element with the macro element maps, then the resulting element maps
satisfy the assumptions of Assumption 5.1.

For meshes Th satisfying Assumption 5.1 with element maps FK we denote the usual space
of piecewise (mapped) polynomials by Sp,1(Th) := {u ∈ H1(Ω) | ∀K ∈Th: u|K ◦ FK ∈ Pp},
where Pp denotes the space of polynomials of degree p. The construction of approximants of
a given (sufficiently smooth) function from the space Sp,1(Th) is most conveniently achieved
in an element-by-element fashion. To that end, we introduce the following definition:

Definition 5.3 (element-by-element construction) Let K̂ be the reference simplex in
Rd, d ∈ {2, 3}. A polynomial π is said to permit an element-by-element construction of

polynomial degree p for u ∈ Hs(K̂), s > d/2, if:

(i) π(V ) = u(V ) for all d+ 1 vertices V of K̂,

(ii) for every edge e the restriction π|e ∈ Pp is the unique minimizer of

π 7→ p1/2‖u− π‖L2(e) + ‖u− π‖
H

1/2
00 (e)

(5.4)

under the constraint that π satisfies (i); here the Sobolev norm H
1/2
00 is defined in (B.1).

(iii) (for d = 3) for every face f the restriction π|f ∈ Pp is the unique minimizer of

π 7→ p‖u− π‖L2(f) + ‖u− π‖H1(f) (5.5)

under the constraint that π satisfies (i), (ii) for all vertices and edges of the face f .

We are now in position to show that the solution v = N?
kf can be approximated well by

the FEM space Sp,1(Th) provided that kh/p is sufficiently small and p ≥ c ln k.

Theorem 5.4 Let d ∈ {1, 2, 3} and Ω ⊂ Rd be a bounded domain. Then there exist constants
C, σ > 0 that depend solely on the constants appearing in Assumption 5.1 such that for every
f ∈ L2(Ω) the function v := N?

kf satisfies

inf
w∈Sp,1(Th)

k‖v − w‖H ≤ C‖f‖L2(Ω)

(
1 +

kh

p

){
kh

p
+ k

(
kh

σp

)p}
.

Proof. We will only prove the cases d ∈ {2, 3}. The case d = 1 follows by similar
arguments where the appeal to Theorem B.4 and Lemma C.3 is replaced with that to [39,
Thm. 3.17].

By Lemma 3.4, we write v = vH2 + vA with vH2 ∈ H2(Ω) and vA analytic; we have the
bounds (cf. Remark 4.1)

‖vH2‖H2(Ω) ≤ C‖f‖L2(Ω), ‖∇pvA‖L2(Ω) ≤ C(γk)p−1‖f‖L2(Ω) ∀p ∈ N0.
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We approximate vH2 and vA separately. Theorem B.4 provides an approximant wH2 ∈ Sp,1(Th)
such that for every K ∈Th we have, for q = 0, 1,

‖vH2 − wH2‖Hq(K) ≤ C

(
h

p

)2−q

‖vH2‖H2(K) ∀K ∈ Th.

Hence, by summation over all elements, we arrive at

k‖vH2 − wH2‖H ≤ C

(
kh

p
+

(
kh

p

)2
)
‖f‖L2(Ω).

We now turn to the approximation of vA. Again, we construct the approximation wA ∈
Sp,1(Th) in an element-by-element fashion. We start by defining for each element K ∈Th the
constant CK by

C2
K :=

∑
p∈N0

‖∇pvA‖2
L2(K)

(2γk)2p
(5.6)

and we note

‖∇pvA‖L2(K) ≤ C(2γk)pCK ∀p ∈ N0, (5.7)∑
K∈Th

C2
K ≤ 4

3

(
C

γk

)2

‖f‖2
L2(Ω). (5.8)

Let the element map for K be FK = RK ◦ AK . Lemma C.1 gives that the function ṽ :=
vA|K ◦ RK satisfies, for suitable constants C̃, C (which depend additionally on the constants
describing the analyticity of the element maps RK)

‖∇pṽ‖L2( eK) ≤ CC̃p max{p, k}pCK ∀p ∈ N0.

Since AK is affine, the function v̂ := vA|K ◦ FK = ṽ ◦ AK therefore satisfies

‖∇pv̂‖L2( bK) ≤ Ch−d/2C̃php max{p, k}pCK ∀p ∈ N0.

Hence, the assumptions of Lemma C.3 are satisfied, and we get an approximation w on the
element K that admits an element-by-element construction and satisfies for q ∈ {0, 1}

‖vA − w‖Hq(K) ≤ Chd/2−qh−d/2CK

{(
h

h+ σ

)p+1

+

(
kh

σp

)p+1
}
.

Summation over all elements K ∈Th gives

‖vA − w‖2
H ≤

[(
h

h+ σ

)2p

+ k2

(
h

h+ σ

)2p+2

+
k2

p2

(
kh

σp

)2p

+ k2

(
kh

σp

)2p+2
] ∑

K∈Th

C2
K . (5.9)

The combination of (5.9) and (5.8) yields

k‖vA − w‖H ≤ C

[(
h

h+ σ

)p(
1 +

hk

h+ σ

)
+ k

(
kh

σp

)p(
1

p
+
kh

σp

)]
‖f‖L2(Ω).
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Furthermore, we estimate using h ≤ diamΩ and σ > 0 (independent of h)(
h

h+ σ

)p(
1 +

kh

σ + h

)
≤ Ch(1 + kh)

(
h

σ + h

)p−1

≤ Ch(1 + kh)p−2 ≤ C
h

p

(
1

p
+
kh

p

)
.

We therefore arrive at

k‖vA − w‖H ≤ C

(
1

p
+
kh

p

)[
kh

p
+ k

(
kh

σp

)p]
‖f‖L2(Ω),

which completes the proof of the theorem.
Combining Theorems 5.4, 4.3 produces the condition (1.1) for quasi-optimality of the hp-

FEM announced in the Introduction. We extract from Theorem 5.4 that quasi-optimality of
the h-version FEM can be achieved under the side condition that p ≥ C log k:

Corollary 5.5 Let the assumptions of Lemma 3.3 and Theorem 5.4 be satisfied. Then there
exist constants c1, c2 > 0 independent of k, h, and p such that (4.4) is implied by the following
condition:

kh

p
≤ c1 together with p ≥ c2 ln k. (5.10)

Proof. Theorem 5.4 implies

kη(S) ≤ C

(
1 +

kh

p

)(
kh

p
+ k

(
kh

σp

)p)
.

The right-hand side needs to be bounded by 1/Cc. It is now easy to see that we can select c1,
c2 such that this can be ensured.

Remark 5.6 To the best of the authors’ knowledge, discrete stability in 2D and 3D has only
been shown under much more restrictive conditions than (5.10), e.g., the condition k2h . 1.
Even in one dimension, condition (5.10) improves the stability condition kh . 1 that was
required in [26].

Next, we reformulate Theorem 5.4 by deriving the statement under some conditions on
abstract approximation spaces that are easier to verify than a direct proof of (4.4).

The key step in Theorem 5.4 is the ability to decompose v = N?
kf into an analytic, but

oscillatory part and an H2-regular part and to approximate each part separately. This gives
rise to the definition of two types of approximation properties.

Definition 5.7 For given CI, CII, γ > 0, and k ≥ k0 > 0 let

Hosc(CI , γ, k) :=
{
v ∈ H1(Ω)

∣∣∣ ‖∇pv‖L2(Ω) ≤ CI (γ |k|)p−1 ∀p ∈ N0

}
,

HH2

(CII) :=
{
v ∈ H2(Ω) | ‖v‖H2(Ω) ≤ CII

}
.

Let S ⊂ H1 (Ω) be the—possibly k-dependent—finite dimensional approximation space for the
Galerkin method. The approximation properties for the oscillatory and the H2-part are then
defined as:

ηI
apx (S, k) :=

k

CI
sup

v∈HA(CI ,γ,k)

inf
w∈S

‖v − w‖H , (5.11)

ηII
apx (S, k) :=

k

CII
sup

v∈HH2 (CII)

inf
w∈S

‖v − w‖H .
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Corollary 5.8 Let d ∈ {1, 2, 3} and assume the hypotheses of Lemma 3.4. Let S ⊂ H1 (Ω)
be a finite dimensional approximation space. Then

kη (S) ≤ C
{
ηI

apx (S, k) + ηII
apx (S, k)

}
.

Proof. We split v = N?
kf as in the proof of Theorem 5.4: v = vH2 + vA. Then, vA ∈

HA(CI, γ, k) if we choose CI = C ‖f‖L2(Ω) and C, γ as in (3.24b). Hence, the minimizer

wI
opt ∈ S of the right-hand side in (5.11) satisfies

k
∥∥vA − wI

opt

∥∥
H ≤ C ‖f‖L2(Ω) η

I
apx (S, k) .

In a similar fashion, we obtain

k
∥∥vH2 − wII

opt

∥∥
H ≤ C ‖f‖L2(Ω) η

II
apx (S, k) .

By the triangle inequality we get for wopt = wI
opt + wII

opt the estimate

k ‖v − wopt‖H ≤ C
{
ηI

apx (S, k) + ηII
apx (S, k)

}
‖f‖L2(Ω) .

A Estimate of Bessel functions

In this appendix we derive some estimates for the Hankel and Bessel functions that are used
in Subsection 3.2. First, we will consider the case of large arguments z > 1 and then the case
0 < z ≤ 1.

Case 1: z = kr > 1.
From [1, 9.2.5-9.2.16], we conclude that the Hankel functions H

(1)
` and Bessel functions J`,

` ∈ N0, can be written in the form

J` (z)
[1, 9.2.5]

=

√
2

πz
(P` (z) cosχ−Q` (z) sinχ) , (A.1a)

H
(1)
` (z)

[1, 9.2.7]
=

√
2

πz
(P` (z) + iQ` (z)) ei χ, (A.1b)

where χ := z − π/4. The functions P`, Q` have the following property: Upon defining

P`,m (z) :=
m∑

k=0

β`,2k

z2k
(A.1c)

Q`,m (z) = − i
m∑

k=0

β`,2k+1

z2k+1
(A.1d)

with

β`,k :=
ik γ`,k

23kk!
and γ`,m as in (3.11)
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there holds

∀z > 0 ∀m >
`

2
− 1

4


|(P` − P`,m−1) (z)| ≤ |γ`,2m|

26m (2m)!

1

z2m
,

|(Q` −Q`,m−1) (z)| ≤ γ`,2m+1

26m+2 (2m+ 1)!

1

z2m+1
.

Note that in Subsection 3.2 the order ` is always small, i.e., ` ∈ {0, 1} and, hence, we do not
analyze the dependence of the constants on ` in the following estimates.

We conclude that

∀z ≥ 1 : |P` (z)| ≤
∣∣∣P`,d `

2e−1 (z)
∣∣∣+

∣∣∣γ`,2d `
2e
∣∣∣

26d `
2e (2 ⌈ `

2

⌉)
!

1

z2d `
2e

≤ C. (A.2a)

and similarly

∀z ≥ 1 : |Q` (z)| ≤ C

z
, |P ′

` (z)| ≤ C

z3
, |Q′

` (z)| ≤ C

z2
. (A.2b)

Hence, for f ∈
{
J`, H

(1)
`

}
, ` ∈ N0, there holds

∀z ≥ 1 |f (z)| ≤ C√
z

(A.3a)

and the combination with |J` (z)|
[1, 9.1.60]

≤ C for all z ≥ 0 yields

∀z ≥ 0 |J` (z)| ≤ C

√
1

1 + z
. (A.3b)

We need an estimate of the derivative at the argument z = kr for z ≥ 1. The derivative
of (A.1b) can be written in the form

d

dr
H

(1)
0 (kr)

[1, 9.2.7]
= C ei kr

√
1

kr

d

dr
(P0 (kr) + iQ0 (kr)) (A.4)

+ C (P0 (kr) + iQ0 (kr))
d

dr

(
ei kr

√
1

kr

)
.

The combination of (A.4) and (A.2) leads to∣∣∣∣ ddrH(1)
0 (kr)

∣∣∣∣ ≤ C

(
1

r
√
kr

+

√
k

r

)
. (A.5)

We also need an estimate of ∂r

(
e− i kr H

(1)
0 (kr)

)
. Employing (A.1b) we obtain

d

dr

(
e− i kr H

(1)
0 (kr)

)
= C

d

dr

(√
1

kr
(P (0, kr) + iQ (0, kr))

)
.
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Thus, for kr ≥ 1, we get ∣∣∣∂r

(
e− i kr H

(1)
0 (kr)

)∣∣∣ ≤ C

r
√
kr
. (A.6)

An estimate of the second derivative of H
(1)
0 is derived by using [1, 9.1.27, 9.1.28]∣∣∣∣ d2

dr2
H

(1)
0 (kr)

∣∣∣∣ = k2

∣∣∣∣∣−H(1)
0 (kr) +

H
(1)
1 (kr)

kr

∣∣∣∣∣ (A.3a)

≤ Ck

√
k

r
. (A.7)

Case 2: z = kr ∈ (0, 1).

To estimate H
(1)
0 (z) in the range (0, 1) we employ

H
(1)
0 (z) = J0 (z) + iY0 (z)

and use for Y0 (z) the expansion

Y0 (z) =
2

π

(
log

z

2

)
J0 (z)− 2

π

∞∑
k=0

ψ (k + 1)

(
− z2

4

)k

(k!)2 ,

where

ψ (n) := −γ +
n−1∑
k=1

k−1 and γ := 0.57721566 . . . is Euler’s constant.

For 0 ≤ z ≤ 1, we have

|Y0 (z)| ≤ 2

π

∣∣∣log
z

2

∣∣∣+ 2

π

∞∑
k=0

ψ (k + 1)

4k (k!)2 .

Furthermore

|ψ (k + 1)| ≤ γ + 1 +
k∑

s=2

1

s
≤ γ + 1 +

∫ k

1

1

x
dx = γ + 1 + log k =: γ′ + log k.

Thus, for 0 ≤ z ≤ 1, we have

|Y0 (z)| ≤ 2

π

∣∣∣log
z

2

∣∣∣+ 2

π

(
γ +

∞∑
k=1

γ′ + log k

4k (k!)2

)

Since γ′+log k
4kk!

≤ 1 we get

|Y0 (z)| ≤ 2

π
|log z|+ C.

This leads to

∀z ∈ ]0, 1]
∣∣∣H(1)

0 (z)
∣∣∣ ≤ 2

π
|log z|+ C. (A.3c)

The combination with (A.3a) finally results in∣∣∣H(1)
0 (z)

∣∣∣ ≤ min

{
2

π
|log z|+ C,

C√
z

}
. (A.3d)
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We will need further estimates of J1 and ∂rH
(1)
0 . From [1, 9.1.60], we conclude

∀z ≥ 0 J1 (z) ≤ 1/
√

2. (A.8)

For the derivative of Y0, we obtain (by using J ′0 = −J1)

Y ′
0 (z) =

2

π

(
J0 (z)

z
− J1 (z) log

z

2

)
+
z

π

∞∑
k=0

ψ (k + 2)

(
− z2

4

)k

k! (k + 1)!
. (A.9)

For 0 ≤ z ≤ 1, we obtain

z

π

∞∑
k=0

ψ (k + 2)

(
− z2

4

)k

k! (k + 1)!
≤ z

π

∞∑
k=0

γ′ + log (k + 1)

k!4k (k + 1)!
≤ z

π

∞∑
k=0

1

k!
= Cz.

Now,

|J1 (z)|
[1, 9.1.62]

≤ z/2 (A.10)

and we get

Y ′
0 (z) ≤ 2

π

(
z−1 +

z

2
log

z

2
+

e z

2

)
≤ 2

πz
+ C.

Hence, for 0 ≤ r ≤ 1/k, we get∣∣∣∂rH
(1)
0 (kr)

∣∣∣ = k (|J ′0 (kr)|+ |Y ′
0 (kr)|) ≤ 2

πr
+ Ck +

k2r

2
≤ C

(
1

r
+
k2r

2

)
. (A.11)

In addition, we need some weighted estimates for second order derivatives of H
(1)
0 . From

(A.9) we obtain

∂r (r∂rY0 (kr)) =
2k

π

−2J1 (kr)− kr log
kr

2
J0 (kr) + kr

∞∑
k=0

ψ (k + 2)

(
− (kr)2

4

)k

(k!)2

 .

This leads to the estimate, for 0 < z ≤ 1,

|∂r (r∂rY0 (kr))| ≤ 2

π
k2r

(
C +

∣∣∣∣log
kr

2

∣∣∣∣) .
Note that

∂r

(
r∂rH

(1)
0 (kr)

)
= −rk2J0 (kr) + i ∂r (r∂rY0 (kr))

and, hence,

∀0 ≤ kr ≤ 1
∣∣∣∂r

(
r∂rH

(1)
0 (kr)

)∣∣∣ ≤ 2

π
k2r

(
C +

∣∣∣∣log
kr

2

∣∣∣∣) . (A.12)

We finally state a lemma required for the proof of Lemma 3.5:
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Lemma A.1 Let |s| ≥ 3/2k and k ≥ k0 > 0. Then

rJ0(sr)H
(1)
0 (kr) =

2

π
√
k|s|

{
ei(s+k)rf I(sr) + ei(s−k)rf II(sr)

}
gI(kr)

where the functions f I , f II , gI satisfy for r ≥ 1 and a C > 0 depending solely on k0:

|f I(r)|+ |f II(r)|+ |gI(r)| ≤ C,

r2

(
| d
dr
f I(r)|+ | d

dr
f II(r)|+ | d

dr
gI(r)|

)
≤ C.

Proof. (A.1a), (A.1b) imply the stated representation with f I(sr) = 1
2
(P0(sr)−Q0(sr)),

f II(sr) = 1
2
(P0(sr) +Q0(sr)), and gI(kr) = P0(kr) + iQ0(kr). The estimates for f I , f II , gI

now follow from the bounds for P0, Q0, P
′
0, Q

′
0 given in (A.2a), (A.2b).

B Approximation by hp-finite elements. Case I: finite

regularity

The purpose of the present section is the proof of Theorem B.4, which constructs a polynomial
approximation to a function u ∈ Hs, s > d/2, in an element-by-element fashion (see Def. 5.3).
The novelty of the present construction over existing operators such as those of [3], [32] is
that we obtain optimal rates (in p) simultaneously in the H1-norm and the L2-norm. Closely
related results can be found in the recent [20], where similar duality arguments are employed
to obtain estimates in L2.

B.1 Lifting operators

In the p-FEM, globally continuous, piecewise polynomial approximations to a function u are
typically constructed in two steps: in a first step, discontinuous approximations are con-
structed element by element. In a second step, the jumps across the element interfaces are
corrected by suitable lifting operators. The construction of these lifting operators is the pur-
pose of the present section; the ensuing Section B.2 is devoted to the analysis of polynomial
approximation.

Before proceeding we recall the definition of the Sobolev space H
1/2
00 (Ω). If Ω is an edge

or a face of a triangle or a tetrahedron, then the Sobolev norm ‖ · ‖
H

1/2
00 (Ω)

is defined by

‖u‖2

H
1/2
00 (Ω)

:= ‖u‖2
H1/2(Ω) +

∥∥∥∥∥ u√
dist(·, ∂Ω)

∥∥∥∥∥
2

L2(Ω)

. (B.1)

Lemma B.1 Let K̂2D be the reference triangle in 2D. Vertex and edge lifting operators can
be constructed with the following properties:

1. For each vertex V of K̂2D there exists a polynomial LV,p ∈ Pp that attains the value 1

at the vertex V and vanishes on the edge of K̂2D opposite to V . Additionally, for every
s ≥ 0, there exists Cs > 0 such that ‖LV,p‖Hs( bK2D) ≤ Csp

−1+s.
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2. For every edge e of K̂2D there exists a bounded linear operator πe : H
1/2
00 (e) → H1(K̂2D)

with the following properties:

(a) ∀u ∈ Pp ∩H1/2
00 (e) : πeu ∈ Pp,

(b) ∀u ∈ H1/2
00 (e) : πeu|∂ bK2D\e = 0,

(c) ∀u ∈ H1/2
00 (e) : p‖πeu‖L2( bK2D) + ‖πeu‖H1( bK2D) ≤ C

(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Proof. Let K̂2D = {(x, y) | 0 < x < 1, 0 < y < 1− x}. Let w1D
q (x) = (1− x)q. The vertex

function LV,p for the vertex V = (0, 0) is defined as LV,p(x, y) = w1D
bp/2c(x)w

1D
bp/2c(y) for p ≥ 2

and taken as the standard linear hat function LV,1(x) = (1 − x − y) that is associated with
the vertex V for the case p = 1. A simple calculation then shows the result. The functions
LV,p for the remaining 2 vertices are obtained by completely analogous constructions.

For the edge lifting, let e be the edge e = {(x, 1 − x) | 0 < x < 1}. By [3] there exists

a bounded linear operator E : H
1/2
00 (e) → H1(K̂2D) with the following properties: Eu|e =

u, Eu|∂ bK2D\e = 0, and Eu ∈ Pp if u ∈ Pp ∩ H
1/2
00 (e). Introduce the auxiliary operator

(Gu)(x, y) := w1D
p (1− (x+ y))(Eu)(x, y). By [29, Lemma B.5], we have

p‖Gu‖L2( bK2D)+‖Gu‖H1( bK2D) ≤ C
(
|Eu|H1( bK2D) + p1/2‖u‖L2(e)

)
≤ C

(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Denote by ΠH1

p : H1
0 (K̂2D) → H1

0 (K̂2D)∩Pp the H1-projection and set πeu := Eu+ΠH1

p (Gu−
Eu). Then by the stability of ΠH1

p and E

‖πeu‖H1( bK2D) ≤ ‖Gu‖H1( bK2D) + 2‖Gu− Eu‖H1( bK2D) ≤ C
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
,

which is the desired H1-stability result. For the L2-bound, we use a duality argument as
in [20]:

‖Gu− Eu− ΠH1

p (Gu− Eu)‖L2( bK2D) ≤ Cp−1‖(Gu− Eu)− ΠH1

p (Gu− Eu)‖H1( bK2D).

The H1-stability of ΠH1

p together with stability properties of E and G produces the desired
L2-bound.

Lemma B.2 Let K̂3D be the reference tetrahedron in 3D. Vertex, edge, and face lifting oper-
ators can be constructed with the following properties:

(i) For each vertex V of K̂3D there exists a polynomial LV,p ∈ Pp that attains the value 1
at the vertex V and vanishes on the face opposite V . Additionally, for every s ≥ 0 there
exists Cs > 0 such that ‖LV,p‖Hs( bK3D) ≤ Csp

−3/2+s.

(ii) For every edge e of K̂3D there exists a bounded linear operator πe : H
1/2
00 (e) → H1(K̂3D)

with the following properties:

(a) πeu ∈ Pp if u ∈ Pp ∩H1/2
00 (e)

(b) (πeu)|f = 0 for the two faces f with f ∩ e = ∅
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(c) for the two faces f adjacent to e (i.e., f ∩ e = e)

p‖πeu‖L2(f) + ‖πeu‖H1(f) ≤ C‖u‖
H

1/2
00 (e)

+ p1/2‖u‖L2(e),

‖πeu‖H1/2(∂ bK3D) ≤ C
(
p−1/2‖u‖

H
1/2
00 (e)

+ ‖u‖L2(e)

)
,

p‖πeu‖L2( bK3D) + ‖πeu‖H1( bK3D) ≤ C
(
p−1/2‖u‖

H
1/2
00 (e)

+ ‖u‖L2(e)

)
.

(iii) For every face f of K̂3D there exists a bounded linear operator πf : H
1/2
00 (f) → H1(K̂3D)

with the following properties:

(a) πfu ∈ Pp if u ∈ Pp ∩H1/2
00 (f)

(b) (πeu)|f ′ = 0 for the faces f ′ 6= f

p‖πfu‖L2( bK3D) + ‖πfu‖H1( bK3D) ≤ C
(
‖u‖

H
1/2
00 (f)

+ p1/2‖u‖L2(f)

)
.

Proof. We take the reference tetrahedron K̂3D to be K̂3D = {(x, y, z) | 0 < x < 1, 0 <
y < 1− x, 0 < z < 1− x− y}.

Proof of (i): We construct the function LV,p for the vertex V = (0, 0, 0), the other cases
being handled analogously. For p ∈ {1, 2} we take for LV,p the standard linear hat function
associated with V . For p ≥ 3 the function LV,p(x, y, z) := w1D

bp/3c(x)w
1D
bp/3c(y)w

1D
bp/3c(z) with

w1D
q (x) = (1− x)q has all the desired properties.

Proof of (iii): [32, Lemma 8] exhibits a bounded linear operator F : H
1/2
00 (f) → H1(K̂3D)

with the additional property that Fu ∈ Pp if u ∈ Pp∩H1/2
00 (f). Let, without loss of generality,

f = ∂K̂3D ∩{z = 0}. Define the auxiliary operator (Gu)(x, y, z) := w1D
p (z)(Fu)(x, y, z). This

operator satisfies (see [29, Lemma B.5] where the analogous arguments are worked out in the
2D setting)

p‖Gu‖L2( bK3D)+‖Gu‖H1( bK3D) ≤ C
(
|Fu|H1( bK3D) + p1/2‖Fu‖L2(f)

)
≤ C‖u‖

H
1/2
00 (f)

+p1/2‖u‖L2(f).

Letting again ΠH1

p : H1
0 (K̂3D) → H1

0 (K̂3D) ∩ Pp be the H1-projection, we can set πfu :=

Fu + ΠH1

p (Gu− Fu). The desired properties of πf are then seen in exactly the same way as
in the 2D case of Lemma B.1.

Proof of (ii): Set fe,1 = ∂K̂3D ∩{z = 0} and fe,2 = ∂K̂3D ∩{1− x− y− z = 0}. The edge
shared by the faces fe,1 and fe,2 is e = {(x, 1 − x, 0) | 0 < x < 1}. By Lemma B.1 a function

u ∈ H1/2
00 (e) can be lifted to a function Eu ∈ H1(fe,1) such that Eu|∂fe,1\e = 0 and

p‖Eu‖L2(fe,1) + ‖Eu‖H1(fe,1) ≤ C
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
.

Additionally, if u ∈ Pp, then Eu ∈ Pp. Since the same lifting can be done for the face fe,2, we

can find a function, again denoted Eu ∈ H1(∂K̂3D), that vanishes on ∂K̂3D \ (fe,1 ∪ fe,2 ∪ e),
such that p‖Eu‖L2(∂ bK3D) + ‖Eu‖H1(∂ bK3D) ≤ C

(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
. Additionally, Eu

is a piecewise polynomial of degree p if u ∈ Pp. An interpolation inequality gives

‖Eu‖H1/2(∂ bK3D) ≤ C‖Eu‖1/2

L2(∂ bK3D)
‖Eu‖1/2

H1(∂ bK3D)
≤ Cp−1/2

(
‖u‖

H
1/2
00 (∂ bK3D)

+ p1/2‖u‖L2(∂ bK3D)

)
.
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For this function Eu, [32, Lemma 8] provides a lifting Fu ∈ H1(K̂3D) with ‖Fu‖H1( bK3D) ≤
C‖Eu‖H1/2( bK3D). To get a better L2-bound, we introduce the distance functions d1(·) :=

dist(·, fe,1) and d2(·) := dist(·, fe,2) as well as d(·) := dist(·, fe,1 ∪ fe,2) = min{d1(·), d2(·)} and
set w := (1 − d)p. Define Gu := wFu. Then (Gu)|∂ bK3D = (Fu)|∂ bK3D since w|fe,1∪fe,2 ≡ 1

and Fu|∂ bK3D\(fe,1∪fe,2)
= 0. Additionally, Gu ∈ H1(K̂3D) since w is Lipschitz continuous.

Furthermore, we have

p‖Gu‖L2( bK3D) + ‖Gu‖H1( bK3D) ≤ C
(
‖Fu‖H1( bK3D) + p1/2‖Fu‖L2(fe,1∪fe,2)

)
. (B.2)

To see this, we adapt the proof given in [29, Lemma B.5]. We split K̂3D = K1 ∪ K2 with

Ki = {(x, y, z) ∈ K̂3D | d(x, y, z) ≤ di(x, y, z)}, i ∈ {1, 2}. We note that on K1, we have
d(x, y, z) = d1(x, y, z) = z. Hence, by the arguments given in [29, Lemma B.5], we get

p‖Gu‖L2(K1) + ‖Gu‖H1(K1) ≤ C
(
‖Fu‖H1(K1) + p1/2‖Fu‖L2(fe,1)

)
.

Proceeding completely analogously for K2 gives us (B.2). Since Fu|∂K3D coincides with Eu,
we conclude that Gu satisfies

p‖Gu‖L2(K1) + ‖Gu‖H1(K1) ≤ Cp−1/2
(
‖u‖

H
1/2
00 (e)

+ p1/2‖u‖L2(e)

)
. (B.3)

We recall that ΠH1

p : H1
0 (K̂3D) → H1

0 (K̂3D) ∩ Pp denotes the H1-projection and define

πeu := Fu+ ΠH1

p (Gu− Fu).

If u is a polynomial of degree p, then πeu is a polynomial of degree p. Additionally, πeu = Fu
on ∂K̂3D so that the estimates for πe on the faces of K̂3D are satisfied. To see the H1(K̂3D)-

and L2(K̂3D)-bounds we note that the stability of ΠH1

p together with (B.3) and the stability of
F gives us the H1-bound. The L2-bound follows as in the proof of Lemma B.1 and in [20] from
Nitsche’s trick: ‖πeu‖L2( bK3D) ≤ ‖πeu−Gu‖L2( bK3D) +‖Gu‖L2( bK3D) ≤ Cp−1‖Fu−Gu‖H1( bK3D) +

‖Gu‖L2( bK3D).

B.2 Approximation operators

Lemma B.3 provides polynomial approximation results on triangles and tetrahedra. The
lifting operators of the preceding subsection are employed in Theorem B.4 to modify the
approximations of Lemma B.3 such that approximations are obtained that permit an element-
by-element construction in the sense of Def. 5.3.

Lemma B.3 Let K̂ be the reference triangle or the reference tetrahedron. Let s > d/2. Then

there exists for every p a bounded linear operator πp : Hs(K̂) → Pp and for each t ∈ [0, s] a
constant C > 0 (depending only on s and t) such that

‖u− πpu‖Ht( bK) ≤ Cp−(s−t)|u|Hs( bK), p ≥ s− 1. (B.4)

Additionally, we have ‖u−πpu‖L∞( bK) ≤ Cp−(s−d/2)|u|Hs( bK). For the case d = 2 we furthermore

have ‖u−πpu‖Ht(e) ≤ Cp−(s−1/2−t)|u|Hs( bK) for 0 ≤ t ≤ s− 1/2 for every edge and for the case

d = 3 we have ‖u− πpu‖Ht(f) ≤ Cp−(s−1/2−t)|u|Hs( bK) for 0 ≤ t ≤ s− 1/2 for every face f and

‖u− πpu‖Ht(e) ≤ Cp−(s−1−t)|u|Hk( bK) for 0 ≤ t ≤ s− 1 for every edge.

34



Proof. The construction of πp with the property (B.4) is fairly classical (see, e.g., [5]).
One possible construction is worked out in [29, Appendix A] first for integers s, t and, then,
interpolation arguments remove this restriction. Next, we consider the L∞-bound, for which
we need the assumption s > d/2: We recall that for a Lipschitz domain K ⊂ Rd and s > d/2
there exists C > 0 such that

‖u‖L∞(K) ≤ C‖u‖1−d/(2s)

L2(K) ‖u‖d/(2s)
Hs(K) ∀u ∈ Hs(K). (B.5)

From this, the desired L∞-bound follows easily. The inequality (B.5) can be seen as follows:
First, using an extension operator for K (e.g., the one given in [40, Chap. VI]) it suffices to
show this estimate with K replaced with the full space Rd. Next, [43, Thm. 4.6.1] asserts

the embedding B
d/2
2,1 (Rd) ⊂ C(Rd). Finally, the Besov space B

d/2
2,1 (Rd) is recognized as an

interpolation space between L2(Rd) and Hs(Rd): B
d/2
2,1 (Rd) = (L2(Rd), Hs(Rd))d/(2s),1. The

interpolation inequality then produces the desired result. The remaining estimates on the
edges and faces follow from appropriate trace inequalities. Specifically: let ω ⊂ ∂K̂ be an
edge (for d = 2) or a face (for d = 3). By [43, Thm. 2.9.3] the trace operator γ is a continuous
mapping in the following spaces:

γ : B
1/2
2,1 (K̂) → L2(ω), and γ : H t(K̂) → H t−1/2(ω), t > 1/2.

Together with the observation B
1/2
2,1 (K̂) = (L2(K̂), Hs(K̂))s,1 the desired estimates can be

inferred. It remains to see the case of traces on an edge e of the tetrahedron in the case d = 3.
In this case [43, Thm. 2.9.4] asserts the continuity of the trace operator in the following spaces:

γ : B1
2,1(K̂) → L2(e), and γ : H t(K̂) → H t−1(e), t > 1.

Again, these continuity properties are sufficient to establish the desired error estimates.
We conclude this section with the construction of an approximation operator that permits

an easy element-by-element construction.

Theorem B.4 Let K̂ ⊂ Rd be the reference triangle or the reference tetrahedron. Let s > d/2.
Then there exists C > 0 (depending only on s and d) and for every p a linear operator π :

Hs(K̂) → Pp that permits an element-by-element construction in the sense of Definition 5.3
such that

p‖u− πu‖L2( bK) + ‖u− πu‖H1( bK) ≤ Cp−(s−1)|u|Hs( bK) ∀p ≥ s− 1. (B.6)

Proof. We discuss only the case d = 3 – the case d = 2 is treated very similarly. Also, we
will construct πu for a given u—inspection of the construction shows that u 7→ πu is in fact
a linear operator.

Let π1 ∈ Pp be given by Lemma B.3. Then, for p ≥ s− 1 there holds

‖u− π1‖Ht( bK) ≤ Cp−(s−t)|u|Hs( bK), 0 ≤ t ≤ s (B.7)

‖u− π1‖Ht(f) ≤ Cp−(s−t−1/2)|u|Hs( bK), ∀ faces f, 0 ≤ t ≤ s− 1/2 (B.8)

‖u− π1‖Ht(e) ≤ Cp−(s−t−1)|u|Hs( bK), ∀ edges e, 0 ≤ t ≤ s− 1 (B.9)

‖u− π1‖L∞( bK) ≤ Cp−(s−3/2)|u|Hs( bK). (B.10)
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From (B.10) and the vertex-lifting properties given in Lemma B.2, we may adjust π1 by vertex
liftings to obtain a polynomial π2 satisfying (B.7)–(B.9) and additionally the condition (i) of
Definition 5.3. We next adjust the edge values. The polynomial π2 coincides with u in the
vertices and satisfies (B.9). By fixing a t ∈ (1/2, s−1), we get from an interpolation inequality:

p1/2‖u− π2‖L2(e) + ‖u− π2‖
H

1/2
00 (e)

≤ p1/2‖u− π2‖L2(e) + C‖u− π2‖1−1/(2t)

L2(e) ‖u− π2‖1/(2t)
Ht(e)

≤ Cp−(s−3/2)|u|Hs( bK).

Hence, for an edge e, the minimizer πe of the functional (5.4) satisfies p1/2‖u − πe‖L2(e) +
‖u−πe‖

H
1/2
00 (e)

≤ Cp−(s−3/2)|u|Hk( bK); the triangle inequality therefore gives that the correction

πe − π2 needed to obtain condition (ii) of Def. 5.3 likewise satisfies p1/2‖πe − π2‖L2(e) + ‖πe −
π2‖

H
1/2
00 (e)

≤ Cp−(s−3/2)|u|Hs( bK). We conclude that the edge lifting of Lemma B.2 allows us to

adjust π2 to get a polynomial π3 ∈ Pp that satisfies the conditions (i) and (ii) of Def. 5.3.
Additionally, we have

p‖u− π3‖L2( bK) + ‖u− π3‖H1( bK) ≤ Cp−(s−1)|u|Hs( bK),

p‖u− π3‖L2(f) + ‖u− π3‖H1(f) ≤ Cp−(s−3/2)|u|Hs( bK) for all faces f.

Since π3|e = πe for the edges, the minimizer πf of the functional (5.5) for each face f has to
satisfy p‖u− πf‖L2(f) + ‖u− πf‖H1(f) ≤ p‖u− π3‖L2(f) + ‖u− π3‖H1(f) ≤ Cp−(s−3/2)|u|Hs( bK).
From the triangle inequality, we conclude

p‖π3 − πf‖L2(f) + ‖π3 − πf‖H1(f) ≤ Cp−(s−3/2)|u|Hk( bK), together with π3 − πf ∈ H1
0 (f).

Hence, the face lifting of Lemma B.2 allows us to correct the face values to achieve also
condition (iii) of Definition 5.3. Lemma B.2 also implies that the correction is such that (B.6)
is true.

C Approximation by hp-finite elements. Case II: ana-

lytic regularity

In this section, we construct a polynomial approximation operator for analytic functions that
permits element-by-element construction in the sense of Def. 5.3 and leads to exponential
rates of convergence.

Lemma C.1 Let d ∈ {2, 3}. Let G1, G ⊂ Rd be bounded open sets. Assume that g : G1 → Rd

satisfies g(G1) ⊂ G. Assume additionally that g is injective on G1, analytic on G1 and satisfies

‖∇pg‖L∞(G1) ≤ Cgγ
p
gp! ∀p ∈ N0, |det(g′)| ≥ c0 > 0 on G1.

Let f be analytic on G and satisfy, for some Cf , γf , κ > 0,

‖∇pf‖L2(G) ≤ Cfγ
p max{p, κ}p ∀p ∈ N0. (C.1)

Then, the function f ◦ g is analytic on G1 and there exist constants C, γ1 > 0 that depend
solely on γg, Cg, c0, and γf such that

‖∇p(f ◦ g)‖L2(G) ≤ CCfγ
p
1 max{p, κ}p ∀p ∈ N0.
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Proof. This is essentially proved in [28, Lemma 4.3.1]. Specifically, [28, Lemma 4.3.1]
analyzes the case d = 2 and states that C, γ1 depends on the function g. Inspection of the
proof shows that the case d = 3 can be handled analogously and shows that the dependence
on the function g can be reduced to a dependence on Cg, γg, and γf .

Lemma C.2 Let d ∈ {1, 2, 3}, and let K̂ ⊂ Rd be the reference simplex. Let γ, C̃ > 0 be

given. Then there exist constants C, σ > 0 that depend solely on γ and C̃ such that for any
u that satisfies for some Cu > 0, h ∈ (0, 1], κ ≥ 1 the conditions

‖∇pu‖L2( bK) ≤ Cu(γh)
p max{p, κ}p ∀p ∈ N0 (C.2)

there holds for all p ∈ N0 that satisfy

κh/p ≤ C̃ (C.3)

the bound

inf
π∈Pp

‖u− π‖W 2,∞( bK) ≤ CCu

[(
h

σ + h

)p+1

+

(
κh

σp

)p+1
]
. (C.4)

Proof. The Sobolev embedding theorem H2(K̂) ⊂ C(K̂) gives us for suitable C > 0

‖∇nu‖L∞( bK) ≤ CuC
[
(γh)n+2 max{n+ 2, κ}n+2 + (γh)n max{n+ 2, κ}n

]
≤ CCu(γh)

n max{n+ 2, κ}n
(
1 + max{(n+ 2)h, hκ}2

)
.

In view of hκ ≤ C̃p, we may estimate for any γ > 1 and appropriate C > 0 :

‖∇nu‖L∞( bK) ≤ CCup
2(γγh)n max{n+ 2, κ}n ∀n ∈ N0. (C.5)

Define
µ := γγ

√
d e, (C.6)

and let r0 = diam(K̂) and b bK be the barycenter of K̂. The bounds (C.5), (5.2) and Stirling’s

formula in the form n! ≥ (n/ e)n imply that the Taylor series of u about x ∈ K̂ converges

on a (complex) ball B1/(µh)(x) ⊂ Cd of radius 1/(µh) and center x ∈ K̂. For the polynomial
approximation of u, we distinguish the cases µh ≤ 1/(2r0) and µh > 1/(2r0).
The case µh ≤ 1/(2r0): In this case the Taylor series of u about b bK converges on an open

ball that contains the closure of K̂. We may therefore approximate u by its truncated Taylor
series Tpu. The error is then given by

u(x)− Tpu(x) =
∑

α∈Nd
0:|α|≥p+1

1

α!
Dαu(b bK)(x− b bK)α, x ∈ B1/(µh)(b bK) ⊂ Cd.

Hence (5.2) implies

‖u− Tpu‖L∞(Br0 (b bK)) ≤
∑

|α|≥p+1

1

α!
|Dαu(b bK)|r|α|0 ≤

∞∑
n=p+1

rn
0d

n/2 1

n!
‖∇nu‖L∞( bK)

≤ CCup
2

∞∑
n=p+1

1

n!
max{n+ 2, κ}ndn/2(γγh)nrn

0 =: S.
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This last sum S is split further using Stirling’s formula n! ≥ (n/ e)n and (1 + 2/n)n ≤ e2:

S = CCup
2

 ∑
p+1≤n≤κ−2

1

n!
(
√
dr0γγκh)

n +
∑

n≥max{p+1,κ−2}

(γγhr0
√
d)n (n+ 2)n

n!


≤ CCup

2e2

 ∑
n≥p+1

1

n!

(√
dr0γγκh

)n

+
∑

n≥p+1

(e γγ
√
d︸ ︷︷ ︸

=µ

r0h)
n

 =: S1 + S2.

We estimate these two sums separately. For S2, we use the assumption µr0h ≤ 1/2, which
allows us to estimate

S2 ≤ CCup
2e2(µr0h)

p+1 = CCup
2e2

(
h

1
2µr0

+ 1
2µr0

)p+1

≤ CCup
2e2

(
h

1
2µr0

+ h

)p+1

.

For S1, we recall that Taylor’s formula gives, for x > 0,∑
n≥p+1

1

n!
xn = ex −

p∑
n=0

1

n!
xn =

1

p!

∫ x

0

(x− t)pet dt ≤ xp+1

p!
ex.

Hence, we can estimate S1 by (recall γγ
√
d = µ/e),

S2 ≤ CCup
2 ((µ/e)r0κh)

p+1

p!
e(µ/e)r0κh ≤ CCup

3

(
eθµr0κh

p+ 1

)p+1

,

where, in the second inequality, we have used the assumption hκ/p ≤ C̃ and Stirling’s formula

n! ≥ (n/ e)n and have abbreviated θ := C̃µ/er0. Combining the estimates for S1 and S2 we

arrive at the following estimate for suitable σ > 0 (depending only on µ,r0, and C̃):

‖u− Tpu‖L∞(Br0 (b bK)) ≤ S ≤ CCu

((
κh

σp

)p+1

+

(
h

σ + h

)p+1
)
.

Since dist(K̂, ∂Br0(b eK)) > 0, the Cauchy integral formula for derivatives then implies

‖u− Tpu‖W 2,∞( bK) ≤ CCu

((
κh

σp

)p+1

+

(
h

σ + h

)p+1
)
.

The case µh > 1/(2r0): In this case, h is bounded away from 0, namely, h0 := 1/(2r0µ) ≤
h ≤ 1. We recall that for every x ∈ K̂ the Taylor series of u about x converges on the
(complex) ball B1/(µh)(x) ⊂ Cd. Setting r1 := 1/(2µ), we infer from this that u is analytic
on B2r1 := ∪x∈ bKB2r1(x) ⊂ Cd. The estimate (C.5) and a calculation analogous to the above
reveals that on Br1 := ∪x∈ bKBr1(x) we have (note that h ≥ h0)

‖u‖L∞(Br1 ) ≤ CCup
2eϑκh.

for a constant ϑ > 0 independent of p, κ, h. Approximation results for analytic functions on
triangles/tetrahedra (see [28, Prop. 3.2.16] for the case d = 2 and [15, Thm. 1] for the case
d = 3) imply the existence of C, b > 0 that depend solely on r1 such that

inf
π∈Pp+1

‖u− π‖W 2,∞( bK) ≤ CCup
2 eϑκh e−bp ∀p ∈ N0.
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We finally distinguish two further cases: If ϑκh < pb/2, then we can estimate

p2eϑκhpe−bp ≤ p2e−b/2p ≤ C

(
h0

σ + h0

)p+1

,

for suitable constants C, σ > 0 depending only on b and h0. Since h ≥ h0 and the function
h 7→ h/(σ + h) is monotone increasing, we have reached the desired bound. If, on the other
hand, ϑκh ≥ pb/2, then

p2eϑκhe−bp ≤ Ceϑκh ≤ Ceϑ eCp = C
(
eϑ eC)p

≤ C

(
κh

p

2

b
eϑ eC)p

;

we recognize this bound to have the desired form.

Lemma C.3 Assume the hypotheses of Lemma C.2. Then one can find a polynomial π ∈ Pp

that satisfies

‖u− π‖W 1,∞( bK) ≤ CCu

[(
h

σ + h

)p+1

+

(
κh

σp

)p+1
]

(C.7)

and additionally admits an element-by-element construction as defined in Definition 5.3.

Proof. The construction follows standard lines. We will only outline the arguments for
the case d = 3. In order to keep the notation compact, we introduce the expression

E(C, σ) := CCu

[(
h

σ + h

)p+1

+

(
κh

σp

)p+1
]
.

In what follows, the constants Ci, σi > 0 (i = 1, 2, . . .) will be independent of Cu, h, p, and
κ. Let π ∈ Pp be the polynomial given by Lemma C.2. It satisfies ‖u− π‖W 2,∞( bK) ≤ E(C, σ).
Therefore, we may correct π by a linear polynomial without sacrificing the approximation
rate to ensure u(V ) − π(V ) for all vertices V ∈ V . This corrected polynomial, denoted π2,
vanishes in the vertices and still satisfies ‖u − π2‖W 2,∞( bK) ≤ E(C2, σ2). Next, we correct
the edges. We illustrate the procedure only for one edge. Without loss of generality, we
assume that K̂ = {(x, y, z) | 0 < x, y, z < 1, x + y < 1 − z} and that the edge e considered
is e = {(0, 0, z) | z ∈ (0, 1)}. Let the univariate polynomial πe ∈ Pp be the minimizer of
the functional (5.4). From ‖u − π2‖W 2,∞(e) ≤ ‖u − π2‖W 2,∞( bK) ≤ E(C2, σ2) we can conclude

that p1/2‖u− πe‖L2(e) + ‖u− πe‖
H

1/2
00 (e)

≤ Cp1/2E(C2, σ2). Hence, for the required correction

πc := π2|e − πe, which vanishes in the two endpoints of e, we get from a triangle inequality
and standard polynomial inverse estimates ‖ 1

1−z
πc‖L∞(e) + ‖πc‖L∞(e) ≤ E(C3, σ3). We may

lift this univariate function to K̂ by

π̃e(x, y, z) :=
1− x− y − z

1− z
πc(z)

This is a polynomial of degree ≤ p that vanishes on all edges but the edge e; clearly,
‖π̃e‖L∞( bK) ≤ E(C3, σ3). The polynomial inverse estimate ‖π̃e‖W 1,∞( bK) ≤ Cp2‖π̃e‖L∞( bK) shows

that ‖π̃e‖W 2,∞( bK) ≤ E(C4, σ4). Proceeding in this fashion for all edges, we arrive at a polyno-

mial π3 with the desired behavior on all edges of K̂ and satisfies ‖u−π3‖W 2,∞( bK) ≤ E(C5, σ5).
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It remains to construct a correction for the faces. To that end, the key issue is again that of
a lifting from a face f . Without loss of generality, this face is f := {(x, y, 0) | 0 < x, y, x+ y <
1}. For a polynomial πc defined on f that additionally vanishes on ∂f , we define the lifting
π̃f by

π̃f (x, y, z) =
xy(1− x− y − z)

xy(1− x− y)
πc(x, y).

This is a polynomial that vanishes on all faces of K̂ except on f . Additionally, it is a lifting,
i.e., π̃f |f = πc. As in the case of the lifting from the edge we see that if πc is exponentially small
on f , then the lifting is likewise exponentially small. To see that the required correction πc is
exponentially small, let πf be the minimizer of the functional (5.5). Since π3 has the desired
behavior on the edges of f , we have π3|∂f = πf |∂f and therefore ‖u− π3‖W 2,∞( bK) ≤ E(C5, σ5)

allows us to conclude ‖π3 − πf‖H1(f) ≤ CE(C5, σ5). Polynomial inverse estimates then imply
for the lifting π̃f that ‖π̃f‖W 1,∞( bK) ≤ E(C6, σ6).

D comments on the proof of Lemma B.3

We have heavily used “non standard” Besov spaces in the proof of Lemma B.3. The following
two lemmas show these spaces, being intermediary in the proof anyway, can be avoided.

Lemma D.1 Let Ω ⊂ Rd be a bounded Lipschitz domain. Let s > d/2. Then there exists
Cs > 0 such that

‖u‖L∞(Ω) ≤ Cs‖u‖1−d/(2s)

L2(Ω) ‖u‖d/(2s)
Hs(Ω)

Proof. A short proof is as follows: Let E : L2(Ω) → L2(Rd) be the Stein extension operator.
Then ‖Eu‖L2(Rd) ≤ C‖u‖L2(Ω) and ‖Eu‖Hs(Rd) ≤ C‖u‖Hs(Ω). By [43, Thm.4.6.1], we have

the embedding estimate B
d/2
2,1 (Rd) ⊂ C(Rd); in particular, ‖u‖L∞(Rd) ≤ C‖u‖

B
d/s
2,1 (Rd)

. Next,

we recognize that B
d/2
2,1 (Rd) is obtained by interpolation between L2(Rd) and Hs(Rd) via the

K-method; specifically, B
d/2
2,1 (Rd) = (L2(Rd), Hs(Rd))θ,1 with θ = d/(2s). Hence,

‖u‖
B

d/2
2,1 (Rd)

≤ C‖u‖1−d/(2s)

L2(Rd)
‖u‖d/(2s)

Hs(Rd)
.

We conclude

‖u‖L∞(Ω) ≤ C‖Eu‖L∞(Rd) ≤ C‖Eu‖1−d/(2s)

L2(Rd)
‖Eu‖d/(2s)

Hs(Rd)
≤ C‖u‖1−d/(2s)

L2(Ω) ‖u‖d/(2s)
Hs(Ω)

An alternative proof that avoids the Besov space B
d/2
2,1 (Rd) is as follows: We assume that s

is not an integer (the case of s being an integer is shown analogously). For the unit cube
Q = (0, 1)d, the Sobolev embedding theorem asserts

‖u‖L∞(Q) ≤ C‖u‖Hs(Q) ∀u ∈ Hs(Q).

(This can be seen by expanding u in a Fourier series). For the norm ‖u‖Hs(Q), we now use the
equivalent norm (the Aronstein-Slobodeckij norm)

‖u‖2
Hs(Q) := ‖u‖2

L2(Q) + |u|2Hs(Q), where |u|2Hs(Q) :=
∑

|α|=bsc

∫
Q

∫
Q

|Dαu(x)−Dαu(y)|2

|x− y|2(s−bsc)
dx dy
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We use the analogous expression for |u|Hs(Rd). By covering Rd with translates of the unit cube
Q, we can infer

‖u‖L∞(Rd) ≤ C
[
‖u‖L2(Rd) + |u|Hs(Rd)

]
∀u ∈ C∞

0 (Rd). (D.1)

We next proceed in the standard way to infer from this a multiplicative estimate. For u ∈
C∞

0 (Rd) we define, for R > 0 to be chosen below, the function uR(x) := u(Rx). Then

‖u‖L∞(Rd) = ‖uR‖L∞(Rd) ≤ C
[
‖uR‖L2(Rd) + |uR|Hs(Rd)

]
= C

[
Rd/2‖u‖L2(Rd) +Rd/2−s|u|Hs(Rd)

]
.

This estimate holds for every R > 0 with C > 0 independent of R and u. Selecting

R =

( |u|Hs(Rd)

‖u‖L2(Rd)

)1/s

produces
‖u‖L∞(Rd) ≤ |u|d/(2s)

Hs(Rd)
‖u‖1−d/(2s)

L2(Rd)
∀v ∈ C∞

0 (Rd).

From this estimate, the desired bound on Ω follows easily.

Lemma D.2 Let K = Rd and ω = Rd−1 × {0} be a hyperplane and s > 1/2. Then there
exists C > 0 (depending s) such that

‖u‖L2(ω) ≤ C‖u‖1−1/(2s)

L2(K) ‖u‖1/(2s)
Hs(K) ∀u ∈ Hs(K).

Proof. A proof based on the Besov space B
1/2
2,1 (K) can be found in [30, Thm. A.2]. An

“elementary” proof based on the continuity of the trace operator Hs(K) → Hs−1/2(ω) can be
shown using the same techniques as in the proof of Lemma D.1—see [30, Exercise A.1] for
details.

Lemma D.3 Let d ≥ 3, K = Rd, ω = Rd−2 × {0} × {0} be a hyperplane of co-dimension 2.
Let s > 1. Then

‖u‖L2(ω) ≤ C‖u‖(s−1)/s

L2(K) ‖u‖
1/s
Hs(K) ∀u ∈ Hs(K).

Proof. The proof consists in iterating Lemma D.2. Let ω′ = Rd−1×{0}. Applying Lemma D.2
with s′ = s− 1/2 > 1/2, we get in view of 1/(2s′) = 1

2s−1
and 1− 1/(2s′) = 2s−s

2s−1

‖u‖L2(ω) ≤ C‖u‖(2s−2)/(2s−1)

L2(ω′) ‖u‖1/(2s−1)

Hs−1/2(ω′)
.

Applying again Lemma D.2 and the trace theorem we arrive at

‖u‖L2(ω) ≤ C‖u‖(1− 1
2s

) 2s−2
2s−1

L2(K) ‖u‖
1
2s

2s−2
2s−1

Hs(K) ‖u‖
1

2s−1

Hs(K);

elementary manipulations of the exponents produce the desired form.
Acknowledgments: We would like to thank Prof. R. Hiptmair for discussions concerning

the choice of the model problem.
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[6] I. M. Babuška, F. Ihlenburg, E. T. Paik, and S. A. Sauter. A Generalized Finite Element
Method for Solving the Helmholtz Equation in Two Dimensions with Minimal Pollution.
Comp. Meth. Appl. Mech. Eng., 128:325–359, 1995.

[7] L. Banjai and S. Sauter. A Refined Galerkin Error and Stability Analysis for Highly
Indefinite Variational Problems. SIAM J. Numer. Anal., 45(1):37–53, 2007.

[8] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer-
Verlag, New York, 1994.

[9] A. Buffa and P.Monk. Error estimates for the Ultra Weak Variational Formulation of
the Helmholtz Equation. Math. Mod. Numer. Anal., page to appear, 2007.

[10] O. Cessenat and B. Després. Application of an ultra weak variational formulation of ellip-
tic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal., 35:255–299,
1998.

[11] O. Cessenat and B. Després. Using plane waves as base functions for solving time har-
monic equations with the ultra weak variational formulation. J. Computational Acoustics,
11:227–238, 2003.

[12] S. Chandler-Wilde and P. Monk. Wave-Number-Explicit Bounds In Time-Harmonic Scat-
tering. SIAM J. Numer. Anal., to appear.

[13] P. Ciarlet. The finite element method for elliptic problems. North-Holland, 1987.
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