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Abstract We present an hp-adaptive strategy that is based on estimat-
ing the decay of the expansion coefficients when a function is expanded in
L2-orthogonal polynomails on a triangle or a tetrahedron. We justify this
approach by showing that the decay of the coefficients is exponential if and
only if the function is analytic. Numerical examples illustrate the perfor-
mance of this approach, and we compare it with two other hp-adaptive
strategies.
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1 Introduction

Over the last decades, adaptive solution strategies have become an accepted
and more or less standard technique for solving partial differential equations
via the finite element method. The main idea of all adaptive strategies is
to start the computation with a low-dimensional approximation of the solu-
tion arising from a coarse grid on the computational domain in conjunction
with low local approximation orders. Thereafter, in order to improve the
accuracy of the approximation, an error indicator is employed to obtain in-
formation about the error distribution. Based on this error distribution, a
suitable enlargement of the finite element space is chosen and a new approx-
imation of higher accuracy is computed. The error of the new approximation
is estimated and in case the approximation is not sufficiently accurate a new
iteration of the adaptive loop is begun. In the adaptive h-FEM, the enlarge-
ment of the finite element space is simply done by subdividing into smaller
elements all those elements that the error indicator has flagged as being
tainted with a large error. However, in the hp-FEM one has the option to
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split an element or to increase its approximation order. Thus, a main dif-
ficulty in hp-adaptivity is to decide whether to increase the approximation
order p or to split an element whose error is large. The importance of mak-
ing the correct decisions is highlighted by the a priori analysis of I. Babuska
and B. Guo (see [6] and the monograph [30] for a survey), where it is shown
that for a large class of problems an exponential rate of convergence can be
achieved if the mesh and polynomial degree distribution are chosen suitably.

Generally speaking, a local p-refinement is the more efficient method
on elements where the solution is smooth. On the other hand, local h-
refinement is the strategy suitable for regions where the solution is not
smooth. Starting from this observation, most hp-adaptive algorithms base
the decision on whether to increase the approximation order or to refine the
mesh on an estimate of the local Sobolev regularity. Estimating explicitly
the local Sobolev regularity is the basis of [1-3], [8], and more recently [22,
21]. The approach of [22] generalises an idea proposed in [24], namely, to
extract the regularity of the solution from the decay of the Legendre coeffi-
cients of the solution w. The work [24,22] concentrates on one-dimensional
problems and situations where all elements have tensor product structure
(quadrilaterals, hexahedra); we extend this approach to triangulations con-
sisting of triangles (in 2D) or tetrahedra (in 3D). We justify our procedure
in Proposition 2 and Theorem 1 by showing that a function is analytic on
the closure of a triangle/tetrahedron if and only if the coefficients of its
expansion in orthogonal polynomials decay exponentially. Since the exact
solution is not available, our numerical algorithm tests for exponential decay
of the coefficients of the numerical solution by fitting them to an exponential
decay law. The numerical studies of this paper show that an hp-adaptive
algorithm based on testing locally for analyticity in this way works well
provided the initial polynomial degree is sufficiently large.

A more implicit way of gauging the regularity of a solution underlies the
algorithms of [27] and [19]. In these algorithms the solution is assumed to
be smooth, and it is checked after a refinement step whether the assumption
of smoothness is justified; if so, then a p-enrichment is called for in the next
step, otherwise an h-refinement will be performed. The algorithm proposed
in [27] is studied there for meshes consisting of quadrilaterals only and mesh
refinement is facilitated by hanging nodes. The present work extends this
algorithm to the case of meshes consisting of triangles.

Another adaptive strategy that we study numerically in the present pa-
per is the application of the “three-fold” algorithm of [18].

We close this introduction by briefly mentioning related ideas for hp-
adaptivity. The approach pursued in [11,12] consists in formulating hp-
adaptivity as an optimisation problem of finding the most efficient combi-
nation of h-refinement and p-enrichment. Earlier work consists of the Texas
Three Step of [29,28] and [9].
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2 Model problem and hp-FEM
For a bounded Lipschitz domain 2 C R? and f € L?(£2) we consider the
following Dirichlet problem, given in weak formulation:

Problem 1 (model problem) Find u € H{(£2) such that

/Vu -Vodf2 = /fvd!? Vv e Hy(92). (1)
Q Q

We will restrict our considerations to 7-shape-regular triangulations 7 of
{2 consisting of affine triangles. That is, each element K € 7 is the image

Fk (K) of the reference triangle K, and we have
- ~1
i | Ficllee ) + hac|(Fi) ™ oy <7 VK €T,

where hx denotes the diameter of the element K. In order to define hp-FEM
spaces on a mesh 7, we associate a polynomial degree px € N with each
element K € 7 and collect these px in the polynomial degree vector p :=
(pr)KkeT. We furthermore associate with each edge e of the triangulation a
polynomial degree

Pe := min {px | e is an edge of element K} (2)

and denote by
p(K) = (p€15p€27pe37pK) (3)

the vector containing the polynomial distribution of the triangle K € 7
with edges {e; | i = 1,2,3}. Next, we introduce the reference triangle K
and the reference square () by

K:={(x,y)| —1<z,y A z+y<0}, Q:=(-1,1 (4)
and point out the following relationship between these reference elements:

Lemma 1 (Duffy transformation) The transformation D : R? — R2
given by

D5 (mm) = (6,6 = (50 +m)1 =)~ Lo

maps Q onto K. The inverse transformation D' : R? — R? is given by

_ 1+
D 1:(51752)’_)(7715772): (2 51 1752)'
1-&
Now we are in the position to define local shape functions on the reference
triangle K. To do so, we proceed as follows:

1. We define a set @ of functions on the reference square Q
2. We transform these functions via D : R? — R* given by Lemma 1 to
functions on the reference triangle K.
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Fig. 1 Reference elements K and Q
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Definition 1 (Local shape functions on the reference triangle) Let
the reference elements K Q be given by (4) and let the transformation
D : R? — R? be given by Lemma 1. Then, for a degree vector p(K)
(pAB,PAC,DBC,PK), Where pap,...,ppc denote the polynomial degrees as-
sociated with the edges AB, ..., BC and px denotes the polynomial degree
associated with the interior of the triangle, we define a set of local shape
functions as follows:

vP =9 oD ' ={poD ' ped®} B=1,...,5,
with ®B given by:
qjl{(lm)(lm) A+m)d—m) (1+772)}

2 2 2 2 7 2

o = (A A Ll p00 ) i = 1pan =1
o0 = (LI Qo) L) pop sy =1 pac -1}
o = { L B L) p0 ) | =1..cpe 1},
P° — {(1 *477%) (12772) (12772)”1191,(_1 1)( )P(21+1 1)( )

here, P.(a’ﬁ)(n) is the i-th Jacobi polynomial with respect to the weight (1 —

3

n)*(1+n)~.

The subdivision of the shape functions into 5 different groups in Definition 1
follows a standard pattern in Ap-FEM:

— @1 contains the vertex shape functions, which are the usual linear shape
functions, equal to one in exactly one node and zero in the other nodes.
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— The sets $2, &3, &* contain the side shape functions, which are zero in
all nodes and vanish on all but one edge. R
— The set @° consists of internal shape functions, which vanish on 0K.

Properties of this set of shape functions are collected in the following lemma.

Lemma 2 For B=1,...,5 let ¥P be given by Definition 1. Denote by
Po(K) = span{z'y’ | 0 <i+j < p}, Pp(I) = span{z’ | 0 < i < p}
the spaces of all polynomials of degree p and set

Pp(R)(K) ={v € Ppx (K) | Yle, € Ppei (ei),i=1,...,3},

5
Qp(f()(f() = span ¥ := span{ U LT/B} ,

B=1

where e;, 1 =1,...,3 denote the edges of K. Then

1. v :.= U%Zl OB is a set of linear independent functions,
2 Py (K) € Qi (K),
3. Y € ¥ is polynomial.

Proof To prove the statements above we can proceed as in [23].

Remark 1 The vertex and side shape functions introduced in Definition 1 are
those proposed by G. Karniadakis and S. Sherwin, [23]. The internal shape
functions @° differ from those of [23] in that we admit roughly twice as many
internal shape functions. Our reason for using this bigger space is that the
shape functions of #° can be modified so as to be adapted to the quadrature
rule employed. The stiffness matrix can then be set up in optimal complexity.
These ideas have been presented for reference elements with tensor product
structure (squares, hexahedra) in [26] and can be generalised to the present
situation of triangles and tetrahedra, [15]. We emphasise that the additional
shape functions are all internal shape functions that can be eliminated on
the element level by static condensation.

Our conforming hp-FEM spaces are defined as follows:

Definition 2 (FEM spaces) Let T be a reqular mesh consisting of trian-
gles, and let p be a polynomial degree vector. Furthermore, for all edges e
let pe be given by (2). Then we set

SP(2,T) :={ue HY(R) |uo Fx € Qpiy(K) VK €T},
S§(2,T) := SP(2,T) N Hy (),

with QP(K)(k) defined in Lemma 2.
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Remark 2 We remark that the use of the Duffy transformation implies an
unsymmetry, since one of the vertices of the triangle is special, namely, the
vertex corresponding to the vertex C' of the reference triangle. This in turn
implies that the space SP({2,7) of Definition 2 is not completely described.
In our implementation, the vertices of the triangulation are globally num-
bered (arbitrarily). The element maps are then chosen such that the vertex
with the lowest global number corresponds to vertex A of the reference el-
ement and the vertex with the highest global number corresponds to the
degenerate vertex C.

The FE-discretisation of Problem 1 then reads:
Problem 2 (hp-FEM approximation) Find u, € S§(§2,7) such that

/Vu~Vde:/fvd.Q VoeS§R,T).
o) o)

3 Error indicator

This section is devoted to the residual-based a-posteriori error estimator
used in the hp-adaptive algorithms of Section 4 to decide which elements to
refine. The error estimator was developed in [27] and so we refer to [27] for
a detailed description.

Definition 3 (error estimator) Let K € 7. Then the local error indicator
Nk, associated with the element K s given by:
2 2 2
Nk =Nk T NEg>

where the first term 7712BK 1s the weighted internal residual and the second
term U%K a weighted boundary residual. They are given by

h 2

2pe

c’)uFE

Oone

)

h? 9
My =~ | fore + Aupplzy  and Nhy = Z
Pk L2(e)

eCOKN

where fx denotes the L?(K)-projection of f on the space of polynomials of
degree pxg — 1 and [66“%] the jump of the normal derivative of upg across
the edge e. Finally, the global error indicator is given by

=) ik

KeT

The following proposition collects the most important properties of the error
indicator n:
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Proposition 1 Let € > 0. Let T be a ~y-shape-reqular mesh. Assume that
the polynomial degree distribution satisfies

1 JR— JR—
—pr <pr <YPK VK, K" with KN K’ # 0.
Y

Then there exist C1,Cy > 0 independent of h and p such that

h2
lu—ursl? o) < C1 > 1wk + ~ENf = forclZagrey,
KeT Pk

h2
nx < Ca(e)prd ™ <pK|U — urBlF o) +p%§pTKprK - f|%2(w1<)> :
K

3.1 Performance of the error indicator

In this subsection we present some numerical results to demonstrate the
performance of the error indicator given in Definition 3. We introduce three
examples:

Ezample 1 We consider Problem 1 on g = (0,1)? together with a right-
hand side f chosen such that the exact analytic solution is given by

5 2

uw=z(l—z)y(l —y)(1 —2y)e 22=~1)

Example 2 We consider Problem 1 on 27, = (0,1)2\([0, 1] x [~1, 0]) together
with a right-hand side f chosen such that the exact solution u is

(3t

We note that u € NesoH?/37¢(02y).
Ezample 3 For 2 = (—1,1) x (0,1), I'v = (—1,1) x {0}, I'p = 92\I'y and
2 1 1
la,) = 39 cos ) cos (o) 3

—atd —bt2—ct—d:t< —0.8
g(t) = 1: ]t <08 |
atd —bt2 +ct—d:t>0.8

with (a,b,¢,d) = (250,675,600,175), we consider the problem: Find u €
V:={ue HY ) | u|lr, = 0} such that

/Vu-Vde:/fde—i—/gnvdF VveHé(Q),
o) o) I'n

where f is chosen such that the exact solution u is
2 2
u(r, @) = g(r cos ¢)g(r sin ¢)r3 sin <§¢> .

We note that u € NesoH?/37¢(0).
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For a fixed polynomial degree p the error indicator n reduces to a standard
h-FEM error indicator and therefore we are mainly interested in the p-
dependence of 1. In order to examine the p-dependence of 7, we consider a
pure p-FEM on a mesh consisting of 4 triangles in the case of Example 1, a
mesh consisting of 12 triangles in the case of Example 2, and the mesh shown
in Fig. 3 for Example 3. The important property of the mesh for Example 3
is that, in contrast to Example 2, the singularity is not at a mesh point.
The results of our computation are plotted in Figures 2 and 3. All plots
show the global error measured in the H'-norm and the error predicted
by 1. As we can see, in each example the true error is overestimated by
n and especially in Example 2 we observe that as the polynomial degree
p increases, the true error decays much faster then the error indicator n
predicts. Note, however, that Proposition 1 is suboptimal in the efficiency
estimate so that 7 is allowed to overestimate the error. The situation of
Example 2 is special: The solution is in some Sobolev space H*(2), (here:
k =5/3—¢), but the singularity is located at a mesh point; it is known from
approximation theory that singularity functions of the type considered here
can be approximated in the H!'-norm by polynomials of degree p with an
error O(p~2(F=1)); this convergence is faster than the O(p~(*~1)) behaviour
achievable for generic functions in H¥, [7], [30, Sec. 3.3.5]. In Example 3,
the singularity is not located at a mesh point. We observe in Fig. 3 and
from the effectivity indices in Table 1 that in this situation the indicator n
captures the true error accurately.

Fig. 2 p-performance of the error indicator (cf. Examples 1, 2)

o error indicator - unit square . error indicator - L-shaped domain
10 10 T

—e—true error —e—true error
—— error indicator| —=— error indicator|

107

107 +

107 +

10

107 . . . . . . . . 105 T
0 2 4 6 8 10 12 14 16 18 10 10

polynomial degree polynomial degree

4 hp-adaptive strategies

In this section we investigate and compare three different hp-adaptive strate-
gies. For each of these strategies we use the error indicator n? := 3 .- T n%
defined in Section 3 to determine which elements need to be refined. While
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Fig. 3 Example 3: mesh and p-performance of the error indicator

error indicator - Example 3

—e—true error
——error indicator|

Table 1 effectivity index n/||u — ure||lg1 (o)

polynomial degree

10

p| Ex 1 Ex.2 Ex 3 p| Ex1 Ex.2 Ex 3
1 5.22 3.85 15.70 | 11 | 10.02 5.09 3.09
2 4.08 4.64 15.73 | 12 | 10.27 5.47 3.18
3 6.83 2.67 4.64 | 13 | 10.77 5.85 3.12
4 6.24 2.64 3.33 | 14 | 11.02 6.24 3.20
5 7.31 2.94 3.16 | 15 | 11.47 6.62 3.15
6 7.62 3.29 3.21 | 16 | 11.62 7.02 3.22
7 8.26 3.63 3.06 | 17 | 11.95 7.41 3.18
8 8.66 3.99 3.17 | 18 — 7.81 3.25
9 9.19 4.35 3.07 | 19 — 8.21 3.20
10 9.49 4.72 3.16 | 20 — 8.61 3.27

the three adaptive strategies differ in the way they decide whether to per-
form an h- or a p-refinement, the basic adaptive loop in all three cases is

the following:

Algorithm 1 (basic hp-adaptive algorithm)

— Input: An admissible mesh T together with a polynomial degree dis-
tribution p := (pr)xer and the corresponding finite element solution

— Output: The refined mesh Tp.cy together with the polynomial degree dis-

tribution p := (pK)KETref'

— Algorithm:

B LD~

. Calculate the error indicator n3 for all K € T.
. Determine Ty, _rcy C T containing all K € T selected for h-refinement.
. Determine Tp_rcy C T containing all K € T selected for p-refinement.
. Compute a preliminary version of the refined mesh Trcy by subdivid-

ing all K € Tp,_ref into four congruent sons (red refinement).
5. Determine the refined mesh Tr.¢ by eliminating hanging nodes.
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6. Increase the polynomial degree px = px + 1 for all elements K €
Tref N Tprep. (In particular: elements to which an h-refinement is
applied inherit the polynomial degree from their father).

Algorithm 2 (elimination of hanging nodes) The elimination of hang-
ing nodes is done as follows:

1. While there exists an element K € T}, _ror with more than one hanging
node subdivide this element into four congruent sons (red refinement).

2. Subdivide all elements K € Tj,_rey with one hanging node into two sons
(green refinement).

Remark 3 Since green refinement divides an interior angles of the father
element into two angles of about half the size of the original angle, repeated
use of green refinement may lead to a degeneration of the mesh. In order to
avoid such a degeneration, we forbid further refinement of triangles resulting
from a green refinement. Instead of subdividing a so-called green triangle,
we undo the green refinement and perform a red subdivision of the father
element before further refinement may occur. (For further information about
adaptive mesh refinement strategies see [17] and the references therein.)

Remark 4 The hp-adaptive Algorithm 1 is restricted to shape-regular meshes
and isotropic polynomial degrees. The design of hp-adaptive algorithms with
anisotropic elements and/or anisotropic polynomial degrees, while highly
desirable, is beyond the scope of the present paper. For different aspects
of anisotropy in low-order FEM such as a posteriori error estimation and
adaptivity, we mention the recent [10,16,5,4] and the references therein.
Concerning anisotropic polynomial degrees, we point out that they are much
more naturally employed in connection with quadrilateral and hexahedral
elements. Then, the analog of our Strategy II below can be formulated
where regularity in each variable is gauged separately; we refer to [22] for
the details. Also the fully general hp-adaptive approach of [11] conceptually
generalises to meshes consisting of triangles.

Having presented the basic hp-algorithm, we consider different strategies
for determining 7, s, the set of all triangles selected for h-refinement, and
Tpref, the set of all triangles selected for p-refinement.

4.1 Strategy I - Comparison of estimated and predicted error

The first strategy we consider is the strategy proposed in [27]. The decision
whether to split an element or to increase its approximation order is based
on comparing the current estimated error with a prediction from a previous
step of the adaptive loop:

Algorithm 3 For chosen parameters o, vu, vp and vy, do:
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1. Compute the mean error
7oL S k.
#T KeT

2. Determine
2 —2 2 red 2
%_Tefz{KETanzon A < (ni ) }
2
Thref = {K €T | nf = o7 A = (nfr) }
For the predicted error of the initial triangulation we set

pred 0 if we prefer h-refinement for the first refinement step
K 7 oo if we prefer p-refinement for the first refinement step ’

and after each adaptive refinement step, i.e., after finishing step 6 of the
basic adaptive algorithm, we update the error prediction via the following
algorithm:

Algorithm 4 (error prediction) For all K € T do
— If K is h-refined, then for all Ks = son of K set
(né)(red)Q . (n;la(red)Q ) { i% (1%)21”( in the case of red subdivision

' in the case of green subdivision

(5)

2

— If K is p-refined, then

(U?Ed)Q =Y (n%ml)Q : (6)

— If no refinement is done, then

2 2
(ni’?ed) =T (ni’?ed) :

Remark 5 (undoing green refinements) As discussed in Remark 3, the h-
refinement of an element that has undergone a green refinement in a previous
step of the adaptive loop is done by first recombining this element K with
its sibling K4 to obtain the father element K ¢4¢her and then performing a
red refinement for this father element. The error prediction then proceeds

analogously: the intermediate element Ktginer is assigned (nf(’”;ihw)Z —

()2 + (nf(’:i)Q and the four sons of K f4¢per are then assigned predictions
according to the red subdivision case in (5).
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Our computation of 771[?6‘1 follows the lines of [27] in the event of a red
subdivision or a p-refinement. In the case of a green refinement we observe
that the triangle K is subdivided into two triangles without significantly
reducing the edge length or the diameter. Thus, we don’t expect a con-
siderable error reduction and merely assign half the error of K to each of
its sons. The motivation for the decision between h- and p-refinement is
the following: The predictions (5) and (6) assume maximal smoothness of
the solution; in fact the prediction (6) assumes analyticity of the solution so
that the error can decay exponentially. If the estimated error is smaller than
the predicted error, then we perform p-refinement since the assumption of
smoothness appears to be correct. Otherwise, if the estimated error is larger
than the predicted error, we perform h-refinement since our assumption of
smoothness does not seem to be correct.

4.2 Strategy II - Decay of Legendre expansion coefficients

The second second strategy we consider is to determine whether the solution
is locally smooth (analytic) or not by expanding the finite element solution
in orthogonal polynomials. This idea was first discussed in [24] (see also [22,
21]). The theoretical basis for the case of triangular elements is the following
result:

Proposition 2 Define on the reference triangle K the LQ(K)—orthogonal
basis Ppq, D, ¢ € Ng by

- B . 1— p
Ypq = hpg 0 D Y with Vpq = Pzgo,o) () (Tm> Pq@pH’O) (12),

where Péa’ﬁ)(n) denotes the p-th Jacobi polynomial with respect to the weight
(1 —n)*(1+n)® and D the transformation of Lemma 1. Let u € L*(K) be

written as u = Ep,quo Upg¥pq- Then u is analytic on K if and only if there
exist constants C, b > 0 such that |uy,| < Ce "9 for all p, q € Ny.

Proof Combine [25, Prop. 3.2.14] and [25, Lemma 3.2.15].

We will present the extension of Proposition 2 to tetrahedra below in The-
orem 1. The main idea of an hp-algorithm that is based on estimating the
decay of the coefficients is to check whether the expansion coefficients wu,,
of (urg|K) o Fx =3, , upgtpq decay sufficiently fast. If so, then an expo-
nential convergence in p can be expected and a p-refinement is indicated.
Otherwise, an h-refinement is called for. Since the exact solution u|x is not
available, we will consider the expansion of the finite element approxima-
tion. This leads to:

Algorithm 5 For parameters o and § do:
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1. Compute the mean error

ﬁ2=%27ﬁ<-

KeT

2. For all elements K € T with n3 > on? compute the expansion coeffi-
cients

Uiji | = ||"/’ij”;22(f() (ure|K © Fi', 7/}ij)Lz(f()7 0<i+j<pk
and estimate the decay coefficient bx by a least-squares fit of
In|u;j,x| ~ Crx — br (i + 7).
3. Determine

Tpres = {K €T | nj; > o Nbg > 6},
Threp = {K €T | nk > on* ANbx < J}.

4.8 Strategy III - Three-fold algorithm

The third strategy we consider goes back to an idea proposed in [18] for the
treatment of hypersingular and weakly singular integral equations arising
in the context of boundary element methods. In contrast to the previous
strategies, the decision which elements should be refined is no longer based
on a mean value strategy. Instead, the crucial value for refinement is the
maximum occurring error. The main idea of the algorithm is: If the error
indicator ng predicts a small error for K € 7 (with respect to the maximum
occurring error), we do nothing. For elements with medium predicted error
we perform a p-enrichment and those elements with a large predicted error
are h-refined. Thus, the algorithm reads as follows:

Algorithm 6 For parameters 61,02 with 0 < 01 < d5 < 1 do:

1. Compute the mazimum error

2 2
n = max .
max KeT K

2. Determine

%_Tef = {K €T | 6177'r2nax < 77%( < 6277371(11}’
Zz_ref = {K eT | 77?{ > 52n'r2nax}'
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4.4 Numerical results

In this section the performance of each adaptive hp-strategy from above is
tested for two very different problems. The first example we consider is Ex-
ample 1. Since we have an analytic solution, the optimal strategy is a pure
p-method on a suitable mesh, which features an exponential convergence in
the polynomial degree p. We therefore expect a successful hp-algorithm to
perform only a few h-refinements at the beginning and then turn into a pure
p-method in later iterations. Anticipating an exponential convergence in p
we plot the error versus v DOF. The second example we consider is Exam-
ple 2, the classical L-shaped domain. In this case we have a singularity at
the origin and so we expect a strong mesh refinement towards this reentrant
corner in conjunction with p-refinement for the rest of the domain. For this
example, the best known hp-strategy yields an error bound of
HU _ UFEHHl(Q) < Cefb(DOF)l/s

(see, e.g., [30]); for this example, therefore, we plot the error versus (DOF)/3,
All computations are performed with the hp-FEM code ADURACON, [14].
We now consider the strategies in detail:

— Strategy I: For our computations we choose: 0 = 0.75, v, = 0.7,

~n = 4.0 and v, = 1.0 together with nzjged =0 for all K € 7. The
corresponding results are shown in Tables 2, 3 and Figures 4-6, 13, 16,
19. As we observe, Strategy I performs well in both cases. In the case
of Example 1 we obtain the expected p-method after a few mesh re-
finement steps; Example 2 features a strong mesh refinement towards
the singularity at the reentrant corner and p-refinement in the remain-
der of the domain where the solution is smooth. In comparison to the
other strategies, we obtain a slightly increased number of h-refinements
and relatively large polynomial degree of px € {4;5} for the elements
at the reentrant corner. A possible reason for the increasing number of
h-refinements in Table 2 at higher iteration levels could be limitations
of computational accuracy. In such a case the error does not decrease
further and consequently the algorithm always suggests h-refinement.

— Strategy II: The computations are based on: 0 = 0.75, 6 = 1.0. More-
over, in order to obtain a sufficient number of Legendre expansion coeffi-
cients, which is necessary to achieve a good estimate for the decay coef-
ficient b, we start with an initial polynomial degree distribution px = 3
for all K € 7. As we can see (Table 4, Figure 7 and following), for
both cases, Example 1 and Example 2, the algorithm performs well. In
Example 1 the error appears to have reached the limit of computational
accuracy after 18 iterations.

— Strategy III: For our computations we choose: §; = 0.07, o = 0.7.
We observe that in the case of Example 2 the algorithm performs well
but it performs a considerable number of hA-refinements for the analytic
solution on the unit square. However, this “failure” is predictable: If we
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consider Algorithm 6, we observe that the algorithm is not designed for
problems whose solution is smooth on the whole domain. In fact, it is
impossible to achieve pure p-enrichment since for nearly uniform error
distributions the algorithm opts for a pure h-refinement. This happened,
for example, in Level 13.

Remark 6 Throughout all computations we observed that the majority of
the wrong decisions concerning h- or p- refinement, in particular an increase
of the polynomial degree in regions where the solution is not smooth, occur
in the initial steps of the iteration. Wrong decisions in later stages are rather
an exception. (See the mesh and polynomial degree distribution near the
reentrant corner of the L-shaped domain.) We therefore expect an improve-
ment by combining the strategies above with an appropriate coarsening
algorithm that corrects excessive p-refinement in regions where the solution
is not smooth.



16 T. Eibner, J.M. Melenk

Fig. 4 Strategy I - L-shaped domain - Iteration levels 0, 15, and 25
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Fig. 5 Strategy I - L-shaped domain - zoom near reentrant corner: Iteration levels
15 (magnification factor 2° ) and 25 (magnification factor 2'°)
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Table 2 Strategy I - L-shaped domain - Number of elements, maximum polyno-
mial degree, h- and p-refinements per level

Level | #7  Dmac  hres Drer || Level | #7  pmaz  href  DPref
0 12 1 12 0 13 238 5 14 10
1 40 1 8 26 14 262 6 14 20
2 48 2 8 14 15 286 6 22 36
3 60 3 0 26 16 318 7 14 32
4 60 3 0 20 17 342 7 14 28
5 60 4 6 16 18 366 7 14 34
6 70 5 14 12 19 390 8 42 42
7 94 5 14 8 20 442 8 34 50
8 118 5 14 12 21 490 9 32 50
9 142 5 14 20 22 536 10 18 54
10 166 5 14 10 23 568 10 26 78
11 190 5 14 14 24 612 10 26 80
12 214 5 14 8 25 656 10 36 82

Table 3 Strategy I - unit square - Number of elements, maximum polynomial
degree, h- and p-refinements per level

Level | #7  Dmac  hres Dref || Level | #7  pmaz  href  Pref
0 16 1 12 0 11 104 6 0 33
1 40 1 12 14 12 104 6 0 35
2 52 2 12 12 13 104 7 0 32
3 64 2 16 23 14 104 8 0 41
4 92 3 8 37 15 104 9 0 37
5 104 3 0 50 16 104 9 0 49
6 104 4 0 36 17 104 9 0 49
7 104 4 0 34 18 104 10 0 37
8 104 5 0 44 19 104 11 0 36
9 104 5 0 42 20 104 12 0 42
10 104 6 0 46
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Fig. 7 Strategy II - L-shaped domain - Iteration levels 0, 15, and 25
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levels 15 (magnification factor 2'' ) and 25 (magnification factor 2%!)
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Table 4 Strategy II - L-shaped domain - Number of elements, maximum poly-
nomial degree, h- and p-refinements per level

Level | #7  Dmac  hres Drer || Level | #7  pmaz  href  DPref
0 12 3 10 0 13 292 6 16 20
1 30 3 10 4 14 316 6 16 28
2 40 4 14 2 15 340 7 16 44
3 58 4 12 0 16 364 7 16 42
4 76 4 16 0 17 388 8 16 48
5 100 4 16 0 18 412 8 16 48
6 124 4 16 0 19 436 8 16 68
7 148 4 16 14 20 460 9 16 68
8 172 4 16 20 21 484 9 16 76
9 196 4 16 10 22 508 9 16 80
10 220 5 16 6 23 532 9 16 100
11 244 5 16 2 24 556 10 16 92

12 268 5 16 14 25 580 11 16 112

Table 5 Strategy II - unit square - Number of

degree, h- and p-refinements per level

elements, maximum polynomial

Level | #7  Dmac  hres Dref || Level | #7  pmaz  href  Pref
0 16 3 0 4 11 80 9 16 33
1 16 4 8 4 12 104 9 0 28
2 32 4 0 8 13 104 10 0 34
3 32 5 0 16 14 104 10 0 42
4 32 6 12 4 15 104 11 0 34
5 56 6 0 16 16 104 11 0 26
6 56 6 0 12 17 104 12 0 24
7 56 7 0 34 18 104 13 0 43
8 56 8 16 9 19 104 13 0 44
9 80 8 0 28 20 104 13 0 47
10 80 9 0 24
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Fig. 10 Strategy III - L-shaped domain - Iteration levels 0, 15, and 25
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Table 6 Strategy III - L-shaped domain - Number of elements, maximum poly-
nomial degree, h- and p-refinements per level

Level | #7  Dmac  hres Drer || Level | #7  pmaz  href  DPref
0 12 1 6 2 13 262 6 14 32
1 26 2 8 18 14 286 6 14 36
2 34 2 12 10 15 310 6 14 28
3 52 3 16 18 16 334 6 14 46
4 68 4 28 14 17 358 6 14 40
5 112 4 6 42 18 382 7 14 44
6 118 5 12 10 19 406 7 14 48
7 136 5 6 2 20 430 8 14 40
8 142 5 14 8 21 454 8 14 56
9 166 5 14 18 22 478 8 14 82

10 190 5 14 22 23 502 8 14 66
11 214 5 14 32 24 526 8 14 82
12 238 5 14 34 25 550 9 14 96

Table 7 Strategy III - unit square - Number of elements, maximum polynomial
degree, h- and p-refinements per level

Level | #7  Dmac  hres Dref || Level | #7  DPmac  href  Dref
0 16 1 8 0 11 512 6 144 115
1 28 1 12 12 12 768 7 48 135
2 40 2 12 20 13 832 7 500 92
3 64 3 44 12 14 1868 7 20 8
4 132 3 68 44 15 1888 7 68 951
5 240 3 64 104 16 1972 7 16 152
6 340 4 56 104 17 2000 7 164 182
7 408 4 28 48 18 2208 7 40 40
8 444 4 16 36 19 2248 7 204 258
9 460 4 16 202 20 2564 8 16 495
10 476 5 24 132
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Fig. 13 Strategy I - Performance of hp-adaptive algorithm
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Fig. 16 Strategy I - L-shaped domain - Polynomial degree distribution along the
line from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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Fig. 17 Strategy II - L-shaped domain - Polynomial degree distribution along
the line from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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Fig. 18 Strategy III - L-shaped domain - Polynomial degree distribution along
the line from (0,0) to (-1/2,1) - Iteration levels 15 and 25
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Fig. 19 Comparison - Performance of hp-adaptive algorithm
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5 Analytic functions on tetrahedra

The hp-adaptive strategies of Section 4 can be applied to three-dimensional
problems. In this section, we present the theoretical underpinning for the
extension to 3D of Strategy II, which relies on estimating the decay of the
coefficients when expanding a function in orthogonal polynomials. The main
result of the present section is Theorem 1, which is the three-dimensional
analog of Proposition 2.

We start with the introduction of some reference elements and transfor-
mations:

Definition 4 (reference elements, Duffy transformation) The ref-

erence triangle T2, the reference tetrahedron T3 and the i-dimensional ref-
erence cube Q' are given by:

T ={(z,y)| —1<az,y A z+y<0},
TB:{(xvyaz)| —l<z,yz Nz+y+z<-1}
Q' = (—1,1)%.

The transformations Do, D3 are given by:
1
Dy : () = | 51 +m)(1 —m2) =Lz ),
1 1
Ds : (1, m2,m3) — 1(1 +m) (1 —n2)(L —n3) — 1a§(1‘+’ﬁz)(1‘* n3) — 1,m3

The following lemma links the elements 7°¢ and Q' by means of the Duffy
transformations D;:

Lemma 3 For i = 2,3 let the reference elements T¢, Q' and the transfor-
mations D; be given by Definition 4. Then:

Furthermore, the inverse maps of the D; : O — T* are given by

D2_1 : (61362) — (21+€1 _1562)3

1-&
Dgl : (51362563) = (215:_6153 - 17211—22 - 1763) .

Proof Direct calculation.
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5.1 Orthogonal polynomials on tetrahedra

Similar to the case of the triangle in two dimensions, we introduce the set
(¥pgr)p.q,ren, Of polynomials that are orthogonal on the reference tetrahe-
dron.

Definition 5 (orthogonal polynomials on the tetrahedron) Let Ds
be given by Definition 4 and denote by P,(la’ﬁ) (n) the n-th Jacobi polynomial

with respect to the weight (1 —n)®(1+n)8. Then, for p,q,r € No, we define
"/)pqr = "Z)pqr o D3_1,

where 1;;0117“ (n) = Qﬁpqr(nla n2,73) s given by

7, 1— P/ p+aq
%qr(”):Pzgo’o)(771)Pq@pﬂ’o)(772)PT(2P+2‘”2’0)(773)( 2772) ( 2773) .

The following lemma shows that the functions 1, are L2-orthogonal poly-
nomials on the reference tetrahedron 773,

Lemma 4 Let the reference tetrahedron T? be given by Definition 4. Then
the functions Vpqr defined in Definition 5 satisfy Vpgr € Ppiqrr(T3) and
they are orthogonal on T3 with respect to the usual L*(T3) inner product.
We have

2 2 2
Woars Vo) are) = G 1) (2p + 20 +°2) (@ + 20+ 24 4 3)

6p’p6q’q6T’T-

Proof See [23] together with [25] where a two dimensional version of this
Lemma is proved.

5.2 Orthogonal polynomials and analytic functions

The following theorem characterises functions that analytic in a neighbour-
hood of a tetrahedron:

Theorem 1 Let the reference element T> and the polynomials Ypgr be given
by Definition 4 and Definition 5. Let the function u € L?(T3) be written as

U= Z UpgrPpr-

p,q,7€Ng

Then w is analytic on T if and only if there exist constants C,b > 0 such
that

tpgr| < CebPtatr) Vp, ¢, € No. (8)
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Before proving this result, we need to introduce some notation. For p > 1,
we let £, C C be the ellipse with foci £1 and sum of semi-axes p, i.e.,

E={z€C|lz+1[+|z—1<p+p'}.

A calculation shows that

—1)2
dist(9€,,, 1) = (-1 5 )
P

Lemma 5 For a, > —1 denote by Pq(a’ﬁ)(n) the q-th Jacobi polynomial
with respect to the weight (1 — n)*(1 4+ n)®. Then, for each q € Ny, the
function
1 (a,8)
~ P, t
w i QL) (w) = / (1-t)*(1+t)—L—= ®) 4
w

-1

is holomorphic on C\[—1,1] and for p > 1 we have

~ 2w
0,0 —(q+1
’Qg )(w) < 1_1/pp (a+1) YV w e 0,
2a+2 q+2

3(a,0) ‘ < —(a+) € HE..
‘Qq (w) _Oé+1(1*1/p)2p w e P

Proof [25, Lemma 3.2.10, Corollary 3.2.11]

Proof of Theorem 1. First, we assume (8) and show that Zp q.r€Ny Upar¥par
represents an analytic function. To that end, we chose p > 1 so small that
Inp < b/2 and set

U = E UpgrPpgr k=0,1,...,.
pta+r<k

Lemma 9 ensures the existence of an open complex neighbourhood 7/ C C3?

of 73 such that

||1/}qu HLOO(T/) < e(b/2)(p+q+r) .

In combination with (8) we obtain that the sequence (ux)32,, converges
uniformly on 7. Since all the functions wuy are analytic on 7, the limit
function v is analytic on 7’ (see, e.g., [20, Cor. 2.2.4]).

We now turn to the second part of the theorem, where we show that an-
alyticity of u on a neighbourhood of the closure of the reference tetrahedron

73. Since the polynomials 1,4 are L?(73)-orthogonal, we compute

(wpqra “)Lz(TB) - 1

|W;D<ZT||2L2(TS) a |W;DqT||QL2(T3)

Upgr =

/ U Ppgr AL2.

T3

We need to show the existence of C, b > 0 such that

(wpqra U)L2(7—3) < Ce—b(:ﬂ-i-q-i-r). (9)
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Denoting by U,, the function defined in Lemma 8, the transformation of
T3 to the cube Q2 via Dj yields

1
1 _
/ Pr(2p+2q+2,0) (773) < 5 3
-1

Upq (773 )d773

> (p+q+2)

wmh U)L?(Tﬁ)

Lemma 8 asserts that Uy, is holomorphic on &, for some p > 1 and has a
zero of multiplicity p + g at n3 = 1. Hence, we may apply Cauchy’s integral
theorem to the holomorphic function 73 — Upq(n3)/(1 —n3) P+ and obtain
a first bound for (Ypgr, u)r2(7s):

’(wpqra U)L?(TS) (10)

1
U,
— ’2—;0—11—2/ (1 _ 773)(2p+2q+2) pq(773) P(2p+2¢+2,0) (773)d773

1 (1 —mng)pta"

9—(p+q+2) U -
% Pq (43) Q£2p+2q+2,0) (Cg)ng
(3€0E, (

27i 1—(3)pta
length(9€,)

(dist(DE,, 1)) T4

< 0o-rat2), (L)W o 2D (r42)

- (p—1)? (2p+2¢+3) (1 -1/p)?

< CPtagTT (11)

< 9~ (p+a+2)

) ||quHLoc(agp) ||Q£2p+2q+270)||L°°(65p)

with § > 1 and C, ~, § independent of p,q,r. Next, making use of the
Cauchy-Schwarz inequality, exploiting orthogonality relations of Jacobi poly-
nomials and Lemma 8 we obtain a second bound for (¢pgr, u)r2(73)

1
1—
_ ‘/ PT(2p+2q+2,0)(773)( 2773
-1
1 (2p+29+2) 3
1-— 2
< ( / (—2”3) (pere220 ) d773> x
-1
1 2 %
1 —mns
(/1(2 )u%mﬂ%%>

1
2 2
< —= —b(r+9) < Ce—b(pta) 192
- <2p+2q+2r+3> ‘ = (12)

) (p+q+2)

(Vpgrs U)L2(73) Upq(n3)dns

We combine inequality (11) and (12) to achieve
[tpgr] < Cmin{et0+0) prag—ry. (13)

If v < 1, then (13) implies immediately (9). We may therefore assume v > 1.
Since § > 1, we may choose A € (0,1] such that v*/§ =: ¢ < 1. Then, we
distinguish two cases:
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1. For (p+ q) < Ar we have
[tpar| < CAPTI67" < C(7[6) = Cq = Cq'/*T7/> < Cga o),

which is the desired bound (9).
2. For (p+ q) > \r we have

(r+q)=5p+qg+r),

N | >

and the desired result follows from

|upqr| < Ce_b(p+q) < Ce_b%(:ﬂ-i'q-i-r) < Ce_b/(p+q+T)_

5.8 Auziliary Results

Lemma 6 Let D3 be given by Definition 4 and let u be analytic on T
Then there exist C >0, 6 > 0, p > 1 depending only on u such that:

(i) The function u o D3 is holomorphic on @3 and can be extended to a
function @ holomorphic on £, x £, x €, with

@] oo ez) < C.

(i) For all n2,ms € (—1,1) the function 1 — @(n,n2,n3) is holomorphic
on E145/((1=n2)(1—n3)) and we have
sup Ha('anQan?))HL"o &1 1— 1—n- S C.
(nams) €02 (Er+s/(-nz)1-n3))

(i11) For all m,ns € (—1,1) the function nz2 — @(m,n2,M3) is holomorphic
on E145/(1-n;) and we have

sup ||ﬂ’(7717 '7773)||Loo £ B S C.
(n1,m3)€Q? (E115/(1-n3))

Proof Since u is analytic on 73, there exists a complex open neighbourhood
T C C3of T’ such that w is holomorphic and bounded on 7”. Thus, because
of the continuity of D3, there exists p > 1 such that D3(€3) C 7" and the
first claim is proved. In order to prove the second claim, we have to show
that for arbitrary e > 0 there exists d(¢) > 0 such that

(m1,m2,m3) € Gs == {(n1,m2,m3) | m € Epy, (M2,m3) € Q°}

with ]
pr=l+o—am 14
' (1 =n2)(1 —m3) (14)

implies
in_fs |D3(n1,m2,m3) — x| < €. (15)

xeT

To that end, we set 71 = a + bi, 6 < %e and distinguish three cases:
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1. For a < —1 we have A; := D3(—1,1m2,7m3) € 7 with:

|D3(771a772,773)*141|

= {0 = 11 < L [+
= J0 I (i T <
2. For |a| < 1 we have Ay := Ds(a,1,73) € T with:
|Ds(n1,m2,m3) — A2|
= 0= m) = m)lbl < 5= m)(1 ~m)lpr — oy |
R [ RS ELS— S I R

8 (1 —=m2)(1—mn3) . (1 =n2)(1 —m3) +46 -

3. For a > 1 we have A3 := D3(1,m2,m3) € T’ and obtain analogously to
the case a < —1:

V5
|D3(771)772’773) - A3| < ?6 < €.

To prove the third claim we proceed similarly.

Lemma 7 Let the transformation D3 be given by Definition 4 and let the

function u be analytic on T°. For p € Ny let the function (n2,7m3) —
Up(n2,n3) be defined by:

1
Up(nz,ﬁs) ::/1Pp(0’0)(7]1)[’u,0Dg](ﬁl,ng,ng)dﬁl.

Then there exist p > 1, § > 0, C > 0 depending only on u such that:
(i) The function U, is holomorphic and bounded on &, x €, with
1Upllo(e,xe,) < Cp~".

(i1) For each n3 € (—1,1) the function na — Up(n2,n3) is holomorphic on
61+5/(1*773) with

sup [[Up(sm3) Lo 8115/ nyy) < C-
7736(7111) || ;D( )H ( 146/(1 773))

(11i) The function U, has zeros of multiplicity p at n2 =1 and n3 = 1.
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Proof The second claim follows from Lemma 6, (iii) and U, holomorphic
on &, x &, follows from Lemma 6, (i). To prove ||Up| L (g, x¢g,) < Cp~P, we
exploit Cauchy’s integral representation formula and obtain with Lemma 5:

|Up(C2,¢3)| = 27”/ j{ Cl’@’@ O (1) d¢rdm

Cl — M
—1(1€0€,

_|L 74 (G G2 G5) QOO ()G

2mi
C1E0E,
length(&,) | . ~ _
< TpHu||L°°(£g)HQ,(DO’O)HLw(agp) <Cp™?

By Lemma 7, (i) U, is holomorphic on £, x &,. In order to show that it
has a zero of multiplicity p at 7o = 1 and 53 = 1, it suffices to prove the
existence of C' > 0 independent of 72, 13 such that

Up(n2,m3)| < C(1=m2)P(L=m3)? Vi, € (=1,1),

Lemma 6, (ii) together with Cauchy’s integral representation formula yields

Ul ) 2m/ ¢ ) poo agan,

Gi—m
S1¢€0¢8,,

with p; given by (14). Appealing again to Lemma 5, we get

length(9E,,) , . ~
[Up(n2,m3)| < TleuHLw(Ga)||Q,(,O’O)|\Loc(agp1)

(L—m)(L—m3)
SC(5+OnﬂOU9)’

where C' depends solely on u. Since 6 > 0 and 72,73 € (—1, 1), we arrive at
[Up(n2,m3)| < C67P(1 —m2)"(1 = n3)”,

which is the desired bound.

Lemma 8 Let the transformation Ds be given by Definition 4 and let the

function uw be analytic on T°. For p,q € No let the function n3 — Upq(ns)
be defined by:

' 2p+1,0 1—n s
qu(773) = /1U;D(772’773)Pq( prb )(772) ( 5 ) ans,

where Uy, denotes the function of Lemma 7. Then there exist p > 1, b > 0,
C > 0 depending only on u such that:
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(1) The function Uyq is holomorphic on £, and has a zero of multiplicity

(p+q) atnz = 1.
(i) For all (3 € &,

|Upq(G3)] < Ce™*®+9),

Proof The holomorphy of U,, follow from Lemma 7, (i). To show that Uy,
has a zero of multiplicity (p + ¢) at n3 = 1, it suffices to show the existence
of C' independent of 13 such that

Upqg(3)] < C(L— 1) Vg € (—1,1).

From Lemma 7 we know that for each 3 € (—1,1) the function Up(-,7n3)
is holomorphic on &,, = &146/(1-y;) and has a zero of multiplicity p at
12 = 1. Hence, we may apply Cauchy’s integral theorem to the holomorphic
function 1 — Up(n2,13)/(1 — n2)P to arrive at

p+1 b p(2p+1,0)
Upqg(n3) = L (1) jé [(]p(@,ns) / Py (772)(1 — m2)?dnad(,
1

2mi \ 2 1—()P G2 — 12
(2€0E,, -
_ Up($2:13) A(2p+1,0)
—c ¢ 7 T Q)G (16)
(2€08,,

Thus, we obtain

length(0&,,
Vo) < C(dls‘c(aég p)))p|Q(2p+1 Mz (oe,, ) 10 118) | e e,
P2

—1)2\ 7P/ 92pt3 +2 _
SCm((m )) ( q p(q+1))

205 2p+2(1—1/p2)2"?
—q+2 —q+2
p2 (1 — 3 + 5)]3 1 pt+q
C(m Ty S ¢ §52r+2 (=)

where C' is independent of 73. Since § > 0 and n3 € (—1,1), we arrive at

Upq(n3)] < C(1 —n3)P ™,

which is the desired bound. We proceed similarly for the second claim. We
use the bound (16) but take as the contour of integration 9&,, i.e.,

|Upq(G3)| = C 7{ MQE]&:H,O) (C2)dCs

)4
(2€0€,

length(9E,) = (2p+1,0)
WHQZ P | o< (8¢, HUp(§2,C3)||LOO(S§)

2 P 92p+3 2
< Cp< P q+

—(a+1) « 0 p—a~P
(b-12) pr2(-1/p2" =Cr
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with C, v independent of p, ¢, and (3. A second bound for |Up,({3)| follows
from the Cauchy-Schwarz inequality together with Lemma 7, (i) and basic
properties of Jacobi polynomials:

2

1 B 3
< {/_1 |Up(n2, G3)[? (1 2772) dﬁz} x
1 2p+1 3
{/ (Pq(2p—|r1,0)(772))2 (1__2772) 3 d772}
-1

<Cp™?

! 2p+1,0 11— i
U] = [ Ve co)P) ”*’)(nz)( ) dns
-1

< cpr
wroq+2- "

Combining the last two bounds as in Theorem 1 gives the desired result

Upq(G3)] < Ce™PPH0) vi5 € &,

Lemma 9 Let 1,4, be given by Definition 5. Then for arbitrary p > 1 there

exists C and an open complex neighbourhood T' C C> with T T such
that

[$pgrll oy < Clp + g +1)°pP T4 Vp,q,7 € No.
Proof For univariate polynomials we have (see [13, Chap 4, Thm. 2.2])
[ull e,y < PP lullpee—1y  Vp>1 Yu€ P,
Thus, by tensor product arguments, we obtain

lull pees, ) < PPllullie@sy Vo >1 Yu€ Qp(Q%),

,1/3

which implies that for arbitrary p > 1 there exists an open complex neigh-
bourhood Q' D @3 such that

lullz=o) < Pllull v, Yu € @Qp(Q%). (17)

An affine change of variables shows that (17) holds for an arbitrary closed
parallelepiped P. That is, for all p > 1 there exists an open complex neigh-
bourhood P’ of P such that

lull Loy < PPllull ey Yu € Qp(Q7). (18)

Since it is possible to find, for example, ten not necessarily disjoint paral-
lelepipeds P!,...,P such that

10
T =P,
i=1
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we obtain for each p > 1 a complex neighbourhood 7" := U0 P of T
with P”* given by (18) and

10 10
ol ey = miec ] ey < 7 8 gy < 0l ey (19)

for all uw € P,(7?). In order to replace the L> bound on the right-hand side
by an L2?-bound, we need the following polynomial inverse estimate:

lll sy < CoPllull s, ¥ u € PU(T); (20)

this estimate can be obtained using the same arguments as in the two-
dimensional situation proved in [30, Thm. 4.76]. Inserting (20) into (19)
gives for the polynomial ¥pg,

[¥parll Loy < Clp+ a4+ 1) 0P [Wpgr || 2(72).

The claim of the lemma now follows from Lemma 4, which gives us the
bound [|tpqr || z2(72) < 2/V/3 for all p,q,r € No.
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