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QUASI-OPTIMAL A PRIORI ESTIMATES FOR FLUXES IN MIXED
FINITE ELEMENT METHODS AND APPLICATIONS TO THE

STOKES–DARCY COUPLING

J.M. MELENK∗, H. REZAIJAFARI† , AND B. WOHLMUTH‡

Abstract. We show quasi-optimal a priori convergence results in the L2-norm on interfaces for
the approximation of the normal component of the flux in mixed finite element methods. Compared
to standard estimates for this problem class, an additional factor

√
h| log h| in the a priori bound

for the flux variable is obtained by using new upper estimates in strips of width O(h) near these
interfaces. An important role in the analysis play anisotropic and weighted norms. Numerical results
including an application to the Darcy–Stokes coupling illustrate our theoretical results.

AMS subject classification: 65N30

Key words: anisotropic norms, local FEM error analysis, mixed finite elements,
saddle point problem, Stokes–Darcy coupling, weighted norms

1. Introduction. An important goal of many simulations in applications are ac-
curate and reliable values for the normal flux across certain interfaces or the boundary
of the domain. As an example, we mention that the treatment of complex problems
in physics or engineering requires quite often the use of a variety of models in different
parts of the computational domain, which in turn are coupled through the normal flux
across common interfaces. On the level of numerical methods, this entails a need to
understand and quantify the discretization error in the normal flux at interfaces. In
the present paper, we study this question, taking the Poisson problem in mixed form
as our model problem. Our setting is motivated by more complex problems in porous
media applications such as the well-known Stokes–Darcy coupling problem. There,
discretizations that are (locally) conservative are of particular interest, and one such
class are mixed finite element methods (FEM). An attractive feature of mixed FEM
is that, in contrast to the popular, well established finite volume schemes, methods of
arbitrary order are available.

In numerical methods that are based on a primal-dual formulation, the normal flux
at an interface can be extracted directly from the flux variable. In mixed FEM, the
errors in the primal and dual variables are linked to each other, and the standard
saddle point theory [7, 18] leads to a priori estimates for the flux variable in the L2-
norm on an interface which are at most of order l− 1

2 , where l is the order of the flux
error in the L2-norm on the domain. However, the best approximation error for the
normal flux in mixed finite element methods is typically better by a factor

√
h. It is

this gap in the a priori analysis that the present paper removes (up to a logarithmic
factor). We flag at this point that this improved estimate is fairly easily achievable if
optimal order estimates in L∞ are available; however, this requires significantly more
regularity than the present analysis.

In view of the technical nature of the article, we formulate in Section 2 our model
problem and state the main result which yields quasi-optimal a priori error estimates
for the normal flux. The remainder of the paper is devoted to the proofs of the a priori
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bound and to numerical results. In Section 3, we introduce a suitable anisotropic norm
and a dual problem with right-hand sides that are supported in a strip of width O(h)
near the interface. Section 3 also discusses the regularity properties of the solutions of
these dual problems. Section 4 quantifies the approximation properties of the Fortin
operator in these anisotropic norms. In Section 5, the convergence analysis for the dual
problems is given, and the proof of the main result, Theorem 2.2, is presented. Finally,
in Section 6 we provide numerical results including the application to a Stokes–Darcy
coupling.

2. Problem formulation and main results. Let Ω ⊂ Rd, d = 2, 3, be a
convex and bounded polyhedral domain and f ∈ L2(Ω). We consider the model
problem

−∆u = f in Ω, u = 0 on ∂Ω,

in its saddle point formulation based on H(div; Ω) and L2(Ω), where

H(div; Ω) := {τ ∈ L2(Ω)d, div τ ∈ L2(Ω)}.

The saddle point formulation is: Find (σ, u) ∈ H(div; Ω)× L2(Ω) such that

a(σ, σ̃) + b(σ̃, u) = 0, σ̃ ∈ H(div; Ω), (2.1a)

b(σ, ũ) = −(f, ũ)0, ũ ∈ L2(Ω), (2.1b)

where the bilinear forms a(·, ·) and b(·, ·) are given, for τ, τ̃ ∈ H(div; Ω) and v ∈ L2(Ω),
by

a(τ, τ̃) :=

∫
Ω

τ · τ̃ dx, b(τ, v) :=

∫
Ω

div τv dx.

The saddle point formulation is well-posed, [7, Sec. IV.1.2]. We note that in contrast
to the primal weak formulation, the homogeneous Dirichlet boundary conditions do
not enter into the definition of the spaces.
For integer k ∈ N0, Sobolev norms on Ω are denoted by ‖ · ‖k; the semi norm k ≥ 1
is denoted by | · |k. For s 6∈ N0 the Aronstein–Slobodeckij characterization for norms
and semi norms is applied. A second lower index, e.g., ‖ · ‖s;ω or | · |s;ω indicates that
the norm or semi norm is not considered on Ω but on ω, which will typically be an
element or an edge or face. We will also work with the Besov spaces Bs2,q(Ω), which
are defined as interpolation spaces using the “real method” (see [21, 22] for details):
for positive s 6∈ N and q ∈ [1,∞] we set

Bs2,q(Ω) := (Hbsc(Ω), Hdse(Ω))s−bsc,q. (2.2)

2.1. Discretization. For simplicity of notation, we restrict ourselves to a family
of quasi uniform simplicial meshes Th and use standard mixed finite elements. In 2D,
Eh stands for the set of edges whereas in 3D we write Eh for the set of faces. We
consider the uniformly inf-sup stable pairings V kh ×Mk

h ⊂ H(div; Ω) × L2(Ω) where
V kh is either a Raviart–Thomas (RT) or Brezzi–Douglas–Marini (BDM) finite element
space. For details, we refer to [3, 4, 7, 27] and the references therein and to the original
contributions [1, 5, 6, 17, 19]. More precisely, we set

RT kh := {τ ∈ H(div; Ω), τ |T ∈ RTk(T ), T ∈ Th}, RTk(T ) := (Pk(T ))d + Pk(T )x

BDMk
h := {τ ∈ H(div; Ω), τ |T ∈ BDMk(T ), T ∈ Th}, BDMk(T ) := (Pk(T ))d,
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where k ∈ N0 in the case of Raviart–Thomas elements and k ∈ N for Brezzi–Douglas–
Marini elements. The local spaces on the element T are denoted by Vk(T ). We recall
that RT kh ⊂ BDMk+1

h ⊂ RT k+1
h , k ∈ N0. Quite often lowest order finite element

spaces are used. The popular choice RT 0
h has exactly one degree of freedom per

edge/face e ∈ Eh, whereas BDM1
h has two degrees of freedom per face/edge.

For the approximation of L2(Ω), we use piecewise polynomials

P kh := {v ∈ L2(Ω), v|T ∈ Pk(T ), T ∈ Th}.

It is well known that the pairings (V kh ,M
k
h ) := (RT kh , P

k
h ), k ∈ N0 and (V kh ,M

k
h ) :=

(BDMk
h , P

k−1
h ), k ∈ N are uniformly inf-sup stable, [7, Sec. IV.1.2]. As can be easily

seen, mixed finite elements satisfy the inverse estimate

‖τhn‖0;e ≤
C√
h
‖τh‖0;T , τh ∈ Vk(T ), T ∈ Th, e ∈ Eh with e ⊂ ∂T. (2.3)

We note that all our constants 0 < c, C <∞ are generic constants and do not depend
on the mesh size but possibly depend on the order k.
Of crucial importance for our analysis will be the so-called Fortin operator Ikh (see,
e.g., [7, Sec. III.3.3]) which maps a dense subset of H(div; Ω) onto V kh . Analogously to
the nodal Lagrange interpolation operator for standard conforming elements, Ikhτ |T ∈
Vk(T ) is uniquely defined by τ restricted to T . In the case of V kh = RT kh , we have

div Ikhτ = Πk
h div τ (2.4a)

whereas for V kh = BDMk
h , we have

div Ikhτ = Πk−1
h div τ. (2.4b)

Here Πk
h stands for the elementwise defined L2-projection onto P kh . For simplicity of

notation, we introduce Π∗h := Πk
h in the case that V kh = RT kh and Π∗h := Πk−1

h in the
case that V kh = BDMk

h . We recall that Ikh not only commutes with Π∗h but also with
πkh, i.e.,

(Ikhτn)|e = πkh(τn)|e, (2.5)

where πkh is the L2-projection onto
∏
e∈Eh Pk(e). Moreover, the Fortin operator has

the following local best approximation properties, [7, Prop. 3.6, Sec. III.3.3]:

‖τ − Ikhτ‖j;T ≤ Chs+1−j |τ |s+1;T , τ ∈ (Hs+1(T ))d, 0 ≤ s ≤ k, j ∈ {0, 1},
(2.6a)

‖(τ − Ikhτ)n‖0;e ≤ Chs+1|τn|s+1;e, τ ∈ Hs+1(e),−1

2
≤ s ≤ k. (2.6b)

It is obvious that (2.6b) directly results from (2.5). We note that (2.6) holds for
both choices of V kh whereas for estimates in the L2-norm of the divergence we have
to consider, due to (2.4), the two families separately.
By (σh, uh) ∈ V kh ×Mk

h we denote the finite element solution of the mixed formu-
lation, i.e., (σh, uh) satisfies (2.1) if the test spaces are restricted to V kh and Mk

h .
Moreover, (σh, uh) ∈ V kh ×Mk

h is be uniquely characterized by the following Galerkin
orthogonalities:

a(σ − σh, σ̃h) + b(σ̃h, u− uh) = 0, σ̃h ∈ V kh , (2.7a)

b(σ − σh, ũh) = 0, ũh ∈Mk
h . (2.7b)
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2.2. Main result. The regularity assumption on σ is formulated in terms of the
Besov space Bs2,1(Ω), which is defined in (2.2). We recall the fact that for each ε > 0
and non-integer s we have the embedding Hs+ε(Ω) ⊂ Bs2,1(Ω) ⊂ Hs(Ω).
Let Γ be a (d − 1)-manifold such that Ω is decomposed by Γ into a finite number
of Lipschitz domains. We assume that the mesh Th resolves Γ. Note that we do
not require that the subdomains be convex. Moreover Γ can be written as union of
O(h1−d) edges/faces in Eh, i.e., Γ := ∪e∈EΓ⊂Ehe. For each e ∈ EΓ we associate a unit
normal n. In the case that e ⊂ ∂Ω, n is given by the outer unit normal, otherwise
the orientation is arbitrary but fixed. Then we associate with each e ∈ EΓ an element
Te ∈ Th such that e ⊂ ∂Te and the outer unit normal of Te coincides with n. With
the aid of the elements Te, we define Sh as

Sh := ∪e∈EΓT e. (2.8)

and note that Sh is a subset of a strip of width O(h) around Γ.
Lemma 2.1. Let (σ, u) ∈ H(div; Ω)×L2(Ω) be the solution of (2.1) and let (σh, uh) ∈
V kh ×Mk

h be its finite element approximation determined by (2.7). If σ ∈ (B
k+ 3

2
2,1 (Ω))d,

then the L2-norm error of the flux on the interface Γ can be bounded by

‖(σ − σh)n‖0;Γ ≤ C
(
hk+1‖σ‖

B
k+ 3

2
2,1

+
1√
h
‖σ − σh‖0;Sh

)
,

where ‖ · ‖
B
k+ 3

2
2,1

stands for the Besov space (B
k+ 3

2
2,1 (Ω))d-norm.

Proof. Starting with the triangle inequality and using (2.3) and (2.5), we obtain the
upper bound

‖(σ − σh)n‖0;Γ ≤ C
(
‖σn− πkh(σn)‖0;Γ +

1√
h
‖σ − Ikhσ‖0;Sh +

1√
h
‖σ − σh‖0;Sh

)
.

The first two terms on the right yield, due to the best approximation property of
πkh and the local character of Ikh , order hk+1 estimates provided that the solution
is sufficiently smooth. More precisely, for the second term, we can apply (2.6a) in
combination with [15, Lemma 2.1].
The first term can be bounded in terms of (2.6b) and the fact that the trace operator

is a bounded linear operator B
1/2
2,1 (Ω)→ L2(Γ), [22, Thm. 2.9.3].

Lemma 2.1 shows that there is some hope to recover an extra factor of
√
h in the a

priori estimates for the normal flux at the interface. We point out that this factor can
be trivially found if the regularity is such that L∞-estimates of optimal order hold. We
refer to [25] for L∞-estimates for mixed finite elements and note that these estimates
require rather strong regularity assumptions. In the following theorem, which is the
principal result of the paper, this assumption is considerably relaxed.
Theorem 2.2. Let Ω ⊂ Rd, d ∈ {2, 3}, be a convex polygon/polyhedron. Let (σ, u) ∈
H(div; Ω)×L2(Ω) be the solution of the model problem (2.1) and let (σh, uh) ∈ V kh ×
Mk
h be its finite element approximation, which satisfies (2.7). If σ ∈ (B

k+ 3
2

2,1 (Ω))d,

then the L2-norm error of the flux on the interface Γ can be bounded by

‖(σ − σh)n‖0;Γ ≤ Chk+1| log h|‖σ‖
B
k+ 3

2
2,1

. (2.9)
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3. Dual problems and their regularity. The analysis of the L2-error on the
strip Sh, which is defined in (2.8), is based on a dual problem and closely related
to the Aubin–Nitsche trick. However, we have to use suitable anisotropic norms and
study the dual problem with right-hand sides supported by Sh.

3.1. Dual problem formulation. We denote by (λ,w) ∈ H(div; Ω) × L2(Ω)
the solution of the dual problem

a(λ, σ̃) + b(σ̃, w) = (χ(σ − σh), σ̃)0, σ̃ ∈ H(div; Ω), (3.1a)

b(λ, w̃) = 0, w̃ ∈ L2(Ω), (3.1b)

where 0 ≤ χ ≤ 1 is a smooth cut-off function that is equal to one in Sh and vanishes
on {x ∈ Ω: dist(x,Γ) ≥ κh} with κ sufficiently large but independent on the mesh
size. We will also assume

‖∇χ/√χ‖L∞ ≤ Ch−1. (3.2)

The mixed finite element solution of (3.1) is denoted by (λh, wh) ∈ V kh ×Mk
h and

satisfies the Galerkin orthogonalities

a(λ− λh, σ̃h) + b(σ̃h, w − wh) = 0, σ̃h ∈ V kh , (3.3a)

b(λ− λh, ũh) = 0, ũh ∈Mk
h . (3.3b)

It is well-known that a higher order a priori estimate can be obtained for the pressure,
namely, using the convexity of Ω, one can show (see, e.g., [7, outset of Sec. V.3])

‖wh −Π∗hw‖0 ≤ Ch‖λ− λh‖0. (3.4)

Using λ and λh as test functions in (3.1a), (3.3a), and taking into account (3.1b),
(3.3b), we get

‖λ‖0 ≤ ‖χ(σ − σh)‖0, ‖λh‖0 ≤ ‖χ(σ − σh)‖0. (3.5)

For the further developments, it will be useful to note that for sufficiently regular w
we have

−∆w = div(χ(σ − σh)), on Ω, w = 0 on ∂Ω. (3.6)

and correspondingly λ = χ(σ − σh) +∇w.

3.2. Regularity. Our a priori analysis is based on regularity results of the solu-
tion (λ,w) of (3.1). Let us study this problem in more generality by considering, for
g ∈ (L2(Ω))d, the problem of finding (λg, wg) ∈ H(div; Ω)× L2(Ω) such that

a(λg, σ̃) + b(σ̃, wg) = (g, σ̃)0, σ̃ ∈ H(div; Ω) (3.7a)

b(λg, w̃) = 0, w̃ ∈ L2(Ω). (3.7b)

Let us denote by TM = (TMλ , TMw ) the solution operator g 7→ (λg, wg) for (3.7), i.e.,
λg = TMλ g and wg = TMw g. Then, the following two technical lemmas give us suitable
regularity and stability results for the w-component TMw g.
Lemma 3.1. Let Ω be a bounded Lipschitz domain. Then TMw is a bounded linear
operator with the following mapping properties:

(i) TMw : (H(div; Ω))′ → L2(Ω).
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(ii) TMw : (L2(Ω))d → H1
0 (Ω).

(iii) If Ω is convex, then TMw : H(div; Ω)→ H2(Ω) ∩H1
0 (Ω).

(iv) If Ω is convex, then TMw :
(

(B
1/2
2,1 (Ω))d

)′
→ B

1/2
2,∞(Ω).

Proof. The statement (i) follows from the well-posedness of the saddle point problem
(3.7). To see (ii), let ŵg ∈ H1

0 (Ω) satisfy

(∇ŵ,∇ϕ)0 = (g,∇ϕ)0, ϕ ∈ H1
0 (Ω) (3.8)

and set λ̂g := g − ∇ŵg. Then, we find div λ̂g = 0 and thus (λ̂g, ŵg) ∈ H(div; Ω) ×
L2(Ω). Moreover, (λ̂g, ŵg) satisfies (3.7a) and (3.7b) are by definition and integration
by parts. Since the solution of (3.7) is unique, we conclude wg = ŵg; thus (ii) is valid.
For g ∈ H(div; Ω), an integration by parts shows that wg not only solves (3.8) but
also

(∇wg,∇ϕ)0 = −(div g, ϕ)0, ϕ ∈ H1
0 (Ω).

The standard shift-theorem for convex domains then gives w ∈ H2(Ω) and thus (iii)
holds.
Finally, we show (iv). The proof exploits an equivalence of the weak and the very
weak formulation of Poisson problems in convex domains. We consider the variational
problem: Find y ∈ L2(Ω) such that

B(y, ϕ) := (y,∆ϕ)0 = 〈g,∇ϕ〉((H1(Ω))d)′×(H1(Ω))d , ϕ ∈ H2(Ω) ∩H1
0 (Ω), (3.9)

where 〈·, 〉((H1(Ω)))d)′×(H1(Ω))d stands for the duality pairing between ((H1(Ω))d)′ and

(H1(Ω)d). By the convexity of Ω, the bilinear form B satisfies an inf-sup condition and
thus the solution operator TDvw : (H1(Ω))d)′ → L2(Ω) given by g 7→ y is bounded and
linear. Selecting ϕ ∈ H2(Ω) ∩H1

0 (Ω) in (3.8) and integrating by parts shows that wg
also solves (3.9). By uniqueness, we thus get that the solution y = TDvwg = wg ∈ H1

0 (Ω)
if g ∈ (L2(Ω))d. Having that TDvw : (L2(Ω))d → H1

0 (Ω) ⊂ H1(Ω) is bounded and
linear, we can apply an interpolation argument to find that

TDvw : ((H1(Ω))d)′, (L2(Ω))d)1/2,∞ → (L2(Ω), H1(Ω))1/2,∞ = B
1/2
2,∞(Ω)

is bounded. Finally, we recall that TDvw = TMw on (L2(Ω))d and note that, see, e.g.,
[22, Thm. 1.11.2] or [21, Lemma 41.3], we have

(((H1(Ω))d)′, (L2(Ω))d)1/2,∞ =
(
(H1(Ω))d, (L2(Ω))d)1/2,1

)′
= (B

1/2
2,1 (Ω))d)′.

Remark 3.2. The assumption of convexity of Ω in assertion (iv) of Lemma 3.1 can be
weakened: it suffices that Ω admit a shift theorem by more than 1/2; see Appendix A
for details.
Next, we provide stability results in weighted Sobolev norms. As weight, we introduce
the regularized distance δ from Γ, namely,

δ(x) := h+ dist(x,Γ). (3.10)

Lemma 3.3. Let the bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}, be a polygon
(d = 2) or a polyhedron (d = 3). Then there exist c1 ≥ 1, c2 > 0 independent of h

6



such that the following is true: if y ∈ B1/2
2,∞(Ω) solves −∆y = 0 in Ω \ Sc1h, then

‖
√
δ∇y‖0;Ω\Sc2h ≤ C

√
| log h|‖y‖

B
1/2
2,∞(Ω)

, (3.11a)

‖
√
δ∇2y‖0;Ω\Sc2h ≤ C

√
| log h|‖y‖

B
3/2
2,∞(Ω)

, if y in B
3/2
2,∞(Ω). (3.11b)

Here, Sαh := {x ∈ Ω, dist(x,Γ) < αh}.
Proof. The proof of (3.11b) can be found in [16, Lemma 5.4] and the proof of (3.11a)
follows by the same type of arguments.
We are now in a position to apply Lemma 3.1 and Lemma 3.3 to the dual problem
(3.1), i.e., we set g = χ(σ − σh) in (3.7).
Lemma 3.4. Let Ω be convex, (λ,w) ∈ H(div; Ω) × L2(Ω) be the solution of (3.1).
Then w ∈ H2(Ω) ∩H1

0 (Ω), and it satisfies

‖
√
δ∇w‖0 ≤ C

√
h
√
| log h|‖χ(σ − σh)‖0, (3.12a)

‖
√
δ∇2w‖0 ≤ C

√
h
√
| log h|‖div(χ(σ − σh))‖0. (3.12b)

Proof. We note that the support properties of χ imply that w is harmonic in Ω \Sc1h
for suitably large c1 ≥ 1 and thus we are in the setting of Lemma 3.3. We start
with the bound (3.12a) and decompose the domain Ω into Ω \ Sc2h and Sc2h. Then
assertion (iv) of Lemma 3.1 in combination with [15, Lemma 2.1] yields

‖
√
δ∇w‖0;Ω\Sc2h ≤ C

√
| log h|‖χ(σ − σh)‖

((B
1/2
2,1 (Ω))d)′

≤ C
√
h‖χ(σ − σh)‖0.

The assertion (ii) of Lemma 3.1 implies the bound ‖∇w‖0 ≤ C‖χ(σ−σh)‖0, and thus
we have ‖

√
δ∇w‖0;Sc2h

≤ C
√
h‖χ(σ − σh)‖0.

Proceeding as in the proof of (3.12a), we get in view of the assertion (iii) of Lemma 3.1

‖
√
δ∇2w‖0;Sc2h

≤ C
√
h‖∇2w‖0 ≤ C

√
h‖div(χ(σ − σh))‖0.

We note that [16, Lemma 5.2] and [15, Lemma 2.1] results in

‖w‖
B

3/2
2,∞(Ω)

≤ C‖div(χ(σ − σh))‖
(B

1/2
2,1 (Ω))′

≤ C
√
h‖div(χ(σ − σh))‖0.

To bound the weighted norm on Ω \ Sc2h, we use (3.11b)

‖
√
δ∇2w‖0;Ω\Sch ≤ C

√
| log h|‖w‖

B
3/2
2,∞(Ω)

≤ C
√
| log h|

√
h‖div(χ(σ − σh))‖0.

4. Approximation in anisotropic norms. In this section, we introduce aniso-
tropic norms and reconsider the approximation properties of the Fortin operator Ikh
and the L2-projection Π∗h with respect to these norms.

4.1. Anisotropic norms. The definition of our anisotropic norms is based on
the decomposition of a d-dimensional domain into a one-dimensional and a (d − 1)-
dimensional subset and is closely related to weighted Sobolev spaces where the weight
depends on the distance to Γ. Let us introduce the (d − 1)-dimensional manifold γτ
by

γτ := {x ∈ Ω, dist (x,Γ) = τ}, τ ≥ 0.
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We note that there exists a D < ∞ depending only on the diameter of Ω such that
γτ = ∅ for τ > D. We place ourselves in the setting of the Fubini–Tonelli formula for
integration over Ω and assume the existence of a measure dµτ such that∫

Ω

wdx =

∫ D

τ=0

∫
γτ

wdµτdτ.

This is done for simplicity of exposition—in the general case, we can use a localization
technique and fitted coordinate systems as done in [16].
Next, we introduce our anisotropic norms by

‖v‖L(p;2) := ‖v‖Lp((0,D);L2(γτ )) :=

(∫ D

τ=0

(∫
γτ

v2dµτ
) p

2

dτ

) 1
p

, 1 ≤ p <∞, (4.1a)

‖v‖L(∞;2) := ‖v‖L∞((0,D);L2(γτ )) := sup
τ∈(0,D)

(∫
γτ

v2dµτ
) 1

2

(4.1b)

and observe that for p = 2 we recover the standard L2(Ω)-norm. Roughly speaking the
L(p, 2)-norm has a (d−1)-dimensional L2-component and a one-dimensional Lp-part.
As a consequence of the one-dimensional Hölder inequality, we find∣∣∣∣∫

Ω

vṽ dx

∣∣∣∣ ≤ ‖v‖L(p;2)‖ṽ‖L(q;2),
1

p
+

1

q
= 1. (4.2)

4.2. Approximation in anisotropic norms. In this section, we reconsider the
Fortin operator and its approximation properties with respect to our newly defined
anisotropic norms. The definition (4.1b) of the L(∞; 2)-norm shows that we have to
consider the L2(γτ )-norm in more detail. As a preliminary step, we introduce the sets

Sh(τ) := ∪T∈TτT , Tτ := {T ∈ Th : γτ ∩ T 6= ∅} (4.3)

and observe that Sh(τ) is a subset of a strip of width O(h) around Γ.

Lemma 4.1. For σ ∈ (B
k+ 3

2
2,1 (Ω))d, we have

‖σ − Ikhσ‖L(∞;2) ≤ Chk+1‖σ‖
B
k+ 3

2
2,1

, (4.4a)

‖div σ −Π∗h div σ‖L(∞;2) ≤ Chk‖div σ‖
B
k+ 1

2
2,1

. (4.4b)

Proof. Recalling (4.1b), we see that we have to bound the L2(γτ )-norm. The trace in-
equality in combination with the H1-stability yields an upper bound for ‖σ−Ikhσ‖0;γτ

in terms of the norm restricted to Sh(τ). Due to (2.6a), we get

‖σ − Ikhσ‖20;γτ =
∑
T∈Tτ

‖σ − Ikhσ‖20;γτ∩T

≤ C
∑
T∈Tτ

(
1

h
‖σ − Ikhσ‖20;T + h‖∇(σ − Ikhσ)‖20;T

)
≤ C

∑
T∈Tτ

h2k+1|σ|2k+1;T ≤ Ch2k+1|σ|2k+1;Sh(τ).

8



The definition (4.3) guarantees that an additional factor of h can be recovered using
[15, Lemma 2.1], i.e., |σ|2k+1;Sh(τ) ≤ Ch‖σ‖

2

B
k+ 3

2
2,1

and thus (4.1b) yields (4.4a).

Now, we focus on (4.4b) and proceed as before

‖div σ −Π∗h div σ‖20;γτ =
∑
T∈Tτ

‖div σ −Π∗h div σ‖2
0;γτ∩T

≤ C
∑
T∈Tτ

(
1

h
‖div σ −Π∗h div σ‖20;T + h‖∇(div σ −Π∗h div σ)‖20;T

)
≤ C

∑
T∈Tτ

h2k−1|div σ|2k;T ≤ Ch2k−1|div σ|2k;Sh(τ) ≤ Ch
2k‖div σ‖2

B
k+ 1

2
2,1

.

Remark 4.2. We note that Lemma 4.1 is not sharp in the case that V kh = RT kh .
Then k on the right-hand side of (4.4b) can be replaced by k + 1 provided that the
solution is regular enough. However, this sharper result does not significantly improve
the global estimate for the normal flux on the interface and is thus not stated.

5. Proof of the main result. In this section, we provide the proof of Theo-
rem 2.2. To start with, we consider in Subsection 5.1 local L2-estimate for the error
σ− σh. In Subsection 5.2, we focus on a priori bounds for the error in the flux of the
dual problem. Finally in Subsection 5.3, the main result (2.9) is established.

5.1. Local L2-estimates. The Aubin–Nitsche trick in combination with the
Hölder type inequality (4.2) allows us to bound ‖√χ(σ − σh)‖0.
Lemma 5.1. Let (σ, u) ∈ H(div; Ω) × L2(Ω) be the solution of (2.1) and (σh, uh) ∈
V kh × Mk

h be its finite element approximation. Let (λ,w) ∈ H(div; Ω) × L2(Ω) be
the solution of the dual problem (3.1) and (λh, wh) ∈ V kh ×Mk

h be its finite element

approximation. Then for σ ∈ Bk+ 3
2

2,1 (Ω), we have

‖√χ(σ − σh)‖20 ≤ Chk
(
h‖λ− λh‖L(1;2) + ‖w −Π∗hw‖L(1;2)

)
‖σ‖

B
k+ 3

2
2,1

. (5.1)

Proof. A crucial observation for the proof is that div λh = 0. This follows from the
fact that div V kh = Mk

h and (3.1b), (3.3b). Moreover, we recall that by (2.1b), we have
b(σ − σh, vh) = 0 for all vh ∈Mk

h . The symmetry of the bilinear form a(·, ·) yields in
combination with (2.1a) that a(τh, σ − σh) = 0 for all τh ∈ Vh with div τh = 0. Using
the definition of the dual solution and exploiting the Galerkin orthogonality (2.7a),
we find

‖√χ(σ − σh)‖20 = (χ(σ − σh), σ − σh)0 = a(λ, σ − σh) + b(σ − σh, w)

= a(λ− λh, σ − σh) + b(σ − σh, w − wh).

Now using the Galerkin orthogonality (3.3a), we can replace the finite element solution
σh by the Fortin interpolation of σ and wh by the L2-projection of w

‖√χ(σ − σh)‖20 = a(λ− λh, σ − Ikhσ) + b(σ − Ikhσ,w − wh)

= a(λ− λh, σ − Ikhσ) + b(σ − Ikhσ,w −Π∗hw).

The Hölder type inequality (4.2) for our anisotropic norms yields

‖√χ(σ − σh)‖20 ≤ ‖λ− λh‖L(1;2)‖σ − Ikhσ‖L(∞;2)

+ ‖w −Π∗hw‖L(1;2)‖div σ −Π∗h(div σ)‖L(∞;2).
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To obtain a bound for ‖√χ(σ − σh)‖20 in terms of the mesh size, we have to control
the terms on the right-hand side. The two terms associated with the solution σ and

the Fortin interpolant Ikhσ are covered by Lemma 4.1. For σ ∈ B
k+ 3

2
2,1 (Ω), we have

‖div σ‖
B
k+ 1

2
2,1

≤ ‖σ‖
B
k+ 3

2
2,1

and thus (4.4a) in combination with (4.4b) gives (5.1).

5.2. A priori bounds on the error in the dual flux. The estimate for
σ − σh in Lemma 5.1 involves anisotropic norms of the FEM-error λ − λh and the
approximation error w − Π∗hw for the solution (λ,w) of the dual problem (3.1). In
this subsection, we focus on the error in the flux variable λ and use the regularity
assertions for w given in Lemma 3.4.
We start with some preliminary technical results which play an important role in the
bound for the flux error. As is standard for localized estimates in the context of finite
element approximation, we have to use a “super approximation” property (see, e.g.,
[23, 24] for its use in Poisson-type problem and also [8] for its use in the context of
mixed finite elements).
Lemma 5.2 (“super approximation”). Fix T ∈ Th. Let z ∈ W 1;∞(T ) be such that
‖∇z‖W 0;∞(T ) ≤ Czh

−1‖z‖W 0;∞(T ). Then there exists a constant C > 0 depending
only on the shape regularity of T , the constant Cz and k such that

‖zτh − Ikh(zτh)‖0;T ≤ Ch‖∇z‖W 0;∞(T )‖τh‖0;T , τh ∈ Vk(T ), (5.2a)

‖Ikh(zτh)‖0;T ≤ C‖z‖W 0;∞(T )‖τh‖0;T , τh ∈ Vk(T ). (5.2b)

Proof. We start with the stability bound (5.2b). Since the Fortin operator is not
H(div;T )-stable, we use the triangle inequality, an inverse estimate for polynomials
and the approximation property (2.6a) to find

‖Ikh(zτh)‖0;T ≤ ‖zτh − Ikh(zτh)‖0;T + ‖zτh‖0;T

≤ C (h|zτh|1;T + ‖zτh‖0;T )

≤ C
(
h‖z‖W 1;∞(T )‖τh‖0;T + ‖z‖W 0;∞(T )‖τh‖0;T

)
≤ C‖z‖W 0;∞(T )‖τh‖0;T .

Now, (5.2a) can easily be shown using (5.2b). Recalling that Π0
hz|T τh ∈ Vk(T ) and

that the definition of Ikh(zτh) only involves values of zτh restricted to T , we get

‖zτh − Ikh(zτh)‖0;T = ‖(z −Π0
hz)τh − Ikh((z −Π0

hz)τh)‖0;T

≤ C‖z −Π0
hz‖W 0;∞(T )‖τh‖0;T ≤ Ch‖∇z‖W 0;∞(T )‖τh‖0;T .

The proof of the following Lemma 5.3 requires the introduction of some notation.
For x ∈ Ω we select two balls B̃iδ;x, i ∈ {1, 2} centered at x with radii κiδ(x), where
0 < κ1 < κ2 are chosen independent of the mesh size suitably so that certain covering
arguments can be carried out below. We set Biδ;x := B̃iδ;x ∩ Ω. Furthermore, we

select χx ∈ W 1;∞(Ω) with supp chix ⊂ B2
δ;x and χx ≡ 1 on B1

δ;x. Furthermore, we

require ‖∇χx/
√
χx‖W 0;∞ ≤ Cδ(x)−1. Then we obtain with the aid of the local super

approximation property (5.2a) and the bound on the gradient of χx the estimate

‖χxτh − Ikh(χxτh)‖0 ≤ C
h

δ(x)
‖τh‖0;B2

δ;x
, τh ∈ V kh . (5.3)

To apply the regularity results of Section 3, we relate our anisotropic L(1; 2)-norm
with a weighted L2-norm. It can easily be shown by decomposing the interval (0, D)
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into the two sub-intervals (0, h) and (h,D) that

‖v‖L(1;2) =

∫ h

τ=0

(∫
γτ

v2dµτ
) 1

2

dτ +

∫ D

τ=h

(∫
γτ

v2dµτ
) 1

2

dτ

≤
√
h‖v‖0;Sh +

(∫ D

τ=h

τ−1 dτ

∫ D

τ=h

∫
γτ

τv2 dx dτ

)1/2

≤
√
h‖v‖0;Sh + C| log h| 12 ‖

√
δv‖0;Ω\Sh . (5.4)

Lemma 5.3. Let (σ, u) ∈ H(div; Ω) × L2(Ω) be the solution of (2.1) and (σh, uh) ∈
V kh × Mk

h be its finite element approximation. Let (λ,w) ∈ H(div; Ω) × L2(Ω) be
the solution of the dual problem (3.1) and (λh, wh) ∈ V kh ×Mk

h be its finite element
approximation. Then, we have the bound

‖λ− λh‖2L(1;2) ≤ Ch | log h|
(
‖χ(σ − σh)‖20 + h2 | log h|‖div(χ(σ − σh))‖20

)
.

Proof. In view of (5.4), we estimate ‖λ−λh‖0;Sch and ‖
√
δ(λ−λh)‖0;Ω\Sch separately

for c ≥ 1 sufficiently large. The stability estimates (3.5) readily give
√
h‖λ−λh‖0;Sch ≤

2
√
h‖χ(σ − σh)‖0, which is stronger than required.

For the treatment of ‖
√
δ(λ − λh)‖0;Ω\Sch , we assume that c ≥ 1 so large that w is

harmonic on Ω \ S2ch. We fix x ∈ Ω. We start by considering the L2-norm of λ− λh
restricted to B1

δ;x. Using the super approximation property (5.3), (3.1a) and the fact
that δ(x) ≥ h, we find

‖λ− λh‖20;B1
δ;x
≤ (χx(λ− λh), λ− λh)0

= (χx(λ− Ikhλ), λ− λh)0 + (χx(Ikhλ− λh), λ− λh)0

≤ C‖λ− λh‖0;B2
δ;x

(
‖λ− Ikhλ‖0;B2

δ;x
+

h

δ(x)
‖λh − Ikhλ‖0;B2

δ;x

)
+ b(Ikh(χx(Ikhλ− λh)), wh − w)

≤ C‖λ− λh‖0;B2
δ;x

(
‖λ− Ikhλ‖0;B2

δ;x
+

h

δ(x)
‖λh − λ‖0;B2

δ;x

)
+ b(Ikh(χx(Ikhλ− λh)), wh −Π∗hw). (5.5)

To estimate the contribution from the bilinear form b(·, ·) we use the properties (2.4a),
(2.4b), the product rule, and the fact that Ikhλ and λh are divergence free to get

b(Ikh(χx(Ikhλ− λh)), wh −Π∗hw) = b(χx(Ikhλ− λh), wh −Π∗hw)

≤ ‖div(χx(Ikhλ− λh))‖0‖wh −Π∗hw‖0;B2
δ;x

≤ C

δ(x)
‖Ikhλ− λh‖0;B2

δ;x
‖wh −Π∗hw‖0;B2

δ;x
. (5.6)

Next, we consider a countable, locally finite covering of Ω\S2ch by balls {B1
δ;xi

: i ∈ N}
such that the associated covering {B2

δ;xi
: i ∈ N} is also locally finite; for details for the

construction we refer to [16, Appendix]. We assume furthermore that the sets B2
δ;xi

,

i ∈ N, are contained in Ω \ Sch. We note that for each y ∈ Bjδ;xi we have equivalence
of δ(y) and δ(x).

11



Applying Young’s inequality for ε > 0, we get using (5.5), (5.6), and exploiting the
observation λ = −∇w on Ω \ Sch

‖
√
δ(λ− λh)‖20 ≤ C

∑
xi

δ(xi)‖λ− λh‖20;B1
δ;xi

≤ C
∑
xi

(
δ(xi)‖λ− Ikhλ‖0;B2

δ;xi
‖λ− λh‖0;B2

δ;xi
+ h‖λh − λ‖20;B2

δ;xi

)
+ C

∑
xi

1√
h
‖wh −Π∗hw‖0;B2

δ;xi

√
h‖Ikhλ− λh‖0;B2

δ;xi

≤ C
(

(
1

ε
+ 1)‖

√
δ(λ− Ikhλ)‖20 + ε‖

√
δ(λ− λh)‖20 + h‖λh − λ‖20 +

1

h
‖wh −Π∗hw‖20

)
.

For ε > 0 fixed but small enough, we get by (2.6a) and s = 0

‖
√
δ(λ− λh)‖20 ≤ C

(
h2‖
√
δ∇λ‖20 + h‖λh − λ‖20 +

1

h
‖wh −Π∗hw‖20

)
≤ C

(
h2‖
√
δ∇2w‖20 + h‖χ(σ − σh)‖20 + h‖λh − λ‖20 +

1

h
‖wh −Π∗hw‖20

)
≤ C

(
h2‖
√
δ∇2w‖20 + h‖χ(σ − σh)‖20

)
.

In the two last steps, we have used the super approximation property (3.4) of wh with
respect to Π∗hw and the stability (3.5) of λ and λh. To bound ‖

√
δ∇2w‖0, we use

(3.12b).

5.3. Proof of the main result. In this subsection, we show that Theorem 2.2
holds. The starting point of the proof is Lemma 5.1. Using (5.4) in combination with
(3.12a), we get

‖w −Π∗hw‖2L(1;2) ≤ Ch
2| log h|‖

√
δ∇w‖20 ≤ Ch3| log h|2‖χ(σ − σ)‖20. (5.7)

Inserting the result of Lemma 5.3 and the bound (5.7) into Lemma 5.1 we find

‖√χ(σ − σh)‖40 ≤ Ch2k+3| log h|2‖σ‖2
B
k+ 3

2
2,1

(
‖χ(σ − σh)‖20 + h2‖div(χ(σ − σh))‖20

)
.

We recall that div(χ(σ−σh)) = ∇χ · (σ−σh) +χdiv(σ−σh) and thus we get in view
of (3.2)

‖div(χ(σ − σh))‖20 ≤ C
(

1

h2
‖√χ(σ − σh)‖20 + ‖χ(div σ −Π∗h div σ)‖20

)
≤ C

(
1

h2
‖√χ(σ − σh)‖20 + h2k+1‖σ‖2

B
k+ 3

2
2,1

)
.

Finally this bound results in

‖√χ(σ − σh)‖40 ≤ Ch2k+3| log h|2‖σ‖2
B
k+ 3

2
2,1

(
‖√χ(σ − σh)‖20 + h2k+3‖σ‖2

B
k+ 3

2
2,1

)

and thus ‖(σ− σh)‖0;Sh ≤ ‖
√
χ(σ− σh)‖0 ≤ Chk+3/2| log h|‖σ‖

B
k+ 3

2
2,1

. Now, our main

result, the a priori bound (2.9), follows from Lemma 2.1.
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6. Numerical results. In this section, we present two examples to confirm
the theoretical convergence rates for the Laplace operator and one example with an
application to the Stokes–Darcy coupling. In all three examples, we consider problem
settings with a given solution on Ω ⊂ R2. Beside the finite elements on triangles, which
we introduced in Section 2.1, we also consider finite elements on quadrilaterals such

as RT
[k]
h , BDM

[k]
h andBDFM

[k]
h , k ∈ N0 (see Fig. 6.1). Following the notation of [7],

the subscript [·] indicates the association to quadrilateral elements. Note that, unlike
the triangular case, where we have that RT kh ⊂ BDM

k+1
h ⊂ RT k+1

h , this relationship

does not hold anymore for the quadrilateral case, since div(RT
[k]
h ) = Qk * Pk =

div(BDM
[k+1]
h ). Figure 6.1 illustrates the elements employed and shows the number

of degrees of freedom associated with the edges and elements.

Fig. 6.1. Degrees of freedom of RT- and BDM-elements on triangles and quadrilaterals

6.1. Two dimensional model problems. Here, we consider two different
types of examples. Firstly, we introduce on Ω = (0, 1)2, the parameter-dependent
exact solution by

u = rα sinφ, r = ‖(x, y)T − (0.75, 0.5)T ‖,

where ‖ · ‖ denote the Euclidean distance. The interface Γ is placed at y = 0.5 and
resolved by the mesh. We focus on the choices α = 1.5 and α = 1.75. We note

that for 3
2 < α < 2, the solution is in B

3/2
2,1 (Ω) but not in W 2,∞(Ω), and that no full

convergence rates can be expected due to the limited regularity.

6.1.1. Simplicial mesh. In Tables 6.1 and 6.2, the L2-errors of the normal
fluxes across the interface are presented for the limit case α = 3

2 and the case α = 1.75
for various levels of uniform refinement. The domain is resolved by an unstructured
simplicial mesh, and we use RT 0

h , RT
1
h , BDM1

h and BDM2
h elements. As expected

from the theoretical point of view, the achieved asymptotic convergences rates are
determined by the low regularity of the problem. We note that the singularity is not
placed at a vertex of the initial mesh.

In Figures 6.2–6.3, the normal fluxes of the numerical solutions are plotted against
that of the exact solution u for both choices of α. We point out that only for RT 0

h , the
flux is approximated by a piecewise constant whereas for the cases RT 1

h and BDM1
h

the flux is approximated by linears and for BDM2
h by quadratics.
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Table 6.1
Error in the flux for α = 1.5

level RT 0
h rate BDM1

h rate RT 1
h rate BDM2

h rate

1 9.42e-2 - 4.84e-2 - 2.201e-2 - 1.75e-2 -
2 5.03e-2 0.904 2.48e-2 0.964 1.07e-2 1.040 8.76e-3 1.000
3 2.70e-2 0.896 1.24e-2 1.003 5.36e-3 1.003 4.37e-3 1.002
4 1.44e-2 0.905 6.19e-3 1.001 2.68e-3 1.001 2.19e-3 1.001
5 7.65e-3 0.916 3.09e-3 1.000 1.34e-3 1.001 1.09e-3 1.001
6 4.03e-3 0.925 1.55e-3 1.000 6.64e-4 1.000 5.45e-4 1.002

Table 6.2
Error in the flux for α = 1.75

level RT 0
h rate BDM1

h rate RT 1
h rate BDM2

h rate

1 8.44e-2 - 3.36e-2 - 1.12e-2 - 8.35e-3 -
2 4.23e-2 0.996 1.44e-2 1.225 4.40e-3 1.349 3.51e-3 1.252
3 2.14e-2 0.985 5.92e-3 1.280 1.84e-3 1.257 1.48e-3 1.248
4 1.08e-2 0.987 2.46e-3 1.265 7.72e-4 1.252 6.21e-4 1.250
5 5.43e-3 0.990 1.03e-3 1.256 3.24e-4 1.252 2.61e-4 1.249
6 2.73e-3 0.993 4.33e-4 1.252 1.36e-4 1.257 1.10e-4 1.250

Fig. 6.2. Numerical approximation of the normal flux across the interface Γ for α = 1.5 (left)
and α = 1.75 (right) on refinement level 1 (simplicial mesh)

Fig. 6.3. Numerical approximation of the normal flux across the interface Γ for α = 1.5 (left)
and α = 1.75 (right) on refinement level 4 (simplicial mesh)

6.1.2. Quadrilateral mesh. Tables 6.3 and 6.4 show the same type of results

but for mixed finite elements on a quadrilateral mesh, in particular for RT
[0]
h , RT

[1]
h ,

BDM
[1]
h , BDM

[2]
h and BDFM

[3]
h elements. In Table 6.3, the case α = 1.5 is displayed.

Here we cannot expect a higher convergence rate than one independently of the choice

of the finite element order. We recall that BDM
[1]
h and RT

[1]
h have the same degrees

of freedom per edge but RT
[1]
h has additional interior degrees of freedom and thus

has a significantly smaller error on all levels. Although BDM
[2]
h and BDFM

[3]
h have
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more degrees of freedom per edge than RT
[1]
h , the quantitative errors are sensitive to

the number of degrees of freedom per element.

Table 6.3
Error in the flux for α = 1.5, quadrilateral mesh

level RT
[0]
h rate BDM

[1]
h rate RT

[1]
h rate BDM

[2]
h rate BDFM

[3]
h rate

0 1.18e-1 - 8.98e-2 - 8.41e-2 - 6.59e-2 - 5.28e-2 -
1 9.28e-2 0.348 5.97e-2 0.589 1.81e-2 2.218 3.40e-2 0.955 1.88e-2 1.486
2 5.14e-2 0.852 3.07e-2 0.956 8.73e-3 1.051 1.65e-2 1.038 9.45e-3 0.996
3 2.77e-2 0.890 1.54e-2 0.998 4.37e-3 0.999 8.28e-3 1.000 4.72e-3 1.000
4 1.48e-2 0.902 7.68e-3 1.004 2.18e-3 1.000 4.14e-3 1.000 2.36e-3 1.000
5 7.88e-3 0.913 3.84e-3 1.001 1.09e-3 1.000 2.07e-3 1.000 1.18e-3 1.000
6 4.16e-3 0.923 1.92e-3 1.000 5.46e-4 1.000 1.03e-3 1.000 5.91e-4 1.000

Table 6.4
Error in the flux for α = 1.75, quadrilateral mesh

level RT
[0]
h rate BDM

[1]
h rate RT

[1]
h rate BDM

[2]
h rate BDFM

[3]
h rate

0 1.21e-1 - 8.36e-2 - 6.82e-2 - 4.79e-2 - 3.55e-2 -
1 8.33e-2 0.540 4.41e-2 0.923 7.81e-3 3.125 2.07e-2 1.212 1.05e-2 1.758
2 4.29e-2 0.959 1.89e-2 1.222 2.92e-3 1.418 8.35e-3 1.307 4.44e-3 1.240
3 2.16e-2 0.986 7.83e-3 1.272 1.23e-3 1.247 3.52e-3 1.246 1.87e-3 1.250
4 1.09e-2 0.987 3.25e-3 1.267 5.21e-4 1.243 1.48e-3 1.249 7.85e-4 1.250
5 5.49e-3 0.990 1.36e-3 1.257 2.19e-4 1.249 6.23e-4 1.250 3.30e-4 1.250
6 2.76e-3 0.993 5.71e-4 1.253 9.26e-5 1.250 2.62e-4 1.250 1.39e-4 1.250

Compared to α = 1.5, the solution for α = 1.75 is more regular, and thus we only

expect for the lowest order RT
[0]
h /RT 0

h discretization an asymptotic rate of one. In all
other cases, we observe asymptotically a rate of approximately 1.25. There is no qual-
itative difference between an unstructured simplicial mesh and a regular quadrilateral
mesh.

6.1.3. Higher order convergence. In the second example, we consider the
piecewise smooth solution

u =

{
e−x sin(2πy)2 −

(
y − 1

2

)
[xy(x− 1

2 )2 + ey cos(8πxy)(x+ 1
2 )2] if y < 1

2
e−x(y − 1

2 )24π2 −
(
y − 1

2

)
[xy(x− 1

2 )2 + ey cos(8πxy)(x+ 1
2 )2] if y ≥ 1

2

.

on Ω = (0, 1)2. The interface Γ is placed at y = 0.5 and resolved by the mesh. Since
the exact solution is sufficiently smooth we expect full convergence rates. Tables 6.5
and 6.6 show the numerical results for a uniform quadrilateral and a simplicial mesh,
respectively. The observed convergence rates confirm our theoretical result. Note

that the absolute errors for BDM
[2]
h is again smaller than for RT [1] on the first four

refinement levels although it has an additional degree of freedom per edge.

Table 6.5
Error in the flux, quadrilateral mesh

level RT
[0]
h rate BDM

[1]
h rate RT

[1]
h rate BDM

[2]
h rate BDFM

[3]
h rate

1 1.69e-0 - 1.55e-0 - 1.10e-0 - 2.64e-0 - 1.49e-0 -
2 8.13e-1 1.053 8.45e-1 0.871 4.15e-1 1.408 7.49e-1 1.819 3.32e-1 2.167
3 4.08e-1 0.996 2.11e-1 2.004 4.83e-2 3.103 1.41e-1 2.414 2.43e-2 3.774
4 1.81e-1 1.168 6.51e-2 1.695 8.55e-3 2.499 1.86e-2 2.915 1.24e-3 4.291
5 8.51e-2 1.091 1.75e-2 1.890 2.08e-3 2.042 2.33e-3 3.001 7.11e-5 4.123
6 4.18e-2 1.027 4.53e-3 1.953 5.19e-4 2.001 2.91e-4 3.001 5.78e-6 3.622
7 2.08e-2 1.012 1.15e-3 1.979 5.19e-4 2.001 3.63e-5 3.000 6.16e-7 3.230
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Table 6.6
Error in the flux, simplicial mesh

level RT 0
h rate BDM1

h rate RT 1
h rate BDM2

h rate

1 1.83e-0 - 1.67e-0 - 1.57e-0 - 1.90e-0 -
2 9.26e-1 0.987 8.35e-1 1.004 4.10e-1 1.934 2.83e-1 2.749
3 4.19e-1 1.145 2.26e-1 1.886 8.16e-2 2.329 5.32e-2 2.410
4 1.86e-1 1.173 5.45e-2 2.051 1.41e-2 2.534 7.42e-3 2.842
5 8.62e-2 1.108 1.33e-2 2.039 2.67e-3 2.398 9.54e-4 2.960
6 4.20e-2 1.038 3.33e-3 1.995 5.79e-4 2.206 1.20e-4 2.990
7 2.08e-2 1.010 8.38e-4 1.989 1.36e-4 2.089 1.50e-5 2.997

6.2. Stokes–Darcy coupling. In this subsection, we consider a more general
problem setting which is not covered by our theoretical results. The coupling of the
Stokes problem with the Laplace equation plays in many applications an important
role. Of special interest are porous media applications where the Darcy velocity can
be used to describe a single-phase single-component transport. On the pore scale,
the pore structure is resolved and the Navier-Stokes equations model the flow in the
free-flow region and within the pores. On the “representative elementary volume”
scale, however, the mathematical model can be considerably simplified by applying
the potential theory resulting in Darcy’s law in the porous media. Two-domain models
exploit this observation and use suitable transfer conditions at the interface to couple
the simple Darcy model for porous media with, e.g., the simplified Stokes equation in
the free flow domain.

6.2.1. Coupling Conditions. In theory, the coupling conditions can be derived
by applying volume-averaging techniques [10, 26]. In practice, however, simplified
coupling conditions are often used. Here, we apply in tangential direction the Beavers–
Joseph velocity-jump condition [2] in combination with the Saffman modification [20]
(see also [11, 12]). This condition can be written as

uS · τττ −
√
k

γ
2n ·D(uS) · τττ = 0. (6.1)

In normal direction, continuity of normal forces and mass conservation across the
interface is assumed,

uS · n = uD · n (6.2)

pS − 2µn ·D(uS) · n = pD, (6.3)

see also [14]. The fluid velocities uS , uD and pressure functions pS , pD are defined on
the Stokes and Darcy domains ΩS , ΩD ⊂ Rd, respectively. The unit normal vector
n points from ΩS to ΩD, and τττ stands for the tangential vector on the interface.
D(u) :=

(
∇u +∇uT

)
/2 stands for the deformation tensor. For a parameter µ > 0 the

value k := τττ ·µK ·τττ describes the dynamic viscosity, and K is a positive definite tensor
that characterizes the intrinsic permeability of the porous medium. The parameter
γ > 0 is a dimensionless constant that has to be determined experimentally.

6.2.2. Numerical results. For the numerical discretization we follow a hybrid
discontinuous Galerkin approach based on mixed finite elements of possibly different
orders in both subdomains [9, 13]. Here we consider the coupled Stokes-Darcy System
on the unit-square Ω := (0, 1)2 which is subdivided into two subdomains

ΩS := (0, 1)× (0.5, 1) , ΩD := (0, 1)× (0, 0.5)
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with the exact solution

uS =
(
ωeωy sin(ωx) + 2x2 (y − ξ)− 2G3 , −ωeωy cos(ωx)− 2x (y − ξ)2

)T
,

uD =
(
ω2e

ω
2 sin(ωx)y −G2 (y + 0.5)

2
, −ωeω2 cos(ωx)− 2x (y + 0.5)G2

)T
,

pS = ωe
ω
2 cos(ωx)

(
K−1y − 2ωµ

)
+Gx (G− 8µ) ,

pD = K−1
(
ωe

ω
2 cos(ωx)y + x (y + 0.5)

2
G2
)
,

where µ := 1.0 , K := 1.0 , γ := 2.0 , G :=
√
Kµ
γ , ω := 1

2G and ξ := 0.5 − G.

The solution is chosen to fulfill the coupling conditions (6.1)–(6.3) on the interface
Γ = ΩS ∩ ΩD, and we assume that K = diag(K). Note that the velocity has a
continuous normal component on Γ but is discontinuous in tangential direction. The
domain is discretized by a sequence of uniformly refined quadrilateral meshes, where
the numerical solution in ΩS is computed by the Symmetric Interior Penalty Galerkin

method using BDM
[k+1]
h elements and in ΩD we apply a mixed finite element method

using RT
[k]
h elements. We point out that the choice of the pairing is motivated by the

idea of having the same order of convergence for the two subdomains. In Tables 6.7–
6.8, the L2-errors of the normal velocities on Γ are listed for all refinement levels for
k = 0, 1. In Figure 6.4, the normal velocities of the numerical solutions are plotted
against the exact solution on two consecutive grid levels. Table 6.9 shows the H1(ΩS)-
and the L2(ΩD) errors for the velocities since these norms are natural given that the
Stokes system is (essentially) a second order equation whereas the Darcy equation a
first order system. The results show full convergence rates for both choices of k.

Fig. 6.4. Numerical approximation of the normal velocity across the interface Γ for the
RT [0]/BDM [1] - coupling (left) and the RT [1]/BDM [2] - coupling (right)
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viroment” hosted by the Johann Radon Institute for Computational and Applied
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Appendix A. Regularity. In Lemma 3.1, we showed assertion (iv) under the
assumption of convexity of Ω, i.e., under the assumption of full regularity. This
assumption can be weakened: it suffices that Ω admits a shift theorem by more than
1/2 as we now show.
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Table 6.7
L2-errors and convergence rates of the normal fluxes across the interface Γ for the low-order

solution (subscript L), solved with RT[0]/P0-element pair inside ΩD and BDM[1]/P0-element pair
inside ΩS .

level uLS · n - error rate uLS · τττ - error rate uLD · n - error rate

1 1.48e-02 - 3.06e-02 - 2.77e-01 -
2 1.69e-03 3.125 3.48e-03 3.137 1.39e-01 1.000
3 2.68e-04 2.662 7.20e-04 2.273 6.94e-02 1.000
4 5.58e-05 2.262 1.63e-04 2.142 3.47e-02 1.000
5 1.33e-05 2.068 3.96e-05 2.045 1.73e-02 1.000
6 3.29e-06 2.016 9.81e-06 2.012 8.67e-03 1.000
7 8.20e-07 2.004 2.45e-06 2.002 4.33e-03 1.000

Table 6.8
L2-errors and convergence rates of the normal fluxes across the interface Γ for the high-order

solution (subscript H), solved with RT[1]/Q1-element pair inside ΩD and BDM[2]/P1-element pair
inside ΩS .

level uHS · n - error rate uHS · τττ - error rate uHD · n - error rate

1 1.55e-02 - 2.29e-02 - 1.54e-02 -
2 1.68e-03 3.205 1.81e-03 3.656 1.71e-03 3.169
3 2.06e-04 3.028 1.96e-04 3.211 2.24e-04 2.930
4 2.53e-05 3.020 2.19e-05 3.162 3.38e-05 2.727
5 3.13e-06 3.014 2.54e-06 3.108 6.42e-06 2.396
6 3.89e-07 3.009 3.04e-07 3.064 1.45e-06 2.143
7 4.85e-08 3.005 3.70e-08 3.036 3.54e-07 2.040

Table 6.9
mean L2 and H1-errors inside ΩD and ΩS respectively for the high- and low-order solution.

level uLS - error rate uLD - error rate uHS - error rate uHD - error rate

1 1.05e-01 - 2.08e-01 - 1.06e-01 - 1.40e-02 -
2 2.57e-02 2.031 1.05e-01 0.991 2.36e-02 2.169 3.32e-03 2.077
3 7.68e-03 1.744 5.23e-02 0.998 5.74e-03 2.038 8.27e-04 2.007
4 2.80e-03 1.454 2.62e-02 0.999 1.42e-03 2.012 2.07e-04 2.001
5 1.23e-03 1.185 1.31e-02 1.000 3.55e-04 2.003 5.16e-05 2.000
6 5.92e-04 1.057 6.55e-03 1.000 8.87e-05 2.001 1.29e-05 2.000
7 2.93e-04 1.016 3.27e-03 1.000 2.22e-05 2.000 3.23e-06 2.000

For simplicity of exposition, we formulate this shift theorem as an assumption but
point out that, for example, for d = 2 it is valid for polygonal Lipschitz domains Ω.
Assumption A.1. . Denote by T̃D : H−1(Ω) → H1

0 (Ω) solution operator for the
Poisson problem: Given g ∈ H−1(Ω) find y ∈ H1

0 (Ω) such that

−∆y = g in Ω, y = 0 on ∂Ω. (A.1)

There exists s0 > 1/2 such that T̃D is a bounded linear operator T̃D : H−1+s0(Ω) →
H1+s0(Ω).
We now show an analog of [16, Lemma 5.2]
Lemma A.2. Assume the validity of the shift theorem of Assumption A.1. Consider
the variational problem: Given g ∈ (L2(Ω))d, find y ∈ H1

0 (Ω) s.t.

(∇y,∇z)0,Ω = (g,∇z)0,Ω ∀z ∈ H1
0 (Ω). (A.2)

Then the solution operator TD : (L2(Ω))d → H1
0 (Ω) given by g 7→ y extends to a

bounded linear map

TD :
(

(B
1/2
2,1 (Ω))d

)′
→ B

1/2
2,∞(Ω).
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Proof. 1. step: Our starting point is a very weak formulation. Fix ε > 0 such that
1/2+ε < s0. We introduce the bilinear form B on H1/2−ε(Ω)× (H3/2+ε(Ω)∩H1

0 (Ω))
by

B(y, v) := 〈y,−∆v〉1/2−ε,−1/2+ε. (A.3)

A few comments are in order: first, 〈·, ·〉1/2−ε,−1/2+ε stands for the duality pair-

ing between H1/2−ε(Ω) and H−1/2+ε(Ω). We point out that the assumption ε > 0

implies that H1/2−ε(Ω) = H
1/2−ε
0 (Ω) so that the duality pairing is indeed well-

defined. Second, from the mapping properties of −∆ (taken in the distributional
sense) −∆ : H2(Ω) → L2(Ω) and −∆ : H1(Ω) → H−1(Ω), we get by interpolation
that −∆ : H3/2+ε(Ω)→ H−1/2+ε(Ω) so that B is indeed well-defined.
We claim that B satisfies an inf-sup condition. To that end, let u′ ∈ C∞0 (Ω) be arbi-

trary. By our assumptions on the mapping properties of T̃D stated in Assumption A.1,
there exists v ∈ H3/2+ε(Ω) ∩H1

0 (Ω) such that

(∇v,∇z)0,Ω = (u′, z)0,Ω = 〈u′, z〉−1/2+ε,1/2−ε ∀z ∈ C∞0 (Ω)

together with the bound ‖v‖3/2+ε,Ω ≤ C‖u′‖−1/2+ε,Ω. By the definition of the distri-
butional Laplacian, we obtain

B(z, v) = 〈u′, z〉−1/2+ε,1/2−ε ∀z ∈ C∞0 (Ω).

Taking the supremum over z ∈ C∞0 (Ω), recalling the density of C∞0 (Ω) inH1/2−ε(Ω) =

H
1/2−ε
0 (Ω) and using the bound ‖v‖3/2+ε,Ω ≤ C‖u′‖−1/2+ε,Ω, we get

sup
z∈C∞

0 (Ω)

B(z, v)

‖z‖1/2−ε,Ω‖v‖3/2+ε,Ω
= sup
z∈C∞

0 (Ω)

〈u′, z〉−1/2+ε,1/2−ε

‖z‖1/2−ε,Ω‖v‖3/2+ε,Ω

=
‖u′‖−1/2+ε,Ω

‖v‖3/2+ε,Ω
≥ C > 0.

Furthermore, the bilinear form B satisfies the “sup-sup” condition so that the bilinear
form B induces an isomorphism between (H3/2+ε(Ω) ∩H1

0 (Ω))′ and H1/2−ε(Ω).

2. step: Consider the problem: Given g ∈
(
(H1/2+ε(Ω))d

)′
, find y ∈ H1/2−ε(Ω) s.t.

B(y, z) = 〈g,∇z〉(H1/2+ε)′×H1/2+ε ∀z ∈ H3/2+ε(Ω) ∩H1
0 (Ω). (A.4)

By the first step, the solution operator

TDvw : ((H1/2+ε(Ω))d)′ → H1/2−ε(Ω) (A.5)

given by g 7→ u is well-defined and a bounded linear operator. We next claim that
TDvw also has the mapping property

(L2(Ω))d → H1
0 (Ω). (A.6)

In fact, we will show the stronger statement

TDvw = TD on (L2(Ω))d.

To see this, let g ∈ (L2(Ω))d. In order to see y := TDvwg ∈ H1(Ω), let ϕ ∈ (C∞0 (Ω))d

and define zϕ := T̃D(∇ · ϕ) ∈ H3/2+ε(Ω) ∩ H1
0 (Ω). We note the classical estimate
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‖zϕ‖1,Ω ≤ C‖ϕ‖0,Ω. We also observe that pointwise −∆zϕ = ∇ · ϕ. Hence, an
integration by parts together with the definition of the weak gradient ∇y yields:

〈∇y, ϕ〉 def= −(y,∇ · ϕ)0,Ω = (y,∆zϕ)0,Ω = −B(y, zϕ)
(A.4)
= 〈g,∇zϕ〉(H1/2+ε)′×H1/2+ε

= (g,∇zϕ)0,Ω.

For the right-hand side, we have |(g,∇zϕ)0,Ω| ≤ ‖g‖0,Ω‖∇zϕ‖0,Ω ≤ ‖g‖0,Ω‖ϕ‖0,Ω.
Hence, ∇y ∈ L2(Ω).
As a next step towards showing that y = TDwvg = TDg =: ỹ, we show that y − ỹ is
harmonic. To that end, let ϕ ∈ C∞0 (Ω). Then

〈−∆(y − ỹ), ϕ〉 def= (y − ỹ,−∆ϕ)0,Ω = B(y, ϕ)− (∇ỹ,∇ϕ)0,Ω

= (g,∇ϕ)0,Ω − (g,∇ϕ)0,Ω = 0.

Next, we show y ∈ H1
0 (Ω). In order to establish this, we note that, since −∆(y− ỹ) =

0, the co-normal derivative ∂n(y− ỹ) is a well-defined element of H−1/2(∂Ω) given by
the following relation for all ϕ ∈ C∞0 (Ω):

0 = 〈∂n(y − ỹ), ϕ〉 = (∇(y − ỹ),∇ϕ)0,Ω = (y, ∂nϕ)0,∂Ω − (y,∆ϕ)0,Ω − (∇ỹ,∇ϕ)0,Ω

= (y, ∂nϕ)0,∂Ω +B(y, ϕ)− (g,∇ϕ)0,Ω = (y, ∂nϕ)0,∂Ω.

By varying ϕ ∈ C∞0 (Ω), we conclude that y = 0 on ∂Ω.
We have thus shown that the very weak solution y = TDvwg ∈ H1

0 (Ω) if g ∈ L2(Ω). An
integration by parts then shows that y solves the weak formulation, and uniqueness of
the weak solution thus provides y = ỹ. This shows that TDvw is the unique extension
of TD to ((H+1/2+ε(Ω))d)′.
3. step: The above steps have shown that TDvw has the following mapping properties:

TDvw : ((H1/2+ε(Ω))d)′ → H1/2−ε, TDvw : (L2(Ω))d → H1
0 (Ω)

By a standard interpolation argument, TDvw is a bounded linear operator

TDvw : ((L2)d, ((H1/2+ε)d)′)θ,∞ → (H1
0 , H

1/2−ε)θ,∞ ⊂ (H1, H1/2−ε)θ,∞

for every θ ∈ (0, 1). Select θ ∈ (0, 1) such that 1/2 = θ(1/2+ε). Then (H1, H1/2−ε)θ,∞ =

B
1/2
2,∞(Ω). Furthermore, by [22, Thm. 1.11.2] or [21, Lemma 41.3](

(B
1/2
2,1 (Ω))d

)′
=
(

((L2)d, (H1/2+ε)d)θ,1

)′
=
(

(L2)d, ((H1/2+ε)d)′
)
θ,∞

We conclude that TDvw is a bounded linear operator from
(

(B
1/2
2,1 (Ω))d

)′
to B

1/2
2,∞(Ω).

As we have already ascertained that TDvw = TD on (L2(Ω))d, the proof is complete.
Lemma A.3. Let Ω satisfy Assumption A.1 Then the operator TMw of Lemma 3.1 is
a bounded linear operator

TMw :
(

(B
1/2
2,1 (Ω))d

)′
→ B

1/2
2,∞(Ω).

Proof. The proof follows by observing that on (L2(Ω))d, the operator TMw coincides
with the weak solution operator TD of Lemma A.2, which has the stated mapping
property.
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