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REDUCED MODEL IN THIN-FILM MICROMAGNETICS

SAMUEL FERRAZ-LEITE, JENS MARKUS MELENK, AND DIRK PRAETORIUS

Abstract. The full minimization problem in micromagnetics due to Landau and Lifschitz
is, from a numerical point of view, very complex. In [7] a reduced model in thin-film
micromagnetics has been proposed and analyzed with focus on a distributional point of
view. In contrast, we present a functional analytic framework which is more suitable for
numerical analysis. Well-posedness of the model problem in this setting is studied and also
certain uniqueness results are proven. A conforming discretization is proposed and some
numerical examples are performed.

1. Introduction

The steady state of a magnetization M of a ferromagnetic sample is described by a mini-
mization problem due to Landau and Lifschitz, which is nowadays accepted as the relevant
model in micromagnetics. The bulk energy reads

E(M) = d2

∫

Ω

|∇M|2 dx+Q

∫

Ω

(M2
2 + M2

3) dx+

∫

R3

|∇U |2 dx− 2

∫

Ω

F · M dx.(1.1)

The problem of micromagnetics is to find a local minimizer M∗ of E which satisfies the
non-convex constraint |M∗| = 1. In this formulation, ∇M denotes the Jacobian of M, and
| · | denotes the Euclidean norm of the matrix ∇M and the vector ∇U , respectively. The
constants d,Q > 0 are known material parameters, and F is a given applied exterior field.

The first energy term in (1.1) is referred to as the exchange energy and penalizes variations
of M in space. Typically, the crystalline structure of a ferromagnetic material favors certain
alignments of the magnetization field. For simplicity, we restrict ourselves to the case of
uniaxial materials, where only one direction is energetically favored. This is accounted for
in the second energy contribution, and we consider a uniaxial material with so-called easy
axis parallel to the first standard unit vector e1. The third term, called the magnetostatic
energy, is the result of interactions between magnetic dipoles. It is determined through the
magnetostatic Maxwell equation

∫

R3

∇U · ∇V dx =

∫

Ω

M · ∇V dx, for all V ∈ D(R3) := C∞
c (R3).(1.2)

The last energy contribution finally favors magnetizations, which are well aligned with the
applied exterior field.

Geometry and scales. We will focus on the simulation of thin ferromagnetic films. We
thus restrict our attention to a simple, yet interesting geometric set-up. We consider the
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sample to be cylindrical with basis ω and thickness t. Therefore Ω can be written in the
form

Ω = ω × (0, t).

We furthermore assume that the crystalline anisotropy favors the first in-plane axis. Since
our interest is focused on thin ferromagnetic films, we assume

t≪ ℓ,

where ℓ denotes the diameter of ω. Our model problem is therefore governed by four different
scales, namely t, ℓ, d and d/Q1/2, where the latter two scales stem from material properties.
We stress, that these scales may typically vary by orders of magnitude.

Numerical challenges. The full micromagnetic problem (1.1) is, from a numerical point of
view, quite complex. Besides the non-convex constraint |M| = 1, the minimization problem
(1.1) is also non-local since the magnetostatic potential U has to be computed and evaluated
in the entire space R

3. Additionally, the presence of various length scales, which have to be
resolved, make the simulation very expensive from a computational point of view. For these
reasons, various reduced models have been introduced and studied lately, which focus on
certain phenomena. The aim is always to simplify the full problem in order to improve the
mathematical understanding and the numerical tractability. In the following, we present a
reduced model for thin-film micromagnetics which has been introduced and mathematically
studied in [7] and which is consistent with the prior works [4] and [17]. In contrast to [7]
where the focus is on a distributional point of view, our emphasis is layed on a functional
analytic framework, which is fundamental to develop a sophisticated numerical analysis and
discuss numerical discretization schemes.

2. A reduced model in thin-film micromagnetics

We consider the reduced model of [7] which describes micromagnetic phenomena in thin films:
Let ω ⊆ R

2 denote a bounded Lipschitz domain with diameter ℓ = 1. This domain represents
our ferromagnetic sample, whose thickness t is neglected for simplicity. Throughout, we
embed R

2 into R
3 by identifying vectors x ∈ R

2 with (x, 0) ∈ R
3. With an in-plane applied

exterior field f : ω → R
2, we seek a minimizer m∗ : ω → R

2 of the reduced energy

e(m) =
1

2

∫

R3

|∇u|2 dx+
q

2

∫

ω

m2
2 dx−

∫

ω

f · m dx,(2.1)

under the constraint |m∗| ≤ 1. The magnetic potential u : R
3 → R satisfies

∫

R3

∇u · ∇v dx =

∫

ω

m · ∇v(x, 0) dx for all v ∈ D(R3).(2.2)

We assume that m satisfies m · n = 0 on the boundary γ := ∂ω, where n denotes the
outer normal vector of ω in R

2. Provided that the functions involved are sufficiently smooth,
integration by parts on the right-hand side of (2.2) yields

∫

R3

∇u · ∇v dx = −

∫

ω

∇ · mv dx for all v ∈ D(R3).(2.3)

We stress that we solve, in fact, the Maxwell equation stated in the latter form in order to
compute the magnetostatic potential u.
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An extensive analysis has been performed in [7], where the Γ-convergence of the full
problem (1.1) to the reduced problem (2.1) is proven for vanishing thickness t → 0 in a
certain regime. This reduced model describes the behaviour of sufficiently large and thin
samples, i.e.

t≪ q ≪ ℓ.

First numerical experiments in [6] and [8] illustrate the success of the reduced model, since
the numerically simulated behaviour of the magnetization coincides well with measured data
from experiments with thin permalloy films.

We stress that in the reduced problem the exchange energy contribution vanishes. The
consequences of this are twofold: First, the non-convex constraint of the full problem relaxes
to the convex constraint |m| ≤ 1, which from a practical point of view makes the problem
easier to solve. On the other hand, the absence of the exchange energy makes the reduced
model highly degenerate.

3. Functional setting

In order to analyze the problem from the point of view of numerical analysis, it is essential to
determine the precise setting, i.e. to define function spaces for all involved quantities. The
applied exterior field f as well as the magnetic field m could, e.g., be chosen as f ,m ∈ L2(ω)2

to ensure the well-posedness of the energy functional e(m). This space, however, is still to
large in the sense that the well-posedness of the magnetostatic potential equation (2.3)
needs some further regularity of m to define ∇ · m in an appropriate way. We first recall
the definitions of certain fractional order Sobolev spaces and then take a closer look at the
magnetostatic Maxwell equation.

3.1. Sobolev spaces. The treatment of ∇·m from (2.3) needs the definition of H̃−1/2 which
is done in several steps.

We interpret ω as a (relatively) open surface piece embedded in the space R
3. As usual

we define the Sobolev spaces

H0(ω) = L2(ω) and H1(ω) := {f ∈ L2(ω) | ∇f ∈ L2(ω)},

where the latter is associated with the norm ‖f‖2
H1(ω) = ‖f‖2

L2(ω) + ‖∇f‖2
L2(ω). Here, ∇f

denotes the weak surface gradient. Moreover, we define H1
0 (ω) to be the completion of

{f ∈ Lip(ω) | f = 0 on ∂ω} in H1(ω).
Next, we introduce fractional order Sobolev spaces by interpolation: For 0 ≤ s ≤ 1, we

define

H̃s(ω) := [L2(ω);H1
0(ω)]s and Hs(ω) := [L2(ω);H1(ω)]s,

where [X0, X1]s denotes the complex interpolation of Banach spaces X0 and X1 ⊆ X0, cf. [2].
Finally, we define the negative order Sobolev spaces

H̃−s(ω) := (Hs(ω))∗ and H−s(ω) := (H̃s(ω))∗,

as the dual spaces of H̃s(ω) andHs(ω), respectively, where duality is understood with respect
to the extended L2-scalar product.
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Remark 1. There are other equivalent definitions of the Sobolev spaces H̃s(ω) and Hs(ω),
e.g., as trace spaces or by real interpolation, a Fourier norm, or Sobolev-Slobodeckij norms
[16]. Here, equivalence means that all of these definitions lead to the same sets of functions

but only to equivalent norms. We stress that H̃s(ω) and Hs(ω) are, in fact, Hilbert spaces.

The treatment of the magnetic potential u from (2.3) needs the definition of the so-called
Beppo-Levi space B2

1(R
3). To that end, we first define the Sobolev space

H1
ℓoc(R

3) := {f | f is a linear functional on C∞
c (R3) with ϕf ∈ H1(R3) for all ϕ ∈ C∞

c (R3)}.

Note that the evaluation of the energy (2.1) demands ∇u ∈ L2(R3). We introduce the space

B̃2
1(R

3) := {u ∈ H1
ℓoc(R

3) | ∇u ∈ L2(R3)3}(3.1)

associated with the seminorm ‖u‖B2
1(R3) := ‖∇u‖L2(R3)3 . Finally, the Beppo-Levi space is

defined as

B2
1(R

3) := B̃2
1(R

3)/R(3.2)

where one factors out the constant functions. Note that ‖ · ‖B2
1(R3) then gives a norm on

B2
1(R

3). Moreover, B2
1(R

3) is a Hilbert space and D(R3) is a dense subspace of B2
1(R

3), cf.
[12]. Finally, there is a linear and continuous lifting operator L : H1/2(ω) → B2

1(R
3), i.e.

v ∈ H1/2(ω) with v 6= 0, then

v = (Lv)|ω and ‖∇(Lv)‖L2(R3)3 ≤ C‖v‖H1/2(ω)(3.3)

with C > 0 the operator norm of L [12]. Throughout, estimates like (3.3) are written in the
form ‖∇(Lv)‖L2(R3)3 . ‖v‖H1/2(ω), where the symbol . indicates a bound up to a certain
multiplicative but generic constant C > 0.

3.2. The magnetostatic Maxwell equation in thin-film micromagnetics. Strong

form of the magnetostatic Maxwell equation. The magnetic potential is given as
the solution of the variational formulation (2.2). The mathematical understanding of the
potential u is crucial to define the appropriate function space H for the magnetization m.
To that end, we write (2.2) in strong form.

Lemma 3.1. With given data m ∈ C1(ω) that satisfies

m · n = 0 on γ = ∂ω ⊆ R
2,

with n the outer normal in R
2 of ω, every weak solution u ∈ C2(R3 \ω) of the magnetostatic

Maxwell equation (2.2) solves the strong form

∆u = 0 in R
3 \ ω,

[∂u/∂x3] = ∇ ·m on ω,
(3.4)

where [ϕ] := limx→(x1,x2,0+) ϕ(x) − limx→(x1,x2,0−) ϕ(x) denotes the jump across the surface
piece ω.

Proof. Let v ∈ D(R3). We split the left-hand side of (2.2) into two integrals
∫

R3

∇u · ∇v dx =

∫

R3
−

∇u · ∇v dx+

∫

R3
+

∇u · ∇v dx
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over domains R
3
+ := {x ∈ R

3|x3 > 0} and R
3
− := {x ∈ R

3|x3 < 0}, respectively. We use
integration by parts to see
∫

R3
−

∇u · ∇v dx+

∫

R3
+

∇u · ∇v dx = −

∫

R3

∆uv dx−

∫

R2

∂u(x, 0+)

∂x3

v dx+

∫

R2

∂u(x, 0−)

∂x3

v dx.

On the other hand, integration by parts on the right-hand side of (2.2) shows
∫

ω

m · ∇v(x, 0) dx = −

∫

ω

∇ · mv dx+

∫

γ

(m · n)v ds.

These observations result in

−

∫

R3

∆uv dx−

∫

R2

∂u(x, 0+)

∂x3
v dx+

∫

R2

∂u(x, 0−)

∂x3
v dx =

−

∫

ω

∇m · v dx+

∫

γ

(m · n)v ds for all v ∈ D(R3).

A closer look at the boundary term on the left-hand side reveals

−

∫

R2

∂u(x, 0+)

∂x3
v dx+

∫

R2

∂u(x, 0−)

∂x3
v dx = −

∫

R2

[
∂u

∂x3

]
v dx.

Since u is smooth in R
3 \ ω, the jump [∂u/∂x3] can only be nonzero on ω. Altogether, u

solves the strong form (3.4). �

Solution of the magnetostatic Maxwell equation. For v ∈ L1(ω), we define the simple-
layer potential Sv ∈ C∞(R3 \ ω) by

Sv(x) =
1

4π

∫

ω

v(y)

‖x− y‖
dsy.(3.5)

From the context of the boundary element method [16], it is well known that the simple-layer

potential may be extended to a continuous linear operator S ∈ L(H̃−1/2(ω);H1
ℓoc(R

3)), which
satisfies ∆Sv = 0 in an appropriate sense.

Theorem 3.2 (Jump conditions). The simple-layer potential satisfies the jump conditions

[Sϕ] = 0 ∈ H1/2(ω),

[
∂Sϕ

∂x3

]
= −ϕ ∈ H̃−1/2(ω).(3.6)

The jump conditions are usually proven for the simple-layer potential defined over the
whole boundary Γ = ∂G of a Lipschitz-domain G ⊆ R

3. This, however, is not the case here,
where we only consider an open subset ω ⊆ ∂G. Basically, one can still follow the lines of
the proof in, e.g., [16, Theorem 3.3.1]. Regularity of the simple-layer potential Sv away from
ω and a density argument then show that the jump conditions even hold in our case.

Corollary 1. For ∇ · m ∈ H̃−1/2(ω), the simple-layer potential −S(∇ · m) is a solution of
the Maxwell equation (2.3). It additionally satisfies [−S(∇ · m)] = 0 on ω. �
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3.3. The energy space HHH. In this section, we aim to construct an appropriate Hilbert space
H so that the thin-film micromagnetic energy e(m) in (2.1) is meaningful for m ∈ H. To that
end, we recall our observations: First, to explain the anisotropic and exterior contributions of
e(m), it is sufficient to require m ∈ L2(ω)2. Second, the (appropriately defined) divergence

of m should satisfy ∇ · m ∈ H̃−1/2(ω). Finally, we aim to include the constraint m · n = 0
on γ = ∂ω in an appropriate way into the definition of H.

To that end, we define D(X) := C∞
c (X) to be the test space of smooth functions with

compact support over the domain X. Furthermore, we define D(X) := {ϕ|X |ϕ ∈ D(Rn)}.
In a first step, we consider the weak divergence and the spaces H1(∇·;ω)) and H1

0 (∇·;ω).
For the convenience of the reader and for the sake of completeness, we recall these definitions.

Definition 1. A function v ∈ L2(ω) is called weak the divergence of m ∈ L2(ω)2 if there
holds

∫

ω

vϕ dx = −

∫

ω

m · ∇ϕdx for all ϕ ∈ D(ω).(3.7)

In this case and according to the fundamental theorem of calculus of variations, the weak
divergence of m is unique, and we simply write ∇ · m := v.

Definition 2. We define the space

H1(∇·;ω) := {m ∈ L2(ω)2 | ∇ · m ∈ L2(ω)}(3.8)

with the canonical graph norm ‖m‖H1(∇·;ω) := (‖m‖2
L2(ω)2 + ‖∇ · m‖2

L2(ω))
1/2. We fur-

ther define the space of functions with vanishing normal at the boundary H1
0 (∇·;ω) :=

D(ω)2
‖·‖H1(∇·;ω).

One can easily show that H1(∇·;ω) is a Hilbert space. Furthermore it is known that
the space of test functions D(ω)2 is dense in H1(∇·;ω), see [10, Theorem 2.4]. The linear
mapping fn : v 7→ v · n|γ defined on D(ω)2 can be extended to a continuous linear operator
fromH1(∇·;ω) toH−1/2(γ), cf. [10, Theorem 2.5]. We are particularly interested in functions
which satisfy m · n = 0. According to [10, Theorem 2.6] there holds H1

0 (∇·;ω) = ker(fn) =
{m ∈ H1(∇·;ω) |m · n = 0}. This leads to the following definition.

Definition 3. The energy space for the magnetization is defined by

H = H1
0 (∇·;ω)

‖·‖H
(3.9)

with the graph norm

‖m‖2
H := ‖m‖2

L2(ω)2 + ‖∇ · m‖2
eH−1/2(ω)

.(3.10)

Lemma 3.3. The energy space H is a Hilbert space, and D(ω)2 ⊆ H is a dense subspace.

Proof. By definition, D(ω)2 is a dense subspace of H1
0 (∇·;ω), and H1

0 (∇·;ω) is a dense
subspace of H. It thus only remains to prove ‖m‖H ≤ ‖m‖H1

0 (∇·;ω) for all m ∈ H1
0 (∇·;ω).
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This, however, follows from

‖m‖2
H = ‖m‖2

L2(ω)2 + ‖∇ · m‖2
eH−1/2(ω)

= ‖m‖2
L2(ω)2 +

(
sup

w∈H1/2(ω)

〈∇ · m , w〉 eH−1/2(ω)×H1/2(ω)

‖w‖H1/2(ω)

)2

= ‖m‖2
L2(ω)2 +

(
sup

w∈H1/2(ω)

(∇ ·m, w)L2(ω)

‖w‖H1/2(ω)

)2

≤ ‖m‖2
L2(ω)2 +

(
sup

w∈L2(ω)

(∇ · m, w)L2(ω)

‖w‖L2(ω)

)2

= ‖m‖2
H1

0 (∇·;ω),

where we used ‖w‖L2(ω) ≤ ‖w‖H1/2(ω) as well as H1/2(ω) ⊆ L2(ω). �

The following simple observation will be crucial for the analysis below.

Corollary 2. For all functions m ∈ H, there holds 〈∇ · m , 1〉 eH−1/2(ω)×H1/2(ω) = 0.

Proof. For m ∈ D(ω)2, the Gauss divergence theorem yields

〈∇ · m , 1〉 eH−1/2(ω)×H1/2(ω) =

∫

ω

∇ · m dx =

∫

γ

m · n ds = 0.

According to density of D(ω)2 in H, continuity arguments conclude the proof. �

4. Well-posedness of the thin-film problem in micromagnetics

Definition 4. We define the operator

V ϕ(x) =
1

4π

∫

ω

ϕ(x)

‖x− y‖
dsy for x ∈ ω,(4.1)

as the trace of S on ω. The operator V is also called simple-layer potential. It is well known
[16] that V may be extended to a continuous linear operator V ∈ L(H̃−1/2(ω);H1/2(ω)).

Moreover, V turns out to be elliptic and symmetric on H̃−1/2(ω) so that (φ, ψ)V :=
〈φ, V ψ〉 eH−1/2(ω)×H1/2(ω) turns out to be a scalar product. Therefore, the induced norm

‖φ‖V := (φ, φ)
1/2
V is an equivalent norm on H̃−1/2(ω).

As discussed above, m ∈ H allows for ∇ · m ∈ H̃−1/2(ω). Therefore, the variational
formulation (2.3) of the static Maxwell equation reads

(∇u,∇v)L2(R3)3 = −〈∇ · m , v〉 eH−1/2(ω)×H1/2(ω) for all v ∈ D(R3).(4.2)

First, we state existence and uniqueness of a magnetostatic potential u in the Beppo-Levi
space B2

1(R
3).

Theorem 4.1. (i) Given m ∈ H, there exists a unique u ∈ B2
1(R

3) with (4.2), and there
holds (up to additive constants) u = −S(∇ · m) with the simple-layer potential S of
(3.5).

(ii) Equation (4.2) holds with D(R3) replaced by the full space B2
1(R

3).
7



(iii) The stray-field operator P : H → L2(R3)3, which maps m to the corresponding stray-
field P(m) := −∇u, is a linear and continuous operator.

(iv) For m, m̃ ∈ H, there holds (Pm,Pm̃)L2(R3)3 = (∇ · m,∇ · m̃)V .
(v) In particular, there holds ‖Pm‖L2(R3)3 = ‖∇ · m‖V ∼ ‖∇ ·m‖ eH−1/2(ω).

Proof. Let m ∈ H be fixed. We first consider F
m

(v) := 〈∇ · m , v〉 eH−1/2(ω)×H1/2(ω) for v ∈

D(R3) ⊆ B2
1(R

3). According to Lemma 2, there holds

F
m

(v) := 〈∇ ·m , v〉 eH−1/2(ω)×H1/2(ω) = 〈∇ · m , v − λ〉 eH−1/2(ω)×H1/2(ω)

for all constants λ ∈ R. We consider the cylindrical domain ω̂ := ω × (0, 1) ⊆ R
3. For the

particular choice λ := (1/|ω̂|)
∫

bω
v dx, a trace inequality and the Poincaré inequality show

‖v − λ‖H1/2(ω) . ‖v − λ‖H1(bω) . ‖∇v‖L2(bω)3 ≤ ‖∇v‖L2(R3)3 .

This proves that F
m

defines a linear and continuous functional F
m

: D(R3) → R with respect
to ‖·‖B2

1(R3), where the operator norm satisfies ‖F
m
‖ . ‖∇·m‖ eH−1/2(ω). Since D(R3) is dense

in B2
1(R

3), the functional F
m

may be uniquely extended to a continuous and linear functional
on the entire Beppo-Levi space B2

1(R
3), and the extension satisfies ‖F

m
‖ . ‖∇ ·m‖ eH−1/2(ω).

Since the left-hand side of (4.2) is the scalar product of the Hilbert space B2
1(R

3), continuity
allows to replace the dense subspace D(R3) by B2

1(R
3). This proves (ii).

In particular, (4.2) reads

(u, v)B2
1(R3) = F (v) for all v ∈ B2

1(R
3),

and the Riesz representation theorem proves existence and uniqueness of a potential u ∈
B2

1(R
3).

To verify (iii) and (iv), we stress that the Riesz theorem implies equality of norms

‖Pm‖L2(R3)3 = ‖u‖B2
1(R3) = ‖F

m
‖ . ‖∇ · m‖ eH−1/2(ω).

In particular the mapping P : H → L2(R3)3 is well defined and continuous. Linearity is
obvious.
Next, we prove the converse estimate ‖∇ ·m‖ eH−1/2(ω) . ‖F

m
‖. The properties of the lifting

operator (3.3) and equation (4.2) imply

|〈∇ · m , v〉 eH−1/2(ω)×H1/2(ω)|

‖v‖H1/2(ω)

.
|(Pm,∇(Lv))L2(R3)3 |

‖∇(Lv)‖L2(R3)3
. ‖Pm‖L2(R3)3

for arbitrary v ∈ H1/2(ω). Taking the supremum over all v ∈ H1/2(ω) we obtain ‖∇ ·
m‖ eH−1/2(ω) . ‖Pm‖L2(R3)3 .

Note that Sϕ ∈ B2
1(R

3) follows from [16, Equation (3.1.23)] for arbitrary ϕ ∈ H̃−1/2(ω). Ac-
cording to Corollary 1 the uniquely determined magnetostatic potential u ∈ B2

1(R
3) therefore

reads u = −S(∇ · m). For Pm̃ = −∇ũ, this representation and the variational form (4.2)
for Pm = −∇u imply

(Pm,Pm̃)L2(R3)3 = −〈∇ · m , ũ〉 eH−1/2(ω)×H1/2(ω) = 〈∇ · m , V (∇ · m̃)〉 eH−1/2(ω)×H1/2(ω).

The choice of m̃ = m proves (Pm,Pm̃)L2(R3)3 = ‖∇ · m‖2
V , which finally concludes the

proof. �
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We now use our functional setting to state the thin-film problem in micromagnetics. We
define the set of admissible magnetizations

A := {m ∈ H||m| ≤ 1 almost everywhere in ω}.(4.3)

We aim to find a minimizer m∗ ∈ A of the energy e(m) in (2.1), which is now rewritten in
the form

e(m) =
1

2
‖∇ · m‖2

V +
q

2
‖m2‖

2
L2(ω) − (f ,m)L2(ω)2 .(4.4)

To show that this minimization problem is well-posed, we aim to apply the direct method
of the calculus of variations. This will be prepared by the following two lemmata.

Our first observation follows immediately from the representation (4.4):

Lemma 4.2. The energy functional e : H → R is well-defined, convex, and continuous.
Moreover, it is strictly convex with respect to ∇ · m and m2. �

Our second observation reads as follows:

Lemma 4.3. The set A is non-empty, convex, and closed with respect to H.

Proof. Clearly A is convex and non-empty. It therefore only remains to prove that A is
closed. To that end, let (mk)k∈N ⊆ A be a convergent sequence with limit m ∈ H. In
particular, convergence in H implies convergence in the L2-sense, i.e. mk → m ∈ L2(ω)2.
Therefore, at least a subsequence converges pointwise almost everywhere towards m. This
proves |m| ≤ 1 almost everywhere, i.e., m ∈ A. �

Finally we can now state the well-posedness of the thin-film problem in micromagnetics,
and we can even prove certain uniqueness properties of minimizing magnetizations m∗ ∈ A.

Theorem 4.4. There is a minimizer m∗ ∈ A of (4.4). Moreover, Pm∗ and qm∗
2 are

uniquely determined, i.e. for any minimizers m∗, m̃∗ ∈ A of (4.4) holds Pm∗ = Pm̃∗ as
well as qm∗

2 = qm̃∗
2.

Proof. Let (mk)k∈N ⊆ A be a sequence with

lim
k→∞

e(mk) = inf
m∈A

e(m) =: M.

Plugging in m = 0 ∈ A, we obtain M ≤ e(0) = 0. This, however, implies for arbitrary ε > 0
and k sufficiently large

e(mk) =
1

2
‖Pmk‖

2
L2(R3)3 +

q

2
‖mk,2‖

2
L2(ω) − 〈f ,m〉L2(ω) ≤

ε

2
.

Using Cauchy’s inequality and dropping the anisotropy energy, one obtains

‖Pmk‖
2
L2(R3)3 ≤ 2‖f‖L2(ω)2‖mk‖L2(ω)2 + ε.

From the definition of A, we derive ‖mk‖L2(ω)2 ≤ |ω|1/2. The equivalence ‖Pm‖L2(R3)3 ∼
‖∇·m‖ eH−1/2 therefore implies that (mk)k∈N is bounded with respect to the H-norm, namely

‖mk‖
2
H . ‖mk‖

2
L2(ω)2 + ‖Pmk‖

2
L2(R3)3 ≤ |ω| + 2‖f‖L2(ω)2 |ω|

1/2 + ε.

Since (mk)k∈N is a bounded sequence in the Hilbert space H, we may assume that is has
a weak limit m ∈ H. The set A is convex and closed. According to Mazur’s lemma, it is
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Figure 1. Magnetization of a soft ferromagnetic sample ω = (−0.5, 0.5)2

with q = 0 and f = (0.2, 0.2).

thus also closed with respect to the weak topology in H. This implies m ∈ A. Moreover, a
convex and continuous functional is also weakly lower semicontinous [5], i.e.

e(m) ≤ lim inf
k→∞

e(mk) = M.

Altogether, m ∈ A is a minimizer of e(·) in A. Finally, the strict convexity of e(m) with
respect to Pm and m2, for q > 0, proves that both are uniquely determined for a minimizer
m∗ ∈ A of e(m). �

Remark 2. Note, that the proof of Theorem 4.4 only used some properties of the functional
e(·) as well as the closedness and convexity of A. Any finite dimensional subspace Xh ≤ H
of the full energy space is obviously closed and convex. In particular, the discrete set of
admissible functions Ah := A∩Xh is closed and convex as well. Therefore, Theorem 4.4 also
applies for the discrete minimization problem, where we aim to minimize e(mh) over Ah. In
particular, there is a discrete minimizer m∗

h ∈ Ah, and the stray field Pm∗
h and the second

component m∗
h,2 of two discrete minimizers m∗

h, m̃
∗
h ∈ Ah coincide.

5. Discretization

We use lowest-order Raviart-Thomas finite elements that were introduced first in [15],
which is also proposed in the recent thesis [8]: Let T = {T1, . . . , Tn} be a regular triangulation
of ω in the sense of Ciarlet, i.e.

• ω =
⋃n

j=1 Tj , i.e. T covers ω,

• each Tj is a closed an non-degenerate triangle, i.e. |Tj| > 0,
• the intersection Ti ∩ Tj , for i 6= j, is either empty, a common point, or a common

edge.
10
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Figure 2. Discrete divergence of the magnetization mh from Figure 1 (left),
and corresponding generated mesh (right).

Let E denote the set of all edges of the triangulation T and Eω the set of interior edges.
Each edge E ∈ Eω belongs to precisely two elements T+ and T−. Let P+ and P− denote the
vertices of T+ and T−, respectively, opposite from E, i.e. T± = conv{E ∪ {P±}}. We define
the function

ψE :=

{
± |E|

2|T±|
(x− P±), for x ∈ T±,

0, elsewhere.

The set {ψE |E ∈ Eω} forms a basis of the Raviart-Thomas space RT0(T ). There holds
RT0(T ) ⊆ H1

0 (∇·;ω) ⊆ H, cf. [10]. Details on the the implementation of Raviart-Thomas
finite elements in Matlab can be found, e.g., in [1].

We again stress that the results from Section 4 also hold for the discrete minimization
problem with Ah := A∩RT0(T ). Moreover, the discrete energy coincides with the continuous
energy eh(·) = e(·)|RT0(T ).

When f is constant, the model problem even further simplifies. For smooth m ∈ D(ω)2,
integration by parts and m · n = 0 on γ = ∂ω yield

∫

ω

f · m dx = −

∫

ω

(f · x)(∇ · m) dx.

By use of density arguments, we thus conclude that the first derivative of the energy reads

De(m)(·) = 〈∇· , V (∇ · m)〉 eH−1/2(ω)×H−1/2(ω) − 〈∇· , f · x〉 eH−1/2(ω)×H−1/2(ω).

Recall that the unconstrained problem is convex so that the minimization problem can
equivalently be stated in terms of the Euler-Lagrange equation [5]. Moreover, the Euler-
Lagrange equation De(m) = 0 is equivalent to Symm’s integral equation

V (∇ · m) = f · x ∈ H1/2(ω).(5.1)

We compute the magnetization of a soft ferromagnetic film of quadratic shape, i.e. ω =
[−0.5, 0.5]2 and q = 0. The applied field is chosen to be constant f = (0.2, 0.2). Computations
in [8] show that we may solve the unconstrained linear system in the present case, i.e. the
constraint |m| ≤ 1 is not active. Figure 1 shows a computed discrete magnetization mh. We

11



observe that the magnetization tends to align with the applied field, at least in the interior
of the simulation domain.

We use the h−h/2-error estimator from [9] in order to generate adaptive meshes resolving
the singularities of the divergence ∇ ·m. Figure 2 shows the computed solution of (5.1) for
f = (0.2, 0.2) (left) and the corresponding adaptively generated mesh (right). We observe
strong singularities at the lower left and the upper right corner.
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