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Existence ofH-matrix approximants to the inverses of BEM
matrices: the simple-layer operator

Markus Faustmann Jens Markus Melenk Dirk Praetorius

November 20, 2013

Abstract

We consider the question of approximating the inverseW = V
−1 of the Galerkin stiffness

matrixV obtained by discretizing the simple-layer operatorV with piecewise constant functions.
The block partitioning ofW is assumed to satisfy any of the standard admissibility criteria that are
employed in connection with clustering algorithms to approximate the discrete BEM operatorV.
We show thatW can be approximated by blockwise low-rank matrices such that the error decays
exponentially in the block rank employed. Similar exponential approximability results are shown
for the Cholesky factorization ofV.

1 Introduction

The system matrices arising in the boundary element method (BEM) such as the matrixV for the classi-
cal simple-layer operatorV are fully populated. The classical BEM is therefore often deemed inefficient
with respect to memory requirements and, in turn, fast iterative solvers. These reservations can be met
with various compression techniques that have been developed in the past to store the BEM matrices
and realize the matrix-vector multiplication with log-linear (or even linear) complexity. We mention
here multipole expansions, [Rok85, GR97], panel clustering, [NK88, HN89, HS93, Sau92], wavelet
compression techniques, [Rat98, Rat01, Sch98, vPSS97, Tau03, TW03], the mosaic-skeleton method,
[Tyr00], the adaptive cross approximation (ACA) method, [Beb00], and the hybrid cross approxima-
tion (HCA), [BG05]. Many of these data-sparse methods can be understood as specific instances of
H-matrices, which were introduced in [Hac99, GH03, Gra01, Hac09] as blockwise low rank matri-
ces.H-matrices come with the additional feature that they permit an (approximate) arithmetic with
log-linear complexity. In particular, this arithmetic includes the (approximate) inversion of matrices.
Thus, theH-matrix arithmetic can provide an approximation to the inverse, theLU factorization, or
the Cholesky decomposition. However, the accuracy of this approximate inverse or factorization de-
pends on various parameters including the rank of the blocks and is, for the matrices arising from
BEM, mathematically not fully understood. In the present paper we show that for a block structure
typically employed in the context ofH-matrices, the inverseW = V

−1 of the discretization of the
simple-layer operatorV can be approximated from the set of blockwise rank-rmatrices at an expo-
nential rate in the block rank. While this result does not fully analyze the accuracy of theH-matrix
inversion algorithms, it shows that inversion algorithms within theH-matrix framework could work.
It thus gives some mathematical underpinning to the success of theH-matrix calculus when employed
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to compute (approximate) inverses of BEM-matrices, which is observed numerically, for example, by
Bebendorf [Beb05] and Grasedyck [Gra01, Gra05].

Quickly after the introduction of theH-matrix arithmetic, alsoH-factorizations mimicking the clas-
sical LU - and Cholesky decompositions were proposed, [Lin04, Beb05]. Again, numerical evi-
dence indicates their great usefulness for example, for black box preconditioning in iterative solvers,
[Beb05, Gra05, GHK08, LBG06, GKLB08].

The class ofH-matrices is not the only one for which inversion and factorizations of system ma-
trices arising in the discretization of differential and integral operators have been devised. Closely
related to the concept ofH-matrices and its arithmetic are “hierarchically semiseparable matrices”,
[Xia13, XCGL09, LGWX12] and the idea of “recursive skeletonization”, [HG12, GGMR09, HY13b];
for discretizations of PDEs, we mention [HY13b, GM13, SY12, Mar09], and particular applica-
tions to boundary integral equations are [MR05, CMZ13, HY13a]. These factorization algorithms
aim to exploit that some off-diagonal blocks of certain Schur complements are low rank. Following
[Beb07, GKLB09, CDGS10], we rigorously establish that the off-diagonal blocks of certain Schur
complements can be approximated by low-rank matrices. We exploit this fact to show that the Cholesky
decomposition ofV can be approximated at an exponential rate in the block rank in theH-matrix
format.

Hitherto, the mathematical analysis of approximability of the inverse of system matrices in theH-matrix
format has focused on the setting of the finite element method (FEM). The first result in this direction
is due to [BH03]. Generalizations to elliptic systems [Sch06] and approximations in the framework of
H2-matrices [B̈or10a, B̈or10b] are also analyzed. Our recent works [FMP12, FMP13] differ from the
above mentioned references forH-matrices for FEM-matrices in several ways. Among the differences,
we highlight that, as in present paper, [FMP12, FMP13] work in a fully discrete setting in contrast to
the earlier technique of approximating on the continuous level and then projecting into discrete spaces.
This technique avoids the projection error associated with the transition from the continuous level to
the discrete one, and leads to exponential convergence in the block rank.

In the present paper, we focus on the lowest-order discretization of the simple-layer operator associated
with the Laplace operator. However, our arguments are based on rather general properties of elliptic
operators so that we expect that similar assertions can be shown for higher order discretizations and the
hypersingular integral equation, as well as elliptic systems amenable to a treatment with the BEM such
as the Laḿe system.

The paper is structured as follows. In Section 2, we present the main results forH-matrices. Mathemat-
ically, the core of the paper is Section 3, where we investigate the question of how well solutions of the
discrete system can be approximated locally from low dimensional spaces. These results are transferred
to the matrix level in Sections 4 and 5 to show the approximability result forV

−1 and for Cholesky de-
compositions, respectively. Section 6 is concerned with various extensions of our approximation result:
We show a similar compression result for the Poincaré-Steklov operator and we show thatV

−1 can be
approximated at an exponential rate in the format ofH2-matrices, [HKS00, B̈or10a, B̈or10b].

2 Main Result

LetΩ ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain such thatΓ := ∂Ω is polygonal (ford = 2) or
polyhedral (ford = 3). We consider the simple-layer operatorV ∈ L(H−1/2(Γ), H1/2(Γ)) associated
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with the Laplacian given by

V φ(x) =

∫

Γ
G(x− y)φ(y)dsy, x ∈ Γ,

whereG(x) = − 1
2π log |x| for d = 2 andG(x) = 1

4π
1
|x| for d = 3 is the fundamental solution of

the Laplacian. The simple-layer operator is an elliptic isomorphism ford = 3 and ford = 2 provided
diam(Ω) < 1, which can be assumed by scaling. We refer the reader to the monographs [McL00,
HW08, SS11, Ste08] for a detailed discussion of the pertinent properties of boundary integral operators
such as the simple-layer operator studied here.

We assume thatΓ is triangulated by aquasiuniformmeshTh = {T1, . . . , TN} of mesh widthh :=
maxTj∈Th diam(Tj). The elementsTj ∈ Th are open line segments (d= 2) or triangles (d= 3).
Additionally, we assume that the meshTh is regular in the sense of Ciarlet andγ-shape regular in the
sense that ford = 2 the quotient of the diameters of neighboring elements is bounded byγ and for
d = 3 we havediam(Tj) ≤ γ |Tj |1/2 for all Tj ∈ Th. In the following, the notation. abbreviates≤
up to a constantC > 0 which depends only onΩ, the dimensiond, and theγ-shape regularity ofTh.
Moreover, we use≃ to indicate that both estimates. and& hold.

We consider the lowest-order Galerkin discretization ofV by piecewise constant functions in
S0,0(Th) :=

{
u ∈ L2(Γ) : u|Tj is constant∀Tj ∈ Th

}
. Throughout, we will work with the basis

Bh :=
{
χj : j = 1, . . . , N

}
of the spaceS0,0(Th), whereχj is the characteristic function associated

with Tj ∈ Th. With the isomorphismΦ : RN → S0,0(Th), x 7→∑N
j=1 xjχj , we note

hd/2 ‖x‖2 . ‖Φ(x)‖L2(Γ) . hd/2 ‖x‖2 ∀x ∈ Rd. (2.1)

With the basisBh, the Galerkin discretization ofV leads to a symmetric and positive definite matrix
V ∈ RN×N , where

Vjk = 〈V χk, χj〉 =
∫

Tj

∫

Tk

G(x− y)dsydsx, χj , χk ∈ Bh, (2.2)

and〈·, ·〉 denotes theL2(Γ)-scalar product.

In the following, we study the approximability of the inverse BEM matrixW = V
−1 by some block-

wise low-rank matrixWH. First, we need to define the underlying block structure, which is based on
the concept of “admissibility”, introduced in the following definition.

Definition 2.1 (bounding boxes andη-admissibility) A clusterτ is a subset of the index setI =
{1, . . . , N}. For a clusterτ ⊂ I, we say thatBRτ ⊂ Rd is abounding boxif:

(i) BRτ is a hyper cube with side lengthRτ ,

(ii) Ti ⊂ BRτ for all i ∈ τ ,

For η > 0, a pair of clusters(τ, σ) with τ, σ ⊂ I is η-admissibleif there exist bounding boxesBRτ ,
BRσ satisfying (i)–(ii) such that

min{diam(BRτ ), diam(BRσ)} ≤ η dist(BRτ , BRσ). (2.3)
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Remark 2.2 Since the operatorV is symmetric, we are able to use the admissibility condition(2.3)
instead of the stronger admissibility condition

max{diamBRτ , diamBRσ} ≤ η dist(BRτ , BRσ), (2.4)

which is often encountered in clustering algorithms. This follows from the fact that Proposition 3.1 only
needs an admissibility criterion of the formdiamBRτ ≤ η dist(BRτ , BRσ). Due to the symmetry ofV ,
deriving a block approximation for the blockτ × σ is equivalent to deriving an approximation for the
blockσ× τ . Therefore, we can interchange roles of the boxesBRτ andBRσ , and as a consequence the
weaker admissibility condition(2.3) is sufficient.

Definition 2.3 (blockwise rank-rmatrices) LetP be a partition ofI ×I andη > 0. A matrixWH ∈
RN×N is said to be ablockwise rank-rmatrix, if for everyη-admissible cluster pair(τ, σ) ∈ P , the
blockWH|τ×σ is a rank-rmatrix, i.e., it has the formWH|τ×σ = XτσY

T
τσ with Xτσ ∈ R|τ |×r and

Yτσ ∈ R|σ|×r. Here and below,|σ| denotes the cardinality of a finite setσ.

2.1 Approximation of V−1

The following Theorem 2.4 shows that admissible matrix blocks ofV
−1 can be approximated by rank-r

matrices and the error converges exponentially in the block rank.

Theorem 2.4 Fix η > 0 and q ∈ (0, 1). Let the cluster pair(τ, σ) be η-admissible. Then, for every
k ∈ N, there are matricesXτσ ∈ R|τ |×r, Yτσ ∈ R|σ|×r of rankr ≤ Cdim(2 + η)dq−dkd+1 such that

∥∥V−1|τ×σ −XτσY
T
τσ

∥∥
2
≤ CapxN

(d+2)/(d−1)qk. (2.5)

The constantsCapx, Cdim > 0 depend only onΩ, d, and theγ-shape regularity ofTh.

The approximation estimates for the individual blocks can be combined to assess the approximability
of V−1 by blockwise rank-rmatrices. Particularly satisfactory estimates are obtained if the blockwise
rank-rmatrices have additional structure. To that end, we introduce the following definitions.

Definition 2.5 (cluster tree) A cluster treewith leaf sizenleaf ∈ N is a binary treeTI with rootI such
that for each clusterτ ∈ TI the following dichotomy holds: eitherτ is a leaf of the tree and|τ | ≤ nleaf ,
or there exist so called sonsτ ′, τ ′′ ∈ TI , which are disjoint subsets ofτ with τ = τ ′ ∪ τ ′′. Thelevel
function level : TI → N0 is inductively defined bylevel(I) = 0 and level(τ ′) := level(τ) + 1 for τ ′ a
son ofτ . Thedepthof a cluster tree isdepth(TI) := maxτ∈TI level(τ).

Definition 2.6 (far field, near field, and sparsity constant)A partitionP of I ×I is said to be based
on the cluster treeTI , if P ⊂ TI × TI . For such a partitionP and fixedη > 0, we define thefar field
and thenear fieldas

Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P\Pfar. (2.6)

Thesparsity constantCsp, introduced in [Gra01], of such a partition is defined by

Csp := max

{
max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}| ,max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|
}
. (2.7)
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The following Theorem 2.7 shows that the matrixV−1 can be approximated by blockwise rank-r
matrices at an exponential rate in the block rankr:

Theorem 2.7 Fix η > 0. Let a partitionP of I × I be based on a cluster treeTI . Then, there is a
blockwise rank-rmatrixWH such that

∥∥V−1 −WH
∥∥
2
≤ CapxCspN

(d+2)/(d−1)depth(TI)e
−br1/(d+1)

. (2.8)

The constantCapx depends only onΩ, d, and theγ-shape regularity ofTh, while the constantb > 0
additionally depends onη.

Remark 2.8 For quasiuniform meshes withO(N) elements, typical clustering strategies such as the
“geometric clustering” described in [Hac09] lead to fairly balanced cluster treesTI of depthO(logN)
and a sparsity constantCsp that is bounded uniformly inN . We refer to [Hac09] for the fact that the
memory requirement to storeWH isO

(
(r + nleaf)N logN

)
.

Remark 2.9 Usingh ≃ N−1/(d−1) and 1
‖V−1‖2

≤ ‖V‖2 . h(d−1)/2 ≃ N−1/2, where the last estimate

can be found, e.g, in [Ste08, Lemma 12.6], we get a bound for the relative error
∥∥V−1 −WH

∥∥
2

‖V−1‖2
. CapxCspN

(d+5)/(2d−2)depth(TI)e
−br1/(d+1)

. (2.9)

Remark 2.10 The approximation result of Theorem 2.7 is formulated in the spectral norm. In fact,
inspection of the proof of Theorem 2.4 shows that we prove an approximation result in the weightedL2-
operator norm‖·‖√hL2→ 1√

h
L2 . Other norms such as the Frobenius-norm are possible, and the estimates

change only by some powers ofh. For the Frobenius norm, we can for instance employ the estimate
‖A‖2 ≤ ‖A‖F ≤

√
N ‖A‖2 for A ∈ RN×N .

2.2 H-Cholesky decomposition ofV

LU - and Cholesky decompositions are well-established tools of numerical linear algebra. Properties
of these factorizations depend on the choice of the ordering of the unknowns. For theH-Cholesky
decomposition of Theorem 2.11 below we assume that the unknowns are organized in a binary cluster
treeTI . This induces an ordering of the unknowns by requiring that the unknowns of one of the sons are
numbered first and those of the other son later; the precise numbering for the leaves is immaterial for our
purposes. This induced ordering of the unknowns allows us to speak ofblock lower triangularmatrices,
if the block partitionP is based on the cluster treeTI . With this notation, we have the following
factorization result:

Theorem 2.11 LetV = CC
T be the Cholesky decomposition. Let a partitionP of I × I be based on

a cluster treeTI . Then, there exist a block lower triangular, blockwise rank-rmatrixCH such that

(i)
‖C−CH‖2

‖C‖2
≤ CcholN

3
2d−2depth(TI)e

−br1/(d+1)

(ii)

∥∥V −CHCH
T
∥∥
2

‖V‖2
≤ 2CcholN

3
2d−2depth(TI)e

−br1/(d+1)
+C2

cholN
3

d−1depth(TI)
2e−2br1/(d+1)

,

whereCchol = CspCsc

√
κ2(V), with the sparsity constantCsp of (2.7), the spectral condition number

κ2(V) := ‖V‖2
∥∥V−1

∥∥
2
, and a constantCsc depending only onΩ, d, theγ-shape regularity ofTh,

andη.
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3 Local approximation from low dimensional spaces

For a given functionf ∈ L2(Γ), we consider the boundary integral equation

V φ = f onΓ.

Here, we might consider the simple-layer operatorV ∈ L(H−1(Γ), L2(Γ)) as a mapping fromH−1(Γ)
toL2(Γ), see e.g. [SS11]. The discrete variational problem is to findφh ∈ S0,0(Th) such that

〈V φh, ψh〉 = 〈f, ψh〉 ∀ψh ∈ S0,0(Th). (3.1)

With V from (2.2) andb ∈ RN defined bybj = 〈f, χj〉, the variational problem (3.1) is equivalent to
solving the linear system

Vx = b. (3.2)

By ellipticity of the simple-layer operator, both problems (3.1)-(3.2) have a unique solution. The
solutionx ∈ RN is linked to (3.1) viaφh =

∑N
j=1 xjχj .

In the following, we repeatedly employ theL2(Γ)-orthogonal projectionΠL2
: L2(Γ) → S0,0(Th)

defined by 〈
ΠL2

v, ψh

〉
L2(Γ)

= 〈v, ψh〉L2(Γ) ∀ψh ∈ S0,0(Th). (3.3)

The question of approximating the matrix blockV−1|τ×σ ≈ XτσY
T
τσ can be rephrased in terms of

functions and function spaces, as the question of how wellφh|BRτ
can be approximated from low

dimensional spaces for (arbitrary) dataf ∈ L2(Γ) with supp f ⊂ BRσ ∩ Γ. The present section is
devoted to the proof of such an approximation result formulated in the following Proposition 3.1.

Proposition 3.1 Let (τ, σ) be a cluster pair with bounding boxesBRτ , BRσ . Assume
η dist(BRτ , BRσ) ≥ diam(BRτ ) for someη > 0, andRτ ≤ 2 diam(Ω). Fix q ∈ (0, 1). Then, for
eachk ∈ N there exists a subspaceWk of S0,0(Th) with dimWk ≤ Cdim(2 + η)dq−dkd+1 such that
for arbitrary f ∈ L2(Γ) with supp f ⊂ BRσ ∩ Γ, the solutionφh of (3.1)satisfies

min
w∈Wk

‖φh − w‖L2(BRτ∩Γ) ≤ Cboxh
−2qk‖ΠL2

f‖L2(Γ) ≤ Cboxh
−2qk‖f‖L2(BRσ∩Γ). (3.4)

The constantsCdim, Cbox > 0 depend only onΩ, d, and theγ-shape regularity ofTh.

The proof of Proposition 3.1 will be given at the end of this section and relies on several observations.
First, the potential

u(x) := Ṽ φh(x) =

∫

Γ
G(x− y)φh(y)dsy, x ∈ Rd \ Γ,

generated by the solutionφh of (3.1) is harmonic onΩ as well as onΩc := Rd \ Ω and satisfies the
jump conditions

[γ0u] := γext
0 u− γ int

0 u = 0 ∈ H1/2(Γ),

[∂nu] := γext
1 u− γ int

1 u = −φh ∈ H−1/2(Γ). (3.5)
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Here,γext
0 , γ int

0 denote the exterior and interior trace operator andγext
1 , γ int

1 the exterior and interior
conormal derivative, see, e.g., [SS11]. Hence, the potentialu is in a space of piecewise harmonic func-
tions, and the jump of the normal derivative is piecewise constant on the meshTh. These properties
will characterize the spacesHh(D) to be introduced below. The second observation is an orthogonality
condition. Forf with supp f ⊂ BRσ ∩ Γ , equation (3.1) implies

〈u, ψh〉L2(Γ) = 〈f, ψh〉L2(Γ) = 0 ∀ψh ∈ S0,0(Th)with suppψh ⊂ Γ \BRσ . (3.6)

With the admissibility conditiondist(BRτ , BRσ) ≥ η−1min{diam(BRτ ), diam(BRσ)} > 0, this
leads to the orthogonality condition

〈u, ψh〉L2(Γ) = 0 ∀ψh ∈ S0,0(Th)with suppψh ⊂ BRτ ∩ Γ, (3.7)

i.e., onBRτ ∩ Γ the potentialu is orthogonal to piecewise constants.

With these observations we are able to prove a Caccioppoli-type estimate (Lemma 3.9) for piecewise
harmonic functions satisfying the orthogonality (3.7). Then, a low dimensional approximation result
(Lemma 3.10) derived by Scott-Zhang interpolation of the Galerkin solutionφh, can be iterated as in
[BH03, Bör10a], which finally leads to exponential convergence (Lemma 3.11).

3.1 Properties of piecewise polynomial spaces

For an edge/faceT ⊂ Γ with affine parametrizationξ andp ≥ 0, we letPp(T ) be the spacePp(T ) :={
p ◦ ξ|T : p ∈ Pp(R

d−1)
}

of polynomials of degreep. Moreover, we defineSp,1(Th) :=
{
v ∈ C(Γ) :

v|T ∈ Pp(T ) ∀T ∈ Th
}

to be the space of allTh-piecewise polynomials of degreep that are continuous
onΓ.

Throughout this section we make use of the Scott-Zhang projection

Ih : H1(Γ) → S1,1(Th)

introduced in [SZ90]. ByωT :=
⋃ {T ′ ∈ Th : T ∩ T ′ 6= ∅}, we denote the element patch of

T , which containsT and all elementsT ′ ∈ Th that share a node withT . The operatorIh
has well-known local approximation properties forTh-piecewiseHℓ-functions v ∈ Hℓ

pw(Γ) :={
u ∈ L2(Γ) : u|T ∈ Hℓ(T ) ∀T ∈ Th

}
, namely,

‖v − Ihv‖2Hm(T ) ≤ Ch2(ℓ−m)
∑

T ′⊂ωT

|v|2Hℓ(T ′) , 0 ≤ m ≤ 1, m ≤ ℓ ≤ 2. (3.8)

The constantC > 0 depends only on theγ-shape regularity ofTh and the dimensiond. We note that the
Scott-Zhang projection in [SZ90] is only defined for functions inH1(Γ), but by averaging only over
triangles (and not over faces) it may also be well defined for functions inL2(Γ).

The following lemma constructs a stable operator onL2(Γ) that features additional orthogonality prop-
erties:

Lemma 3.2 There exists a linear operatorJh : L2(Γ) → Sd,1(Th) such that for allv ∈ H1(Γ)

(i) ‖Jhv‖L2(T ) ≤ C ‖v‖L2(ωT ) ∀T ∈ Th
(ii) ‖∇Jhv‖L2(T ) ≤ C ‖∇v‖L2(ωT ) ∀T ∈ Th
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(iii) 〈v − Jhv, ψ〉 = 0 ∀ψ ∈ S0,0(Th)

(iv) ‖v − Jhv‖L2(T ) ≤ Ch ‖∇v‖L2(ωT ) ∀T ∈ Th.

The constantC > 0 depends only ond and theγ-shape regularity of the meshTh.

Proof: Let bT ∈ Sd,1(Th) be the element bubble function for eachT ∈ Th which is the product of the
d hat-functions associated withT and scaled such that‖bT ‖∞ = 1. Denote byχT the characteristic
function ofT . With the Scott-Zhang projectionIh, we define

Jhv := Ihv +
∑

T∈Th
bT

〈v − Ihv, χT 〉∫
T bT

.

For T ′ ∈ Th we have

〈v − Jhv, χT ′〉 =

〈
v − Ihv −

∑

T∈Th
bT

〈v − Ihv, χT 〉∫
T bT

, χT ′

〉

= 〈v − Ihv, χT ′〉 − 〈bT ′ , χT ′〉∫
T ′ bT ′

〈v − Ihv, χT ′〉 = 0,

which proves (iii). The Cauchy-Schwarz inequality and the approximation property (3.8) ofIh imply

‖v − Jhv‖L2(T ) ≤ ‖v − Ihv‖L2(T ) +
‖bT ‖L2(T )∣∣∫

T bT
∣∣ |T |1/2 ‖v − Ihv‖L2(T )

. ‖v − Ihv‖L2(T ) . h ‖∇v‖L2(ωT ) .

This proves (iv). The first assertion (i) follows with the same argument due to theL2-stability and
approximation property (3.8) of the Scott-Zhang projectionIh. Finally, we get

‖∇(v − Jhv)‖L2(T ) ≤ ‖∇(v − Ihv)‖L2(T ) +
‖∇bT ‖L2(T )∣∣∫

T bT
∣∣ |T |1/2 ‖v − Ihv‖L2(T )

. ‖∇(v − Ihv)‖L2(T ) +
1

h
‖v − Ihv‖L2(T ) . ‖∇v‖L2(ωT ) ,

and the triangle inequality finishes the proof of (ii). �

The following inverse inequalities also holds for locally refinedK-meshes, but we will only require it
for the quasi-uniform meshTh at hand.

Lemma 3.3 ([DFG+01, Thm 4.1, Thm. 4.7]) There is a constantC > 0 depending only onΓ, the
γ-shape regularity ofTh, and the polynomial degreep such that

‖vh‖H1/2(Γ) ≤ Ch−1/2 ‖vh‖L2(Γ) ∀vh ∈ Sp,1(Th), (3.9)

‖vh‖L2(Γ) ≤ Ch−1/2 ‖vh‖H−1/2(Γ) ∀vh ∈ Sp,0(Th). (3.10)
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3.2 The spacesHh(D) and Hh,0(D,Γρ) of piecewise harmonic functions

For ρ ⊂ I, let Γρ ⊂ Γ be an open polygonal manifold, consisting of the union of elements inTh
associated with the elements inρ, i.e.

Γρ = interior


⋃

j∈ρ
Tj


 . (3.11)

LetD be a domain and setD− := D ∩Ω andD+ := D ∩Ω
c
. A functionv ∈ H1(D+ ∪D−) is called

piecewise harmonic, if ∫

D±
∇v · ∇ϕdx = 0 ∀ϕ ∈ C∞

0 (D±).

Remark 3.4 For a piecewise harmonic functionv ∈ H1(D+ ∪ D−), we can define the jump of the
normal derivative[∂nv]|D∩Γ onD ∩ Γ as the functional

〈[∂nv]|D∩Γ, ϕ〉 :=
∫

D+∪D−
∇v · ∇ϕdx ∀ϕ ∈ H1

0 (D). (3.12)

We note that the value〈[∂nv]|D∩Γ, ϕ〉 depends only onϕ|D∩Γ in the sense, that〈[∂nv]|D∩Γ, ϕ〉 = 0
for all ϕ ∈ C∞

0 (D) with ϕ|D∩Γ = 0. Moreover, if[∂nv]|D∩Γ is a function inL2(D ∩ Γ), it is unique.
The definition(3.12) is consistent with(3.5) in the following sense: For the potentialV φh with φh ∈
S0,0(Th), we have the jump condition[∂nV φh]|D∩Γ = −φh|D∩Γ.

The space of piecewise harmonic functions onD with piecewise constant jump of the normal derivative
is defined by

Hh(D) := {v ∈ H1(D+ ∪D−) : v is piecewise harmonic,

∃ṽ ∈ S0,0(Th) s.t. [∂nv]|D∩Γ = ṽ|D∩Γ}.

The potentialu = Ṽ φh for the problem (3.1) indeed satisfiesu ∈ Hh(D) ∩ H1(D) for any bounded
domainD. Moreover, for a bounding boxBRσ with (2.3), the potentialu additionally satisfies the
orthogonality condition (3.7). These observations are captured by the following spaceHh,0(D,Γρ):

Hh,0(D,Γρ) := Hh(D) ∩ {v ∈ H1(D) : supp[∂nv]|D∩Γ ⊆ Γρ,

〈v, ϕ〉L2(Γ) = 0 ∀ϕ ∈ S0,0(Th)with suppϕ ⊂ D ∩ Γρ}.(3.13)

For the proof of Proposition 3.1 and subsequently of Theorem 2.4 and Theorem 2.7, we will only need
the caseΓρ = Γ. The general case of the screen problemΓρ ( Γ will only be required for our analysis
of theH-Cholesky decomposition in Section 5.

The following lemma shows that this space is a closed subspace ofH1(D \ Γ); later, this property
will allow us to consider the orthogonal projection fromH1(D\Γ) ontoHh(D) and fromH1(D) onto
Hh,0(D,Γρ).

Lemma 3.5 The spaceHh(D) is a closed subspace ofH1(D \ Γ), andHh,0(D,Γρ) is a closed sub-
space ofH1(D).
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Proof: We first show thatHh(D) is a closed subspace ofH1(D \ Γ). Let (vj)j∈N ⊂ Hh(D) be a
sequence converging tov ∈ H1(D\Γ). Forϕ ∈ C∞

0 (D±), we have

〈∇v,∇ϕ〉L2(D±) = lim
j→∞

〈
∇vj ,∇ϕ

〉
L2(D±)

= 0.

Hence,v is harmonic onD+ ∪D−.

Pickϕ ∈ C∞
0 (D) \ {0} with suppϕ ∩ Γ ⊂ T ∈ Th. Then

[∂nv
j ]|T 〈1, ϕ〉L2(T ) =

〈
[∂nv

j ], ϕ
〉
L2(T )

=
〈
∇vj ,∇ϕ

〉
L2(D\Γ)

j→∞−→ 〈∇v,∇ϕ〉L2(D\Γ)

shows that the piecewise constant function[∂nvj ] converges elementwise. Hence, the sequence(
[∂nv

j ]
)
j∈N converges pointwise to a piecewise constant functionṽ. This piecewise constant limit̃v

coincides with the jump of the normal derivative[∂nv] ∈ H−1/2(Γ) as the following calculation for
arbitraryϕ ∈ C∞

0 (D) shows:

〈ṽ, ϕ〉L2(D∩Γ) = lim
j→∞

〈
[∂nv

j ], ϕ
〉
L2(D∩Γ) = 〈∇v,∇ϕ〉L2(D\Γ) = 〈[∂nv], ϕ〉L2(D∩Γ) .

Finally,Hh,0(D,Γρ) is a closed subspace ofH1(D), sinceHh(D) is a closed subspace ofH1(D \ Γ)
and the intersection of finitely many closed spaces is again closed. �

We will derive an approximation of the Galerkin solutionφh by approximating the potentialu = Ṽ φh.
In view of the relationφh = −[∂nu] we have to control the jump of the normal derivative by a norm
of u. Lemma 3.8 below provides such an estimate, which may be seen as an inverse estimate, since
[∂nu] is a discrete function. For its proof, we need the following Lemma 3.7 as well as the definition of
“concentric boxes”.

Definition 3.6 Two (open) boxesBR,BR′ are said to be concentric boxes with side lengthsR andR′,
if they have the same barycenter andBR can be obtained by a stretching ofBR′ by the factorR/R′

taking their common barycenter as the origin.

The following Lemma 3.7 is quite classical, and we include its short proof for the reader’s convenience.

Lemma 3.7 (i) For R ≤ 1 denote bySR := {x ∈ Rd : dist(x,Γ) < R} the tubular neighborhood
of Γ of widthR. Then, there is a constantC > 0 which depends only onΓ, such that

‖v‖L2(SR) ≤ C
[√

R‖γint0 v‖L2(Γ) +R‖∇v‖L2(SR)

]
∀v ∈ H1(SR).

(ii) Let δ, R > 0. LetBR andB(1+δ)R be two concentric boxes with side lengthsR and (1 + δ)R.
Then, there is a constantC > 0 which depends only on the dimensiond, such that for allv ∈
H1(B(1+δ)R), we have

‖v‖2L2(B(1+δ)R\BR) ≤ CδR

(
1

(1 + δ)R
‖v‖2L2(B(1+δ)R) + (1 + δ)R‖∇v‖2L2(B(1+δ)R)

)
.
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Proof: ad (i): For smooth univariate functionsv the fundamental theorem of calculus yieldsv(x) =
v(0) +

∫ x
0 v

′(t) dt. Hence, the Young inequality and the Cauchy-Schwarz inequality yieldv2(x) ≤
2v2(0) + 2R‖v′‖2L2(0,R). Integration over the interval(0, R) gives

‖v‖2L2(0,R) ≤ 2Rv2(0) + 2R2‖v′‖2L2(0,R).

This 1D result implies the desired estimate by using (locally) boundary fitted coordinates.

ad (ii): We start with the 1D Gagliardo-Nirenberg inequality for the intervalI = (0, 1): ‖v‖2L∞(I) ≤
C‖v‖L2(I)‖v‖H1(I) ≤ C‖v‖2L2(I) + C‖v‖L2(I)‖v′‖L2(I). A scaling argument then yields

‖v‖2L∞(0,(1+δ)R) .
1

(1 + δ)R
‖v‖2L2(0,(1+δ)R) + ‖v‖L2(0,(1+δ)R)‖v′‖L2(0,(1+δ)R)

.
1

(1 + δ)R
‖v‖2L2(0,(1+δ)R) + (1 + δ)R‖v′‖2L2(0,(1+δ)R).

We may assume thatB(1+δ)R = (0, (1 + δ)R)d. Then, this 1D estimate implies

‖v‖2L2((0,δR)×(0,(1+δ)R)d−1) . δR

(
1

(1 + δ)R
‖v‖2L2(B(1+δ)R) + (1 + δ)R‖∇v‖2L2(B(1+δ)R)

)
.

By arguing similarly for the remaining parts ofB(1+δ)R \BR, we get the desired result. �

Lemma 3.8 Let δ ∈ (0, 1), R > 0 be such thathR ≤ δ
4 . LetBR, B(1+δ)R be two concentric boxes of

side lengthsR and (1 + δ)R. Then, there exists a constantC > 0 depending only onΩ, d, and the
γ-shape regularity ofTh, such that for allv ∈ Hh(B(1+δ)R)

‖[∂nv]‖L2(B(1+δ/2)R∩Γ) ≤ Ch−1/2 ‖∇v‖L2(B(1+δ)R) . (3.14)

Proof: We prove (3.14) in two steps, the first step being the proof of the auxiliary estimate (3.15) below.
The second step shows (3.14) with the aid of (3.15) and a simple covering argument.

Step 1:We show the following assertion: Ifhr ≤ ε
4 for r, ε > 0, then there exists a constantC > 0 de-

pending only on the shape regularity constantγ, the domainΩ, andd such that for allv ∈ Hh(B(1+ε)r)

‖[∂nv]‖L2(Br∩Γ) ≤ Ch−1/2

√
1 +

1

ε
‖∇v‖L2(B(1+ε)r)

. (3.15)

To see this, letE int : H1/2(Γ) → H1(Ω) and Eext : H1/2(Γ) → H1(Ωc) be (bounded, linear)
lifting operators forΩ andΩc (cf. [Neč67, Thm. 5.7]). Then, introduce the (bounded, linear) lifting
L : H1/2(Γ) → H1(Rd) by

Lw :=

{
E intw in Ω,
Eextw in Ωc.

Lemma 3.2 provides an operatorJh : L2(Γ) → Sd,1(Th) ⊂ H1(Γ). Furthermore,w − Jhw is orthog-
onal to piecewise constant functions so that

‖[∂nv]‖L2(Br∩Γ) = sup
w∈L2(Γ)

suppw⊂Br

〈[∂nv], w〉L2(Γ)

‖w‖L2(Γ)

= sup
w∈L2(Γ)

suppw⊂Br

〈[∂nv],Jhw〉L2(Γ)

‖w‖L2(Γ)

. (3.16)
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Note that the construction ofJh implies suppJhw ⊂ Br+2h ∩ Γ. Let η be a smooth cut-off function
with 0 ≤ η ≤ 1, η ≡ 1 onBr+2h, andsupp η ⊂ B(1+ε)r and‖∇η‖L∞(B(1+ε)r)

. 1
εr . With the lifting

L(Jhw), we can estimate

〈[∂nv],Jhw〉L2(Br+2h∩Γ) =
〈
[∂nv], γ

int
0 ηLJhw

〉
L2(Br+2h∩Γ)

=

∫

B(1+ε)r

∇v · ∇(ηLJhw)dx

≤ ‖∇v‖L2(B(1+ε)r)
‖∇(ηLJhw)‖L2(B(1+ε)r)

. (3.17)

We have to estimateηLJhw further. Noting thatη ≡ 1 onBr, we use the product rule to estimate

‖∇(ηLJhw)‖L2(B(1+ε)r)
.

1

εr
‖LJhw‖L2(B(1+ε)r\Br) + ‖∇LJhw‖L2(B(1+ε)r)

. (3.18)

The continuity of the liftingL : H1/2(Γ) → H1(Rd) and the inverse estimate (3.9) of Lemma 3.3 give

‖∇LJhw‖L2(S√
d(1+ε)r)

≤ ‖∇LJhw‖L2(Rd) . ‖Jhw‖H1/2(Γ) .
1√
h
‖Jhw‖L2(Γ), (3.19)

which is the key step for the treatment of the second term in (3.18). Let us now turn to the first term in
(3.18). Using Lemma 3.7, (ii) and then Lemma 3.7, (i) with the observationB(1+ε)r ⊂ S√d(1+ε)r, we
get

1

εr
‖LJhw‖L2(B(1+ε)r\Br) .

1
√
εr
√
(1 + ε)r

‖LJhw‖L2(B(1+ε)r)

+

√
(1 + ε)r√
εr

‖∇LJhw‖L2(B(1+ε)r)

.
1√
εr

‖LJhw‖L2(Γ) +

√
(1 + ε)r√
εr

‖∇LJhw‖L2(S√
d(1+ε)r)

.

We haveLJhw|Γ = Jhw, and (3.19) leads to

1

εr
‖LJhw‖L2(B(1+ε)r\Br) .

1√
εr

‖Jhw‖L2(Γ) + h−1/2
√
1 + ε−1‖Jhw‖L2(Γ). (3.20)

We note thatεr ≥ 4h so that1/
√
εr . h−1/2. Inserting (3.19) and (3.20) in (3.18) and using the

L2(Γ)-stability ofJh given by Lemma 3.2, we obtain

‖∇(ηLJhw)‖L2(B(1+ε)r)
. h−1/2

√
1 + ε−1‖Jhw‖L2(Γ) . h−1/2

√
1 + ε−1‖w‖L2(Γ).

Finally, inserting this bound into (3.17) and then into (3.16) allows us to conclude the proof of (3.15).

Step 2:The bound (3.14) is shown with the aid of (3.15) and a covering argument. We may assume that
BR = (0, R)d. Setr = δR. Let n ∈ N be given byn = ⌈R/r⌉. Let xi, i = 1, . . . , (n + 1)d =: N
be the points of a regular grid in the closed boxBR with spacingR/n. For i = 1, . . . , N consider the
boxesBi := xi + (−r/2, r/2)d as well as the scaled boxeŝBi := xi + (−r, r)d, i = 1, . . . , N . The
essential properties of these boxes are: first, the boxesBi, i = 1, . . . , N coverB(1+δ/2)R; secondly,

the scaled boxeŝBi, i = 1, . . . , N are contained inB(1+δ)R; thirdly, and most importantly, they have a
finite overlap property (with an overlap constant that depends solely on the spatial dimensiond, since
the ratio of the spacingR/n and the side lengthr satisfiesr/(R/n) = (1/δ)/⌈1/δ⌉ ∈ [1/2, 1] for the
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caseδ ∈ (0, 1) under consideration here). Observingh
r = h

δR ≤ 1
4 due to our assumptionhR ≤ δ

4 , the
estimate (3.15) implies for eachi

‖[∂nv]‖L2(Bi∩Γ) ≤ Ch−1/2‖∇v‖
L2(B̂i)

.

The desired estimate (3.14) follows from the covering and overlap properties. �

For a boxBR with side lengthR, we introduce the norm

|||v|||2h,R :=

(
h

R

)2

‖∇v‖2L2(BR) +
1

R2
‖v‖2L2(BR) ,

which is, for fixedh, equivalent to theH1-norm.

Similarly as in [BH03, B̈or10a], a main part of the proof is a Caccioppoli-type inequality, which is, for
functions inHh,0(B(1+δ)R,Γρ), stated in the following lemma.

Lemma 3.9 Let δ ∈ (0, 1) and h
R ≤ δ

16 and letΓρ ⊂ Γ be of the form(3.11). LetBR, B(1+δ)R be two
concentric boxes. Then, forv ∈ Hh,0(B(1+δ)R,Γρ), there exists a constantC > 0 depending only on
Ω, d, and theγ-shape regularity ofTh, such that

‖∇v‖L2(BR) ≤ C
1 + δ

δ
|||v|||h,(1+δ)R . (3.21)

Proof: The proof of (3.21) is done in two steps.
Step 1:We show that forε > 0 with h

R ≤ ε
8 , the estimate

‖∇v‖2L2(BR) .
h

εR
‖∇v‖2L2(B(1+ε)R) +

1

(εR)2
‖v‖2L2(B(1+ε)R). (3.22)

holds. To see this, letη be a smooth cut-off function withsupp η ⊂ B(1+ε/4)R andη ≡ 1 onBR, and
‖∇η‖L∞(B(1+ε)R) .

1
εR . We will need a second smooth cut-off functionη̃ with supp η̃ ⊂ B(1+ε)R and

η̃ ≡ 1 onB(1+ε/2)R and‖∇η̃‖L∞(B(1+ε)R) .
1
εR . Sinceh is the maximal element diameter,8h ≤ εR

impliesT ⊂ B(1+ε/2)R for all T ∈ Th with T ∩ supp η 6= ∅. Integration by parts, the fact thatv is
piecewise harmonic andsupp([∂nv]|B(1+ε)R∩Γ) ⊂ Γρ lead to

‖∇(ηv)‖2L2(B(1+ε)R) =

∫

B(1+ε)R

∇(ηv) · ∇(ηv) dx =

∫

B(1+ε)R

∇v · ∇(η2v) + v2 |∇η|2 dx

=

∫

Γ∩B(1+ε)R

η2[∂nv]v dsx +

∫

B(1+ε)R

v2 |∇η|2 dx

=

∫

Γ
η2[∂nv]v dsx +

∫

B(1+ε)R

v2 |∇η|2 dx, (3.23)

where in the last step we used the support propertysupp η ⊂ B(1+ε/4)R to extend the functionη2[∂nv]v,
which is defined onΓ ∩ B(1+ε)R, by zero to the whole setΓ. We first focus on the surface integral in

(3.23). With theL2(Γ)-orthogonal projectionΠL2
ontoS0,0(Th) from (3.3), we get by definition of

the spaceHh,0(B(1+ε)R,Γρ) that suppΠL2
(η2[∂nv]) ⊂ Γρ ∩ B(1+ε)R. Therefore, we can use the

orthogonality (3.13) satisfied byv to get

〈η2[∂nv], v〉L2(Γ) = 〈η2[∂nv]−ΠL2
(η2[∂nv]), v〉L2(Γ) = 〈η2[∂nv]−ΠL2

(η2[∂nv]), η̃
2v〉L2(Γ)

= 〈η2[∂nv]−ΠL2
(η2[∂nv]), η̃

2v −ΠL2
(η̃ 2v)〉L2(Γ), (3.24)
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where we were able to insert the cut-off functionη̃ since η̃ ≡ 1 on supp(η2[∂nv] − ΠL2
(η2[∂nv])) ⊂

(B(1+ε/2)R \BR−2h) ∩ Γρ. With these observations in hand, we estimate

‖η2[∂nv]−ΠL2
(η2[∂nv])‖2L2(Γ) .

∑

T∈Th
h2‖∇Γ(η

2[∂nv])‖2L2(T )

. C
h2

(εR)2
‖[∂nv]‖2L2((B(1+ε/2)R)∩Γρ)

.

With the standard approximation property‖η̃ 2v−ΠL2
(η̃ 2v)‖L2(Γ) . h1/2‖η̃ 2v‖H1/2(Γ) and the bound

(3.14) of Lemma 3.8 as well as the trace inequality forΓ, we get

∣∣〈η2[∂nv], v〉L2(Γ)

∣∣ .
h

εR
‖[∂nv]‖L2((B(1+ε/2)R)∩Γρ)h

1/2‖η̃ 2v‖H1/2(Γ) (3.25)

.
h

εR
‖∇v‖L2(B(1+ε)R)‖η̃ 2v‖H1/2(Γ) .

h

εR
‖∇v‖L2(B(1+ε)R)‖η̃ 2v‖H1(Ω).

The support properties of̃η imply ‖η̃ 2v‖H1(Ω) . ‖∇v‖L2(B(1+ε)R) + (εR)−1‖v‖L2(B(1+ε)R). Inserting
this into (3.25) and the result into (3.23) yields

‖∇(ηv)‖2L2(B(1+ε)R) .
h

εR
‖∇v‖2L2(B(1+ε)R) +

h

(εR)2
‖∇v‖L2(B(1+ε)R)‖v‖L2(B(1+ε)R)

+
1

(εR)2
‖v‖2L2(B(1+ε)R)

.
h

εR
‖∇v‖2L2(B(1+ε)R) +

1

(εR)2
‖v‖2L2(B(1+ε)R),

where we employed an appropriate Young inequality in the last step andh/(εR) ≤ 1. This implies
(3.22).

Step 2: Starting from estimate (3.22) withε = δ
2 , we use (3.22) again withε = δ

2+δ and R̃ = (1 +

δ/2)R. Since
(
1 + δ

2

) (
1 + δ

2+δ

)
= 1 + δ and h

R ≤ δ
16 implies h

R̃
≤ ε

8 , we arrive at

‖∇v‖2L2(BR) .
h

δR
‖∇v‖2L2(B(1+δ/2)R) +

1

(δR)2
‖v‖2L2(B(1+δ/2)R)

.

(
h

δR

)2

‖∇v‖2L2(B(1+δ)R) +

(
h

(δR)3
+

1

(δR)2

)
‖v‖2L2(B(1+δ)R),

and withh/(δR) ≤ 1 we conclude the proof. �

3.3 Low-dimensional approximation inHh,0(D,Γρ)

SinceHh,0(BR,Γρ) ⊂ H1(BR) is a closed subspace by Lemma 3.5, the orthogonal projectionΠh,R :
(H1(BR), |||·|||h,R) → (Hh,0(BR,Γρ), |||·|||h,R) is well-defined.

Lemma 3.10 Let δ ∈ (0, 1), R > 0 such that hR ≤ δ
16 and BR, B(1+δ)R, B(1+2δ)R be concentric

boxes. LetΓρ ⊂ Γ be of the form(3.11)andv ∈ Hh,0(B(1+2δ)R,Γρ). LetKH be an (infinite)γ-shape

regular triangulation ofRd of mesh widthH and assumeHR ≤ δ
4 for the corresponding mesh widthH.

Let IH : H1(Rd) → S1,1(KH) be the Scott-Zhang projection. Then, there exists a constantCapp > 0
that depends only onΩ, d, andγ, such that

14



(i)
(
v −Πh,RIHv

)
|BR

∈ Hh,0(BR,Γρ)

(ii) |||v −Πh,RIHv|||h,R ≤ Capp
1+2δ
δ

(
h
R + H

R

)
|||v|||h,(1+2δ)R

(iii) dimW ≤ Capp

(
(1+2δ)R

H

)d
, whereW := Πh,RIHHh,0(B(1+2δ)R,Γρ).

Proof: Sincev ∈ Hh,0(B(1+2δ)R,Γρ) impliesv ∈ Hh,0(BR,Γρ), we haveΠh,R (v|BR
) = v|BR

, which
proves (i).

The assumptionHR ≤ δ
4 implies

⋃{K ∈ KH : ωK ∩ BR 6= ∅} ⊆ B(1+δ)R. Then, the locality and
approximation properties (3.8) of the Scott-Zhang projectionIH yield

1

H
‖v − IHv‖L2(BR) + ‖∇(v − IHv)‖L2(BR) . ‖∇v‖L2(B(1+δ)R) .

We apply Lemma 3.9 with̃R = (1 + δ)R andδ̃ = δ
1+δ . Note that(1 + δ̃)R̃ = (1 + 2δ)R. Moreover,

16h ≤ δR = δ̃R̃ implies h

R̃
≤ δ̃

16 . Therefore, we get

|||v −Πh,RIHv|||2h,R = |||Πh,R (v − IHv)|||2h,R ≤ |||v − IHv|||2h,R

=

(
h

R

)2

‖∇(v − IHv)‖2L2(BR) +
1

R2
‖v − IHv‖2L2(BR)

.
h2

R2
‖∇v‖2L2(B(1+δ)R) +

H2

R2
‖∇v‖2L2(B(1+δ)R)

.

(
1 + δ

δ

(
h

R
+
H

R

))2

|||v|||2h,(1+2δ)R ,

which concludes the proof of (ii). Finally, the statement (iii) follows from the fact that
dim IH(Hh,0(B(1+2δ)R,Γρ)) . ((1 + 2δ)R/H)d. �

The property (i) of Lemma 3.10 can be used to iterate the approximation result (ii) on suitable concentric
boxes. This will allow us to construct a subspace ofHh,0(B(1+κ)R,Γρ) for κ ∈ (0, 1) with the capability
to approximate at an exponential rate.

Lemma 3.11 LetCapp be the constant of Lemma 3.10. Letq, κ ∈ (0, 1),R > 0, k ∈ N andΓρ ⊂ Γ be
of the form(3.11). Assume

h

R
≤ κq

64kmax{1, Capp}
. (3.26)

Then, there exists a finite dimensional subspaceŴk ofHh,0(B(1+κ)R,Γρ) with dimension

dim Ŵk ≤ Cdim

(
1 + κ−1

q

)d

kd+1

such that for everyv ∈ Hh,0(B(1+κ)R,Γρ)

min
ŵ∈Ŵk

√
h ‖[∂nv]− [∂nŵ]‖L2(BR∩Γρ)

≤ min
ŵ∈Ŵk

√
h ‖[∂nv]− [∂nŵ]‖L2(BR∩Γ) (3.27)

≤ Clow
R

h
min
ŵ∈Ŵk

|||v − ŵ|||h,(1+κ/2)R ≤ Clow
R

h
qk |||v|||h,(1+κ)R .

The constantsCdim, Clow > 0 depend only onΩ, d, and theγ-shape regularity ofTh.
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Proof: LetBR andB(1+δj)R, with δj := κ(1 − j
2k ) for j = 0, . . . , k be concentric boxes. We have

κ = δ0 > δ1 > · · · > δk = κ
2 . In the following, we iterate the approximation result of Lemma 3.10

on the boxesB(1+δj)R. ChoosingH = κqR
64kmax{Capp,1} , we haveh ≤ H. We apply Lemma 3.10 with

R̃j = (1 + δj)R and δ̃j = κ
4k(1+δj)

< 1
4 . Note thatδj−1 = δj +

κ
2k gives (1 + δj−1)R = (1 + 2δ̃j)R̃j

and our choice ofH implies H

R̃j
≤ δ̃j

4 . Hence, forj = 1, Lemma 3.10 provides an approximation

w1 in a subspaceW1 of Hh,0(B(1+δ1)R,Γρ) with dimW1 ≤ Capp

(
(1+2δ̃1)R̃1

H

)d
= Capp

(
(1+κ)R

H

)d
,

satisfying

|||v − w1|||h,(1+δ1)R
= |||v − w1|||h,R̃1

≤ Capp
1 + 2δ̃1

δ̃1

(
h

R̃1

+
H

R̃1

)
|||v|||

h,(1+2δ̃1)R̃1

≤ 2Capp
H

(1 + δ1)R

1 + 2δ̃1

δ̃1
|||v|||h,(1+δ0)R

= 8Capp
kH

κR
(1 + 2δ̃1) |||v|||h,(1+κ)R ≤ q |||v|||h,(1+κ)R .

Sincev|B(1+δ1)R
− w1 ∈ Hh,0(B(1+δ1)R,Γρ), Lemma 3.10 can be applied tov − w1, and provides an

approximationw2 of v−w1 in a subspaceW2 of Hh,0(B(1+δ2)R,Γρ) with dimW2 ≤ Capp

(
(1+κ)R

H

)d
.

Arguing as forj = 1, we get

|||v − w1 − w2|||h,(1+δ2)R
≤ q |||v − w1|||h,(1+δ1)R

≤ q2 |||v|||h,(1+κ)R .

Continuing this processk − 2 times, one obtains an approximation̂w :=
∑k

j=1wi in the spacêWk :=
∑k

j=1Wj of dimensiondim Ŵk ≤ Cappk
(
(1+κ)R

H

)d
≤ Cdim((1 + κ−1)q−1)dkd+1 with

|||v − ŵ|||h,(1+κ/2)R = |||v − ŵ|||h,(1+δk)R
≤ qk |||v|||h,(1+κ)R .

Finally, since (3.26) ensuresh/R ≤ κ/8, we may use Lemma 3.8 to estimate

√
h‖[∂nv]− [∂nŵ]‖L2(BR∩Γ) ≤ C ‖∇(v − ŵ)‖L2(B(1+κ/2)R) ≤ C

R

h
|||v − ŵ|||h,(1+κ/2)R

to conclude the argument. �

Now we are able to prove the main result of this section, Proposition 3.1.

Proof of Proposition 3.1: By assumption, we havedist(BRτ , BRσ) ≥ η−1 diamBRτ =
√
dη−1Rτ .

The choiceκ = 1
1+η implies

dist(B(1+κ)Rτ
, BRσ) ≥ dist(BRτ , BRσ)− κRτ

√
d ≥

√
dRτ (η

−1 − κ) =
√
dRτ

(
1

η
− 1

1 + η

)
> 0.

Let φh ∈ S0,0(Th) solve (3.1). The potentialu = Ṽ φh then satisfiesu ∈ Hh,0(B(1+κ)Rτ
,Γ). The

inverse estimate
√
h ‖φh‖L2(Γ) . ‖φh‖H−1/2(Γ) of (3.10) and the ellipticity of the simple-layer operator

as well as the discrete boundary integral equation (3.1) provide

‖φh‖2H−1/2(Γ) . 〈V φh, φh〉 = 〈f, φh〉 =
〈
ΠL2

f, φh

〉
.
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

‖φh‖L2(Γ)

. h−1/2
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

‖φh‖H−1/2(Γ) .
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Then, the boundedness ofṼ : H−1/2(Γ) → H1
loc(R

d) and h
Rτ

< 1 lead to

∣∣∣
∣∣∣
∣∣∣Ṽ φh

∣∣∣
∣∣∣
∣∣∣
h,Rτ (1+κ)

≤ 2

(
1 +

1

Rτ

)∥∥∥Ṽ φh
∥∥∥
H1(B2Rτ )

.

(
1 +

1

Rτ

)
‖φh‖H−1/2(Γ)

.

(
1 +

1

Rτ

)
h−1/2

∥∥∥ΠL2
f
∥∥∥
L2(Γ)

.

After these preparations, we are in a position to define the spaceWk, for which we distinguish two
cases.

Case 1:The condition (3.26) is satisfied withR = Rτ . With the spacêWk provided by Lemma 3.11
we setWk := {[∂nŵ] : ŵ ∈ Ŵk}. Then, Lemma 3.11 andRτ ≤ 2 diam(Ω) lead to

min
w∈Wk

‖φh − w‖L2(BRτ ∩Γ) .
Rτ

h3/2
qk
∣∣∣
∣∣∣
∣∣∣Ṽ φh

∣∣∣
∣∣∣
∣∣∣
h,(1+κ)Rτ

. (Rτ + 1)h−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

. h−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

,

and the dimension ofWk is bounded by

dimWk ≤ Cdim

(
1 + κ−1

q

)d

kd+1 = Cdim(2 + η)dq−dkd+1.

Case 2:The condition (3.26) is not satisfied. Then, we selectWk :=
{
w|BRτ∩Γ : w ∈ S0,0(Th)

}
and

the minimum in (3.4) is obviously zero. By the choice ofκ and h
R > κq

64kmax{1,Capp} , the dimension of
Wk is bounded by

dimWk .

(
Rτ

h

)d−1

.

(
64kmax{Capp, 1}

κq

)d−1

≃
(
(1 + η)q−1k

)d−1
. (2 + η)dq−dkd+1.

This concludes the proof of the first inequality in (3.4). The second inequality in (3.4) follows from the
L2(Γ)-stability of theL2(Γ)-orthogonal projection. �

4 Proof of the approximation results forV−1

In this section, the approximation result given in Proposition 3.1 is used to construct a low-rank approx-
imation of a matrix blockV−1|τ×σ and in turn anH-matrix approximation ofV−1. This is achieved
with local variants of the isomorphism (2.1), and our arguments follow the lines of [Bör10a, Theorem 2].

Proof of Theorem 2.4: If Cdim(2 + η)dq−dkd+1 ≥ min(|τ | , |σ|), we use the exact matrix block
Xτσ = V

−1|τ×σ andYτσ = I ∈ R|σ|×|σ|.

If Cdim(2+η)
dq−dkd+1 < min(|τ | , |σ|), we employ the approximation result of Proposition 3.1 in the

following way. Forτ ⊂ I, we defineRτ :=
{
x ∈ RN : xi = 0 ∀i /∈ τ

}
and the mappings

Φτ : Rτ → S0,0(Th), x 7→
∑

j∈τ
xjχj , and Λτ : L2(Γ) → R|τ |, w 7→ (wi)i∈τ ,

wherewi denotes the mean value on the elementTi ∈ Th. Hence, for a piecewise constant function the
mappingΛτ returns the constant value on each element corresponding to the clusterτ . Moreover,ΦτΛτ
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is the restriction of theL2-projection ontoS0,0(Th) to Γτ :=
⋃

i∈τ Ti ⊂ BRτ . Thus, in particular, for a

piecewise constant functioñφ ∈ S0,0(Th) we getΦτ (Λτ φ̃) = φ̃|Γτ . Forx ∈ Rτ , (2.1) implies

Chd/2 ‖x‖2 ≤ ‖Φτ (x)‖L2(Γ) ≤ C̃hd/2 ‖x‖2 , x ∈ Rτ .

The adjointΛ∗
I : RN → L2(Γ)′,b 7→ ∑

i∈I bi(u 7→ ui) of ΛI satisfies, because of (2.1) and the
L2-stability ofΦIΛI ,

‖Λ∗
Ib‖L2(Γ) = sup

w∈L2(Γ)

〈b,ΛIw〉2
‖w‖L2(Γ)

. ‖b‖2 sup
w∈L2(Γ)

h−d/2 ‖ΦIΛIw‖L2(Γ)

‖w‖L2(Γ)

≤ h−d/2 ‖b‖2 .

Let b ∈ RN . Definingf := Λ∗
Ib|σ, we getbi = 〈f, χi〉 for i ∈ σ, andsupp f ⊂ BRσ ∩ Γ. Proposi-

tion 3.1 provides a finite dimensional spaceWk and an elementw ∈Wk that is a good approximation to
the Galerkin solutionφh|BRτ∩Γ. It is important to note that the spaceWk is constructed independently
of the functionf ; it depends only on the cluster pair(τ, σ). The estimate (2.1), the approximation result

from Proposition 3.1, and
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

= ‖Λ∗
Ib‖L2(Γ) . h−d/2 ‖b‖2 imply

‖Λτφh − Λτw‖2 . h−d/2 ‖Φτ (Λτφh − Λτw)‖L2(Γ) ≤ h−d/2 ‖φh − w‖L2(BRτ∩Γ)

. h−d/2−2qk
∥∥∥ΠL2

f
∥∥∥
L2(Γ)

. h−(d+2)qk ‖b‖2 .

In order to translate this approximation result to the matrix level, let

W := {Λτw : w ∈Wk}.

Let the columns ofXτσ be an orthogonal basis of the spaceW. Then, the rank ofXτσ is bounded
by Cdim(2 + η)dq−dkd+1. SinceXτσX

T
τσ is the orthogonal projection fromRN ontoW, we get that

z := XτσX
T
τσΛτφh is the best approximation ofΛτφh in W and arrive at

‖Λτφh − z‖2 ≤ ‖Λτφh − Λτw‖2 . h−(d+2)qk ‖b‖2 ≃ N (d+2)/(d−1)qk ‖b‖2 . (4.1)

Noting thatΛτφh = V
−1|τ×σb|σ, if we defineYτ,σ := V

−1|Tτ×σXτσ, we thus getz = XτσY
T
τσb|σ.

The bound (4.1) expresses

‖
(
V

−1|τ×σ −XτσY
T
τσ

)
b|σ‖2 . N (d+2)/(d−1)qk ‖b‖2 . (4.2)

The spaceWk depends only on the cluster pair(τ, σ) and the estimate (4.2) is valid for anyb. This
concludes the proof. �

The following lemma gives an estimate for the global spectral norm by the local spectral norms.

Lemma 4.1 ([Gra01],[Hac09, Lemma 6.5.8])Let M ∈ RN×N and P be a partitioning ofI × I.
Then,

‖M‖2 ≤ Csp

( ∞∑

ℓ=0

max{‖M|τ×σ‖2 : (τ, σ) ∈ P, level(τ) = ℓ}
)
,

where the sparsity constantCsp is defined in(2.7).
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Now we are able to prove our main result, Theorem 2.7.

Proof of Theorem 2.7: Theorem 2.4 provides matricesXτσ ∈ R|τ |×r,Yτσ ∈ R|σ|×r, so we can define
theH-matrixVH by

WH =

{
XτσY

T
τσ if (τ, σ) ∈ Pfar,

V
−1|τ×σ otherwise.

On each admissible block(τ, σ) ∈ Pfar we can use the blockwise estimate of Theorem 2.4 and get
∥∥(V−1 −WH)|τ×σ

∥∥
2
≤ CapxN

(d+2)/(d−1)qk.

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 4.1 leads to

∥∥V−1 −WH
∥∥
2

≤ Csp

( ∞∑

ℓ=0

max{
∥∥(V−1 −VH)|τ×σ

∥∥
2
: (τ, σ) ∈ P, level(τ) = ℓ}

)

≤ CapxCspN
(d+2)/(d−1)qkdepth(TI).

With r = Cdim(2 + η)dq−dkd+1, definingb = − ln(q)

C
1/(d+1)
dim

qd/(d+1)(2 + η)−d/(1+d) > 0 leads toqk =

e−br1/(d+1)
, and hence

∥∥V−1 −WH
∥∥
2
≤ CapxCspN

(d+2)/(d−1)depth(TI)e
−br1/(d+1)

,

which concludes the proof. �

5 H-Cholesky decomposition: Proof of Theorem 2.11

The aim of this section is the proof of Theorem 2.11. Our procedure follows [Beb07, GKLB09, FMP13]
and is based on showing that the off-diagonal block of certain Schur complements can be approximated
by low-rank matrices. The analysis of these Schur complement matrices in Section 5.1 is therefore the
main contribution of the section.

Since the matrixV is symmetric and positive definite, it has a (classical) Cholesky-decompositionV =
CC

T , whereC is a lower triangular matrix. Moreover, the existence of the Cholesky decomposition
does not depend on the numbering of the degrees of freedom, i.e., for every other numbering of the
basis functions there is a Cholesky decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]). The existence
of the Cholesky decomposition implies the invertibility of the matrixV|ρ×ρ for anyn ≤ N and index
setρ := {1, . . . , n} (see, e.g., [HJ13, Cor. 3.5.6]).

The first step is the approximation of appropriate Schur complements.

5.1 Schur complements

For a cluster pair(τ, σ) andρ := {i ∈ I : i < min(τ ∪ σ)}, we define the Schur complement

S(τ, σ) = V|τ×σ −V|τ×ρ(V|ρ×ρ)
−1

V|ρ×σ. (5.1)

One way to approximate the Schur complement is to use theH-arithmetic. As stated in [GKLB09, The-
orem 15], this results in a low-rank approximation toS(τ, σ) of rankCidCsp(depth(TI)+1)2r, where
the idempotency constantCid is defined in [GH03], andr is the block rank used for the approximation
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of the inverse matrixV−1. In the following Theorem 5.2, we provide a low-rank approximation by us-
ing a different approach, which uses the techniques developed in Section 3 and gives a better bound in
terms of the rank of the approximation, i.e., a rank ofCr is sufficient to obtain the same accuracy. This
approach relies on interpreting Schur complements as BEM matrices from certain constrained spaces.

The key step is Theorem 5.2 below. For its proof, we need a degenerate approximation of the Green’s
functionG(·, ·). This is a classical result that underlies the log-linear matrix-vector multiplication in
BEM and can be achieved by multipole expansions [Rok85, GR97], Taylor expansions [NK88, HN89,
Sau92, HS93] or by interpolation (see, e.g., [SS11, Sec. 7.1.3.1]). The following lemma recalls a variant
of such a degenerate approximation that is obtained with Chebyshev interpolation:

Lemma 5.1 Let η̃ > 0 and fixη′ ∈ (0, 2η̃). Then, for every hyper cubeBY ⊂ Rd, d ∈ {2, 3} and
closedDX ⊂ Rd with dist(BY , DX) ≥ η̃ diam(BY ) the following is true: For everyr ∈ N there exist
functionsg1,i, g2,i, i = 1, . . . , r such that

∥∥∥∥∥G(x, ·)−
r∑

i=1

g1,i(x)g2,i(·)
∥∥∥∥∥
L∞(BY )

≤ C
(1 + 1/η̃)

dist({x}, BY )d−2
(1 + η′)−r1/d ∀x ∈ DX , (5.2)

for a constantC that depends solely on the choice ofη′ ∈ (0, 2η̃).

Proof: Let Iyk : C(BY ) → Qk be the tensor product interpolation operator of degreek defined on
C(BY ) and mapping into the spaceQk of polynomial of degreek in each variable. Note thatdimQk =
(k + 1)d =: r. The approximationGr(x, y) :=

∑r
i=1 g1,i(x)g2,i(y) is then taken to beGr(x, ·) :=

IykG(x, ·). The stated error bound follows from estimates for Chebyshev interpolation. We note that
the Green’s function for the Laplacian is asymptotically smooth (see [Hac09, Definition 4.2.5] with
constantcas(ν) = Cν!). Tensorial interpolation in the form given in [BG04] allows us to estimate

∥∥G(x, ·)− IykG(x, ·)
∥∥
L∞(BY )

.
1

dist({x}, BY )d−2

(
1 +

diam(BY )

dist(BY , {x})

)
Λd
kr

1/d

(
1 +

2dist(BY , {x})
diam(BY )

)−r1/d

,

whereΛk ≤ 1 + 2
π ln(k + 1) is the Lebesgue constant of Chebyshev interpolation, cf. [Riv74]. The

observationdist({x}, BY ) ≥ dist(BY , DX) ≥ η̃ diam(BY ) and the choiceη′ < 2η̃ imply the claimed
estimate. �

Theorem 5.2 Let (τ, σ) be anη-admissible cluster pair, setρ := {i ∈ I : i < min(τ ∪ σ)}, and let
the Schur complementS(τ, σ) be defined in(5.1). Then, there exists a rank-rmatrixSr(τ, σ) such that

‖S(τ, σ)− Sr(τ, σ)‖2 ≤ CscN
3/(2d−2)e−br1/(d+1) ‖V‖2 ,

where the constantsCsc, b > 0 depend only onΩ, d, theγ-shape regularity ofTh, andη.

Proof: Let BRτ , BRσ be bounding boxes for the clustersτ , σ satisfying (2.3). We defineΓρ =

interior
(⋃

i∈ρ suppψi

)
⊂ Γ. First, we observe that the Schur complement matrixS(τ, σ) can be un-

derstood in terms of an orthogonalization with respect to the degrees of freedom inρ. More precisely, a
direct calculation shows forφ ∈ R|τ |,ψ ∈ R|σ| the representation

φT
S(τ, σ)ψ =

〈
V φ̃, ψ

〉
L2(Γ)

, (5.3)
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with the following relation between the functionsψ, φ̃ and the vectorsψ, φ, respectively:ψ =∑|σ|
j=1ψjχjσ , where the indexjσ denotes thej-th basis function corresponding to the clusterσ, and the

functionφ̃ ∈ S0,0(Th) is defined bỹφ = φ+ φρ with φ =
∑|τ |

j=1φjχjτ andsuppφρ ⊂ Γρ such that

〈
V φ̃, ψ̂

〉
L2(Γ)

= 0 ∀ψ̂ ∈ S0,0(Th) with supp ψ̂ ⊂ Γρ. (5.4)

Our low-rank approximation of the Schur complement matrixS(τ, σ) will have two ingredients:
first, based on the the techniques of Section 3 we exploit the orthogonality (5.4) to construct a low-
dimensional spacêWk from which for anyφ, the corresponding functioñφ can be approximated well.
Second, we exploit that the functionψ in (5.3) is supported byΓσ, and we will use Lemma 5.1.

Let δ = 1
1+η andBRσ ,B(1+δ)Rσ

be concentric boxes. The symmetry ofV leads to

〈
V φ̃, ψ

〉
L2(Γ)

=
〈
φ̃, V ψ

〉
L2(Γ)

=
〈
φ̃, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, V ψ

〉
L2(Γ\B(1+δ)Rσ )

. (5.5)

First, we treat the first term on the right-hand side of (5.5). The choice ofδ and the admissibility
condition (2.3), where we can assumemin{diam(BRτ ), diam(BRσ)} =

√
dRσ due to the symmetry

S(τ, σ) = S(σ, τ)T , imply

dist(B(1+2δ)Rσ
, BRτ ) ≥ dist(BRσ , BRτ )−

√
dδRσ ≥

√
dRσ(η

−1 − δ) > 0.

Therefore, we havẽφ|B(1+2δ)Rσ∩Γρ = φρ|B(1+2δ)Rσ∩Γρ and the orthogonality (5.4) holds on the box

B(1+2δ)Rσ
. Thus, by definition ofHh,0, we haveṼ φ̃ ∈ Hh,0(B(1+2δ)Rσ

,Γρ).

As a consequence, Lemma 3.11 can be applied to the potentialṼ φ̃ with R := (1 + δ)Rσ andκ :=
1

2+η = δ
1+δ . Note that(1+ κ)(1+ δ) = 1+2δ and1+ κ−1 = 3+ η. Hence, we get a low dimensional

spacêWk of dimensiondim Ŵk ≤ Cdim(3+η)
dq−dkd+1 =: r, and the best approximation̂φ = Π

Ŵk
φ̃

to φ̃ from the spacêWk satisfies
∥∥∥φ̃− φ̂

∥∥∥
L2(B(1+δ)Rσ∩Γρ)

. Rσh
−3/2qk

∣∣∣
∣∣∣
∣∣∣Ṽ φ̃

∣∣∣
∣∣∣
∣∣∣
h,(1+2δ)Rσ

. h−3/2e−b1r1/(d+1)
∥∥∥φ̃
∥∥∥
H−1/2(Γ)

,

where we definedb1 := − ln(q)

C
1/(d+1)
dim

qd/(d+1)(3 + η)−d/(1+d) > 0 to obtainqk = e−b1r1/(d+1)
. Therefore,

we get ∣∣∣∣
〈
φ̃− φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

∣∣∣∣ . h−3/2e−b1r1/(d+1)
∥∥∥φ̃
∥∥∥
H−1/2(Γ)

‖V ψ‖L2(Γ) . (5.6)

The ellipticity ofV , supp(φ̃− φ) = suppφρ ⊂ Γρ, and the orthogonality (5.4) lead to

∥∥∥φ̃− φ
∥∥∥
2

H−1/2(Γ)
.

〈
V (φ̃− φ), φ̃− φ

〉
L2(Γ)

= −
〈
V φ, φ̃− φ

〉
L2(Γ)

. ‖V φ‖H1/2(Γ)

∥∥∥φ̃− φ
∥∥∥
H−1/2(Γ)

. ‖φ‖L2(Γ)

∥∥∥φ̃− φ
∥∥∥
H−1/2(Γ)

. (5.7)

Thus, with the triangle inequality, (5.7), and the stability ofV : L2(Γ) → H1(Γ), we can estimate (5.6)
by
∣∣∣∣
〈
φ̃− φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

∣∣∣∣ . h−3/2e−br1/(d+1)

(∥∥∥φ̃− φ
∥∥∥
H−1/2(Γ)

+ ‖φ‖H−1/2(Γ)

)
‖V ψ‖L2(Γ)

. h−3/2e−br1/(d+1) ‖φ‖L2(Γ) ‖ψ‖L2(Γ) .
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For the second term in (5.5), we exploit the asymptotic smoothness of the Green’s functionG(·, ·):
Lemma 5.1 can be applied withBY = BRσ andDX = Γ\B(1+δ)Rσ

, where the choice ofδ implies

dist(BY , DX) ≥ 1

2
√
d(1 + η)

diam(BY ) (5.8)

Therefore, we get an approximationGr(x, y) =
∑r

i=1 g1,i(x)g2,i(y) such that

‖G(x, ·)−Gr(x, ·)‖L∞(BRσ )
.

1

dist({x}, BRσ)
d−2

e−b2r1/d ∀x ∈ Γ \B(1+δ)Rσ
; (5.9)

here, the constantb2 > 0 depends only ond andη. As a consequence of (5.8) and (5.9), the rank-r
operatorVr given byVrψ(x) :=

∫
BRσ∩Γ

Gr(x, y)ψ(y)dsy satisfies

∣∣∣∣
〈
φ̃, (V − Vr)ψ

〉
L2(Γ\B(1+δ)Rσ )

∣∣∣∣ =

∣∣∣∣∣

∫

Γ\B(1+δ)Rσ

φ̃(x)

∫

BRσ∩Γ
(G(x, y)−Gr(x, y))ψ(y)dsydsx

∣∣∣∣∣

.
∥∥∥φ̃
∥∥∥
L2(Γ)

√
meas(Γ ∩BRσ)

∥∥∥G− G̃r

∥∥∥
L∞((Γ\B(1+δ)Rσ )×(BRσ∩Γ))

‖ψ‖L2(Γ)

. h−1/2δ2−dR(3−d)/2
σ e−b2r1/d

∥∥∥φ̃
∥∥∥
H−1/2(Γ)

‖ψ‖L2(Γ)

. h−1/2e−b2r1/d ‖φ‖L2(Γ) ‖ψ‖L2(Γ) ,

where the last two inequalities follow from the inverse estimate Lemma 3.3, the stability estimate (5.7)
for the mappingφ 7→ φ̃, the assumptiond ≤ 3 as well asRσ ≤ η diam(Ω), and the choiceδ = 1

1+η .
Here, the hidden constant additionally depends onη. Therefore, we get
∣∣∣∣
〈
V φ̃, ψ

〉
L2(Γ)

−
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

−
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

∣∣∣∣ . h−3/2e−br1/(d+1) ‖φ‖L2(Γ) ‖ψ‖L2(Γ) ,

with b := min{b1, b2}. Since the mapping(φ, ψ) 7→
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

defines a bounded bilinear form onL2(Γ), there exists a linear operatorV̂ : L2(Γ) → L2(Γ) such that
〈
φ̂, V ψ

〉
L2(B(1+δ)Rσ∩Γρ)

+
〈
φ̃, Vrψ

〉
L2(Γ\B(1+δ)Rσ )

=
〈
V̂ φ, ψ

〉
L2(Γ)

,

and the dimension of the range ofV̂ is bounded by2r. Therefore, we get a matrixSr(τ, σ) of rank2r
such that

‖S(τ, σ)− Sr(τ, σ)‖2 = sup
φ∈R|τ |,ψ∈R|σ|

∣∣φT (S(τ, σ)− Sr(τ, σ))ψ
∣∣

‖φ‖2 ‖ψ‖2
≤ Chd−3/2e−br1/(d+1)

,

where we have used (2.1). The estimate1‖V‖2
. h−d from [Ste08, Lemma 12.6] andh ≃ N−1/(d−1)

finish the proof. �

As a direct consequence of the representation (5.3) and the results from Section 3, we can get a block-
wise rank-rapproximation of the inverse of the Schur complementS(τ, τ). For the existence of the
inverseS(τ, τ)−1, we refer to the next subsection. For a given right-hand sidef ∈ L2(Γ), (5.3) im-
plies that solvingS(τ, τ)φ = f with f ∈ R|τ | defined byfi = 〈f, χiτ 〉, is equivalent to solving
a(φ̃, ψ) = 〈f, ψ〉 for all ψ ∈ S0,0(Th) with suppψ ⊂ Γτ . Let τ1 × σ1 ⊂ τ × τ be anη-admissible
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subblock. Forf ∈ L2(Γ) with supp f ⊂ BRσ1
∩ Γ, the support properties as well as the admissibility

condition (2.3) for the cluster pair(τ1, σ1) imply the orthogonality

a(φ̃, ψ) = 0 ∀ψ ∈ S0,0(Th)with suppψ ⊂ BRτ1
∩ Γτ .

Therefore, we havẽV φ̃ ∈ Hh,0(BRτ1
,Γτ ), and Lemma 3.11 provides an approximation toφ̃ onBRτ1

∩
Γτ . Then, a rank-rfactorization of the subblockS(τ, τ)−1|τ1×σ1 can be constructed as in Section 4,
which is summarized in the following theorem.

Theorem 5.3 Let τ ⊂ I, ρ := {i ∈ I : i < min(τ)}, τ1 × σ1 ⊂ τ × τ be η-admissible, and let
the Schur complementS(τ, τ) be defined in(5.1). Then, there exist rank-rmatricesXτ1σ1 ∈ R|τ1|×r,
Yτ1σ1 ∈ R|σ1|×r such that

∥∥S(τ, τ)−1|τ1×σ1 −Xτ1σ1Y
T
τ1σ1

∥∥
2
≤ CapxN

(d+2)/(d−1)e−br1/(d+1)
. (5.10)

The constantsCapx depends only onΩ, d, and theγ-shape regularity ofTh, and the constantb > 0
additionally depends onη.

5.2 Existence ofH-Cholesky decomposition: conclusion of the proof of Theorem 2.11

In this subsection, we will use the approximation of the Schur complement from the previous section
to prove the existence of an (approximate)H-Cholesky decomposition. We start with a hierarchical
relation of the Schur complementsS(τ, τ).

The Schur complementsS(τ, τ) for a blockτ ∈ TI can be derived from the Schur complements of its
sonsτ1, τ2 by

S(τ, τ) =

(
S(τ1, τ1) S(τ1, τ2)
S(τ2, τ1) S(τ2, τ2) + S(τ2, τ1)S(τ1, τ1)

−1
S(τ1, τ2)

)
,

A proof of this relation can be found in [Beb07, Lemma 3.1]. One should note that the proof does not
use any properties of the matrixV other than invertibility and existence of a Cholesky decomposition.
Moreover, we have by definition ofS(τ, τ) thatS(I, I) = V.

If τ is a leaf, we get the Cholesky decomposition ofS(τ, τ) by the classical Cholesky decomposition,
which exists sinceV has a Cholesky decomposition. Ifτ is not a leaf, we use the hierarchical relation
of the Schur complements to define a Cholesky decomposition of the Schur complementS(τ, τ) by

C(τ) :=

(
C(τ1) 0

S(τ2, τ1)(C(τ1)
T )−1

C(τ2)

)
, (5.11)

with S(τ1, τ1) = C(τ1)C(τ1)
T , S(τ2, τ2) = C(τ2)C(τ2)

T and indeed getS(τ, τ) = C(τ)C(τ)T .
Moreover, the uniqueness of the Cholesky decomposition ofV implies that due toCC

T = V =
S(I, I) = C(I)C(I)T , we haveC = C(I).
The existence of the inverseC(τ1)

−1 follows from the representation (5.11) by induction over the levels,
since on a leaf the existence is clear and the matricesC(τ) are block triangular matrices. Consequently,
the inverse ofS(τ, τ) exists.
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Moreover, as shown in [GKLB09, Lemma 22] in the context ofLU -factorizations instead of Cholesky
decompositions, the restriction of the lower triangular partS(τ2, τ1)(C(τ1)

T )−1 of the matrixC(τ) to
a subblockτ ′2 × τ ′1 with τ ′i a son ofτi satisfies

(
S(τ2, τ1)(C(τ1)

T )−1
)
|τ ′2×τ ′1

= S(τ ′2, τ
′
1)(C(τ ′1)

T )−1. (5.12)

The following lemma shows that the spectral norm of the inverseC(τ)−1 can be bounded by the norm
of the inverseC(I)−1.

Lemma 5.4 For τ ∈ TI , letC(τ) be given by(5.11). Then,

max
τ∈TI

∥∥C(τ)−1
∥∥
2

=
∥∥C(I)−1

∥∥
2
,

Proof: With the block structure of (5.11), we get the inverse

C(τ)−1 =

(
C(τ1)

−1 0
−C(τ2)

−1
S(τ2, τ1)(C(τ1)

T )−1
C(τ1)

−1
C(τ2)

−1

)
.

So, we get by choosingx such thatxi = 0 for i ∈ τ1 that
∥∥C(τ)−1

∥∥
2
= sup

x∈R|τ |,‖x‖2=1

∥∥C(τ)−1
x
∥∥
2
≥ sup

x∈R|τ2|,‖x‖2=1

∥∥C(τ2)
−1

x
∥∥
2
=
∥∥C(τ2)

−1
∥∥
2
.

The same argument for
(
C(τ)−1

)T
leads to

∥∥C(τ)−1
∥∥
2
=
∥∥∥
(
C(τ)−1

)T∥∥∥
2
≥
∥∥C(τ1)

−1
∥∥
2
.

Thus, we have
∥∥C(τ)−1

∥∥
2
≥ maxi=1,2

∥∥C(τi)
−1
∥∥
2

and as a consequencemaxτ∈TI

∥∥C(τ)−1
∥∥
2
=∥∥C(I)−1

∥∥
2
. �

We are now in position to prove Theorem 2.11:

Proof of Theorem 2.11: In the following, we show that every admissible subblockτ × σ of C(I),
recursively defined by (5.11), has a rank-rapproximation. Since an admissible block of the lower tri-
angular part ofC(I) has to be a subblock of a matrixC(τ ′) for someτ ′ ∈ TI , we get in view of
(5.12) thatC(I)|τ×σ = S(τ, σ)(C(σ)T )−1. Theorem 5.2 provides a rank-rapproximationSr(τ, σ) to
S(τ, σ). Therefore, we can estimate

∥∥C(I)|τ×σ−Sr(τ, σ)(C(σ)T )−1
∥∥
2

=
∥∥(S(τ, σ)− Sr(τ, σ)) (C(σ)T )−1

∥∥
2

≤ CscN
3/(2d−2)e−br1/(d+1) ∥∥(C(σ′)T )−1

∥∥
2
‖V‖2 .

SinceSr(τ, σ)(C(σ)T )−1 is a rank-rmatrix for eachη-admissible cluster pair(τ, σ), we immedi-
ately get anH-matrix approximationCH of the Cholesky factorC(I) = C. With Lemma 4.1 and
Lemma 5.4, we get

‖C−CH‖2 ≤ CscCspN
3/(2d−2)depth(TI)e

−br1/(d+1) ∥∥C−1
∥∥
2
‖V‖2 ,

and with‖V‖2 = ‖C‖22, we conclude the proof of (i).
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SinceV = CC
T , the triangle inequality finally leads to

∥∥V −CHC
T
H
∥∥
2

≤ ‖C−CH‖2
∥∥CT

∥∥
2
+
∥∥CT −C

T
H
∥∥
2
‖C‖2 + ‖C−CH‖2

∥∥CT −C
T
H
∥∥
2

≤ 2CscCspκ2(C)depth(TI)N
3/(2d−2)e−br1/(d+1) ‖V‖2

+κ2(C)2C2
scC

2
spdepth(TI)

2N3/(d−1)e−2br1/(d+1) ‖V‖22
‖C‖22

,

and the equalityκ2(V) = κ2(C)2 finishes the proof. �

6 Extensions

6.1 The Poincaŕe-Steklov operator

The interior Poincaŕe-Steklov operatorSint is defined asSint := V −1
(
1
2I +K

)
: H1/2(Γ) →

H−1/2(Γ), whereK denotes the double-layer operator. In a similar way, the exterior Poincaré-Steklov
operatorSext is given bySext = −V −1(12 −K).

The discrete Poincaré-Steklov operators are given bySint = V
−1
(
1
2M+K

)
and S

ext =
−V

−1
(
1
2M−K

)
, whereK is the stiffness matrices corresponding toK, andM is the mass matrix.

Here, we consider piecewise affine basis functions for the the discretizationsK,M. We illustrate the
use of theH-arithmetic to deriveH-matrix approximations to the discrete Poincaré-Steklov operators,
which is stated in the following corollary of Theorem 2.7.

Corollary 6.1 Fix η > 0. Let a partitionP of I × I be based on a cluster treeTI created by the
geometric clustering algorithm from [Hac09, Section 5.4.2]. LetS ∈ {Sint,Sext}. Then, there is a
blockwise rank-rmatrixSH such that

‖S− SH‖2 ≤ CPSN
(d+2)/(d−1) logN exp

(
−b
(

r

logN + 1

)1/(d+1)
)
. (6.1)

The constantCPS > 0 depends only onΩ, d, and theγ-shape regularity ofTh, and the constantb > 0
depends additionally onη.

Proof: By H-arithmetic, [GH03, Theorem 2.24], the rank of the multiplication ofH-matrices increases
by a factor ofCidCsp(depth(TI) + 1), where the appearing idempotency constantCid is defined in
[GH03] and can be bounded uniformly inN for geometrically balanced cluster trees. �

For computations, due to stability reasons, usually the symmetric formulation of the Poincaré-Steklov
operatorSint := W +

(
1
2I +K ′)V −1

(
1
2I +K

)
with the hypersingular integral operatorW :

H1/2(Γ) → H−1/2(Γ) and the adjoint double-layer potentialK ′ is used, see e.g. [Ste08]. UsingH-
arithmetics, an approximation for this representation can be derived as well, but leads to an additional
logarithmic factor in the exponential in (6.1). Since we are only interested in an existence result, the
non symmetric formulation is sufficient for our purpose.
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6.2 H2-approximation

In this section, we briefly describe how an approximation in the more refined framework ofH2-matrices
can be derived. The main advantage ofH2-matrices compared toH-matrices is that the storage com-
plexity as well as the complexity of the matrix-vector multiplication isO(rN), i.e. linear in the degrees
of freedom instead of the logarithmic-linear complexity ofO(rN logN) for H-matrices.

In fact, [Bör10a] proves that anH2-approximation can be derived from blockwise estimates as in The-
orem 2.4. Therefore, this can be done in the same way, and this section follows the lines of [Bör10a].

H2-matrices are based on nested cluster bases, which are defined in the following.

Definition 6.2 (Nested cluster basis)A family of matrices(Uτ )τ∈TI
,Uτ ∈ R|τ |×r is said to be a

nested cluster basis, if there exists a family oftransfer matrices(Tτ )τ∈TI ,Tτ ∈ Rr×r such thatUτ |τ ′ =
Uτ ′Tτ ′ ∀τ ∈ TI , τ ′ ∈ sons(τ). If the matricesUτ are orthogonal for allτ ∈ TI , (Uτ )τ∈TI is said to
be anested orthogonal cluster basis.

Definition 6.3 (Descendants, predecessors, block row)Theset of descendantsof τ ∈ TI is recur-
sively defined by

sons∗(τ) :=

{ {τ} if sons(τ) = ∅,
{τ} ∪⋃τ ′∈sons(τ) sons

∗(τ ′) otherwise.

Theset of predecessorsis given by

pred(τ) := {τ+ ∈ TI : τ ∈ sons∗(τ+)}.

Further, theblock row is defined by

row∗(τ) := {σ ∈ TI : ∃τ+ ∈ pred(τ) : (τ+, σ) ∈ Pfar}.

Definition 6.4 (H2-matrix) Let the partitionP of I × I be based on the cluster treeTI andη > 0.
Let (Sτ )τ∈TI

and (Uσ)σ∈TI
be nested cluster bases. A matrixWH2 is said to be anH2-matrix, if

for eachη-admissible cluster pair(τ, σ) ∈ Pfar, there is a coupling matrixMτσ ∈ Rr×r such that
WH2 |τ×σ = SτMτσU

T
σ .

We refer to [HB02] for the storage complexity ofO(rN) for the family of transfer matrices(Tτ )τ∈TI
and coupling matrices(Mτσ)(τ,σ)∈Pfar

. Since the cluster basis only needs to be stored for the leaf
clusters, we get a storage requirement ofO(rN) for the cluster bases(Sτ )τ∈TI

and(Uτ )τ∈TI
, and

therefore a total storage requirement ofO(rN) for H2-matrices.

The following theorem shows that the matrixV−1 can be approximated by anH2-matrix and that the
error converges exponentially in the block rank.

Theorem 6.5 Fix η > 0. Let a partitionP of I × I be based on a cluster treeTI . Then, there is a
blockwise rank-rH2-matrixWH2 such that

∥∥V−1 −WH2

∥∥
2
≤ CH2N

(d+2)/(d−1)depth(TI)
√
|TI |e−br1/(d+1)

.

The constantCH2 > 0 depends only onΩ, d, and theγ-shape regularity ofTh, where the constantb > 0
additionally depends onη.
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Proof: We define the total cluster basisMτ :=
⋃{σ : σ ∈ row∗(τ)}. By definition ofrow∗(τ), there

exists a clusterτ+ ∈ pred(τ) such that(τ+, σ) ∈ Pfar for all σ ∈ row∗(τ). LetBRτ , BRτ+
, BRσ be

bounding boxes for the clustersτ, τ+, σ, and we assume thatBRτ ⊂ BRτ+
for τ ∈ sons∗(τ+). Then,

we have

diam(BRτ ) ≤ diam(BRτ+
) ≤ η dist(diam(BRτ+

), diam(BRσ))

≤ η dist(diam(BRτ ), diam(BRσ)) ∀σ ∈ row∗(τ).

Therefore, Theorem 2.4 can be used to derive a low-rank approximation of the matrix blockV
−1|τ×Mτ ,

i.e., it provides matricesXτMτ ∈ R|τ |×r,YτMτ ∈ R|Mτ |×r with r = Cdim(2 + η)dq−dkd+1, such that

∥∥V−1|τ×Mτ −XτMτY
T
τMτ

∥∥
2
. N (d+2)/(d−1)qk = N (d+2)/(d−1)e−br1/(d+1)

,

where the constantb > 0 depends only onΩ, d, theγ-shape regularity ofTh andη. Then, [B̈or10b,
Corollary 6.18] states that there exists a nested orthogonal cluster basis(Uτ )τ∈TI ∈ R|τ |×r of rank
r ≤ Cdim (2 + η)d q−dkd+1 such that for each(τ, σ) ∈ Pfar we have

∥∥V−1|τ×σ −UτU
T
τ V

−1|τ×σ

∥∥2
2

.
∑

τ∈TI

∥∥V−1|τ×Mτ −XτMτY
T
τMτ

∥∥2
2

. N (2d+4)/(d−1) |TI | e−2br1/(d+1)
.

With Mτσ := U
T
τ V

−1|τ×σUσ, the matrix

WH2 =

{
UτMτσU

T
σ , if (τ, σ) ∈ Pfar,

V
−1|τ×σ, otherwise,

(6.2)

is then the desiredH2-matrix approximatingV−1. The symmetry ofV−1, i.e. V−1 = V
−T , and∥∥AT

∥∥
2
= ‖A‖2 for A ∈ R|τ |×|σ| imply

∥∥V−1|τ×σ −WH2 |τ×σ

∥∥
2

≤
∥∥V−1|τ×σ −UτU

T
τ V

−1|τ×σ

∥∥
2

+
∥∥UτU

T
τ (V

−1|τ×σ −V
−1|τ×σUσU

T
σ )
∥∥
2

≤
∥∥V−1|τ×σ −UτU

T
τ V

−1|τ×σ

∥∥
2
+
∥∥V−1|σ×τ −UσU

T
σV

−1|σ×τ

∥∥
2

. N (d+2)/(d−1)
√

|TI |e−br1/(d+1)
.

Finally, Lemma 4.1 finishes the proof. �

For a quasiuniform mesh and typical clustering strategies, there holds|TI | ≃ N anddepth(TI) ≃
logN . Therefore, the rankr of theH2-matrix needed to obtain a certain accuracyε in Theorem 6.5 is

given byr ≃
∣∣∣ln ε− (d+2

d−1 + 1
2) logN − log logN

∣∣∣
d+1

≃ (C1 + C2 logN)d+1. In comparison, for the

H-matrix approximation in Theorem 2.7 a smaller rank ofr ≃
∣∣∣ln ε− d+2

d−1 logN − log logN
∣∣∣
d+1

≃
(C1 + C3 logN)d+1 is sufficient. However, since the storage requirement forH2-matrices is given by
O(rN) in comparison to the storage requirement forH-matrices ofO(rN logN), we observe that in
terms of storage, theH2-approximation leads to better results.

We refer to [B̈or10a] for numerical examples concerning this comparison for FEM matrices.

27



7 Numerical Examples

In this section, we present some numerical examples in two and three dimensions to illustrate our
theoretical estimates derived in the previous sections. More numerical examples aboutH-matrix ap-
proximation of inverse BEM matrices and black-box preconditioning with anH-LU decomposition can
be found, e.g., in [Gra01, Beb05, Gra05, Bör10b]

With the choiceη = 2 for the admissibility parameter in (2.3), the clustering is done by the standard
geometric clustering algorithm, i.e., by choosing axis parallel bounding boxes of minimal volume and
splitting these bounding boxes in half across the largest face until they are admissible or contain less
degrees of freedom thannleaf, which we choose asnleaf = 25 for our computations. An approximation
to the inverse Galerkin matrix is computed by using the singular value decomposition. Throughout, we
use the C-library HLib [BG99].

7.1 2D-Example

As a model geometry, we consider the L-shaped domainΩ = (0, 1)× (0, 12) ∪ (0, 12)× [12 , 1).

We consider the lowest-order discretization of the simple-layer potential

Vjk = 〈V χk, χj〉

from (2.2).

In Figure 1, we compare the decrease of the upper bound‖I−VWH‖2 of the relative error with the
increase in the block-rank for a fixed numberN = 16.384 of degrees of freedom, where the largest
block ofWH has a size of2.0482. Moreover, Table 1 shows the storage requirement for the computed
H-matrix approximation and the percentage of memory needed compared to the full representation. As
theoretically expected, we observe a linear growth in the rankr for the storage requirements. Moreover,
we note that the matrix norm ofWH is computed as‖WH‖2 = 1, 22 · 108.
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E
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Block rank r

exp(−2.4 r)

‖I − VWH‖2

Figure 1:Exponential convergence in block rank

r StorageWH (MB) Compressed to (%)
2 24,5 1,2
3 32,6 1,6
5 49,0 2,4
7 65,3 3,2
9 81,6 4,0

Table 1:Storage (MB) forWH

We observe exponential convergence in the block rank, where the convergence rate isexp(−br), which
is even faster than the rate ofexp(−br1/3) guaranteed by Theorem 2.7.
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7.2 3D-Example

For our three dimensional example, we consider the crankshaft generated by NETGEN [Sch97] visual-
ized in Figure 2.

Figure 2:Crankshaft domain

In Figure 3, we compare the decrease of‖I−VWH‖2 with the increase in the block-rank for a fixed
numberN = 27.968 of degrees of freedom, where the largest block ofWH has a size of3.4962. Table
2 shows the storage requirement for the matrixWH and the compression rates. The matrix norm of
WH is computed as‖WH‖2 = 41, 3.
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Figure 3:Exponential convergence in block rank

r StorageWH (MB) Compressed to (%)
10 1298 21,8
20 1465 24,6
30 1633 27,4
40 1800 30,2
50 1968 33,0
60 2135 35,8
70 2303 38,6

Table 2:Storage (MB) forWH

Comparing the results with our theoretical bound from Theorem 2.7, we empirically observe a rate of
exp(−br1/2) instead ofexp(−br1/4).
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