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Existence ofH-matrix approximants to the inverses of BEM
matrices: the simple-layer operator

Markus Faustmann Jens Markus Melenk Dirk Praetorius

November 20, 2013

Abstract

We consider the question of approximating the invéW8e= V! of the Galerkin stiffness
matrix V obtained by discretizing the simple-layer operdtowith piecewise constant functions.
The block partitioning oW is assumed to satisfy any of the standard admissibility criteria that are
employed in connection with clustering algorithms to approximate the discrete BEM op¥rator
We show thatW can be approximated by blockwise low-rank matrices such that the error decays
exponentially in the block rank employed. Similar exponential approximability results are shown
for the Cholesky factorization d¥ .

1 Introduction

The system matrices arising in the boundary element method (BEM) such as theVhadrithe classi-

cal simple-layer operatdr are fully populated. The classical BEM is therefore often deemed inefficient
with respect to memory requirements and, in turn, fast iterative solvers. These reservations can be met
with various compression techniques that have been developed in the past to store the BEM matrices
and realize the matrix-vector multiplication with log-linear (or even linear) complexity. We mention
here multipole expansions, [Rok85, GR97], panel clustering, [NK88, HN89, HS93, Sau92], wavelet
compression techniques, [Rat98, Rat01, Sch98, vPSS97, Tau03, TWO03], the mosaic-skeleton method,
[Tyr0Q], the adaptive cross approximation (ACA) method, [Beb00], and the hybrid cross approxima-
tion (HCA), [BG05]. Many of these data-sparse methods can be understood as specific instances of
‘H-matrices, which were introduced in [Hac99, GHO3, Gra01, Hac09] as blockwise low rank matri-
ces.H-matrices come with the additional feature that they permit an (approximate) arithmetic with
log-linear complexity. In particular, this arithmetic includes the (approximate) inversion of matrices.
Thus, theH-matrix arithmetic can provide an approximation to the inverse,[tbefactorization, or

the Cholesky decomposition. However, the accuracy of this approximate inverse or factorization de-
pends on various parameters including the rank of the blocks and is, for the matrices arising from
BEM, mathematically not fully understood. In the present paper we show that for a block structure
typically employed in the context df-matrices, the invers& = V! of the discretization of the
simple-layer operatoV’ can be approximated from the set of blockwise rankatrices at an expo-
nential rate in the block rank. While this result does not fully analyze the accuracy 6{-thatrix
inversion algorithms, it shows that inversion algorithms within #enatrix framework could work.

It thus gives some mathematical underpinning to the success &f-thatrix calculus when employed



to compute (approximate) inverses of BEM-matrices, which is observed raaiygrfor example, by
Bebendorf [Beb05] and Grasedyck [Gra01, Gra05].

Quickly after the introduction of th&{-matrix arithmetic, alsd4{-factorizations mimicking the clas-

sical LU- and Cholesky decompositions were proposed, [Lin04, Beb05]. Again, numerical evi-
dence indicates their great usefulness for example, for black box preconditioning in iterative solvers,
[Beb05, Gra05, GHKO08, LBG06, GKLBO08].

The class ofH-matrices is not the only one for which inversion and factorizations of system ma-
trices arising in the discretization of differential and integral operators have been devised. Closely
related to the concept df-matrices and its arithmetic are “hierarchically semiseparable matrices”,
[Xial3, XCGL09, LGWX12] and the idea of “recursive skeletonization”, [HG12, GGMR09, HY13b];
for discretizations of PDEs, we mention [HY13b, GM13, SY12, Mar09], and particular applica-
tions to boundary integral equations are [MR05, CMZ13, HY13a]. These factorization algorithms
aim to exploit that some off-diagonal blocks of certain Schur complements are low rank. Following
[Beb07, GKLB09, CDGS10], we rigorously establish that the off-diagonal blocks of certain Schur
complements can be approximated by low-rank matrices. We exploit this fact to show that the Cholesky
decomposition ofV can be approximated at an exponential rate in the block rank irtmeatrix
format.

Hitherto, the mathematical analysis of approximability of the inverse of system matricegHnrtrarix

format has focused on the setting of the finite element method (FEM). The first result in this direction
is due to [BHO3]. Generalizations to elliptic systems [Sch06] and approximations in the framework of
H?2-matrices [Br10a, Br10b] are also analyzed. Our recent works [FMP12, FMP13] differ from the
above mentioned references fgrmatrices for FEM-matrices in several ways. Among the differences,

we highlight that, as in present paper, [FMP12, FMP13] work in a fully discrete setting in contrast to
the earlier technique of approximating on the continuous level and then projecting into discrete spaces.
This technique avoids the projection error associated with the transition from the continuous level to
the discrete one, and leads to exponential convergence in the block rank.

In the present paper, we focus on the lowest-order discretization of the simple-layer operator associated
with the Laplace operator. However, our arguments are based on rather general properties of elliptic
operators so that we expect that similar assertions can be shown for higher order discretizations and the
hypersingular integral equation, as well as elliptic systems amenable to a treatment with the BEM such
as the Lard system.

The paper is structured as follows. In Section 2, we present the main resitsnfatrices. Mathemat-

ically, the core of the paper is Section 3, where we investigate the question of how well solutions of the
discrete system can be approximated locally from low dimensional spaces. These results are transferred
to the matrix level in Sections 4 and 5 to show the approximability resuNfot and for Cholesky de-
compositions, respectively. Section 6 is concerned with various extensions of our approximation result:
We show a similar compression result for the Poigeteklov operator and we show thét ! can be
approximated at an exponential rate in the formak/dfmatrices, [HKS00, Br10a, Br10b].

2 Main Result

LetQ c R%, d € {2,3}, be a bounded Lipschitz domain such that= 9Q is polygonal (ford = 2) or
polyhedral (ford = 3). We consider the simple-layer operaiore L(H~/?(T"), H'/?(I')) associated



with the Laplacian given by
Vola) = [ Gla=)ou)ds,, e,

whereG(z) = —5-log|z| for d = 2 andG(z) = ﬁ‘%' for d = 3 is the fundamental solution of

the Laplacian. The simple-layer operator is an elliptic isomorphism fer3 and ford = 2 provided
diam(€2) < 1, which can be assumed by scaling. We refer the reader to the monographs [McLO0O,
HWO08, SS11, Ste08] for a detailed discussion of the pertinent properties of boundary integral operators

such as the simple-layer operator studied here.

We assume thdf is triangulated by ayuasiuniformmesh7, = {T1,...,Tx} of mesh widthh :=
maxr,e7, diam(7}). The elementd); € 7, are open line segments (& 2) or triangles (d= 3).
Additionally, we assume that the me$h is regular in the sense of Ciarlet aneshape regular in the
sense that forl = 2 the quotient of the diameters of neighboring elements is boundeddnd for
d = 3 we havediam(T}) < ~|T;|'/? for all T; € Tj,. In the following, the notatiorg abbreviates<
up to a constant’ > 0 which depends only of?, the dimensionl, and they-shape regularity of7,.
Moreover, we use- to indicate that both estimatgsand> hold.

We consider the lowest-order Galerkin discretization 10fby piecewise constant functions in
S90(Ty) = {u € L*(T) : ulg,is constant'T; € T, }. Throughout, we will work with the basis

By :={xj : j=1,...,N} of the spac&”’(7,), wherey; is the characteristic function associated
with T; € 7y, With the isomorphisn® : RN — S%0(T;), x = Y| x;x;, we note

W2 Ixlly S 12Ol 2y S B2 Ixlly  Vx € RY. (2.1)

With the basis;, the Galerkin discretization df leads to a symmetric and positive definite matrix
V € RV*N where

Vi =Vxw, x;5) = /T . G(x —y)dsydsy, X, Xk € Bn, (2.2)
5 T,

and(-, -) denotes the.?(I")-scalar product.

In the following, we study the approximability of the inverse BEM maWik = V! by some block-
wise low-rank matrixXW,. First, we need to define the underlying block structure, which is based on
the concept of “admissibility”, introduced in the following definition.

Definition 2.1 (bounding boxes and;-admissibility) A clusterr is a subset of the index s&t =
{1,...,N}. Foraclusterr C Z, we say that3z. C R?is abounding boxf:

(i) Bg, is ahyper cube with side lengfh-,

(i) T; C By, forallie T,

For n > 0, a pair of clusterg(r, o) with 7,0 C Z is n-admissibleif there exist bounding box&3g_,
Bpr, satisfying (i)—(ii) such that

min{diam(Bpg_),diam(Bgr,)} < n dist(Bg,, Br,)- (2.3)



Remark 2.2 Snce the operatol/ is symmetric, we are able to use the admissibility condi{ibB)
instead of the stronger admissibility condition

max{diamBpg_, diamBpr_} < n dist(Bg,, Bg, ), (2.4)

which is often encountered in clustering algorithms. This follows from the fact that Proposition 3.1 only
needs an admissibility criterion of the fordinm Br_ < ndist(Bg,, Br, ). Due to the symmetry of,
deriving a block approximation for the bloekx ¢ is equivalent to deriving an approximation for the
blocko x 7. Therefore, we can interchange roles of the bakgs and B, and as a consequence the
weaker admissibility conditio®.3)is sufficient.

Definition 2.3 (blockwise rank-rmatrices) Let P be a partition ofZ x Z andn > 0. A matrixWy €
RM*N is said to be ablockwise rank-rmatrix, if for everyn-admissible cluster paifr, o) € P, the
block Wy, |, is @ rank-rmatrix, i.e., it has the forftWy|, x, = X,, YL, with X,, € RIT*" and
Y., € RI?I*", Here and below,s| denotes the cardinality of a finite set

2.1 Approximation of V!

The following Theorem 2.4 shows that admissible matrix blockg of can be approximated by rank-r
matrices and the error converges exponentially in the block rank.

Theorem 2.4 Fixn > 0 andq € (0,1). Let the cluster pair, o) be n-admissible. Then, for every
k € N, there are matriceX,, € RI"*", Y, € RI?I*" of rankr < Cyim (2 + 1)%q k4! such that

HV_1|T><CT - XTUYZ

UHQ < Capr(d+2)/(d_1)qk- (25)

The constant§’, .., Cqim > 0 depend only o2, d, and they-shape regularity offy,.

The approximation estimates for the individual blocks can be combined to assess the approximability
of V! by blockwise rank-imatrices. Particularly satisfactory estimates are obtained if the blockwise
rank-rmatrices have additional structure. To that end, we introduce the following definitions.

Definition 2.5 (cluster tree) A cluster treawith leaf sizen,..s € N is a binary tre€ll'z with rootZ such
that for each cluster € Tz the following dichotomy holds: eitheris a leaf of the tree anfr| < njeat,
or there exist so called sons, 7/ € Tz, which are disjoint subsets efwith 7 = 7/ U 7”. Thelevel
functionlevel : Tz — Ny is inductively defined blevel(Z) = 0 andlevel(7’) := level(7) 4+ 1 for 7" a
son ofr. Thedepthof a cluster tree islepth(Tz) := max e, level(7).

Definition 2.6 (far field, near field, and sparsity constant) A partition P of Z x 7 is said to be based
on the cluster treél'z, if P ¢ Tz x Tz. For such a partitionP and fixedn > 0, we define théar field
and thenear fieldas

Py :={(1,0) € P : (1,0) isn-admissiblé, P,car := P\ Pray. (2.6)

Thesparsity constant’s;,, introduced in [Gra01], of such a partition is defined by

Csp = max{max\{a €Tz : 7 X0 € Py} ,Hé%x HreTr:7xo0€ Pfar}|} . 2.7)
o€T

T7€T1



The following Theorem 2.7 shows that the matNx ! can be approximated by blockwise rank-r
matrices at an exponential rate in the block rank

Theorem 2.7 Fix n > 0. Let a partition P of Z x Z be based on a cluster trééz. Then, there is a
blockwise rank-mmatrix W4, such that
V™! = Wy||, < CapxCepN /@D depth(Tx)e (2.8)

The constanC,,x depends only of2, d, and they-shape regularity off,, while the constant > 0
additionally depends on.

_ppl/(d+1)

Remark 2.8 For quasiuniform meshes with (V) elements, typical clustering strategies such as the
“geometric clustering” described in [Hac09] lead to fairly balanced cluster tréfigesof depthO(log N)

and a sparsity constart, that is bounded uniformly itv. We refer to [Hac09] for the fact that the
memory requirement to Stol 4 is O ((r + niear) N log N).

Remark 2.9 Usingh ~ N—/(¢=1) and e 1” < |V l, < l4=1/2 ~ N~1/2 where the last estimate
can be found, e.g, in [Ste08, Lemma 12.6], we get a bound for the relative error
V== Wadd,
V=l

< CapxCep NF9)/24=2) qepth () e/ (2.9)

Remark 2.10 The approximation result of Theorem 2.7 is formulated in the spectral norm. In fact,

inspection of the proof of Theorem 2.4 shows that we prove an approximation result in the wéitthted

operator norm|-|| s>, 1 ;.. Other norms such as the Frobenius-norm are possible, and the estimates
v

change only by some powers/afFor the Frobenius norm, we can for instance employ the estimate
A, < |Allz < VN | A, for A € RNV,

2.2 H-Cholesky decomposition ofV

LU- and Cholesky decompositions are well-established tools of numerical linear algebra. Properties
of these factorizations depend on the choice of the ordering of the unknowns. Far-@ielesky
decomposition of Theorem 2.11 below we assume that the unknowns are organized in a binary cluster
treeTz. This induces an ordering of the unknowns by requiring that the unknowns of one of the sons are
numbered first and those of the other son later; the precise numbering for the leaves is immaterial for our
purposes. This induced ordering of the unknowns allows us to spddéadflower triangulamatrices,

if the block partition P is based on the cluster trég;. With this notation, we have the following
factorization result:

Theorem 2.11 LetV = CC” be the Cholesky decomposition. Let a partiti®of Z x Z be based on
a cluster tre€l'z. Then, there exist a block lower triangular, blockwise rankatrix C4; such that

C — Cxull,
(i) —=—= <Ca
IClJ,

[V - CuCxn
VI,

3
o N2 depth(Tz)e b/

T
3
H2 < 2CcholN2d 2depth(Tz)e —brt /D L o 2 NI depth(ﬂz)Qe_zbrl/<d+l>,

(i) c
whereCpo1 = CspCsc/K2(V), with the sparsity constart, of (2.7), the spectral condition number
k2(V) == | V||, |[V~!|],, and a constan€;. depending only o2, d, the y-shape regularity offj,
andn.



3 Local approximation from low dimensional spaces

For a given functionf € L?(T"), we consider the boundary integral equation
Vo= f onTl.

Here, we might consider the simple-layer operatoe L(H (T, L*(T")) as a mapping front/ ~(T")
to L%(T), see e.g. [SS11]. The discrete variational problem is toding S°°(7;,) such that

(Von,n) = (f,0n)  Vbn € SPO(Th). (3.1)

With V from (2.2) andb € RY defined byb; = (f, x;), the variational problem (3.1) is equivalent to
solving the linear system
Vx =b. (3.2)

By ellipticity of the simple-layer operator, both problems (3.1)-(3.2) have a unique solution. The
solutionx € R is linked to (3.1) viag;, = Y"1, x; ;.

In the following, we repeatedly employ the?(I")-orthogonal projectiodI” : L2(I') — S%9(7p,)

defined by
(0 n) | = 0y ¥on € S™(Th). (33)

2(T)

The question of approximating the matrix blo¥k!|, ., ~ X,,YZ can be rephrased in terms of
functions and function spaces, as the question of how wglk,, can be approximated from low
dimensional spaces for (arbitrary) datac L?(T") with supp f C Bg, N T'. The present section is
devoted to the proof of such an approximation result formulated in the following Proposition 3.1.

Proposition 3.1 Let (7,0) be a cluster pair with bounding boxesBr_, Bgr,. Assume
ndist(Bg,,Br,) > diam(Bg,) for somen > 0, and R, < 2diam(Q2). Fix ¢ € (0,1). Then, for
eachk € N there exists a subspad®), of S%0(7;,) with dim W}, < Cgim(2 + n)%q k%! such that
for arbitrary f € L?(T") with supp f C Bg, N T, the solutionp,, of (3.1) satisfies

wfgg}k [én — wlz2(Bg, A1) < Choxh ™2 [T £ 12y < Croxh™ "1 1l 2 (B, A1)- (3.4)
The constant§'y;,,, Chox > 0 depend only o2, d, and they-shape regularity offj,.

The proof of Proposition 3.1 will be given at the end of this section and relies on several observations.
First, the potential

u@wszmwaéau—wm@m%, r eR\T,

generated by the solutiopy, of (3.1) is harmonic o2 as well as or2¢ := R? \ Q and satisfies the
jump conditions

hou] == A§u—g"u=0¢e H'/*(I),

[Onu] = AP =" = —¢n € H V(D). (3.5)



Here,vg"Xt,fy})”t denote the exterior and interior trace operator afft, yilm the exterior and interior
conormal derivative, see, e.g., [SS11]. Hence, the potentfain a space of piecewise harmonic func-
tions, and the jump of the normal derivative is piecewise constant on the Tjediese properties
will characterize the spacé#;, (D) to be introduced below. The second observation is an orthogonality
condition. Forf with supp f C Br, NI, equation (3.1) implies

<u,¢h>L2(p) = (f, U}h>L2(F) =0 Yy, € SO’O(E)With supp vy, C '\ Bg, . (3.6)

With the admissibility conditiondist(Br,, Bg,) > 1~ ! min{diam(Bg,),diam(Bg,)} > 0, this
leads to the orthogonality condition

(w, n) 2y = 0 Vipy € S®°(Tp) with supp ¢y, C Br, NT, (3.7)

i.e., onBr, NT the potentiak is orthogonal to piecewise constants.

With these observations we are able to prove a Caccioppoli-type estimate (Lemma 3.9) for piecewise
harmonic functions satisfying the orthogonality (3.7). Then, a low dimensional approximation result
(Lemma 3.10) derived by Scott-Zhang interpolation of the Galerkin solutjgrcan be iterated as in
[BHO3, Borl0a], which finally leads to exponential convergence (Lemma 3.11).

3.1 Properties of piecewise polynomial spaces

For an edge/fac&' C I' with affine parametrizatiog andp > 0, we letP,(7T") be the spacé,(T) :=
{pog|r : p € P,(R1)} of polynomials of degreg. Moreover, we definé?!(7,) := {v € C(T) :
vlr € Py(T) VT € Th} to be the space of dff,-piecewise polynomials of degreehat are continuous
onl.

Throughout this section we make use of the Scott-Zhang projection
I, : HY(T) — S™(Tp)

introduced in [SZ90]. Bywy := J{T' €T, : TNT' #(}, we denote the element patch of
T, which containsT and all elementsI” € 7, that share a node witi". The operatorl,,
has well-known local approximation properties f@f-piecewise H¢-functionsv € ng(l“) =

{ue L*) : uly € HY(T)VT € Ty}, namely,
v = Tnvl| Fm(ry < CR2E™ " Jolipep, 0<m <1, m<e<2. (3.8)
T'Cwr

The constan€ > 0 depends only on the-shape regularity 6f;, and the dimensiod. We note that the
Scott-Zhang projection in [SZ90] is only defined for functionsdn (I"), but by averaging only over
triangles (and not over faces) it may also be well defined for functioig ().

The following lemma constructs a stable operatof8(I") that features additional orthogonality prop-
erties:

Lemma 3.2 There exists a linear operatqf), : L?(I') — S (T;,) such that for allv € H*(T")

O [[Tnoll 2y < Clvllpe@yy YT € Th
(i) IVIwvll 2y < ClIVOll 2,y VT € Th



(i) (v~ Tpv,9) =0 Vi € S*(Tp)

W) [[v — Tuoll oy < Ch V0|2 VT € T

(wr)

The constan€ > 0 depends only o and they-shape regularity of the mesh,.

Proof: Letby € S%1(T;,) be the element bubble function for edEhe 7;, which is the product of the
d hat-functions associated wifhi and scaled such thgbr| = 1. Denote byyr the characteristic
function of T. With the Scott-Zhang projectioh,, we define

—
T =Iw+ Y by 80 0t xT).
Jbr
TET;, T

For T’ € 7; we have

I
(v—Jhv,x17) = <U—IhU— > bT i XT>,XT/>

TET,
(b, XT’> (
fT/ b

which proves (iii). The Cauchy-Schwarz inequality and the approximation property (3[g8)roply

= <’U - Ih”?XT'> - U= IhU, XT'> = 07

1Bzl 2
lo = Tnvllary <l —Invl e + Ubj>wW%w—awmm
T

S o = Il agry S A1Vl

wr)

This proves (iv). The first assertion (i) follows with the same argument due td ikstability and
approximation property (3.8) of the Scott-Zhang projectignFinally, we get

Vb7 2y
bl

v Ih’UHL2(T) S HVUHL2(UJT)

IV (@ = Ti)ll 2y 712 |l = Iyoll oy

IN

IV (v = Tnv)|l 2y +

1
S V@=Ll + 7 |

and the triangle inequality finishes the proof of (ii). O

The following inverse inequalities also holds for locally refif€dmeshes, but we will only require it
for the quasi-uniform mest, at hand.

Lemma 3.3 ([DFG"01, Thm 4.1, Thm. 4.7]) There is a constan” > 0 depending only oi’, the
~v-shape regularity off;,, and the polynomial degreesuch that

lonll ey < ChTYP onll oy Von € SPH(TR), (3.9)
lonllzzqy < ChY2 lonllg-rrzry  Von € SPO(TR). (3.10)

A



3.2 The space${,(D) and H, (D, T',) of piecewise harmonic functions

Forp C Z,letI', C I' be an open polygonal manifold, consisting of the union of element, in
associated with the elementsgni.e.

I', = interior (U TJ) . (3.11)

Jjep

Let D be a domain and sé@~ := DN QandD* := DNQ". Afunctionv € H' (Dt U D) is called
piecewise harmonic, if

Vv -Vpdr=0 VYo c Ci°(DF).
Dt

Remark 3.4 For a piecewise harmonic function € H'(D* U D~), we can define the jump of the
normal derivatived,,v]| pnr on D N T" as the functional

([Onv]|DAr, ) = / Vv -Vedr Ve € HY (D). (3.12)
DTuD—

We note that the valugd,v]|pnr, ¢) depends only o|par in the sense, that{d,,v]| par, ) = 0
for all ¢ € C5°(D) with ¢|par = 0. Moreover, if[0,v]| par is a function inL?(D N T'), it is unique.
The definition(3.12)is consistent with{3.5) in the following sense: For the potenti&le;, with ¢; €
S%0(T,), we have the jump conditid®,V ¢4]| par = —on|pAr-

The space of piecewise harmonic functions/dwith piecewise constant jump of the normal derivative
is defined by

Hu(D) = {ve HY(DTuD): vis piecewise harmonic,
Jv e SO’O(E) S.t. [anU”DmF = 6‘Dmp}.

The potentiaks = V ¢y, for the problem (3.1) indeed satisfiese Hy(D) N HY(D) for any bounded
domain D. Moreover, for a bounding bo®Br_ with (2.3), the potential: additionally satisfies the
orthogonality condition (3.7). These observations are captured by the following Hpag®, I',):

Hino(D,Tp) = Hp(D)N{ve Hl(D): supp[n ]| par € Ty,
(v, )2y =0V € SOO0(T5,) with supp p € DNT,}(3.13)

For the proof of Proposition 3.1 and subsequently of Theorem 2.4 and Theorem 2.7, we will only need
the casd’, = I'. The general case of the screen problgnC I" will only be required for our analysis
of the H-Cholesky decomposition in Section 5.

The following lemma shows that this space is a closed subspaég @ \ T'); later, this property
will allow us to consider the orthogonal projection frdift (D\I') ontoH;,(D) and fromH ' (D) onto
Hno(D,T)).

Lemma 3.5 The spaceH,,(D) is a closed subspace &' (D \ I'), andH, (D, T,) is a closed sub-
space off ' (D).



Proof: We first show that,,(D) is a closed subspace &f'(D \ T'). Let (v/);en C Hn(D) be a
sequence converging toc H'(D\I'). Fory € C§°(D*), we have

{Vo, v(‘0>L2(Di) - jli)rgo <v”j7v80>L2(Di) = 0.

Hencew is harmonic onDT U D—.
Picky € C§°(D) \ {0} with suppp NI' C T' € Tj. Then

[0n 0" (1, ) 2y = <[anvj}7(10>L2(T) = <ij’v‘p>L2(D\F) = (V0. Ve oy

shows that the piecewise constant functighv’/] converges elementwise. Hence, the sequence
([8nvj])j oy converges pointwise to a piecewise constant functiomhis piecewise constant limit

coincides with the jump of the normal derivatii@,v] € H~'/2(T") as the following calculation for
arbitraryp € C§°(D) shows:

(v, @) 2pary = lim <[3nvj]780>Lz(Dmp) = (Vu, Vo) 2 (prry = ([0nv], ) 12D -

j—o0
Finally, Hx0(D,T,) is a closed subspace &f' (D), since (D) is a closed subspace &f' (D \ T

and the intersection of finitely many closed spaces is again closed. O

We will derive an approximation of the Galerkin solutigp by approximating the potential = X7th.
In view of the relationp;, = —[0,,u] we have to control the jump of the normal derivative by a norm

of u. Lemma 3.8 below provides such an estimate, which may be seen as an inverse estimate, since

[Onu] is a discrete function. For its proof, we need the following Lemma 3.7 as well as the definition of
“concentric boxes”.

Definition 3.6 Two (open) boxe®r, By are said to be concentric boxes with side lengthand R/,
if they have the same barycenter aBg can be obtained by a stretching 8 by the factorR/R’
taking their common barycenter as the origin.

The following Lemma 3.7 is quite classical, and we include its short proof for the reader’s convenience.

Lemma3.7 (i) For R < 1denote bySy := {z € R? : dist(x,T) < R} the tubular neighborhood
of I" of width R. Then, there is a constant > 0 which depends only oh, such that

1ol z2(sg) < C [VRING 0l 2y + RHVUHH(SR)} Vo € H'(SR).

(i) Letd, R > 0. Let Br and B(;14)r be two concentric boxes with side lengtRsand (1 + §) .
Then, there is a constarf > 0 which depends only on the dimensi@nsuch that for allv €
H'(Bg1445)r), We have

1
2 2 2
HUHLQ(B<1+5)R\BR) <COR <<1 T 5)RHU”L2(B(1+5>R) + 1+ 6>RHVUHL2(B(1+5)R)> :

10



Proof ad (i): For smooth univariate functionsthe fundamental theorem of calculus yields) =
) + fz '(t) dt. Hence, the Young inequality and the Cauchy-Schwarz inequality yigld) <
( )+ 2R||v’||L2(OR Integration over the intervaD, R) gives

[0[172(0 5y < 2RV*(0) + 2R?[[0/[1 720 )

This 1D result implies the desired estimate by using (locally) boundary fitted coordinates.
ad (ii): We start with the 1D Gagliardo-Nirenberg inequality for the intetva (0, 1): HU”%OO(I) <
Cllvll 2y llvll ey < C’HvHL2 + Clloll2¢pl[v'[| 21y A scaling argument then yields
2 < 1
[Vl Zee0,14000m) = WH 720,028y m) + 10l 20,040 m) 1| L20,040) R)

1
WHU”LQ(O arsyr) + L+ ORIV 720 116)R):

N

We may assume thd; 5z = (0, (1 + 6)R)®. Then, this 1D estimate implies

1

10122 0.57)x(0,0:+5)myt-1) S O <(1 o (0 F 5)R”W”2L?<B<M>R>> :

By arguing similarly for the remaining parts &, 5 r \ Br, we get the desired result. g

Lemma 3.8 Lets € (0,1), R > 0 be such thaty < 2. Let Bg, B(;,4)r be two concentric boxes of
side lengthsk and (1 + 0)R. Then, there exists a constafit > 0 depending only o2, d, and the
v-shape regularity off;,, such that for allv € Hj,(B(145)r)

H [anv] HL2(B(1+5/2)RQF) S Chil/Q HVUHLQ( (314)

Ba4+syr)

Proof: We prove (3.14) in two steps, the first step being the proof of the auxiliary estimate (3.15) below.
The second step shows (3.14) with the aid of (3.15) and a simple covering argument.

Step 1:We show the following assertion: l;f < i forr,e > 0, then there exists a constarit> 0 de-
pending only on the shape regularity constarthe domairf2, andd such that for alb € H, (B 4¢),)

10wl 25,y < C™Y24 /14 2 IIVvHLz (3.15)

(B(i4eyr)

To see this, le€™ : HY2(I') — HY(Q) and&>t : HY2(I') — H'(Q°) be (bounded, linear)
lifting operators for2 and2¢ (cf. [NeC67, Thm. 5.7]). Then, introduce the (bounded, linear) lifting
L:HY2(') — H'(R?) by
{ EMtyw inQ,
Lw = .

E™w  in Q°.

Lemma 3.2 provides an operatgy, : L*(T') — S%!(T;,) ¢ HY(T'). Furthermorew — J,w is orthog-
onal to piecewise constant functions so that

([Onv], w) 21 ([0nv], Tnw) p2r
100l 2,0y = sup = sup m (3.16)
wer2ry  wllpzm weLA(T) lwll g2y
supp wC By supp wC By

11



Note that the construction Qf;, implies supp Jyw C B,49, N I'. Letn be a smooth cut-off function
with0 <7 < 1,7 = 10N B, 2, andsuppn C B(14¢), andHVnHLoo(B(HE)T) < siT With the lifting
L(Jpw), we can estimate

{[Onv], jhw>L2(Br+2hﬁF) = <[8"U]’ ’yg)mnﬁjhw>L2(Br+2hﬂF)
= / Vv -V(nLIpw)dx
B(1+5)7‘

IVUll 2By IVOLTRO) | L2, ) - (3.17)

IN

We have to estimateL 7, w further. Noting that) = 1 on B,, we use the product rule to estimate
1
INLTw) 2B, 40y) S ;T,HﬁjthH(B(HE)T\BT) VLIl 2B, (3-18)

The continuity of the litingC : H'/2(I') — H'(R%) and the inverse estimate (3.9) of Lemma 3.3 give

1
||V£u7hw||L2(Sﬁ(1+€)r) < ||V£t7hw”L2(Rd) S Hjhw”Hl/?(F) S ﬁ”jthL?(F)a (3.19)

which is the key step for the treatment of the second term in (3.18). Let us now turn to the first term in
(3.18). Using Lemma 3.7, (ii) and then Lemma 3.7, (i) with the observatign.), C S\/E(1+e) we
get

r?

1 1
4 < .+t
p ILTwwllr2B 0By S NENET: I1LTnwllr2(B 00

1+
VO G L Gl o

+ \VET

B(l+5)r)

1 (I+e)r
S ﬁ”ﬁjhwum(r) + T\|V£Jhw\|L2(Sﬁ(l+E>r)-

We havel J,w|r = Jpw, and (3.19) leads to
1 1 _
g”ﬁjthL?(B(HE)T\BT) S \/?HjthL?(F) + R+ e Thwl L2y (3.20)

We note thatr > 4h so thatl/\/er < h~'/2. Inserting (3.19) and (3.20) in (3.18) and using the
L?(I")-stability of 73, given by Lemma 3.2, we obtain

IVLTww) 128,40 S RV + e | Thwl L2y S h 21+ e~ wllp2(ry-

Finally, inserting this bound into (3.17) and then into (3.16) allows us to conclude the proof of (3.15).

Step 2:The bound (3.14) is shown with the aid of (3.15) and a covering argument. We may assume that
Br = (0,R)?. Setr = §R. Letn € N be given byn = [R/r]. Letz;, i =1,...,(n +1)? = N

be the points of a regular grid in the closed by with spacingR/n. Fori = 1,..., N consider the
boxesB; := z; + (—r/2,r/2) as well as the scaled boxés := z; + (—r,r)%, i = 1,...,N. The
essential properties of these boxes are: first, the b&es = 1,..., N cover B, ;/2)r; secondly,

the scaled boxeB;, i = 1,..., N are contained iB(; 5 g; thirdly, and most importantly, they have a
finite overlap property (with an overlap constant that depends solely on the spatial diménsioce

the ratio of the spacing/n and the side length satisfies:/(R/n) = (1/6)/[1/d] € [1/2, 1] for the

12



cased € (0,1) under consideration here). Observiffag: % < i due to our assumptio% < g, the
estimate (3.15) implies for each

[[n0]llz2(s,nr) < CHTY2 (V0] 2.
The desired estimate (3.14) follows from the covering and overlap properties. O

For a boxBg with side lengthR, we introduce the norm

h\° 1
= () 19000 + 72 Iolm

which is, for fixedh, equivalent to theéZ!-norm.

Similarly as in [BHO3, Brl0a], a main part of the proof is a Caccioppoli-type inequality, which is, for
functions inH 0(B(14s)r, '), stated in the following lemma.

Lemma 3.9 Lets € (0,1) and% < % and letl", C I" be of the form(3.11) Let Bg, B(144)r be two
concentric boxes. Then, fere H; o(B14s)r, ), there exists a constadt > 0 depending only on
Q, d, and they-shape regularity off;,, such that

146
IVUll 2y < C—5— lvllnaror- (3.21)

Proof: The proof of (3.21) is done in two steps.

Step 1:We show that foe > 0 with 2 < £, the estimate

h 1
2 2 2
IVOlZ2 By S R IVOlT2B 4 m) + WHU||L2(B(1+E>R)' (3.22)

holds. To see this, lef be a smooth cut-off function witkupp n C B(14./4)r andn = 1 on Bg, and
anHLOO(B(H»e)R) S é. We will need a second smooth cut-off functignvith supp 7 C B(1.4.)r and

n=10nB4c2)R andHVﬁHLm(B(HE)R) < i. Sinceh is the maximal element diamet&f, < cR

impliesT C B(i4./2)r for all T € T;, with ' suppn # (. Integration by parts, the fact thatis
piecewise harmonic armhpp([@nUHB(HE)Rmp) C fp lead to

IV ey = [ V) Veeide= [ VoS + o [On ds
Baye)r Bayer
_ 2 2 2
= / 7 [5nv]vdsx+/ v7 | Vn|*dx
FﬂB(1+E)R B(1+E)R
= /nQ[anv]vdsx+/ v? |Vn|? da, (3.23)
r Bye)r

where in the last step we used the support propeiity n C B, /4)r t0 extend the function?[0,v]v,
which is defined oi” N B(;.)r, by zero to the whole sdt. We first focus on the surface integral in

(3.23). With theL?(I')-orthogonal projectiodI~* onto 5%0(7;) from (3.3), we get by definition of
the spacet; o(B(11)r,'p) that supp 12 (n2[0,0]) < T, N B(1+¢)r- Therefore, we can use the
orthogonality (3.13) satisfied hyto get
<772 [anv]vvh?(r) = <772 [Opv] — mnt* (772 [anv])7U>L2(F) = (772[‘911“] i (772 [anv})ﬁ%ﬁ%r)
= (1P0nv] — T (2 [0,0]), %0 — T (7720)) L2y, (3.24)
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where we were able to insert the cut-off functipsince 77 = 1 onsupp(n2[0,v] — I (n2[0,v])) C
(B(1+¢/2)r \ Br—2n) NT,. With these observations in hand, we estimate

l°(0n0] = 17 (10D I72ry S 3 W2 IVE(’ 100D 72
TeTh

2
c h

S W [[[Onv]

2
22 (B 1 joy )T

With the standard approximation propefty*v — IT* (720) | .2 (r) < W2 (720 | g1/2 () @nd the bound
(3.14) of Lemma 3.8 as well as the trace inequalityIfpwe get

h ~
|(?[0n0],0) 20| S sRH[anv]HL?((B(HE/2)R)mF,,)h1/2||772U\|H1/2(r) (3.25)
< vl 1720l 1200y S [V 7%
N cpWVUIL2 (B p) 1M VllHY2(0) & ZR IV UILA(Byg ) 11T VIH(Q):
The support properties ofimply [|72v|| ;1) S ||VUHL2(B(1+E)R) + (sR)”HvHLg(B(HE)R). Inserting

this into (3.25) and the result into (3.23) yields
h
||V(77“)H%2(B(1+E)R) S EHVUH%%B(HE)R)+(gT)g||VU||L2(B(1+E)R)HUHL?(B(H_E)R)

2
+ (eR)? HUHLQ(B(Hs)R)
h 1

< v 2 2
~ sRva”L2(3<1+s)R) + (eR)? HUHLQ(B(Hs)R)’

where we employed an appropriate Young inequality in the last stegafad?) < 1. This implies
(3.22).

Step 2: Starting from estimate (3.22) with = g we use (3.22) again with = ﬁ and R = (14
§/2)R. Since(1 + 3) (1 - 2%) =1+dandf < {; implies £ < £, we arrive at

1

h
2 2 2
HVUHLQ(BR) S EHVUHLQ(B(HM)R) + (6R)? HUHL2(3<1+5/2>R)

h\? oll? h 1 )
SR | U||L2(B(1+5)R)+ (5R)3+(5R)2 HU”LQ(B(H«S)R)’

and withh /(0 R) < 1 we conclude the proof. O

N

3.3 Low-dimensional approximation in#;, o(D,T,)

SinceH,,0(Br,I',) C H'(Bg) is a closed subspace by Lemma 3.5, the orthogonal projefiign :
(H'(BRr), 1'ln,z) = (Hno(Br,Tp), [l ) is well-defined.

Lemma3.10 Lety € (0,1), R > 0 such that% < % and Bg, Bi4s)ry Bi42s)R be concentric
boxes. Lel’, C I" be of the forn(3.11)andv € Hj, o(B(1425)r, L'p)- LetKy be an (infiniteyy-shape
regular triangulation ofR¢ of mesh widthH and assum(% < g for the corresponding mesh wid#H.
Letly : HY(R?) — SY1(Ky) be the Scott-Zhang projection. Then, there exists a conétgnt > 0
that depends only of?, d, and~, such that

14



(i) (v—Hprlgv)|, € Haol(Br,T,)

(@) JJv =T rluvly, g < Capp ™52 (5 + ) 10hn 14208

. . d
(ii) dim W < Cypp ((1+135)R> ,whereW := Tlj, rIHno(B12s)r, Lp)-

Proof: Sincev € Hp o(B(1426)r; L'p) impliesv € Hy, o(Br,T,), we havelly r (v|py) = v|By, Which
proves (i).

The assumptio; < ¢ implies J{K € Ky : wg N Br # 0} C B(145)r- Then, the locality and
approximation properties (3.8) of the Scott-Zhang projectigryield

1

g W= Ivllpapy + IV = Ia0)l2m, S IVOlli2B, 500 -
We apply Lemma 3.9 wittR = (1 + 0)R andd = ;2. Note that(1 + §) 1 = (1 + 26) R. Moreover,

16h <R =0R |mpI|es§ < {5- Therefore, we get

2 2 2
lo =1, r Il = 1h,g (v = IrV)ll}, 5 < llo = TEvll} R

h\’ 1
— () 190 = o) + g o = Tl
h? H?

2 2
S Rr? ||VU||L2(B(1+5)R) + R? ||VUHL2(B(1+6)R)

L+6 (h  H\\ o
(B2 (5+2)) Plsn

which concludes the proof of (ii). Finally, the statement (iii) follows from the fact that
dim I (Hpo(B(i+26)r, Tp)) S ((1+286)R/H)". O

The property (i) of Lemma 3.10 can be used to iterate the approximation result (ii) on suitable concentric
boxes. This will allow us to construct a subspace@fo(B(1+x)r, ') for & € (0, 1) with the capability
to approximate at an exponential rate.

Lemma 3.11 Let Cy;,;, be the constant of Lemma 3.10. ket € (0,1), R > 0, k € NandI', C I" be
of the form(3.11) Assume

h Kq
— < . 2
R ~ 64k max{1, Cyapp} (3.26)

Then, there exists a finite dimensional subspi%eof Hno(Ba+x)rs T'p) With dimension

dim W, < Cyin <1 TR ) o1
q

such that for every € Hy, 0(B(14x)r> L)

min Vh|[[0nv] — [8H[U\}”L2(BROFP) < min Vi [|[0n0] - [8n@]||L2(BRnF) (3.27)

weWy, weWy,

R . e R
< Clowﬁ nin lv =@l (14028 < Clowﬁq ol 1407 -
weWyp

The constant§'y;,, Clow > 0 depend only o#, d, and they-shape regularity of},.
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Proof: Let B and B(1 4,)r, With §; := k(1 — ﬁ) forj = 0,...,k be concentric boxes. We have
Kk =09 > 01 > --- > & = 5. Inthe following, we iterate the approximation result of Lemma 3.10

on the boxes3(; 5,y ChoosingH = rglt . we haveh < H. We apply Lemma 3.10 with

~ n 64k max{Capp, -
R;= (1+ (%)R andéj = m l Note thatéj 1= 6]' + ﬁ gives (1 + 5]‘_1)R =1+ 26j)Rj

and our choice off implies £ < zﬂ Hence, forj = 1, Lemma 3.10 provides an approximation
R.

J

<~ = \d d
wy in a subspac@l; of Hy, o(B(146,)r: I'p) With dim W7 < Capp, (%) = Capp ((1?)1%) ,
satisfying

142 (h H
o= il sspn = To= w5, < Con 2 (5 + 2 ) Wb o
H 1+ 2(51
2C,
> pp(1 +51)R 51 ||| mh (1+d0)R
kH

8Capp—05 R (1+26;) ol a4mr < alvllnasmr -

Sincev|B(1+61)R — w1 € Hpno(B(i44,)r:'p), Lemma 3.10 can be applied to- w, and provides an

approximationus of v—w in a subspac®s of Hy, o(B(1 45,z Tp) With dim W < Capp ((H;)R) .
Arguing as forj = 1, we get

lv — w1 —wo mh,(1+52)R <qflv—un ”’h,(1+61)R <q ”’U”"%(H“)R'

Continuing this procesk — 2 times, one obtains an approximati@n= Z?Zl w; in the spac@;€ =

—~ d
Sk W of dimensiondim Wy, < Cappk (“*};)R) < Clim((1 + £~ 1)g~ 1)K+ with

R e k
o = @l 1292 = 10 = Pl 14598 < @ ollnamr

Finally, since (3.26) ensurés/ R < /8, we may use Lemma 3.8 to estimate

. . R .
Vh|[[0n0] = [00]|| 12(Bpry < C IV (0 = O 2By jym) < Cﬁ flv—

to conclude the argument. O

Now we are able to prove the main result of this section, Proposition 3.1.

Proof of Proposition 3.1: By assumption, we hawéist(Br_, Bg,) > 1~ diam Br, = vdn ' R,.
The choicex = —— |mpI|es

1 1
dist(B(11x)r, Br,) > dist(Bg,, Bg,) — kR-Vd > VdR;(n"" — k) = VdR, (n — 1+n> > 0.

Let g, € S®O0(T,) solve (3.1). The potentiabk = V¢, then satisfies, € Hno(B(tr)r,,T). The
inverse estimate/7 || gn| .2y < |6l 172 () OF (3.10) and the ellipticity of the simple-layer operator
as well as the discrete boundary integral equation (3.1) provide

Inlr-vaey S (Ve = (f.0n) = (1 f.0n) < [0

< B—1/2 HHL2

énll L2(r)

L2(r)

. \léf)hHH 1/2(T) -
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Then, the boundedness 6f: H~/2(I") — H{ (R?) and - < 1 lead to

ol < 200 2) [Pl = (1) Wt
<1 + é) el

After these preparations, we are in a position to define the spacdor which we distinguish two
cases.

Case 1:The condition (3.26) is satisfied with = R,. With the spaceWk provided by Lemma 3.11
we setWy, := {[0, 0] : w € Wy }. Then, Lemma 3.11 anit, < 2diam(2) lead to

A

L2(r)’

R,

i, o= SR T 2t ]
wrg%,{}kwh wll 2 ary S 3724 Von h,(1+n)RTN(RT+1)h G~ ||TIE f

L2(D)

)

L2(r)

~

< h—2qk HHL2f

and the dimension dfV’, is bounded by

1+ k71
q

d
dim Wi, < Coam < ) KL = G (2 + )R
Case 2:The condition (3.26) is not satisfied. Then, we seléGt:= {w|p, ar:w € S*°(T;)} and

the minimum in (3.4) is obviously zero. By the choiceﬁoand% > the dimension of

Kq
64k max{1,Capp }’
W, is bounded by o

RN\ /64k Clr, 111471 _
dim W, < (h) < ( mai{q app }> ~ ((1 +77)q’1/<:)d ! < (24 n)%g kL

This concludes the proof of the first inequality in (3.4). The second inequality in (3.4) follows from the
L?(I")-stability of the L2(T")-orthogonal projection. O

4 Proof of the approximation results for V!

In this section, the approximation result given in Proposition 3.1 is used to construct a low-rank approx-
imation of a matrix blockV ~!|, ., and in turn ar#{-matrix approximation oV —!. This is achieved
with local variants of the isomorphism (2.1), and our arguments follow the linesofl[B, Theorem 2].

Proof of Theorem 2.4: If Cgim(2 + 1)%q~ %9 > min(|7|, |o|), we use the exact matrix block
X.o =V, v,andY,, = I € RloIxlol,

If Cgim (2 +1)%q~ k™ < min(|7|, |o|), we employ the approximation result of Proposition 3.1 in the
following way. Forr C Z, we defineR”™ := {x € R" : ; = 0Vi ¢ 7} and the mappings
o, :R” = S°YT), x— ijxj, and A,:L*(D) =R we (W)ier
JjeT

wherew; denotes the mean value on the elemEnk 7. Hence, for a piecewise constant function the
mappingA - returns the constant value on each element corresponding to the clugtereover,®, A,
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is the restriction of the.2- -projection ontaS*?(7,) to T, =Uje- T C Br,. Thus, in particular, for a
piecewise constant functlojﬂe SO0(T) we getd. (A, ) d)\pT Forx € R7, (2.1) implies

ChY2 x|y < || @ (%) 2py < ChY2 |Ixlly, x € R.

The adjointA% : RY — L*I'),b — >, b;i(u — u;) of A7 satisfies, because of (2.1) and the
L?-stability of ®7A7,

b. A h=4/2 ||z Azw||
IAgblay = sup AT <y gy LA(r)

<h b, .
weL2(T ”wHL2 weL?(T) Hw”L2(r)

Letb € RY. Defining f := A%b|,, we getb; = (f, x;) for i € o, andsupp f C Bg, N T. Proposi-
tion 3.1 provides a finite dimensional spdég and an element € W, that is a good approximation to
the Galerkin solutioy|z,_nr. Itis important to note that the spab¥, is constructed independently
of the functionf; it depends only on the cluster péir, o). The estimate (2.1), the approximation result

from Proposition 3.1, an#Hsz = [|A7bll oy S h™ /2 |b||, imply

.

IArdn — Arwlly S ™2 ®r(Arn — Arw)| oy < Y 61 — w128, Ar)
S e LS

~

In order to translate this approximation result to the matrix level, let
W={Aw : we W}

Let the columns ofX ., be an orthogonal basis of the spadé Then, the rank oX ., is bounded
by Caim(2 + 1)%q~%k4*1. SinceX,, X _ is the orthogonal projection fro” onto )V, we get that
z = X,, XL A, is the best approximation df, ¢, in W and arrive at

1Ar¢n = zllp < [[Arén — Arwlly S B2k by ~ NNk b, . (4.1)

Noting thatA, ¢, = V1|, ,b|s, if we defineY,, := V-
The bound (4.1) expresses

X, we thus get = X,,YZ b|,.

’T><O'

(V™ rxo = Xro Y1) blofla £ N2/ b, . (4.2)
The spacéV}, depends only on the cluster pdir, o) and the estimate (4.2) is valid for ahy This
concludes the proof. O

The following lemma gives an estimate for the global spectral norm by the local spectral norms.

Lemma 4.1 ([Gra01],[Hac09, Lemma 6.5.8]))Let M € RV*N and P be a partitioning ofZ x 7.
Then,

M, < Csp (ZmaX{IIerxaHz 2 (7,0) € Plevel(r) = 5]’) ;

=0
where the sparsity constagt, is defined in(2.7).
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Now we are able to prove our main result, Theorem 2.7.

Proof of Theorem 2.7: Theorem 2.4 provides matricds., € RI71*" Y, € RI°*" sowe can define
the?-matrix V4 by

W — XTUYZU if (Ta U) € Par,
H V~!,x, otherwise

On each admissible block, o) € P, we can use the blockwise estimate of Theorem 2.4 and get
H(Vil - WH)’TXO’HQ < Capr(d+2)/(dil)qk~

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 4.1 leads to

IN

HV—l _ WHH2 Cop (Z max{H(V‘l - VH)|TXJH2 : (1,0) € P,level(r) = E})
(=0

< CapxCip N1 gk depth(Ty).

With r = Caim (2 + 1)%q~k**?, definingb = —Cll;l&ﬁnqd/(d""l)(? + 1)~ 1+d) 5 ( leads togk =

_ppl/(d+1)
e br

dim

, and hence

_ppl/(d+1)
e br

[V = Wi, < CapxCap N @2/ Ddepth(T7)

)

which concludes the proof. O

5 H-Cholesky decomposition: Proof of Theorem 2.11

The aim of this section is the proof of Theorem 2.11. Our procedure follows [Beb07, GKLB09, FMP13]
and is based on showing that the off-diagonal block of certain Schur complements can be approximated
by low-rank matrices. The analysis of these Schur complement matrices in Section 5.1 is therefore the
main contribution of the section.

Since the matri®¥V is symmetric and positive definite, it has a (classical) Cholesky-decompoSitien

CCT, whereC is a lower triangular matrix. Moreover, the existence of the Cholesky decomposition
does not depend on the numbering of the degrees of freedom, i.e., for every other numbering of the
basis functions there is a Cholesky decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]). The existence
of the Cholesky decomposition implies the invertibility of the maWix, ., for anyn < N and index

setp := {1,...,n} (see, e.g., [HI13, Cor. 3.5.6]).

The first step is the approximation of appropriate Schur complements.

5.1 Schur complements

For a cluster paifr, o) andp := {i € Z : i < min(7 U 0)}, we define the Schur complement
S(T, U) :V|T><0' —V’Txp(V|p><p)_1V’p><a. (5.1)

One way to approximate the Schur complement is to usg(taeithmetic. As stated in [GKLBO09, The-
orem 15], this results in a low-rank approximatiortt@r, ) of rank Ciq Cs, (depth(Tz) + 1)%r, where
the idempotency constatt, is defined in [GHO3], and is the block rank used for the approximation
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of the inverse matri®y ~!. In the following Theorem 5.2, we provide a low-rank approximation by us-
ing a different approach, which uses the techniques developed in Section 3 and gives a better bound in
terms of the rank of the approximation, i.e., a rankbfis sufficient to obtain the same accuracy. This
approach relies on interpreting Schur complements as BEM matrices from certain constrained spaces.

The key step is Theorem 5.2 below. For its proof, we need a degenerate approximation of the Green’s
function G(+,-). This is a classical result that underlies the log-linear matrix-vector multiplication in
BEM and can be achieved by multipole expansions [Rok85, GR97], Taylor expansions [NK88, HN89,
Sau92, HS93] or by interpolation (see, e.g., [SS11, Sec. 7.1.3.1]). The following lemma recalls a variant
of such a degenerate approximation that is obtained with Chebyshev interpolation:

Lemma5.1 Let7; > 0 and fixy’ € (0,27). Then, for every hyper cubBy C R?, d € {2,3} and
closedDx C R? with dist(By, Dx) > 7 diam(By ) the following is true: For every ¢ N there exist
functionsg; ;, g2.;, 7 = 1,...,r such that

(1+1/n)

Lo (By) — dist({z}, By)

—A+n)"" veeDx, (52)

G(x,) = > g1i(2)g24(")
=1

for a constantC that depends solely on the choicedk (0, 27).

Proof: Let I}/ : C(By) — Qy be the tensor product interpolation operator of degrefined on
C(By) and mapping into the spaa®;, of polynomial of degreé in each variable. Note thaim Q;, =

(k + 1) =: r. The approximatiorG, (z,y) := > i_, 91.:(z)g2.i(y) is then taken to b&,.(z, ) =
I'G(x,-). The stated error bound follows from estimates for Chebyshev interpolation. We note that
the Green’s function for the Laplacian is asymptotically smooth (see [Hac09, Definition 4.2.5] with
constant,s(v) = Cv!). Tensorial interpolation in the form given in [BG04] allows us to estimate

1 diam(By) 2dist(By, {z})
|G (@, ) = LG(@, )| oo,y S dist({z}, By )42 (1 + dist(By,{x})> At/ <1 T diam(By) >

_1/d

whereA, < 1+ %ln(kz + 1) is the Lebesgue constant of Chebyshev interpolation, cf. [Riv74]. The
observationlist({z}, By ) > dist(By, Dx) > 7jdiam(By ) and the choicg’ < 27 imply the claimed
estimate. O

Theorem 5.2 Let (7, o) be ann-admissible cluster pair, set:= {i € Z : ¢ < min(7 U o)}, and let
the Schur complemeSt(r, o) be defined if{5.1). Then, there exists a rankmatrix S, (7, o) such that

9} _ppl/(dtD)
IS(7,0) = S1(7,0) |l < CeeN¥/ 42" V12,

where the constantS,., b > 0 depend only o, d, the~y-shape regularity off;,, andn.

Proof. Let Bgr, , Br, be bounding boxes for the clusters o satisfying (2.3). We defind’, =
interior (Uiep supp W) C T. First, we observe that the Schur complement m&fix o) can be un-

derstood in terms of an orthogonalization with respect to the degrees of freegoiane precisely, a
direct calculation shows fap € RI7l, ¢ € Rl°l the representation

BTSN = (Vo) . (5.3)
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with the following relation between the functions 5 and the vectorsy, ¢, respectively:yy =
Z“" 1 @bjxjo, where the indey, denotes thg-th basis function corresponding to the clusteand the

functiong € S%0(7;) is defined byp = ¢ + ¢, with ¢ = Z';'l ®,x;, andsupp ¢, C T, such that
pgin _ > G0,0 ; N o
<V¢, ¢>L2m =0 Vo e S%(T;) with supp C T,. (5.4)

Our low-rank approximation of the Schur complement maBix, o) will have two ingredients:

first, based on the the techniques of Section 3 we exploit the orthogonality (5.4) to construct a low-
dimensional spach from which for anyg, the corresponding functiof can be approximated well.
Second, we exploit that the functianin (5.3) is supported by, and we will use Lemma 5.1.

Letd = ﬁ and Br,, B(14s)r, b€ concentric boxes. The symmetrylofleads to

<V$7w>L2(F) - <(Z’ VT/J>L2(F) - <(Z’ Vw>L2(B(1+5)Raﬂl"p) * <(Z’ V¢>L2(F\B(1+5)RU)' (53)

First, we treat the first term on the right-hand side of (5.5). The choic& arid the admissibility
condition (2.3), where we can assumén{diam(Bp, ), diam(Bg,)} = VdR, due to the symmetry
S(r,0) = S(o,7)", imply

dist(B(1126)r,  Br,) = dist(Br,, Bg,) — VddR, > VdRs(n™" —§) > 0.

Therefore, we havé7|3(1+26)Rampp = ¢p|B(1+26)Rampp and the orthogonality (5.4) holds on the box
B(1126)r, - Thus, by definition o4y, , we havel'¢ € Hy,0(B(1 a5k, Lp)-

As a consequence Lemma 3.11 can be applied to the pot%iﬂith R := (1+9)R, andk :=

z}m = 1+5 Note that(1 + m)(l +6) = 1+26 and1 +x~! = 3+ 7. Hence, we get a low dimensional

spaceWk of dimensiondim Wk < Cyim (34 1)~k =: r, and the best approxmaﬂqh I gb
to qb from the spacéVk satisfies

- e S 159, 57
L( B(1+6)RUHFP) 7 h (1+25)R0— H=1/2(T) ’
where we defined; := Cllj‘((gil)q /(@4+1)(3 4 )=d/(1+d) 5 0 to obtaing® = e~ Therefore,
we get dim
b— b,V > < J=3/2—bir /@) ‘NH . | 56
‘<¢ » VY LBy aym, ()| ™ € ¢ H-12() IVl 2 ry (5.6)

The ellipticity of V/, supp(gﬁ — ¢) = supp ¢, C I',, and the orthogonality (5.4) lead to

= fyrngy S (VG=05=06),, == (Ve.5-0),, . S IVollmem 59|

< 1l 6 - 9| (5.7)

H-1/2(T)

H- 1/2

Thus, with the triangle inequality, (5.7), and the stabilityof L?(I') — H(I'), we can estimate (5.6)
by

‘<¢ — ¢ V¢>L2(B(1+5)RUHFP)

_ppl/(d+1)
S h 3/2 b1/ (d+1 <H¢ ¢H . +||<J5||H /2 >||V¢||L2(F

_3/9 _ppl/(d+D)
h3/2eb H¢||L2(F) H@Z’HL?(F)

N
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For the second term in (5.5), we exploit the asymptotic smoothness of the'&feection G (-, -):
Lemma 5.1 can be applied withy = Br, andDx = I'\ B(1)r,, where the choice of implies

diSt(By, Dx) > diam(By) (5.8)

1
2vd(1 + 1)
Therefore, we get an approximatiéh (z,y) = >_._; g1.i(x)g2,i(y) such that

1
L) — . <
||G(x7 ) GT(':U7 )HLOO(BRU) ~ diSt({l’},BRo)d_Q

e Vo e T\ Buysr,; (5.9)

here, the constartb > 0 depends only o andn. As a consequence of (5.8) and (5.9), the rank-r
operatorV;,. given byV,¢(x) := fBR ~r Gr(z,y)¥(y)ds, satisfies

~’V—Vv7' = / ~ZL‘/ G$, _er, deSx
<¢ ( )w>L2(F\B<1+5>Ra) M\B(118)Rgy gb( ) BRUOF( ( y) ( y))@b(y) y
s 3], VmeasTnBr)||c -G,
~ )‘¢‘ L2(I) ( Ra) ) L“((F\B(1+5)RU)X(BRUmr)) ”7/)”1:2@)
< p1/252-dp(3=d)/2,~ber!/4 || &
~ h 0 Ra’ € quH*”%F) ||1/1||L2(1—\)

_ _popl/d
S h 2ot H¢HL2(F) H¢HL2(F)7

where the last two inequalities follow from the inverse estimate Lemma 3.3, the stability estimate (5.7)

for the mappingp — ¢, the assumptiod < 3 as well asR, < ndiam(Q), and the choicé = -

T+n

Here, the hidden constant additionally dependg.ohherefore, we get !

VN? - Aa V - N? ‘/7’ < hig/Qeibr
‘< ¢ w>L2(F) <¢) ¢>L2(B(1+5)Rgﬂrp) <¢ 1/}>L2(F\B(1+6)Rg)‘ ~

+(6, V.
L2(3(1+5)R0flfp) <¢ ¢>L2(F\B(1+5)Ro)
defines a bounded bilinear form @i (T'), there exists a linear operater: L?(T') — L?(I") such that

<$’ Vw>L2(B(1+a>RgﬁFp) - <$’ w¢>L2(F\B(1+a)RU) - <‘7¢7¢>L2(F) ’

and the dimension of the rangeﬁfis bounded byr. Therefore, we get a matri&, (7, o) of rank2r
such that

1/(d+1) |

181l Loy 191 L2y »

with b := min{by, by }. Since the mappingp, ¢) — <$, V¢>

1/(d+1)

(s -8,
”S(T, O') o ST(T,O—)HQ _ sup ‘¢ ( (T,O') (7—7 U))¢| < Chd_g/ge_br :
HeRI| peRrlol [ll5 14l

where we have used (2.1). The estimﬁ&ﬂu2 < h~¢ from [Ste08, Lemma 12.6] and~ N ~1/(@-1)
finish the proof. O

As a direct consequence of the representation (5.3) and the results from Section 3, we can get a block-
wise rank-rapproximation of the inverse of the Schur complem@qt, 7). For the existence of the
inverseS(7,7)~!, we refer to the next subsection. For a given right-hand gide L?(T"), (5.3) im-

plies that solvingS(7,7)¢ = f with f € RI7l defined byf; = (f,x;.), is equivalent to solving
a(p, ) = (f,) for allp € SOO(T,) with suppvy C T';. Let 7y x oy C 7 x 7 be anp-admissible
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subblock. Forf € L?(I') with supp f C Bg,, NT', the support properties as well as the admissibility
condition (2.3) for the cluster pajr, o1) imply the orthogonality

a(g, ) =0 Vi € S®°(Ty) with suppv) € Bp, NT.

Therefore, we havgfgg € ”;'{h,()(BRT1 ,I';), and Lemma 3.11 provides an approximatioéﬂmm Bg, N
;. Then, a rank-sfactorization of the subblock(r, 7)~!|,, «,, can be constructed as in Section 4,
which is summarized in the following theorem.

Theorem53Lett C Z,p := {i € Z : i < min(7)}, 11 X 01 C 7 x 7 ben-admissible, and let
the Schur complemest(r, 7) be defined ir(5.1). Then, there exist rankmatricesX,,, € RIT/x",
Y., € RI711X" such that

_ _1) —ppl/(d+1)
1S, 7) i xon — KXo YT [, < Clapy N2/ (01 gmbr /50 (5.10)

7'101H2

The constantg’,,. depends only ofi, d, and they-shape regularity off;, and the constant > 0
additionally depends on.

5.2 Existence ofH{-Cholesky decomposition: conclusion of the proof of Theorem 2.11

In this subsection, we will use the approximation of the Schur complement from the previous section
to prove the existence of an (approximai¢)Cholesky decomposition. We start with a hierarchical
relation of the Schur complemerigr, 7).

The Schur complemeng(r, 7) for a blockr € Tz can be derived from the Schur complements of its
sonsry, 1 by

_ (S(m,7) S(71,72)
S(T’ T) a (S(TQ,T:[) S(TQ,TQ) + S(TQ,Tl)S(Tl,Tl)_IS(Tl,7'2)) ’

A proof of this relation can be found in [Beb07, Lemma 3.1]. One should note that the proof does not
use any properties of the mat other than invertibility and existence of a Cholesky decomposition.
Moreover, we have by definition &(r, 7) thatS(Z,Z) = V.

If 7is a leaf, we get the Cholesky decompositiorS¢f, 7) by the classical Cholesky decomposition,
which exists sinc& has a Cholesky decomposition.rfis not a leaf, we use the hierarchical relation
of the Schur complements to define a Cholesky decomposition of the Schur comp&mentby

_ C(n) 0
)= ((r Gyt i) (541

with S(71,71) = C(11)C(m1)7, S(m2, ) = C(m2)C(m2)T and indeed ge8(r,7) = C(7)C(7)’.
Moreover, the uniqueness of the Cholesky decompositioW amplies that due taCCT = V =
S(Z,T) = C(Z)C(Z)", we haveC = C(T).

The existence of the inver€&(; ) ! follows from the representation (5.11) by induction over the levels,
since on a leaf the existence is clear and the matfitles are block triangular matrices. Consequently,
the inverse oS(7, 7) exists.
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Moreover, as shown in [GKLB09, Lemma 22] in the contexi.df-factorizations instead of Cholesky
decompositions, the restriction of the lower triangular 4t 1) (C(m1)”) ™! of the matrixC(7) to
a subblockr, x 7{ with 7/ a son ofr; satisfies

(S(72, 7)(C(r)T) ™) |rgry = S(m5, 7)(C(r)T) (5.12)

The following lemma shows that the spectral norm of the inv€tée) ~! can be bounded by the norm
of the inverseC(Z) .

Lemma 5.4 For 7 € T, let C(7) be given by5.11) Then,

max[|C(r) "', = [C@)|

T€TT

2 Y

Proof: With the block structure of (5.11), we get the inverse
C(r) ' = < C(r)™! 0 >
—C(12) 'S (72, ) (C(m)") ' C(m1)~! C(m)~")"
So, we get by choosing such thatk; = 0 for i € = that

IO Ml = suwp GO x]y = sup - [[C(r2) x|, = [[C(r2) -

xeRI7l ||zl ,=1 x€RI72l ||zl ,=1
The same argument fc(C(r)—l)T leads to
le@ ™, =||em™)7, = e,

Thus, we have|C(7) ™! ||, > max;—1 2 ||C(r;)"!||, and as a consequenaex.cr, ||C(7) ||, =
HC(I)_1H2' O

We are now in position to prove Theorem 2.11.:

Proof of Theorem 2.11: In the following, we show that every admissible subblack o of C(Z),
recursively defined by (5.11), has a rankpproximation. Since an admissible block of the lower tri-
angular part ofC(Z) has to be a subblock of a matr(7’) for somer’ € Tz, we get in view of
(5.12) thatC(Z)|,xo = S(7,0)(C(c)T)~L. Theorem 5.2 provides a rankapproximatiorS, (7, o) to
S(r, o). Therefore, we can estimate

|C@)lrxa=Sr(7,0)(C(0)) |, = [|(S(r,0) = S:(7,0)) (C(0)) 7,
< oo (o)), [V, -
Since S, (7,0)(C(a)T)~! is a rank-rmatrix for eachn-admiss