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Abstra
t We show that optimal L2
-
onvergen
e in the �nite element method on

quasi-uniform meshes 
an be a
hieved if, for some s0 > 1/2, the boundary value

problem has the mapping property H−1+s → H1+s
for s ∈ [0, s0]. The la
k of

full ellipti
 regularity in the dual problem has to be 
ompensated by additional

regularity of the exa
t solution. Furthermore, we analyze for a Diri
hlet problem

the approximation of the normal derivative on the boundary without 
onvexity

assumption on the domain. We show that (up to logarithmi
 fa
tors) the optimal

rate is obtained.

Keywords L2
a priori bounds · duality argument · reentrant 
orners

1 Introdu
tion

In the �nite element method (FEM), the solution of a boundary value problem is

approximated by pie
ewise polynomials of degree k. In the 
lassi
al 
ase of se
ond

order ellipti
 equations with an H1
-
oer
ive bilinear form, the method is of optimal


onvergen
e order in the H1
-norm. An important tool for the 
onvergen
e analysis

in other norms su
h as the L2
-norm are duality arguments (�Nits
he tri
k�). The

textbook pro
edure for optimal order 
onvergen
e in L2
is to exploit full ellipti


regularity for the dual problem. Conversely, this pro
edure suggests a loss of the

optimal 
onvergen
e rate in L2
if H2

-regularity fails to hold. This o

urs, for

example, in polygonal domains with reentrant 
orners.

Nevertheless, it is possible to re
over the optimal 
onvergen
e rate in L2
, if the

exa
t solution has additional regularity to 
ompensate for the la
k of full regularity

of the dual problem. More pre
isely: In this note, we 
onsider a setting where an

ellipti
 shift theorem holds for both the dual and bidual problem in the range
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[−1,−1 + s0] for some s0 ∈ (1/2,1] (see Assumption 1.1) and show that if the

solution is in the Sobolev spa
e Hk+1+(1−s0)
, then the extra regularity 1− s0 
an

be exploited to re
over the optimal 
onvergen
e rate in L2
(up to a logarithmi


fa
tor in the lowest order 
ase k = 1).
In the se
ond part of this note, we 
onsider the 
onvergen
e in L2

of the normal

derivative on the boundary. We show that the optimal rate O(hk) (up to a logarith-
mi
 fa
tor in the lowest order 
ase) 
an be a
hieved, if the solution is su�
iently

smooth. The proof is based on a lo
al error analysis of the FEM as dis
ussed,

e.g., in [23,24℄. Here, we extra
t error bounds for the �ux on the boundary from

an optimal FEM estimate on a strip of width O(h) near the boundary. Although
we present the 
onvergen
e of the �ux for an H1

-
onforming dis
retization, the

te
hniques are appli
able to mixed methods, [17℄, FEM-BEM 
oupling, [16℄, and

mortar and DG methods, [18,25℄. In fa
t, the results of the present work lead to

a sharpening of [18℄, where 
onvexity of the domain was assumed to avoid the

analysis of a suitable additional dual problem. The te
hniques employed here are

in part similar to those developed in [18℄. Nevertheless, they are also signi�
antly

di�erent sin
e we have opted to forego the dire
t use of anisotropi
 norms and

instead rely on weighted Sobolev norms and the embedding result of Lemma 2.1.

The analysis of the optimal 
onvergen
e of �uxes has attra
ted some attention

re
ently. Besides our own 
ontributions [16�18℄, we mention the works [2,3,13℄

where similar results have been obtained by di�erent methods.

1.1 Notation

For bounded Lips
hitz domains Ω ⊂ R
d
with boundary Γ := ∂Ω, we employ

standard notation for Sobolev spa
es Hs(Ω), [1,21℄. We will formulate 
ertain

regularized results in terms of Besov spa
e: for s > 0, s 6∈ N, and q ∈ [1,∞] the
Besov spa
e Bs2,q(Ω) is de�ned by interpolation (the �real� method, also known as

K-method as des
ribed, e.g., in [21,22℄) as

Bs2,q(Ω) = (H⌊s⌋(Ω), H⌈s⌉(Ω))θ,q, θ = s− ⌊s⌋.
Integer order Besov spa
es Bn2,q(Ω) with n ∈ N are also de�ned by interpolation:

Bn2,q(Ω) = (Hn−1(Ω),Hn+1(Ω))1/2,q, n ∈ N.

To give some indi
ation of the relevan
e of the se
ond parameter q in the de�nition

of the Besov spa
es, we re
all the following (
ontinuous) embeddings:

Hs+ε(Ω) ⊂ Bs2,1(Ω) ⊂ Hs(Ω) ⊂ Bs2,∞(Ω) ⊂ Hs−ε(Ω) ∀ε > 0.

Of importan
e will be the distan
e fun
tion δΓ and the regularized distan
e fun
-

tion δ̃Γ given by

δΓ (x) := dist(x, Γ ), δ̃Γ (x) := h+ dist(x,Γ ). (1.1)

Later on, the parameter h > 0 will be the mesh size of the quasi-uniform trian-

gulation. Also of importan
e will be neighborhoods SD of the boundary ∂Ω given

by

SD := {x ∈ Ω | δΓ (x) < D}, (1.2)

with parti
ular emphasis on the 
ase D = O(h).
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1.2 Model problem

We let Ω ⊂ R
d
, d ∈ {2, 3}, be a bounded Lips
hitz domain with a polygo-

nal/polyhedral boundary and let (1.3) be our model problem:

−∇ · (A(x)∇u) = f in Ω, u = 0 on ∂Ω. (1.3)

We assume that A and f are su�
iently smooth. Moreover A is pointwise sym-

metri
 positive de�nite, and A(x) ≥ α0 I for some α0 > 0 and all x ∈ Ω. As usual,

(1.3) is understood in a weak sense, i.e., for a right-hand side f ∈
(
H1

0 (Ω)
)′

the

boundary value problem (1.3) reads: Find u ∈ H1
0 (Ω) su
h that

a(u, v) :=

∫

Ω

A∇u · ∇v = 〈f, v〉 ∀v ∈ H1
0 (Ω). (1.4)

We denote by T : (H1
0 (Ω))′ → H1

0 (Ω) the solution operator. We emphasize that

the 
hoi
e of boundary 
onditions (here: homogeneous Diri
hlet boundary 
on-

ditions) is not essential for our purposes. Essential, however, is the following as-

sumption:

Assumption 1.1 There exists s0 ∈ (1/2,1] su
h that the solution operator f 7→
Tf for (1.4) satis�es

‖Tf‖H1+s0 (Ω) ≤ C‖f‖
(H

1−s0
0 (Ω))′

≤ C‖f‖L2(Ω).

Here and in the following 0 < c, C < ∞ denote generi
 
onstants that do not

depend on the mesh-size but possibly depend on s0. We also use . to abbreviate

≤ C.

Remark 1.2 The present problem is symmetri
. As a 
onsequen
e 
ertain dual

problems that will be needed below 
oin
ide with the primal problem. This will

simplify the presentation but is not essential. Inspe
tion of the pro
edure below

shows that we need Assumption 1.1 for the dual problem and the bidual problem

with weighted right-hand side.

Let T be an a�ne simpli
ial quasi-uniform triangulation of Ω with mesh size h
and Vh := Sk,10 (T ) ⊂ H1

0 (Ω) the 
ontinuous spa
e of pie
ewise polynomials of

degree k. This spa
e has the following well-known properties:

(i) Existen
e of a quasi-lo
al approximation operator: The S
ott-Zhang operator

Ikh : H1(Ω) → Sk,1(T ) of [20℄ satis�es:

� If u ∈ H1
0 (Ω) then Ikhu ∈ Vh = Sk,10 (T ).

� Ikh is quasi-lo
al and stable: ‖∇Ikhu‖L2(K) . ‖∇u‖L2(ωK), where ωK is

the pat
h of elements sharing a node with K.

� Ikh has approximation properties:

‖∇j(u− Ikhu)‖L2(K) . hl+1−j‖∇l+1u‖L2(ωK), j ∈ {0, 1}, 0 ≤ l ≤ k.
(1.5)

(ii) For every v ∈ B
3/2
2,∞(Ω) ∩H1

0 (Ω) there holds

inf
z∈Vh

‖v − z‖H1(Ω) ≤ h1/2‖v‖
B

3/2
2,∞(Ω)

.

(This follows from property (i) and an interpolation argument using the K-

method).
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(iii) The spa
e Vh satis�es standard elementwise inverse estimates: for integer

0 ≤ j ≤ m ≤ k

|v|Hm(K) ≤ Ch−(m−j)|v|Hj(K) ∀v ∈ Vh. (1.6)

The Galerkin method for (1.4) is then: Find uh ∈ Vh su
h that

a(uh, v) = 〈f, v〉 ∀v ∈ Vh. (1.7)

Remark 1.3 The restri
tion to simpli
ial triangulations is not essential. Our pri-

mary motivation for this restri
tion is that in this 
ase the spa
e Vh is known to

have the above approximation properties, the inverse estimates, and moreover it

has the �superapproximation property� that underlies the lo
al error analysis as

presented in [24, Se
. 5.4℄.

2 Regularity

2.1 Preliminaries

A key me
hanism in our arguments that will allow us to exploit additional regu-

larity of a fun
tion is the following embedding theorem.

Lemma 2.1 The following estimates hold, if Ω ⊂ R
d
is a bounded Lips
hitz do-

main and z su�
iently regular.

‖δ̃−1/2+ε
Γ z‖L2(Ω) ≤ ‖δ−1/2+ε

Γ z‖L2(Ω) ≤ Cε‖z‖H1/2−ε(Ω), ε ∈ (0, 1/2], (2.1)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ C| lnh|1/2‖z‖

B
1/2
2,1 (Ω)

, (2.2)

‖δ̃−1/2−ε
Γ z‖L2(Ω) ≤ Cεh

−ε‖z‖
B

1/2
2,1 (Ω)

, ε > 0, (2.3)

‖z‖L2(Sh) ≤ Ch1/2‖z‖
B

1/2
2,1 (Ω)

, h > 0, (2.4)

‖z‖L2(Γ ) ≤ C‖z‖
B

1/2
2,1 (Ω)

. (2.5)

Proof The estimate involving δΓ in (2.1) 
an be found, e.g., in [10, Thm. 1.4.4.3℄

and (2.4) is shown in [14, Lemma 2.1℄. The estimates (2.2), (2.3), (2.5) follow

from 1D Sobolev embedding theorems for L∞
and lo
ally �attening the boundary

Γ in the same way as it is done in the proof of [14, Lemma 2.1℄. For example,

for (2.5) we note that lo
al �attening the boundary Γ and the 1D embedding

‖v‖2L∞(0,1) . ‖v‖L2(0,1)‖v‖H1(0,1) implies ‖z‖2L2(Γ ) . ‖z‖L2(Ω)‖z‖H1(Ω). This im-

plies the estimate ‖z‖L2(Γ ) . ‖z‖
B

1/2
2,1 (Ω)

by [21, Lemma 25.3℄. ⊓⊔

One of several appli
ations of Lemma 2.1 is that it allows us to transform negative

norms into weighted L2
-estimates:

Lemma 2.2 For ε ∈ (0, 1/2] and su�
iently regular z there holds

‖δβΓ z‖(H1/2−ε(Ω))′ ≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω), −1 + 2ε ≤ β ≤ 0, (2.6)

‖δ̃−1
Γ z‖

(B
1/2
2,1 (Ω))′

≤ C| lnh|1/2‖δ̃−1/2
Γ z‖L2(Ω). (2.7)
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Proof Firstly, we show (2.6):

‖δβΓ z‖(H1/2−ε(Ω))′ = sup
v∈H1/2−ε(Ω)

〈δβΓ z, v〉
‖v‖H1/2−ε(Ω)

= sup
v∈H1/2−ε(Ω)

〈δβ+1/2−ε
Γ z, δ

−1/2+ε
Γ v〉

‖v‖H1/2−ε(Ω)

≤ Cε‖δβ+1/2−ε
Γ z‖L2(Ω),

where, in the last step, we employed (2.1) of Lemma 2.1. Se
ondly, (2.7) follows by

the same type of arguments, where the appli
ation of (2.1) is repla
ed with that

of (2.2). ⊓⊔

2.2 Regularity

We re
all the following variant of interior regularity of ellipti
 problems:

Lemma 2.3 Let Ω be a bounded Lips
hitz domain and z ∈ H1+β(Ω), β ∈ (0, 1],
solve

−∇ · (A∇z) = f in Ω.

Then:

‖δ1−βΓ ∇2z‖L2(Ω) ≤ Cβ
(
‖δ1−βΓ f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof The upper bound follows from lo
al interior regularity for ellipti
 problems

(see [19, Lemma 5.7.2℄) and a Besi
ovit
h 
overing argument, see, e.g., [6, Se
tion

1.5.2℄ and [15, Chapter 5℄. We refer also to [12, Lemma A.3℄ where a 
losely related

result is worked out in detail. ⊓⊔

2.2.1 Re�ned regularity for polygons and polyhedra

It is worth pointing out that neither the stru
ture of the boundary Γ nor the

kind of boundary 
onditions play a role in Lemma 2.3. One possible interpreta-

tion of Lemma 2.3 is that z 
ould lose the H2
-regularity anywhere near Γ . For


ertain boundary 
onditions su
h as homogeneous Diri
hlet 
onditions and pie
e-

wise smooth geometries Γ the solution fails to be in H2
only near the points of

nonsmoothness of the geometry. With methods similar to those of Lemma 2.3 one


an show the following, stronger result:

Lemma 2.4 Let Ω be a (
urvilinear) polygon in 2D or a (
urvilinear) polyhedron

in 3D. Denote by E the set of all verti
es of Ω in 2D and the set of all edges of

Ω in 3D. Let δE be the distan
e from E. Let z ∈ H1+β(Ω), β ∈ (0, 1], solve (1.3).

Then

‖δ1−βE ∇2z‖L2(Ω) ≤ Cβ
(
‖δ1−βE f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof Follows from lo
al 
onsiderations as in Lemma 2.3. The novel aspe
t is the

behavior near the boundary away from the verti
es (in 2D) and the edges (in

3D). This is a
hieved with an adapted 
overing theorem of the type des
ribed in

Theorems A.5, A.6. The key feature of these 
overings is that they allow us to

redu
e the 
onsiderations to balls B = Br(x) and stret
hed balls B̂ = B(1+ε)r(x)
(with �xed ε > 0) with r ∼ dist(x,E) and the following properties: either x ∈ Ω

with B̂r(x) ⊂ Ω or x ∈ Γ and B̂ ∩ Ω is a half-ball. Lo
al ellipti
 regularity

assertions 
an then be employed for ea
h ball B. ⊓⊔
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Lemma 2.4 assumes that a loss of H2
-regularity o

urs at any point of non-

smoothness of Γ . However, the set of �singular� verti
es or edges 
an be further

redu
ed. For example, in 2D for A = Id, it is well-known that only the verti
es

of Ω with interior angle greater than π lead to a loss of full H2
-regularity. It will

therefore be useful to introdu
e the 
losed set Ms of boundary points asso
iated

with a loss of H2
-regularity. Before introdu
ing this set, we point out that this set

is a subset of the verti
es and edges:

De�nition 2.5 (H2
-regular part and singular part of the boundary) Let

Ω be a polygon (in 2D) or a polyhedron (in 3D) with verti
es A and edges E.

1. A vertex A ∈ A of Ω is said to be H2
-regular, if there is a ball Bε(A) of radius

ǫ > 0 su
h that the solution u of (1.3) satis�es u|Bε(A)∩Ω ∈ H2(Ω) whenever

f ∈ L2(Ω) together with the a priori estimate ‖u‖H2(Bε(A)∩Ω) ≤ C‖f‖L2(Ω).

2. In 3D, an edge e ∈ E of Ω with endpoints A1, A2 is said to be H2
-regular if the

following 
ondition is satis�ed: There is c > 0 su
h that for the neighborhood

S = ∪x∈eBc dist(x,{A1,A2})(x) of the edge e we have the regularity assertion

u|S∩Ω ∈ H2
for the solution u of (1.3) whenever f ∈ L2(Ω) together with the

a priori estimate ‖u‖H2(S∩Ω) ≤ C‖f‖L2(Ω).

Denote by Ar ⊂ A the set of H2
-regular verti
es and by Er ⊂ E the set of H2

-

regular edges. Correspondingly, let As := A \ Ar and Es := E \ Er be the set of

verti
es and edges, respe
tively, asso
iated with a loss of H2
-regularity. De�ne the

singular set Ms as

Ms := As
⋃

Es ⊂ Γ. (2.8)

With the notion of the singular set in hand, we 
an formulate the following regu-

larity result:

Lemma 2.6 Let Ω be a polygon or a polyhedron. Let Ms be the singular set as

de�ned in De�nition 2.5. Then the following is true for any solution z ∈ H1
0 (Ω)

of (1.3): If z ∈ H1+β(Ω) for some β ∈ (0, 1], then with δMs
:= dist(·,Ms), there

holds

‖δ1−βMs
∇2z‖L2(Ω) ≤ Cβ

(
‖δ1−βMs

f‖L2(Ω) + ‖z‖H1+β(Ω)

)
.

Proof The proof is based on lo
al 
onsiderations as in Lemma 2.4. We re
all that

not all verti
es and edges (in 3D) are in
luded in the singular set Ms. This is a
-


ounted for by a further re�nement of the 
overing employed. We restri
t ourselves

to the 3D situation. Using �nite 
overings provided by Theorem A.6, one may re-

stri
t the attention to balls Br = Br(x) and stret
hed balls B̂ = B(1+ε)r(x) (with
�xed ε > 0) with r ∼ dist(x, E) where one of the following additional properties

is satis�ed: a) x ∈ Ω with B̂r(x) ⊂ Ω; b) x ∈ Ar and B̂ ∩ Ω is a solid angle;


) x ∈ ∪Er and B̂ ∩ Ω is a dihedral angle; d) x lies in the interior of a fa
e and

B̂ ∩ Ω is a half-ball. We emphasize that we do not need to 
onsider balls Br(x)
with x ∈ As or x ∈ Es sin
e the 
overing provided by Theorem A.6 is su
h that for

every su
h x there is a neighborhood Ux of x that is 
overed by (
ountably many)

balls whose radius tends to 0 as their 
enter approa
hes x.

⊓⊔
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2.2.2 Shift theorems for lo
ally supported right-hand sides

We have the following 
ontinuity results for the solution operator T for our model

problem (1.3):

Lemma 2.7 Let Assumption 1.1 be valid. Then T : (H1
0 (Ω))′ → H1

0 (Ω) satis�es

‖Tf‖
B

3/2
2,∞(Ω)

≤ C‖f‖
(B

1/2
2,1 (Ω))′

, (2.9)

‖Tf‖H3/2+ε(Ω) ≤ Cε‖δ1/2−εΓ f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (2.10)

In parti
ular, if f ∈ L2(Ω) with supp f ⊂ Sh, then

‖Tf‖
B

3/2
2,∞(Ω)

≤ Ch1/2‖f‖L2(Ω), (2.11)

‖Tf‖H3/2+ε(Ω) ≤ Cεh
1/2−ε‖f‖L2(Ω), 0 < ε ≤ s0 − 1/2. (2.12)

Proof We follow the arguments of [18, Lemma 5.2℄. The starting point for the

proof of (2.9) is that interpolation and Assumption 1.1 yield with θ ∈ (0, 1)

T : ((H1−s0
0 (Ω))′, (H1

0 (Ω))′)θ,∞ → (H1+s0(Ω), H1(Ω))θ,∞ = B
1+s0(1−θ)
2,∞ (Ω).

Next, we re
ognize as in [18, Lemma 5.2℄ (
f. [22, Thm. 1.11.2℄ or [21, Lemma 41.3℄)

((H1−s0
0 (Ω))′, (H1

0(Ω))′)θ,∞ = ((H1−s0
0 (Ω),H1

0 (Ω))θ,1)
′

⊃ ((H1−s0(Ω),H1(Ω))θ,1)
′ = (B

1−s0(1−θ)
2,1 (Ω))′.

Setting θ = 1 − 1/(2s0) ∈ (0, 1/2], we get (B
1−s0(1−θ)
2,1 (Ω))′ = (B

1/2
2,1 (Ω))′ and

B
1+s0(1−θ)
2,∞ (Ω) = B

3/2
2,∞(Ω). The assertion (2.10) follows from the Assumption 1.1

and (2.6) with β = 0. For the bound (2.11), we argue as in the proof of Lemma 2.2

and use (2.4), see also [18, Lemma 5.2℄. Finally, the proof of (2.12) follows from

(2.10) and the assumed support properties of f . ⊓⊔

We will also require mapping properties of the solution operator T in weighted

spa
es:

Lemma 2.8 Let Assumption 1.1 be valid. Then for v ∈ L2(Ω)

‖T (δ̃−1
Γ v)‖

B
3/2
2,∞(Ω)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω), (2.13)

‖T (δ̃−1
Γ v)‖H3/2+ε(Ω) ≤ Cεh

−ε‖δ̃−1/2
Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2], (2.14)

‖T (δ−1+2ε
Γ v)‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε

Γ v‖L2(Ω), ε ∈ (0, s0 − 1/2]. (2.15)

Proof The results follow by 
ombining Lemmas 2.2 and 2.7. ⊓⊔

For the analysis of the FEM error on the neighborhood Sh, we need a re�ned

version of interior regularity for ellipti
 problems. The following result is very

similar to [18, Lemma 5.4℄ and 
losely related to Lemma 2.3:
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Lemma 2.9 Let z solve the equation

−∇ · (A∇z) = v in Ω.

Then there exist C, c1 > 0 su
h that for z ∈ B
3/2
2,∞(Ω), we have

‖δ1/2Γ ∇2z‖L2(Ω\Sh) ≤ C
√

| lnh|‖z‖
B

3/2
2,∞(Ω)

+ C‖
√
δΓ v‖L2(Ω\Sc1h). (2.16)

If the right-hand side v is in L2(Ω) and additionally satis�es supp v ⊂ Sh and

z = Tv, then there are 
onstants C, c > 1, c̃ > c′ > 1 independent of v su
h that

for all su�
iently small h > 0:

(i) If z ∈ B
3/2
2,∞(Ω) then ‖δ1/2Γ ∇2z‖L2(Ω\Sc̃h) ≤ C

√
| lnh|‖z‖

B
3/2
2,∞(Ω)

.

(ii) For every α > 0 there holds

‖δαΓ∇3z‖L2(Ω\Sc̃h) ≤
[
C1‖A‖C0,1(Ω)‖δα−1

Γ ∇2z‖L2(Ω\Sc′h)
+ C2‖A‖C1,1(Ω)‖δαΓ∇z‖L2(Ω\Sc′h)

]
.

(iii) If z ∈ H3/2+ε(Ω) for some ε ∈ (0, 1/2), then for some Cε > 0 independent

of z there holds ‖∇2z‖L2(Ω\Sc̃h) ≤ Cεh
−1/2+ε‖z‖H3/2+ε(Ω).

(iv) If Assumption 1.1 is valid, then ‖∇2z‖L2(Ω\Sch) ≤ C‖v‖L2(Ω).

Proof of (2.16), (i), (ii): [18, Lemma 5.4℄ is formulated for −∆. However, the

essential property of the di�erential operator ∆ that is required is just interior

regularity. Hen
e, the result also stands for the present, more general ellipti
 op-

erator (with the appropriate modi�
ations due to the fa
t that the 
oe�
ient A
is allowed to be non-
onstant). In the interest of generality, we have also tra
ked

in (2.16) the dependen
e on the right-hand side v, whi
h was not done in [18,

Lemma 5.4℄. A full proof 
an be found in Appendix C.

Proof of (iii): This follows again by lo
al 
onsiderations similar to those em-

ployed in the proof of [18, Lemma 5.4℄ and the obvious bound δΓ ≥ h on Ω \ Sc̃h.
A full proof 
an be found in Appendix C.

Proof of (iv): In view of (iii), we have to estimate ‖z‖H3/2+ε(Ω). By the support

properties of v, the bound (2.12) yields ‖z‖H3/2+ε(Ω) ≤ Ch1/2−ε‖v‖L2(Ω). Inserting

this in (iii) gives the result. ⊓⊔

3 FEM L
2
-error analysis

Let uh be the FEM approximation and denote by e = u−uh the FEM error. The

standard workhorse is the Galerkin orthogonality

a(e, v) = a(u− uh, v) = 0 ∀v ∈ Vh. (3.1)

We start with a weighted L2
-error:

Lemma 3.1 Let Assumption 1.1 be valid. Assume that a fun
tion z ∈ H1
0 (Ω)

satis�es the Galerkin orthogonality

a(z, v) = 0 ∀v ∈ Vh.



On optimal L2
- and surfa
e �ux 
onvergen
e in FEM (extended version) 9

Then

‖δ−1/2+ε
Γ z‖L2(Ω) ≤ Cεh

1/2+ε‖z‖H1(Ω), ε ∈ (0, s0 − 1/2], (3.2)

‖δ̃−1/2
Γ z‖L2(Ω) ≤ Ch1/2| lnh|1/2‖z‖H1(Ω). (3.3)

Proof The proof follows standard lines. De�ne ψ = T (δ−1+2ε
Γ z), whi
h solves

〈v, δ−1+2ε
Γ z〉 = a(v,ψ) ∀v ∈ H1

0 (Ω).

Then we have by Galerkin orthogonality for arbitrary Iψ ∈ Vh

‖δ−1/2+ε
Γ z‖2L2(Ω) = a(z, ψ) = a(z, ψ − Iψ) ≤ C‖z‖H1(Ω)‖ψ − Iψ‖H1(Ω).

From (2.15) in Lemma 2.8, we have ‖ψ‖H3/2+ε(Ω) ≤ Cε‖δ−1/2+ε
Γ z‖L2(Ω) so that

with the approximation properties of Vh we get

inf
Iψ∈Vh

‖ψ − Iψ‖H1(Ω) ≤ Cεh
1/2+ε‖δ−1/2+ε

Γ z‖L2(Ω).

This shows (3.2). For (3.3), we pro
eed similarly using the regularity assertion

(2.13) and the approximation property of Vh. ⊓⊔

Corollary 3.2 Let Assumption 1.1 be valid and the solution u be in Hs(Ω), s ≥ 1.
Then the FEM error e = u− uh satis�es for ε ∈ (0, s0 − 1/2]

‖δ−1/2+ε
Γ e‖L2(Ω) ≤ Cεh

µ−1/2+ε‖u‖Hµ(Ω), µ := min{s, k + 1}.

The following Theorem 3.3 shows that the optimal rate of the L2
-
onvergen
e of

the FEM 
an be a
hieved also for non-
onvex geometries if the solution has some

additional regularity:

Theorem 3.3 Let Assumption 1.1 be valid. Let the exa
t solution u satisfy the

extra regularity u ∈ Hk+2−s0(Ω). Then the FEM error u− uh satis�es

‖u− uh‖L2(Ω) . hk+1‖u‖Hk+2−s0(Ω). (3.4)

More generally, if u ∈ Hs(Ω), s ∈ [1, k + 2− s0], then

‖u− uh‖L2(Ω) . hs−1+s0‖u‖Hs(Ω), 1 ≤ s ≤ k + 2− s0. (3.5)

Proof of (3.4): We pro
eed along a standard duality argument. To begin with,

we note that the 
ase s0 = 1 is 
lassi
al so that we may assume s0 < 1 for the

remainder of the proof. Set ε := s0−1/2 ∈ (0, 1/2) by our assumption 1/2 < s0 <
1. Let w = Te and let wh ∈ Vh be its Galerkin approximation. Quasi-optimality

and the use of (2.6) give us the following energy error estimate:

‖w − wh‖H1(Ω) . inf
v∈Vh

‖w − v‖H1(Ω) . h1/2+ε‖w‖H3/2+ε(Ω)

. h1/2+ε‖e‖(H1/2−ε(Ω))′ . h1/2+ε‖e‖L2(Ω). (3.6)

The Galerkin orthogonalities satis�ed by e and w − wh and a weighted Cau
hy-

S
hwarz inequality yield for the S
ott-Zhang interpolant Ikhu

‖e‖2L2(Ω) = a(e,w) = a(e,w − wh) = a(u− Ikhu,w − wh) (3.7)

≤ C‖δ̃−1/2+ε
Γ ∇(u− Iu)‖L2(Ω)‖δ̃1/2−εΓ ∇(w − wh)‖L2(Ω). (3.8)



10 T. Horger et al.

We get by a 
overing argument and (2.6) of Lemma 2.1

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . hk‖δ̃−1/2+ε

Γ ∇k+1u‖L2(Ω)

. hk‖∇k+1u‖H1/2−ε(Ω). (3.9)

It should also be noted at this point that in (3.9), the weight δ̃
−1/2+ε
Γ 
an be


onsidered as 
onstant in ea
h element K. For the 
ontribution ‖δ̃1/2−εΓ ∇(w −
wh)‖L2(Ω) in (3.8), we have to analyze the Galerkin error w − wh in more detail,

using the te
hniques from the lo
al error analysis of the FEM. We split Ω into

Sch ∪Ω \Sch where c > 0 will be sele
ted su�
iently large below. For �xed c > 0,
the L2

-norm on Sch 
an easily be bounded with (3.6) by

‖δ̃1/2−εΓ ∇(w − wh)‖L2(Sch) . h1/2−ε‖∇(w − wh)‖L2(Ω) . h‖e‖L2(Ω). (3.10)

The term ‖δ̃1/2−εΓ ∇(w − wh)‖L2(Ω\Sch) requires more 
are. Obviously, δ̃
1/2−ε
Γ .

δ
1/2−ε
Γ on Ω \ Sch. We have to employ the tools from the lo
al error analysis in

FEM. The Galerkin orthogonality satis�ed by w−wh allows us to use te
hniques

as des
ribed in [24, Se
. 5.3℄, whi
h yields the following estimate for arbitrary balls

Br ⊂ Br′ with the same 
enter (impli
itly, r′ > r +O(h))

‖∇(w − wh)‖L2(Br) . ‖∇(w − Ikhw)‖L2(Br′ )
+

1

r′ − r
‖w − wh‖L2(Br′ )

. (3.11)

By a 
overing argument, these lo
al estimates 
an be 
ombined into a global es-

timate of the following form, where for su�
iently small c1 > 0 (c1 depends only

on Ω and the shape regularity of the triangulation but is independent of h):

‖δ1/2−εΓ ∇(w − wh)‖L2(Ω\Sch) . (3.12)

‖δ1/2−εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h) + ‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h

).

This estimate impli
itly assumed c1ch > 2h, i.e., at least two layers of elements

separate Γ from Ω \ Sc1ch. We now �x c > 2/c1. The �rst term in (3.12) 
an

easily be bounded by standard approximation properties of Ikh , Lemma 2.3, and

Assumption 1.1:

‖δ1/2−εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h
) . h‖δ1/2−εΓ ∇2w‖L2(Ω)

.h
[
‖δ1/2−εΓ e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

In the last step, we have to deal with the term ‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h) of

(3.12). Lemma 3.1 and (3.6) imply

‖δ−1/2−ε
Γ (w − wh)‖L2(Ω\Scc1h) . h−2ε‖δ−1/2+ε

Γ (w − wh)‖L2(Ω)

. h−2εh1/2+ε‖w − wh‖H1(Ω) . h‖e‖L2(Ω). (3.13)

Here we have used the quasi-optimality of the Galerkin approximation with respe
t

to the H1
-norm.
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Proof of (3.5): The above arguments show that the regularity of u enters in the

bound (3.9). For u ∈ H1(Ω), the stability properties of the S
ott-Zhang operator

Ikh show

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . h−1/2+ε‖u‖H1(Ω). (3.14)

Hen
e, a standard interpolation argument that 
ombines (3.9) and (3.14) yields

‖δ̃−1/2+ε
Γ ∇(u− Ikhu)‖L2(Ω) . h−1/2+ε+s−1‖u‖Hs(Ω) for s ∈ [1, k + 2− s0]. Com-

bining this estimate with the above 
ontrol of ‖δ̃1/2−εΓ ∇(w−wh)‖L2(Ω) yields the

desired bound in the range s ∈ [1, k + 2− s0]. ⊓⊔

4 FEM L2
-error analysis on pie
ewise smooth geometries

The 
onvergen
e analysis of Theorem 3.3 did not make expli
it use of the fa
t

that a pie
ewise smooth geometry is 
onsidered; the essential ingredient was As-

sumption 1.1 (whi
h, of 
ourse, is related to the geometry of the problem). This

is re�e
ted in our use of δ̃Γ , whi
h measures the distan
e from the boundary Γ .
One interpretation of this pro
edure is that one assumes of the dual solution w
(and, in fa
t, also of the solution of the �bidual� problem employed to estimate

‖δ̃−1/2+ε
Γ (w−wh)‖L2(Ω) in Theorem 3.3) that it may lose H2

-regularity anywhere

near Γ . However, for pie
ewise smooth geometries in 
onjun
tion with 
ertain

homogeneous boundary 
onditions (here: homogeneous Diri
hlet 
onditions), this

loss of H2
-regularity is restri
ted to a mu
h smaller set, namely, a subset of ver-

ti
es in 2D and a subset of the skeleton (i.e., the union of verti
es and edges) in

3D. This set is given by Ms in De�nition 2.5. For this set Ms, we introdu
e the

distan
e fun
tion

δMs
:= dist(·,Ms), δ̃Ms

:= h+ δMs
. (4.1)

Theorem 4.1 Let Ω be a polygon (in 2D) or a polyhedron (in 3D). Let Ms be

the set of verti
es (in 2D) or edges and verti
es (in 3D) asso
iated with a loss of

H2
-regularity for (1.3) as given in De�nition 2.5. Let Assumption 1.1 be valid. Let

Iu ∈ Vh be arbitrary. Then we have

‖u− uh‖L2(Ω) ≤ h‖δ̃s0−1
Ms

∇(u− Iu)‖L2(Ω).

Proof We may assume s0 < 1 sin
e the 
ase s0 = 1 
orresponds to the standard

duality argument with full ellipti
 regularity and set ε := s0 − 1/2 ∈ (0, 1/2). The
key observation is that, starting from the duality argument (3.7), one 
an repla
e

the weight fun
tion δ̃
−1/2+ε
Γ in (3.8) with any positive weight fun
tion. Taking as

the weight fun
tion δ̃
−1/2+ε
Ms

, we get

‖e‖2L2(Ω) ≤ ‖δ̃−1/2+ε
Ms

∇(u− Iu)‖L2(Ω)‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω). (4.2)

The estimate of w − wh in the weighted norm is done similarly as in the proof of

Theorem 3.3, taking into a

ount the improved knowledge of the regularity of w.
With SMs,ch := {x ∈ Ω | δMs

(x) < ch} we have the trivial bound

‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω) (4.3)

. ‖δ̃1/2−εMs
∇(w − wh)‖L2(SMs,ch) + ‖δ̃1/2−εMs

∇(w − wh)‖L2(Ω\SMs,ch)
,
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where the parameter c will be sele
ted su�
iently large below. The �rst term in

(4.3) is estimated in exa
tly the same way as in (3.10) and produ
es

‖δ̃1/2−εMs
∇(w − wh)‖L2(SMs,ch)

≤ Ch‖e‖L2(Ω).

The se
ond term in (4.2) again requires the te
hniques from the lo
al error anal-

ysis of the FEM, this time with the appropriate modi�
ations to a

ount for the

boundary 
onditions. Inspe
tion of the arguments in [24, Se
. 5.3℄ shows that the

key estimate (3.11) extends up to the boundary in the following sense:

‖∇(w− wh)‖L2(Br∩Ω) . ‖∇(w − Ikhw)‖L2(Br′∩Ω) +
1

r′ − r
‖w − wh‖L2(Br′∩Ω);

(4.4)

besides the impli
it assumption r′ > r +O(h), the balls Br and Br′ are assumed

to have the same 
enter x and satisfy one of the following 
onditions:

1. Br′ = Br′(x) ⊂ Ω;
2. x ∈ ∂Ω and Br′(x) ∩Ω is a half-disk;

3. x is a vertex of Ω;
4. (only for d = 3) x lies on an edge e and Br′(x)∩Ω is a dihedral angle (i.e., the

interse
tion of ∂(Br′(x)∩Ω) with ∂Ω is 
ontained in the two fa
es that share

the edge e.

The reason for the restri
tion of the lo
ation of the 
enters of the balls is that

the pro
edure presented in [24, Se
. 5.3℄ relies on Poin
aré inequalities so that

the number of possible shapes for the interse
tions Br′ ∩ Ω should be �nite. A


overing argument (see Theorem A.5 for the 2D 
ase and Theorem A.6 for the

3D situation) then leads to the following bound with an appropriate c1 > 0 (here,

c > 0 is impli
itly assumed su�
iently large):

‖δ̃1/2−εMs
∇(w − wh)‖L2(Ω\SMs,ch) . (4.5)

‖δ̃1/2−εMs
∇(w − Ikhw)‖L2(Ω\SMs,cc1h) + ‖δ̃−1/2−ε

Ms
(w − wh)‖L2(Ω\SMs,cc1h)

The �rst term in (4.5) 
an be estimated with the improved regularity assertion of

Lemma 2.6 to produ
e (with appropriate c2 > 0 and the impli
it assumption on c
that cc1c2 > 2)

‖δ̃1/2−εMs
∇(w − Ikhw)‖L2(Ω\SMs,cc1h) . h‖δ̃1/2−εMs

∇2w‖L2(Ω\SMs,cc1c2h)

.h
[
‖δ̃1/2−εMs

e‖L2(Ω) + ‖w‖H3/2+ε(Ω)

]
. h‖e‖L2(Ω).

For the se
ond term in (4.5) we note that −1/2−ε < 0 so that δ̃
−1/2−ε
Ms

≤ δ̃
−1/2−ε
Γ .

This leads to

‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω\SMs,cc1h) . ‖δ̃−1/2−ε
Ms

(w − wh)‖L2(Ω)

. ‖δ̃−1/2−ε
Γ (w − wh)‖L2(Ω) . h−2ε‖δ̃−1/2+ε

Γ (w − wh)‖L2(Ω);

the term h−2ε‖δ̃−1/2+ε
Γ (w−wh)‖L2(Ω) has already been estimated in (3.13) in the

desired form. ⊓⊔
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The regularity requirements on the solution u 
an still be slightly weakened. As

written, the exponent s0 − 1 is related to the global regularity of the dual solution

w. However, the developments above show that a lo
al la
k of full regularity of the

dual solution w (and the bidual solution) needs to be o�set by additional lo
al

regularity of the solution. To be more spe
i�
, we restri
t our attention now to

the 2D Lapla
ian, i.e., A = Id. In this 
ase, the situation 
an be expressed as

follows with the aid of the singular exponents αj := π/ωj , where ωj ∈ (π, 2π) is
the interior angle at the reentrant verti
es Aj , j = 1, . . . , J .

Corollary 4.2 Let Ω ⊂ R
2
be a polygon and let A = Id. Let δj := dist(·, Aj),

j = 1, . . . , J , for the J reentrant 
orners. Set δ̃j := h+δj . Let ωi and αj be de�ned
as des
ribed above. Fix βj > 1− αj arbitrary. Then for any Iu ∈ Vh

‖u− uh‖L2(Ω) . h
J∑

j=1

‖δ̃−βj

j ∇(u− Iu)‖L2(Ω).

Proof The proof follows by an inspe
tion of how the regularity of the solution

w = Te of the dual problem enters the proof of Theorem 4.1. By, e.g., [10℄ the

solution w = Te is in a weighted H2
-spa
e with

‖
J∏

j=1

δ
βj

j ∇2w‖L2(Ω) . ‖e‖L2(Ω), (4.6)

and Assumption 1.1 holds with any s0 < minj αj . The regularity assertion (4.6)

suggests to 
hoose

∏J
i=1 δ̃

βi

i as the weight in the proof of Theorem 3.3. Inspe
tion

of the pro
edure in the proof of Theorem 4.1 then leads to the result. ⊓⊔

We extra
t from this result another 
orollary that we will prove useful in the

numeri
al results. We formulate it in terms of (standard, unweighted) Sobolev

regularity in order to emphasize the di�eren
e in regularity requirements of the

solution near the reentrant 
orners and away from them:

Corollary 4.3 Assume the hypotheses of Corollary 4.2. Let s > 1 and si > 1,
i = 1, . . . , J . Let U := Ω \∪U i, for some neighborhoods Ui of the reentrant verti
es
Ai. Let u ∈ Hsi(Ui), i = 1, . . . , J and u ∈ Hs(U). Then for arbitrary ε > 0

‖u− uh‖L2(Ω) ≤ Cεh
τ , τ := min(1 + k, s, min

j=1...J
(−1 + αj + sj − ε)).

Proof The approximant Iu in Corollary 4.2 may be taken as any standard nodal

interpolant or the S
ott-Zhang proje
tion. Then standard estimates and Corol-

lary 4.2 produ
e with the 
hoi
e βj := 1 − αj + ε for arbitrary small but �xed

ε > 0:

‖u− uh‖L2(Ω) . h
J

min
j=1

{hmin{k,s−1}, h−βj+sj−1}. min
j=1...J

{hmin{k+1,s}, hαj+sj−1−ε}.

⊓⊔
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5 Optimal L2(Sh)-
onvergen
e

Additional regularity of the solution also allows us to prove that the error on the

strip Sh of width O(h) near Γ is of higher order:

Theorem 5.1 Let Assumption 1.1 be valid. Then the FEM error u− uh satis�es

‖u− uh‖L2(Sh) . hk+3/2(1 + δk,1| lnh|)‖u‖Bk+3/2
2,1 (Ω)

,

‖u− uh‖L2(Sh) . hs+3/2(1 + δk,1| lnh|)‖u‖Bs+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u− uh‖L2(Sh) . h3/2(1 + δk,1| lnh|)‖u‖B3/2
2,1 (Ω)

,

where δk,1 is the Krone
ker symbol.

Remark 5.2 1. The regularity requirementB
k+3/2
2,1 (Ω) 
an be weakened: it su�
es

that u be in B
k+3/2
2,1 (SD) in a �xed neighborhood SD of Γ and in Hk+1(Ω).

See [16℄ for the details of a 
losely related problem.

2. Sin
e B
s+3/2
2,∞ (Ω) ⊃ Hs+3/2(Ω), the assertions for s ∈ (0, k) 
an be weakened

by repla
ing ‖u‖
B

s+3/2
2,∞ (Ω)

with ‖u‖Hs+3/2(Ω) on the right-hand side. Only for

the limiting 
ases s = 0 and s = k, we require the stronger requirement u ∈
B
s+3/2
2,1 (Ω) ⊂ Hs+3/2(Ω).

Proof The stru
ture of the proof is very similar to that of Theorem 3.3. The

main di�eren
e arises from the fa
t that the right-hand side of the dual problem

is supported by the thin neighborhood Sh, and this support property has to be

exploited.

Let e = u−uh. Let χSh
be the 
hara
teristi
 fun
tion of Sh. Let w = T (χSh

e)
and wh ∈ Vh its Galerkin approximation. Again, Galerkin orthogonality for u−uh
and w − wh implies

‖e‖2L2(Sh) = 〈e, χe〉 = a(e,w) = a(e,w − wh) = a(u− Ikhu,w − wh)

≤ C‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω)‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω), (5.1)

where ε ≥ 0 is arbitrary (in fa
t, ε ∈ R would be admissible). We �ag at this point

already that we will sele
t ε = 0 for k = 1 and ε > 0 arbitrary (but su�
iently

small) for k > 1. Ea
h of the two fa
tors in (5.1) is estimated separately.

1. step: For the �rst fa
tor in (5.1) we use approximation properties of the

S
ott-Zhang operator Ikh together with Lemma 2.1 to get for j ∈ {0, . . . , k}

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hj‖δ̃−1/2−ε

Γ ∇j+1u‖L2(Ω),

. hj




| lnh|1/2‖∇j+1u‖

B
1/2
2,1 (Ω)

if ε = 0

h−ε‖∇j+1u‖
B

1/2
2,1 (Ω)

if ε > 0.
(5.2)

With the Krone
ker symbol δ0,ε, we have shown for j ∈ {0, 1, . . . , k}

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hjh−ε(1 + δ0,ε| lnh|1/2)‖u‖Bj+3/2

2,1 (Ω)
. (5.3)
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Sin
e the S
ott-Zhang operator Ikh is de�ned on H1(Ω) irrespe
tive of boundary

onditions, we may use an interpolation argument to lift the restri
tion to integer

values j. Spe
i�
ally, the reiteration theorem (
f., e.g., [21, Thm. 23.6℄) asserts

that the Besov spa
e B
s+3/2
2,∞ (Ω), whi
h we have de�ned by interpolation between

(integer order) Sobolev spa
es, 
oin
ides with the interpolation spa
e between

Besov spa
es, viz.,

B
s+3/2
2,∞ (Ω) = (B

3/2
2,1 (Ω), B

k+3/2
2,1 (Ω))s/k,∞ (equivalent norms).

Hen
e, we may de
ompose for arbitrary t > 0 a fun
tion u ∈ B
s+3/2
2,∞ (Ω), s ∈ (0, k),

as u = u − u1 + u1 with u1 ∈ B
k+3/2
2,1 (Ω) and u0 := u − u1 ∈ B

3/2
2,1 (Ω) together

with

‖u0‖B3/2
2,1 (Ω)

≤ Cts/k‖u‖
B

s+3/2
2,∞ (Ω)

, ‖u1‖Bk+3/2
2,1 (Ω)

≤ Cts/k−1‖u‖
B

s+3/2
2,∞ (Ω)

.

Writing u− Ikhu =
(
u0 − Ikhu0

)
+

(
u1 − Ikhu1

)
we 
an use (5.3) with j = k for the

se
ond term in bra
kets and j = 0 for the �rst term in bra
kets to get with the


hoi
e t = hk

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) . hsh−ε(1 + δ0,ε| lnh|1/2)‖u‖Bs+3/2

2,∞ (Ω)
. (5.4)

Combining the estimates (5.3) with j = 0 and j = k and (5.4) for s ∈ (0, k) we
arrive at

‖δ̃−1/2−ε
Γ ∇(u− Ikhu)‖L2(Ω) (5.5)

. (1 + δ0,ε| lnh|1/2)h−ε





hs‖u‖
B

s+3/2
2,1 (Ω)

, s = 0,

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

hs‖u‖
B

k+3/2
2,1 (Ω)

, s = k.

2. step: The se
ond fa
tor in (5.1) requires more work. We start with a regu-

larity assertion for w that exploits the support properties of χSh
e and follows from

(2.11) and (2.12):

‖w‖
B

3/2
2,∞(Ω)

. h1/2‖χSh
e‖L2(Ω), (5.6)

‖w‖H3/2+ε(Ω) . h1/2−ε‖χSh
e‖L2(Ω), ε ∈ (0, s0 − 1/2]. (5.7)

We obtain an energy error estimate for w − wh in the standard way by using

quasi-optimality, the approximation properties of Vh, and the regularity assertion

(5.6):

‖w − wh‖H1(Ω) . inf
v∈Vh

‖w − v‖H1(Ω) . h1/2‖w‖
B

3/2
2,∞(Ω)

. h‖χSh
e‖L2(Ω). (5.8)

Lemma 3.1 is appli
able with z = w − wh; hen
e, obtain with (5.8)

‖δ−1/2+ε
Γ (w − wh)‖L2(Ω) . h3/2+ε‖χSh

e‖L2(Ω), ε ∈ (0, s0 − 1/2], (5.9)

‖δ̃−1/2
Γ (w − wh)‖L2(Ω) . h3/2| lnh|1/2‖χSh

e‖L2(Ω). (5.10)
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The bound (5.1) informs us that 
ontrol of w − wh in a weighted H1
-norm is re-

quired. In this dire
tion, we �rst write for a 
onstant c > 0 that will be determined

later su�
iently large

‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω)

≤ ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Sch) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch)

≤ Ch1/2+ε‖∇(w − wh)‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch)

(5.8)

≤ Ch3/2+ε‖χSh
e‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω\Sch). (5.11)

We emphasize that ε = 0 is allowed in (5.11). It remains to 
ontrol ‖δ̃1/2+εΓ ∇(w−
wh)‖L2(Ω\Sch). This is done again with the same arguments from the lo
al error

analysis as in the proof of Theorem 3.3. The estimate (3.12) holds verbatim, i.e.,

‖δ1/2+εΓ ∇(w − wh)‖L2(Ω\Sch) (5.12)

. ‖δ1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Scc1h) + ‖δ−1/2+ε
Γ (w − wh)‖L2(Ω\Scc1h

).

We emphasize that ε = 0 is admissible in (3.12). As in the proof of Theorem 3.3,

the 
onstant c will be sele
ted in dependen
e of various inverse estimates that are

applied. Combining (5.9), (5.10), (5.11), (5.12) we see that we have shown

‖δ̃1/2+εΓ ∇(w − wh)‖L2(Ω) (5.13)

.

{
h3/2+ε‖χSh

e‖L2(Ω) + ‖δ̃1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Sc1ch) if ε > 0,

h3/2| lnh|1/2‖χSh
e‖L2(Ω) + ‖δ̃1/2Γ ∇(w − Ikhw)‖L2(Ω\Sc1ch) if ε = 0.

3. step: We estimate the approximation error ‖δ̃1/2+εΓ ∇(w− Ikhw)‖L2(Ω\Sc1ch). At

this point the 
ases k = 1 and k > 1 diverge: sin
e w solves a homogeneous ellipti


equation on Ω \ Sc1ch (if c1c > 1), interior regularity is available so that higher

order approximation 
an be brought to bear if k > 1 in 
ontrast to the 
ase k = 1.
We start with the simpler 
ase k = 1.

The 
ase k = 1: From standard approximation results for Ikh , the inverse esti-
mate of Lemma 2.9, (i), and (5.6) we get for a 
onstant c2 ∈ (0, 1) (impli
itly, we

assume that c is so large that c2c1ch > 2h)

‖δ̃1/2Γ ∇(w − Ikhw)‖L2(Ω\Sc1ch) . h1‖δ̃1/2Γ ∇2w‖L2(Ω\Sc2c1ch)

. h| lnh|1/2‖w‖
B

3/2
2,∞(Ω)

. h3/2| lnh|1/2‖χSh
e‖L2(Ω). (5.14)

Inserting (5.5) (with ε = 0) with the 
ombination of (5.14) and (5.13) (again

with ε = 0) in (5.1) yields the desired �nal estimate for the 
ase k = 1 if we �x

c = 2/(c1c2).

The 
ase k > 1: We �x an ε ∈ (0, s0 − 1/2] arbitrary. From standard ap-

proximation results for Ikh , the inverse estimates of Lemma 2.9, and the regularity

assertion (5.7) we get (again for suitable 
onstants c2, c3 ∈ (0, 1) and the impli
it

assumption that c is su
h that c3c2c1c is su�
iently large)
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‖δ̃1/2+εΓ ∇(w − Ikhw)‖L2(Ω\Sc1ch) . h2‖δ̃1/2+εΓ ∇3w‖L2(Ω\Sc2c1ch)

Lem. 2.9,(ii)

. h2
[
‖δ̃−1/2+ε
Γ ∇2w‖L2(Ω\Sc3c2c1ch) + ‖δ̃1/2+εΓ ∇w‖L2(Ω\Sc3c2c1ch)

]

. h2−1/2+ε
[
‖∇2w‖L2(Ω\Sc3c2c1ch) + ‖∇w‖L2(Ω\Sc3c2c1ch)

]

Lem. 2.9,(iv)

. h2−1/2+ε‖χSh
e‖L2(Ω). (5.15)

Combining this with (5.5) produ
es in (5.1) the desired �nal estimate for the 
ase

k > 1. ⊓⊔
From Theorem 5.1 we 
an extra
t optimal 
onvergen
e estimates for the �ux error

‖∂n(u− uh)‖L2(Γ ):

Corollary 5.3 Let Assumption 1.1 be valid. Then with the Krone
ker symbol δk,1

‖∂nu− ∂nuh‖L2(Γ ) . (1 + δk,1| lnh|)





hk‖u‖
B

k+3/2
2,1 (Ω)

,

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u‖
B

3/2
2,1 (Ω)

.

Proof Stru
turally, the proof follows [18, Cor. 6.1℄ in that estimating the error on

Γ is transferred to an estimate on the strip Sh. The triangle inequality gives

‖∂n(u− uh)‖L2(Γ ) ≤ ‖∂n(u− Ikhu)‖L2(Γ ) + ‖∂n(Ikhu− uh)‖L2(Γ ). (5.16)

The two terms in (5.16) are estimated separately.

1. step: We 
laim that

‖∂n(u− Ikhu)‖L2(Γ ) .





hk‖u‖
B

k+3/2
2,1 (Ω)

hs‖u‖
B

s+3/2
2,∞ (Ω)

, s ∈ (0, k),

‖u‖
B

3/2
2,1 (Ω)

.

(5.17)

We will only show the limiting 
ases u ∈ B
k+3/2
2,1 (Ω) and u ∈ B

3/2
2,1 (Ω); the inter-

mediate 
ases follow by an interpolation argument similar to the one used in the

proof of Theorem 5.1. For the 
ase of maximal regularity, we use an elementwise

multipli
ative tra
e inequality for the elements abutting Γ to get

‖∂n(u− Ikhu)‖L2(Γ ) . hk/2
√

‖∇k+1u‖L2(S2h)h
(k−1)/2

√
‖∇k+1u‖L2(S2h)

. hk−1/2‖∇k+1u‖L2(S2h)

(2.4)

. hk‖∇k+1u‖
B

1/2
2,1 (Ω)

. hk‖u‖
B

k+3/2
2,1 (Ω)

.

For the 
ase of minimal regularity, u ∈ B
3/2
2,1 (Ω) we �rst note that we obtain from

(2.5) that ‖v‖L2(Γ ) . ‖v‖
B

1/2
2,1 (Ω)

. Using this and inverse estimates, we get

‖∂n(u− Ikhu)‖L2(Γ ) ≤ ‖∂nu‖L2(Γ ) + ‖∂nIkhu‖L2(Γ )

. ‖∇u‖
B

1/2
2,1 (Ω)

+ h−1/2‖∇Ikhu‖L2(Sh)

Ikhstable

. ‖∇u‖
B

1/2
2,1 (Ω)

+ h−1/2‖∇u‖L2(S2h)

(2.4)

. ‖∇u‖
B

1/2
2,1 (Ω)

.
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2. step: The term ‖∂n(Ikhu − uh)‖L2(Γ ) in (5.16) is 
ontrolled with inverse

estimates and Theorem 5.1 as follows:

‖∂n(Ikhu− uh)‖L2(Γ ) . h−1/2‖∇(Ikhu− uh)‖L2(Sh) . h−3/2‖Ikhu− uh‖L2(Sh)

. h−3/2‖u− Ikhu‖L2(Sh) + h−3/2‖u− uh‖L2(Sh).

The term ‖u− Ikhu‖L2(Sh) 
an be 
ontrolled with the approximation properties of

Ikh in the desired fashion: ‖u − Ikhu‖L2(Sh) . h‖∇u‖L2(S2h) . h3/2‖∇u‖
B

1/2
2,1 (Ω)

.

The 
ontribution ‖u− uh‖L2(Sh) is estimated with the aid of Theorem 5.1. ⊓⊔

6 Extension of the results of [18℄

The arguments of the present paper are similar to those underlying [18℄, in spite of

the fa
t that we did not employ the anisotropi
 norms that we introdu
ed in [18℄

but instead worked with weighted Sobolev spa
es. A feature of the analysis here

that was not present in [18℄ is our FEM error analysis in Lemma 3.1 for a weighted

L2
-estimate, whi
h, in turn, relies on the regularity assertions of Lemma 2.8 for

problems with data in weighted spa
es. This additional te
hni
al issue was 
ir-


umvented in [18℄ by assuming 
onvexity of Ω so that optimal order L2
-estimates


ould be 
ited from the literature. The present analysis provides the ne
essary

te
hni
al tools to remove this simpli�
ation in [18℄, where a more 
omplex mortar

setting is analyzed. It is possible to make use of weighted L2
-estimates similar to

those of Lemma 3.1 in the setting of [18℄. For that, regularity results of the type

provided in Lemma 2.8 have to be used. The out
ome of this re�nement is that the

main results of [18℄, namely, [18, Thm. 2.1℄, whi
h provides L2
-estimates on strips

of width O(h) around the skeleton, and [18, Thm. 2.5℄, whi
h provides optimal

order approximations for the mortar variable, hold true if the geometry is su
h

that Assumption 1.1 is valid. We will not provide the details of the arguments here

and refer to [11, Appendix B℄ instead. Nevertheless, for future referen
e we re
ord

the end result:

Theorem 6.1 In [18, Thms. 2.1, 2.5℄, the assumption of 
onvexity of Ω 
an be

repla
ed with [18, Assumption (5.2)℄.

7 Numeri
al results

We 
onsider the simple model equation −∆u = f in Ω ⊂ R, d ∈ {2, 3} with inho-

mogeneous Diri
hlet boundary 
onditions. These are realized numeri
ally by nodal

interpolation of the pres
ribed exa
t solution u, and the data f is also 
omputed

from u. In the 
ase of a non-smooth solution, we use a suitable quadrature formula

on �ner meshes to guarantee that the L2
-error is a

urately evaluated.

7.1 Two-dimensional results

We use a sequen
e of uniformly re�ned triangular meshes, where ea
h element is

split into four triangles.
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7.1.1 Lowest order dis
retization

We 
onsider two typi
al domains for reentrant 
orners. We start with the L-

shaped domain (−1, 1)2 \ (0, 1)× (−1,0) and then 
onsider a slit domain (−1, 1)2 \
((0, 1)× {0}). In both 
ases, the pres
ribed solution is given in polar 
oordi-

nates by u(r,φ) = rα sin(aφ) where α, a are given parameters. For non-integer

α, u ∈ B1+α
2,∞ (Ω) by [4, Thm. 2.1℄. Moreover, we test the in�uen
e of the position

(x0, y0) of the weak singularity at r = 0 by de�ning r2 := (x−x0)2+(y−y0)2. We

note that irrespe
tive of the lo
ation (x0, y0) of the singularity on the boundary

Γ , we have u ∈ B1+α
2,∞ (Ω) ⊂ H1+α−ε(Ω) for any ε > 0.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 6.1585e-03 - 6.8141e-03 - 6.2506e-03 -

289 2.6986e-03 1.19 2.5648e-03 1.41 2.1211e-03 1.56

1.089 1.1123e-03 1.28 8.8428e-04 1.54 6.7413e-04 1.65

4.225 4.4037e-04 1.34 2.9202e-04 1.60 2.0903e-04 1.69

16.641 1.7107e-04 1.36 9.4164e-05 1.63 6.4027e-05 1.71

66.049 6.5689e-05 1.38 2.9909e-05 1.65 1.9471e-05 1.72

263.169 2.5030e-05 1.39 9.4012e-06 1.67 5.8930e-06 1.72

1.050.625 9.4877e-06 1.40 2.9328e-06 1.68 1.7774e-06 1.73

4.198.401 3.5834e-06 1.40 9.0968e-07 1.69 5.3475e-07 1.73

Table 7.1 L domain, k = 1: In�uen
e of the position of singularity for α = 0.75.

For the L-shaped domain, the shift parameter s0 
an be taken to be any s0 <
2/3. From the theoreti
al results in Se
tion 3, we therefore expe
t the error de
ay

to have a rate of at least min(2, 1+α−1/3) uniformly in the position (x0, y0) of the
singularity. Table 7.1 shows the numeri
al results for α = 0.75 and a = 2/3π, for
whi
hmin(2, 1+α−1/3) = 1.417. As it 
an be seen for (x0, y0) = (0, 0), we observe
a good agreement with Theorem 3.3. However for the lo
ations (x0, y0) = (0.5,0)
and (x0, y0) = (0, 1), the rates are substantially better. This 
an be explained by

the more re�ned analysis of Se
tion 4. Using Corollary 4.3, we expe
t an improved


onvergen
e rate of 1.75 for these 
ases.

α = 10/9 α = 4/3 α = 3/2
DOFs L22-error rate L2

-error rate L2
-error rate

81 6.5660e-03 - 8.6776e-03 - 8.9932e-03 -

289 2.3309e-03 1.49 2.8523e-03 1.61 2.8151e-03 1.68

1.089 7.3413e-04 1.67 8.2870e-04 1.78 7.8034e-04 1.85

4.225 2.2257e-04 1.72 2.3073e-04 1.84 2.0751e-04 1.91

16.641 6.5650e-05 1.76 6.2539e-05 1.88 5.3910e-05 1.94

66.049 1.9056e-05 1.78 1.6688e-05 1.91 1.3835e-05 1.96

263.169 5.4810e-06 1.80 4.4099e-06 1.92 3.5256e-06 1.97

1.050.625 1.5690e-06 1.80 1.1580e-06 1.93 8.9467e-07 1.98

4.198.401 4.4822e-07 1.81 3.0279e-07 1.94 2.2641e-07 1.98

Table 7.2 L-shaped domain, k = 1: In�uen
e of exponent α for a = 2/3π and (x0, y0) = (0, 0).
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Table 7.2 shows the results for (x0, y0) = (0, 0) and α ∈ {10/9,4/3, 3/2}. From
Theorem 3.3, we expe
t 
onvergen
e rates of 1.78, 2, and 2, respe
tively. The
observed numeri
al rates of 1.81, 1.94, and 1.98 are quite 
lose.

The situation is similar for the slit domain where the regularity of the dual

problem is even further redu
ed. It 
orresponds to a limiting 
ase of our theory,

whi
h, stri
tly speaking, we did not 
over, sin
e the parameter s0 of Assumption 1.1

may be taken to be any s0 < 1/2. Nevertheless, one expe
ts from Theorem 3.3 a


onvergen
e rate 
lose to min{2, 1 + α − 1/2}. For α = 0.75 this is 1.25, whi
h is

visible in Table 7.3 for the 
ase (x0, y0) = (0, 0). Again, the better 
onvergen
e

behavior for (x0, y0) = (0.5,0) and (x0, y0) = (0, 1) 
an be explained by the the-

ory of Corollary 4.3, whi
h predi
ts 1 + α = 1.75. Table 7.4 shows the results for

(x0, y0) = (0, 0) and α ∈ {10/9,4/3, 3/2}. From Theorem 3.3, we expe
t 
onver-

gen
e rates of 1.61, 1.83 and 2, respe
tively. The observed numeri
al rates of 1.65,
1.86, and 1.96 are reasonably 
lose to these predi
tions.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 6.1391e-03 - 1.1088e-02 - 1.0692e-02 -

348 2.8187e-03 1.12 4.1329e-03 1.42 3.8553e-03 1.47

1.315 1.2351e-03 1.19 1.4164e-03 1.54 1.3388e-03 1.53

5.109 5.3338e-04 1.21 4.7830e-04 1.57 4.4562e-04 1.59

20.137 2.2846e-04 1.22 1.4725e-04 1.70 1.4420e-04 1.63

79.953 9.7267e-05 1.23 4.6683e-05 1.66 4.5843e-05 1.65

318.625 4.1233e-05 1.24 1.4761e-05 1.66 1.4401e-05 1.67

1.272.129 1.7428e-05 1.24 4.3773e-06 1.75 4.4861e-06 1.68

5.083.777 7.3524e-06 1.25 1.3285e-06 1.72 1.3889e-06 1.69

Table 7.3 Slit domain, k = 1: In�uen
e of the position of singularity for α = 0.75.

α = 10/9 α = 4/3 α = 3/2
DOFs L2

-error rate L2
-error rate L2

-error rate

97 5.7534e-03 - 7.3549e-03 - 7.5901e-03 -

348 1.9412e-03 1.57 2.2414e-03 1.71 2.1664e-03 1.81

1.315 6.2583e-04 1.63 6.4849e-04 1.79 5.8638e-04 1.89

5.109 1.9689e-04 1.67 1.8251e-04 1.83 1.5450e-04 1.92

20.137 6.1446e-05 1.68 5.0718e-05 1.85 4.0197e-05 1.94

79.953 1.9191e-05 1.68 1.4021e-05 1.85 1.0396e-05 1.95

318.625 6.0229e-06 1.67 3.8699e-06 1.86 2.6803e-06 1.96

1.272.129 1.9023e-06 1.66 1.0682e-06 1.86 6.8978e-07 1.96

5.083.777 6.0474e-07 1.65 2.9514e-07 1.86 1.7730e-07 1.96

Table 7.4 Slit domain, k = 1: In�uen
e of exponent α for a = 1/2π and (x0, y0) = (0, 0)

7.1.2 Se
ond order �nite elements

In this subse
tion, we test the performan
e of quadrati
 �nite elements for the L-

shaped domain. We use the same type of solution as before and vary the parameter
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α for (x0, y0) = (0, 0), i.e., the re-entrant 
orner. Here we expe
t from our theory a


onvergen
e rate of min(3, α+1−1/3). For α ∈ {2.175,2.275,2.375}, the observed
numeri
al rates, whi
h are visible in Table 7.5, are very 
lose to the theoreti
ally

predi
ted ones.

α = 2.175 α = 2.275 α = 2.375
DOFs L2 error rate L2 error rate L2 error rate

289 2.7565e-04 - 2.4570e-04 - 2.2177e-04 -

1.089 5.1121e-05 2.43 4.1696e-05 2.56 3.3912e-05 2.71

4.225 7.5320e-06 2.76 5.7319e-06 2.86 4.3221e-06 2.97

16.641 1.1051e-06 2.77 7.8407e-07 2.87 5.4888e-07 2.98

66.049 1.5938e-07 2.79 1.0553e-07 2.89 6.8762e-08 3.00

263.169 2.2723e-08 2.81 1.4044e-08 2.91 8.5292e-09 3.01

1.050.625 3.2138e-09 2.82 1.8538e-09 2.92 1.0497e-09 3.02

Table 7.5 L-shaped domain, k = 2: In�uen
e of α for a = 2/3π and (x0, y0) = (0, 0).

7.2 Three-dimensional results

In the three dimensional setting, we 
onsider a Fi
hera 
orner Ω := (−1, 1)3\[0, 1]3
and pres
ribe the smooth solution u(x, y, z) := sin((x + y)π) cos(2πz). The inho-

mogeneous Diri
hlet 
onditions are realized by nodal interpolation. The dis
retiza-

tion is based on trilinear �nite elements on hexahedra and uniform re�nements.

Although the dual problem la
ks full regularity, Theorem 3.3 asserts that this


an be 
ompensated by extra s0 regularity of the primal solution to maintain full

se
ond order 
onvergen
e in L2
.

DOF L2
-error rate

316 0.075444 -

3.032 0.017182 1.96

26.416 0.0039376 2.04

220.256 0.00094597 2.02

1.798.336 0.00023208 2.01

14.532.992 5.7491e-05 2.00

Table 7.6 Fi
hera 
orner, k = 1: L2
-error for a smooth solution.

Table 7.6 shows that we observe numeri
ally already for 
oarse dis
retizations

the predi
ted 
onvergen
e order two, and the theoreti
al results are 
on�rmed.

We point the reader to Appendix E for a further numeri
al results.
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A Coverings

In this appendix, the distan
e dist(x,M) for some set M appears frequently. For

notational 
onvenien
e, we set dist(x, ∅) = 1 to in
lude the degenerate 
aseM = ∅.
We quote from [18, Lemma A.1℄:

Lemma A.1 Let Ω ⊂ R
d
be bounded open and M = M be a 
losed set. Fix

c ∈ (0, 1) and ε ∈ (0, 1) su
h that

1− c(1 + ε) =: c0 > 0. (A.1)

For ea
h x ∈ Ω, let Bx := Bc dist(x,M)(x) be the 
losed ball of radius c dist(x,M)


entered at x, and let B̂x := B(1+ε)cdist(x,M)(x) denote the stret
hed (
losed) ball

of radius (1 + ε)cdist(x,M) also 
entered at x.
Then there exists a 
ountable set xi ∈ Ω, i ∈ N, and a 
onstant N ∈ N

depending solely on the spatial dimension d with the following properties:

1. (
overing property) ∪i∈NBxi ⊃ Ω

2. (�nite overlap on Ω) for ea
h x ∈ Ω, there holds card{i |x ∈ B̂xi} ≤ N .

Proof [18, Lemma A.1℄ assumed that M ⊂ Ω. However, an inspe
tion of the proof

shows that this is not ne
essary.

Before we pro
eed with variants of the 
overing result of Lemma A.1, we introdu
e

the notation of se
torial neighborhoods relative a singular set M :

De�nition A.2 (se
torial neighborhood) Let e, M ⊂ R
d
and c̃ > 0. Then

Se,M,c̃ := ∪x∈eBc̃ dist(x,M)(x)

is a se
torial neighborhood of the set e relative to the singular set M .

We are interested in 
overings of lower-dimensional manifolds by balls whose 
en-

ters are lo
ated on these manifolds:

Lemma A.3 Let d ∈ N and 1 ≤ d′ < d. Let ω ⊂ R
d′

and let Ω ⊂ R
d
be the


anoni
al embedding of ω into R
d
, i.e., Ω := ω × {0} × · · · × {0} ⊂ R

d
. Assume

the hypotheses and notation of Lemma A.1. Then there are c̃ > 0, N > 0, and a


olle
tion of balls Bxi , i ∈ N, as des
ribed in Lemma A.1 su
h that

(i) (
overing property for Ω) ∪i∈NBxi ⊃ Ω.
(ii) (
overing property for a se
torial neighborhood of Ω) ∪i∈NBxi ⊃ SΩ,M,c̃.
(iii) (�nite overlap property on R

d
) for ea
h x ∈ R

d
, there holds card{i |x ∈

B̃xi} ≤ N .

Proof We employ the result of Lemma A.1 for the lower-dimensional manifold ω
noting that Bx ∩ ω is a ball in R

d′
. In order to be able to ensure the 
overing


ondition for the se
torial neighborhood of Ω stated in (iii), we introdu
e the

auxiliary balls B′
x := Bc/2 dist(x,M)(x) of half the radius. Applying Lemma A.1

with these balls B′
x and the stret
hed balls B̂x therefore produ
es a 
olle
tion of


enters xi ∈ Ω, i ∈ N, su
h that

1. B′
xi

∩Ω 
overs Ω;
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2. for the stret
hed balls B̂xi , we have a �nite overlap property on Ω:

∀x ∈ Ω : card{i |x ∈ B̂xi} ≤ N. (A.2)

We next see that the balls B̂xi even have the following, stronger �nite overlap

property:

∀x ∈ R
d : card{i | x ∈ B̂xi} ≤ N. (A.3)

To see this, de�ne the in�nite 
ylinders Ĉxi := {x |πd′(x) ∈ B̂xi ∩ Ω}, where πd′
is the 
anoni
al proje
tion onto the hyperplane {x = (x1, . . . , xd) ∈ R

d |xd′+1 =

· · · = xd = 0}. Clearly, B̂xi ⊂ Ĉxi . These in�nite 
ylinders have a �nite overlap

property by (A.2) as 
an be seen by writing any x ∈ R
d
in the form x = (πd′(x), x

′)

for some x′ ∈ R
d−d′

and then noting that x ∈ Ĉxi implies πd′ (x) ∈ B̂xi ∩Ω.
Is remains to see that the balls Bxi 
over a se
torial neighborhood of Ω. To

that end, we note that the balls B′
xi


over Ω. Furthermore, for ea
h x ∈ Ω,
we pi
k xi su
h that x ∈ B′

xi
⊂ Bxi . Sin
e the radius of Bxi is twi
e that of

B′
xi
, we even have Bc/2 dist(xi,M)(x) ⊂ Bxi . Furthermore, by c ∈ (0, 1), we have

0 < (1−c) dist(xi,M) ≤ dist(x,M) ≤ (1+c) dist(xi,M). Therefore, there is c′ > 0
su
h that Bc̃ dist(x,M)(x) ⊂ Bxi and thus

∪x∈ΩBc̃ dist(x,M)(x) ⊂ ∪iBxi .

⊓⊔

We next show 
overing theorems for polygons and polyhedra. In the interest of


larity of presentation, we formulate two separate results. Before doing so, we point

out that balls with 
enter lo
ated on the boundary of the polygon/polyhedron Ω
will feature importantly so that the interse
tion of this ball with Ω will be of

interest. We therefore introdu
e the following notions:

De�nition A.4 (solid angles and dihedral angles)

1. Let Ω ⊂ R
2
be a Lips
hitz polygon. Let A be a vertex where the edges e1, e2

meet. We say that the set Bε(A)∩Ω is a solid angle, if ∂(Bε(A) ∩Ω) ∩ ∂Ω is


ontained in {A} ∪ e1 ∪ e2.
2. Let Ω ⊂ R

3
be a Lips
hitz polyhedron. Let A be a vertex of Ω. We say that

the set Bε(A)∩Ω is a solid angle, if ∂(Bε(A)∩Ω)∩ ∂Ω is 
ontained the union

of {A} and the edges and fa
es meeting at A.
3. Let Ω ⊂ R

3
be a Lips
hitz polyhedron. Let e be an edge of Ω, whi
h is shared

by the fa
es f1, f2. Let x ∈ e. We say that the set Bε(x)∩Ω is a dihedral angle,

if ∂(Bε(x) ∩Ω) ∩ ∂Ω is 
ontained in e ∪ f1 ∪ f2.

Theorem A.5 Let Ω ⊂ R
2
be a bounded Lips
hitz polygon with verti
es Aj, j =

1, . . . , J , and edges E. Let M ⊂ {A1, . . . , AJ}. Set A′ := {A1, . . . , AJ} \M and �x

ε ∈ (0, 1).

(i) There is a se
torial neighborhood SA′,M,c̃ of the verti
es A′
and a 
onstant

c ∈ (0, 1) su
h that SA′,M,c̃ is 
overed by balls Bi := Bcdist(xi,M)(xi) with


enters xi ∈ A′
. Furthermore, the stret
hed balls B̂i := B(1+ε)cdist(xi,M)(xi)

are solid angles and satisfy a �nite overlap property on R
2
.
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(ii) Fix a se
torial neighborhood U := SA′,M,c′ of the verti
es A′
. For ea
h edge

e ∈ E, there is a se
torial neighborhood Se,M,c̃ and a 
onstant c ∈ (0, 1) su
h
that Se,M,c̃ \ U is 
overed by balls Bi = Bcdist(xi,M)(xi) whose 
enters xi

are lo
ated on e. Furthermore, the stret
hed balls B̂i = B(1+ε)cdist(xi,M)(xi)

satisfy a �nite overlap property on R
2
and are su
h that ea
h B̂i ∩ Ω is a

half-disk.

(iii) Fix a se
torial neighbood U := SE,M,c′ of the edges E. There is c ∈ (0, 1) su
h
that Ω \ U is 
overed by balls Bi = Bc dist(xi,M)(xi) su
h that the stret
hed

balls B̂i = B(1+ε)cdist(xi,M)(xi) are 
ompletely 
ontained in Ω and satisfy a

�nite overlap property on R
2
.

Proof The assertion (i) is almost trivial and only in
luded to emphasize the stru
-

ture of the arguments. Assertions (ii), (iii) follow from suitable appli
ations of

Lemmas A.3 and A.1. ⊓⊔

The 3D variant of Theorem A.5 is formulated in Theorem A.6. We emphasize that

the �singular� set M need not be the union of all edges and verti
es but 
an be

just a subset. We also emphasize that it is not ne
essarily related to the notion of

�singular set� in De�nition 2.5, although it is used in this way. The key property of

the 
overing balls is again su
h that the 
enters are either a) in Ω (in whi
h 
ase

the stret
hed ball is 
ontained in Ω); or b) on a fa
e (in whi
h 
ase the stret
hed

ball B̂i is su
h that B̂i ∩ Ω is a half-ball); or 
) on an edge in whi
h 
ase B̂i ∩Ω
is a dihedral angle (see De�nition A.4); or d) in a vertex in whi
h 
ase B̂i ∩ Ω is

a solid angle (see De�nition A.4).

Theorem A.6 Let Ω ⊂ R
3
be a Lips
hitz polyhedron with fa
es F , edges E, and

verti
es A. Let MA ⊂ A and ME ⊂ E. Let M =M =MA ∪ME and �x ε ∈ (0, 1).
Let A′ := {A ∈ A |A 6∈M} be the verti
es not in M and E ′ := {e ∈ E | e∩M = ∅}
be the edges not abutting M . Then:

(i) (non-singular verti
es) There is a se
torial neighborhood SA′,M,c̃ of the ver-

ti
es in A′
and a 
onstant c ∈ (0, 1) su
h that SA′,M,c̃ is 
overed by balls

Bi := Bcdist(xi,M)(xi) with 
enters xi ∈ A′
. Furthermore, the stret
hed balls

B̂i := B(1+ε)cdist(xi,M)(xi) are solid angles and satisfy a �nite overlap prop-

erty on R
3
.

(ii) (non-singular edges) Fix a se
torial neighborhood U := SA′,M,c′ of A′
. For

ea
h edge e ∈ E ′
, there is a se
torial neighborhood Se,M,c̃ and a 
onstant

c ∈ (0, 1) su
h that Se,M,c̃ \ U is 
overed by balls Bi = Bc dist(xi,M)(xi)

whose 
enters xi are lo
ated on e. Furthermore, the stret
hed balls B̂i =
B(1+ε)cdist(xi,M)(xi) satisfy a �nite overlap property on R

3
and B̂i ∩Ω is a

dihedral angle.

(iii) (fa
es) Fix a se
torial neighbood U := SE,M,c′ of E. There is a se
torial neigh-
borhood SF ,M,c̃ and a 
onstant c ∈ (0, 1) su
h that SF ,M,c̃ \ U is 
overed by

balls Bi = Bc dist(xi,M)(xi) with 
enters xi ∈ ∂Ω. Furthermore, the stret
hed

balls B̂i = B(1+ε)cdist(xi,M)(xi) satisfy a �nite overlap property on R
3
and

B̂i ∩Ω is a half-ball.

(iv) (interior) Fix a se
torial neighbood U := SF ,M,c′ of F , where F is the set

of fa
es. Then there is c ∈ (0, 1) su
h that Ω \ U is 
overed by balls Bi =
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Bcdist(xi,M)(xi) with 
enters xi ∈ Ω. Furthermore, the stret
hed balls B̂i =

B(1+ε)cdist(xi,M)(xi) satisfy a �nite overlap property on R
3
and B̂i ⊂ Ω.

Proof Follows from Lemmas A.3 and A.1. ⊓⊔
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B Details for the extension of the results of [18℄.

The arguments used in the proof of Theorem 5.1 rely on te
hniques developed in

[18℄. A feature of the analysis here that was not present in [18℄ is the bidual problem

with right-hand side δ̃−1
Γ (w−wh) that allowed us to estimate w−wh in a weighted

spa
e. This te
hni
al issue was 
ir
umvented in [18℄ by assuming 
onvexity of

Ω so that optimal order L2
-estimates 
ould be 
ited from the literature. The


orresponding bidual problem 
an be analyzed in the mortar setting of [18℄ as well.

The end result is then Theorem B.1, whi
h states that the 
onvexity assumption

in [18℄ 
an be relaxed to the validity of Assumption 1.1 for the Poisson problem,

i.e., [18, (5.2)℄.

In the interest of brevity, we employ in this appendix the notation of [18℄ and

assume the reader's familiarity with [18℄.

It will be useful to write Hs
pw(Γ ) for the spa
e given by the broken Sobolev

norm on the skeleton Γ , i.e., the Sobolev norm is understood fa
ewise. Further-

more, we will write ‖·‖H1
for the broken H1

-norm, i.e., ‖·‖2H1 =
∑
i ‖·‖2H1(Ωi)

. We

also introdu
e the L2
-proje
tion ΠL2

Mh
: L2(Γ ) →Mh and re
all that, sin
e Mh is

a produ
t spa
e based on the fa
es, it inherits from [18, (A2)℄ the approximation

property

‖z −ΠL2

Mh
z‖L2(Γ ) ≤ Chs‖z‖Hs

pw(Γ ), s ∈ [0, k]. (B.1)

The main result is:

Theorem B.1 In [18, Thms. 2.1, 2.5℄, the assumption of 
onvexity of Ω 
an be

repla
ed with [18, Assumption (5.2)℄.

Proof We will only sket
h the modi�
ations entailed by the weakenend regularity

assumptions.

Proof of [18, Thm. 2.1℄: The starting point is the error representation [18,

(6.2)℄, whi
h 
onsists of three terms:

a(w − wh, u− Phu) + b(w − wh, λ− µh) + b(u− Phu, λw − µ̃h), (B.2)

where µh, µ̃h ∈Mh are arbitrary. The �rst term in (B.2) 
an be estimated as in [18,

Proof of Thm. 2.1℄ in view of the generalization of [18, Lemma 5.5℄ given below as

Lemma B.3. The third term in (B.2) 
an again be estimated as in [18, (6.4)℄ sin
e

Lemma B.2 below provides the estimate infµ̃h∈Mh
‖λw−µ̃h‖L2(Γ ) . h1/2‖v‖L2(Ω).

The se
ond term in (B.2) requires a modi�
ation of the pro
edure in [18, (6.3)℄.

Taking µh = ΠL2

Mh
λ in [18, (6.3)℄ yields

b(w − wh, λ−ΠL2

Mh
λ) =

∫

Γ

[w − wh](λ−ΠL2

Mh
λ)

=

∫

Γ

([w − wh]−ΠL2

Mh
[w − wh])(λ−ΠL2

Mh
λ)

. h1/2‖[w − wh]‖H1/2
pw (Γ )

‖λ−ΠL2

Mh
‖L2(Γ )

. h1/2‖w − wh‖H1‖λ−ΠL2

Mh
λ‖L2(Γ )

. h1/2+k‖w − wh‖H1‖λ‖Hk
pw(Γ );
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the last step followed from (B.1). The proof is 
ompleted with the aid of Lemma B.2

and the tra
e estimate ‖λ‖Hk
pw(Γ ) . ‖u‖

B
k+3/2
2,1 (Ω)

.

Proof of [18, Thm. 2.5℄: The proof stands as given in [18℄. ⊓⊔

Lemma B.2 Assume that Ω satis�es [18, Assumption (5.2)℄. Then, for v ∈
L2(Sh) ⊂ L2(Ω) and w := TD(v) and the 
orresponding Lagrange multiplier λw
de�ned fa
ewise by λw|γl = −∂nw|Ωs(l)

and the 
orresponding mortar approxima-

tion wh of w there holds:

√∑

i

‖w − wh‖2H1(Ωi)
= ‖w − wh‖H1 . h‖v‖L2(Ω), (B.3)

‖λw −ΠL2

Mh
λw‖L2(Γ ) . h1/2‖v‖L2(Ω). (B.4)

Proof We start with the proof of (B.3). It results from standard 
onvergen
e theory

for mortar methods as follows. [18, Assumption (5.2)℄ provides w ∈ H3/2+ε(Ω) for
some ε > 0 together with ‖w‖H3/2+ε(Ω) ≤ C‖v‖H−1/2+ε(Ω). The Lagrange multi-

plier λw is given fa
ewise by the expression λw|γl = −∂nw|Ωs(l)
∈ Hε(γl) together

with the estimate ‖λw‖Hε
pw(Γ ) . ‖v‖H−1/2+ε(Ω). The standard 
onvergen
e theory

for mortar methods (as worked out, e.g., in [8, Prop. 2.3℄) then gives

‖w − wh‖H1 . h1/2+ε‖w‖H3/2+ε(Ω) . h1/2+ε‖v‖H−1/2+ε(Ω).

The proof of (B.3) is 
omplete if we 
an show that

‖v‖H−1/2+ε(Ω) . h1/2−ε‖v‖L2(Ω). (B.5)

This last estimate exploits supp v ⊂ Sh and follows by interpolation arguments

similar to those employed in the proof of [18, Lemma 5.2℄: De�ne θ = 1−2ε (we as-

sume ε < 1/2). Then H−1/2+ε(Ω) = (H1/2−ε(Ω))′ =
((
L2(Ω), B

1/2
2,1 (Ω)

)
θ,2

)′
=

(
(B

1/2
2,1 (Ω))′, L2(Ω)

)
θ,2

, so that the interpolation inequality yields ‖v‖H−1/2+ε(Ω) .

‖v‖θ
(B

1/2
2,1 (Ω))′

‖v‖1−θL2(Ω). The argument is 
ompleted by noting in view of supp v ⊂
Sh that

‖v‖L2(Ω) ≤ ‖v‖L2(Ω) and ‖v‖
(B

1/2
2,1 (Ω))′

≤ C
√
h‖v‖L2(Ω),

so that ‖v‖H−1/2+ε(Ω) . h(1−θ)/2‖v‖L2(Ω) . h1/2−ε‖v‖L2(Ω). This proves (B.5).

The bound (B.4) follows from (B.1) and ‖λw−ΠL2

Mh
λw‖L2(Γ ) ≤ Chε‖λw‖Hε

pw(Γ ) .

hε‖w‖H3/2+ε(Ω) . hε‖v‖H−1/2+ε(Ω). An appeal to (B.5) �nishes the proof. ⊓⊔

We generalize [18, Lemma 5.5℄:

Lemma B.3 [generalizations of [18, Lemma 5.5℄℄ Assume that Ω satis�es [18,

Assumption (5.2)℄. Then, for v ∈ L2(Sh) ⊂ L2(Ω) and w := TD(v) and the

mortar approximation wh of w, there holds

‖∇(w− wh)‖L2(Γ ;L1) ≤ Ch3/2(1 + δk,1| lnh|)‖v‖L2(Ω).
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Proof Inspe
tion of the proof of [18, Lemma 5.5℄ shows that we have to estimate

the following two terms:

T1 :=

∫ c̃h

τ=0

‖∇(w − wh)‖L2(γτ ) and T2 :=

∫ D

τ=c̃h

‖∇(w − wh)‖L2(γτ ).

Estimating T1: Inspe
tion of the proof of [18, Lemma 5.5℄ shows that

T1 ≤
√
h‖∇(w− wh)‖L2(S(0,c̃h)) ≤

√
h‖∇(w − wh)‖L2(Ωi)

We 
on
lude together with (B.3)

T1 ≤ Ch3/2‖v‖L2(Ω).

We now turn to estimating T2. As in the proof of [18, Lemma 5.5℄, we 
onsider

the lowest order 
ase k = 1 and the higher order 
ases k > 1 separately.

Estimating T2 for k = 1: Inspe
tion of the proof of [18, Lemma 5.5℄ gives

(
f. [18, eqn. (5.13)℄)

∫ D

τ=c̃h

‖∇(w− wh)‖L2(γτ ) dτ (B.6)

. | lnh|1/2
(
‖δ1/2Γ ∇(w − I1hw)‖L2(C′\Sc1h) + ‖δ−1/2

Γ (w − wh)‖L2(C′\Sc1h)

)
.

The term w − I1hw is estimated as in the proof of [18, Lemma 5.5℄ with the

aid of (weighted) H2
-regularity asserted in [18, Lemma 5.4℄ and the estimate

‖w‖
B

3/2
2,∞(Ω)

.
√
h‖v‖L2(Ω) of [18, Lemma 5.2℄. In total, we get

‖δ1/2Γ ∇(w − I1hw)‖L2(C′\Sc1h) . | lnh|1/2h3/2‖v‖L2(Ω).

The se
ond 
ontribution of the right-hand side of (B.6) has to be treated with

more 
are than in the proof of [18, Lemma 5.5℄, where the 
onvexity of Ω was


onveniently exploited in order to 
ontrol ‖w − wh‖L2(Ω); more pre
isely, we do

not have full H2
-regularity but only the limited shift theorem of [18, Assump-

tion (5.2)℄. In order to 
ontrol the term ‖δ−1/2
Γ (w −wh)‖L2(C′\Sc1h) appearing on

the right-hand side of (B.6), we pro
eed by yet another duality argument. Let

ψ := TD(δ̃−1
Γ (w−wh)), where δ̃Γ is the regularized distan
e fun
tion δ̃Γ ∼ h+δΓ .

Note that δ̃Γ ∼ δΓ on C′ \ Sc1h. Denote by λψ the Lagrange multiplier for ψ,
i.e., λψ |γl = −∂nψ|Ωs(l)

. From Lemma B.4 we have for some ε > 0 given by the

stipulated shift theorem ([18, Assumption (5.2)℄)

‖ψ‖
B

3/2
2,∞(Ω)

. | lnh|1/2‖δ̃−1/2
Γ (w − wh)‖L2(Ω), (B.7)

‖λψ‖Hε
pw(Γ ) + ‖ψ‖H3/2+ε(Ω) . h|−ε‖δ̃−1/2

Γ (w − wh)‖L2(Ω). (B.8)

The pair (ψ, λψ) solves the following saddle point problem:

a(z, ψ) + b(z, λψ) = (z, δ̃−1(w − wh)) ∀z ∈ {z ∈
∏

i

H1(Ωi) | z|∂Ω = 0},

(B.9a)

b(ψ, q) = 0 ∀q ∈
∏

i

H
1/2
00 (γi). (B.9b)
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The Galerkin orthogonality satis�ed by w − wh reads for arbitrary Iψ ∈ Vh

a(w − wh, Iψ) + b(Iψ, λw) = 0.

Hen
e, we get by taking z = w − wh in (B.9a)

‖δ̃−1/2
Γ (w − wh)‖2L2(Ω) = a(w − wh, ψ) + b(w − wh, λψ) (B.10)

= a(w − wh, ψ − Iψ)− b(Iψ, λw) + b(w − wh, λψ).

We estimate |a(w − wh, ψ − Iψ)| . ‖w − wh‖H1‖ψ − Iψ‖H1
. Sin
e Iψ ∈ Vh and

[ψ] = 0:

|b(Iψ, λw)| = b(ψ − Iψ, λw −ΠL2

Mh
λw)| . ‖ψ − Iψ‖L2(Γ )‖λw −ΠL2

Mh
λw‖L2(Γ )

≤ ‖ψ − Iψ‖1/2L2(Ω)‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ ),

where, in the last step, we employed the multipli
ative tra
e inequality and the

approximation property (B.1). For the term b(w −wh, λψ), we employ again that

[w] = 0 and that wh ∈ Vh to get

b(w − wh, λψ) =

∫

Γ

[w − wh](λψ −ΠL2

Mh
λψ)

=

∫

Γ

([w − wh]−ΠL2

Mh
[w − wh])(λψ −ΠL2

Mh
λψ)

. h1/2‖[w − wh]‖H1/2
pw (Γ )

hε‖λψ‖Hε
pw(Γ ).

Noting ‖[w−wh]‖H1/2
pw (Γ )

. ‖w−wh‖H1
we obtain by inserting the above estimates

in (B.10)

‖δ̃−1/2(w − wh)‖2L2(Ω) .

‖w − wh‖H1‖ψ − Iψ‖H1 + ‖ψ − Iψ‖1/2L2 ‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ )

+ h1/2‖w − wh‖H1hε‖λψ‖Hε
pw
.

The terms involving ψ−Iψ are estimate with the aid of Lemma B.5 and the bound

‖ψ‖
B

3/2
2,∞(Ω)

given in (B.7); the terms ‖w − wh‖H1
are 
ontrolled in (B.3); using

‖λw‖Hε
pw(Γ ) . ‖v‖H−1/2+ε(Ω) and (B.7) for ‖λψ‖Hε

pw(Γ ) we get

‖δ̃−1/2(w − wh)‖L2(Ω) .

h3/2| lnh|1/2‖v‖L2(Ω) + h1| lnh|1/2‖v‖L2(Ω)h
ε‖v‖H−1/2+ε(Ω) + h3/2hεh−ε‖v‖L2(Ω).

Now the result follows from (B.5).

Estimating T2 for k > 1: We pro
eed similarly to the 
ase k = 1. The
di�eren
e is that (
f. [18, (5.12)℄) we need to 
ontrol

h−ε‖δ−1/2+ε
Γ (w − wh)‖L2(C′\Sc̃1h).

As in the 
ase k = 1, we set up a dual problem with solution ψ = TD(δ̃−1+2ε
Γ (w−

wh)) and 
orresponding Lagrange multiplier λψ . By Lemma B.4 (and tra
e esti-

mates) we have the regularity assertions

‖λψ‖Hε
pw(Γ ) + ‖ψ‖H3/2+ε(Ω) . ‖δ̃−1/2+ε

Γ (w − wh)‖L2(Ω). (B.11)
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Pro
eeding in the same manner as in the 
ase k = 1, we arrive at

‖δ̃−1/2+ε(w − wh)‖2L2(Ω)

. ‖w − wh‖H1‖ψ − Iψ‖H1 + ‖ψ − Iψ‖1/2L2 ‖ψ − Iψ‖1/2H1 h
ε‖λw‖Hε

pw(Γ )

+ h1/2‖w − wh‖H1hε‖λψ‖Hε
pw
.

The regularity assertions (B.11) as well as the approximation properties of Lemma B.5

yield ‖δ̃−1/2+ε(w − wh)‖L2(Ω) . h3/2+ε‖v‖L2(Ω) and hen
e

h−ε‖δ−1/2+ε
Γ (w − wh)‖L2(C′\Sc̃1h) . h3/2‖v‖L2(Ω).

⊓⊔

Lemma B.4 (Generalization of [18, Lemma 5.2℄) Let δ̃Γ be the regularized

distan
e fun
tion. Then for the operator TD we have for w := TD(δ̃−1
Γ v) (and

ε > 0 su�
iently small):

‖w‖
B

3/2
2,∞(Ω)

≤ C| lnh|1/2‖δ̃−1/2
Γ v‖L2(Ω), (B.12)

‖w‖H3/2+ε(Ω) ≤ Cεh
−ε‖δ̃−1/2

Γ v‖L2(Ω). (B.13)

For w = TD(δ̃−1+2ε
Γ v) we have

‖w‖H3/2+ε(Ω) ≤ C‖δ̃−1/2+ε
Γ v‖L2(Ω). (B.14)

Proof The proof is done with the same arguments as those of Lemma 2.8. ⊓⊔

We need an approximation result for the approximation from the 
onstrained spa
e

Vh for fun
tions that do not permit nodal interpolation.

Lemma B.5 (approximation from 
onstrained spa
e) Let the 
onstrained

spa
e Vh be de�ned in [18, (2.4b)℄ and assume hypotheses [18, (A1), (A2)℄. De�ne

the operator P̃h as in [18, (4.2)℄ but repla
e the interpolation operator Ik by a (sub-

domainwise) S
ott-Zhang operator Ik,SZh (
f. [20℄) that 
onforms to the boundaries

of the subdomains Ωi, i = 1, . . . ,M . Then P̃h is de�ned on Hs(Ω) ∩ H1
0 (Ω) for

s ≥ 1, it maps into Vh, and has the approximation properties

√∑

i

‖v − P̃hv‖2H1(Ωi)
≤ Chs−1‖v‖Hs(Ω),

‖v − P̃hv‖L2(Ω) ≤ Chs‖v‖Hs(Ω), 1 ≤ s ≤ k + 1,
√∑

i

‖v − P̃hv‖2H1(Ωi)
≤ Chs−1‖v‖Bs

2,∞(Ω),

‖v − P̃hv‖L2(Ω) ≤ Chs‖v‖Bs
2,∞(Ω), 1 < s < k + 1, s 6∈ N.
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Proof We only show the �rst estimates as the estimates with Bs2,∞(Ω)-regularity

follow by interpolation arguments. It su�
es to study the 
ontribution EkΠh[I
k,SZv]

to the operator P̃h. We re
all that by the multipli
ative tra
e inequality ‖w‖2L2(∂Ωi)
.

‖w‖L2(Ωi)‖w‖H1(Ωi) and the simultaneous approximation properties of Ik,SZ in

L2
and H1

we have ‖v − Ik,SZv‖L2(∂Ωi) ≤ Chs−1/2‖v‖Hs(Ωi). Exploiting the

L2
-stability of the mortar proje
tion Πh, we get the bound

‖EkΠh[Ik,SZv]‖H1(Ωi) . h−1h1/2‖[Ik,SZv]‖L2(∂Ωi)

. h−1/2‖v − Ik,SZv‖L2(∂Ωi) . hs−1‖v‖Hs(Ωi).

⊓⊔
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C Details 
on
erning Lemma 2.9

The following lemma is an expanded version of Lemma 2.9. It is 
losely related to

Lemma 2.3 with β = 1/2 there. The essential di�eren
e is that we repla
e the norm
‖z‖H3/2(Ω) with the weaker norm ‖z‖

B
3/2
2,∞(Ω)

at the expense of a fa
tor | lnh|1/2.

Lemma C.1 Let the bounded Lips
hitz domain Ω ⊂ R
d
, d ∈ {2, 3}. Assume that

w ∈ B
3/2
2,∞(Ω) is a solution of

−∇ · (A∇w) = v.

(i) There exist 
onstants C, c1 > 0 independent of v and w su
h that with the

distan
e fun
tion δΓ

‖
√
δΓ∇2w‖L2(Ω\Sh) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

+ C‖
√
δΓ v‖L2(Ω\Sc1h). (C.1)

In parti
ular, if v|Ω\Sc1h
= 0 then ‖

√
δΓ∇2w‖L2(Ω\Sh) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

.

(ii) Let c′ > 0 be �xed. Assume v|Ω\Sc′h
= 0. Then there exist c̃, c2 > 0 su
h for

every α > 0

‖δαΓ∇3w‖L2(Ω\Sc̃h) ≤ C1‖A‖C0,1(Ω)‖δα−1

Γ
∇2w‖L2(Ω\Sc2h) (C.2)

+ C2‖A‖C1,1(Ω)‖δαΓ∇w‖L2(Ω\Sc2h)

]
.

(iii) Let c′ > 0 be �xed. Assume v|Ω\Sc′h
= 0. Assume that w ∈ H3/2+ε(Ω) for

some ε ∈ (0, 1/2). Then there exist ĉ, c3 > 0 su
h that

‖∇2w‖L2(Ω\Sĉh) ≤ Cεh
−1/2+ε‖w‖H3/2+ε(Ω).

Proof

Proof of (i): We may restri
t our attention to a lo
al situation near a part of the

boundary. The boundary Γ 
an lo
ally be des
ribed by a graph φ. That is, in a

suitable 
oordinate system, we 
an de�ne 
ylinders

Cδ = {(x, φ(x) + t) | δ < t < D + δ, x ∈ B},
C′
δ = {(x, φ(x) + t) | δ < t < D′ + δ, x ∈ B′},

where δ < D < D′
and B, B′

are two 
on
entri
 balls with B ⊂⊂ B′
. Furthermore,

for δ = 0 we assume C′
0 ⊂ Ω. In parti
ular, {(x, φ(x)) |x ∈ B′} ⊂ Γ . We also note

that t ∼ dist((x, φ(x) + t), Γ ).
Let C′′

δ be a third 
ylinder of the form C′′
δ = {(x, φ(x)+ t) : δ < t < D′′ + δ, x ∈

B′′} where B ⊂⊂ B′′ ⊂⊂ B′
and D < D′′ < D′

. Let χ ∈ C∞(Rd) be su
h that

χ|C′′

0
≡ 1 and χ|Ω\C′

0
≡ 0. To simplify the notation, we assume that the fun
tions

w,A, v are given in a 
oordinate system 
ommensurate with the 
oordinate system

des
ribing the 
ylinders Cδ, C′
δ, viz., w evaluated at a point (x, φ(x) + t) ∈ C′

δ is

given by w(x, φ(x) + t). A translation in the last variable de�nes the fun
tion w̃
by w̃(x, φ(x) + t) := w(x, φ(x) + t+ 2δ). We note

−∇ ·
(
Ã∇w̃

)
= ṽ in C′

−2δ; (C.3)
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here (again in the 
oordinate system used to des
ribe the 
ylinders) Ã(x, φ(x) +
t) = A(x, φ+ t+ 2δ) and ṽ(x, φ(x) + t) = v(x, φ+ t+ 2δ).

1. step: We show (if δ is su�
iently small)

‖w̃‖H3/2(C′′

0 ) ≤ C
√

| ln δ|‖w‖
B

3/2
2,∞(Ω)

+ Cδ‖ṽ‖L2(C′

−δ)
. (C.4)

Using the 
hara
terization of H3/2(C′
0) = (H1(C′

0),H
2(C′

0))1/2,2 in terms of

the K-fun
tional, we write (
f. also [5, p.193, eqn. (7.4)℄)

‖χw̃‖2H3/2(C′

0)
=

∫ 1

t=0

(
t−1/2K(t, χw̃)

)2 dt

t

=

∫ ε

t=0

(
t−1/2K(t, χw̃)

)2 dt

t
+

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt

t
.(C.5)

The se
ond integral in (C.5) 
an be estimated by

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt

t
≤

∫ 1

t=ε

dt

t
sup
t>0

(
t−1/2K(t, χw̃)

)2
≤ ln ε‖χw̃‖2

B
3/2
2,∞(C′

0)
.

For the �rst integral in (C.5) we employ interior regularity estimates for solutions

of se
ond order ellipti
 equation with vanishing right-hand side. Spe
i�
ally, (C.3)

and interior regularity (see, e.g., [9, Thm. 8.8 and proof℄) give (here, we assume

that δ is su�
iently small)

‖χw̃‖H2(C′

0)
≤ Cδ−1‖w̃‖H1(C′

−δ
) + C‖ṽ‖L2(C′

−δ
).

Hen
e, estimating K(t, χw̃) = infv∈H2 ‖χw̃−v‖H1(C′

0)
+t‖v‖H2(C′

0)
≤ t‖χw̃‖H2(C′

0)
,

we obtain

∫ ε

t=0

t−2K2(t, χw̃) dt ≤ ε‖χw̃‖2H2(C′

0)
≤ Cεδ−2‖w̃‖2H1(C′

−δ)
+ Cε‖ṽ‖2L2(C′

−δ)
.

We 
on
lude

‖χw̃‖2H3/2(C′

0)
≤ C

[
εδ−2‖w̃‖2H1(C′

−δ)
+ ε‖ṽ‖2L2(C′

−δ)
+ ln ε‖χw̃‖2

B
3/2
2,∞(C′

0)

]
(C.6)

≤ C
[
εδ−2 + ln ε

]
‖w‖2

B
3/2
2,∞(C′

0)
+ ε‖ṽ‖2L2(C′

−δ)
,

where, in the last step we have employed that multipli
ation by a smooth fun
-

tion and translation are bounded operations on Sobolev (and therefore also Besov)

spa
es. Sele
ting ε = δ2 shows ‖χw̃‖H3/2(C′

0)
≤ C

√
| ln δ|‖w‖

B
3/2
2,∞(Ω)

+Cδ‖ṽ‖L2(C′

−δ)

from whi
h we get (C.4) in view of the support properties of χ.
Step 2: Let z solve, for a �xed ρ > 0 and a parameter r ≤ 1, the equation

−∇ ·
(
Ã∇z

)
= f in a ball Br(1+ρ) of radius r(1 + ρ).

We 
laim:

‖∇2z‖L2(Br) ≤ C
[
‖f‖L2(Br(1+ρ)) + ‖∇z‖L2(Br(1+ρ)) + r−1/2|z|H3/2(Br(1+ρ))

]
,(C.7)

‖∇2z‖L2(Br) ≤ C
[
‖f‖L2(Br(1+ρ)) + r−1‖∇z‖L2(Br(1+ρ))

]
. (C.8)
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We point out that the H3/2
-seminorm in (C.7) is de�ned in terms of the Aronstein-

Slobode
kij norm for s
aling reasons. The bounds (C.7), (C.8) follow from interior

regularity in the following way.

S
aling the ball Br(1+ρ) to a ball B̂1+ρ of radius 1 + ρ leads to an equation of

the form

−∇ ·
(
Â∇ẑ

)
= r2f̂ in a ball B̂1+ρ of radius (1 + ρ), (C.9)

where Â and f̂ are the 
oe�
ient and the right-hand side in the s
aled variables.

We note that

‖∇jÂ‖L∞(B̂1+ρ)
∼ rj‖∇jA‖L∞(Br(1+ρ)), j ∈ N0.

Then standard interior regularity (see, e.g., [9, Thm. 8.8℄) gives in view of r ≤ 1

‖∇2ẑ‖L2(B̂1)
≤ C

[
r2‖f̂‖L2(B̂1+ρ)

+ ‖ẑ‖H1(B̂1+ρ)

]
. (C.10)

Sin
e the 
onstant fun
tions are in the kernel of the operator −∇ · (Â∇z) it is

easy to 
on
lude with a Poin
aré inequality that (C.10) implies

‖∇2ẑ‖L2(B̂1)
≤ C

[
r2‖f̂‖L2(B̂1+ρ)

+ ‖∇ẑ‖L2(B̂1+ρ)

]
. (C.11)

S
aling this equation ba
k to Br(1+ρ) yields the desired bound (C.8). For the proof

of (C.7), we have to bring in the H3/2
-seminorm. Let π ∈ P1 be arbitrary. Then

the fun
tion ẑ − π satis�es in view of the fa
t that ∇π is 
onstant

−∇ ·
(
Â∇(ẑ − π)

)
= r2f̃ +∇ ·

(
Â∇π

)
= r2f̂ + (∇ · Â) · ∇π =: f̃

(we employed the 
onvention that the divergen
e operator ∇· in the expression

∇ · Â a
ts on 
olumns of Â). Applying (C.10) to this equation (and repla
ing r2f̂

with f̃ and ẑ with ẑ − π) yields

‖∇2ẑ‖L2(B̂1)
≤ ‖ẑ − π‖H2(B̂1)

≤ C
[
‖f̃‖L2(B̂1+ρ)

+ ‖ẑ − π‖H1(B̂1+ρ)

]

≤ C
[
r2‖f̂‖L2(Br(1+ρ)) + r‖∇π‖L2(B̂1+ρ)

+ ‖ẑ − π‖H3/2(B̂1+ρ)

]

≤ C
[
r2‖f̂‖L2(Br(1+ρ)) + r‖∇ẑ‖L2(B̂1+ρ)

+ ‖ẑ − π‖H3/2(B̂1+ρ)

]
.

In�mizing over all π ∈ P1 yields

‖∇2ẑ‖L2(B̂1)
≤ C

[
r2‖f̂‖L2(B̂1+ρ)

+ r‖∇ẑ‖L2(B̂1+ρ)
+ |ẑ|H3/2(B̂1+ρ)

]
. (C.12)

S
aling ba
k to Br(1+ρ) yields (C.7), if we note the s
aling properties of the

Aronstein�Slobode
kij seminorm.

3. step: Applying the result of step 2 to the fun
tion w̃ yields

‖∇2w̃‖L2(Br) ≤ C
[
‖∇w̃‖L2(Br(1+ρ)) + r−1/2|w̃|H3/2(B(1+ρ)r)

+ ‖ṽ‖L2(Br(1+ρ))

]

(C.13)

for all balls Br su
h that B(1+ρ)r ⊂ C′
−2δ. Using, for example, the Besi
ovit
h 
ov-

ering theorem [7℄, we 
an 
over C0 by overlapping balls Bri(xi) with 
enters xi and
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radii ri ∼ δΓ (xi) su
h that the stret
hed balls Bri(1+ρ)(xi) have a �nite overlap

property (see [18, Lemma A.1℄ for details). A 
overing argument and afterwards

(C.4) then show

‖
√
δΓ∇2w̃‖L2(C0) ≤ C

[
‖w̃‖H3/2(C′′

0 ) + ‖
√
δΓ∇w̃‖L2(C′

0)
+ ‖

√
δΓ ṽ‖L2(C′

0)

]

≤ C
[√

| ln δ|‖w‖
B

3/2
2,∞(Ω)

+ δ‖ṽ‖L2(C′

−δ
) + ‖

√
δΓ ṽ‖L2(C′

0)

]

Sin
e w̃ and ṽ are obtained by a translation, we arrive at

‖
√
δΓ∇2w‖L2(C2δ) ≤ C

[√
| ln δ|‖w‖

B
3/2
2,∞(Ω)

+ ‖
√
δΓ v‖L2(Ω\Sc2δ)

]

for a suitable c2 that depends solely on the Lips
hitz 
hara
ter of Γ . Taking δ ∼ h
produ
es the desired result.

Proof of (ii): The estimate merely expresses interior regularity for solutions

of ellipti
 equations with vanishing right-hand side. It follows from (C.8) and a


overing argument. More pre
isely, as in Step 2, we start from

−∇ · (A∇z) = f in a ball Br(1+ρ) of radius r(1 + ρ).

Di�erentiating this equation on
e gives for α ∈ N
d
with |α| = 1

−∇ · (A∇Dαz) = Dαf +∇ · (DαA)∇z in a ball Br(1+ρ) of radius r(1 + ρ),

where again the divergen
e operator in the expression ∇ · (DαA) a
ts on the


olumns of DαA. We get from (C.7) by 
onsidering all α ∈ N
d
with |α| = 1

‖∇3z‖L2(Br) ≤
C
[
‖∇f‖L2(Br(1+ρ)) + r−1‖∇2z‖L2(Br(1+ρ)) + ‖∇2A‖L∞(Br(1+ρ))‖∇z‖L2(Br(1+ρ))

]
.

A 
overing argument then produ
es the 
laim sin
e f is assumed to satisfy f ≡ 0
on Ω \Sc′h in the statement (ii). We also note that ‖∇2A‖L∞(Ω) 
an be bounded

by ‖∇A‖W 1,∞(Ω).

Proof of (iii): Our starting point is the above Step 2: We 
laim that for the

fun
tion z satisfying (C.9) we have

‖∇2z‖L2(Br) ≤ C
[
‖f‖L2(Br(1+ρ)) + ‖∇z‖L2(Br(1+ρ)) + r−1/2+ε|z|H3/2+ε(Br(1+ρ))

]
,

(C.14)

where the H3/2+ε
-seminorm is again an Aronstein-Slobode
kij norm. To see this,

we 
he
k the derivation of (C.12). We see that one 
an (marginally) modify the

arguments to obtain instead of (C.12) the estimate

‖∇2ẑ‖L2(B̂1+ρ)
. r2‖f̂‖L2(B̂1+ρ)

+ r‖∇ẑ‖L2(B̂1+ρ)
+ |ẑ|H3/2+ε(B̂1+ρ)

.

S
aling ba
k to Br(1+ρ) yields

r2‖∇2z‖L2(Br(1+ρ)) . r2‖f‖L2(Br(1+ρ))+rr‖∇z‖L2(Br(1+ρ))+r
3/2+ε|z|H3/2+ε(B̂r(1+ρ))

,

whi
h leads to (C.14). We now use f ≡ 0 on Ω \Sc′h and use these estimates with

w in pla
e of z. A 
overing argument then gives

‖∇2w‖L2(Ω\Sĉh) . ‖∇w‖L2(Ω\Sc′h)
+ h−1/2+ε‖w‖H3/2+ε(Ω).

This 
on
ludes the proof of (iii). ⊓⊔
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D Details of [24, Se
. 5.3℄

By and large, we follow the arguments of [24, Se
. 5.3℄ and adapt them as needed.

In what follows, T is a quasi-uniform mesh with mesh size h. We 
onsider the

bilinear form

a(u, v) :=

∫

Ω

A∇u · ∇v

where the matrix A is su�
iently smooth and pointwise symmetri
 positive de�-

nite.

D.1 The interior 
ase

In this subse
tion, we assume that Vh = Sk,1(T ).
For balls Bd of radius d, it will be 
onvenient to introdu
e the notation

‖|u|‖1,Bd
:= |u|H1(Bd) +

1

d
‖u‖L2(Bd).

We start with making the notion of �superapproximation� more pre
ise:

Lemma D.1 (superapproximation on balls) Let Bd ⊂ Ω be a ball of radius

d. Let ω ∈ C∞
with suppω ⊂ Bd/2 and

‖∇jω‖L∞ ≤ Cd−j , j = 0, . . . , k. (D.1)

Then for every u ∈ Vh the interpolant I(ω2u) ∈ Sk,1(T ) ∩H1
0 (Bd) satis�es

|ω2u− I(ω2u)|H1(Bd) ≤ C
h

d
‖|u|‖1,Bd

, (D.2)

1

d
‖ω2u− I(ω2u)‖L2(Bd) ≤ C

(
h

d

)2

‖|u|‖1,Bd
. (D.3)

We assume impli
itly that d > h is su�
iently large.

Proof Sin
e suppω ⊂ Bd/2 and d is large 
ompared to h, we have supp I(ω2u) ⊂
Bd. For ea
h element K we have the estimates

‖ω2u− I(ω2u)‖L2(K) + h‖∇(ω2u− I(ω2u))‖L2(K) ≤ Chk+1‖∇k+1(ω2u)‖L2(K).

Indu
tively, we see that ‖∇j(ω2)‖L∞ ≤ Cd−j for j = 0, . . . , k. Using the fa
t that
u is pie
ewise polynomial of degree k we 
on
lude

‖(∇k+1(ω2u)‖L2(K) ≤ C

k∑

j=0

d−(k+1−j)‖∇ju‖L2(K).

An inverse estimate produ
es in view of h/d . 1

‖ω2u− I(ω2u)‖L2(K) + h‖∇(ω2u− I(ω2u))‖L2(K) ≤ Ch
h

d

[
1

d
‖u‖L2(Bd) + |u|H1(Bd)

]

≤ Ch
h

d
‖|u|‖1,Bd

.

⊓⊔
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The next result shows an inverse estimate for �dis
rete harmoni
� fun
tions:

Lemma D.2 Let uh ∈ Vh satisfy

a(uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Bd (D.4)

for a ball Bd ⊂ Ω of radius d (impli
itly assumed su�
iently large 
ompared to

h). Then

‖∇uh‖L2(Bd/2) ≤ Cd−1‖uh‖L2(Bd).

Proof Sele
t a 
ut-o� fun
tion ω with suppω ⊂ Bd and (D.1) as well as χ ≡ 1 on

Bd/2.
We write for arbitrary χ ∈ Vh with suppχ ⊂ Bd

∫

Ω

ω2A∇uh · ∇uh =

∫

Ω

A∇uh · ∇(ω2uh)−
∫

Ω

2uhω∇ω ·A∇uh

=

∫

Ω

A∇uh · ∇(ω2uh − χ)−
∫

Ω

2uhω∇ω ·A∇uh.

We 
on
lude from Lemma D.1 with χ = I(ω2uh) there and Young's inequality

∫

Ω

ω2A∇uh · ∇uh .
h

d
‖∇uh‖L2(Bd)‖|uh|‖1,Bd

+
1

d2
‖uh‖2L2(Bd).

We 
on
lude

‖∇uh‖L2(Bd/2) .

√
h

d
‖|uh|‖1,Bd

+
1

d
‖uh‖L2(Bd).

Iterating the argument yields

‖∇uh‖L2(Bd/4) .
h

d
‖|uh|‖1,Bd

+
1

d
‖uh‖L2(Bd).

Finally, a standard inverse estimate produ
es

‖∇uh‖L2(Bd/4) .
1

d
‖uh‖L2(Bd),

whi
h is the desired �nal bound. ⊓⊔

We now show the main result:

Theorem D.3 Let u ∈ H1(Ω) and uh ∈ Vh be su
h that

a(u− uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Bd

for a ball Bd ⊂ Ω of radius d (impli
itly assumed su�
iently large 
ompared to

h). Then

‖∇(u− uh)‖L2(Bd/4) ≤ C inf
χ∈Vh

‖|u− χ|‖1,Bd
+ Cd−1‖u− uh‖L2(Bd) (D.5)

≤ C inf
χ∈Vh

‖∇(u− χ)‖L2(Bd) + Cd−1‖u− uh‖L2(Bd). (D.6)
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Proof The se
ond bound (D.6) follows from (D.5) by an appli
ation of the (se
ond)

Poin
aré inequality.

Let ω ∈ C∞
with suppχ ⊂ Bd be su
h that ω ≡ 1 on Bd/2 and assume (D.1).

De�ne

ũ := ωu

and let ũh ∈ Vh ∩H1
0 (Bd) be its Galerkin approximation on Vh ∩B1

0(Bd), i.e.,

a(ũ− ũh, v) = 0 ∀v ∈ Vh ∩H1
0 (Bd).

Then it is 
lassi
al (and easy to see) that

∫

Bd

∇ũh · (A∇ũh) ≤
∫

Bd

∇ũ · (A∇ũ).

In parti
ular, we get

|ũh|H1(Bd) ≤ C|ũ|H1(Bd) . ‖|u|‖1,Bd
. (D.7)

Next, we write

u− uh = (ũ− ũh) + (ũh − uh) in Bd/2 (D.8)

and estimate ea
h of the two terms separately. For the �rst one, we employ (D.7)

to get

‖∇(ũ− ũh)‖L2(Bd/2) . ‖∇ũ‖L2(Bd) . ‖|u|‖1,Bd
. (D.9)

For the se
ond term in (D.8), we observe that ũh−uh is dis
rete harmoni
 in Bd/2
(in fa
t, almost in Bd) sin
e

a(ũh − uh, v) = a(ũ− u, v) = 0 ∀v ∈ Vh ∩H1
0 (Bd/2).

Therefore, Lemma D.2 is appli
able and yields in view of ω ≡ 1 on Bd/2:

‖∇(ũh − uh)‖L2(Bd/4) ≤ Cd−1‖ũh − uh‖L2(Bd/2)

≤ Cd−1‖ũh − u‖L2(Bd/2) + Cd−1‖u− uh‖L2(Bd/2)

= Cd−1‖ũh − ũ‖L2(Bd/2) + Cd−1‖u− uh‖L2(Bd/2),

where in the last step we exploited ũ|Bd/2
= u|Bd/2

due to ω|Bd/2
≡ 1. Sin
e ũh,

ũ ∈ H1
0 (Bd), a Poin
aré inequality together with (D.7) produ
es

‖∇(ũh − uh)‖L2(Bd/4) . ‖∇(ũh − ũ)‖L2(Bd) + d−1‖u− uh‖L2(Bd/2)

. ‖|u|‖1,Bd
+ d−1‖u− uh‖L2(Bd/2) (D.10)

Combining (D.9) and (D.10) yields again with ω ≡ 1 on Bd/2

‖∇(u− uh)‖L2(Bd/4) ≤ ‖∇(ũ− ũh)‖L2(Bd/4) + ‖∇(ũh − uh)‖L2(Bd/4) (D.11)

. ‖|u|‖1,Bd
+ d−1‖u− uh‖L2(Bd).

The �nal step 
onsists in noting for arbitrary χ ∈ Vh that u−uh = (u−χ)+(χ−uh)
so that an appli
ation of (D.11) applied to u− χ yields

‖∇(u− uh)‖L2(Bd/4) . ‖|u− χ|‖1,Bd
+ d−1‖u− uh‖L2(Bd).

⊓⊔
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D.2 The boundary 
ase

We now 
he
k to what extent the above results extend up to the boundary. We

Let Γ be (a part of) the boundary ∂Ω. We denote by

Dd = Bd ∩Ω
semiballs of radius d, where the impli
t assumption is always that the 
enter of

Dd lies on Γ . Another impli
it assumption in the following is that for all semiball

appearing in the following, we assume

∂Dd ∩ ∂Ω ⊂ Γ

We de�ne ‖|u|‖1,Dd
:= |u|H1(Dd) +

1
d‖u‖L2(Dd). We employ a spa
e Vh whi
h sat-

is�es

Vh ⊂ Sk,1(T ), v|Γ = 0 ∀v ∈ Vh. (D.12)

We employ the following observation: For a semiball Dd ⊂ Bd (same 
enter) as

des
ribed above, ω ∈ C∞
0 (Bd), and u ∈ Vh, we have ωu ∈ H1

0 (Dd).
Compared to Lemma D.4, the 
ut-o� fun
tion ω may be ≡ 1 near parts of Γ :

Lemma D.4 (superapproximation on semiballs) Assume (D.12). Let Dd ⊂
Ω be a semiball of radius d. Let ω ∈ C∞(Rn) with suppω ⊂ Bd/2 and (D.1). Then

for every u ∈ Vh the interpolant I(ω2u) ∈ Sk,1(T ) ∩H1
0 (Dd) satis�es

|ω2u− I(ω2u)|H1(Dd) ≤ C
h

d
‖|u|‖1,Dd

, (D.13)

1

d
‖ω2u− I(ω2u)‖L2(Dd) ≤ C

(
h

d

)2

‖|u|‖1,Dd
. (D.14)

We assume impli
itly that d > h is su�
iently large.

Proof Follows by the same arguments as in Lemma D.1. ⊓⊔
The next result shows an inverse estimate for �dis
rete harmoni
� fun
tions:

Lemma D.5 Assume (D.12). Let uh ∈ Vh satisfy

a(uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Dd (D.15)

for a semiball Dd ⊂ Ω of radius d (impli
itly assumed su�
iently large 
ompared

to h). Then
‖∇uh‖L2(Dd/2) ≤ Cd−1‖uh‖L2(Dd).

Proof Again, this follows by tra
ing the arguments in the proof of Lemma D.5. ⊓⊔
Theorem D.6 Assume (D.12). Let u ∈ H1(Ω) with u|Γ = 0 and uh ∈ Vh be

su
h that

a(u− uh, v) = 0 ∀v ∈ Vh with supp v ⊂ Dd

for a semiball Dd ⊂ Ω of radius d (impli
itly assumed su�
iently large 
ompared

to h). Then

‖∇(u− uh)‖L2(Dd/4) ≤ C inf
χ∈Vh

‖|u− χ|‖1,Dd
+ Cd−1‖u− uh‖L2(Dd)

≤ C inf
χ∈Vh

‖∇(u− χ)‖L2(Dd) + Cd−1‖u− uh‖L2(Dd).

Proof The se
ond inequality follows again from a Poin
aré inequality (the �rst

one, this time). The �rst inequality follows again from tra
ing the arguments of

the proof of Theorem D.3. ⊓⊔
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E Detailed numeri
s

E.1 Slit domain

The geometry is a slit domain

Ω = ΩS := (−1, 1)2 \ [0, 1)× {0}.

The exa
t solution is given by

|x− x0|α sin(aπφ)

for di�erent 
hoi
es of the parameters α and x0 (and a).
The inhomogeneous Diri
hlet boundary 
onditions are realized by nodal inter-

polation. The equation 
onsidered is

−∆u = f.

Starting from a 
oarse mesh, we perform a sequen
e of uniform (red) re�nements.

We 
onsider a lowest order dis
retization, i.e., k = 1.
Stri
tly speaking, the slit domain is not 
overed by our theory. Also not 
ov-

ered by our theory are the variational 
rimes asso
iated with approximating the

inhomogeneous Diri
hlet data. Nevertheless, we expe
t the 
onvergen
e behavior

detailed in Corollary 4.3 to be an good des
ription of the a
tual 
onvergen
e be-

havior. We assume that the global regularity of the solution u is des
ribed by

s = 1+ α (a
tually, it is 1 + α− ε for all ε > 0). Corollary 4.3 then lets us expe
t

for the two 
ases x0 = (0, 0) and x0 6= (0, 0) the following 
onvergen
e rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 + (1 + α)} = min{2, 1/2 + α}
x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 1/2 +∞} = min{2, 1 + α}

In the following tables, given by E.1 - E.7, we 
hange the paramter α. In
ea
h table separately we vary the lo
ation. The lo
ations under investigation are

(x0, y0) = (0, 0), (x0, y0) = (0.5,0) and (x0, y0) = (0, 1). We observe that the

theoreti
al 
onvergen
e rates are mostly a
hieved by our numeri
al simulations.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 2.9124e-02 - 3.8405e-02 - 3.0468e-02 -

348 1.5745e-02 0.89 1.0451e-02 1.88 1.2883e-02 1.24

1.315 8.1422e-03 0.95 4.8926e-03 1.10 5.2831e-03 1.29

5.109 4.1322e-03 0.98 2.1508e-03 1.19 2.0814e-03 1.34

20.137 2.0799e-03 0.99 8.1046e-04 1.41 7.9896e-04 1.38

79.953 1.0430e-03 1.00 3.0969e-04 1.39 3.0187e-04 1.40

318.625 5.2221e-04 1.00 1.1780e-04 1.39 1.1288e-04 1.42

1.272.129 2.6125e-04 1.00 4.1750e-05 1.50 4.1903e-05 1.43

5.083.777 1.3066e-04 1.00 1.4985e-05 1.48 1.5472e-05 1.44

Table E.1 Slit domain, k = 1: In�uen
e of the position of singularity for α = 0.5.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 1.1642e-02 - 1.6577e-02 - 1.6031e-02 -

348 5.6371e-03 1.05 6.5153e-03 1.35 6.0796e-03 1.40

1.315 2.6059e-03 1.11 2.3569e-03 1.47 2.2272e-03 1.45

5.109 1.1835e-03 1.14 8.4203e-04 1.48 7.8285e-04 1.51

20.137 5.3296e-04 1.15 2.7392e-04 1.62 2.6776e-04 1.55

79.953 2.3888e-04 1.16 9.1902e-05 1.58 9.0042e-05 1.57

318.625 1.0679e-04 1.16 3.0823e-05 1.58 2.9942e-05 1.59

1.272.129 4.7666e-05 1.16 9.6773e-06 1.67 9.8788e-06 1.60

5.083.777 2.1257e-05 1.16 3.1032e-06 1.64 3.2407e-06 1.61

Table E.2 Slit domain, k = 1: In�uen
e of the position of singularity for α = 2/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 6.1391e-03 - 1.1088e-02 - 1.0692e-02 -

348 2.8187e-03 1.12 4.1329e-03 1.42 3.8553e-03 1.47

1.315 1.2351e-03 1.19 1.4164e-03 1.54 1.3388e-03 1.53

5.109 5.3338e-04 1.21 4.7830e-04 1.57 4.4562e-04 1.59

20.137 2.2846e-04 1.22 1.4725e-04 1.70 1.4420e-04 1.63

79.953 9.7267e-05 1.23 4.6683e-05 1.66 4.5843e-05 1.65

318.625 4.1233e-05 1.24 1.4761e-05 1.66 1.4401e-05 1.67

1.272.129 1.7428e-05 1.24 4.3773e-06 1.75 4.4861e-06 1.68

5.083.777 7.3524e-06 1.25 1.3285e-06 1.72 1.3889e-06 1.69

Table E.3 Slit domain, k = 1: In�uen
e of the position of singularity for α = 0.75.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 4.1949e-03 - 3.0111e-04 - 2.9784e-04 -

348 1.4605e-03 1.52 9.9257e-05 1.60 9.3618e-05 1.67

1.315 4.8756e-04 1.58 2.9679e-05 1.74 2.8033e-05 1.74

5.109 1.5909e-04 1.62 8.6201e-06 1.78 8.0205e-06 1.81

20.137 5.1667e-05 1.62 2.2994e-06 1.91 2.2266e-06 1.85

79.953 1.6874e-05 1.61 6.2533e-07 1.88 6.0606e-07 1.88

318.625 5.5687e-06 1.60 1.6832e-07 1.89 1.6270e-07 1.90

1.272.129 1.8596e-06 1.58 4.3035e-08 1.97 4.3240e-08 1.91

5.083.777 6.2798e-07 1.57 1.1235e-08 1.94 1.1403e-08 1.92

Table E.4 Slit domain, k = 1: In�uen
e of the position of singularity for α = 1.01.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 5.7534e-03 - 2.8888e-03 - 2.8799e-03 -

348 1.9412e-03 1.57 9.1606e-04 1.66 8.6618e-04 1.73

1.315 6.2583e-04 1.63 2.6267e-04 1.80 2.4731e-04 1.81

5.109 1.9689e-04 1.67 7.2833e-05 1.85 6.7463e-05 1.87

20.137 6.1446e-05 1.68 1.8673e-05 1.96 1.7871e-05 1.92

79.953 1.9191e-05 1.68 4.8621e-06 1.94 4.6455e-06 1.94

318.625 6.0229e-06 1.67 1.2518e-06 1.96 1.1921e-06 1.96

1.272.129 1.9023e-06 1.66 3.0913e-07 2.02 3.0311e-07 1.98

5.083.777 6.0474e-07 1.65 7.7720e-08 1.99 7.6552e-08 1.99

Table E.5 Slit domain, k = 1: In�uen
e of the position of singularity for α = 10/9.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 7.3549e-03 - 6.3401e-03 - 6.3849e-03 -

348 2.2414e-03 1.71 1.8792e-03 1.75 1.7790e-03 1.84

1.315 6.4849e-04 1.79 5.0365e-04 1.90 4.6905e-04 1.92

5.109 1.8251e-04 1.83 1.3007e-04 1.95 1.1878e-04 1.98

20.137 5.0718e-05 1.85 3.1798e-05 2.03 2.9443e-05 2.01

79.953 1.4021e-05 1.85 7.8665e-06 2.02 7.2227e-06 2.03

318.625 3.8699e-06 1.86 1.9356e-06 2.02 1.7642e-06 2.03

1.272.129 1.0682e-06 1.86 4.6924e-07 2.04 4.3055e-07 2.03

5.083.777 2.9514e-07 1.86 1.1524e-07 2.03 1.0519e-07 2.03

Table E.6 Slit domain, k = 1: In�uen
e of the position of singularity for α = 4/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

97 7.5901e-03 - 7.6006e-03 - 7.6553e-03 -

348 2.1664e-03 1.81 2.1751e-03 1.81 2.0530e-03 1.90

1.315 5.8638e-04 1.89 5.6614e-04 1.94 5.2238e-04 1.97

5.109 1.5450e-04 1.92 1.4246e-04 1.99 1.2877e-04 2.02

20.137 4.0197e-05 1.94 3.4615e-05 2.04 3.1388e-05 2.04

79.953 1.0396e-05 1.95 8.5086e-06 2.02 7.6403e-06 2.04

318.625 2.6803e-06 1.96 2.0921e-06 2.02 1.8651e-06 2.03

1.272.129 6.8978e-07 1.96 5.1307e-07 2.03 4.5726e-07 2.03

5.083.777 1.7730e-07 1.96 1.2691e-07 2.02 1.1258e-07 2.02

Table E.7 Slit domain, k = 1: In�uen
e of the position of singularity for α = 1.5.
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E.2 L-shaped domain

The geometry is an L-shaped domain:

Ω = ΩL := (−1, 1)2 \ [0, 1)× (−1, 0].

The exa
t solution is given by

|x− x0|α sin(aπφ)

for di�erent 
hoi
es of the parameters α, x0, and a.

E.2.1 Lowest order dis
retization k = 1

Stru
turally, the situation is similar to the situation in Se
tion E.1. From Corol-

lary 4.3, we expe
t the following 
onvergen
e rates:

x0 = (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 + (1 + α)} = min{2, 2/3 + α}
x0 6= (0, 0) =⇒ τ = min{2, 1 + α,−1 + 2/3 +∞} = min{2, 1 + α}

Also in this 
ase the numeri
al rates depi
ted in Table E.8- E.13 are very 
lose to

the rates expe
ted by our theory.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 1.1719e-02 - 1.0132e-02 - 9.5383e-03 -

289 5.4059e-03 1.12 4.0619e-03 1.32 3.4014e-03 1.49

1.089 2.3165e-03 1.22 1.4839e-03 1.45 1.1426e-03 1.57

4.225 9.5790e-04 1.27 5.1844e-04 1.52 3.7569e-04 1.60

16.641 3.8922e-04 1.30 1.7681e-04 1.55 1.2222e-04 1.62

66.049 1.5663e-04 1.31 5.9408e-05 1.57 3.9513e-05 1.63

263.169 6.2682e-05 1.32 1.9762e-05 1.59 1.2720e-05 1.64

1.050.625 2.5002e-05 1.33 6.5263e-06 1.60 4.0824e-06 1.64

4.198.401 9.9525e-06 1.33 2.1437e-06 1.61 1.3072e-06 1.64

Table E.8 L domain, k = 1: In�uen
e of the position of singularity for α = 2/3.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 6.1585e-03 - 6.8141e-03 - 6.2506e-03 -

289 2.6986e-03 1.19 2.5648e-03 1.41 2.1211e-03 1.56

1.089 1.1123e-03 1.28 8.8428e-04 1.54 6.7413e-04 1.65

4.225 4.4037e-04 1.34 2.9202e-04 1.60 2.0903e-04 1.69

16.641 1.7107e-04 1.36 9.4164e-05 1.63 6.4027e-05 1.71

66.049 6.5689e-05 1.38 2.9909e-05 1.65 1.9471e-05 1.72

263.169 2.5030e-05 1.39 9.4012e-06 1.67 5.8930e-06 1.72

1.050.625 9.4877e-06 1.40 2.9328e-06 1.68 1.7774e-06 1.73

4.198.401 3.5834e-06 1.40 9.0968e-07 1.69 5.3475e-07 1.73

Table E.9 L domain, k = 1: In�uen
e of the position of singularity for α = 0.75.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 4.6216e-03 - 1.8387e-04 - 1.6841e-04 -

289 1.6860e-03 1.45 6.0370e-05 1.61 5.0364e-05 1.74

1.089 5.4867e-04 1.62 1.8034e-05 1.74 1.3883e-05 1.86

4.225 1.7284e-04 1.67 5.1378e-06 1.81 3.6942e-06 1.91

16.641 5.2963e-05 1.71 1.4253e-06 1.85 9.6399e-07 1.94

66.049 1.5970e-05 1.73 3.8870e-07 1.87 2.4842e-07 1.96

263.169 4.7758e-06 1.74 1.0474e-07 1.89 6.3437e-08 1.97

1.050.625 1.4238e-06 1.75 2.7971e-08 1.90 1.6086e-08 1.98

4.198.401 4.2471e-07 1.75 7.4181e-09 1.91 4.0561e-09 1.99

Table E.10 L domain, k = 1: In�uen
e of the position of singularity for α = 1.01.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 6.5660e-03 - 1.7641e-03 - 1.6229e-03 -

289 2.3309e-03 1.49 5.5465e-04 1.67 4.6837e-04 1.79

1.089 7.3413e-04 1.67 1.5847e-04 1.81 1.2424e-04 1.91

4.225 2.2257e-04 1.72 4.3172e-05 1.88 3.1761e-05 1.97

16.641 6.5650e-05 1.76 1.1458e-05 1.91 7.9588e-06 2.00

66.049 1.9056e-05 1.78 2.9916e-06 1.94 1.9695e-06 2.01

263.169 5.4810e-06 1.80 7.7249e-07 1.95 4.8311e-07 2.03

1.050.625 1.5690e-06 1.80 1.9789e-07 1.96 1.1771e-07 2.04

4.198.401 4.4822e-07 1.81 5.0393e-08 1.97 2.8532e-08 2.04

Table E.11 L domain, k = 1: In�uen
e of the position of singularity for α = 10/9.
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(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 8.6776e-03 - 3.8962e-03 - 3.6446e-03 -

289 2.8523e-03 1.61 1.1374e-03 1.78 1.0008e-03 1.86

1.089 8.2870e-04 1.78 3.0272e-04 1.91 2.5331e-04 1.98

4.225 2.3073e-04 1.84 7.7239e-05 1.97 6.2153e-05 2.03

16.641 6.2539e-05 1.88 1.9331e-05 2.00 1.5073e-05 2.04

66.049 1.6688e-05 1.91 4.7956e-06 2.01 3.6440e-06 2.05

263.169 4.4099e-06 1.92 1.1852e-06 2.02 8.8167e-07 2.05

1.050.625 1.1580e-06 1.93 2.9260e-07 2.02 2.1389e-07 2.04

4.198.401 3.0279e-07 1.94 7.2263e-08 2.02 5.2069e-08 2.04

Table E.12 L domain, k = 1: In�uen
e of the position of singularity for α = 4/3.

(x0, y0) = (0, 0) (x0, y0) = (0.5, 0) (x0, y0) = (0, 1)
a = π/2 a = π a = π

DOFs L2
-error rate L2

-error rate L2
-error rate

81 8.9932e-03 - 4.7178e-03 - 4.4942e-03 -

289 2.8151e-03 1.68 1.3287e-03 1.83 1.2166e-03 1.89

1.089 7.8034e-04 1.85 3.4367e-04 1.95 3.0580e-04 1.99

4.225 2.0751e-04 1.91 8.5903e-05 2.00 7.5035e-05 2.03

16.641 5.3910e-05 1.94 2.1227e-05 2.02 1.8321e-05 2.03

66.049 1.3835e-05 1.96 5.2331e-06 2.02 4.4827e-06 2.03

263.169 3.5256e-06 1.97 1.2917e-06 2.02 1.1011e-06 2.03

1.050.625 8.9467e-07 1.98 3.1955e-07 2.02 2.7158e-07 2.02

4.198.401 2.2641e-07 1.98 7.9238e-08 2.01 6.7212e-08 2.01

Table E.13 L domain, k = 1: In�uen
e of the position of singularity for α = 1.5.
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E.2.2 Se
ond order dis
retization k = 2

All 
al
ulations are performed for x0 = (0, 0) and a = 2/3. Only the singularity

parameter α is varied.

Here, we expe
t the 
onvergen
e rate

τ = min{3,−1 + 2/3 + (1 + α)} = min{3, 2/3 + α}

Table E.14 shows the numeri
al results for the se
ond order 
ase in whi
h the

re
eived rates are 
lose to the theoreti
al expe
ted on
e.

α = 2/3 α = 3/4 α = 1.01 α = 10/9
DOFs L2

-error rate L2
-error rate L2

-error rate L2
-error rate

289 3.1686e-03 - 1.6898e-03 - 4.8115e-04 - 5.9011e-04 -

1.089 1.2099e-03 1.39 6.0844e-04 1.47 1.4003e-04 1.78 1.5596e-04 1.92

4.225 4.6505e-04 1.38 2.1881e-04 1.48 3.7277e-05 1.91 3.8312e-05 2.03

16.641 1.8057e-04 1.36 8.0073e-05 1.45 9.9546e-06 1.90 9.3965e-06 2.03

66.049 7.0635e-05 1.35 2.9545e-05 1.44 2.6951e-06 1.89 2.3314e-06 2.01

263.169 2.7771e-05 1.35 1.0960e-05 1.43 7.4481e-07 1.86 5.8950e-07 1.98

1.050.625 1.0955e-05 1.34 4.0799e-06 1.43 2.1075e-07 1.82 1.5257e-07 1.95

α = 4/3 α = 3/2 α = 2.175 α = 2.275
DOFs L2

-error rate L2
-error rate L2

-error rate L2
-error rate

289 6.1433e-04 - 5.5363e-04 - 2.7565e-04 - 2.4570e-04 -

1.089 1.5136e-04 2.02 1.3540e-04 2.03 5.1121e-05 2.43 4.1696e-05 2.56

4.225 3.3604e-05 2.17 2.8521e-05 2.25 7.5320e-06 2.76 5.7319e-06 2.86

16.641 7.7002e-06 2.13 6.2123e-06 2.20 1.1051e-06 2.77 7.8407e-07 2.87

66.049 1.8014e-06 2.10 1.3642e-06 2.19 1.5938e-07 2.79 1.0553e-07 2.89

263.169 4.2916e-07 2.07 3.0106e-07 2.18 2.2723e-08 2.81 1.4044e-08 2.91

1.050.625 1.0374e-07 2.05 6.6649e-08 2.18 3.2138e-09 2.82 1.8538e-09 2.92

α = 2.375
DOFs L2

-error rate

289 2.2177e-04 -

1.089 3.3912e-05 2.71

4.225 4.3221e-06 2.97

16.641 5.4888e-07 2.98

66.049 6.8762e-08 3.00

263.169 8.5292e-09 3.01

1.050.625 1.0497e-09 3.02

Table E.14 L-shaped domain, k = 2: In�uen
e of α for a = 2/3π and (x0, y0) = (0, 0).
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E.3 Fi
hera 
orner

E.3.1 Smooth solution

The geometry is

Ω = ΩF := (−1, 1)3 \ [0, 1]3.
The dis
retization is done on lowest order hexahedral elements, regularly re�ned.

The exa
t solution is pres
ribed to be the smooth solution

u(x, y, z) = sin((x+ y)π) cos(2πz).

DOFs L2 error rate

316 0.075444 �

3.032 0.017182 1.96

26.416 0.0039376 2.04

220.256 0.00094597 2.02

1.798.336 0.00023208 2.01

14.532.992 5.7491e-05 2.00

Table E.15

E.3.2 Solution of point singularity type

In the next 
al
ulations, the exa
t solution is given by

u = rα,

where r = dist(x, x0) measures the distan
e from the point x0, whi
h is varied.

The L2
-error is 
omputed with a tensor produ
t Gauss rule (5 points in ea
h


oordinate dire
tion).

x0 = (−1,−1,−1), α = 0.55 x0 = (−1,−1,−1), α = 0.55 x0 = (−1,−1,−1), α = 0.55
DOFs L2-error rate L2-error rate L2-error rate

316 0.00073994 � 0.00069287 � 0.00074102 �

3.032 0.00016401 2.00 0.00023565 1.43 0.00023 1.55

26.416 3.9176e-05 1.98 6.8242e-05 1.72 6.2591e-05 1.80

22.0256 9.6835e-06 1.98 1.9077e-05 1.80 1.6589e-05 1.88

1.798.336 2.4305e-06 1.97 5.2412e-06 1.85 4.3418e-06 1.92

14.532.992 6.1407e-07 1.98 1.44225e-06 1.87 1.1264e-06 1.94

Table E.16
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