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Abstract

A rigorous convergence theory for Galerkin methods for a model Helmholtz problem
in R¢, d € {1,2,3} is presented. General conditions on the approximation properties
of the approximation space are stated that ensure quasi-optimality of the method. As
an application of the general theory, a full error analysis of the classical hp-version
of the finite element method (hp-FEM) is presented for the model problem where the
dependence on the mesh width h, the approximation order p, and the wave number k
is given explicitly. In particular, it is shown that quasi-optimality is obtained under the
conditions that kh/p is sufficiently small and the polynomial degree p is at least O(log k).
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1 Introduction

Helmholtz boundary value problems appear in various applications, for example, in the context
of inverse and scattering problems. When such problems are solved numerically, the questions
of stability and convergence arises. Of particular interest is how critical parameters such as
the discretization parameters (e.g., mesh size, approximation order) and the wave number k
affect the performance of the method.

Many discretization techniques for Helmholtz problems have been proposed and discussed
in the literature. In the context of Galerkin methods, which is the setting of the present paper,
these include both standard and non-standard finite element methods. Although significant
progress in the understanding of the behavior of numerical methods for Helmholtz problems
has been made in the past, a general, full analysis that is explicit in the wave number k
and discretization parameters is still not available. Partial results such as sharp estimates
for the inf-sup constant of the continuous equations, lower estimates for the convergence
rates, one-dimensional analysis by using the discrete Green’s function as well as a dispersion
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analysis for finite element discretizations and generalizations thereof have been derived by
many researchers in the past decades (see, e.g., [2,4,6,7,9-11,15,17-19,22-28, 33, 36, 38, 39,
43,44]).

The goal of the present and the companion paper [32] is to derive fairly general stability
and convergence estimates for Helmholtz problems that are:

e explicit in the wave number, the mesh width, and the polynomial degree of the hp-FEM
space;

e valid for problems in d spatial dimensions, d € {1, 2, 3};

e only based on approximation properties of the (generalized) finite element space; the
rationale behind this requirement is that it is easier to verify such an approximation
property than to perform a full-fledged convergence analysis for a given approximation
space.

These estimates require the development of new analytical tools and cannot be achieved
in one stroke. As a first step, therefore, the present paper focuses on the Helmholtz equation
in a bounded d-dimensional domain €2 with transparent boundary conditions, which we as-
sume to be realized exactly with a Dirichlet-to-Neumann map (DtN map) 7). We will place
special attention on the case where () is a ball since then the DtN map 7T} can be analyzed
fairly explicitly. In this specific setting, we provide stability and convergence estimates of
finite element discretizations that are explicit in the wave number, the mesh width, and the
polynomial degree of the finite element space. The companion paper [32] will build upon the
results of the present paper and will address more general situations such as the Helmholtz
equation with Robin boundary conditions on smooth bounded domains or in convex polygons.

The outline of this paper is as follows: Section 2 formulates the model problem. Section 3
provides an analysis of the model problem. In particular, the k-dependence of the solution
is made explicit (Lemmata 3.9, 3.5). Section 4 analyzes the discrete stability and states
conditions on the properties of the approximation space to ensure quasi-optimality of the
Galerkin scheme. For case where (2 is a circle or a sphere, the conditions for stability and
quasi-optimality are made fully explicit (Theorems 4.2, 4.3). Section 5 applies the results of
Section 4 to the hp-version of the FEM. In particular, for the setting of Theorem 4.2 we show
in Corollary 5.6 that quasi-optimality of the hp-FEM can be achieved under the assumption

that o "
— + k (—) <C (1.1)
p op

where the constants C, o > 0 are sufficiently small but independent of h, p, and k. Several ap-
pendices conclude the paper: Appendix A provides detailed properties of Bessel functions that
are needed in Section 3. Appendix B is concerned with hp-approximation of functions in the
Sobolev spaces H?; the novel feature of our results is its focus on simultaneous approximation
in L? and H', which is an essential ingredient in our k-explicit bounds. Appendix C finally
provides hp-approximation results for functions that are analytic. These latter approximation
results are tailored to regularity properties of solutions of Helmholtz-type problems.



2 Formulation of the model Helmholtz problem

The Helmholtz problem in the full space R? with Sommerfeld radiation condition is given by:
Find U € H (R?) such that

(—A-KHU=f in RY,

2.1
)——mv\—o(nxn ) - o0 2.)
is satisfied in a weak sense (cf. [35]). Here, 0/0r denotes the derivative in radial direction
x/ ||x||. We assume throughout the paper that the wave number is positive and bounded away
from zero, i.e.,

k> ko> 0. (2.2)

We assume that f is local in the sense that there exists a bounded, simply connected
domain © C R? that satisfies supp f C Q. The complement of  is denoted by QF := RN\Q
and the interface by I' := QN QF. Then (2.1) can be formulated in an equivalent way as a
transmission problem by seeking functions v € H' (2) and u™ € H} (Q1) such that

(A —KHu=f in Q,
(—A = k) ut =0 in QF,
u=u" and Ju/On = dut/On on 0L, (2.3)
ou™
5 ikut| =0 <||x|| R ) |x|| — oo.

Here, n denote the normal vector pointing into the exterior domain Q7.
It can be shown that, for given g € H'/2 (99), the problem:

(A —k)w=0 in QF,
w=yg on 0f,

find w € Hp,, (27) such that w -
S i = o (IxI'%) ] = o0
.

(2.4)

has a unique weak solution. The mapping g +— w is called the Steklov-Poincaré operator
and denoted by Sp : HY?(0Q) — HL_(QF). The Dirichlet-to-Neumann map is given by

loc

Ty == 11Sp : HY?(0Q) — H~1/2(0Q), where v, := 0/0n is the normal trace operator. Hence,
problem (2.3) can be reformulated as: Find u € H' (Q) such that

(—A—Kk)u=f inQ,

Ou/On =Tru  on 0S2. (2:5)

The weak formulation of this equation is given by: Find u € H' () such that
a(u,v) = / (Vu, Vo) — k*uv —/ (Thu)v = / fr Ywe H (Q). (2.6)
Q o9 Q
The exact solution of (2.1) can be written as the acoustic volume potential. Let Gy :

R?\ {0} — C denote the fundamental solution to the operator L := —A — k2, ie., Gy (2) =
gk (I2]1), where

1 d=1,
gr (1) == iHé ) (kr) d=2,
d=3




Then, the solution of (2.1) is given by

U(z) = (Nf) (z) := /QGk (x—vy) f(y)dy Vo € R% (2.7)

Consequently, the solution of (2.5) and (2.6) is given by

w(@) == (Nuf) () = / Gele—y) f(y)dy  Vaes.

Finally, we recall that a Galerkin method for (2.6) is given as follows: For a (typically finite

dimensional) space S C H'(Q), the Galerkin approximation ug € S to the exact solution w is
given by:

Find ug € S s.t.  a(ug,v / fi Yves. (2.8)

3 Analysis of the continuous problem

The analysis of the continuous problem is split into three parts. First, we provide some
estimates for the Dirichlet-to-Neumann map 7). Then, we prove some mapping properties
of the solution operator and, finally, state the existence and uniqueness of the continuous
problem.

3.1 Estimates for the DtN operator 7}
We equip the space H' () with the norm

1/2
2 2
lully == (Julf @ + K lula)

which is obviously equivalent to the H'(2)-norm. For d = 1, the boundary 9 consists of the
two endpoints of  and the L2 (9Q)- and H'/2 (9Q)-scalar product and norm are understood

as
(u, U)m(ag) = Z u(z)v(z) and ||u||L2 09) = llull /2 (99) Z |u (z
x€IQ z€0N

For Lipschitz domains, it is well known that a trace estimate holds.

Lemma 3.1 There exists a constant Ci, depending only on Q and ko such that for all u €
()

lullgieogy < Collully, (3.12)
1/2 1/2
Il poony < Cellull g lullig, - (3.1b)

Corollary 3.2 Foru e H'(Q), we have
VE [l 2omy < Cin e with G o=

where ko is as in (2.2).



Proof. There holds
2 2 Ct2r 2 2 2
k HUHL2(aQ) < Cik ||“||L2(Q) HUHHl(Q) < 9 (l‘? ||UHL2(Q) + HUHH1(9)>

o2 )
- Qt ((1 +k?) H“H;(Q) + ‘U‘zl(g)) < C2 ||ull3,. (3.2)

[ ]

Let B, (z) denote the open ball with radius r about . For z = 0, we write B, short for
B, (0). Since the right-hand side f in (2.3) has compact support, we may always choose € as
some ball Bg. In the following analysis we will always restrict our attention to this case and
assume that

R> Ry > 0. (3.3)

Lemma 3.3 Let (3.3) and (2.2) be satisfied. For d =2, we assume additionally that ko > 1.
Then, there exist constants ¢, C' > 0 that depend solely on Ry and ko such that the following
15 true:

1.
(T, v) 208, | < C llully 10l Yu,v € H" (Bg). (3.4a)
2. Ford € {2,3} and allw € H'?(dBg) the real and imaginary parts of (Thu, )25,
satisfy
||U||22(aBR)

—Re (Thu, u) 1208, = c—p (3.4b)
Im (T, w) 255, >0 for u#0. (3.4c)

For d =1, instead of (3.4b), (3.4c), there holds
— Re (Thu, u) 295, =0, (3.4d)
Im (TkU>U)L2(aBR) >k ||u||%,2(6BR) : (3.4e)

Before proving Lemma 3.3, we note the following corollary.

Corollary 3.4 There ezists C. > 0 that depend only on ko and Ry (cf. (2.2), (3.3)) such
that for all u, v € H' (Bg)
|a (u, v)] < Ce[lully [[0]l5 -

Proof. The estimate

la (u,v)| < |u|H1(BR) |U|H1(BR) + K ||u||L2(BR) ||U||L2(BR) + ‘/a (Thu) v

Br
is obvious. Hence, the assertion follows from Lemma 3.3. m

Proof of Lemma 3.3. Case d = 3.
The Dirichlet data on 0Bg can be expanded according to

0o l

u(@) =) > 'Y (0,9), (3:5)

(=0 m=—/

5



where (R,0,¢) are the spherical coordinates for x € 0Bp and the functions Y, are the
standard spherical harmonics. The solution to the exterior homogeneous Helmholtz problem
with Sommerfeld radiation conditions at infinity and prescribed Dirichlet data at 0Bg can be
expanded in the form

S WY (k)
“@:Z}Eﬁm (M)W, (3.6)

where (7,0, ¢) are the spherical coordinates of # € R*\ Bi. By taking the normal derivative
at the boundary we end up with a representation of the Dirichlet-to-Neumann map

00 V4
Tu=3 3wy (0, ¢) 20 (3.7)

£=0 m=—¢ R
. . (r") ) . .
with the functions z, (r) := O These functions have been analyzed in [35, Theorem
2.6.1] where it is shown that l
1< —Re(z(r) <l+1 and 0<Im(z(r)) <. (3.8)

(In [35, Theorem 2.6.1], only Im z, (r) > 0 is stated, while the strict positivity follows from
the positivity of the function ¢, in [35, (2.6.34)].) It follows from (3.7) that

© £, kR —
/é)BR(Tku)v:ZZ: é(R )u’gbv;”

and from (3.8) we conclude that

> & Rezy (KR — Imz (kR —_
Re /{BR (Thu)® Z Z {% Re (uj'v)?) — %Im (u}”v@”)}‘

[eS) 4
1
< =375 {IRez (kR)| + [m = (KR} u? o7

=0 m=—¢
1

1 [e.e]
SEZ {16+ 1] + KR} [ug"| [v7"]
C

l
(B Ml rzqoy 13720y + e el ooy 10 2oy ) -

Using Corollary 3.2 we get

‘Re/ (Thu)v
0Bg

Repeating these steps for the imaginary part results in the same upper bound, and we get for
some C' that depends only on Ry and kq the estimate

/a . (Thu)v

~ 1
<0G (14 7 ) b ol

< Cllully vllyy -




The lower estimate of the real part follows from

2
_Re/ (Thu) ﬂzz Z Rezg kR) up® > Z Z m? 7”“”3;(33)'
0BR

{=0 m=—/¢ /=0 m——é

The upper estimate for the imaginary part is just a repetition of the previous arguments.

For the lower estimate of the imaginary part, we consider u € H'/?(0Bg)\ {0}. Hence,
there exists (m.,{,) in the expansion (3.5) so that uy"* # 0. This leads to

[ 4
Im (Tew)a=>_ Y IngkR ' > Cup|” >0,

9Br (=0 m=—1
and the lower bound is proved.

Case d = 2.
We expand the Dirichlet data on 0Bpg in polar coordinates

T) = ZW e (3.9)

where (R, ) are the polar coordinates of x € Bg. It follows (see, e.g., [12, (2.10)]) that
!/
1Y) ()
we (kR) i . ( 1 )
Tou = Z Up———> €' with  wy (1) := re—
@ F Hyy (r)

Obviously, it is sufficient to analyze w, only for ¢ € Ny. By decomposing w, into its real and
imaginary part we get

(3.10)

Jio + Y{Yo 1 (V[ e = TpYY)

Wy =T

JZ+ Y}
For the imaginary part, we obtain
1,9.1.27 1,9.1.16 2
Yoo =y, N ET Y g - gy, PR
wr
We set M, := ’Hél)’ and obtain
d o
II+YYe 2 M9
= == . 3.11
weETTE  YYar T o T (3:11)
In the next step, we derive estimates for the coefficients wy.
Case d =2 and { € N3,.
Let
MZ, (1) := 2 i Otm with 6y, = % and vy, = l_m[ (47 — (2k —1)*)  (3.12)
’ T A A ’ (m!)” 16m ’ prie



and define Ry} := M7 — Mg, . Note that

(40)!
Ve = W >0 and Y41 =—(40+ 1)y, <O0. (3.13)
We conclude from [46, §13.75] that, for the choice n = £ —1 > 0, there holds Rp}_, (r) > 0.
Thus,
M} (r) > Mg,y (r) Vr=>0. (3.14)

Let K, be the modified Bessel function of order v. From [46, §13.75] we obtain

d o 16

N} = . p/() K (2rsinh t) sinh ¢ cosh (2¢t) dt

and
n

cosh (20t) Z Yem

cosht — (2m)!

sinh*" ¢ 4 R?n

If n > ¢ —3/2, the remainder Rg,n satisfies

Yen+1 . h2(n+1) ¢

) (271, + 2)' if Yen+1 > 07
R? ) (3.15)

s

7(275333)' sinh*™ ™ ¢ 0

otherwise.

We introduce

n

16 ’}/g,m & . . m
NZn = —— Z om)] /0 K (2rsinh t) (cosht) (smh2 1 t) dt

T2
16 . ’Wm / 2 1
= —— K1 m+ dZ
2m+2
7T2 — ( 27,, +

= d
S § 2m+1)2%m = Z a2
Tr?2 + 7’2 dr bn

Note that M? (r) is monotone decreasing for r > 0 (cf. [37, §9-7.3]) and hence N7 (r) < 0 for
r > 0. Thus,

N7 (r)| = =NZ, (r) + Ry, with R}, := —Nj (r) + N7, (r)
and R/, has the explicit representation

1 © N
RY, (1) = 7?2 /0 K, (2rsinh £) (sinh ¢) (cosh £) 22, (t) dt.

Note that sinh, cosh, and K are positive on the positive real axes (cf. [1, 9.6.23]). We choose
n = ¢ and obtain from (3.13) and (3.15) that Ry, () is negative for ¢ > 0 and hence

|NZ (r)] < =Ng,(r) vr>0. (3.16)

8



In summary, we have proved that

rNZ I 2mA1)%m 20—1 241 %

|R€ wé| S _5 Mgg . 2 Zé_l 65,7n S 2 + 2 6[7:,5,1
A m=0 r2m r20=2

-1 (W-DEe -

2 16072 '

Hence, for ¢ > 2 and r > C1V/l we arrive at

20 — 1 9
< 1+ — .
|Rew,| < 5 ( +8C’12)

It remains to consider the case

T S Cl\/z
We derive from (3.11) and [1, 9.1.27]

T r
gNE ()| = =5 NE (r) = 6MF (r) = 7 (Jea Je + YY),
and this leads to
TN2
MU Ui+ YY)

[Rewy| = 25— =
Mg (r) Mg (r)

We deduce from [1, 9.5.2, 9.1.7, 9.1.9] that
Jo(r)>0 and Y, (r)<0 VO<r</{

and thus
JoJi_1+ YY1 >0 VO<r</¢-—1.

If C} < 272 there holds C1v/¢ < ¢ — 1 for all £ > 2, and we have proved |Rew,| < /.

(3.18)

(3.19)

To derive a lower bound for (— Rewy), we proceed as for (3.17) and obtain, for r > ko,

_ Som
Rew(r) > "N () _1En Gt g 1
R O R S T B

1 >1
9 -1 = 9 T

For the imaginary part of w, we get

2
Imwg(r)zm>0 \V/EGN() Vrzk‘o
¢

(3.20)

(3.21)

because M} is non-negative and decreasing for r > 0 (cf. [37, §9-7.3]). For the upper bound,

we combine [20, 8.479] with the fact that M} is decreasing to obtain for ¢ € Ny,

2
M7 (r)>— ¥Yr>1.

wr

9

(3.22a)



Hence, the upper bound

Imw, (r) = 2 <r (3.23)

follows.
Case d=2and (=0, 1.
For ¢ = 0, we use [46, §13.75] and get

Aﬁ@ﬁzﬂﬁdﬂ=~z<l—§%).

wr
For d = 2, there holds kg > 1/2 by our assumptions and, thus, for r > ko we get
1

M (r) > — (3.22b)

The combination of (3.11) and (3.22) implies
2
o
|IRewy (r)] < - RAGIE

We deduce from (3.16) (which is also valid for £ =0, 1)

2 o Som _ 2 (1 r=0,
Nl < N < 5>y 2L, 020

This implies, for r > ko (cf. (2.2))

where C' depends solely on ky. Thus, for £ =0, 1,
[Rew,| <C<C(l+1).

Since M7 is monotone decreasing (see [37, §9-7.3]), it follows from (3.10) that Rew, (r) < 0
for all » > 0.

In (3.20) we have derived a lower bound for (—Rewy) provided ¢ > 1. It remains to
consider the case ¢ = 0. The assumption on kg implies r > kg > % 3 so that

r Ny (1) 1 3
— > _—— i = — 1 —_ >
Rewy (r) 2 2 Mg,o (r)y 2 -

To summarize both cases, we have proved that
O0<c<—Rewy(r)<C{+1) Vr>ky V€N, (3.24a)

where ¢, C' only depends on k.

10



For the imaginary part, it remains (cf. (3.22a), (3.23)) to prove the upper bound for
(Imwyp) and employ (3.11) and (3.22b) to obtain

v < 2r. (3.24b)

IIII’LUQ =

By proceeding as for d = 3 (after (3.8)) the estimates (3.4) follow from (3.24).

Case d =1
For boundary values v : {—R, R} — R, the Dirichlet-to-Neumann operator is given by

Tet) = i ki, (3.25)

The trace theorem (in one dimension) leads to

‘Re/aBR (Tu)T| = |Re <ikT§Ru(r)E(r)>‘

<EMm Y u@v)| <k |u@)|[(r)

r=4+R r=+R

Cor. 3.2
< Cllully lolly

where C' only depends on Ry and kq. By the same techniques we can estimate the imaginary
part and, thus, obtain (3.4a). The lower bounds (3.4d), (3.4e) follow from

_Re/w (T)u) T = — Re (ik > |u(r)\2> =0

Im (Tyu)u =k Z u (r))* > k”“”iz(é)BR)‘
OBRr r=+R

3.2 Analysis of the solution operator N;

In this section, we derive some explicit bounds for the solution operator Ny under the assump-
tion that the right-hand side is in L? (). These estimates will be the basic tool for proving the
discrete stability of the finite element discretization and the convergence. The key ingredient
of the analysis of the hp-FEM in Section 5 is the following decomposition result:

Lemma 3.5 (decomposition lemma) Let 2 be contained in a ball of radius R > 0. Then
there exists a constant C' > 0 depending only on R and kg such that for f € L*(Q) the function
v given by

v(z) = Nif(z /Gk x—y)f(y)dy, z €,

satisfies
Kol iz + vllae) + Ellollize) < Cllf 2@

11



Furthermore, for every A > 1, there exists a \- and k-dependent splitting v = vy2 + v with

) 2 ey Vo € {0,1,2), (3.26a)

1
IVPvpz| L2 < C (1 tw

p—1
V70l 20y < CA (\/&Ak) Ifllzze  Vp € No. (3.26b)
Here, VPvy stands for a sum over all derivatives of order p (see (5.1) for details).

Remark 3.6 1) For f € L*(Q) the function v = N, (f) cannot be expected to have more
Sobolev regularity than H?. The decomposition v = vg2 + v4 of Lemma 3.5 splits v into an
H?-regular part vg2 and an analytic part v4. The essential feature of this splitting is that the
H?-part vy has a better H2-regularity constant in terms of k& than v itself, namely, (3.26a),
(3.26b), and the triangle inequality |V?v||12¢) < [[V?vn2||r2(0) + || V04l 12(0) imply

HV2UH2||L2(Q) S C||f“L2(Q) versus ||V2UHL2(Q) S C/{ZHf||L2(Q).

The fact that ||vgz||g2 < C||f||L2 for a C > 0 independent of k will be be essential for the
stability and convergence analysis below.
2) Inspection of the proof shows that the mappings f +— vgz and f — vy are linear maps.

Proof of Lemma 3.5. The estimates for v follow directly from those for vg2 and vy
by fixing a parameter A > 1. In order to construct the splitting v = vy2 + vy, we start by
recalling the definition of the Fourier transform for functions with compact support

i (€) = (2m) 2 / )y (2)de Ve € RY
]Rd
and the inversion formula
u(z) = (2m)? / @O g (&)de Vo e RY
Rd

Let Bg C R? be a ball of radius R containing 2. Extend f by zero outside of Q and denote
this extended function again by f. Let € C™ (Rx¢) be a cutoff function such that

C
supp p C [0,4R], M|[o,2R] =1, |M|W1’°°(R20) < R’
(3.27)
C
Ve €Rx0: 05 p() <1 plupee; =0, |ilwece(ry) < 12
Define M (z) := p (]|2]|) and
vu(@) = [ Grlz—y)M(z—y)fly)dy VreR"

Bq

The properties of p guarantee v,|p, = v|p, so that we may restrict our attention to the
function v,. Since supp f C B we may write

v, = (GuM) * f, (3.28)

12



where “x” denotes the convolution in R?. We will define a decomposition of v, (which will
determine the decomposition of v on Bg) by decomposing its Fourier transform, i.e.,

@\u = Upyz + V4. (3.29)

In order to define the two terms on the right-hand side of (3.29), we let Byx(0) denote the
ball of radius Ak centered at the origin where A > 1 is the fixed constant (independent of k)
selected in the statement of the lemma. The characteristic function of By,(0) is denoted by
Xxx- The Fourier transform of f is then decomposed as

J/C\:J/C\X)\k"‘(l_X)\k)J?::ﬁf"i_ﬁg’

By the inverse Fourier transformation, this decomposition of ]?entails a decomposition of f
into fi and ff given by

fo@)i=n ™ [ @@ FOde and file)=f- e (330)
Accordingly, we define the decomposition of v, by

vm2 = (GpM) x fi and v, 4 = (GRM) * f. (3.31)

The functions vy2 and v, in (3.29) are then obtained by setting vgy2 := v, g2|o and vy =
v,Alo. We will obtain the desired estimates by showing the following, stronger estimates:

v m2 | 2y < CllflL2@ey, (3.32a)
1Dy allomey < CAR) [ fll ey, Vo € N, (3.32b)

The estimates (3.32) are obtained by Fourier techniques. To that end, we compute the Fourier
transform of G, M:

(@4) (€) = (2m) "2 / o469 G () M (2) dar

R4

= (27r)_d/2/0 agr (r) p (r)ré=? (/S SRR dS<> dr
d—1

= 2m)™? 1 ().

The inner integral in I (£) can be evaluated analytically® and I (£) = ¢ (||£]|) with

(

Q/Ooogk (r) p (r) cos (sr) dr d=1,
L(s) = 1 27?/0 g (MY p(r)yrdy(rs)dr d=2, (3.34)

b [ a2

IThis is trivial for d = 1 and follows for d = 2 from [20, (3.338)(4.)]. For d = 3, we use the formula

dr d=3.

\

Lo @ =iy () v o) = () a0
s? *

(which follows by a comparison of [35, Section 3.2.4, formula (3.2.44) and (3.2.54)]) for m = ¢ = 0, where
Yy = const and go (r) = 4w sin (r) /7.

13



Applying the Fourier transform to the convolutions (3.31) leads to

o~

Do = (2m) 2 G M fe = (2m)72 CRMF(1 — xx),
UypA = (27T)d/2 CTk]\\/ffk = (27T)d/2 meAk-

To estimate higher order derivatives of v, g2 and v, 4 we define for a multi-index o € NI
the function P, : R? — R? by P, (£) := £~ and obtain — by using standard properties of the
Fourier transformation and the support properties of x,, — for all o] < 2

PaG/kj\\f (1- X)\k)f‘

10° 0 17211 2 (o = (27)2 (3.35)

L?(Rd)

< @0 (_max 1P0(©1) 0 -]

EERL: || >Nk

L2(Rd)
< (20" (s |5 9] ) 1

Lemma 3.7, (iv) implies for |o| € {0, 1, 2}

1
la| || —2
grg\i(‘s L(s)] < C(Mk) (1—1—)\2_1).
Thus,

al— 1
90y < € O (14 5 ) Ul

and (3.26a) follows.
Completely analogously, we derive for all o € N¢

100, all 2 (ay < (2m) %2 <02§2’§k }SalL(s)\) 112 - (3.36)

We can complete the proof of the lemma using the bounds on the function ¢ given in Lemma 3.7,
(v) below and using (5.1), (5.2). m

Lemma 3.7 For the function v defined in (3.34) the quantity s™.(s) can be estimated
(i) form =0 by
R
<C—
(o) <o,
(ii) for m =1 by

1+ (RE)™" d=1,
llog kR d=2 and 4Rk <1,
1 d=2 and 4Rk >1,
1 d=3,

|st(s)| < CR

(i1i) and for m =2 by

1
Rk+— d=1,

32 ‘L(S)| < C |log(k:R)| d=2 and 4Rk < 1,
Rk d=2 and 4Rk > 1,
1+ ER d=3.
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(iv) For fized Ry, Ry > 0 there exists C > 0 (depending only on Ry, Ry, ko, d, and the
constant appearing in (3.27)) such that for any R € [Ry, R1] and any X > 1

1
sup s%|u(s)| < C (1—1— e 1)

|s|> Ak

(v) For any A > 0 and all m € Ny we have

sup [s|™ e (s)] < CAR(ME)™ .

|s| <Ak

Proof. In this proof, C' denotes a generic constant which may vary from term to term. It
suffices to prove the estimates (i)—(iv) because (v) follows directly from (i). We discuss the
cases d = 3,d =1, and d = 2 in turn.

Case 1: d = 3.

There holds

|st(s)|=C < CR.

/ e i (r) sin (rs) dr
0

Applying integration by parts we obtain

/ooo o (“/ (r) ) | i (r) cos (rs)) dr

S

c B /c R
< — — = —.
< /0 (Rr+1)dr Ck;

For the product s%(s), we get

=C

|s*u(s)] =C /000 e (r) ssin (rs) dr /000 e 1 (r) 0, cos (rs) dr
<C ( /000 cos (rs) 0, (e p(r)) dr| + 1)
< Ck /000 cos (rs) e'* p (r)dr| + C ( /000 cos (rs) ™ p (r)dr| + 1)

= T4+ 1"
The estimates 70 < C'kR and T" < C follows from the properties of p (cf. (3.27)). For
|s| > Ak, the estimate of 7" can be refined by using integration by parts

T < Ck

/ cos (rs) eikr,u (r)dr| = Cg '/ (ei(k-l-s)r _l_ei(k—s)r) 1 (r) dr
0 0

2 g2 C'(1+C)
<" —— ! < - 7.
_C<82_k2+/0 52—k2|u (7“)|d7“)_ SV

Case 2: d = 1.
There holds



To estimate st (s), we apply integration by parts to obtain

st (s)] <

0 eikr
/ p(r) O, sin (sr) dr
o k

Similarly, we get by two-fold integration by parts

/Owei]:ru(r)a cos ( / {9, cos (sr) { (e;u(r))}dr
/Ooocos(sr){ ( )}drjtl‘ .

C>Ocos(s YR (1) dr cos( r) 21e‘k7’u'(7’)+e ' (r) | dr+1
0 k
=T +71T"

5% (s)] <

<

<k +

The estimate T < C' (1 + ) directly follows from the properties of the cutoff function x
(3.27). The term T" was estimated already in Case 1 so that the proof of the case d = 1 is
complete.

Case 3a: d=2and 4R < 1/k.

For brevity, we write
hi (r) := HY (kr)  and  jo, (r) :=J, (s7) .

Estimate (A.3c) implies

VO<r<AR<1/k:|h, (r)] <C 1+ logkr]) and Vr>0:|J(r) < 1.

Hence,

4R
lL(s)] < C/ (14 |log kr|) rdr = CR* (1 + |log (4kR)|) .
0
For the estimate of st (s), m € {1,2}, we employ the relations (see [1, 9.1.30], [1, 9.1.1])

(rjis (1)) = rsjo,s (1) and (rjbs () = —rs2jo,s (r). (3.37)

Integration by parts results in

A / gt (1) dr| = € / rivs (W' hi, + phiy) dr
0 0
(A.8), (A.3c), (A.11) 4kR 141
< C / r{w L, } 0
0

< CR{1+ [logkR|+ KR’} < CR(1+ |logkR|) < CR|logkR|.

Finally, we estimate s%¢ (s) by two-fold integration by parts

/ hie (r56.5)"| < C(

0

|s°u(s)| =C

/041%]'078 (r (hku)')" + ‘}13(1) (rh;, (r))‘) : (3.38)
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Note that lim, o rhj (r) = 2i /7. For the first term, we use
(r (hep)')' = o (rh3)" + 2By, + (i) . (3.39)

We employ (A.12) for the first, (3.27), (A.11) for the second, (3.27), and (A.3c) for the third
term on the right-hand side in (3.39) to obtain

1 R—+r

r(1+ |log (kr)|) + I + 7

(r (h))'| < (1 + [log (kr)[) -

Hence,

5% (s)| < C ((kR)* (1 + |log(kR)|) + 1 + [log(kR)|)
C (1 + |log(kR)|) .

Case 3b: d =2 and 4Rk > 1.
We define @y (r) := hy (1) (r) r and denote its antiderivative by @y (r fl/k o (t) dt.

We use the splitting

. pl/k . 4R

T1 . T1 .

L(s) = —/ PrJo,s T —/ Yrjos =: t1(s) + u (s) .
2 Jo 2 Ji

For ¢1 (s), we employ the estimates as in Case 3a (with 4R replaced by 1/k therein) to obtain

C
mwﬂsﬁ.
It remains to estimate u1 (s). Note that jj , = —sj1,. There holds
. oo . 4R . 4R
i , i , i,
i () = —/ YrJos = —/ Prsg1s + = Prjo,s (3.40)
2 Jim 2 )i 2 r=1/k

In the next step, we will estimate ®;. Let @y (1) := e~ '¥" ¢, (r) so that ®, can be written as

T ~ r eikt t
<I>k(r)::/I/kelktapk(t)dt:—/klk ()dt—l—golly

T

t=1/k

T el kt 1 .
=jﬂkmwa>ﬁ+k¢mmﬁm
J/ %/_/

:v ::<I>£I(r)

By using (A.6) and sup, |(tx (t))'| < C we obtain
/‘ruﬁ i/

1/k

C \/?

< — —-.
~ k k

17
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The function @} can be estimated by using (A.3a)

1 /r 1 P=VT Oy
S S < 2./
C(k;\/;+k:2) = EVE
C
2] < £ 7

By inserting this estimate and (A.3b) into (3.40) we get

o ()] = | el

In summary we have proved

‘LI |<C 3/2 R C g i
k \/ 1+r k k k —1/k
AR\/|s
< C< R + ) .
k3/2 k; k k2
This leads to
R [ls] R

< C=\/ =+ —. 41

L) Oy 2+ (3.41)

Next, we estimate s (s). As in the Case 3a, our starting point is (3.38). Recalling
| lim, o rh}(r)] = 2/m, we are left with estimating
4R /
- /
/ Jo,s (T (h'klu“) ) :
1

/k
A >y
~

=:I; =2

+ (3.42)

1/k /
< / Jo,s (7’ (hkﬂ)/)
0

. J/

/04Rjo,s (r (hep)")’

We conclude from Case 3a that |I;| < C holds. For the second integral, we employ (A.3a),
(3.27), (A.5), (A.7) to get

(r(hk,u)/)/ = |hy (@' + ")+ Ry (u+2rp) + rhyu| < C ( \/7—1—7%\/7) (3.43)
i
+ k\/7>
<7“\/7
The combination of (3.42), (3.43), and (A.3b) leads to
Rk
I, < Ck —_—.
2 < CkR 1+ RJs|
Thus, we have proved
Rk
2 < : 44
}s L(s)} < CkR TR (3.44)

For 0 < |s| < k, we employ (3.41) and for |s| > k we use (3.44) to obtain for m € {0, 1,2}

|s]™ |¢ (s)| < CRE™ L.
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For the case d = 2, we now show (iv), i.e., we consider the case |s| > Ak. The assumptions
R > Ry and k > ko imply for the case Rk < 1/4 immediately supjy.os°i(s)] < C. For
RE > 1/4, we take, as in the Case 3b, the estimate (3.42) as our starting point. The integral
I, in (3.42) is already seen to be bounded independent of k. Since, by [1, 9.1.1],

(rh}) = —k*rhy,

we can write the integral Iy as

iR
L= / jos (—k°rhup + 2rhip + (rp) hy) | -

1/k

Recalling that x4/ = 0 on (0,2R), we can estimate I5 by

4R
]2 S / jO,sszhk,u

+CR sup  {|joshi| + |joshel} -
re(2R,4R)

1/k

::IZI

We conclude from (A.3), (A.5), and (A.1) together with (A.2)

1 |k 1
CR su he| 4 7o.sh <CR + — | <C,
TE(ZRIZR {\Jo k\ Uo k\} W (R\/— @)

where we used |s| > Ak > k and the fact that & > ky. It remains to bound . Lemma A.1
allows us to write

/ 2]{52 4R

I =

k) {09487 1 flr) + S0 1))

Since ff, fH, ¢! are bounded functions by Lemma A.1, an integration by parts leads to

1 1
L < Ck
2 = Qﬂ+k*Wﬂ—k)
el(ls|+k)r ei(k—s)r

0, ((sir)o (kr)u(r) + G,

+Ck

a«ﬁ%Mmyﬁmmmﬂ.

e ISl +k

Since |s| > Ak, Lemma A.1 provides the estimates

|0, (f'(sr)g" (kr)p ‘—i—}a (f"(sr)g" (kr) }<C’< kl ), 1/k <r.

r2
Combining these results, we arrive at

1
II<Cc—
C)\—l

Observing 1+ (A — 1)t <2+ (A2 — 1)7! allows us to conclude the proof. m
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3.3 Existence and uniqueness

Existence, uniqueness, and well-posedness of problem (2.6) has been studied in much more
generality (concerning the assumption on the domain §2) in [12] by using different techniques.

The main goal of the estimates which we have derived in the previous sections is their
application to the proof of the discrete stability for the finite element discretization and the
convergence rates. However, since existence, uniqueness, and well-posedness for our model
problem are simple by-products we state them in passing.

Theorem 3.8 Let Bgr be a ball of radius R > 0. Then, there exists a constant C (R, k) > 0
such that for all f € (H' (Bg))' the unique solution u of problem (2.6) satisfies

[llyy < C (RSNl gy -

Proof. The coercivity of the bilinear form a (u,v) follows from the compact embedding
H'(Bg) < L2 (Bg) and (3.4b), (3.4d):

2 2 _ 2 2
Rea(u,u) > [|ul — 282 ||u]2(5,, — Re / (Taw) @ > [l — 22 [0l 2ags, -

9Br

Next, we show uniqueness of the adjoint problem (see, e.g., [29, p. 43]):

a(v,u)=0 Yve€ H (Bg) = u=0.

Let u € H' (Bg) be a solution of the homogeneous adjoint problem. We choose v = u and
consider the imaginary part:

0=Ima(u,u) =—Im (Tru)u = Im (Tru) .
0BR 0BRr

Lemma 3.3 implies v = 0 on Bg. Hence, u € H} (Bg) and satisfies

/B (Vu, VT) = K2 / WT Yo e H'(Br). (3.45)

Br

This means in particular that u € Hj (Bg) is an eigenfunction of (=A) 7" with eigenvalue k2.
However, for any domain {2 D Bg, equation (3.45) implies that the extension

_ Ju(x) zeB
(:’3)'_{0 v ¢ By

satisfies (3.45) with By replaced by Q, i.e., @ is also an eigenfunction of (—A) ™" with eigenvalue
k=2 on any domain § O Bp. A simple scaling argument shows that this is impossible.

Thus, the assertion follows from the theory of Fredholm operators (see, e.g., [29, Theorem
24]).m

Note that the proof of Theorem 3.8 does not provide how the constant C' (R, k) depends
on the wave number. In [12], this question has been investigated in much more generality
and, hence, will not be discussed here. The Fourier analysis which we developed in Section
3.2 give explicit bounds on this constant provided the right-hand side is in L? ().
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Lemma 3.9 Let Q) be a bounded domain which is contained in the ball Bg for some R satis-
fying (3.3). For any f € L? () and v := Nyf, there holds

[ollyy < ClF L2 »
where C' only depends on ko and Ry (cf. (2.2), (3.3)).

Proof. The radius of the minimal ball that contains €2 is denoted by Rq. If 4kRq > 1,
the estimate

(3.28) (3.35),(3.36) d
HUMHB(Q) < (27)2

N Lemma 3.7(i) d RQ
max }s' |L(S)‘) 1 22 < (QW)Q? 122

seR

V[l 220

follows. The estimate .
I96lia < € (- + Ra) Il

follows by the same reasoning. If & < 4kRq < 1, then |logkRq| < |loga|. Hence, both esti-
mates remain valid (cf. Lemma 3.7), possibly with a different constant C' which, in addition,
depend on . m

3.4 An adjoint problem

The operator N and the DtN operator T} introduced in Section 2 are associated with the
outgoing radiation condition. Adopting the notation 2 and Q% of Section 2 and assuming
supp f C 2, one can define a problem with incoming radiation conditions: find u € H'(Q)
and ut € H. () such that

(—A—K)u=f in €,
(A —kHut =0 in QF,
u=ut and Ou/On =0u"/On on 05, (3.46)
out 1d
thlk‘u —O(HXH ) |x|| — oc.

For k > 0, we see that the complex conjugate 7 and ut of the solution satisfy (2.3). By
uniquess, this allows us to read off the solution operator N} : L*(Q2) — H'Y(Q) for the u-
component of the solution of (3.46), namely,

w=Ni(f) = No(f) = / Gule — )T (y) dy. (3.47)

The solution component u™ is related to a Dirichlet-to-Neumann map. For the incoming
radiation condition, this operator is given by T}g := y,w, where w € H} (27) solves

(—A = k)w=0 in QT
w=y on 0f),

find w € Hy,, (Q%) such that w -
‘— + ikw‘ = o (IIxI ") x|l — oo.
or

(3.48)

Again by using k > 0 and complex conjugation, we note (again by uniqueness) the represen-
tation 179 = T}g. We employed the notation 7} since the operator 7} is the adjoint of T}
with respect to the L?(0Bg) inner product in the case of a ball:
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Lemma 3.10 Let Q = B C RY, d € {1,2,3}. Then faBR Tuv = faBR uTfv for all u,
v E H1/2(8BR)

Proof. We will only consider the case d = 2. We expand u and v as in (3.9) with coefficients
(we)eez, (vo)eez. For the calculations below, we assume that only finitely many coefficients u,
vy are non-zero—the generalization to u, v € H'/?(0Bg) then follows by a density argument.

We read off immediately from (3.10) that w,(r) = w_,(r). From the orthogonality prop-
erties of functions e'*’ we get with the representation of T}, in (3.10)

/ uTfv = / ulv = 27 Z uUw_g(kR) = 27‘(‘2 wpwe(kR) = / T,uv.
O0BRr OBR

ez ez 9BR

4 Stability and convergence analysis

This section is devoted to the analysis of the discrete problem (2.8) for the finite-dimensional
space S C H'(); we will provide conditions on S under which unique solvability and quasi-
optimality of (2.8) can be guaranteed.

We employ the generalization of the theory of [33] that has been developed in [39]. There,
a measure of “almost invariance”? of the approximation space S under the solution operator
of an adjoint Helmholtz problem has been introduced.

Adjoint Problem:

The weak formulation of problem (2.5) corresponds to the sesquilinear form a (-,-) as in
(2.6), where Q may be chosen as a ball B with sufficiently large radius R. The adjoint
sesquilinear form a* (-, ) is defined by (see, e.g., [29, p.43])

a* (u,v) = a(v,u).
For given f € L?(Bg), the corresponding adjoint problem is given by finding z € H' (Bg)

such that
a* (2,v) = (v, [)r2(8p) Vv € H' (Bg). (4.1)

Explicitly we have

a* (z,v) = / (Vu, Vi) — k*uv — / u (Tyv) .
Br OBR
From Lemma 3.10 we conclude
a* (z,v) = / (Vu, Vo) — k*uv — / TEuv.
Bpr OBRr

The strong formulation of the adjoint problem is: Find z such that

0z .
o Trz on 0Bg. (4.2)

2We slightly changed the definition here and denote the new quantity by “adjoint approximation property”.

—Az—k*2=f in By,
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Recalling the definition of 7}, we see that the solution z of this problem is given by the
solution u of (3.46); the solution formula (3.47) therefore allows us to write the solution of
(4.1) as

= Nif = [Gie ) F W)y (4.3
Q
In view of Z = Ny f and ||z|| = ||Z||2, we obtain from Lemma 3.9 the following observation:

Lemma 4.1 Let Q be a bounded Lipschitz domain and k > ko. Then the constant

INEfllme

sup =: Cytap < 00 (4.4)

rerznoy [1fllz2 @
is independent of k and depends solely on ).

For the stability of the discrete problem, the following adjoint approximation property plays
a crucial role s
n(S):= sup inf w
feL2(Q)\{0} V<S5 Hf||L2(Q)
(Note that the quantity 1 (S) was denoted in [39] by 7 (5).)

(4.5)

4.1 Discrete stability

In this section, we will prove the discrete stability in the form of an inf-sup condition.

Theorem 4.2 Let Q) = Br be a ball with radius R and let the assumptions of Lemma 3.3 be
satisfied. Assume that the space S is chosen such that

1
<
k/r] (S> _— 4067

where C. is defined in Corollary 3.4. Then, with Cga defined in Lemma 4.1, the discrete
inf-sup constant satisfies

(4.6)

nf la (u,v)| S 1
inf sup > ,
ueS ves\foy ully vl — 24+ Gt + 4k Citan

and this ensures existence and uniqueness of the discrete problem (2.8).

Proof. Let u € S and set z := 2k? Nju. Then,

a(u,u+z) = (/BR (Vu, V) + k? u|? —/aBR (Tku)ﬂ) +a(u,2) —2k2/BR |ul?
:/BR (Vu,Vﬂ>+k2|u|2—/ (Thu) .

OBRr

We derive from Lemma 3.3
Rea (u,u+z) > ||u||${ :
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Let zg € S denote the best approximation of z with respect to the ||-||,,-norm. Then,
Cor.34
Rea (u,u+z5) > Rea (u,u+2) — |a(u,z —z5)| > |ully; — Ce|lully ||z — 25l
> [l (1l = 262Cen () gy ) > (1 = 2kCn () [l
The stability of the continuous problem (cf. Lemma 4.1) implies

-+ 25l < Nullyg + 12 = Zslly, + 1zl < Hullyg + 2577 () ull 2 ) + 25 Cotan 1] 2 g
< (14 2kn (S) + 2kCla) |1l

so that

1 —2C:kn (S)
>
Rea (u,u+ zg) > 1+ 2kn (S) + 2kCiap

Therefore, in view of the assumption (4.6), we have proved

[ellyg [l + 25l -

nf la (u,v)| - 1
int sup > .
uésves\{o} ||u||H ||UHH 2+ Cc_l —+ 4szmb

4.2 Convergence analysis

The convergence of the finite element discretization is proved by applying the theory as de-
veloped in [39] (see also [7,33,40], [8, Sec.5.7]).

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied. Let u denote the solution of
(2.6) and ug its Galerkin approzimation (cf. (2.8)).
Then
o uslly < 202 inf [lu— vl (4.7)

The L*-error satisfies
lu = usl 25 < Cen (S) llu— us]ly,

Proof. In the first step, we will estimate the L?-error by the H'-error and employ the
Aubin-Nitsche technique. The Galerkin error is denoted by e = u —ug. We set ¢ := N}e (cf.
(4.3)) and denote by ©g € S the best approximation of ¥ with respect to the H-norm.

The L*-error can be estimated by

a(e, ) <ale,—vs) < Cellelly ¥ — slly

H€||i2(BR) =
< Cen (5) llelly el p2(py) » (4.8)

ie.,
lell L2y < Cen (S) [lelly - (4.9)
To estimate the H-norm of the error we proceed as follows. Note that (3.4b), (3.4d) imply
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Hence, for any vg € S
lell7, = Re(a (e, €)) + {lell3, — Rea (e, e)}

2 _
:Rea(e,u—vg)—|—2k2||e||L2(BR)+Re/ (Tpe)e
OBg
(4.9), (4.10), kllell 2 < llellx
<

Ce llelly llu — vslly +2kCen (S) llell3,

Noting that (4.6) implies 2kC.n (S) < 1/2 we arrive at the final estimate||e||,, < 2C. ||u — vg|,, -
n

5 Example: hp-FEM

Theorems 4.2, 4.3 show quasi-optimality of arbitrary approximation spaces under the assump-
tion (4.6) on the adjoint approximation property 71 (S). However, for concrete finite element
spaces, or generalizations thereof, the verification of condition (4.6) is far from trivial. The
purpose of this section is two-fold: firstly, we show that for classical higher order FEM spaces
the assumption (4.6) can be met under a relatively mild condition on the local polynomial
order of the classical FEM space; in particular, we will demonstrate that for spaces consisting
of piecewise polynomials of degree p on quasi-uniform meshes that satisfy the side condi-
tion p > clnk, the key condition (4.6) is satisfied. Secondly, we derive conditions on the
approximation space that may be easier to ascertain in practice than the condition (4.6).

In view of the fact that the circle (in 2D) and the sphere (in 3D) are relevant geometries
for our theory (recall that Theorems 4.2, 4.3 have been shown for circles/spheres), we con-
sider triangulations with curved elements that permit inclusion of these geometries. Before
formulating the conditions on the mesh in an abstract way, we give an example of a typical
construction.

Example 5.1 (Patchwise construction of FE mesh.) Let Q2 denote a bounded domain.
1. We assume that there exists a polyhedral (polygonal in 2D) domain Q along with a bi-
Lipschitz mapping x : Q — Q. Let Tmacro — {I?;nacm 1< < q} denote a conforming

finite element mesh for Q consisting of simplices which are reqular in the sense of [15].
Tmacro o considered as a coarse partition of @, i.e., the diameters of the elements in
T macro e of order 1. We assume that the restrictions X; := X|gmaero are analytic for
all1 <i<gq. '

2. The finite element mesh with step size h is generated by refining the mesh Tmacro yp g
standard way (e.g., in 2D, by connecting the midpoints of the triangle edges) and denoted

by T, = {[z 1< < N}. The corresponding finite element mesh for €2 then is defined
b T= {1 =y (E) - K e D).
Note that, for any K = x <I?) € Ty, there exists an affine bijection Ak : K — K

which maps the reference element K = {:c € Rs)”: 0% 2 < 1} to the simplex K. A

parametrization Fy - K — K can be chosen by Fx := Ri o Ak, where Rg := X|f< 18
independent of the mesh width h := max {diam K : K € 7}.
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To formulate the smoothness and scaling assumptions on Ry and Ay in an abstract way
we have to introduce some notation first. For a function v : Q — R, Q C R%, we write

|
Vi@l = Y SIDu()P. (5.1)
a€eNg:|al=n '

For later purposes, we recall the multinomial formula and a simple fact that follows from the
Cauchy-Schwarz inequality for sums:

ar 1

a€eNg:|al=n
1 o 1 n/2|xn
> D) < —d"* |V u() (5.3)
aeNg:|al=n

VAN

Assumption 5.2 (quasi-uniform regular triangulation) Fach element map Fyx can be
written as Fix = Ry o Ax, where Ak is an affine map and the maps Rx and Ag satisfy for
constants Cugine, Cmetric, 7 > 0 independent of h:

1A% | e () < Cattinel,  [[(A%) ™l () < Cattineh™
||(R/K)_1||Loo([?) S Cmctrim ||VnRK||Loo([?) S Cmetricfynn! vn € I\IO-

~ A~

Here, K = Ag(K).

For meshes 7;, satisfying Assumption 5.2 with element maps Fi we denote the usual
space of piecewise (mapped) polynomials by SP1(7;,) := {u € H*(Q)|VK €T}: ulg o Fi €
P,}, where P, denotes the space of polynomials of degree p. It is desirable to construct
an approximant [u € SP1(7;,) of a given (sufficiently smooth) function u in an elementwise
fashion. The C°-continuity of an elementwise defined approximant [u is most conveniently
ensured if Ju is defined in such a way that for every topological entity E of the mesh (i.e., F is
an element K, a face f, an edge e, or a vertex V') the restriction (Iu)|g is fully determined by
u|z. There are many ways of realizing this construction principle. The construction employed
in the present paper is based on the following concept:

Definition 5.3 (element-by-element construction) Let K be the reference simplex in
R?, d € {2,3}. A polynomial 7 is said to permit an element-by-element construction of

~

polynomial degree p for uw € H*(K), s > d/2, if:
(i) 7(V) = u(V) for all d + 1 vertices V of K,
(ii) for every edge e of K, the restriction 7| € P, is the unique minimizer of

s 92— g + e = (5.4)

(e)
under the constraint that 7 satisfies (i); here the Sobolev norm Hy’ is defined in (B.1).

(i1i) (for d =3) for every face f of IA(, the restriction 7|; € P, is the unique minimizer of
7= pllu— 7| 2y + |lu— 7| s (5.5)

under the constraint that m satisfies (i), (ii) for all vertices and edges of the face f.
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Remark 5.4 The conditions of Definition 5.3 are a variation of similar proposals in the
literature, e.g., [14] and [21]. For example, the effective difference between the projection-based
interpolation of [14] and the present construction lies in the choice of the norms employed in
the minimization process in Definition 5.3. Our motivation for formulating the conditions in
Definition 5.3 is that they permit us in Appendix B to construct approximation operators
with optimal simultaneous approximation properties in L? and H!. Previously, the literature
had focused on H!'-approximation alone.

We are now in position to show that the solution v = N} f can be approximated well by the
FEM space SP*(7;,) provided that kh/p is sufficiently small and p > cln k.

Theorem 5.5 Let d € {1,2,3} and Q C R? be a bounded domain. Then there exist constants
C, 0 > 0 that depend solely on the constants appearing in Assumption 5.2 such that for every
f € L*(Q) the function v := N} f satisfies

. kh kh kh\?

wesSP (T, p ap

Proof. We will only prove the cases d € {2,3}. The case d = 1 follows by similar
arguments where the appeal to Theorem B.4 and Lemma C.3 is replaced with that to [41,
Thm. 3.17].

We note v = N f = Nif, fix A > 1 in Lemma 3.5, and split with its aid v = vg2 + vy
with vz € H?()) and v4 analytic; we have the following bounds

|va2|| 2 < Ol fllz2@), IVP0ull2i0) < CAR)P | fllz2)  Vp € No.

We approximate vgy2 and v 4 separately. Theorem B.4 and a scaling argument provides an
approximant wy» € SP1(7;,) such that for every K €7, we have, for ¢ = 0, 1,

h\ >
||UH2 — wHZHHq(K) S C (5) ||UH2||H2(K) VK € ,];L

Hence, by summation over all elements, we arrive at

kh  (kh\®

We now turn to the approximation of v4. Again, we construct the approximation wy €
SP1(Ty,) in an element-by-element fashion. We start by defining for each element K €7}, the
constant C'x by

vaA 22
G-y W (5.6)
and we note
||vaA||L2(K) < (2)\/{?)1)0[{ Vp € Ny, (57)
2
> k< (55) Mo (5.9
KeT,
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Let the element map for K be Fix = Rk o Ag. Lemma C.1 gives that the function v :=
vl © Rk satisfies, for suitable constants C'; C' (which depend additionally on the constants
describing the analyticity of the element maps Rp)

V78] 12y < CCPmax{p, k}"Cx  Vp € No.
Since A is affine, the function 0 := v4|x 0 Fx = 0 0 Ak therefore satisfies
IV78]| 12y < Ch™*2CPh? max{p, k}*Cx  Vp € Ny

Hence, the assumptions of Lemma C.3 (with R = 1 there) are satisfied, and we get an

approximation w on the element K by lifting an element-by-element construction on K to K
via F which satisfies for ¢ € {0,1}

oa— wllnc, < Ch-ap2gy d (Y (R
A Hi(K) = KI\h+o op '

Summation over all elements K €7}, gives

ho\% o \?T k2 (EkR\Z kR 22
ot |(55) e (s) g () e ()] ok oo

KeT,

The combination of (5.9) and (5.8) yields

ho\’ hk kh\* (1 kh
_ < - — -+ — .
k||va wHH_CKtha) <1+h+0) +k(ap) (p+ap)] 11| z2@)

Furthermore, we estimate using h < diam(2 and ¢ > 0 (independent of h)

ho\? kh ho\"! h (/1 kh
< < 2o+ =,
(o) (102 < cntoam (1) < onr s < o2 (22 50)

We therefore arrive at

1 kh\ [kh kh\"
kllva —wlln < C (— + —) {— +k (—) ] 1fllz2 ()
p D p op

which completes the proof of the theorem. m

Combining Theorems 5.5, 4.3 produces the condition (1.1) for quasi-optimality of the hp-
FEM announced in the Introduction. We extract from Theorem 5.5 that quasi-optimality of
the h-version FEM can be achieved under the side condition that p > C'log k:

Corollary 5.6 Let 2 = Bg be a ball of radius R and assume (3.83), (2.2) with the additional
condition kg > 1 in the case d = 2. Let Assumption 5.2 be valid. Then there exist constants
c1, ¢a > 0 independent of k, h, and p such that (4.6) is implied by the following condition:

@ <c together with p>cylnk. (5.10)
b

Alternatively, the discrete stability follows from
p=0(1) fived independent of k and kh+ k(kh)’ <C (5.11)

which is understood as a condition on the maximal step size h.

28



Proof. Theorem 5.5 implies

s ) (4 (2))

The right-hand side needs to be bounded by 1/C,. It is now easy to see that we can select ¢,
¢y such that this can be ensured. m
An easy consequence of the stability result Corollary 5.6 is:

Corollary 5.7 Let the assumptions of Corollary 5.6 be satisfied and let (5.10) or (5.11) hold.
Then, the Galerkin solution ug exists and satisfies the error estimate

h kh\"*
_ <O (=+ (= :
o= sl < € (54 (5)) 110
Remark 5.8 To the best of the authors’ knowledge, discrete stability in 2D and 3D has only
been shown under much more restrictive conditions than (5.10), e.g., the condition k*h < 1.

Even in one dimension, condition (5.10) improves the stability condition kh < 1 that was
required in [27].

Finally, we reformulate Theorem 5.5 by deriving the statement under some conditions on
abstract approximation spaces that may be easier to verify than a direct proof of (4.6).

The key step in Theorem 5.5 is the ability to decompose v = N} f into an analytic, but
oscillatory part and an H2-regular part and to approximate each part separately. This gives
rise to the definition of two types of approximation properties.

Definition 5.9 For given v > 0 and k > 0 let
Ho(,k) i= {v € H'(Q) | IV"0ll,20) < R ¥p € Mo},
HT = {v € HA(Q) | |0l 20 < 1}.

Let S C H' (Q) be the—possibly k-dependent—finite dimensional approzimation space for the
Galerkin method. The approximation properties for the oscillatory and the H?-part are:

Na(S,k,y) = sup inf |l —wl,, (5.12)
vEHOsC (v, k) WES
N2 (S) := sup inf |[v—w],.
UEHHZ 'LUES

The Decomposition Lemma 3.5 allows us to recast n(.S) in terms of n4(S, k, ) and ny=(9):

Lemma 5.10 Let Q C R, d € {1,2,3}, be a bounded domain and select A > 1. Set v := /d\
and define

O e sup Mol o g IVl
serx@) fllzz@)” rerz@ petia (V)P Iz

where, for each f € L?(Q) we employ the A-dependent decomposition N} f = vyz+v4 according
to Lemma 3.5. Let S C H' (Q) be a finite dimensional approzimation space. Then, the adjoint
approximability n(S) is bounded by

n(S) < Cana (S, k,v) + Cruzng= (S) .
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Before proving this statement, we stress that the scaling in Definition 5.9 has been chosen
such that, according to Lemma 3.5, the constants C'4 and Cy2 are bounded uniformly in k.
Proof. For f € L? (), we employ the splitting v = N f = vy2 +v4 as in Lemma 3.5 for the
selected A > 1. We set

. 0 it f=0, N 0 if f=0,
Vg2 1= Vg2 if f0, and vai=9 __wa o p f#0.

VA
CH2||f||L2(Q) CA||f||L2(Q)

and note vz € HP” and v € H*(7, k). Then,

[va + vr, — wlly

n(S)= sup inf
recz@n\oyves 1l
< sup inf M + sup inf M
rerz@\oyves [ flle)  rerzongoyves 12

[va2lly /02 llyy

[vally / N[vall —
inf J[og, —wlly,

sup inf [[ug —w|,, + sup
reczngoy 1Mz €s T perr@n\ oy 11l 220)

< Cana (S) + Cyznpye (S) .

A Estimate of Bessel functions

In this appendix we derive some estimates for the Hankel and Bessel functions that are used
in Subsection 3.2. First, we will consider the case of large arguments z > 1 and then the case
0<z<1.

Case 1: z =kr > 1.
From [1, 9.2.5-9.2.16], we conclude that the Hankel functions H él) and Bessel functions Jy,
¢ € Ny, can be written in the form

Jo (2) 1, 2:29] \/g (Pr(2) cosx — Qg (2)siny), (A.la)
HY (z) 22T \/g (P (2) +1Q¢ (2)) €'X, (A.1b)

where x := z — 7/4. The functions Py, ), have the following property: Upon defining

2~ Be ok
P (2) 1= 5 (A.1c)
k=0
. =< Be okt A1d
Qem (2) = _IZ 22kt 1 (A.1d)
k=0
with
i* o .
Bk = W and g, as in (3.12)
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there holds

|7€2m| 1
P, — P m— < e o1 o
|(Pr — Prm—1) (2)] < 26m (2m)! 22

14
Vz >0 Vm>§—

RS

Ve, 2m+1 1
2 (2m + 1)l 2t

Q= Qe ()] < 55

Note that in Subsection 3.2 the order ¢ is always small, i.e., £ € {0, 1} and, hence, we do not
analyze the dependence of the constants on ¢ in the following estimates.
We conclude that

1
Vz>1:|P, <|P + < C. A2
=2 LR = [P O+ gyt T S (A.2)
and similarly
C C , C
vezl: Q)< -, 1G5 Q) < 5 (A.2b)
Hence, for f € {Jg, Hél)}, ¢ € Ny, there holds
vem1: |f(2) < 2 (A.3a)
> SN ,

[1,9.1.6

L 9.1
and the combination with |J, (z)] <

1
>0: < . .
Vz >0 |JZ<Z>‘_C”1+Z (A.3Db)

We need an estimate of the derivative at the argument z = kr for z > 1. The derivative
of (A.1b) can be written in the form

0]
C for all z > 0 yields

d 927 i [ 1 d .
T H (k) M2 G =2 (P (k) 41 Qo (kr) (A4)

+ C (P (kr) +1Qo (kr)) dir (eikr H) )

The combination of (A.4) and (A.2) leads to

1 k
Sc(r\/HJr\/;)' (A.5)

We also need an estimate of 9, <e_“‘" Ho(l) (k:r)) Employing (A.1b) we obtain

% (e—ikr HY (kr)) _ \/ge—ﬂﬂdii (@(PO (kr) +1Qo (kr))) -
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Thus, for kr > 1, we get
C

o, (e—ikr Hél) (kr)ﬂ < T

An estimate of the second derivative of Hél) is derived by using [1, 9.1.27, 9.1.28]

d2
dr?

H{" (kr)

(A.3a) k
<
kr -

Chy/ . (A7)

r

—Hél) (kr) +

—— H" (kr )‘ =i

Case 2: 2 =kr € (0,1).
To estimate Hél) (z) in the range (0,1) we employ

H" (2) = Jo (2) + Y, (2)

and use for Yj (z) the expansion

Yb(z)z%(log ) —%i (k+1) (_é)

where
n—1

Y (n) = —vy+ Z k™' and v :=0.57721566... is Euler’s constant.
k=1
For 0 < z <1, we have

9
Y, <—‘1
Yo ()] < 2 g S

Zw (k+1)
T 4k k'
Furthermore
k k
1 1 ,
|¢(1<;+1)|§7+1+Z;§7+1+ —dr =7 +1+logh =17 +logk.
s=2 1

Thus, for 0 < z < 1, we have
v +logk
Y, <—‘lo ’
Yo (2)] g5 ( kz:; I k:‘ )

~'+logk
4k !

Since <1 we get

2
Yo (2)] < = flog 2| +C.

This leads to the estimate
2
Vz €10, 1] )H(l ) < = Jlog 2| + C. (A.3¢)
The combination with (A.3a) finally results in

)Hg” (z)) < min {% llog 2| + €, - (A.3d)

o
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We will need further estimates of J; and &Hél). From [1, 9.1.60], we conclude
Vz>0:  J(2) <1/V2 (A.8)

For the derivative of Yj, we obtain (by using Jj = —.J;)

}/()’(z)zg(JOZ(Z>—J ) log )+ iw k+2) k'( ) (A.9)

For 0 < z <1, we obtain

()

Ay ZamY Hlog(k+1) 2 n 1
— k+2)—~2 < 2 <z 1_a
MZZOW ! )k!(“l)!—wkzzo K14k (k+ 1) —WZ,{;! Cz

k=0
Now,
[1,9.1.62]
()] < 2/2, (A.10)
and we get
2 z ez 2
! < — — < — .
YO(Z)_W<Z 2102+2)_7TZ+C
Hence, for 0 < r < 1/k, we arrive at
2 k2r 1 K2
) (k)| = k(15 (k)| + Y5 (k) < =+ Ch4 - < C ( 27“) . (A1)
In addition, we need some weighted estimates for second order derivatives of Ho(l). From
(A.9) we obtain
(k)"
2k kr > <_ 1 )
Or (r0,Yo (kr)) = — | =2y (kr) — krlog =-Jo (kr) + kr ]; ¥ (k+2) T
This leads to the estimate, for 0 < z <1,
2 k
|0, (r0, Yo (kr))| < ;k2r (C + logETD .
Note that
0, (ra,Hé” (kr)) = k2 Jy (kr) + 10, (rd, Y, (k1))
and, hence,
1) 2 2 kr
Vo<kr<1: |o (r&THO (m))‘ < =k (O + Jlog | ) (A.12)
T

We finally state a lemma required for the proof of Lemma 3.7:
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Lemma A.1 Let |s| >k and k > ko > 0. Then

TJO(ST)HSI)(]{Z’/’) el(lsl+F) 71]““1 (Is|r) + el(=lsl+k) TfH (Is|r }g (kr),

7r\/7{
where the functions f1, 11, g7 satisfy forr > 1 and a C > 0 depending solely on kq:
|f1( )+ 1) + g ()] < C,
# (Il @+ 110+ o)) < ©

Proof. By symmetry of Jy, we may assume s > 0. Formulas (A.la), (A.1b) imply the
stated representation with f/(sr) = 1 (Py(sr) +1Qo(sr)) e '™, fH(sr) = 1 (Po(sr) —iQo(sr)) ™4,
and g! (kr) = (Py(kr)+iQo(kr))e™4. The estimates for f1, fI1, g’ now follow from the bounds
for Py, Qo, P}, Qf given in (A.2a), (A.2b). m

B Approximation by hAp-finite elements. Case I: finite
regularity

The purpose of the present section is the proof of Theorem B.4, which constructs a polynomial
approximation to a function u € H*®, s > d/2, in an element-by-element fashion (see Def. 5.3).
The novelty of the present construction over existing operators such as those of [3], [14], [34] is
that we obtain optimal rates (in p) simultaneously in the H'-norm and the L*norm. Closely
related results can be found in the recent paper [21], where similar duality arguments are
employed to obtain estimates in L?.

B.1 Lifting operators

In the p-FEM, globally continuous, piecewise polynomial approximations to a function u are
typically constructed in two steps: in a first step, discontinuous approximations are con-
structed element by element. In a second step, the jumps across the element interfaces are
corrected by suitable lifting operators. The construction of these lifting operators is the pur-
pose of the present section; the ensuing Section B.2 is devoted to the analysis of polynomial
approximation.

Before proceeding we recall the definition of the Sobolev space HS({Z(Q). If Q2 is an edge

or a face of a triangle or a tetrahedron, then the Sobolev norm || - [| .12 @ 18 defined by
00
2
lelloge gy = ey + | ——==|| - (B.1)
Hop™($2) dist(-, 09) L2@)

and the space Héf(Q) is the complection of C§°(2) under this norm.

Lemma B.1 Let K20 be the reference triangle in 2D. Vertex and edge lifting operators can
be constructed with the following properties:
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1. For each vertex V of K2P there exists a polynomial Ly, € P, that attains the value 1

at the vertex V' and vanishes on the edge of K?2P opposite to V. Additionally, for every
s 2 0, there exists Cs > 0 such that || Ly g gepy < Cyp~tFs.

2. For every edge e of K2P there exists a bounded linear operator . : Hy)*(e) — H(K?P)
with the following properties:

(a) Yu € PN Hy'(e) . mou € Py,
(b) Yu € H&éz (6) : 71'eu‘af(?f’\e = 0’

1/2
() Yu € B2 (&) plmeullaggemy + el gany < C (Il gy + 22llllzzco)-

Proof. Let K22 = {(z,y)]0 <z < 1,0 <y < 1 —z}. The vertex function Ly, for the
vertex V' = (0,0) is defined as Ly ,(z,y) = (1 — (x + y))?. A simple calculation then shows
the result. The functions Ly, for the remaining 2 vertices are obtained by suitable affine
transformations.

For the edge lifting, let e be the edge e = {(z,0)|0 < = < 1}. By [3] there exists a
bounded linear operator E : HY*(e) — H'(K?P) with the following properties: Eul. =
u, Eu|af<2D\e =0, and Eu € P, if u € P, N Hééz(e). Introduce the auxiliary operator
(Gu)(z,y) == (1 —y)?(Eu)(x,y). By [31, Lemma B.5], we have

PGl 2 gy HI Gl omy < C (1Bl omy + 0 Nulze)) < C (Il oy + 92 el ) -

Denote by ITH" - HY(K?P) — HY(K2PYNP, the H'-projection and set mu := Bu+TI" (Gu—
Ewu). Then by the stability of Hfl and F

Il zamy < IGully amy + 21 Gt = Bull g ooy < € (Iull gy + 92wl o)

which is the desired H'-stability result. For the L2-bound, we use a duality argument as
in [21]:

|G~ Bu T (Gu — Eu)| 2 my < Cp~[[(Gu — Bu) — T (Gu — B 1 e

The H'-stability of Hf " together with stability properties of E and G produces the desired
L?>bound. m

Lemma B.2 Let K30 be the reference tetrahedron in 3D. Vertex, edge, and face lifting oper-
ators can be constructed with the following properties:

(i) For each vertex V of K*P there exists a polynomial Ly, € P, that attains the value 1
at the vertex V and vanishes on the face opposite V. Additionally, for every s > 0 there
exists Cs > 0 such that ||Ly,| o (R30) < Cyp3/%+s,

(ii) For every edge e of K3P there exists a bounded linear operator m, : Hol () — H'(K3P)
with the following properties:

(a) meu € P, if u € Py N HY(e)
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(b) (mou)|f =0 for the two faces f with fNe =0
(c) for the two faces f adjacent to e (i.e., fNe=¢e)

plimeullziy + Imeullmy < Cllull g, + p2 | o),
||7T€u||H1/2(8f(3D) <C (p_1/2||u||H010/2(6) + ||U||L2(e)> )

p””@“”ﬂ(kw) + ||7Teu||H1(1?3D) <C <p_1/2||u||H362(e) + ||u||L2(e)) -

(iii) For every face f of K3 there exists a bounded linear operator m; : Hol’(f) — H'(K3P)
with the following properties:

(a) Tju e P, ifue PN Hol({Q(f)
(b) (meu)|p =0 for the faces f' # f

Plimsulpaggom + sl gomy < € (Iullgogegy, + 22 ullacn)

Proof. We take the reference tetrahedron K32 to be K3P = {(z,y,2)]|0 < z < 1,0 <
y<l—z0<z<l—z—y}

Proof of (i): For the vertex V' = (0,0,0) we select Ly,(x,y,2) == (1 — (z +y+ 2))P. A
calculation shows that Ly, has the desired properties. The functions Ly, for the remaining
3 vertices are obtained by affine transformations.

Proof of (iii): [34, Lemma 8] exhibits a bounded linear operator F : Hi\*(f) — H'(K3P)
with the additional property that Fu € P, ifu € PpﬁHoléz( f). Let, without loss of generality,
f=0K3N{z=0}. Define the auxiliary operator (Gu)(z,y, z) := (1 —2)?(Fu)(z,y, z). This
operator satisfies (see [31, Lemma B.5] where the analogous arguments are worked out in the
2D setting)

PIGul a(gesmy HIGul s gamy < C (1Pul s gomy + 22N Fliagry) < Clullguga gy 40"l 2

Letting again ITH" - HL(K3P) — HI(K3P) NP, be the H'-projection, we can set msu :=
Fu+ Hf ' (Gu — Fu). The desired properties of 7 are then seen in exactly the same way as
in the 2D case of Lemma B.1._ R

Proof of (ii): Set fo; = OK*’ N{z =0} and f.o = OK*’ N{1 —2 —y— 2 = 0}. The edge
shared by the faces f.; and feois e = {(z,1 —2,0)|0 < x < 1}. By Lemma B.1 a function
u € H(%Z(e) can be lifted to a function Eu € H'(f.1) such that Eulsy, ,\c = 0 and

Pl Bl ta(r.) + I Bullm gy < C (lull gz + 22 Nullzze)

Additionally, if v € P, then Eu € P,. Since the same lifting can be done for the face f. o, we
can find a function, again denoted Eu € H*(0K3P), that vanishes on K3\ (fo1 U foaUe),

such that pl|Bull ja(ozan) + | Eull s pgam) < C <||u||H010/2(e) + p1/2||u||L2(e)). Additionally, Bu
is a piecewise polynomial of degree p if u € P,. An interpolation inequality gives

1/2 1/2 _
| Bull aqoismy < ClEUI o 1Bl o smy < €072 (il oeomy + 2 ullogeony ) -
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For this function Eu, [34, Lemma 8] provides a lifting Fu € H'(K*P) with [ Full g epy <
CllEull a2 gapy- To get a better L?-bound, we introduce the distance functions d;(-) :=
dist(-, fe1) and da(-) := dist(-, fe2) as well as d(-) := dist(+, fe1 U fe2) = min{d;(-), d2(-)} and
set w := (1 —d)?. Define Gu := wFu. Then (Gu)|yzsp = (F'u)|ypsp since wly, ,up., =1
and F'ulygany (s, 5., = 0. Additionally, Gu € H'(K?P) since w is Lipschitz continuous.
Furthermore, we have

PlGull o gspy + |Gull ga gspy < C (||FUI|H1(f<3D) ‘l'p1/2||Fu||L2(fe,1Ufe,2)> ~ (B.2)

To see this, we adapt the proof given in [31, Lemma B.5]. We split K3P = K, U K, with
K; = {(z,y,2) € K3 |d(x,y,2) < di(z,y,2)}, i € {1,2}. We note that on K, we have
d(x,y,z) = di(z,y, 2z) = z. Hence, by the arguments given in [31, Lemma B.5], we get

plGull ey + 1Gullm iy < C (1Full ey + 02 Full 2. ) -

Proceeding completely analogously for K, gives us (B.2). Since Fu|pgsp coincides with Fu,
we conclude that Gu satisfies

pllGullrz k) + |Gullg ) < Cp'/? (HUHHéf(e) +pl/2||u||L2(e)> ' (B.3)
We recall that T : HL(K?®P) — HE(K3P) NP, denotes the H'-projection and define
Teu = Fu + Hfl(Gu — Fu).

If u is a polynomial of degree p, then 7 u is a polynomial of degree p. Additionally, m.u = Fu
on OK3P so that the estimates for 7. on the faces of K37 are satisfied. To see the H'(K3P)-
and L2(K3P)-bounds we note that the stability of 1" together with (B.3) and the stability of
F gives us the H'-bound. The L?-bound follows as in the proof of Lemma B.1 and in [21] from
Nitsche’s trick: ||meul| o oy < [[Tew — Gull o gany + | Gull 2 gany < C’p_1||Fu—Gu||H1(f(3D) +
|Gull2(apy.

B.2 Approximation operators

Lemma B.3 provides polynomial approximation results on triangles and tetrahedra. The
lifting operators of the preceding subsection are employed in Theorem B.4 to modify the
approximations of Lemma B.3 such that approximations are obtained that permit an element-
by-element construction in the sense of Def. 5.3; that is, the approximation 7u of a function
u satisfies the following: for every vertex V, edge e, face f of K, the restrictions (wu)(V),
(mu)le, (mu)|s are completely determined by u(V'), ule, ulf, respectively.

Lemma B.3 Let K be the reference triangle or the reference tetrahedron. Let s > d/2. Then
there exists for every p a bounded linear operator m, : HS(IA() — P, and for each t € [0,s] a
constant C' > 0 (depending only on s and t) such that

HS(I?)7 pZ s— 1. (B4)

[ = mpull o2y < Cp~ 9 u

s—d/2

Additionally, we have |[u—mpul| oo ) < Cp~( )|u we(iy- For the case d = 2 we furthermore

have ||[u — mpu|| ey < C’p_(s_l/z_t)|u|Hs(f<) for 0 <t <s—1/2 for every edge. For the case
d = 3 we have ||[u — Tyu| g5y < C’p_(s_l/z_t)|u|Hs(f() for 0 <t <s—1/2 for every face f and

—(s—1—t

|u — Tyl ey < Cp )|u|Hk(f<) for 0 <t <s—1 for every edge.
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Proof. The construction of m, with the property (B.4) is fairly classical (see, e.g., [5]).
One possible construction is worked out in [31, Appendix A] first for integers s, t and, then,
interpolation arguments remove this restriction. Next, we consider the L*°-bound, for which
we need the assumption s > d/2: We recall that for a Lipschitz domain K C R? and s > d/2
there exists C' > 0 such that

4020 iy e HY(K). (B.5)

1d
lull oy < Cllull g™l

L2(K)

From this, the desired L*-bound follows easily. The inequality (B.5) can be seen as follows:
First, using an extension operator for K (e.g., the one given in [42, Chap. VI]) it suffices to
show this estimate with K replaced with the full space RY. Next, [45, Thm. 4.6.1] asserts
the embedding Bd/ 2(RY) ¢ C(R%). Finally, the Besov space Bi/f(]Rd) is recognized as an
interpolation space between L?(RY) and H*(R?): Bg/f(]Rd) = (L*(RY), H*(R%))q/(25)1- The
interpolation inequality then produces the desired result. The remaining estimates on the
edges and faces follow from appropriate trace inequalities. Specifically: let w C JK be an
edge (for d = 2) or a face (for d = 3). By [45, Thm. 2.9.3] the trace operator v is a continuous
mapping in the following spaces:

v:B(K) = L2(w), and ~:HY(K)— H W), t>1/2.

Together with the observation Bl/2(K) = (L*(K), HS(I?))U@S)J the desired estimates can
be inferred. It remains to see the case of traces on an edge e of the tetrahedron in the case
d = 3. In this case [45, Thm. 2.9.4] asserts the continuity of the trace operator in the following
spaces: R R

v: By (K)— L*(e), and ~:H'(K)— H'"'(e), t> 1.
Again, these continuity properties are sufficient to establish the desired error estimates. m

We conclude this section with the construction of an approximation operator that permits
an easy element-by-element construction.

Theorem B.4 Let K C R be the reference triangle or the reference tetrahedron. Let s > d/2.
Then there ezists C > 0 (depending only on s and d) and for every p a linear operator 7 :

HS(IA() — P, that permits an element-by-element construction in the sense of Definition 5.3
such that

pllu = wull gy + llu— 7l gy < CoCPlulygy  Zs-L (B
Proof. We discuss only the case d = 3 — the case d = 2 is treated very similarly. Also, we
will construct mu for a given u—inspection of the construction shows that u — mu is in fact
a linear operator.
Let 7' € P, be given by Lemma B.3. Then, for p > s — 1 there holds

Hu_TrlHHt(f{)SCp_ -4 0<t<s

(R (B.7)
lu— 7 e gy < C’p_(s_t_l/2)|u|Hs([?), Vfaces f, 0<t<s—1/2 (B.8)
Ju — 7 frege) < Cp~ =V u Vedgese, 0<t<s—1 (B.9)

)

it = 7|y < O

Hs(K)

He(K)
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From (B.10) and the vertex-lifting properties given in Lemma B.2, we may adjust 7! by vertex
liftings to obtain a polynomial 72 satisfying (B.7)-(B.9) and additionally the condition (i) of
Definition 5.3. We next adjust the edge values. The polynomial 72 coincides with w in the
vertices and satisfies (B.9). By fixing at € (1/2,s—1), we get from an interpolation inequality:

1-1/(2¢t 1/(2t
< M2 = gy + Cllu = w0 e = w25

p1/2||u - 7T2||L2(e) + ||U - 7T2||H362(e)

H¥(R)"

Hence, for an edge e, the minimizer 7¢ of the functional (5.4) satisfies p'/?||u — 7¢||2(¢) +

|| —7re||H1/z(e) < Cp==3/2) |u|H,€(I?); the triangle inequality therefore gives that the correction
00

7¢ — 2 needed to obtain condition (ii) of Def. 5.3 likewise satisfies p'/?||7® — 72| 2(¢) + || e —
72| /2 o < Cp‘(s_3/2)|u|Hs(f<). We conclude that the edge lifting of Lemma B.2 allows us to

00

adjust 7% to get a polynomial 7® € P, that satisfies the conditions (i) and (ii) of Def. 5.3.
Additionally, we have

pllu =7 oy + llw = 72| ja ) < Cp~ OV u
(%) ()

Hs(K)»
pllu — 7 2y + lu — 7| gy < C’p_(s_3/2)|u|Hs(f() for all faces f.
Since 73|, = 7 for the edges, the minimizer 7/ of the functional (5.5) for each face f has to

satisfy pllu — 77| 2p) + lu = 7/ ||y < pllu— 7|2y + lu = 72|y < Cp~ =32 u
From the triangle inequality, we conclude

Ho(R)"

plim® — |2 + |7 — 7| gy < C’p_(s_3/2)|u|Hk(f<), together with 7 — 7/ € HJ(f).

Hence, the face lifting of Lemma B.2 allows us to correct the face values to achieve also
condition (iii) of Definition 5.3. Lemma B.2 also implies that the correction is such that (B.6)
is true. =

C Approximation by hAp-finite elements. Case II: ana-
lytic regularity

In this section, we construct a polynomial approximation operator for analytic functions that
permits element-by-element construction in the sense of Def. 5.3 and leads to exponential
rates of convergence.

Lemma C.1 Letd € {2,3}. Let G1, G C R? be bounded open sets. Assume that g : G, — R?
satisfies g(G1) C G. Assume additionally that g is injective on Gy, analytic on G and satisfies

VP9l Lo (ary < Corhp! Vp € Ny, |det(g')] > co >0 on Gj.
Let f be analytic on G and satisfy, for some Cy, ¢, k> 0,
IV? fll2e) < Cpy? max{p, x}? Vp € Ny. (C.1)

Then, the function f o g is analytic on G1 and there exist constants C', v; > 0 that depend
solely on v, Cy, co, and vy such that

IVP(f o gl < CCpyymax{p,x}’  Vp e Ny.
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Proof. This is essentially proved in [30, Lemma 4.3.1]. Specifically, [30, Lemma 4.3.1]
analyzes the case d = 2 and states that C', v; depends on the function g. Inspection of the
proof shows that the case d = 3 can be handled analogously and shows that the dependence
on the function g can be reduced to a dependence on Cj, 7,, and 7. m

Lemma C.2 Let d € {1,2,3}, and let K C R? be the reference simplex. Let 7, C >0
be given. Then there exist constants C', o > 0 that depend solely on 7 and C such that the
following 1s true: For any function u that satisfies for some C,, h, R > 0, k > 1 the conditions

IV"ull 2y < Cu(Fh)" max{n/R, x}" Vn € N, n>2, (C.2)
and for any polynomial degree p € N that satisfies

h/R+ kh/p < C (C.3)

Ghm) -G e

Proof. Let II;u € P; be the L?-projection of u onto the space P;. Set @ := u — ITju. It
suffices to approximate u from P,. By the Lemma of Deny-Lions and (C.3) we have

there holds

Wiggp lu — 7T||w2,oo(f<) < CC,

[l 2y < ClIVZullary < CCU(l+ (h/R)* + (hr)?) < CCup?,
Vil < CIVull ) < COUL+ (/R) + (b)) < CC,ph/ Bmax{1, kR),
IVl pozy = [IV"ull o) < CCu(h/R)" max{n, Rc}"  Vn = 2.

We conclude that (estimating generously p < p? for the case n = 1)
IV | 2y < CC.p*(Fh/R)" max{n, kR}" Vn € Np. (C.5)

For the case kR < 1, we estimate kR < 1 and get directly from [30, Thm. 3.2.19]

— R\
0 17 iy <0 (305

It remains to consider the case kKR > 1. To that end, we note that (C.5) and the Sobolev
embedding theorem H2(K) C C(K) gives us for suitable C' > 0

IVl ooy < Cup’C [(Fh/R)"? max{n + 2, kR}"** + (Fh/R)" max{n + 2, kR}"]
< CCup*(Wh/R)" max{n + 2, kR}" (1 + max{(n + 2)h/R, hx}?) Vn € Ny.

Hence, we get for suitable constant v > 0 in view of (C.3)
VUl oo ) < CC.p*(Fyh/R)" max{n + 2, kR}" Vn € Np. (C.6)
Define
pi= Ve, (C.7)
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and let 7o = diam(K) and bz be the barycenter of K. The bounds (C.6), (5.2) and Stirling’s
formula in the form n! > (n/e)" imply that the Taylor series of & about z € K converges on
a (complex) ball By /un/r)(z) C C* of radius 1/(uh/R) and center x € K. For the polynomial
approximation of u, we distinguish the cases uh/R < 1/(2rq) and puh/R > 1/(2r9).

The case pth/R < 1/(2r¢): In this case the Taylor series of © about bz converges on an open

ball that contains the closure of K. We may therefore approximate u by its truncated Taylor
series T,u. The error is then given by

) - Tu@) = 3 iD“”(b )z —b2)" @€ Buygum(bg) C C-.

a€Ng:|al>p+1

Hence (5.2) and (C.6) imply

. 1 a~ [} - n _jn 1 n>
7 = Tyullie ey < D I DYubR" < D7 gVl o

la|>p+1 n=p+1
=1
< CCp* E — max{n + 2, kR}"d"*(vh/R)"rt =: S.
n!
n=p+1

This last sum S is split further using Stirling’s formula n! > (n/e)™ and (1 4 2/n)" < e

1 —l— 2)"
S =CC,p* Z ﬁ(\/arovﬁnh)" + Z (vyroVdh/R)" (n

p+1<n<kR—2 n>max{p+1,xR—2}

1 n
< CCypte? Z o (\/Erwﬁfzh) + Z (evﬁ\/&roh/R)n =: 51+ Ss.
n>p+1 n2p+1 =pu

We estimate these two sums separately. For Sy, we use the assumption proh/R < 1/2, which
allows us to estimate

h/R p+1 /R p+1
Sy < CCup e (uroh/ R’ = CCypte? <ﬁ> < CC,p'e? <7> .
2uro 2uro 2uro _I— h/R

For Sy, we recall that Taylor’s formula gives, for x > 0,
1 1 I Pl

—n _ T _n - A N4 T T
Z St =e Zn! o (x —t)Pe’ dt < —e”.

n>p+l n=0 p:

Hence, we can estimate Sy by (recall Fyv/d = p/e),

+1
Sy < Ccup4((u/e)r0/€h)p+1 e(M/e)T(mh < CCupS (eeluro’l{’h)p
- p! - p+1 ’

where, in the second inequality, we have used the assumption hx/p < C and Stirling’s formula
n! > (n/e)” and have abbreviated 6 := Cu/erg. Combining the estimates for S; and Sy we
arrive at the following estimate for suitable ¢ > 0 (depending only on p,rg, and C):

B kh\ 7! h/R \"*
— Toul| py<s<oo, || — — :
1@ = Tpull oo 3y (00 < 5 < CC <<Up) + (a+h/R)
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Since dist(K, 0B, (bz)) > 0, the Cauchy integral formula for derivatives then implies

kh\ P h/R \"
T — Tyullypome oy < CC | (22 Ut .

The case ph/R > 1/(2rg): We recall that for every z € K the Taylor series of & about z
converges on the (complex) ball By n/r)(z) C C% From (C.3) we get a lower bound for

1/(ph/R), namely, 1/(uh/R) > 1/(uC) =: 2r;. We conclude that u is analytic on ﬁ% =
U, e Bor, (2) € C%. The estimate (C.6) and a calculation analogous to the above reveals that

on Uy, := U, B, (z) we have

for a constant ¥ > 0 independent of p, k, h. Approximation results for analytic functions on
triangles/tetrahedra (see [30, Prop. 3.2.16] for the case d = 2 and [16, Thm. 1] for the case
d = 3) imply the existence of C, b > 0 that depend solely on 7 such that

inf |lu =7l yoe ) < CC,p* e’ et Vp € No.
TEPp+1

We finally distinguish two further cases: If Yxh < pb/2, then we can estimate

+1
p4el9nhpe—bp < p4e—b/2p <C 1/(2MT0) P
- — \o+1/(2puro) ’

for suitable constants C', o > 0 depending only on b, i, and rq. Since h/R > 1/(2urg) and
the function = — x/(¢ + x) is monotone increasing, we have reached the desired bound. If,
on the other hand, ¥xh > pb/2, then

~ ~ \ P
p4ei9nhe—bp < CeV%h < Ce¥Cr — (eﬁc>f” <C (F&_h%eﬁc) :
p

we recognize this bound to have the desired form. m

Lemma C.3 Assume the hypotheses of Lemma C.2. Then one can find a polynomial ™ € P,

that satisfies
h/R p+1 kh p+1
im) < (5) 3

and additionally admits an element-by-element construction as defined in Definition 5.3.

|u — ﬂ-HWLOO(IA{) <Cd,

Proof. The construction follows standard lines. We will only outline the arguments for
the case d = 3. In order to keep the notation compact, we introduce the expression

h/R p+1 wh p+1
Fam) ()
In what follows, the constants C;, o; > 0 (i = 1,2,...) will be independent of Cy, h, R, p, and
k. Let m € P, be the polynomial given by Lemma C.2. It satisfies ||u — 7[|y2.00 ) < E(C, 0).

E(C,0):=CC,
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Therefore, we may correct m by a linear polynomial without sacrificing the approximation
rate to ensure u(V) — (V) for all vertices V' € V. This corrected polynomial, denoted 72,
vanishes in the vertices and still satisfies ||u — 7T2||W2,oo(f() < E(Cy,09). Next, we correct
the edges. We illustrate the procedure only for one edge. Without loss of generality, we
assume that K = {(z,9,2)]|0 < z,y,2 < 1,z +y < 1 — 2z} and that the edge e considered
is e = {(0,0,2z)|z € (0,1)}. Let the univariate polynomial 7¢ € P, be the minimizer of
the functional (5.4). From [lu — 7°|[w2ec(e) < [[u = 7|l yp2m gy < E(C, 0) we can conclude
that p1/2||u — 7| p2e) + |lu— WGHH&{?(E) < Cp'?E(Cy, 03). Hence, for the required correction

C

7¢ := 7%|, — 7°, which vanishes in the two endpoints of e, we get from a triangle inequality

and standard polynomlal inverse estimates || =7 1ooe) + |7 () < E(Cs,03). We may

lift this univariate function to K by

~c l-z—-y—z
7(z,y,2) == P (2).
This is a polynomial of degree < p that vanishes on all edges but the edge e; clearly,
17N oo () < E(C3,03). The polynomial inverse estimate |[7°[|y1.00 5y < CpQH%eHLw(f() shows
that |7y 2.0z < E(C4, 04). Proceeding in this fashion for all edges, we arrive at a polyno-

mial 73 with the desired behavior on all edges of K and satisfies ||u — 7r3||W2,oo(f() < E(Cs,05).

It remains to construct a correction for the faces. To that end, the key issue is again that of
a lifting from a face f. Without loss of generality, this face is f := {(x,y,0) |0 < z,y,x+y <
1}. For a polynomial ¢ defined on f that additionally vanishes on df, we define the lifting
7 by

Fas) = I ey,

This is a polynomial that vanishes on all faces of K except on f. Additionally, it is a lifting,
i.e., 7/|; = 7. Asin the case of the lifting from the edge we see that if 7¢ is exponentially small
on f, then the lifting is likewise exponentially small. To see that the required correction 7¢ is
exponentially small, let 7/ be the minimizer of the functional (5.5). Since 7® has the desired
behavior on the edges of f, we have 7°|o; = 7/[o; and therefore |Ju — 7|20 2y < E(C5, 05)
allows us to conclude ||7® — /|| 1(y) < CE(C5, 05). Polynomial inverse estimates then imply
for the lifting 7/ that ||%f||W1,w(g) < E(Cg,06). =

D comments on the proof of Lemma B.3

We have heavily used “non standard” Besov spaces in the proof of Lemma B.3. The following
two lemmas show these spaces, being intermediary in the proof anyway, can be avoided.

Lemma D.1 Let Q C RY be a bounded Lipschitz domain. Let s > d/2. Then there exists

Cy > 0 such that
d/(2s)

1-d/(
| gy < Cillull 2™ o)

L2(Q)

Proof. A short proof is as follows: Let E : L*(Q) — L*(R?) be the Stein extension operator.

Then ||Bul|2@ay < Ollullr2) and [|Eul gsray < Cllullms@). By [45, Thm.4.6.1], we have

the embedding estimate Bg/f(]Rd) C C(RY); in particular, [ul|peras < Cllul 4/ Next,
) 2,1

(R4)*
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we recognize that Bg/f(]Rd) is obtained by interpolation between L?(RY) and H*(R?) via the
K-method; specifically, Bd/z(Rd) (L2(R?), H5(RY))g, with 6 = d/(2s). Hence,

d/(2s)

d/(2s
vl (/AN

lull pgrz gy < Cllell o)

We conclude

1-d/(2s) d/(2s) 1— d 2s) d 2s
lull ey < CllEull ey < ClEull 00 | Bull 50 < Clullpzim ™ lull5;

An alternative proof that avoids the Besov space Bi/f (R%) is as follows: We assume that s
is not an integer (the case of s being an integer is shown analogously). For the unit cube
Q = (0,1)%, the Sobolev embedding theorem asserts

ull @) < Cllullas)  Yu € H¥(Q).

(This can be seen by expanding u in a Fourier series). For the norm |[|ul
equivalent norm (the Aronstein-Slobodeckij norm)

2 2 | D%u( au(y)|
) Where |ulys ) = Z // \x—y|28 oD dzx dy

|al=

H*(Q), We now use the

lullZrsq) = llullZ2ig) +u

We use the analogous expression for |u|gsgay. By covering R? with translates of the unit cube
Q, we can infer

lull Loty < C [l p2qgay + |u

We next proceed in the standard way to infer from this a multiplicative estimate. For u €
Cs°(R?) we define, for R > 0 to be chosen below, the function ug(z) := u(Rz). Then

HS(Rd)} = C [Rd/zHUHLZ(Rd) —+ Rdﬂ_s\u

HUHLOO(Rd) = HURHLoo(Rd) <C [HURHLZ(Rd) + |ur Hs(Rd)] .

This estimate holds for every R > 0 with C' > 0 independent of R and u. Selecting

( || prs (may )1/
R=( —TE)
||u||L2(Rd)

d/(2s) 1-d/(2s 00
H/5 R4) H HL%I{éd ) Vv € CO (Rd)

produces

[ull oo ray < |u
From this estimate, the desired bound on 2 follows easily. =

Lemma D.2 Let K = R? and w = R x {0} be a hyperplane and s > 1/2. Then there
exists C > 0 (depending s) such that

1-1/(2

ol e B,

lull 2y < Cllull

Proof. A proof based on the Besov space leflz(K) can be found in [?, Thm. A.2]. An

“elementary” proof based on the continuity of the trace operator H*(K) — H*"'/?(w) can
be shown using the same techniques as in the proof of Lemma D.1—see [7, Exercise A.1] for
details. m
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Lemma D.3 Letd >3, K = R?% w =R42 x {0} x {0} be a hyperplane of co-dimension 2.
Let s > 1. Then

e Yu € H*(K).

s—1)/s
Il 22wy < Cllull o)l

Proof. The proof consists in iterating Lemma D.2. Let w = R%1x{0}. Applying Lemma D.2

with &' = s —1/2 > 1/2, we get in view of 1/(2¢') = 715 and 1 — 1/(2¢) = 2=¢

(25—2)/(2s—-1) 1/(2s—1)
lull ey < Cllull s> Vllull25,,,-

Applying again Lemma D.2 and the trace theorem we arrive at

1 25—

(1__)52 S 48
lull 2wy < Cllullpaggy = llu ?{f(KlH

25 1 .
H5(K)>

elementary manipulations of the exponents produce the desired form. m
Acknowledgments: We would like to thank Prof. R. Hiptmair for discussions concerning
the choice of the model problem.
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