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p-FEM quadrature error analysis on tetrahedra

T. Eibner1 and J.M. Melenk2

1 Technische Universität Chemnitz, teibner@mathematik.tu-chemnitz.de
2 Technische Universität Wien, melenk@tuwien.ac.at

1 Introduction

In the p-FEM and the closely related spectral method, the solution of an el-
liptic boundary value problems is approximated by piecewise (mapped) poly-
nomials of degree p on a fixed mesh T . In practice, the entries of the p-
FEM stiffness matrix cannot be evaluated exactly due to variable coefficients
and/or non-affine element maps and one has to resort to numerical quadrature
to obtain a fully discrete method. Computationally, choosing shape functions
that are related to the quadrature formula employed can significantly improve
the computational complexity. For example, for tensor product elements (i.e.,
quadrilaterals, hexahedra) choosing tensor product Gauss-Lobatto quadrature
with q+1 = p+1 points in each spatial direction and taking as shape functions
the Langrange interpolation polynomials (of degree p) in the Gauss-Lobatto
points effectively leads to a spectral method. The quadrature error analysis for
the p-FEM/spectral method is available even for this case of minimal quadra-
ture (see, e.g., [Mn90, MS98] and reference there). Key to the error analysis is
a one-dimensional discrete stability result for the Gauss-Lobatto quadrature
due to [CQ82] (corresponding to α = 0 in Lemma 2 below) that can readily
be extended to quadrilaterals/hexahedra by tensor product arguments.
In the present paper, we show an analog of the error analysis of the above
minimal quadrature for the p-FEM on tetrahedral meshes (the easier case of
triangles can be treated completely analogously). Quadrature on a tetrahedron
can be done by a mapping to a hexahedron via the Duffy transformation D
of (3). We show in Thm. 1 that for tensor product Gauss-Lobatto-Jacobi
quadrature formulas with q +1 = p+1 points in each direction, one again has
discrete stability for the fully discrete p-FEM. A complete quadrature error
analysis (Thm. 2, Cor. 1) then follows from Strang’s lemma and shows that
the convergence rates of the Galerkin p-FEM (where all integrals are evaluated
exactly) is retained by the fully discrete p-FEM. The present error analysis
complements the work [EM06] for the p-FEM on triangles/tetrahedra where
it is shown that by adapting the shape functions to the quadrature formula,
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the stiffness matrix can be set up in optimal complexity. However, we mention
that the approximation spaces employed in [EM06] are no longer the classical
spaces Sp,1(T ) of piecewise polynomials but the spaces Sp,1(T ) augmented by
bubble shape functions for each element, which makes the static condensation
more expensive.
To fix ideas, we consider

−∇ · (A(x)∇u) = f on Ω ⊂ R
3, u|∂Ω = 0, (1)

where A ∈ C(Ω, R3×3) is pointwise symmetric positive definite. We require A
and f to be analytic on Ω and the standard ellipticity condition

0 < λmin ≤ A(x) ≤ λmax, ∀x ∈ Ω.

2 Quadrature Error Analysis

Notation

The reference tetrahedron K̂ and the reference cube Q are defined as

K̂ = {(x, y, z) | − 1 < x, y, z ∧ x+ y + z < −1}, Q := (−1, 1)3. (2)

The Duffy transformation D : Q → K̂ is given by

D(η1, η2, η3) :=

(
(1 + η1)(1 − η2)(1 − η3)

4
− 1,

(1 + η2)(1 − η3)

2
− 1, η3

)
. (3)

Lemma 1. The Duffy transformation is a bijection between the (open) cube

Q and the (open) tetrahedron K̂. Additionally,

D′(η1, η2, η3) :=

[
∂ξi

∂ηj

]3

i,j=1

=




1
4 (1 − η2)(1 − η3) 0 0

− 1
4 (1 + η1)(1 − η3)

1
2 (1 − η3) 0

− 1
4 (1 + η1)(1 − η2) − 1

2 (1 + η2) 1




⊤

,

(D′(η1, η2, η3))
−1

=
1

(1 − η2)(1 − η3)




4 2(1 + η1) 2(1 + η1)
0 2(1 − η2) 1 − η2

2

0 0 (1 − η2)(1 − η3)


 ,

detD′ =

(
1 − η2

2

) (
1 − η3

2

)2

. (4)

Proof. See, for example, [KS99].

We employ standard notation by writing Pp(K̂) for the space of polynomi-

als of degree p on K̂, and by denoting Qp(Q) the tensor-product space of
polynomials of degree p in each variable, [Sch98]; additionally we set

Q̃p := {u ∈ Qp(Q) | ∂1u = ∂2u = ∂3u = 0 on η3 = 1 and ∂1u = 0 on η2 = 1}.
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Remark 1. The Duffy transformation D maps the face η3 = 1 to the point
(−1,−1, 1) and the face η2 = 1 to a line. An important property of Q̃p is that

u ∈ Pp(K̂) implies u ◦ D ∈ Q̃p.

2.1 Gauss-Lobatto-Jacobi quadrature

Gauss-Lobatto-Jacobi quadrature in 1D

For α > −1, n ∈ N, the Gauss-Lobatto-Jacobi quadrature formula is given by

GLJ(α,n)(f) :=
n∑

i=0

ω
(α,n)
i f(x

(α,n)
i ) ≈

∫ 1

−1

(1 − x)αf(x)dx; (5)

(see, e.g., [KS99, App. B]): the quadrature nodes x
(α,n)
i , i = 0, . . . , n, are

the zeros of the polynomial x 7→ (1 − x2)P
(α+1,1)
n (x), where P

(α,β)
n denotes

the Jacobi polynomial of degree n with respect to the weight function (1 −
x)α(1 + x)β . The quadrature weights ω

(α,n)
i , i = 0, . . . , n, are positive and

explicit formulas can be found, for example, in [KS99, App. B]. We have:

Lemma 2. Let Pn be the space of polynomials of degree n. Then for α > −1:

1. For all f ∈ P2n−1 there holds GLJ(α,n)(f) =
∫ 1

−1 f(x)(1 − x)αdx.
2. For all f ∈ Pn there holds

∫ 1

−1

f2(x)(1 − x)αdx ≤ GLJα,n(f2) ≤
(

2 +
α + 1

n

) ∫ 1

−1

f2(x)(1 − x)αdx.

Proof. The first assertion is well-known. The second assertion follows by the
same arguments as in the case α = 0, which can be found, for example, in
[CQ82] or [BM92, Cor. 1.13].

Gauss-Lobatto-Jacobi quadrature on K̂

Using the change of variables formula
∫

bK
gdx =

∫
Q

(g ◦ D)| det D′|dx, we can
introduce a quadrature formulas such that

GLJQ,n(f) ≈
∫

Q

f(η)| det D′(η)|dη, GLJK̂,n(g) ≈
∫

K̂

g(ξ) dξ

by setting

GLJQ,n(f) := 1/8

n∑

i1,i2,i3=0

ω
(0,n)
i1

ω
(1,n)
i2

ω
(2,n)
i3

f
(
x

(0,n)
i1

, x
(1,n)
i2

, x
(2,n)
i3

)
, (6)

GLJ bK,n(g) := GLJQ,n(g ◦ D). (7)

Using standard tensor product arguments one can deduce from the properties
of the quadrature rules GLJα,n and the formula (4) the following result:
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Lemma 3. Let 1 ≤ p ≤ q and let û ∈ Qp(Q), v̂ ∈ Q2q−1(Q). Set u :=
û ◦ D−1, v := v̂ ◦ D−1. Then the equalities GLJQ,q(v̂) =

∫
Q

v̂| det D′|dΩ and

GLJ bK,q(v) =
∫

K̂
vdΩ are true and, for C := (2+1/p)(2+2/p)(2+3/p) ≤ 60,

∫

Q

|û|2| detD′|dΩ ≤ GLJQ,q(û
2) ≤ C

∫

Q

|û|2| det D′|dΩ,

‖u‖2
L2( bK)

≤ GLJK̂,q(u
2) ≤ C‖u‖2

L2(K̂)
.

2.2 Discrete Stability

The following discrete stability result is the heart of the quadrature error
analysis; its proof is deferred to Section 3.

Theorem 1. Let A ∈ C(K̂, R3×3) be pointwise symmetric positive definite,

c ∈ C(K̂). Assume the existence of λmin, λmax, cmin > 0 with

λmin ≤ A(x) ≤ λmax, cmin ≤ c(x)∀x ∈ K̂.

Then for q ≥ p there holds for all u ∈ {u |u ◦ D ∈ Q̃p}

GLJ bK,q(∇u · A∇u) ≥ λmin

10404
‖∇u‖2

L2( bK)
≥ λmin

10404λmax

∫

bK,q

∇u · A∇udΩ, (8)

GLJ bK,q(cu
2) ≥ cmin‖u‖2

L2( bK)
. (9)

2.3 Convergence Analysis of Fully Discrete p-FEM

For the model problem (1) and given mesh T consisting of (curvilinear) tetra-

hedra with element maps FK : K̂ → K, we define the discrete bilinear form
aq and right-hand side F q by

aq(u, v) :=
∑

K∈T

GLJK̂,q (((∇u · A∇v)|K ◦ FK)| det F ′
K |) ,

F q(u) :=
∑

K∈T

GLJK̂,q (((fu)|K ◦ FK)| detF ′
K |) .

We let Sp,1
0 (T ) := {u ∈ H1

0 (Ω) |u|K ◦ FK ∈ Pp(K̂) ∀K ∈ T } and consider
finite dimensional spaces VN satisfying

Sp,1
0 (T ) ⊂ VN ⊂ S̃p,1

0 (T ) := {u ∈ H1
0 (Ω) |u|K◦FK◦D ∈ Q̃p ∀K ∈ T }. (10)

Remark 2. By Remark 1, choosing VN = Sp,1
0 (T ) is admissible. Taking VN

larger than Sp,1
0 (T ) permits adapting the shape functions to the quadrature

points and permits efficient ways to generate the stiffness matrix, [EM06].
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The fully discrete problem is then:

Find uN ∈ VN s.t. aq(uN , v) = F q(v) ∀v ∈ VN . (11)

The discrete stability result Theorem 1 for a single element is readily extended
to meshes with several elements and existence and uniqueness of solutions to
(11) follows. An application of Strang’s Lemma then gives error estimates:

Theorem 2. Let the mesh T be fixed and the element maps FK be analytic

on K̂. Assume (10) and q ≥ p. Let u solve (1) and uN solve (11). Then there
exist C, b > 0 depending only on Ω, the analytic data A, f of (1), and the
analytic element maps FK such that

‖u − uN‖H1(Ω) ≤ C

(
inf

v∈Sr
0
(T )

‖u − v‖H1(Ω) + Cr3e−b(2q+p−r)

)

for arbitrary 1 ≤ r ≤ min{p, 2(q − 1) − p}.

Proof. The proof follows along the lines of [MS98, Secs. 4.2, 4.3]: Thm. 1
enables us to use a Strang lemma, and the resulting consistency terms can be
made exponentially small by the analyticity of A, f , and the FK .

Remark 3. It is worth stressing that analyticity of ∂Ω is not required in
Thm. 2—only analyticity of the element maps is necessary. Hence, also piece-
wise analytic geometries are covered by Thm. 2. The requirement that A, f
be analytic can be relaxed to the condition that A|K , f |K be analytic on K
for all elements.

We note that choosing r = ⌊p/2⌋ in Thm. 2 implies that the rate of conver-
gence of the fully discrete p-FEM is typically the same as the Galerkin p-FEM
in which all quadratures are performed exactly:

Corollary 1. Assume the hypotheses of Theorem 2. Then:

1. If infv∈Sp,1

0
(T ) ‖u − v‖H1(Ω) = O(p−α), then ‖u − uN‖H1(Ω) = O(p−α).

2. If infv∈Sp,1

0
(T ) ‖u − v‖H1(Ω) = O(e−bp) for some b > 0, then there exists

b′ > 0 such that ‖u − uN‖H1(Ω) = O(e−b′p).

3 Proof of Theorem 1

The heart of the proof of Theorem 1 consists in the assertion that for the Duffy
transformation D, the matrix (D′)−1(D′)−⊤ is equivalent to its diagonal. To
that end, we recall for square matrices A, B ∈ R

n×n the standard notation
A ≤ B which expresses v⊤Av ≤ v⊤Bv for all v ∈ R

n. We have:
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Lemma 4. Let E(η) := (D′−1D′−⊤)(η) and denote by diag E(η) ∈ R
3×3 the

diagonal of E(η). Then

1

3468
diag E(η) ≤ E(η) ≤ 3 diag E(η) ∀η ∈ Q. (12)

Proof. One easily shows for any invertible matrix G ∈ R
n×n

B ≤ A ⇐⇒ G⊤BG ≤ G⊤AG. (13)

In order to prove (12), we define the diagonal matrix

B(η) := diag [(1 − η2)(1 − η3), (1 − η3), 1]

and in view of (13) we are led to showing

1

3468
(B⊤(diag E)B)(η) ≤ (B⊤EB)(η) ≤ 3(B⊤(diag E)B)(η) ∀η ∈ Q.

(14)
Explicitly computing

(B⊤EB)(η) =




8(1 + η1)

2 + 16 (1 + η1){4 + 2(1 + η2)} 2(1 + η1)
sym. 4 + (1 + η2)

2 (1 + η2)
sym. sym. 1





and applying the three estimates

2(1 + η1){4 + 2(1 + η2)}v1v2 ≤ 8(1 + η1)
2v2

1 + [4 + (1 + η2)
2]v2

2 ,

4(1 + η1)v1v3 ≤ 4(1 + η1)
2v2

1 + v2
3 , 2(1 + η2)v2v3 ≤ (1 + η2)

2v2
2 + v2

3

for all η ∈ Q, v1, v2, v3 ∈ R, we conclude for any vector v = (v1, v2, v3)
⊤ ∈ R

3

v⊤(B⊤EB)(η)v ≤ v⊤ diag
[
20(1 + η1)

2 + 16, 8 + 3(1 + η2)
2, 3

]
v.

In view of (B⊤(diag E)B)(η) = diag
[
8(1 + η1)

2 + 16, 4 + (1 + η2)
2, 1

]
we ar-

rive at (B⊤EB)(η) ≤ 3(B⊤(diag E)B)(η). In order to prove the lower bound
of (14) we observe that (B⊤EB)(η) is symmetric positive definite for all η ∈ Q;
denoting by 0 < λ1 ≤ λ2 ≤ λ3 the three eigenvalues of (B⊤EB)(η), we con-
clude from the Gershgorin circle theorem 0 < λ1 ≤ λ2 ≤ λ3 ≤ 68 for all
η ∈ Q. Moreover, a direct calculation shows det(B⊤EB)(η) = 64. Thus,
λ1 ≥ det(B⊤EB)/λ2

2 ≥ 4/289 for all η ∈ Q. Hence for all η ∈ Q

(B⊤EB)(η) ≥ 4

289
I ≥ 4

289
diag

[
8(1 + η1)

2 + 16

48
,
4 + (1 + η2)

2

8
, 1

]

≥ 1

3468
(B⊤(diag E)B)(η).
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Proof of Theorem 1. We will only show (8) as (9) follows easily from Lemma 3.

Let u be such that û := u◦D ∈ Q̃p. In view of the positivity of the quadrature

weights and Lemma 4 we get for Ẽ := diag((D′)−1(D′)−⊤)

GLJ bK,q(∇u · A∇u) ≥ λmin GLJ bK,q(|∇u|2)

= λmin GLJQ,q(∇û · (D′)−1(D′)−⊤∇û) ≥ λmin

3468
GLJQ,q(∇û · Ẽ∇û).

A calculation reveals Ẽ =
(
E(1)

)2
+

(
E(2)

)2
if we introduce

E(1) := diag

{ √
8(1 + η1)

(1 − η2)(1 − η3)
,
1 + η2

1 − η3
, 1

}
,

E(2) := diag

{
4

(1 − η2)(1 − η3)
,

2

1 − η3
, 0

}

The assumption û ∈ Q̃p implies that the components of E(1)∇û and E(2)∇û
are in Qp(Q); hence, from Lemma 3

GLJQ,q(∇û · Ẽ∇û) = GLJQ,q(|E(1)∇û|2) + GLJQ,q(|E(2)∇û|2)

≥
∫

Q

|E(1)∇û|2| detD′|dΩ +

∫

Q

|E(2)∇û|2| detD′|dΩ

=

∫

Q

(∇û)⊤Ẽ∇û | detD′|dΩ

≥ 1

3

∫

Q

(∇û)⊤(D′)−1(D′)−⊤∇û | detD′|dΩ =
1

3

∫

bK

|∇u|2dΩ,

where we also appealed to Lemma 4. Collecting our findings, we arrive at

GLJ bK,q(∇u ·A∇u) ≥ λmin

3468

1

3
‖∇u‖2

L2( bK)
≥ λmin

10404λmax

∫

bK

∇u ·A∇udΩ.

4 Numerical example

Cor. 1 states that the fully discrete p-FEM converges at the same rate as a
Galerkin p-FEM where all integrals are evaluated exactly. We illustrate this
behavior for the following example:

−∇ · (A∇u) = 1 on Ω := K̂ and u = 0 on ∂Ω, (15)

A(x1, x2, x3) := diag

[
1

r2 + 1
, exp

(
r2

)
, cos

(
1

r2 + 1

)]
, (16)

where r2 = x2
1 + x2

2 + x2
3. We base the p-FEM on a single element on two

different sets of shape functions: ΦKS is the set of shape functions proposed
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by Karniadakis & Sherwin [KS99] and spans Pp(K̂)∩H1
0 (K̂); the set ΦLag is,

roughly, speaking, the set of Langrange interpolation points in the quadrature
points (on Q); it spans a space that contains Pp(K̂) ∩ H1

0 (K̂) and we refer
to [EM06] for details. In both cases the stiffness matrix is set up using the
minimal quadrature, i.e., q = p. Fig. 1 shows the relative energy norm error

(Eexact−aq(uN ,uN )
Eexact

)1/2 for both cases, where Eexact =
∫

Ω
∇u ·A∇dΩ. To illus-

trate that the optimal rate of convergence is not affected by the quadrature,
we include in Fig. 1 a calculation (based on ΦKS) that corresponds to (15)
with A = I; in this case the linear system of equations can be set up without
quadrature errors. We observe indeed that the rate of convergence is the same
as in the case of quadrature.

We close by pointing out that

4 5 6 7 8 9 10 20 25
10

−4

10
−3

10
−2

10
−1

10
0

re
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er
ro
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ne

rg
y 

no
rm

polynomial degree p

 

 

A=diag[...], ΦKS

A=diag[...], ΦLag

A = I, exact quadr., ΦKS

Fig. 1. rel. energy norm error

the shape functions in ΦLag

are adapted to the quadra-
ture rule. While the num-
ber of functions in ΦLag is
(asymptotically for large p)
6 times that of ΦKS , set-
ting up the stiffness matrix
is not slower than setting up
the stiffness matrix based on
ΦKS . We refer to [EM06] for
a detailed study.
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