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QUASI-OPTIMAL CONVERGENCE RATES FOR ADAPTIVE

BOUNDARY ELEMENT METHODS WITH DATA APPROXIMATION,

PART I: WEAKLY-SINGULAR INTEGRAL EQUATION

M. FEISCHL, T. FÜHRER, M. KARKULIK, J. M. MELENK, AND D. PRAETORIUS

Abstract. We analyze an adaptive boundary element method for Symm’s integral
equation in 2D and 3D which incorporates the approximation of the Dirichlet data g

into the adaptive scheme. We prove quasi-optimal convergence rates for any H1/2-stable
projection used for data approximation.

1. Introduction & Outline

Data approximation is ubiquituous in numerical algorithms, and reliable, adaptive nu-
merical schemes have to properly account for it. In this direction, the present work proves
quasi-optimal convergence rates for an adaptive boundary element method (ABEM) that
includes data errors. As a model problem, we study Symm’s integral equation

V φ = (1/2 +K)g on Γ := ∂Ω (1)

for given boundary data g ∈ H1/2(Γ) and a bounded Lipschitz domain Ω ⊂ Rd for d = 2,
3. The goal is to prove convergence and quasi-optimality of some standard adaptive
algorithm of the type

solve → estimate → mark → refine

steered by a residual-based error estimator plus data approximation terms. A focus of our
analysis will be on the fact that the data g is not given exactly but approximated as part
of the algorithm. Our theory covers several of commonly used techniques to approximate
g.

In the framework of h-adaptive finite element methods (AFEM) for second order el-
liptic PDEs, algorithms of this type have been studied in several works, and convergence
with quasi-optimal algebraic rates can be proven (see e.g. [BDD04, CKNS08, Dör96,
FFP12, Ste07] and the references therein). Naturally, one is interested in the very same
questions like convergence of the approximations and convergence rates also for ABEM.
The recent works [FKMP13] and [Tso13] lay out the path for proving quasi-optimal con-
vergence rates of ABEM with respect to the error estimator, or even for the energy
error [AFF+14]. However, the above mentioned works [AFF+14, FKMP13, Tso13] are re-
stricted to lowest-order discretizations and, more importantly, do not deal explicitly with
data approximation. The present paper raises ABEM to the same level of mathematical
understanding as AFEM already is. More precisely, the improvements over the state of
the art are fourfold and read as follows:

First, in contrast to the FEM, the right-hand sides in BEM typically involve boundary
integral operators, which cannot be evaluated exactly in practice. Thus, the analysis of
data error is mandatory. To compute the right-hand side term (1/2 + K)g numerically
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in our model problem (1), we follow the earlier works [AFLG+12, KOP13] and replace
the exact data g by an approximate, piecewise polynomial data Gℓ. Our approach thus
decouples the problem of integrating the singular kernel of the integral operator K from
integrating the possibly singular data g to compute Kg. On their own, both problems are
well understood and can be solved with standard methods. Moreover, in 2D (see [Mai01])
one can even find analytic formulas to compute the term KGℓ exactly. For d = 3, there
also exist black-box quadrature algorithms to compute KGℓ (see, e.g., [SS11]).

Second, in contrast to [FKMP13, Tso13], where only lowest-order BEM is considered,
the present analysis works for arbitrary, but fixed-order discretizations.

Third, we provide an improved analysis for the optimality of the Dörfler marking.
This eliminates the efficiency constant in the estimates (even the weak efficiency used
in [FKMP13] is not needed) and in contrast to e.g. [CKNS08, FKMP13, Tso13] no lower
error bound of any kind is involved.

Finally, to deal with several non-local data approximation terms, we introduce a modi-
fied mesh size function. This may be of independent interest in the context of AFEM and
ABEM since it is pointwise equivalent to the usual mesh size function, but contractive
not only on the refined elements, but also on an arbitrary but fixed number of element
layers around them.

An overall advantage of the presented approach is that the possible implementation only
has to deal with operator matrices of the discrete integral operators. This is advantageous
in terms of fast boundary element methods as e.g. H-matrices. Consequently, adaptive
approximation of the Dirichlet data g seems to be the natural next step to the final goal
of a fast, fully discrete, and black-box ABEM algorithm.

Several other works deal with data approximations for adaptive BEM. However, they
focus on convergence of the error estimator instead of proving quasi-optimal algebraic
convergence rates. In the 2D case, [AFLG+12] proves estimator convergence of ABEM
for the Laplace problem with mixed boundary conditions. The algorithm is steered by
an (h − h/2)-based error estimator and also approximates the given data adaptively
by nodal interpolation. The work [KOP13] uses the L2-projection to prove estimator
convergence of ABEM with data approximation in 3D. Both works do not guarantee
any convergence rate of the estimator, and convergence of the error can only by proved
under the saturation assumption, which is widely believed to hold true in practice, but
still remains mathematically open for BEM (see [AFF+14] for the proof of a weaker form
of this assumption). In contrast to this, the present approach with residual-based error
estimator guarantees convergence even with optimal rates. In particular, we prove that
the optimal convergence is independent of the chosen data approximation operator.

The remainder of this work is organized as follows: We present the model problem
as well as the adaptive algorithm for data approximation by means of the Scott-Zhang
projection for d = 2, 3 or nodal interpolation for d = 2 in Section 2. In Section 3, we
develop some crucial tools which are used to prove convergence of the adaptive scheme
in Section 4 and quasi-optimality in Section 5. Bootstrapping the foregoing results, we
are able to prove quasi-optimal convergence of a slightly modified algorithm in Section 6
for each H1/2-stable projection Pℓ used for data approximation, i.e. Gℓ = Pℓg. Finally,
Section 7 presents a numerical experiment which underlines the results of the work.

Throughout the work, the symbol . abbreviates ≤ up to a multiplicative constant,
and ≃ means that both estimates . and & hold. Finally, #M denotes the cardinality of
a finite set M.
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2. Model Problem & Adaptive Algorithm

2.1. Model problem. We consider Symm’s integral equation (1) where Γ := ∂Ω is the
boundary of a polygonal resp. polyhedral Lipschitz domain Ω ⊂ Rd, d = 2, 3. For d = 2,
we ensure diam(Ω) < 1 by scaling of the domain to guarantee the ellipticity of the simple-
layer operator V (see (3) below). With n(x) ∈ Rd denoting the exterior normal unit field
at x ∈ Γ and the fundamental solution of the Laplacian

G(z) :=





− 1
2π

log |z| d = 2
1

4π
|z|−1 d = 3

for all z ∈ Rd \ {0}, (2)

the simple-layer operator V and the double-layer operator K formally read

(V φ)(x) :=
∫

Γ
G(x− y)φ(y) dy and (Kg)(x) := p.v.

∫

Γ
∂n(y)G(x− y)g(y) dy (3)

for all x ∈ Γ. Here, p.v.
∫

Γ denotes Cauchy’s principal value. Then, (1) is an equivalent
formulation of the Dirichlet problem

−∆u = 0 in Ω,

u = g on Γ
(4)

in the following sense [McL00]: The normal derivative φ = ∂nu ∈ H−1/2(Γ) of the solution
u ∈ H1(Ω) of (4) solves (1) (Note that ∂nu ∈ H−1/2(Γ) is well-defined, since ∆u ∈ L2(Γ)).
Conversely, with φ ∈ H−1/2(Γ) being a solution of (1), the representation formula

u = V φ−Kg ∈ H1(Ω)

gives the solution of (4), where the operators V and K are now evaluated in Ω instead
of Γ.

2.2. Variational form and unique solvability. The operator V : H−1/2(Γ) → H1/2(Γ)
is an elliptic and symmetric isomorphism (see e.g. the monographs [HW08, McL00, SS11]).
It thus provides a scalar product defined by 〈〈φ , ψ〉〉 := 〈V φ , ψ〉L2(Γ). This scalar product

induces an equivalent norm on H−1/2(Γ), which will be denoted by |||ψ||| := 〈〈ψ , ψ〉〉1/2.
For some Γ-dependent constant Cnorm > 0, it thus holds

C−1
norm|||ψ||| ≤ ‖ψ‖H−1/2(Γ) ≤ Cnorm|||ψ||| for all ψ ∈ H−1/2(Γ). (5)

With this, we may state (1) equivalently as

〈〈φ , ψ〉〉 = 〈(K + 1
2
)g , ψ〉 for all ψ ∈ H−1/2(Γ). (6)

The fact that 〈〈· , ·〉〉 is a scalar product allows us to apply the Lax-Milgram lemma
and hence guarantees existence and uniqueness of the solution φ ∈ H−1/2(Γ) of (1).
Whereas g ∈ H1/2(Γ) is sufficient to guarantee the solvability of (1), even without data
approximation, it is necessary to require g ∈ H1(Γ) to formulate the weighted residual
error estimator ηℓ. In the present case (see Section 2.5 below), we make also use of the
fact that we approximate an H1(Γ) function.

2.3. Sobolev spaces and mapping properties. Consider the Hilbert space

H1(Ω) :=
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d

}
,

equipped with the norm ‖v‖2
H1(Ω) := ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω). We define the trace v|Γ of a

function v ∈ H1(Ω) by continuous extension of the classical trace for smooth functions.
This permits the definition of
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• the trace space

H1/2(Γ) :=
{
v ∈ L2(Γ) : exists w ∈ H1(Ω) with v = w|Γ

}

associated with the norm ‖v‖H1/2(Γ) := inf
{
‖w‖H1(Ω) : v = w|Γ for w ∈ H1(Ω)

}

and
• its dual space

H−1/2(Γ) := H1/2(Γ)∗.

We revisit the integral operators from (3) and continuously extend them to the following
boundary integral operators:

V : H−1/2(Γ) → H1/2(Γ),

K : H1/2(Γ) → H1/2(Γ).

According to [McL00, Chapter 7] there holds also well-posedness and continuity of

V : H−1/2+s(Γ) → H1/2+s(Γ),

K : H1/2+s(Γ) → H1/2+s(Γ).

for all |s| ≤ 1/2.

2.4. Discretization. Let Tℓ denote a regular triangulation of Γ into compact and flat
boundary simplices T ∈ Tℓ with Euclidean diameter diam(T ) and surface area |T |. Note
that diam(T ) = |T | for d = 2. For d = 3, we restrict to γ-shape regular meshes, i.e.

γ−1 diam(T ) ≤ |T |1/2 ≤ γ diam(T ) for all T ∈ Tℓ (7)

for a fixed constant γ ≥ 1. For d = 2, γ-shape regularity is understood in the sense of

max
{

diam(T )/diam(T ′) : T, T ′ ∈ Tℓ and T ∩ T ′ 6= ∅
}

≤ γ. (8)

Note that this assumption does not exclude strongly adapted meshes.
Given a mesh Tℓ and p ∈ N ∪ {0}, we define the space

Pp(Tℓ) :=
{
Ψℓ ∈ L2(Γ) : Ψℓ|T is a polynomial of degree at most p on each T ∈ Tℓ

}

of piecewise polynomials of degree p as well as the space

Sp+1(Tℓ) :=
{
Vℓ ∈ C(Γ) : Vℓ|T is a polynomial of degree at most p + 1 on each T ∈ Tℓ

}

of continuous spline functions of degree p + 1. Note that there holds Pp(Tℓ) ⊂ H−1/2(Γ)
and Sp+1(Tℓ) ⊂ H1(Γ).

Moreover, we need generalized patches of subsets Eℓ ⊆ Tℓ. We define the k-patch
ωk

ℓ (Eℓ) ⊆ Tℓ inductively by

k = 1 : ωℓ(Eℓ) := ω1
ℓ (Eℓ) :=

{
T ∈ Tℓ : T ∩ T ′ 6= ∅ for some T ′ ∈ Eℓ

}
,

k > 1 : ωk
ℓ (Eℓ) := ωℓ(ω

k−1
ℓ (Eℓ)).

Note that due to γ-shape regularity, there holds #Eℓ ≃ #ωk
ℓ (Eℓ), where the hidden

constant depends only on γ > 0 and k ∈ N, but not on Eℓ or Tℓ. Finally, for Eℓ ⊆ Tℓ, we
write

⋃ Eℓ :=
⋃

T ∈Eℓ
T ⊆ Γ.
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2.5. Data approximation. To compute the right-hand side (1/2 +K)g in the Galerkin
scheme, we replace the exact Dirichlet data g by an approximation Gℓ ∈ Sp+1(Tℓ). It
remains to control the error introduced in this way. To that end, we define the auxiliary
solution φℓ ∈ L2(Γ) ⊂ H−1/2(Γ)

V φℓ = (1/2 +K)Gℓ. (9)

The regularity of the solution φℓ is a consequence of Gℓ ∈ H1(Γ) and the mapping
properties of V −1 : H1(Γ) → L2(Γ) and K : H1(Γ) → H1(Γ).

The problem we actually solve on the discrete level reads: Find Φℓ ∈ Pp(Tℓ) such that

〈〈Φℓ , Ψℓ〉〉 = 〈(1/2 +K)Gℓ , Ψℓ〉L2(Γ) (10)

for all Ψℓ ∈ Pp(Tℓ). As for the continuous problem, the Lax-Milgram lemma applies and
proves the unique solvability of (10). In Sections 3–5, we analyze data approximation by
means of the Scott-Zhang projection Jℓ : L2(Γ) → Sp+1(Tℓ), i.e.,

Gℓ := Jℓg.

The mapping property Jℓ : L2(Γ) → Sp+1(Tℓ) deserves a comment. The original con-
struction of [SZ90] is defined on H1(Γ) so as to be able to conserve boundary conditions.
However, since we are not interested in conservation of boundary data (Γ has no bound-
ary), we may define the Scott-Zhang projection for a mesh Tℓ in an element-based way
on L2(Γ). We briefly sketch the construction. We choose a nodal basis of Sp+1(Tℓ) with
basis functions ξz associated with the Lagrangian nodes z ∈ Nℓ of Tℓ (i.e. ξz(z

′) = δzz′ for
all z, z′ ∈ Nℓ and Kronecker’s delta δzz′ ∈ {0, 1}). Note that supp(ξz) ⊆ ωℓ(Tz) for some
arbitrary, but fixed element Tz ∈ Tℓ with z ∈ Tz. Let ζz ∈ Pp+1(Tz) denote the L2-dual
basis function with respect to ξz|Tz , i.e.

∫
Tz
ξz′ζz dx = δzz′ for all z, z′ ∈ Nℓ. Then, Jℓ is

defined as

Jℓg :=
∑

z∈Nℓ

( ∫

Tz

gζz dx
)
ξz,

Obviously, g ∈ L2(Γ) is sufficient to define Jℓg, and the results of [SZ90] hold accordingly.
Data approximation via other H1/2-stable projections such as the L2-orthogonal pro-

jection (for H1-stability see [KPP13]) or the nodal interpolation for d = 2 is analyzed in
Section 6.

2.6. Mesh refinement. For local mesh refinement, we use the bisection algorithm from [AFF+14]
for d = 2 and newest vertex bisection, see e.g. [Ver96, Chapter 4], for d = 3. For a set of
marked elements Mℓ ⊆ Tℓ, we denote by T⋆ = refine(Tℓ,Mℓ) the coarsest refinement
(with respect to the above mentioned bisection algorithms), where at least all elements
T ∈ Mℓ are refined. To ensure uniform γ-shape regularity (7) resp. (8), further refine-
ments are made so that Mℓ ⊆ Tℓ \ T⋆. We write T⋆ ∈ refine(Tℓ) if there exists a finite
sequence of meshes Tℓ,0 = Tℓ, Tℓ,1, . . . , Tℓ,N = T⋆ and sets of marked elements Mℓ,j ⊂ Tℓ,j

for j = 0, . . . , N − 1 such that Tℓ,j+1 := refine(Tℓ,j,Mℓ,j) for all j = 0, . . . , N − 1. The
set of all meshes which can be obtained by refinement of the initial mesh T0 is denoted
by

T := {T ∈ refine(T0)}. (11)

We emphasize the following two crucial properties: First, the number of additional re-
finements which ensure regularity and γ-shape regularity, does not dominate the number
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of marked elements. More precisely, for Tℓ = refine(T0) with Tj+1 = refine(Tj ,Mj)
and Mj ⊆ Tj for j = 0, . . . , ℓ− 1, it holds that

#Tℓ − #T0 ≤ C1

ℓ−1∑

j=0

#Mj, (12)

where C1 > 0 depends only on T0. Furthermore, for two meshes T⋆, Tℓ ∈ T, there exists
a coarsest common refinement T⋆ ⊕ Tℓ ∈ refine(Tℓ) ∩ refine(T⋆) such that

#(T⋆ ⊕ Tℓ) ≤ #T⋆ + #Tℓ − #T0. (13)

Both properties (12) and (13) are proved for d ≥ 2. The overlay estimate (13) was first
proved for d = 2 in [Ste07] and then for d ≥ 2 in [CKNS08]. For newest vertex bisection,
the first proofs of (12) go back to [BDD04] for d = 2 and later [Ste08] for d ≥ 2. Their
proofs rely on a certain condition on the labelling of the reference edges in the initial
mesh T0. For two-dimensional meshes, i.e. d = 3, the recent work [KPP13] proved that
this particular condition is not necessary and can be dropped. The bisection algorithm
for d = 2 is analysed in [AFF+14] for d = 2. Moreover, uniform γ-shape regularity (7)
resp. (8) holds for all meshes Tℓ ∈ T with a constant γ > 0 which depends only on the
initial mesh T0.

2.7. Error estimator. For error estimation, we employ the weighted residual error esti-
mator ηℓ which dates back to the seminal works [CS95, CS95, Car97] for 2D was extended
to 3D in [CMS01]. Given a mesh Tℓ as well as a solution Φℓ of (10), the local contributions
read

η2
ℓ (T ) := |T |1/(d−1)‖∇(V Φℓ − (1/2 +K)Gℓ)‖2

L2(T ) for all T ∈ Tℓ. (14)

Here, ∇ denotes the surface gradient on Γ in the 3D case. For 2D, ∇ reduces to the
arc-length derivative along Γ. For any subset Eℓ ⊆ Tℓ, we write

η2
ℓ (Eℓ) :=

∑

T ∈Eℓ

η2
ℓ (T ).

The global error estimator then reads

ηℓ := ηℓ(Tℓ) = ‖h1/2
ℓ ∇(V Φℓ − (1/2 +K)Gℓ)‖L2(Γ),

where hℓ ∈ L∞(Γ) with hℓ|T := |T |1/(d−1) for d = 2, 3 denotes the local mesh width
function.

To control the error of the data approximation, we introduce the so called data oscil-
lation term

osc2
ℓ(T ) := |T |1/(d−1)‖(1 − Πℓ)∇g‖2

L2(T ) for all T ∈ Tℓ, (15)

where Πℓ : L2(Γ) → Pp(Tℓ) denotes the L2-orthogonal projection onto Pp(Tℓ). For p = 0,
this is just the piecewise integral mean. To abbreviate notation, we write osc2

ℓ(Eℓ) =∑
T ∈Eℓ

osc2
ℓ(T ) for all subsets Eℓ ⊆ Tℓ and the global oscillation term is defined as oscℓ =

oscℓ(Tℓ).
The error estimator and the oscillation term are combined to

ρ2
ℓ(T ) := η2

ℓ (T ) + osc2
ℓ(T ) for all T ∈ Tℓ.

Again, we write ρ2
ℓ(Eℓ) :=

∑
T ∈Eℓ

ρ2
ℓ(T ) for each subset Eℓ ⊆ Tℓ and ρ2

ℓ = η2
ℓ + osc2

ℓ .
6



2.8. The adaptive algorithm. Now, we are able to state the adaptive algorithm which
will be proved to converge even with optimal rate.

Algorithm 1. Input: initial mesh T0, adaptivity parameter 0 < θ < 1. Set ℓ := 0

(i) Compute approximate data Gℓ = Jℓg by use of the Scott-Zhang projection.
(ii) Compute solution Φℓ of (10).
(iii) Compute error estimator ρℓ(T ) for all T ∈ Tℓ.
(iv) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal cardinality which

satisfies combined Dörfler marking

θρ2
ℓ ≤ ρ2

ℓ(Mℓ). (16)

(v) Refine at least the marked elements to obtain Tℓ+1 = refine(Tℓ,Mℓ).
(vi) Increment ℓ 7→ ℓ+ 1 and goto (i).

Output: sequence of error estimators (ρℓ)ℓ∈N and sequence of Galerkin solutions (Φℓ)ℓ∈N.

Remark. To achieve the minimal cardinality of the set Mℓ in step (iv), one usually
sorts the quantities ρ2

ℓ(Tj) in descending order ρℓ(T1) ≥ ρℓ(T2) ≥ . . . and defines Mℓ :=
{T1, . . . , Tj} for the minimal number j ∈ N such that (16) is satisfied. In general, the set
Mℓ may not be unique. �

3. Preliminaries

This section states some facts which are used throughout the work. First, we shall
need certain inverse estimates.

Proposition 2. Let Tℓ ∈ T. Then, there exists a constant Cinv > 0 such that for all
ψ ∈ L2(Γ) and v ∈ H1(Γ), it holds

C−1
inv‖h1/2

ℓ ∇V ψ‖L2(Γ) ≤ |||ψ||| + ‖h1/2
ℓ ψ‖L2(Γ), (17)

C−1
inv‖h1/2

ℓ ∇(1/2 +K)v‖L2(Γ) ≤ ‖v‖H1/2(Γ) + ‖h1/2
ℓ ∇v‖L2(Γ). (18)

Particularly, for all Ψℓ ∈ Pp(Tℓ) and Wℓ ∈ Sp+1(Tℓ), it holds that

‖h1/2
ℓ Ψℓ‖L2(Γ) + ‖h1/2

ℓ ∇VΨℓ‖L2(Γ) ≤ Cinv|||Ψℓ|||, (19)

‖h1/2
ℓ ∇Wℓ‖L2(Γ) + ‖h1/2

ℓ ∇(1/2 +K)Wℓ‖L2(Γ) ≤ Cinv‖Wℓ‖H1/2(Γ). (20)

The constant Cinv > 0 depends only on T0 and p ≥ 0.

Proof. The estimates (17) and (18) are proved in [AFF+12, Theorem 1] resp. [Kar, Sec-
tion 4.2]. The estimates (19) and (20) follow directly by employing the inverse estimates

from [GHS05, Theorem 3.6] for ||| · ||| ≃ ‖ · ‖H−1/2(Γ) & ‖h1/2
ℓ (·)‖L2(Γ), and from [CP07,

Corollary 3.2] for ‖ · ‖H1/2(Γ) & ‖h1/2
ℓ ∇(·)‖L2(Γ). �

The following lemma states some properties of the Scott-Zhang projection.

Lemma 3. Let Tℓ ∈ T and g ∈ H1(Γ). For Γ denoting a (d− 1)-dimensional manifold,
the Scott-Zhang projection Jℓ : L2(Γ) → Sp+1(Tℓ) satisfies

‖h1/2
ℓ ∇(1 − Jℓ)g‖L2(Γ) + ‖(1 − Jℓ)g‖H1/2(Γ) ≤ Coscoscℓ. (21)

Furthermore, for all refinements T⋆ ∈ refine(Tℓ), there holds the discrete local upper
bound

‖(J⋆ − Jℓ)g‖H1/2(Γ) ≤ Cosc oscℓ(ω
5
ℓ (Tℓ \ T⋆)) (22)

for all ℓ ∈ N. The constant Cosc > 0 depends only on T0 and p ≥ 0.
7



Proof. The estimate (21) is a combination of [KOP13, Theorem 3] and [AFK+13, Propo-
sition 8], and the discrete upper bound (22) is proved in [AFK+13, Proposition 21]. �

Now, we take a closer look at the error estimator ρℓ.

Proposition 4. The error estimator ρℓ satisfies

(E1) Stability on non-refined elements: There exists a constant Cstab > 0 such that

C−1
stab

∣∣∣ρ⋆(T⋆ ∩ Tℓ) − ρℓ(T⋆ ∩ Tℓ)
∣∣∣ ≤ |||Φ⋆ − Φℓ||| + ‖G⋆ −Gℓ‖H1/2(Γ)

for all meshes Tℓ, T⋆ ∈ T.
(E2) Reduction property on refined elements: There exist constants 0 < qred < 1 and

Cred > 0 such that

ρ2
⋆(T⋆ \ Tℓ) ≤ qredρ

2
ℓ(Tℓ \ T⋆) + Cred

(
|||Φ⋆ − Φℓ|||2 + ‖G⋆ −Gℓ‖2

H1/2(Γ)

)

for all meshes T⋆ ∈ refine(Tℓ) with Tℓ ∈ T.
(E3) Reliability: There exists Crel > 0 such that

|||φ− Φℓ||| ≤ Crelρℓ

for all meshes Tℓ ∈ T.
(E4) Discrete local reliability: There exists a constant Cdlr > 0 such that

|||Φ⋆ − Φℓ||| ≤ Cdlrρℓ(Rℓ), (23)

for all meshes Tℓ ∈ T and refinements T⋆ ∈ refine(Tℓ) with corresponding
Galerkin solution Φ⋆. Here

Rℓ := ω5
ℓ (Tℓ \ T⋆)

denotes an extended set of refined elements.

Proof. We first consider (E1). The fact that hℓ|∪(Tℓ∩T⋆) = h⋆|∪(Tℓ∩T⋆) shows oscℓ(Tℓ ∩T⋆) =
osc⋆(Tℓ ∩ T⋆). Together with the triangle inequality, this yields
∣∣∣ρ⋆(T⋆ ∩ Tℓ) − ρℓ(T⋆ ∩ Tℓ)

∣∣∣ ≤ ‖h1/2
⋆ ∇V (Φ⋆ − Φℓ)‖L2(Γ) + ‖h1/2

⋆ ∇(1/2 +K)(G⋆ −Gℓ)‖L2(Γ)

. |||Φ⋆ − Φℓ||| + ‖G⋆ −Gℓ‖H1/2(Γ),

where we have used the inverse inequalities from Proposition 2 to get the final estimate.
To see (E2), we use Young’s inequality with arbitrary δ > 0 and estimate

ρ2
⋆(T⋆ \ Tℓ) ≤ (1 + δ)

(
‖h1/2

⋆ ∇
(
V Φℓ − (1/2 −K)Gℓ

)
‖2

L2(∪Tℓ\T⋆) + ‖h1/2
⋆ (1 − Πℓ)∇g‖2

L2(∪Tℓ\T⋆)

)

+ (1 + δ−1)Cinv

(
|||Φ⋆ − Φℓ|||2 + ‖G⋆ −Gℓ‖2

H1/2(Γ)

)
,

where we again applied the inverse estimates from Proposition 2. Exploiting h⋆|∪T⋆\Tℓ
≤

2−1/(d−1)hℓ|∪Tℓ\T⋆ for d = 2, 3, we conclude the proof with qred = (1 + δ)2−1/(d−1) for
sufficiently small δ > 0.

Reliability of ηℓ with unperturbed right-hand side is proved in [CS95, Theorem 2] for
the 2D case and in [CMS01, Corollary 4.3] for the 3D case, i.e.

|||φℓ − Φℓ||| . ηℓ for all Tℓ ∈ T. (24)

To obtain (E3), we incorporate the data oscillations via

|||φ− Φℓ||| ≤ |||φ− φℓ||| + |||φℓ − Φℓ||| . ‖g −Gℓ‖H1/2(Γ) + ηℓ,
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where we used the definition of φℓ in (9) as well as the stability of V −1 : H1/2(Γ) →
H−1/2(Γ) and K : H1/2(Γ) → H1/2(Γ). Now, estimate (21) implies

|||φ− Φℓ||| . ρℓ.

Finally, discrete local reliability (E4) of ηℓ is proved in [FKMP13, Proposition 4.3] for
p = 0. The proof holds verbatim for fixed p ≥ 0. Therefore, we get

|||Φℓ
⋆ − Φℓ||| . ηℓ(ωℓ(Tℓ \ T⋆)) ≤ ηℓ(Rℓ), (25)

where Φℓ
⋆ ∈ Pp(T⋆) is the solution of

〈〈Φℓ
⋆ , Ψ⋆〉〉 = 〈(1/2 +K)Gℓ , Ψ⋆〉L2(Γ) for all Ψ⋆ ∈ Pp(T⋆).

We employ the definition of Φℓ
⋆ and the stability of Galerkin schemes to see

|||Φℓ
⋆ − Φ⋆||| . ‖G⋆ −Gℓ‖H1/2(Γ) . oscℓ(Rℓ),

where the last estimate follows from (22).
Finally, we combine the last estimate with (25) and prove

|||Φ⋆ − Φℓ||| ≤ |||Φ⋆ − Φℓ
⋆||| + |||Φℓ

⋆ − Φℓ||| . ρℓ(Rℓ).

This concludes the proof. �

Corollary 5. The error estimator is quasi-monotone, i.e. for T⋆ ∈ refine(Tℓ) an arbi-
trary refinement of Tℓ ∈ T, there holds

ρ⋆ ≤ Cmonρℓ

with some constant Cmon > 0 which depends only on T0 and p ≥ 0.

Proof. The triangle inequality and h⋆ ≤ hℓ yield

ρ⋆ ≤ ρℓ + ‖h1/2
⋆ ∇V (Φ⋆ − Φℓ)‖L2(Γ) + ‖h1/2

⋆ ∇(1/2 +K)(G⋆ −Gℓ)‖L2(Γ)

. ρℓ + |||Φ⋆ − Φℓ||| + ‖G⋆ −Gℓ‖H1/2(Γ),

where we applied the inverse estimates (19) and (20) from Proposition 2 to obtain the
last estimate. Now, with discrete local reliability (E4) and (22), we get

ρ⋆ . ρℓ + ρℓ(Rℓ) + oscℓ(Rℓ) . ρℓ.

This concludes the proof. �

4. Convergence of Algorithm 1

This section analyzes the convergence of Algorithm 1. Although the results of this
section may be interesting on their own (since convergence of the adaptive algorithm is
not clear a priori), they also provide the crucial foundation for the optimality proof of
Section 5.

4.1. Estimator reduction. The following estimator reduction result is a very general
concept and applies to numerous situations in the context of a posteriori error estimation
in BEM and FEM, see e.g. [AFLP12]

Proposition 6. Let T⋆ := refine(Tℓ) denote an arbitrary refinement of Tℓ such that the
set of refined elements Tℓ \T⋆ satisfies combined Dörfler marking (16) for some 0 < θ < 1.
Then, there exist constants 0 < qest < 1 and Cest > 0 such that ρℓ satisfies the perturbed
contraction estimate

ρ2
⋆ ≤ qestρ

2
ℓ + Cest

(
|||Φ⋆ − Φℓ|||2 + ‖G⋆ −Gℓ‖2

H1/2(Γ)

)
. (26)

The constants qest, Cest > 0 depend only on θ, T0, and p ≥ 0.
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Proof. Recall Young’s inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all δ > 0 and
a, b ∈ R. We exploit stability (E1) and reduction (E2) to see

ρ2
⋆ = ρ2

⋆(Tℓ ∩ T⋆) + ρ2
⋆(T⋆ \ Tℓ)

≤ (1 + δ)ρ2
ℓ(Tℓ ∩ T⋆) + qredρ

2
ℓ(Tℓ \ T⋆)

+
(
(1 + δ−1)2C2

stab + Cred

)(
|||Φ⋆ − Φℓ|||2 + ‖G⋆ −Gℓ‖2

H1/2(Γ)

)
.

Now, Dörfler marking (16) for Tℓ \ T⋆ implies

(1 + δ)ρ2
ℓ(Tℓ ∩ T⋆) + qredρ

2
ℓ(Tℓ \ T⋆) ≤ (1 + δ)ρ2

ℓ − (1 + δ − qred)ρ2
ℓ(Tℓ \ T⋆)

≤
(
1 + δ − θ(1 + δ − qred)

)
ρ2

ℓ .

For sufficiently small δ > 0, the combination of the last two estimates proves (26) with
qest = 1 + δ − θ(1 + δ − qred) and Cest = (1 + δ−1)2C2

stab + Cred. �

4.2. Contraction of quasi-error. In this section, we make explicit use of the fact that
Gℓ = Jℓg is obtained via the Scott-Zhang projection. As a theoretical tool, we introduce
an equivalent mesh width function that takes care of the fact that in many of the local
estimates below the patches of the elements come into play.

Lemma 7. Let k ∈ N be arbitrary and let (Tℓ)ℓ∈N denote the sequence of meshes generated

by Algorithm 1. Then, there exists a modified mesh width function h̃ℓ such that

h̃ℓ ≤ hℓ ≤ C2h̃ℓ for all ℓ ∈ N, (27)

which is monotone and additionally provides a contraction on the k-patch of each refined
element, i.e. for all ℓ ≥ 1 it holds

h̃ℓ ≤ h̃ℓ−1 pointwise almost everywhere in Ω, (28a)

h̃ℓ|T ≤ qh̃ℓ−1|T for all T ∈ ωk
ℓ (Tℓ \ Tℓ−1). (28b)

The constants 0 < q < 1 and C2 > 0 depend only on T0 and on k ∈ N.

Proof. First, we observe that due to γ-shape regularity, the number of elements in the
k-patch is bounded, i.e.

#ωk
ℓ (T ) ≤ C3 for all T ∈ Tℓ. (29)

The constant C3 > 0 depends only on the γ-shape regularity and on k ∈ N.
Recall the level function level(·) :

⋃
ℓ∈N Tℓ → N, which counts the number of bisections

needed to generate an element T ∈ Tℓ from its ancestor T ⊂ T0 ∈ T0. By definition, there
holds level(T0) = 0 for all T0 ∈ T0 and for T ∈ Tℓ \ Tℓ−1, with father T ⊂ T ′ ∈ Tℓ−1 there
holds level(T ) > level(T ′). According to [KPP13, Lemma 18] the level difference of two
neighbouring elements T, T ′ ∈ Tℓ is less than or equal to two for d = 3 and bounded for
d = 2 (see [AFF+14, Section 3]). Hence, the level difference of two elements T, T ′ ∈ Tℓ

which lie within one k-patch is also bounded, i.e.

|level(T ) − level(T ′)| ≤ C4 for T ′ ∈ ωk
ℓ (T ), (30)

for some constant C4 > 0. We define a modified level-function inductively as follows:

˜level0(T ) := 0 for all T ∈ T0

10



as well as for all ℓ > 0 and all T ∈ Tℓ

˜levelℓ(T ) :=





level(T ) T ∈ Tℓ \ Tℓ−1

˜levelℓ−1(T ) + 1/(2C4C3 + 1) T ∈ ωk
ℓ (Tℓ \ Tℓ−1) \ (Tℓ \ Tℓ−1)

˜levelℓ−1(T ) else.

Note that for T ∈ Tℓ, the modified level ˜levelℓ(T ) depends on the chosen sequence of
meshes T0, . . . , Tℓ, in contrast to level(T ).

Below, we define the modified mesh width function h̃ℓ via the modified level func-
tion ˜levelℓ(·). To obtain the equivalence (27), we first show that the level functions are
equivalent, i.e.

level(T ) ≤ ˜levelℓ(T ) ≤ level(T ) + 2C3C4/(2C3C4 + 1) for all ℓ ∈ N and all T ∈ Tℓ.
(31)

The lower bound follows from the definition of ˜levelℓ(·) by induction on ℓ. For the upper
bound we argue by contradiction and assume the existence of an element T ∈ Tℓ with
˜levelℓ(T ) > level(T ) + 2C3C4/(2C3C4 + 1). With the convention T−1 := ∅, let ℓ0 ≤ ℓ

be such that T ∈ Tℓ0
\ Tℓ0−1. By definition of the modified level function, this implies

˜levelℓ0
(T ) = level(T ) (obviously, this also holds for ℓ0 = 0). Again, by definition of the

modified level function, we know that the case

T ∈ ωk
ℓj

(Tℓj
\ Tℓj−1) \ (Tℓj

\ Tℓj−1) for ℓ0 < ℓj ≤ ℓ

must have occurred at least 2C3C4 + 1 times, since otherwise ˜levelℓ(T ) ≤ level(T ) +
2C3C4/(2C3C4 + 1). Put differently,

ωk
ℓj

(T ) ∩ (Tℓj
\ Tℓj−1) 6= ∅ for all these (at least 2C3C4 + 1) many indices ℓ0 < ℓj ≤ ℓ.

Since ωk
ℓ0

(T ) contains at most C3 elements, there is at least one element T ′ ∈ ωk
ℓ0

(T ) with

T ′ ∩ (Tℓj
\ Tℓj−1) 6= ∅ for at least Nmax ≥ 2C3C4 + 1

C3
many indices ℓ0 < ℓj ≤ ℓ.

Hence, there exists an element T ′′ ∈ ωk
ℓ (T ) with level(T ′′) ≥ Nmax +level(T ′). Combining

this with (30), we obtain

C4 < C4 + 1/C3 ≤ Nmax − C4 ≤ |level(T ′′) − level(T ′)| − |level(T ′) − level(T )|
≤ |level(T ′′) − level(T )| ≤ C4.

This contradiction proves (31). Finally, with T0(T ) ∈ T0 denoting the unique father of
T ⊆ T0(T ) in the initial mesh T0, we may define

h̃ℓ|T :=
(

2−l̃evelℓ(T )|T0(T )|
)1/(d−1)

for all T ∈ Tℓ and all ℓ ∈ N.

The property (27) follows immediately from the equivalence (31) as well as the fact that
newest vertex bisection for d ≥ 3 and simple bisection for d = 2 guarantee

|T |1/(d−1) =
(

2−level(T )|T0(T )|
)1/(d−1)

.

For (28b), we consider an element T ∈ ωk
ℓ (Tℓ \ Tℓ−1) with father T ⊆ T ′ ∈ Tℓ−1. For

T $ T ′, i.e. T ∈ Tℓ \ Tℓ−1, there holds

˜levelℓ(T ) ≥ level(T ) ≥ level(T ′) + 1 ≥ ˜levelℓ−1(T ′) + 1/(2C3C4 + 1), (32)
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and therefore

h̃ℓ|T ≤ h̃ℓ−1|T ′

(
2−1/(2C3C4+1)

)1/(d−1)
, (33)

i.e. contraction in (28b) for T ∈ Tℓ \ Tℓ−1 with q =
(
2−1/(2C3C4+1)

)1/(d−1)
. For T = T ′,

i.e. T ∈ ωk
ℓ (Tℓ \ Tℓ−1) \ (Tℓ \ Tℓ−1), we see by definition of the modified level function that

there also holds
˜levelℓ(T ) ≥ ˜levelℓ−1(T

′) + 1/(2C3C4 + 1)

which implies (33) and hence (28b) for T ∈ ωk
ℓ (Tℓ\Tℓ−1)\(Tℓ\Tℓ−1). For T /∈ ωk

ℓ (Tℓ\Tℓ−1),

there holds ˜levelℓ−1(T ) = ˜levelℓ(T ) and hence h̃ℓ−1|T = h̃ℓ|T . This yields (28a) and
concludes the proof. �

The next lemma provides a decisive improvement of our analysis compared to [AFK+13].
Instead of treating all data approximation methods with the techniques of Section 6 below,
we use the locality of the Scott-Zhang projection together with the augmented contraction
area of the modified mesh width function h̃ℓ, to prove a certain orthogonality relation of
the approximate Dirichlet data. This allows us to use the standard Dörfler marking (16)
in the adaptive algorithm (instead of the separate Dörfler marking (62) as in Section 6)
and is exploited in the proof of the contraction result of Theorem 9.

Lemma 8. Let T⋆ ∈ refine(Tℓ) denote a refinement of Tℓ. Then, there holds

C−1
5 ‖(J⋆ − Jℓ)g‖2

H1/2(Γ) ≤ ‖h̃1/2
ℓ (1 − Πℓ)∇g‖2

L2(Γ) − ‖h̃1/2
⋆ (1 − Π⋆)∇g‖2

L2(Γ) (34)

for all ℓ ∈ N. Here, h̃ℓ denotes the modified mesh width function from Lemma 7 for
k = 5. The constant C5 > 0 depends only on T0 and p ≥ 0.

Proof. We employ Lemma 7 for k = 5 and obtain in combination with (22)

‖(J⋆ − Jℓ)g‖H1/2(Γ) . ‖h̃1/2
ℓ (1 − Πℓ)∇g‖L2(ω5

ℓ
(Tℓ\T⋆)) for all ℓ ∈ N. (35)

With monotonicity and the contraction property (28) of h̃ℓ, we see

h̃ℓ − h̃⋆ ≥ (1 − q)h̃ℓ χω5

ℓ
(Tℓ\T⋆) for all ℓ ∈ N,

where χω5

ℓ
(Tℓ\T⋆) denotes the characteristic function with respect to the set ω5

ℓ (Tℓ \ T⋆).

Together with (35), we therefore conclude

‖(J⋆ − Jℓ)g‖2
H1/2(Γ) .

∫

Γ
(h̃ℓ − h̃⋆)

∣∣∣(1 − Πℓ)∇g
∣∣∣
2
dx

= ‖h̃1/2
ℓ (1 − Πℓ)∇g‖2

L2(Γ) − ‖h̃1/2
⋆ (1 − Πℓ)∇g‖2

L2(Γ)

≤ ‖h̃1/2
ℓ (1 − Πℓ)∇g‖2

L2(Γ) − ‖h̃1/2
⋆ (1 − Π⋆)∇g‖2

L2(Γ)

according to the elementwise best approximation property of Π⋆. �

Theorem 9. Let T⋆ = refine(Tℓ) denote a refinement of Tℓ ∈ T such that Tℓ \T⋆ satisfies
the combined Dörfler marking (16) (e.g. in Algorithm 1 with Mℓ ⊆ Tℓ \ Tℓ+1). Then,
there exist constants 0 < α < 1, β > 0 and 0 < κ < 1 such that the quasi-error

∆ℓ := |||φℓ − Φℓ|||2 + αρ2
ℓ + β‖h̃1/2

ℓ (1 − Πℓ)∇g‖2
L2(Γ) (36)

satisfies the contraction property

∆⋆ ≤ κ∆ℓ.

Moreover, it holds αρ2
ℓ ≤ ∆ℓ ≤ (C2

7 + α + β)ρ2
ℓ for all ℓ ∈ N. The constants α, β, κ > 0

depend only on the use of newest vertex bisection, T0, qest, and p ≥ 0.
12



Proof. First, we observe that the data oscillations with the modified mesh width function
h̃ℓ are still dominated by the error estimator, i.e.

‖h̃1/2
ℓ (1 − Πℓ)∇g‖L2(Γ) ≤ oscℓ ≤ ρℓ (37)

for all ℓ ∈ N.
Second, we recall that stability of the problem allows us to control the influence of the

data approximation in the sense of

|||φ⋆ − φℓ|||2 ≤ C6‖G⋆ −Gℓ‖2
H1/2(Γ). (38)

The constant C6 > 0 depends only on the norms of V −1 and K. Furthermore, one has
reliability

|||φℓ − Φℓ||| ≤ C7ηℓ ≤ C7ρℓ (39)

with C7 > 0 independent of ℓ ∈ N, cf. (24).
Third, by definition of φ⋆, see (9), there holds orthogonality

〈〈φ⋆ − Φ⋆ , Φ⋆ − Φℓ〉〉 = 0.

With (38), we infer

|||φ⋆ − Φ⋆|||2+|||Φ⋆ − Φℓ|||2 = |||φ⋆ − Φℓ|||2

≤ (1 + δ)|||φℓ − Φℓ|||2 + (1 + δ−1)|||φ⋆ − φℓ|||2

≤ (1 + δ)|||φℓ − Φℓ|||2 + (1 + δ−1)C6‖G⋆ −Gℓ‖2
H1/2(Γ)

(40)

for all δ > 0. Next, we use the estimator reduction (26) to obtain

∆⋆ ≤ (1 + δ)|||φℓ − Φℓ|||2 + (1 + δ−1)C6‖G⋆ −Gℓ‖2
H1/2(Γ) − |||Φ⋆ − Φℓ|||2

+ αqestρ
2
ℓ + αCest

(
|||Φ⋆ − Φℓ|||2 + ‖G⋆ −Gℓ‖2

H1/2(Γ)

)
+ β‖h̃1/2

⋆ (1 − Π⋆)∇g‖2
L2(Γ)

≤ (1 + δ)|||φℓ − Φℓ|||2 +
(
(1 + δ−1)C6 + αCest

)
‖G⋆ −Gℓ‖2

H1/2(Γ)

+ αqestρ
2
ℓ + (αCest − 1)|||Φ⋆ − Φℓ|||2 + β‖h̃1/2

⋆ (1 − Π⋆)∇g‖2
L2(Γ).

With Lemma 8, this implies for β =
(
(1 + δ−1)C6 + αCest

)
C5

∆⋆ ≤ (1 + δ)|||φℓ − Φℓ|||2 + (αCest − 1)|||Φ⋆ − Φℓ|||2

+ αqestρ
2
ℓ + β‖h̃1/2

ℓ (1 − Πℓ)∇g‖2
L2(Γ).

Now, choose αCest < 1 to simplify the estimate above to

∆⋆ ≤ (1 + δ)|||φℓ − Φℓ|||2 + αqestρ
2
ℓ + β‖h̃1/2

ℓ (1 − Πℓ)∇g‖2
L2(Γ).

We introduce some parameter ε > 0 and use the bounds (37) and (39) to obtain

∆⋆ ≤ (1 + δ − C−1
7 ε)|||φℓ − Φℓ|||2

+ (αqest + 2ε)ρ2
ℓ + (β − ε)‖h̃1/2

ℓ (1 − Πℓ)∇g‖2
L2(Γ)

≤ κ∆ℓ

with

κ := max{1 + δ − C−1
7 ε, (αqest + 2ε)/α, (β − ε)/β}.

To ensure 0 < κ < 1, choose ε > 0 such that αqest + 2ε < α and fix δ = C−1
7 ε/2. The

equivalence ρ2
ℓ ≃ ∆ℓ follows immediately from (37) and (39). This proves the assertion.

�
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5. Quasi-Optimality of Algorithm 1

The quasi-optimality proof roughly consists of two parts: First, we prove in Propo-
sition 10 that Dörfler marking (16) is not only sufficient for the contraction property
stated in Theorem 9, but in some sense even necessary. Second, Theorem 11 combines
the foregoing results with an estimate on the cardinality of the set of marked elements
Mℓ and derives the optimality result.

5.1. Optimality of marking criterion. The following proposition can be seen as the
converse of Theorem 9.

Proposition 10. Let T⋆ ∈ refine(Tℓ) denote a refinement of Tℓ. Let Φℓ,Φ⋆ denote the
solutions of (10) corresponding to Gℓ = Jℓg,G⋆ = J⋆g. Let 0 < κ⋆ < 1 and suppose that
the corresponding error estimators satisfy

ρ2
⋆ ≤ κ⋆ρ

2
ℓ . (41)

Then, there exists 0 < θ⋆ < 1 such that ρℓ satisfies the combined Dörfler marking (16)

θρ2
ℓ ≤ ρ2

ℓ(Rℓ) (42)

for all 0 < θ ≤ θ⋆ with the set Rℓ from (E4).

Proof. First, we employ stability (E1) as well as the discrete local reliability of the esti-
mator (E4) and of the Scott-Zhang projection (22) to obtain, for arbitrary δ > 0,

ρ2
ℓ = ρ2

ℓ(Tℓ \ T⋆) + ρ2
ℓ(Tℓ ∩ T⋆)

≤ ρ2
ℓ(Tℓ \ T⋆) + (1 + δ)ρ2

⋆ + (1 + δ−1)2C2
stab

(
|||Φ⋆ − Φℓ|||2 + ‖(J⋆ − Jℓ)g‖2

H1/2(Γ)

)

≤ (1 + (1 + δ−1)2C2
stab(C2

dlr + C2
osc))ρ

2
ℓ(Rℓ) + (1 + δ)κ⋆ρ

2
ℓ .

We choose δ > 0 such that (1 + δ)κ⋆ < 1. Rearranging the terms, we thus see

θ⋆ρ
2
ℓ ≤ ρ2

ℓ(Rℓ)

with

θ⋆ := (1 − (1 + δ)κ⋆)/(1 + (1 + δ−1)2C2
stab(C2

dlr + C2
osc)) ∈ (0, 1).

This concludes the proof of (42). �

Remark. Analyzing the proof of Theorem 11, we see that we may choose κ⋆ arbitrarily
small. This implies that for any 0 < θ < 1/(1+2C2

stab(C2
dlr +C2

osc)) := θ̃⋆ one may choose
δ > 0 sufficiently large and κ⋆ > 0 sufficiently small such that θ < θ⋆. �

5.2. Quasi-optimal convergence rates. To conclude the quasi-optimality proof in this
section, we introduce the set of all meshes which have at most N elements more than the
initial mesh T0, i.e.

TN :=
{
T⋆ ∈ T : #T⋆ − #T0 ≤ N

}

as well as the approximation class Aρ,J
s characterized by

(φ, g) ∈ Aρ,J
s

def.⇐⇒ ‖(φ, g)‖Aρ,J
s

:= sup
N∈N

min
T⋆∈TN

ρ⋆N
s < ∞. (43)

Here, φ and g are supposed to be the solution and data of our model problem (1).
Note that the method of data approximation Gℓ ≈ g influences the error estimator ρℓ.

Hence, the definition of Aρ,J
s depends on the method of data approximation as well (which

is hence indicated by the superscript ρ, J). Now, the quasi-optimality is formulated in
14



the following theorem, which states that each possible algebraic convergence rate for the
error estimator will in fact be achieved by the ABEM algorithm.

Theorem 11. For sufficiently small parameter 0 < θ < 1, Algorithm 1 is optimal in the
sense of

(φ, g) ∈ Aρ,J
s ⇐⇒ ρℓ ≤ Copt(#Tℓ − #T0)−s for all ℓ ∈ N. (44)

The constant Copt > 0 depends only on ‖(φ, g)‖Aρ,J
s

, 0 < θ < 1, and on the constant
0 < κ < 1 from Theorem 9.

Proof. First, Theorem 9 states that ∆ℓ is a contractive sequence, i.e. with 0 < κ < 1
given there

∆ℓ+1 ≤ κ∆ℓ for all ℓ ∈ N. (45)

Now, let λ > 0 be a free parameter which is fixed later on. According to the definition
of the approximation class Aρ,J

s in (43), we find for sufficiently small ε2 := λρ2
ℓ > 0 some

triangulation Tε ∈ T such that

#Tε − #T0 . ε−1/s and ρε ≤ ε, (46)

where the hidden constant depends only on ‖(φ, g)‖Aρ,J
s

. We now consider the coarsest
common refinement T⋆ := Tε ⊕ Tℓ and first note that

#T⋆ − #Tℓ ≤ (#Tε + #Tℓ − #T0) − #Tℓ = #Tε − #T0 (47)

according to (13). Due to T⋆ ∈ refine(Tε), we may apply Corollary 5 to get

ρ2
⋆ . ρ2

ε ≤ λρ2
ℓ . (48)

Choosing λ > 0 sufficiently small but fixed from now on, we enforce ρ2
⋆ ≤ κ⋆ρ

2
ℓ for some

κ⋆ ∈ (0, 1) and ε ≃ ρℓ. Next, we employ Proposition 10 to obtain that Rℓ := ω5
ℓ (Tℓ \T⋆) ⊆

Tℓ satisfies the combined Dörfler marking (16). Recall that Mℓ is chosen in Step (iv)
of Algorithm 1 to be a set with minimal cardinality. Together with the fact that each
refinement splits the element into at least two sons, we get

#Mℓ ≤ #Rℓ ≃ #(Tℓ \ T⋆) ≤ #T⋆ − #Tℓ ≤ #Tε − #T0 . ε−1/s ≃ ρ
−1/s
ℓ . (49)

Now, with optimality of the mesh closure (12) and contraction (45), we conclude

#Tℓ − #T0 .
ℓ−1∑

j=0

#Mℓ .
ℓ−1∑

j=0

ρ
−1/s
j ≃

ℓ−1∑

j=0

∆
−1/(2s)
j ≤ ∆

−1/(2s)
ℓ

ℓ−1∑

j=0

κ1/(2s) . ρ
−1/s
ℓ

by convergence of the geometric series. Finally, this yields

ρℓ . (#Tℓ − #T0)−s

for all ℓ ∈ N and concludes the proof. �

Remark. Reliability (E3) of the error estimator shows the equivalence

ρ2
ℓ ≃ ρ2

ℓ + |||φ− Φℓ|||2 for all ℓ ∈ N.

Therefore, the approximation class Aρ,J
s can be equivalently defined in terms of the total

error, as is done in [CKNS08, FKMP13]. �
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5.3. Characterization of approximation class. We aim to decouple the influence of
the data approximation from the problem (1) in the approximation class Aρ,J

s . To that
end, we introduce

φ ∈ Aµ
s

def.⇐⇒ ‖φ‖Aµ
s

:= sup
N∈N

min
T⋆∈TN

µ⋆N
s < ∞, (50)

where µℓ denotes the unperturbed estimator studied in [FKMP13, AFF+14] for adaptive
BEM, i.e.

µℓ := ‖h1/2
ℓ ∇(V Φµ

ℓ − (1/2 +K)g)‖L2(Γ)

with Φµ
ℓ ∈ Pp(Tℓ) being the solution of the problem with exact right-hand side

〈〈Φµ
ℓ , Ψℓ〉〉 = 〈(1/2 +K)g , Ψℓ〉L2(Γ) (51)

for all Ψℓ ∈ Pp(Tℓ). Note that the definition of Aµ
s does not incorporate the data approx-

imation Gℓ ≈ g. Finally, we introduce the approximation class

g ∈ Aosc
s

def.⇐⇒ ‖g‖Aosc
s

:= sup
N∈N

min
T⋆∈TN

osc⋆N
s < ∞. (52)

The relations between the approximation classes introduced are discussed in the following
theorem.

Theorem 12. There holds the implications

φ ∈ Aµ
s1
, g ∈ Aosc

s2
=⇒ (φ, g) ∈ Aρ,J

min{s1,s2}, (53)

(φ, g) ∈ Aρ,J
s =⇒ φ ∈ Aµ

s , g ∈ Aosc
s (54)

for all s1, s2 > 0.

Proof. First, we see by use of (17) and (18)

ρ2
ℓ . µ2

ℓ + ‖h1/2
ℓ ∇(1/2 +K)(g −Gℓ)‖2

L2(Γ) + ‖h1/2
ℓ ∇V (Φµ

ℓ − Φℓ)‖2
L2(Γ) + osc2

ℓ

. µ2
ℓ + ‖g −Gℓ‖2

H1/2(Γ) + ‖h1/2
ℓ ∇(g −Gℓ)‖2

L2(Γ) + |||Φµ
ℓ − Φℓ|||2 + osc2

ℓ

. µ2
ℓ + osc2

ℓ

for all Tℓ ∈ T. Here, we used the stability of Galerkin schemes as well as (21) to obtain
the last estimate. Analogously, one proves the converse estimate to obtain

ρ2
ℓ ≃ µ2

ℓ + osc2
ℓ . (55)

Now, assume (φ, g) ∈ Aρ,J
s . For all N ∈ N, we obtain a mesh T⋆ ∈ TN with

N sosc⋆ +N sµ⋆ . N sρ⋆ . ‖(φ, g)‖Aρ,J
s
,

where we used (55). This implies immediately

‖φ‖Aµ
s

+ ‖g‖Aosc
s

. ‖(φ, g)‖Aρ,J
s
< ∞,

which proves φ ∈ Aµ
s and g ∈ Aosc

s and therefore (54). To see (53), assume φ ∈ Aµ
s1

and
g ∈ Aosc

s2
and define s := min{s1, s2}.

For all N ∈ N, the definition of Aµ
s1

and Aosc
s2

yields meshes T⋆µ and T⋆osc
with T⋆µ , T⋆osc

∈
TN/2 and

µ⋆µ(N/2)s1 . ‖φ‖Aµ
s1

and osc⋆osc
(N/2)s2 . ‖g‖Aosc

s2

.
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Now, we consider the coarsest common refinement T⋆ := T⋆µ ⊕ T⋆osc
. Note that there

holds #T⋆ − #T0 ≤ #T⋆µ + #T⋆osc
− 2#T0 ≤ N due to (13). Moreover, we see by use of

quasi-monotonicity of the error estimator and the fact that osc⋆ ≤ osc⋆osc

ρ⋆ . µ⋆ + osc⋆ . µ⋆µ + osc⋆osc
.

Altogether, we see

ρ⋆N
s . µ⋆µN

s1 + osc⋆osc
N s2 . ‖φ‖Aµ

s
+ ‖g‖Aosc

s
< ∞.

The hidden constant depends only Cmon > 0 and the constants in Proposition 2. This
proves (φ, g) ∈ Aρ,J

s and hence (53). �

Remark. For d = 2 and g ∈ H2+ε(Γ) for some ε > 0, the error estimator is even
efficient up to terms of higher order, i.e.

µ2
ℓ . |||φ− Φℓ|||2 + hot2

ℓ ,

and consequently

ρ2
ℓ . |||φ− Φℓ|||2 + osc2

ℓ + hot2
ℓ .

The higher-order term satisfies hotℓ ≃ h3/2+ε for some ε > 0 on quasi-uniform meshes Tℓ

with mesh width h = hℓ > 0 [AFF+14, Theorem 4]. With [AFF+14, Proposition 15] and
analogous arguments as in the proof above, one can characterize the approximation class
Aµ

s for all 0 < s ≤ 3/2 as

φ ∈ Aµ
s ⇐⇒ φ ∈ As and g ∈ Aosc

s ,

where

φ ∈ As
def.⇐⇒ ‖φ‖As := sup

N∈N
min

T⋆∈TN

min
Ψ⋆∈P0(T⋆)

|||φ− Ψ⋆|||N s < ∞.

�

6. Other Methods of Data Approximation

This section analyzes other methods for approximating the Dirichlet data g. We dis-
tinguish two cases for Gℓ:

• For d = 2 and p = 0, i.e. Γ being a 1D manifold, we have g ∈ H1(Γ) ⊂ C(Γ).
Therefore, it is admissible to use the nodal interpolation operator Iℓ : C(Γ) →
S1(Tℓ) for data approximation.

• Each projection Pℓ : H1/2(Γ) → Sp+1(Tℓ) with ℓ-independent stability constant

CP := sup
ℓ∈N

sup
v∈H1/2(Γ)\{0}

‖Pℓv‖H1/2(Γ)

‖v‖H1/2(Γ)

< ∞ (56)

is a valid choice.

The heart of the matter in the following section is to compensate the loss of orthogonal-
ity (34) in the data approximation term. To this end, we will use a modified marking
strategy from [Ste07], known as separate Dörfler marking, which forces the oscillation
term to contract if it is big compared to the estimator.

To clarify which method of data approximation is used, we write e.g. Φℓ,P for the
solution of (10) and ηℓ,P for the error estimator if the projection Pℓ which is used for data
approximation is not the Scott-Zhang projection Jℓ.
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6.1. Data approximation by nodal interpolation Gℓ = Iℓg for 2D BEM. The
next lemma states some important properties of Iℓ. Note that throughout this section,
we assume d = 2 and p = 0. This type of data approximation was already considered
in [AFLG+12] for the symmetric BEM formulation of the 2D Laplace problem with
inhomogeneous mixed boundary conditions. However, in [AFLG+12], only convergence
of an (h − h/2)-based error estimator to zero is proved. Similar techniques as employed
here, are also found in [FPP13], where the lowest-order AFEM of the 2D Laplace problem
with inhomogeneous mixed boundary conditions is considered.

Lemma 13. Let Tℓ ∈ T. For a 1D manifold Γ, the nodal interpoland satisfies

C−1
osc‖(1 − Iℓ)g‖H1/2(Γ) ≤ ‖h1/2

ℓ ∇(1 − Iℓ)g‖L2(Γ) = oscℓ. (57)

Moreover, it satisfies the discrete upper bound

‖(I⋆ − Iℓ)g‖H1/2(Γ) ≤ Cosc‖h1/2
ℓ (1 − Πℓ)∇g‖L2(Tℓ\T⋆). (58)

The constant Cosc > 0 depends only on T0.

Proof. Estimate (57) follows from bootstrapping the estimate

‖(1 − Iℓ)v‖H1/2(Γ) . ‖h1/2
ℓ ∇v‖L2(Γ) for all v ∈ H1(Γ)

proved in [Car97, Theorem 1], see e.g. [EFGP13, Lemma 2.2], and by use of the well-
known identity ∇Iℓv = Πℓ∇v ∈ L2(Γ) for all v ∈ H1(Γ) valid in 1D. Estimate (58) was
first observed in [FPP13, Proof of Proposition 3] and follows by similar techniques and
I⋆ − Iℓ = (1 − Iℓ)I⋆. �

By comparison with Lemma 3, we see that the nodal interpolation operator Iℓ has
the same properties as (and even stronger than) the Scott-Zhang projection Jℓ. This
implies that all the results of the previous sections hold accordingly. In particular, the
convergence result of Theorem 9 remains valid. Moreover, we obtain the optimality result
of Theorem 11, if we replace the approximation class Aρ,J

s with

(φ, g) ∈ Aρ,I
s

def.⇐⇒ ‖(φ, g)‖Aρ,I
s

:= sup
N∈N

min
T⋆∈TN

ρ⋆,PN
s < ∞, (59)

where the error estimator now reads

ρ2
ℓ,I := ‖h1/2

ℓ ∇(V Φℓ,I − (1/2 +K)Iℓg)‖2
L2(Γ) + osc2

ℓ . (60)

6.2. Data approximation by an H1/2-stable projection Gℓ = Pℓg for 2D and 3D

BEM. General projections Pℓ : H1/2(Γ) → Sp+1(Tℓ) usually lack the discrete upper
bound (22). To overcome this difficulty, we use a slightly modified marking strategy
known as separate Dörfler marking [Ste07].

This variant was also used in [AFK+13] to prove quasi-optimal convergence rates of
AFEM for the Laplace problem with inhomogeneous Dirichlet data. Unlike [AFK+13], we
stress that our analysis of Section 4 above even covers the standard Dörfler marking (16)
if one uses the Scott-Zhang projection Pℓ = Jℓ for data approximation.

In [KOP13], the case Gℓ = Πℓg with Πℓ : L2(Γ) → Sp+1(Tℓ) denoting the L2-orthogonal
projection is considered. According to [KPP13], newest vertex bisection guarantees that
Πℓ is H1(Γ) stable and hence, by interpolation, also H1/2(Γ) stable. In contrast to the
present work, [KOP13] uses an (h − h/2)-based error estimator to steer the adaptive
algorithm and proves only convergence of the estimator to zero without guaranteeing any
convergence rate.
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With the error estimator

ρ2
ℓ,P = η2

ℓ,P + osc2
ℓ = ‖h1/2

ℓ ∇(V Φℓ,P − (1/2 +K)Pℓg)‖2
L2(Γ) + osc2

ℓ (61)

the adaptive algorithm now reads as follows:

Algorithm 14. Input: initial mesh T0, adaptivity parameters 0 < θ1, θ2, ϑ < 1. Set
ℓ := 0

(i) Compute approximate data Gℓ = Pℓg.
(ii) Compute solution Φℓ,P of (10).
(iii) Compute error estimator ηℓ,P (T ) and the data oscillations oscℓ(T ) for all T ∈ Tℓ.
(iv) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal cardinality which

satisfies separate Dörfler marking:
• In case of osc2

ℓ ≤ ϑη2
ℓ,P , find Mℓ such that

θ1η
2
ℓ,P ≤ η2

ℓ,P (Mℓ). (62a)

• In case of osc2
ℓ > ϑη2

ℓ,P , find Mℓ such that

θ2osc2
ℓ ≤ osc2

ℓ(Mℓ). (62b)

(v) Refine at least the marked elements to obtain Tℓ+1 = refine(Tℓ,Mℓ).
(vi) Increment ℓ 7→ ℓ+ 1 and goto (i).

Output: sequence of error estimators (ρℓ,P )ℓ∈N and sequence of Galerkin solutions (Φℓ,P )ℓ∈N.

The next lemma shows the equivalence of the solutions and error estimators for different
approximations of the Dirichlet data g up to the Dirichlet data oscillations oscℓ.

Lemma 15. Let Φℓ and Φℓ,P denote solutions of (10) corresponding to the different
approximations Gℓ = Jℓg and Gℓ = Pℓg of the Dirichlet data g. Then, it holds for any
subset Eℓ ⊆ Tℓ

|||Φℓ − Φℓ,P ||| ≤ C8oscℓ for all ℓ ∈ N (63)

as well as

|ηℓ(Eℓ) − ηℓ,P (Eℓ)| ≤ C9oscℓ for all ℓ ∈ N, (64)

where ηℓ, ηℓ,P denote the corresponding error estimators from (14) resp. (61). The con-
stants C8 > 0 and C9 > 0 depend only on T0 and p ≥ 0.

Proof. We start with (63). By use of stability of K : H1/2(Γ) → H1/2(Γ), there holds

|||Φℓ − Φℓ,P ||| ≃ ‖(Jℓ − Pℓ)g‖H1/2(Γ) ≤ ‖g − Jℓg‖H1/2(Γ) + ‖g − Pℓg‖H1/2(Γ).

Now, we conclude with the H1/2-stability of Pℓ

‖g − Pℓg‖H1/2(Γ) = ‖(1 − Pℓ)(1 − Jℓ)g‖H1/2(Γ) . ‖(1 − Jℓ)g‖H1/2(Γ) . osc2
ℓ ,

by use of (21). The combination of the last two inequalities shows (63).
It remains to prove (64). To that end, we employ the triangle inequality as well as the

inverse estimates (19)–(20) from Proposition 2

|ηℓ(Eℓ) − ηℓ,P (Eℓ)| ≤ ‖h1/2
ℓ ∇V (Φℓ − Φℓ,P )‖L2(Γ) + ‖h1/2

ℓ ∇(1/2 +K)(Jℓ − Pℓ)g‖L2(Γ)

. |||Φℓ − Φℓ,P ||| + ‖(Jℓ − Pℓ)g‖H1/2(Γ).

Arguing as before to see ‖(Jℓ − Pℓ)g‖H1/2(Γ) . oscℓ, we conclude the proof. �

Now, we show that separate Dörfler marking (62) for ρ2
ℓ,P = η2

ℓ,P +osc2
ℓ implies combined

Dörfler marking (16) for ρ2
ℓ = η2

ℓ + osc2
ℓ .
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Lemma 16. Let Φℓ and Φℓ,P denote solutions of (10) corresponding to different approx-
imations Gℓ = Jℓg and Gℓ = Pℓg of the Dirichlet data g. Let the error estimator ηℓ,P

together with oscℓ satisfy the separate Dörfler marking (62) for arbitrary 0 < θ1, θ2 < 1,
sufficiently small 0 < ϑ < 1, and a set of marked elements Mℓ ⊆ Tℓ. Then, ρ2

ℓ := η2
ℓ +osc2

ℓ

satisfies the combined Dörfler marking (16)

θρ2
ℓ ≤ ρ2

ℓ(Mℓ) (65)

for some 0 < θ < 1.

Proof. First, assume osc2
ℓ ≤ ϑη2

ℓ,P . Then, it holds with Lemma 15

η2
ℓ,P (Mℓ) ≤ 2η2

ℓ (Mℓ) + 2C2
9osc2

ℓ ≤ 2η2
ℓ (Mℓ) + 2C2

9ϑη
2
ℓ,P .

Moving the last term to the left-hand side, we see

(1 − 2C2
9ϑ)η2

ℓ,P (Mℓ) ≤ 2η2
ℓ (Mℓ) ≤ 2ρ2

ℓ(Mℓ).

Together with Lemma 15 and (62a), this yields

θ1ρ
2
ℓ ≤ 2θ1η

2
ℓ,P + θ1(2C2

9 + 1)osc2
ℓ ≤ θ1(2 + (2C2

9 + 1)ϑ)η2
ℓ,P ≤ (2 + (2C2

9 + 1)ϑ)η2
ℓ,P (Mℓ)

≤ 2(2 + (2C2
9 + 1)ϑ)/(1 − 2C2

9ϑ)ρ2
ℓ(Mℓ). (66)

Second, assume osc2
ℓ > ϑη2

ℓ,P . Then, again with Lemma 15

θ2ρ
2
ℓ ≤ 2θ2η

2
ℓ,P + θ2(2C2

9 + 1)osc2
ℓ ≤ θ2(2ϑ−1 + 2C2

9 + 1)osc2
ℓ

≤ (2ϑ−1 + 2C2
9 + 1)osc2

ℓ(Mℓ) ≤ (2ϑ−1 + 2C2
9 + 1)ρ2

ℓ(Mℓ).
(67)

Hence, ρℓ satisfies combined Dörfler marking (16) with

θ := min{θ1(1 − 2C2
9ϑ)/(4 + 2(2C2

9 + 1)ϑ), θ2/(2ϑ
−1 + 2C2

9 + 1)}. (68)

This concludes the proof. �

Remark. We established convergence of Algorithm 14 at least for sufficiently small
0 < ϑ < 1. The previous lemma shows that ρℓ satisfies combined Dörfler marking (16)
in each step of the adaptive loop. Therefore, Theorem 9 is applicable and implies ρ2

ℓ .
∆ℓ → 0 as ℓ → ∞. The equivalence ρℓ,P ≃ ρℓ which follows immediately from (64) proves
limℓ→∞ ρℓ,P = 0. �

Remark. Arguing as in the proof of Lemma 16, we see that separate Dörfler mark-
ing (62) for ρℓ,P also implies combined Dörfler marking (16) for ρℓ,P without any as-
sumption on 0 < θ1, θ2, ϑ < 1. Then, the estimator reduction (26) of Proposition 6 also
holds in this case. In [KOP13], it is proved that this implies convergence of the adaptive
algorithm. �

Lemma 17. The error estimator ρℓ,P satisfies (E1)–(E3) and there holds quasi-monotonicity,
i.e. for T⋆ ∈ refine(Tℓ) being a refinement of Tℓ ∈ T, we have

ρ⋆,P ≤ C10ρℓ,P (69)

for a constant C10 > 0 which depends only on T0.

Proof. (E1)–(E3) follow verbatim as in the proof of Proposition 4. For quasi-monotonicity,
we apply the equivalence (64) to obtain ρ⋆,P ≃ ρ⋆ . ρℓ ≃ ρℓ,P . This concludes the
proof. �
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Proposition 18. Let T⋆ ∈ refine(Tℓ) be a refinement of Tℓ ∈ T. Let Φℓ,P , Φ⋆,P denote
the corresponding solutions of (10). Suppose that the error estimator satisfies

ρ⋆,P ≤ κ⋆ρℓ,P (70)

for some 0 < κ⋆ < 1 sufficiently small. Then, the set Rℓ := ω5
ℓ (Tℓ \ T⋆) from (E4)

satisfies separate Dörfler marking (62) for sufficiently small 0 < θ1, ϑ < 1 and arbitrary
0 < θ2 < 1.

Proof. First, we prove by use of (64)

ρ⋆ ≤
√

2(C9 + 1)ρ⋆,P ≤
√

2(C9 + 1)κ⋆ρℓ,P ≤ 2(C9 + 1)2κ⋆ρℓ, (71)

Therefore and with 2(C9 + 1)2κ⋆ < 1, we may apply Proposition 10 to conclude

θ⋆ρ
2
ℓ ≤ ρ2

ℓ(Rℓ). (72)

Now, we distinguish two cases. First, assume osc2
ℓ ≤ ϑη2

ℓ,P . Then, it holds with (64)

η2
ℓ,P ≤ 2η2

ℓ + 2C2
9osc2

ℓ ≤ 2η2
ℓ + 2C2

9ϑη
2
ℓ,P .

Now, we rearrange the terms in the above equation and employ (72) to get

(1 − 2C2
9ϑ)θ⋆η

2
ℓ,P ≤ 2η2

ℓ (Rℓ) + 2osc2
ℓ(Rℓ) ≤ 4η2

ℓ,P (Rℓ) + (2C2
9 + 2)ϑη2

ℓ,P .

For ϑ > 0 sufficiently small, this shows
(
(1 − 2C2

9ϑ)θ⋆ − (2 + 2C2
9 )ϑ

)
/4 η2

ℓ,P ≤ η2
ℓ,P (Rℓ),

i.e. (62a) for all θ1 ≤ ((1 − 2C2
9ϑ)θ⋆ − (2 + 2C2

9)ϑ)/4.
Second, let osc2

ℓ > ϑη2
ℓ,P . Here, we use the local definition of oscℓ to obtain

osc2
ℓ(Tℓ ∩ T⋆) = ‖h1/2

ℓ (1 − Πℓ)∇g‖L2(∪Tℓ∩T⋆) = osc2
⋆(Tℓ ∩ T⋆)

≤ ρ2
⋆

≤ 2(C9 + 1)2κ⋆ρ
2
ℓ

≤ 2(C9 + 1)2κ⋆(2η
2
ℓ,P + (1 + 2C2

9)osc2
ℓ)

≤ 2(C9 + 1)2κ⋆(2ϑ
−1 + 1 + 2C2

9)osc2
ℓ .

Now, we conclude

osc2
ℓ = osc2

ℓ(Tℓ ∩ T⋆) + osc2
ℓ(Tℓ \ T⋆) ≤ 2(C9 + 1)2κ⋆(2ϑ−1 + 1 + 2C2

9)osc2
ℓ + osc2

ℓ(Rℓ),

which shows (62b) for all θ2 ≤ 1 − 2(C9 + 1)2κ⋆(2ϑ−1 + 1 + 2C2
9). Moreover, for all

0 < θ2 < 1 we may choose κ⋆ such that (62b) holds true. This concludes the proof. �

Now, we have collected all ingredients to prove an optimality result similar to Theo-
rem 11. To that end, we define the approximation class

(φ, g) ∈ Aρ,P
s

def.⇐⇒ ‖(φ, g)‖Aρ,P
s

:= sup
N∈N

min
T⋆∈TN

ρℓ,PN
s < ∞. (73)

Theorem 19. For sufficiently small parameters 0 < θ1, ϑ < 1 and arbitrary 0 < θ2 < 1,
Algorithm 14 is optimal in the sense of

(φ, g) ∈ Aρ,P
s ⇐⇒ ρℓ,P ≤ C11(#Tℓ − #T0)−s for all ℓ ∈ N. (74)

The constant C11 > 0 depends only on ‖(φ, g)‖Aρ,P
s

, 0 < θ1, θ2, ϑ < 1, and 0 < κ < 1.
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Proof. Analogously to the proof of Theorem 11, the definition of the approximation class
provides a mesh T⋆ ∈ refine(Tℓ) such that

ρ⋆,P ≤ κ⋆ρℓ,P and #(Tℓ \ T⋆) . ρ
−1/s
ℓ,P ,

where the hidden constant in the second estimate depends on 0 < κ⋆ < 1 which can be
chosen arbitrarily small.

Next, we apply Proposition 18 to obtain that Rℓ := ω5
ℓ (Tℓ\T⋆) satisfies separate Dörfler

marking (62). However, Mℓ was chosen in Step (iv) of Algorithm 14 to be a set with
minimal cardinality. Therefore, it holds

#Mℓ ≤ Rℓ ≃ #(Tℓ \ T⋆) . ρ
−1/s
ℓ,P . ρ

−1/s
ℓ ≃ ∆

−1/(2s)
ℓ .

Lemma 16 shows that ρℓ and Mℓ satisfy combined Dörfler marking (16). Therefore,
Theorem 9 shows

∆ℓ+1 ≤ κ∆ℓ for all ℓ ∈ N.

Now, the remainder of the proof follows analogously to the proof of Theorem 11. �

6.3. Characterization of approximation class. Finally, we prove that all the ap-
proximation classes introduced in this work coincide. In particular, the optimal rate for
the error estimator considered, is, in fact, independent of how the Dirichlet data are dis-
cretized. Each of the discretizations proposed, will lead to the same convergence rate of
ABEM.

Proposition 20. There holds for all s > 0

Aρ,J
s = Aρ,P

s =
{
(φ, g) : φ ∈ Aµ

s and g ∈ Aosc
s

}
(75)

and in case of d = 2 and p = 0, we even have

Aρ,J
s = Aρ,P

s = Aρ,I
s =

{
(φ, g) : φ ∈ Aµ

s and g ∈ Aosc
s

}
. (76)

Proof. We introduce the error estimators ρℓ, ρℓ,I , and ρℓ,P corresponding to the different
methods of data approximation. Lemma 15 shows ρℓ ≃ ρℓ,P for all Tℓ ∈ T. A similar
argument also proves ρℓ,I ≃ ρℓ ≃ ρℓ,P for all Tℓ ∈ T in case of d = 2 and p = 0. This
yields immediately

‖(φ, g)‖Aρ,J
s

≃ ‖(φ, g)‖Aρ,P
s

and in case of d = 2 ‖(φ, g)‖Aρ,I
s

≃ ‖(φ, g)‖Aρ,J
s
.

Together with Theorem 12, we prove the assertion. �

7. Numerical experiment

To underline the results of the previous sections, we present a 2D example for p = 0
and p = 1.

7.1. Details on the implementation. The results are visualized with the help of the
following quantities:

• Instead of the energy norm error |||φ − Φℓ||| which can hardly be computed ana-
lytically, we plot the following reliable error bound:

|||φ− Φℓ||| . errℓ + oscℓ with errℓ := ‖h1/2
ℓ (φ− Φℓ)‖L2(Γ).

• We plot the error indicator ηℓ. The functions (VΦℓ)(x) and (KGℓ)(x) are com-
puted analytically [Mai01].

To compare the adaptive approach of Algorithm 1 with uniform mesh refinement, we
consider the computational times:
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• The time tunif to compute the solution Φ(ℓ) of the uniform approach is the time
needed to perform ℓ uniform refinements of the initial mesh T0, plus the time
needed to build and solve the linear system corresponding to T (ℓ). Obviously, the
second contribution is vastly dominant.

• The time tadap to compute the solution Φℓ of the adaptive approach is the time
elapsed in all previous steps, plus the time to build and solve the system corre-
sponding to the mesh Tℓ, to compute the error estimator, and to mark and refine
the mesh.

Although this definition seems to favour the uniform approach, we think that it provides
a fair comparison between those strategies. All computations were performed on a 64-bit
Linux work station with 32 GB of RAM in Matlab (Release R2010a). The implementation
relies on the open-source Matlab BEM library HILBERT, see

http://www.asc.tuwien.ac.at/abem/hilbert/

Throughout, all the occurring linear systems were solved directly with the Matlab
backslash operator. In all experiments, the adaptivity parameter in Algorithm 1 is chosen
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Figure 1. L-shaped domain Ω with initial partition of the boundary T0.

as

θ = 1/2.

7.2. Experiment on L-shaped domain with singular solution and singular data.

Here, Γ is the boundary of the L-shaped domain Ω in Figure 1. We prescribe the solution
u of

−∆u = 0 in Ω,

u = g on Γ,
(77)

as u(x, y) := v2/3(x, y) + v7/8(x− z1, y − z2), where vδ(x, y) := rδ cos(δα) and z = (z1, z2)
is the uppermost corner of the L-shaped domain in Figure 1. The solution φ has a
corner singularity at the re-entrant corner and in addition a singularity resulting from
the singular data g. Note that vδ ∈ H1+δ−ε(Ω) for all ε > 0. Figure 2 compares the
uniform approach for p = 0 with the adaptive approaches for p = 0 and p = 1. We
use the Scott-Zhang projection for data approximation, i.e. Gℓ = Jℓg for all ℓ ∈ N. We
apply Algorithm 1 and confirm the theoretical results from Theorem 11. We see that
the uniform approach only leads to a suboptimal convergence rate N−2/3, whereas the
adaptive approach reaches the optimal order of convergence N−3/2 for the lowest-order
method p = 0 and N−5/2 for p = 1. The comparison with respect to computational time
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is also significant. Whereas the uniform approach is slightly faster in the first few steps
(due to the overhead which is naturally caused by the adaptive algorithm), we see that
on the long run, the adaptive method with p = 0 and particularly with p = 1 is much
superior.
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Figure 2. Experiment on L-shaped domain with singular solution and
singular data. We compare adaptive and uniform mesh refinement in terms
of the quantities errℓ, ηℓ, and oscℓ plotted over the number of elements
N = #Tℓ (left). Additionally, errℓ is plotted versus the computational time
in seconds (right).
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