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QUASI-OPTIMAL APPROXIMATION OF SURFACE BASED

LAGRANGE MULTIPLIERS IN FINITE ELEMENT METHODS

J.M. MELENK∗ AND B. WOHLMUTH†

Abstract. We show quasi-optimal a priori convergence results in the L2- and H−1/2-norm for
the approximation of surface based Lagrange multipliers such as those employed in the mortar finite
element method. We improve on the estimates obtained in the standard saddle point theory, where
error estimates for both the primal and dual variables are obtained simultaneously and thus only
suboptimal a priori estimates for the dual variable are reached. We illustrate that an additional
factor

√
h| lnh| in the a priori bound for the dual variable can be recovered by using new estimates

for the primal variable in strips of width O(h) near these surfaces.

AMS subject classification: 65N30

Key words: anisotropic norms, mortar methods, local FEM error analysis, Lagrange
multiplier

1. Introduction. An important goal of many finite element calculations in com-
putational mechanics are accurate and reliable values for the flux across certain in-
terfaces or the boundary of the domain. In non-linear contact problems, for example,
the appropriate flux is related to the surface traction in the contact zone and thus
plays an important role in various friction models. In numerical methods that are
based on a purely primal formulation, the flux can be extracted from the numerical
solution in a thin strip adjoining the interface. Hence, it is desirable to understand
and quantify the discretization error in such thin strips. Alternative approaches could
involve primal-dual formulations that produce the sought fluxes either as the Lagrange
multiplier or through a suitable post-processing procedure. Just as in purely primal
methods, a sharp a priori error analysis of these methods also requires good estimates
for the primal variable in a thin strip near the interface. The present note, therefore,
provides quasi-optimal estimates for the primal solution in thin tubular neighbor-
hoods of interfaces. As an example of how such estimates for the primal variable can
be used in the analysis of the convergence behavior of Lagrange multipliers, we study
the mortar method for the Poisson problem and show quasi-optimal convergence in
the Lagrange multiplier there as well. While we focus on the Poisson equation as a
model problem, the techniques employed may also be used for more general elliptic
systems and in other discretization schemes such as DG methods and XFEM.

The results of the present paper improve on standard estimates for the Lagrange
multiplier in mortar methods. These methods may be viewed as saddle point problems
where the Lagrange multiplier ensures weak continuity of the primal variable on the
interfaces. Then, the errors in the primal and dual variables are linked to each other,
and the standard saddle point theory [9, 17] leads to a priori estimates for the dual
variable in the H−1/2-norm which are at most of the same order as the error bounds
for the primal variable in the H1-norm. However, the best approximation error for the
Lagrange multiplier in the H−1/2-norm is typically better by a factor

√
h than the

best approximation error for the primal variable. It is this gap in the a priori analysis
that the present paper removes (up a logarithmic factor). Similar observations about
the mismatch between best approximation and available a priori estimates for the
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Lagrange multiplier can be made for the L2-convergence, [8, 23]. Also for this case,
our analysis recovers a factor

√
h| lnh|. Our analysis will also cover the closely related

situation of imposing Dirichlet boundary conditions weakly with the aid of a Lagrange
multiplier as proposed in [18].
In view of the technical nature of the article, we formulate in Section 2 our model prob-
lem and state the two main results. The first result (Theorem 2.1) gives quasi-optimal
a priori error estimates for the primal solution restricted to a tubular neighborhood
of width O(h) of the domain boundary and the interfaces. The second result (Theo-
rem 2.4) focuses on estimates for the dual variables on the interfaces. The remainder
of the paper is devoted to the proofs of these results. In Section 3 we introduce
anisotropic norms. Section 4 quantifies the approximation properties of nodal inter-
polation operators in these new anisotropic norms. Certain dual problems with locally
supported data are considered in Section 5. The concluding Section 6 is devoted to
the actual proofs of the two main results. Throughout the paper 0 < c, C <∞ stand
for generic constants not depending on the mesh size but possibly depending on the
approximation order k of the finite element spaces. For integer k, Sobolev norms on
domains ω are denoted by ‖ · ‖Hk(ω); the seminorm is denoted by | · |Hk(ω). We will
also work with the Besov spaces Bs

2,q(ω), which are defined as interpolation spaces
using the “real method” (see [19, 20] for details): for positive s 6∈ N and q ∈ [1,∞]
we set

Bs
2,q(ω) := (H⌊s⌋(ω), H⌈s⌉(ω))s−⌊s⌋,q (1.1)

2. Model problem and main results.

2.1. Model problem and discrete spaces. Let Ω ⊂ R
d, d = 2, 3, be a convex

and bounded polyhedral domain and f ∈ L2(Ω). As a model problem, we consider

−∆u = f in Ω, (2.1a)

u = 0 on ∂Ω. (2.1b)

The domain Ω is decomposed into M non-overlapping subdomains Ωi, i = 1, . . . ,M ,
each of which is shape-regular and polyhedral. We note that the case M = 1 handles
a standard conforming situation. To obtain a unified notation for the two cases of
interest, namely, an approximation of the Neumann values at the outer boundary if
M = 1 and an approximation of the inner fluxes if M > 1, we enrich the interior

interface Γ
int

:= ∪M
i,j=1∂Ωi ∩∂Ωj by ∂Ω and set Γ := Γ

int ∪∂Ω. Moreover, we assume
that the interface Γ can be written as a finite decomposition of N planar open faces
in 3D or straight segments in 2D, i.e., Γ = ∪N

l=1γl. For each γl, l ≤ N int < N , we
have γl ⊂ Γint, and there exist s(l) and m(l) ∈ {1, . . . ,M} such that γl is an open
face of Ωs(l) and Ωm(l). As is standard in the mortar context, the subdomain Ωs(l)

is called slave subdomain and the subdomain Ωm(l) is called master subdomain. The
naming originates from the fact that the discrete Lagrange multiplier will be defined
with respect to the mesh on the slave side, and thus the primal solution on the slave
side is dominated by the primal solution on the master side. In the case M = 1,
we have N int = 0 and Γint = ∅. For γl ⊂ ∂Ω there exists a unique Ωs(l) such that
γl ⊂ ∂Ωs(l).
For each subdomain Ωi, let Ti be a quasi-uniform simplicial1 triangulation of mesh size
h. As is standard in the mortar context, these meshes are not assumed to match at the

1the restriction to simplicial triangulations is not essential; extensions to triangulations based on
quadrilaterals/hexahedra are possible
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interfaces. On Ωi, we define the standard space of order k of conforming finite elements
Vi, and on γl we denote by Ms(l) the Lagrange multiplier space associated with the
(d− 1)-dimensional mesh inherited from the d-dimensional triangulation of the slave
side. Associated with γl is also the trace space Ws(l) := {v ∈ H1

0 (γl) : v = w|γs(l)
, w ∈

Vs(l)}. Here we restrict ourselves to formulations where dim Ws(l) = dim Ms(l). We
assume that our Lagrange multiplier space Ms(l) satisfies the following properties:

(A1) Stability and well-posedness of the mortar projection: The operator Πs(l) :
L2(γl) −→Ws(l) defined by

∫

γl

Πs(l)vµhds :=

∫

γl

vµhds, ∀µh ∈Ms(l)

is uniformly L2-stable and, if restricted to H
1
2
00(γl), also uniformly H

1
2
00(γl)-

stable.
(A2) Best approximation property:

inf
µh∈Ms(l)

‖µ− µh‖L2(γl) ≤ Chk|µ|Hk(γl), ∀µ ∈ Hk(γl).

We note that in 2D many choices are well established, e.g., standard Lagrange mul-
tiplier spaces such as kth order conforming functions or biorthogonal bases with the
cross-point modification satisfy these two conditions, e.g., [4, 15, 24]. For results in
3D, we refer to [7, 14].
From the Assumption (A1) we directly obtain that the pairing (Ms(l),Ws(l)) is uni-

formly inf-sup stable with respect to the (L2(γl), L
2(γl)) and (H−1/2(γl), H

1/2
00 (γl))

norm pairings. Here H−1/2(γl) stands for the dual norm of H
1/2
00 (γl). Moreover As-

sumptions (A1) and (A2) guarantee a best approximation property in the H−1/2(γl)-
norm, i.e.,

inf
µh∈Ms(l)

‖µ− µh‖
H−

1
2 (γl)

≤ Chk+
1
2 |µ|Hk(γl), ∀µ ∈ Hk(γl).

For the Lagrange multiplier on γl we work with two different norms, the H−1/2(γl)-

norm and the
√
h-weighted L2(γl)-norm. Correspondingly we work with the H

1/2
00 (γl)-

norm and the
√
h−1-weighted L2(γl)-norm on trace spaces. If it does not matter

which one is considered, we use the abbreviated notation (‖ · ‖M∗(γl), ‖ · ‖M(γl)) for

the (H−1/2(γl), H
1/2
00 (γl))-norm and the (

√
h-weighted L2(γl),

√
h−1-weighted L2(γl))-

norm.
The spaces Ms(l) and Ws(l), l = 1, . . . , N , on the interfaces γl form the spaces

Mh :=
∏N

l=1Ms(l) and Wh :=
∏N

l=1Ws(l), which we view as subspaces of L2(Γ)
in the standard way. Then the local mortar projections Πs(l) define the global mortar
projection Πh : L2(Γ) →Wh by

Πh :=

N∑

l=1

Πs(l). (2.2)

We get from Assumptions (A1) and (A2)

‖µh‖M∗(Γ) ≤ C sup
vh∈Wh

∫
Γ µhvhds

‖vh‖M(Γ)
, ∀µh ∈Mh, (2.3a)

inf
µh∈Mh

‖µ− µh‖M∗(Γ) ≤ Chk+
1
2 |µ|Hk(Γ), ∀µ ∈ Hk(Γ) :=

N∏

l=1

Hk(γl), (2.3b)
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see, e.g., [3]. Here ‖ ·‖2M∗(Γ) :=
∑N

l=1 ‖ ·‖2M∗(γl)
and ‖ ·‖2M(Γ) :=

∑N
l=1 ‖ ·‖2M(γl)

stands
for the broken norms on the interface Γ. Also higher order norms on Γ are always
broken norms, e.g., | · |2Hk(Γ) :=

∑N
l=1 | · |2Hk(γl)

.

Based on these assumptions, we introduce now the finite element spaces of order k on
Ω. Let us define the product space V −1

h by

V −1
h := {v ∈

M∏

i=1

Vi : v|∂γl∩∂γk
= 0, N int < l, k ≤ N}, (2.4a)

and the constrained space Vh by

Vh := {v ∈ V −1
h : b(µh, v) = 0, ∀µ ∈Mh}, (2.4b)

where

b(µ, v) :=
N∑

l=1

〈µ, [v]〉γl
.

Here [·] denotes the jump, i.e., on γl we have [v] := (v|Ωs(l)
)|γl

− (v|Ωm(l)
)|γl

, 1 ≤ l ≤
N int and [v] := (v|Ωs(l)

)|γl
, N int < l ≤ N , and 〈·, ·〉γl

stands for the H1/2-(H1/2)′

duality pairing.
We note that if M = 1 then Vh is the standard conforming finite element space of
order k and if M > 1 then Vh is a non-conforming constrained mortar space of order
k. Due to the corner/edge constraints in (2.4a), we have that the Dirichlet boundary
conditions are strongly satisfied in the definition of Vh.

2.2. Primal formulation and its main result. The weak discrete primal
formulation reads: Find uh ∈ Vh such that

a(uh, vh) = l(vh), ∀vh ∈ Vh, (2.5)

with

a(w, v) =

M∑

i=1

∫

Ωi

∇u · ∇vdx, l(v) =

∫

Ω

fvdx, ∀w, v ∈
M∏

i=1

H1(Ωi).

It is well-known that, under suitable regularity assumptions, uh approximates the
exact solution u in the broken H1-norm and the L2-norm with orders k and k + 1,
respectively, [5, 6]. These a priori estimates are based on the best approximation
properties of the mortar space Vh and an analysis of the consistency error and are
optimal.
The goal of the present section is to obtain quasi-optimal estimates in Theorem 2.1
for the error in the L2-norm on a strip Sh of width 2h, which is defined as

Sh := ∪M
i=1Sh,i (2.6a)

Sh,i := {x ∈ Ωi : dist(x, ∂Ωi) < h} (2.6b)

see also the left picture in Figure 3.1.
The regularity assumption on u in the following Theorem 2.1 is formulated in terms
of Besov spaces Bs

2,q(Ωi), which were defined in (1.1). To help the reader gauge the
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regularity requirement of Theorem 2.1, we recall the fact that for each ε > 0 and
non-integer s we have the embedding Hs+ε(Ωi) ⊂ Bs

2,1(Ωi) ⊂ Hs(Ωi).
Theorem 2.1. Let Ω be convex, let the space Mh satisfy Assumptions (A1) and
(A2), and let uh be given by (2.5). If the solution u of (2.1) satisfies the additional

regularity requirement u ∈∏M
i=1 B

k+ 3
2

2,1 (Ωi), then

‖u− uh‖L2(Sh) ≤ Chk+
3
2 | lnh|‖u‖

B
k+3

2
2,1

,

where ‖u‖2
B

k+3
2

2,1

:=
∑M

i=1 ‖u‖2
B

k+3
2

2,1 (Ωi)
.

Proof. The proof will be given at the end of Section 6.
Remark 2.2. Closely related results for general 2D polygons on graded meshes are
obtained in [1]. While [1] and the present work are based on similar techniques from
the local error analysis in FEM as described in [21, 22], significant differences lie in
the regularity theory developed for the analysis. In view of applications in control
problems, [1] focuses on elliptic equations with right-hand sides in L∞ or Hölder
spaces; this naturally leads to a regularity theory with solutions in weighted W 2,∞-
spaces. In contrast, our regularity theory is based on weighted H2-spaces and the
anisotropic spaces introduced in Section 3.
Remark 2.3. Theorem 2.1 (and analogously Theorem 2.4 below) assume convexity
of Ω. This is done to ensure that certain auxiliary problems have H2-regularity.

2.3. Primal-dual formulation and its main result. Given the primal solu-
tion uh, we can easily define a post-processed Lagrange multiplier λh ∈Mh by

b(λh, wh) = l(Ehwh)− a(uh, Ehwh), ∀wh ∈ Wh, (2.7)

where Eh : Wh → V −1
h is defined by

Eh =

N∑

l=1

Es(l), (2.8)

and Es(l) : Ws(l) → Vs(l) is the extension by zero to all nodal values associated with
nodes not in γl. We remark that the linear system (2.7) is block diagonal. These
blocks are invertible square matrices since we stipulate dim Ws(l) = dim Ms(l) and
assumption (A1). Consequently λh can be computed for each γl separately.
The pair (uh, λh) satisfies also the saddle-point formulation of a mortar problem
and weakly imposed Dirichlet boundary conditions. We note that in the case of
homogeneous Dirichlet conditions there is no difference between strongly and weakly
imposed boundary conditions. Then the discrete saddle point formulation for (2.1)
reads: Find (uh, λh) ∈ V −1

h ×Mh such that

a(uh, vh) + b(λh, vh)=l(vh), ∀vh ∈ V −1
h , (2.9a)

b(µh, uh) =0, ∀µh ∈Mh. (2.9b)

We note that the formulations (2.5), (2.7) on the one hand and (2.9) on the other
hand are equivalent. As shown in [9], the abstract theory of saddle point problems
yields under suitable regularity assumptions on λ the following a priori estimate:

‖λ− λh‖M∗(Γ) ≤ C



(

M∑

i=1

‖u− uh‖2H1(Ωi)

)1/2

+ inf
µh∈Mh

‖λ− λh‖M∗(Γ)


 , (2.10)
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where λ|γl
:= −∂nl

u|Ωs(l)
, and nl is the outer unit normal of ∂Ωs(l) ∩ γl.

The approximation properties of Vh with respect to the broken H1(Ω)-norm yield
O(hk) for the first term in (2.10) whereas the best approximation property of Mh

with respect to the M∗(Γ)-norm yields even O(hk+1/2) by (2.3b). Hence, the a priori

estimate (2.10) for the dual variable is suboptimal by a factor
√
h.? Numerical results

[15, 24] show that the upper bound for the Lagrange multiplier provided by (2.10) is
not sharp. Up to logarithmic factors, the following theorem recovers the optimal rate
of convergence for the dual variable:
Theorem 2.4. Let Ω be convex, let the mortar space Mh satisfy Assumptions (A1)
and (A2), and let (uh, λh) be given by (2.9). If the solution u of (2.1) satisfies the

additional regularity requirement u ∈∏M
i=1B

k+ 3
2

2,1 (Ωi), then

‖λ− λh‖L2(Γ) ≤ Chk| lnh|‖u‖
B

k+3
2

2,1

.

If additionally Ωs(l) is convex, then

‖λ− λh‖
H−

1
2 (γl)

≤ Chk+
1
2 | lnh|‖u‖

B
k+3

2
2,1

.

Proof. The proof will be given at the end of Section 6.

Remark 2.5. We recall Hk+3/2+ε(Ωi) ⊂ B
k+3/2
2,1 (Ωi) for all ε > 0. Therefore, in

the 2D case of a polygon Ω and k = 1, the solution u of (2.1) satisfies the regularity

assumption u ∈ B
5/2
2,1 (Ω) if all interior angles of the polygon Ω are smaller than

2π/3. Then, Theorem 2.4 shows that already piecewise constant approximation of
the Lagrange multiplier converges with rate O(h| lnh|) in the L2(Γ)-norm.

3. Anisotropic spaces and norms. A technical tool for the proof of Theo-
rem 2.1 are aniosotropic norms that reflect the anisotropic structure of tubular neigh-
borhoods of Γ. Near Γ, one can introduce fitted coordinates that single out a spe-
cial variable τ that measures the distance from Γ. An integration over the tubular
neighborhood can then be performed by integrating over the scalar variable τ and
(d − 1)-dimensional manifolds that are “parallel” to Γ. In view of this observation,
our anisotropic norms are based on L2-norms over these (d−1)-dimensional manifolds
and Lp-norms with respect to the τ -variable. The cases p = 1 and p = ∞ will be of
particular interest to us.
As is standard in the context of Lipschitz domains, we employ a localization technique
to define fitted coordinate systems. As we will discuss in more detail below, the
subdomains Ωi (which are assumed to the Lipschitz) are covered by “cylinders” Cji ⊂
Ωi, j = 1, . . . , Ji, and each cylinder Cji is a region above a Lipschitz graph ϕji. On
each such cylinder Cji we may then define anisotropic norms ‖ ·‖L2(γji;Lp). The global
anisotropic norm is obtained by combining the local anisotropic norms.

2h

δ

γ

γ

0

τ

τ

φ
B

y

(y)

Fig. 3.1. Left: strip Sh defined with respect to the distance function δΓ. Right: local shift γτ
with respect to φ.
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Let us give more details concerning the anisotropic norms. To that end, let B, B′ with
B ⊂⊂ B′ ⊂ R

d−1 be two (d − 1)-dimensional balls and φ be a Lipschitz continuous
function on B′. For 0 < D < D′, we define the open cylinders C, C′ and the open
strip S(α, β) by

C := {(x, φ(x) + τ) : x ∈ B, 0 < τ < D},
C′ := {(x, φ(x) + τ) : x ∈ B′, 0 < τ < D′},

S(α, β) := {(x, φ(x) + t) : x ∈ B′, α < t < β} ∩ C′, α ≤ β

and the (d− 1)-dimensional manifolds

γτ := {(x, φ(x) + τ) : x ∈ B}, τ ≥ 0.

The Fubini-Tonelli formula for integration over C yields

∫

C

w =

∫ D

τ=0

∫

x∈B

w(x, φ(x) + τ) dx dτ.

This motivates the definition of a measure µτ on γτ by defining the integral over γτ
by

∫

γτ

w dµτ :=

∫

x∈B

w(x, φ(x) + τ) dx.

If φ is Lipschitz then the measure µτ is equivalent to the classical surface measure
on the (d− 1)-dimensional manifold γτ : The surface measure on γτ is given by ds =
(1+‖∇φ(x)‖22)1/2 dx, where ‖·‖2 is the Euclidean norm on R

d−1. Hence, the constant
in the equivalence depends only on the Lipschitz constant of φ.
Let δγ0 be the distance function to γ0 with respect to the Euclidean norm. Since φ is
assumed to be Lipschitz continuous, we have δγ0(y) ∼ τ uniformly in y ∈ γτ (see also
the right picture in Figure 3.1).
Now, we introduce anisotropic norms on C by

‖v‖L2(γ0;Lp) :=

(∫ D

τ=0

(∫

γτ

v2dµτ

) p
2

dτ

) 1
p

, 1 ≤ p <∞, (3.1a)

‖v‖L2(γ0;L∞) := sup
τ∈(0,D)

(∫

γτ

v2dµτ

) 1
2

(3.1b)

and observe that for p = 2 we recover the standard L2(C)-norm, i.e., ‖ · ‖L2(C) =
‖ ·‖L2(γ0;L2). We recall that the definition of these norms is based on a decomposition
of the d-dimensional cylinder into a one-dimensional and a (d−1)-dimensional subset.
Roughly speaking the L2(γ0;L

p)-norm has a (d− 1)-dimensional L2-component and
a one-dimensional Lp-part. For the one-dimensional integral, we state an elementary
bound for all f ∈ L∞((0, D)):

∫D

τ=0 f(τ) dτ =
∫ h

τ=0 f(τ) dτ +
∫ D

τ=h f(τ) dτ

≤ h‖f‖L∞(0,h) +
(∫D

τ=h
τ−1 dτ

∫D

τ=h
τf2(τ) dτ

)1/2

≤ C
(
h‖f‖L∞(0,h) +

√
| lnh|‖√τf‖L2(0,D)

)
.

(3.2)
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The following lemma shows that a Hölder type inequality holds for our newly defined
anisotropic norms and that the L2-norm on a family of strips can be bounded by a
weighted L2-norm.
Lemma 3.1. For all v, w with well defined norms on C′, we have

∣∣∣∣
∫

C

vw dx

∣∣∣∣ ≤ ‖v‖L2(γ0;Lp)‖w‖L2(γ0;Lq),
1

p
+

1

q
= 1. (3.3)

For 0 < α < β and s > 0, we find

∫ D′

τ=0

‖v‖2L2(S(ατ,βτ)) dτ ≤ C(α, β)‖
√
δγ0v‖2L2(C′) (3.4)

∫ D′

τ=0

τ‖v‖2L2(S(τ−s,τ+s)) dτ ≤ Cs‖
√
(s+ δγ0)v‖2L2(C′), (3.5)

where C, C(α, β) are independent of s and v but depend on the Lipschitz constant of
φ defining the cylinders C, C′.

Proof. Rewriting
∫
C
. . . as

∫ D

τ=0

∫
γτ
. . ., we obtain (3.3) from the standard one-dimensional

Hölder inequality. To show (3.4), we apply Fubini–Tonelli and get

∫ D′

τ=0

‖v‖2L2(S(ατ,βτ)) dτ =

∫ D′

τ=0

∫

x∈B′

∫ min{D′,βτ}

t=min{D′,ατ}

|v(x, φ(x) + t)|2 dt dx dτ

=

∫ D′

t=0

∫

x∈B′

∫ min{t/α,D′}

τ=min{t/β,D′}

|v(x, φ(x) + t)|2 dτ dx dt

≤ (
1

α
− 1

β
)

∫ D′

t=0

∫

x∈B′

t|v(x, φ(x) + t)|2 dx dt

≤ C(α, β)‖
√
δγ0v‖2L2(C′).

Finally, for (3.5) we first note that the case s ≥ D′ is trivial. For s < D′, we split

the integral
∫D′

τ=0 . . . into
∫ s

τ=0 . . .+
∫D′

τ=s . . . and observe that the first term is straight
forward since τ ≤ s ≤ s+ δγ0 . The second term can be bounded by

∫ D′

τ=s

τ‖v‖2L2(S(τ−s,τ+s)) dτ =

∫ D′

τ=s

∫

x∈B′

∫ min{τ+s,D′}

t=τ−s

τ |v(x, φ(x) + t)|2 dt dx dτ

=

∫ D′

t=0

∫

x∈B′

∫ min{t+s,D′}

τ=max{t−s,0}

τ |v(x, φ(x) + t)|2 dτ dx dt

≤ C

∫ D′

t=0

∫

x∈B′

st|v(x, φ(x) + t)|2 dx dt ≤ Cs‖
√
δγ0v‖2L2(C′).

Since each subdomain Ωi is a Lipschitz domain, it can be represented by finitely many
cylinders Cji, j = 1, . . . , Ji, of essentially the above form. More precisely, there exist
Ji Cartesian coordinate systems (described by the variables (x̂ji, yji) ∈ R

d−1 × R)
and the cylinders Cji (with corresponding balls Bji and Lipschitz maps φji and a
fixed 0 < Dji < D′

ji) such that Cji is described in these Cartesian coordinates by
Cji = {(x̂ji, φji(x̂ji) + τ) : x̂ji ∈ Bji, 0 < τ < Dji}. We note that cylinders that
cover the “interior” of Ωi can be described by the function φji ≡ 0 and that the ones
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associated with the “boundary” are given in terms of the Lipschitz boundary functions
which are assumed to be piecewise affine. Furthermore, we have Ωi = ∪Ji

j=1Cji and
note that some Cji do overlap. Combining the contributions from the cylinders, we
can then define broken anisotropic norms on Ω by

‖v‖pL2(Γ;Lp) :=

M∑

i=1

Ji∑

j=1

‖v‖pL2(γji,Lp), 1 ≤ p <∞, (3.6a)

‖v‖L2(Γ;L∞) := max
i=1,...,M

max
j=1,...,Ji

‖v‖L2(γji,L∞), (3.6b)

where we describe, in local coordinates, γji := {(x̂ji, φji(x̂ji)) : x̂ji ∈ Bji}. Following
the lines of the proof of Lemma 3.5 and using the definition (3.6), we obtain the global
Hölder-type inequality for our anisotropic norms

∣∣∣∣
∫

Ω

vw dx

∣∣∣∣ ≤ ‖v‖L2(Γ;Lp)‖w‖L2(Γ;Lq) for all p, q ∈ [1,∞] with
1

p
+

1

q
= 1. (3.7)

Remark 3.2. The Hölder type inequality (3.7) shows ‖u‖L2(Ω) ≤ ‖u‖L2(Γ;L2). For
the converse estimate, we note that

‖u‖2L2(Γ;L2) ≤ Coverlap‖u‖2L2(Ω), Coverlap := sup
x∈Ω

card{(j, i) : x ∈ Cji}.

In other words, Coverlap measures the amount of overlap of the cylinders Cji. Using
a (non-negative) partition of unity (ψji)ji subordinate to Cji, one can show that
‖u‖2L2(Ωi)

=
∑

j ‖
√
ψjiu‖2L2(γji;L2), and we can recover the standard L2-norm. Since

we are not interested in the constants in our a priori bounds, we do not use a partition
of unity.

4. Properties of interpolation operators. We revisit the standard nodal
Lagrange interpolation operator Ikh :

∏M
i=1 C(Ωi) →

∏M
i=1 Vi of order k and consider

its approximation properties with respect to the newly defined anisotropic norms.
We recall the following approximation and stability results for function w that are
sufficiently smooth on each T ∈ Th:

‖w − Ikhw‖Hℓ(T ) ≤ Chm−ℓ‖∇mw‖L2(T ), ℓ ∈ {0, 1},m ∈ {2, k + 1}, (4.1a)

‖∇2Ikhw‖L2(T ) ≤ C‖∇2w‖L2(T ). (4.1b)

The stability result (4.1b) follows directly from an inverse estimate and (4.1a) with l =
0 and m = 2 and using I1h. The following lemma provides a low order approximation
result.
Lemma 4.1. Let w ∈ ∏M

i=1H
2(Ωi) ∩ H1

0 (Ω). Then, with δi denoting the distance
from ∂Ωi,

1

h
‖w − Ikhw‖L2(Γ;L1) + ‖∇(w − Ikhw)‖L2(Γ;L1) ≤ Ch

√
| lnh|

M∑

i=1

‖
√
h+ δi∇2w‖L2(Ωi).

Proof. We consider only the estimate for ∇(w − Ikhw) and restrict our attention to
a single pair of cylinders C ⊂ C′ ⊂ Ωi as described in Section 3. Applying the trace
inequality for elements T and the approximation and stability properties of the nodal
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interpolation operator Ikh , we find for the L2-norm on γτ ∩ T

‖∇(w − Ikhw)‖2L2(γτ∩T )
≤ C

(
h−1‖∇(w − Ikhw)‖2L2(T ) + h‖∇2(w − Ikhw)‖2L2(T )

)

≤ Ch‖∇2w‖2L2(T ), (4.2)

where we used the approximation property (4.1a) and the stability property (4.1b).
Introducing the subdomain

Sh(τ) := ∪T∈IiT , Ii := {T ∈ Ti : γτ ∩ T 6= ∅} (4.3)

and observing Sh(τ) ⊂ S(τ − h, τ + h) (here, we use that h is sufficiently small) we
get in view of (4.2)

‖∇(w − Ikhw)‖2L2(γτ )
=

∑
T∈Ii

‖∇(w − Ikhw)‖2L2(γτ∩T )

≤ Ch‖∇2w‖2L2(Sh(τ))
≤ Ch‖∇2w‖2L2(S(τ−h,τ+h)).

(4.4)

Definition (3.1a) with p = 1 yields

‖∇(w − Ikhw)‖L2(γ0;L1) =

∫ D

τ=0

‖∇(w − Ikhw)‖L2(γτ ) dτ

≤ C
√
h

∫ D

τ=0

‖∇2w‖L2(S(τ−h,τ+h)) dτ.

In the last step, we set f(τ) = ‖∇2w‖L2(S(τ−h,τ+h)) in (3.2) and use Lemma 3.1

‖∇(w − Ikhw)‖L2(γ0;L1) ≤ C
√
h
(
h‖∇2w‖L2(S(0,2h)) +

√
h| lnh|‖

√
(h+ δi)∇2w‖L2(C′)

)

≤ Ch
√
| lnh|‖

√
(h+ δi)∇2w‖L2(C′).

If M > 1, a crucial step in the proof of the optimal a priori estimate in the energy
norm is to establish best approximation properties of the constrained space Vh. This
can be done with the aid of the operator Ph : C(Ω) ∩H1

0 (Ω) → Vh given by

Phv := Ikhv − EhΠh[I
k
hv], (4.5)

where the mortar projection Πh is defined in (2.2), and Eh is given in (2.8). We
note that the operator Ph has best approximation properties of order k in the broken
H1-norm and of order k + 1 in the L2-norm on Ω. On Γ, we have for v ∈ H1

0 (Ω)

‖[v − Phv]‖L2(γl) ≤ chk+1|v|Hk+1(γl) if v|γl
∈ Hk+1(γl) ∀l (4.6a)

Moreover due to its construction, we get the more local estimate

|u− Phu|H1(Ss
h)

+
1

h
‖u− Phu‖L2(Ss

h)
≤ Chk|u|Hk+1(Sh), (4.6b)

where Ss
h := ∪N

l=1S
s
h;l ⊂ Sh. Here S

s
h;l is the union of all elements T ∈ Ts(l) such that

T∩γl 6= ∅. The estimates (4.6a)-(4.6b) are standard and result from the L2-stability of
the mortar projection and the local definition of the Lagrange interpolation operator.
Additionally, we have to establish order k + 1 approximation properties of Ph with
respect to the L2(Γ;L∞)-norm.
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Lemma 4.2. There exists a constant C > 0 independent of the mesh size but depending
on the subdomain decomposition and the approximation order k such that

‖v − Phv‖L2(Γ;L∞) ≤ Chk+1‖v‖
B

k+3
2

2,1

, ∀v ∈
M∏

i=1

B
k+ 3

2
2,1 (Ωi) ∩H1

0 (Ω).

Proof. The structure of the proof is very similar to the proof of Lemma 4.1, and we
restrict ourselves to one single pair of cylinders C ⊂ C′ ⊂ Ωi. Then the definition
of the L2(γ0;L

∞)-norm shows that we have to consider the L2-norm on γτ in more
detail. As in the proof of Lemma 4.1, we have

‖v − Phv‖2L2(γτ )
≤ C

(
1

h
‖v − Phv‖2L2(Sh(τ))

+ h‖∇(v − Phv)‖2L2(Sh(τ))

)
.

For Sh(τ) ∩ Ss
h = ∅, we have Phv = Ikhv on Sh(τ) and thus obviously get from the

local character of the Lagrange interpolation that

‖v − Phv‖2L2(Sh(τ))
≤ Ch2k+1|v|Hk+1(Sh(τ)) ≤ Ch2(k+1)‖v‖

B
k+3

2
2,1

.

The last inequality results from a 1D Sobolev embedding, (see [16, Lemma 2.1] for
details) and the fact that the width of Sh(τ) is O(h).
For Sh(τ) ∩ Ss

h 6= ∅, we apply the triangle inequality. Then the definition (4.5) of Ph

shows that it is sufficient to consider EhΠh[I
k
hv] in more detail. A standard inverse

inequality and the L2(γj)-stability of the mortar projection give

1

h
‖EhΠh[I

k
hv]‖2L2(Sh(τ))

+ h‖∇EhΠh[I
k
hv]‖2L2(Sh(τ))

≤ C

h
‖EhΠh[I

k
hv]‖2L2(Sh(τ))

≤ C

h

N∑

j=1

‖EhΠh[I
k
hv]‖2L2(Ss

h;j∩Ωi)
≤ C

N∑

j=1

‖Πh[I
k
hv]‖2L2(γj∩∂Ωi)

≤ C

N∑

j=1

‖[Ikhv]‖2L2(γj∩∂Ωi)
≤ C

N∑

j=1

‖[Ihvk − v]‖2L2(γj∩∂Ωi)

≤ Ch2(k+1)
N∑

j=1

|v|2Hk+1(γj∩∂Ωi)
≤ Ch2(k+1)‖v‖2

B
k+3

2
2,1

,

where the last bound follows from the fact that the trace map is a continuous operator

from B
1/2
2,1 (Ωi) onto L2(∂Ωi), [20, Thm. 2.9.3]. The global result is then obtained

from the local result by noting that the number of required cylinders is finite and
independent of the mesh size.

5. Bounds for dual problems with locally supported data. A classical tool
to obtain L2-estimates in finite element methods is the Aubin–Nitsche trick, which
exploits properties of a dual problem with the finite element error as the right-hand
side data. Here, we consider two types of dual problems. The first one, studied in
Section 5.1, is associated with the global domain Ω and Dirichlet boundary conditions.
The second one is concerned with a subdomain Ωs(l) and Neumann boundary data.
In both cases we are particularly interested in right-hand sides that are supported by
strips of width O(h).
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5.1. Global dual problem with Dirichlet data. We consider

−∆w = v ∈ L2(Ω) in Ω, w = 0 on ∂Ω (5.1)

with locally supported data, i.e., supp v ⊂ Sh, see (2.6a) for a definition of Sh. We
introduce the solution operator TD : H−1(Ω) → H1

0 (Ω) and assume that the following
shift theorem holds:

TD : H−1+s0(Ω) → H1+s0(Ω) ∩H1
0 (Ω) is a linear, bounded for some s0 > 1/2 (5.2)

Remark 5.1. For convex domains, it is well-known that s0 = 1 is admissible, [13].

5.1.1. Regularity. We start with a regularity result which is similar to [2],
where the 2D case is studied.
Lemma 5.2. Let Ω ⊂ R

d, d ∈ {2, 3} satisfy (5.2). Then the solution operator TD for
the problem (5.1) maps

(
B

1/2
2,1 (Ω)

)′
→ B

3/2
2,∞(Ω) ∩H1

0 (Ω), (5.3a)

and moreover, for supp v ⊂ Sh, we have

‖TDv‖
B

3/2
2,∞(Ω)

≤ C
√
h‖v‖L2(Ω). (5.3b)

Proof. We start with the proof of (5.3a). By interpolation and assumption (5.2), we
have for 0 < θ < 1:

TD : (H−1+s0(Ω), H−1(Ω))θ,∞ → (H1+s0(Ω), H1(Ω))θ,∞ = B
1+s0(1−θ)
2,∞ (Ω).

For s0 > 0.5, we get that θ := 1 − (2s0)
−1 ∈ (0, 1). By [20, Thm. 1.11.2] or [19,

Lemma 41.3], we have then

B
3/2
2,∞(Ω) = B

1+s0(1−θ)
2,∞ (Ω) = (H1+s0(Ω), H1(Ω))θ,∞

and in view of the continuous embedding H1
0 (Ω) ⊂ H1(Ω) and H1−s0

0 (Ω) ⊂ H1−s0(Ω),
we find

(
B

1/2
2,1 (Ω)

)′
=
(
B

1−s0(1−θ)
2,1 (Ω)

)′
= ((H1−s0(Ω), H1(Ω))θ,1)

′

⊂ ((H1−s0
0 (Ω), H1

0 (Ω))θ,1)
′ = ((H1−s0

0 (Ω))′, (H1
0 (Ω))

′)θ,∞

= (Hs0−1(Ω), H−1(Ω))θ,∞.

This shows (5.3a). To see (5.3b), let v ∈ L2(Ω) with supp v ⊂ Sh. Then (5.3a) in
combination with [16, Lemma 2.1] shows

‖TDv‖
B

3/2
2,∞(Ω)

≤ C‖v‖
(B

1/2
2,1 (Ω))′

= C sup
z∈B

1/2
2,1 (Ω)

(v, z)L2(Ω)

‖z‖
B

1/2
2,1 (Ω)

≤ C‖v‖L2(Ω) sup
z∈B

1/2
2,1 (Ω)

‖z‖L2(Sh)

‖z‖
B

1/2
2,1 (Ω)

≤ C
√
h‖v‖L2(Ω).

12



Remark 5.3. For Lipschitz domains Ω and supp v ⊂ Sh, we obtain (without assuming
(5.2)) with the aid of [16, Lemma 2.1]

‖TDv‖H1(Ω) ≤ C sup
z∈H1

0 (Ω)

(v, z)L2(Ω)

‖z‖H1(Ω)
≤ C sup

z∈H1
0 (Ω)

‖v‖L2(Ω)‖z‖L2(Sh)

‖z‖H1(Ω)
≤ C

√
h‖v‖L2(Ω).

Lemma 5.4. Let the bounded Lipschitz domain Ω ⊂ R
d, d ∈ {2, 3}, be a polygon

(d = 2) or a polyhedron (d = 3). Assume that w ∈ B
3/2
2,∞(Ω) is the solution of (5.1)

and that supp v ⊂ Sh, then there exists constants C, c̃ > 0 independent of v such that

‖
√
δΓ∇2w‖L2(Ω\Sc̃h) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

,

where δΓ is the distance function to Γ.
Proof. Step 1: Let C ⊂ C′ ⊂ Ωi be a pair of cylinders as described in Section 3 such
that {(x, φ(x)) : x ∈ B′} is a part of Γ. We assume furthermore that on C′ we have

C1t ≤ dist(z,Γ) ≤ C2t ∀z = (x, φ(x) + t) ∈ C′.

Let C′′ be a second cylinder of the form C′′ = {(x, φ(x) + t) : 0 < t < D′′, x ∈ B′′}
where B ⊂⊂ B′′ ⊂⊂ B′ and D < D′′ < D′. Let χ ∈ C∞(Rd) be such that χ|C′′ ≡ 1
and χ|Ωi\C′ ≡ 0. To simplify the notation, we assume that function w is given in a
coordinate system commensurate with the coordinate system describing the cylinders
C, C′, viz., w evaluated at a point (x, φ(x) + t) ∈ C′ is given by w(x, φ(x) + t). A
translation in the last variable defines the function w̃ by w̃(x, φ(x)+ t) := w(x, φ(x)+
t+ h/(2C1)). We note

−∆w̃ = 0 on {(x, φ(x) + t) : x ∈ B′,−h/(2C1) < t < D′ − h/(2C1)} (5.4)

if h is sufficiently small. In this step, we show

‖w̃‖H3/2(C′′) ≤ C
√
| lnh|‖w‖

B
3/2
2,∞(Ωi)

. (5.5)

Using the characterization of H3/2(C′) in terms of the K-functional, we write (cf. also
[10, p.193, eqn. (7.4)])

‖χw̃‖2H3/2(C′) =

∫ 1

t=0

(
t−1/2K(t, χw̃)

)2 dt
t

=

∫ ε

t=0

(
t−1/2K(t, χw̃)

)2 dt
t
+

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt
t

(5.6)

The second integral in (5.6) can be estimated by

∫ 1

t=ε

(
t−1/2K(t, χw̃)

)2 dt
t

≤
∫ 1

t=ε

dt

t
sup
t>0

(
t−1/2K(t, χw̃)

)2
≤ ln ε‖χw̃‖2

B
3/2
2,∞(C′)

.

For the first integral in (5.6) we employ interior regularity estimates for solutions of
the (homogeneous) Laplace equation. Specifically, (5.4) and interior regularity (see,
e.g., [12, Thm. 8.8]) give

‖χw̃‖H2(C′) ≤ Ch−1‖w‖H1(C′).
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Hence, estimating K(t, χw̃) = infv∈H2 ‖χw̃− v‖H1(C′)+ t‖v‖H2(C′) ≤ t‖χw̃‖H2(C′), we
obtain

∫ ε

t=0

t−2K2(t, χw̃) dt ≤ ε‖χw̃‖2H2(C′) ≤ Cεh−2‖w‖2H1(C′).

We conclude with

‖χw̃‖2
H3/2(C′)

≤ C

[
εh−1‖w‖2H1(C′) + ln ε‖χw̃‖2

B
3/2
2,∞(C′)

]

≤ C
[
εh−2 + ln ε

]
‖w‖2

B
3/2
2,∞(C′)

≤ C
[
εh−2 + ln ε

]
‖w‖2

B
3/2
2,∞(Ωi)

where, in the penultimate last step we have employed that multiplication by a smooth
function and translation are bounded operations on Sobolev (and therefore also Besov)
spaces. Selecting ε = h2 shows ‖χw̃‖H3/2(C′) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ωi)

from which we

get (5.5) in view of the support properties of χ.
Step 2: Let z solve −∆z = 0 on a ball B1+ρ of radius 1 + ρ for a fixed ρ > 0.
Then standard interior regularity (see, e.g., [12, Thm. 8.8]) gives ‖∇2z‖L2(B1) ≤
C‖z‖H1(B1+ρ) ≤ C‖z‖H3/2(B1+ρ). Since linear polynomials are harmonic, we even get

‖∇2z‖L2(B1) ≤ C|z|H3/2(B1+ρ) with the H3/2-seminorm on the right-hand side. For
the remainder of the argument, we use the Aronstein–Slobodeckij characterization of
the H3/2-seminorm. In view of (5.6) we get for balls Br such that B(1+ρ)r ⊂ C′

‖∇2w̃‖L2(Br) ≤ Cr−1/2|w̃|H3/2(B(1+ρ)r)
.

Using, for example, the Besicovitch covering theorem, we can covering C by overlap-
ping balls Bri(xi) with centers xi and radii ri ∼ (h+ δΓ(xi)) such that the stretched
balls Bri(1+ρ)(xi) have a finite overlap property. A covering argument then shows

‖
√
δγ0 + h∇2w̃‖L2(C) ≤ C|w̃|H3/2(C′) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

. (5.7)

Since w̃ is obtained by a translation of w, we arrive at

‖
√
δγ0∇2w‖L2(Ch) ≤ C

√
| lnh|‖w‖

B
3/2
2,∞(Ω)

,

where Ch := {(x, φ(x) + t) : h/(2C1) ≤ t ≤ D − h/(2C1)}.
Finally, covering Ωi by such cylinders allows us to conclude the proof.

5.1.2. FEM a priori estimates. An important ingredient of the proof of The-
orem 2.1, which provides estimates for ‖u − uh‖L2(Sh), is the analysis of ‖∇(w −
wh)‖L2(Γ;L1), where w = TDv solves (5.1) with v supported by the strip Sh, and wh is
the mortar approximation of w. In view of the support properties of v, the L1 integral
appearing in ‖∇(w−wh)‖L2(Γ;L1) is split into an integral over (0, c̃h) and (c̃h,D) for

suitable c̃ > 0. These two integrals are handled differently. The integral over (0, h̃) is
handled in Lemma 5.6; the integral over (c̃h,D) is covered by the following Lemma 5.5.
In contrast to Lemma 5.6, Lemma 5.5 does not exploit the support properties of v in
the dual problem (5.1). Instead, it uses local approximation properties of the FEM
as discussed in [21, 22]. Indeed, a key ingredient of the proof of Lemma 5.5 rests on
the following result that can be found, for example, in [21, Sec. 5.4]: For two balls
Br ⊂ Br′ ⊂ C′ with the same center and radii r, r′ we have the local estimate

‖∇(w − wh)‖L2(Br) ≤ C

(
‖∇(w − Ikhw)‖L2(Br′ )

+
1

r′ − r
‖w − wh‖L2(Br′ )

)
. (5.8)
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Based on similar covering arguments as those employed to reach (5.7), we obtain from
(5.8) the estimate

‖
√
δΓ∇(w−wh)‖L2(C\Sc̃h) ≤ C

(
‖
√
δΓ∇(w − Ikhw)‖L2(C′\Sh) + ‖w − wh√

δΓ
‖L2(C′\Sh)

)
;

(5.9)
here, c̃ is assumed to be sufficiently large (but independent of h). This weighted FEM
error estimate leads to the following lemma:
Lemma 5.5. Let C ⊂ C′ ⊂ Ωi be cylinders as described in Section 3. Let w ∈
H1(Ωi) ∩H2

loc(Ωi) and wh ∈ Vi satisfy the orthogonality condition
∫

C′

∇(w − wh) · ∇v dx = 0 ∀v ∈ Vi ∩H1
0 (C′). (5.10)

Then, with δΓ denoting the distance from Γ we have for h sufficiently small and c̃
sufficiently large

∫ D

τ=c̃h

‖∇(w − wh)‖L2(γτ ) dτ ≤ C
√
| lnh|

[
h‖
√
δΓ∇2w‖L2(C′\Sh) +

∥∥∥∥
w − wh√

δΓ

∥∥∥∥
L2(C′\Sh)

]
.

Proof. We start with an elementary bound resulting from Cauchy-Schwarz:
(∫ D

τ=c̃h

‖∇(w − wh)‖L2(γτ ) dτ

)2

≤ C| ln h|
∫ D

τ=c̃h

τ‖∇(w − wh)‖2L2(γτ )
dτ

≤ C| ln h|‖
√
δΓ∇(w − wh)‖2L2(C\Sc̃h)

.

The last term can be estimated with the aid of (5.9) and the local approximation
properties of the operator Ikh allow us to conclude the argument.
Lemma 5.6. Let Ω be convex. Then, for v ∈ L2(Sh) ⊂ L2(Ω) and w := TD(v) (see
(5.1)) and the mortar approximation wh of w, there holds

‖∇(w − wh)‖L2(Γ;L1) ≤ Ch3/2| lnh|‖v‖L2(Ω).

Proof. Let C ⊂ C′ ⊂ Ωi be cylinders as in the statement of Lemma 5.5. The Cauchy-
Schwarz inequality and Fubini-Tonelli imply for arbitrary but fixed c̃ > 0

∫ c̃h

τ=0

‖∇(w − wh)‖L2(γτ ) dτ ≤
√
c̃h

√∫ c̃h

τ=0

‖∇(w − wh)‖2L2(γτ )
dτ

≤
√
c̃h‖∇(w − wh)‖L2(S(0,c̃h)) ≤ C

√
h‖∇(w − wh)‖L2(Ωi).

Since Ω is convex, we have ‖w‖H2(Ω) ≤ C‖v‖L2(Ω), and standard mortar estimates

yield
∑M

i=1 ‖w − wh‖2H1(Ωi)
≤ Ch2‖w‖2H2(Ω) ≤ Ch2‖v‖2L2(Ω). Thus,

∫ c̃h

τ=0

‖∇(w − wh)‖L2(γτ ) ≤ Ch3/2‖v‖L2(Ω). (5.11)

For the integral
∫D

τ=c̃h
, we recall the regularity assertions ‖w‖

B
3/2
2,∞(Ω)

≤ C
√
h‖v‖L2(Ω)

of Lemma 5.2 and note that therefore we have estimates for∇2w in a weighted Sobolev
space by Lemma 5.4. Combining this observation with Lemma 5.5 yields
∫ D

τ=c̃h

‖∇(w − wh)‖L2(γτ ) dτ ≤ Ch3/2| lnh|‖v‖L2(Ω) + Ch−1/2‖w − wh‖L2(Ω). (5.12)
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The convexity of Ω implies (see, e.g., [3, Rem. 2.8])

‖w − wh‖L2(Ω) ≤ Ch2‖w‖H2(Ω) ≤ Ch2‖v‖L2(Ω). (5.13)

Inserting this in (5.12) and combining the result with (5.11), we get for the cylinder
C that ‖w − wh‖L2(γ0;L1) ≤ Ch3/2| lnh|‖v‖L2(Ω).

By summing over all cylinders, we obtain the desired estimate.

5.2. Local dual problem with Neumann data. The regularity theory and
convergence estimates of Section 5.1 are useful for the proof of Theorem 2.1 and, in
turn, the estimate for ‖λ−λh‖L2(Γ) in Theorem 2.4. For the estimate ‖λ−λh‖H−1/2(γl)

of Theorem 2.4, we need to consider a local Neumann problem instead of the global
Dirichlet problem (5.1). Since most of the arguments run parallel to those of Sec-
tion 5.1, we will be brief.

We consider the problem: Given v, find w̃v such that

−∆w̃v = v − 1

|Ωi|

∫

Ωi

v dx in Ωi, ∂nw̃v = 0 on ∂Ωi,

∫

Ωi

w̃v = 0, (5.14)

where |Ωi| denotes the measure of Ωi. Since the right-hand side v − 1/|Ωi|
∫
Ωi
v

has vanishing mean, (5.14) has a unique solution. We denote by TN : v 7→ u the
corresponding solution operator. As is customary in elliptic regularity theory, for
functions v that are merely in (H1(Ωi))

′, the integral
∫
Ωi

1v dx is understood as a

duality pairing so that TN is in fact an operator (H1(Ωi))
′ → H1(Ωi). Concerning

its regularity properties, we have analogously to Lemma 5.2:

Lemma 5.7. Assume that Ωi is convex. Let Sh,i be as in (2.6b). Let TN be the

solution operator for (5.14). Then TN is a bounded linear operator (B
1/2
2,1 (Ωi))

′ →
B

3/2
3,∞(Ωi). Additionally, if v ∈ L2(Ωi) satisfies supp v ⊂ Sh,i, then ‖TNv‖

B
3/2
2,∞(Ωi)

≤
C
√
h‖v‖L2(Ωi), where C > 0 is independent of v and h.

Proof. Lax–Milgram provides in the standard way that TN : (H1(Ωi))
′ → H1(Ωi) is

bounded and linear; by convexity we have furthermore that TN : L2(Ωi) → H2(Ωi)
is bounded. Reasoning in exactly the same way as in the proof of Lemma 5.2 then
yields the result.

The analog of Lemma 5.6 is

Lemma 5.8. Let Ωi be convex, Sh,i be given by (2.6b). Assume u ∈ B
k+3/2
2,1 (Ωi) and

that uh,i ∈ Vi satisfies the orthogonality condition

∫

Ωi

∇(u− uh,i) · ∇v dx = 0 ∀v ∈ Vi.

Then,

inf
m∈R

‖u− uh,i −m‖L2(Sh,i) ≤ Chk+3/2| lnh|‖u‖
B

k+3/2
2,1 (Ωi)

, (5.15)

|u− uh,i|H1/2(∂Ωi) ≤ Chk+1/2| lnh|‖u‖
B

k+3/2
2,1 (Ωi)

. (5.16)

where C > 0 is independent of h and u.

Proof. The proof follows from the developments in Section 5.1.2. Letm be the average
of u − uh,i over Sh,i. For any v ∈ L2(Ωi) with supp v ⊂ Sh,i, let mv be its average
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over Ωi. Let vh ∈ {z ∈ Vh,i :
∫
Ωi
z dx = 0} be the Ritz projection of TNv, where TN

is the solution operator for (5.14). Then, by the standard Aubin–Nitsche argument

(u − uh,i −m, v)L2(Ωi) = (u − uh,i −m, v −mv)L2(Ωi) =

∫

Ωi

∇(u − uh,i) · ∇TNv dx

=

∫

Ωi

∇(u− uh,i) · ∇(TNv − vh) dx =

∫

Ωi

∇(u− Ikhu) · ∇(TNv − vh) dx.

We note that the regularity assertion of Lemma 5.7 for the Neumann problem is of
the same type as that of Lemma 5.2 for the Dirichlet problem. Therefore, the same
arguments as those used in Lemma 5.6 can be employed leading to

‖TNv − vh‖L2(∂Ωi;L1) ≤ Ch3/2| lnh|‖v‖L2(Ωi).

Finally, the arguments of the proof of Lemma 4.2 yield ‖∇(u − Ikhu)‖L2(∂Ωi;L∞) ≤
Chk‖u‖

B
k+3/2
2,1 (Ωi)

, which allows us to conclude the validity of (5.15). The estimate

(5.16) follows from (5.15) by the triangle inequality and inverse estimates: for ar-
bitrary m ∈ R we can estimate |u − uh,i|H1/2(∂Ωi) = |u − uh,i − m|H1/2(∂Ωi) ≤
|u − Ikhu|H1/2(∂Ωi) + |Ikhu − uh,i − m|H1/2(∂Ωi). The approximation properties of

Ikh allow us to estimate the first term in the desired way. Inverse estimates yield
|Ikhu−uh,i−m|H1/2(∂Ωi) ≤ Ch−1‖Ikhu−uh,i−m‖L2(Sch,i) for suitable c > 0. Inserting

again u by means of the triangle inequality, using the approximation properties of Ikh
and (5.15) allows us to conclude the proof.

6. Proof of Theorems 2.1, 2.4.

6.1. Proof of Theorem 2.1. We start with some notation. For v ∈ L2(Sh) ⊂
L2(Ω), let w = TDv be the solution of the dual problem (5.1). Correspondingly, we
let λw ∈ L2(Γ) be defined by λw|γl

:= −∂nl
w|Ωs(l)

. The function wh ∈ Vh stands
for the nonconforming mortar finite element approximation of w (i.e., the solution of
(2.9) with l(z) = (v, z)L2(Ω)).
For our nonconforming mortar method, the classical Galerkin orthogonalities for u−uh
and w − wh do not hold anymore and have to be replaced with

a(u− uh, χh) + b(χh, λ) = 0, ∀χh ∈ Vh, (6.1a)

a(w − wh, χh) + b(χh, λw) = 0, ∀χh ∈ Vh, (6.1b)

where the second term in (6.1a) and (6.1b) measures the nonconformity of the finite
element approximation. We are now in position of prove Theorem 2.1:
Proof Theorem 2.1. For v ∈ L2(Sh), let w and wh be as defined above. Then the
L2-norm of the error eh := u− uh restricted to Sh can be expressed as

‖eh‖L2(Sh) = sup
v∈L2(Sh),‖v‖L2(Sh)=1

(eh, v)L2(Sh) = sup
v∈L2(Sh),‖v‖L2(Sh)=1

(eh,−∆w)L2(Ω).

Using Green’s formula, we find with the aid of (6.1) for all µh, µ̃h ∈ Mh and the
operator Ph of (4.5)

(eh,−∆w)L2(Ω) = a(w, u − uh)− b(u− uh, λw)− a(u− uh, wh)− b(wh, λ)

−a(w − wh, Phu− uh)− b(Phu− uh, λw)

= a(w − wh, u− Phu)

+ b(w − wh, λ− µh) + b(u− Phu, λw − µ̃h). (6.2)
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Now we consider the three terms on the right hand side separately and start with
the two contributions resulting from the consistency error. First, the assumption

u ∈ B
k+ 3

2
2,1 implies by the trace theorem and the fact that the subdomains Ωi are

polygonal/polyhedra that λ ∈ Hk(γl) edgewise/facewise, [20, Thm. 2.9.3]. The
convexity of Ω implies w ∈ H2(Ω) with ‖w‖H2(Ω) ≤ C‖v‖L2(Ω) and additionally∑M

i=1 ‖w − wh‖2H1(Ωi)
≤ Ch2‖w‖2H2(Ω) as well as the L2-estimate (5.13). Together

with the approximation property Assumption (A2) and the multiplicative trace in-
equality, we get

inf
µh∈Mh

b(w − wh, λ− µh) ≤ inf
µh∈Mh

‖[w − wh]‖L2(Γ)‖λ− µh‖L2(Γ)

≤ Chk‖λ‖Hk(Γ)

(
M∑

i=1

‖w − wh‖L2(Ωi)‖w − wh‖H1(Ωi)

)1/2

≤ Chk‖u‖
B

k+3
2

2,1

h
3
2 ‖w‖H2(Ω) ≤ Chk+

3
2 ‖u‖

B
k+3

2
2,1

. (6.3)

For the second consistency term in (6.2), we use the approximation properties of
Ph given in Lemma 4.2 and our convexity assumption (which implies λw ∈ H1/2

edgewise/facewise with corresponding bounds that can be controlled by ‖v‖L2(Ω)):

inf
µ̃h∈Mh

b(u− Phu, λw − µ̃h) ≤ inf
µ̃h∈Mh

‖[u− Phu]‖L2(Γ)‖λw − µ̃h‖L2(Γ)

≤ Chk+1+ 1
2 ‖λw‖

H
1
2 (Γ)

‖u‖
B

k+3
2

2,1

≤ Chk+
3
2 ‖u‖

B
k+3

2
2,1

.(6.4)

The first term on the right of (6.2) can be bounded by

a(w − wh, u− Phu) ≤ C‖∇(w − wh)‖L2(Γ;L1)‖∇(u− Phu)‖L2(Γ;L∞)

in view of the Hölder type inequality (3.3). Then, the upper bounds (6.3) and (6.4)
in combination with Lemma 5.6 and Lemma 4.2 yield the result.
Corollary 6.1. Assume Ω to be a convex polygon/polyhedron. Then

‖∂nu− ∂nuh‖L2(Γ) ≤ Chk| lnh|‖u‖
B

k+3/2
2,1

.

Proof. Fix one subdomain Ωi. By the triangle inequality, we get ‖∂n(u−uh)‖L2(∂Ωi) ≤
‖∂n(u − Ikhu)‖L2(∂Ωi) + ‖∂n(Ikhu − uh)‖L2(∂Ωi). The approximation properties (4.1)
then imply

‖∂n(u−Ikhu)‖2L2(∂Ωi)
≤ Chk/2‖u‖Hk+1(Sh)h

(k−1)/2‖u‖Hk+1(Sh) ≤ Chkh−1/2‖u‖Hk+1(Sh).

[16, Lemma 2.1] implies ‖u‖Hk+1(Sh) ≤ Ch1/2‖u‖
B

k+3/2
2,1

and thus ‖∂n(u−Ikhu)‖L2(∂Ωi) ≤
Chk‖u‖

B
k+3/2
2,1

. Using standard inverse estimates, we obtain ‖∂n(uh − Iu)‖L2(∂Ωi) ≤
Ch−3/2‖uh − Iu‖L2(Sh). The triangle inequality, Lemma 5.6, and (4.1a) allow us to
conclude the argument.

6.2. Proof of Theorem 2.4. Since the exact solution (u, λ) satisfies a(u, v) +

b(v, λ) = l(v) for all v ∈ ∏M
i=1H

1(Ωi) and the discrete saddle point solution (uh, λh)
satisfies (2.9a), we have the relation

a(u− uh, vh) + b(vh, λ− λh) = 0 ∀vh ∈ V −1
h , (6.5)
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which will be important to transfer estimates for ‖u−uh‖L2(Sh) to estimates for λ−λh.
Proof of Theorem 2.4. We start with the a priori bound in the L2-norm, whose proof
is based on Theorem 2.1 and the triangle inequality. Using (2.3a), (2.3b) and (4.6a),
(4.6b), we get with the aid of (6.5) (recall the definition of Eh in (2.8))

‖λ− λh‖L2(Γ) ≤ C
(

inf
µh∈Mh

‖λ− µh‖L2(Γ) + sup
wh∈Wh

∫
Γ(λ− λh)whds

‖wh‖L2(Γ)

)

≤ C
(
hk‖λ‖Hk(Γ) + sup

wh∈Wh

b(Ehwh, λ− λh)

‖wh‖L2(Γ)

)

≤ C
(
hk‖u‖

B
k+3

2
2,1

+ sup
wh∈Wh

a(Ehwh, uh − u)

‖wh‖L2(Γ)

)

≤ Chk‖u‖
B

k+3
2

2,1

+ C
1√
h
‖uh − u‖H1(Sh)

≤ Ckk‖u‖
B

k+3
2

2,1

+ C
1√
h
(‖Phu− u‖H1(Sh) +

1

h
‖Phu− uh‖L2(Sh))

≤ C(hk‖u‖
B

k+3
2

2,1

+ h−1/2+k|u|Hk+1(S2h) +
1

h
3
2

‖u− uh‖L2(Sh
))

≤ Chk| lnh|‖u‖
B

k+3
2

2,1

,

where in the last step we employed [16, Lemma 2.1] to bound ‖∇k+1u‖L2(S2h) ≤
C
√
h‖∇k+1u‖

B
1
2
2,1

≤ C
√
h‖u‖

B
k+3

2
2,1

and used Theorem 2.1 to estimate ‖u−uh‖L2(Sh).

This shows the desired L2(Γ) estimate.
For the H−1/2-estimate, we focus on one interface γl where Ωs(l) is convex. In contrast
to the weighted L2-norm, the trivial extension Eh is not stable with respect to the

H
1
2
00(γl)-norm. Thus we have to work with a different extension operator. Here we

first extend wh ∈ Ws(l) trivially to an element on ∂Ωs(l) and then apply the discrete
harmonic extension operator onto Vs(l). The resulting element is denoted by Hs(l)wh

and is trivially extended to the other subdomains. We note that Hs(l)wh ∈ V −1
h . We

denote by uh,s(l) ∈ Vs(l) the solution of

∫

Ωs(l)

∇(u− uh,s(l)) · ∇v dx = 0 ∀v ∈ Vs(l),

which is unique if we impose the additional condition that u − uh,s(l) has vanishing

mean. uh,s(l) is viewed as an element of
∏M

i=1 Vi by the trivial extension. Following

the lines of the L2-estimate and using the uniform inf-sup stability in the H−1/2-norm,
we find using the facts that Hs(l)wh and uh − uh,s(l) are discrete harmonic on Ωs(l):

‖λ− λh‖
H−

1
2 (γl)

≤ C
(

inf
µh∈Ms(l)

‖λ− µh‖
H−

1
2 (γl)

+ sup
wh∈Ws(l)

∫
Γ(λ − λh)whds

‖wh‖
H

1
2
00(γl)

)

≤ C
(
hk+

1
2 ‖u‖

B
k+3

2
2,1

+ sup
wh∈Ws(l)

a(Hs(l)wh, uh − u)

‖wh‖
H

1
2
00(γl)

)

= C
(
hk+

1
2 ‖u‖

B
k+3

2
2,1

+ sup
wh∈Ws(l)

a(Hs(l)wh, uh − uh,s(l))

‖wh‖
H

1
2
00(γl)

)
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≤ Chk+
1
2 ‖u‖

B
k+3

2
2,1

+ C|uh − uh,s(l)|H 1
2 (∂Ωs(l))

≤ Chk+
1
2 ‖u‖

B
k+3

2
2,1

+ C inf
m∈R

1

h
‖uh − uh,s(l) −m‖L2(Sh,s(l))

≤ Chk+
1
2 ‖u‖

B
k+3

2
2,1

+ C
1

h
‖u− uh‖L2(Sh,s(l))

+C inf
m∈R

1

h
‖u− uh,s(l) −m‖L2(Sh,s(l)).

Here, we used the strips Sh,i defined in (2.6b). Finally the result follows from
Lemma 5.8 and Theorem 2.1.

An application of Besicovitch’s covering theorem. Lemma 6.2. Let Ω ⊂
R

d be bounded open and M ⊂ Ω be a closed set. Fix c ∈ (0, 1) and ε ∈ (0, 1) such that

1− c(1 + ε) =: c0 > 0.

For each x ∈ Ω, let Bx := Bc dist(x,M)(x) be the closed ball of radius c dist(x,M)

centered at x, and let B̂x := B(1+ε)c dist(x,M)(x) denote the stretched (closed) ball of
radius (1 + ε)c dist(x,M) also centered at x.
Then there exists a countable set xi ∈ Ω, i ∈ N and a constant N ∈ N depending
solely on the spatial dimension d with the following properties:

1. (covering property) ∪i∈NBxi ⊃ Ω

2. (finite overlap) for each x ∈ Ω, there holds card{i |x ∈ B̂xi} ≤ N .
Proof. By the Besicovitch covering theorem (see, e.g., [25, Thm. 1.3.5] or [11, Sec. 1.5.2])
there exists N ′, which depends solely on d, and there exist N ′ families Gi, i =
1, . . . , N ′, of balls with the following properties:

1. Each Gi consists of a countable set of closed balls Bij = Bc dist(xij ,M)(xij)
(the countably family is, for convenience, indexed by j ∈ N).

2. For each i, the elements of Gi are pairwise disjoint
3. The balls cover Ω, i.e., Ω ⊂ ∪N ′

i=1 ∪j∈N Bij

Hence, we have obtained the sets Bxi that cover Ω. In order to see the finite over-

lap property of the stretched balls B̂xi , we proceed in several steps. We recall the
definition of c0 > 0 and introduce c1 by

c0 := 1− c(1 + ε), c1 := 1 + c(1 + ε).

1. step: For x ∈ Ω and i such that x ∈ B̂xi there holds

c0 dist(xi,M) ≤ dist(x,M) ≤ c1 dist(xi,M).

This follows from the triangle inequality in the following way. Since x ∈ B̂xi , we have
|x− xi| ≤ c(1 + ε) dist(xi,M) and thus

dist(xi,M) ≤ dist(x,M) + |x− xi| ≤ dist(x,M) + c(1 + ε) dist(xi,M),

which implies

(1− c(1 + ε)) dist(xi,M) ≤ dist(x,M).

Conversely, we have

dist(x,M) ≤ dist(xi,M) + |x− xi| ≤ dist(xi,M) + c(1 + ε) dist(xi,M)

= (1 + c(1 + ε)) dist(xi,M)
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2. step Fix x ∈ Ω. Consider one of the families Gi, i.e., fix i ∈ {1, . . . , N ′}. Then the
balls Bij of Gi are pairwise disjoint. Define the set of indices

Ix := {j |x ∈ B̂ij}
of stretched balls containing x. By the first step, for any j ∈ Ix, we have that the
radius rj = c dist(xij ,M) of the ball Bij satisfies rj ∼ dist(x,M) =: rx with the
implies constants depending solely on c0 and c1. In order to estimate the cardinality
of Ix, we write

cardIx =
∑

j∈Ix

1 =
∑

j∈Ix

|B̂ij |
|B̂ij |

∼
∑

j∈Ix

|Bij |
rdx

=
1

rdx
| ∪j∈Ix Bij |

≤ 1

rdx
| ∪j∈Ix B̂ij | ≤

1

rdx
|BCrx(x)| ≤ C′.

Here, we exploited first the fact that for fixed i the balls Bij , j ∈ N are pairwise

disjoint, then the fact that all the stretched balls B̂ij , j ∈ Ix contain the point x and
have radius comparable to rx = dist(x,M). The constant C > 0 thus depends solely
on c0 and c1 and therefore also the constant C′.
3. step: The second step shows that for each family Gi, the cardinality Ix is bounded by
C′. Hence, any x ∈ Ω can be in at mostN ′C′ of the balls {B̂ij | i ∈ {1, . . . , N ′}, j ∈ N},
which concludes the argument.
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