ASC Report No. 1/2010

Mapping Properties of Combined Field
Helmholtz Boundary Integral Operators

Jens Markus Melenk

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien
www.asc.tuwien.ac.at ISBN 978-3-902627-03-2




Most recent ASC Reports

49/2009
48/2009
47/2009
46,/2009

45/2009

44/2009

43,2009
42,2009

41,/2009

40/2009

Markus Aurada, Jens Markus Melenk, Dirk Praetorius
Mixed Conforming Elements for the Large-Body Limit in Micromagnetics

Irene Reichl, Winfried Auzinger, Heinz-Bodo Schmiedmayer, Ewa Weinmiiller
Reconstructing the Knee Joint Mechanism from Kinematic Data

Irena Rachinkova, Svatoslav Stanék, Ewa Weinmiiller, Michael Zenz
Neumann Problems with Time Singularities

Kazuo Aoki, Ansgar Jiingel, Peter A. Markovich
Small Velocity and finite Temperature Variations in Kinetic Relaxation Models

Ansgar Jiingel, Jan-Frederik Mennemann

Time-dependent Simulations of Multidimensional Quantum Waveguides Using
a Time-Splitting Spectral method

Markus Aurada, Michael Ebner, Samuel Ferraz-Leite, Petra Goldonits, Michael
Karkulik, Markus Mayr, Dirk Praetorius

HILBERT — A MATLAB Implementation of Adaptive BEM

Matthias Langer, Harald Woracek

A Local Inverse Spectral Theorem for Hamilton Systems

Ansgar Jiingel

Energy Transport in Semiconductor Devices

Ansgar Jiingel

Global Weak Solutions to Compressible Navier-Stokes Equations for Quantum
Fluid

Markus Aurada, Petra Goldenits, Dirk Praetorius
Convergence of Data Perturbed Adaptive Boundary Element Methods

Institute for Analysis and Scientific Computing
Vienna University of Technology

Wiedner HauptstraBe 8-10

1040 Wien, Austria

E-Mail:

FAX:

(© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at

+43-1-58801-10196 ASC
ISBN 978-3-902627-03-2

TU WIEN




MAPPING PROPERTIES OF COMBINED FIELD HELMHOLTZ
BOUNDARY INTEGRAL OPERATORS

JENS MARKUS MELENK*

Abstract. For the Helmholtz equation (with wavenumber k) and analytic curves or surfaces
I" we analyze the mapping properties of the single layer, double layer as well combined potential
boundary integral operators. A k-explicit regularity theory for the single layer and double layer
potentials is developed, in which these operators are decomposed into three parts: the first part is
the single or double layer potential for the Laplace equation, the second part is an operator with
finite shift properties, and the third part is an operator that maps into a space of piecewise analytic
functions. For all parts, the k-dependence is made explicit. We also develop a k-explicit regularity
theory for the inverse of the combined potential operator A = £1/2+ K —inV and its adjoint, where
V and K are the single layer and double layer operators for the Helmholtz kernel and n € R is a
coupling parameter with || ~ |k|. The decomposition of the inverses A~ and (A’)~! takes the
form of a sum of two operators A1, A2 where A1 : H*(I') — H*(I") with bounds independent of k
and a smoothing operator Az that maps into a space of analytic functions on I'. The k-dependence
of the mapping properties of As is made explicit.

Key words. high frequency scattering, boundary integral operators, combined field
equations, Helmholtz equation, regularity theory

AMS subject classification. 35J05, 35J25, 656N38, 78A45

1. introduction. Acoustic and electromagnetic scattering problems are often
treated with boundary integral equation (BIE) methods. In a time-harmonic acoustic
setting, the relevant boundary integral operators (BIOs) include the classical single
layer and double layer potential operators and, more importantly, the combined field
Helmholtz operators A’ (see (1.4)) and A (see (1.3)); the former is attributed to Burton
& Miller, [9], while the latter is commonly associated with the names of Brakhage
& Werner [3], Leis [15], and Pani¢ [23]. These BIOs depend in a non-linear way on
the wavenumber k& under consideration. Yet, especially in the high-frequency regime
of large k, an understanding of how the boundary integral operators (BIOs) and the
solutions of the BIEs depend on k is important for various purposes, for example,
for the design and analysis of efficient numerical schemes based on such BIEs. The
present paper is devoted to a detailed analysis of the mapping properties of the BIOs
A and A’ emphasizing the k-dependence.

The above mentioned reference have shown for smooth geometries (see [5] for the
extension to Lipschitz geometries) that the combined field BIOs A and A’ are invert-
ible on scales of Sobolev spaces. However, the k-dependence of these norms was left
unspecified. For the special case of circular and spherical geometries the single and
double layer potentials can be simultaneously diagonalized by Fourier techniques so
that (using intricate large argument and large order asymptotics of Bessel functions) a
complete k-explicit analysis of the operators A, A" and their inverses is possible, [11].
In this special cases, even k-uniform L2-ellipticity is proved in [11]. More generally, [7]
establishes for star-shaped domains k-uniform bounds for the norms ||A~Y|| 2.2 and
|(A") Y| p2_r2. Estimates for || Al ;21> and || A’ 1212, which depend on k, are pro-
vided in [4]. Norm bounds alone, however, are not sufficient for a sharp stability of
analysis discretizations of the operators A and A’, especially in the context of high
order methods. This observation was the starting point of the present paper, which
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provides a significantly more refined regularity theory for the operators A, A’ and
their inverses. In fact, the present analysis permits us to develop in the companion
paper [17] a k-explicit convergence theory for the hp-version of the boundary element
method (hp-BEM).

Our k-explicit regularity theory takes the form of an additive decomposition of the
operators into several terms with different mapping properties. Section 4 provides
these decompositions for the classical single and double layer potentials. These oper-
ators are decomposed into three parts: the first part is the corresponding operator for
the Laplace equation and therefore k-independent; the other two terms have smooth-
ing properties but their operator norms depend on k (we make this k-dependence
explicit). Our principal decomposition results for the layer potential are for analytic
geometries (see Theorems 4.3, 4.4); however, it is also possible to obtain similar re-
sults for Lipschitz boundaries, which is worked out in Theorems 4.1, 4.2. Section 6 is
at the heart of this paper and provides the additive decompositions for the inverses of
the combined field operators in Theorems 6.11, 6.12; here, we restrict our attention
to analytic geometries.

The result of the present paper have counterparts in the context of differential equa-
tions and finite elements. Indeed, analogous decomposition results have recently been
obtained in [21,22] for several Helmholtz boundary value problems.

The paper is organized as follows: the remainder of this first section introduces gen-
eral notation and various boundary integral operators. Section 2 collects mapping
properties of the classical single layer and double layer potential operators on Lips-
chitz domains. In particular, the limiting cases studied in Lemmata 2.1, 2.2 appear
to be new. Section 3 studies the mapping properties of the Newton potential for the
Helmholtz equation. Section 4 provides decomposition results for the Helmholtz single
layer and double layer potential operators both for Lipschitz domains and domains
with analytic boundaries. Section 5 applies the results of Section 4 to the combined
field operators. The final Section 6 is a key section of the paper in that it provides
decomposition results for the inverses of the combined field operators.

1.1. notation and general assumptions.

1.1.1. general notation. Let Q@ C R? d € {2,3}, be a bounded Lipschitz
domain with a connected boundary. Throughout this work, we will futhermore assume
for the case d = 2 the scaling assumption diam Q < 1. We set I := 9Q and QF :=
R?\ Q. Throughout the paper, we assume that the open ball Br := Bg(0) of radius
R around the origin contains €, i.e., @ C Br. We set Qg := (QUQT)NBr = Bg\T.
We will denote by 7§t and v§** the interior and exterior trace operator on I'. The

interior and exterior co-normal derivative operators are denoted by vi"t, v§*t i.e., for

sufficiently smooth functions u, we set vi"u := ¥"Vu - i and v§*'u := 5% Vu - 7,
where, in both cases 71 is the unit normal vector point out of . As is standard, we

introduce the jump operators
[u] = 75" u = 26w, [Bnu] = A — A

For linear operators A that map into spaces of piecewise defined functions, we define
the operators [A] and [0,.4] in an analogous way, e.g., [A]p = [Ag]. Sobolev spaces
H? are defined in the standard way, [1,27]. We stress, however, that if an open set
w C RY consists of m € N components of connectedness w;, i = 1,...,m, then the

space H®(w) can be identified with the product space []\", H*(w;) equipped with
1/2
the norm (Zyil [|u||% S(wi)) . For a domain w C R? we will also employ the
2



Besov spaces By /2,00(“’)’ which are defined in the standard way by the real method of
interpolation (see, e.g., [2,27,28]). Sets of analytic functions will play a very important
role in our theory. We therefore introduce the following definition.

DEFINITION 1.1. For an open set T and constant Cy¢, vf > 0 we set

AU(Cp,vp.T) :=={f € LX(T) | |V"fll 2y < Cpyf max{n+1,k[}"  Vn € No}.

|
Here, [V™u(z)? = %|D°‘u(z)|2.
aeNg:|a|=n )

For domains w C RY, it is convenient to introduce the k-dependent norm ||u||3;.., by
lullZew = llullZz) + K21Vl T2

Tubular neighborhoods T of I" are open sets of such that T D {z € R¢| dist(z,T) < €}
for some € > 0.
Throughout the paper, we will use the following conventions:
CONVENTION 1.2.
(i) We assume |k| > ko > 0 for some fized ko > 0.
(i) If the wavenumber k appears outside the boundary integral operators and poten-
tials such as Vi and YN/;C, then it is just a short-hand for |k|. In particular, k

stands for |k| on the right-hand side of estimates. For example, k > ko stands
for |k| > ko.

1.1.2. layer potentials. In recent years, boundary element methods (BEM)
and BIOs have been made accessible to a wider audience through several monographs,
e.g., [12,18,24,26]. We refer to these books for more information about the operators
studied here.

We denote by V, K, K’ the usual single layer, double layer, and adjoint double layer
operators for the Helmholtz equation. The single layer and double layer potentials
are denoted by V and K. More specifically, we define the Helmholtz kernel Gy, by

igW (ke —y)), d=2,
Gr(z,y) = {imgy( v =) d3 for k& > 0,

dnfz—y|’ ’

Gr:=G_ fork<0,

where Hél) is the first kind Hankel function of order zero. The limiting case £ = 0
corresponds to the Laplace operator and is defined as Go(z,y) = —1/(27) In|z — y|
for the case d = 2 and Gy(z,y) = 1/(4w|x — y|) for the case d = 3. The potential

operators V and K are defined by

(V)(a) = / Grlm o) ds,,  (Ro)a) = / O, Gr(x,y)p(y) dsy, = € RAT.

From these potentials, the single layer, double layer, and adjoint double layer operators
are defined as follows:

o 1/ .~ - o1
Visai 'V, K= s (WK +967K), K=aV-g1d. (L)

If need be, we will write V4, K, Kj, to clarify the k-dependence. We mention in
passing that for k # 0, the potentials V; and K} are solutions of the homogeneous
3



Helmholtz equation on R?\T; for k > 0 they satisfy the outgoing Sommerfeld radiation
condition while for £ < 0, they satisfy the incoming radiation condition.

We finally turn to the definition of adjoint operators. We have for all k € R for the
L*(T") scalar product and all ¢, ¢ € HY/?(T):

Ve, )2y = (¢, Vorh) L2(ry, (1.2a)
(Krw, ) r2ry = (9, KL L2y, (1.2b)

i.e., the adjoints of V;, and Kj are V_; and K’ ,, respectively. It is worth pointing

out that we have the connections XN/,k@ = \7kgp and IN(,ka = IN(W).

1.1.3. combined field operators. For a coupling parameter n € R\ {0} we
consider four combined field operators. The operator A has one of the following two
forms:

A:Ak:—%—l-K—inV (1.3a)

A:Ak:%+K—inV. (1.3b)
The operator A’ has one of the following two forms:

A= ;=—%+K’+inv, (1.4a)

A= ;€=%+K’+inv. (1.4b)

We use the same notation for the operators in (1.3a), (1.3b) and (1.4a), (1.4b) since
most of our results will be valid for both cases.

In order to avoid keeping track of the precise dependence of various constants on 7,
we assume throughout this paper that

C k| < |nl < Cylk| (1.5)
for some fixed C,, > 0.

2. properties of the Laplace single and double layer potentials. In this
section, we collect some mapping properties of the potential operators V) and Ky for
the Laplace equation.

2.1. Lipschitz domains. For Lipschitz domains 2 and —1 < s < 1 one can
define the Sobolev spaces H*(T") intrinsically. It is then known (see also Lemmata 2.1,
2.2 below) that for |s| < 1/2 the operators

Vo : H-V245(') — HY(Bg) N H'"*(QR) (2.1a)
Ko: HY/?3(1) — H'**(Qp) (2.1b)

are bounded linear operators (relevant literature includes [10,13,14,29]; see also Lem-
mata 2.1, 2.2 below). The following Lemma 2.1 clarifies into what space of functions
defined on the ball Br (as opposed to Q) the potential operator ‘70 maps elements
in the limiting cases s = £1/2:

LEMMA 2.1 (mapping properties of Vo). For —1/2 < s < 1/2 we have that Vj :
H~1Y/2+5(T') — H'*(Bpg) is a bounded linear operator. The limiting cases s = +1/2
take the forms Vo : H-'(T') — By/2 (Bg) and Vy : L*(T) — By/2 (Br).

4



Proof. The result for —1/2 < s < 1/2 are known in the literature (see, e.g., [18]). The
proofs of the limiting cases s = +1/2 are relegated to Appendix A. O
The potential operator IN(O produces functions that jump across I'. This implies that,
viewed as a function on the ball Br, one cannot hope for more regularity than Koy €
B;)/;(BR); this is indeed the case for the limiting case s = —1/2:
LEMMA 2.2 (mapping properties of IN(O). For —=1/2 < s < 1/2 we have Ko :
HY2+5(T) — H'Y*(Qgr). For the limiting case s = —1/2 we have the additional
result Ko : L*(T) — By/2 (Bg).
Proof. See Appendix A. O

2.2. smooth domains. The mapping properties given in (2.1) are restricted to
the range |s| < 1/2 for Lipschitz domains. For smooth domains, the range can be
extended, for example, to include all s > —1. To that end, we note
LEMMA 2.3. Let T be of class C*°. Then there exists C' > 0 depending only on 0 and
R such that for ¢ € HY/?(T') there holds

IVoellzer) < Cllellm-s2wy,  [1Koell2(n) < Cllella-1/2(r)-

Proof. Set u := Vpp. We only aim at estimating lull 20y since |lull2\q) is
estimated similarly. To that end, let w € H?(2) solve

—Aw=wu in €, Opw=0 onT.
Then w € H?(S2) together with ||w| m2()<[lull 2(o) and therefore

ull72q) = ‘/ny{”tuw‘ S ull a2 oy 1wl 2 ) S wll 572 (0 1wl L2 -

Next, we use the representation iy = intVyp = (3 + K{)p and [18, Thm. 7.2] to
int

bound ||y ul| g-s/2(ry < Cllll g-s/2(r)-

We proceed in a similar manner to bound ||l~(0g0||Lz(Q). Let u = (Kop)|o and let
w € H2(Q) N H(Q) solve

—Aw=wu in Q, wlp = 0.
Then |[wl| g2 o) S||ull£2(o) and therefore

int

el = \ [tunou

Sl g-1r2 ) 1™ wll gz ooy Sl -z @y lull L2y

From the representation ~§"'u = (—% + Ko)p and the mapping properties of Ky
on smooth domains, [18, Thm. 7.2], we get again [[ul g-1/2(r) < Cllollg-1/2(r)- O
Lemma 2.3 allows us to extend the operators \70 and IN(O to operators defined on
H=3/2(T") and H~/?(T) respectively. We thus have

LEMMA 2.4. Let T be of class C*°. Then the operators ‘70 and IN(O are bounded linear
operators

‘70 : H_1/2+S(P) N H1+S(QR), I?O . H1/2+S(F) N Hl-‘rs(QR)

for every s > —1 and every R > 0 such that Q C Bg.

Proof. The case s > —1/2 is shown in [18, Cor. 6.14]. The case s = —1 follows
from Lemma 2.3. An interpolation argument then provided the intermediate range
-1<s<-1/2.0



2.3. invertibility properties. For future reference, we recall the following re-

sults:
LEMMA 2.5. Let T’ be smooth and o € R\ {0} be fized. If d = 2, assume additionally
that diamQ < 1. Then:

(i) =% + Ko : H*(T') — H*(T') iis boundedly invertible for s > 0.

(it) &+ + Ko +iaVy : H*(T) — H*(T) is boundedly invertible for s > 0.

(iii) —3 + K{ : H*(T') — H*(T') is boundedly invertible for s > —1/2.

(iv) 5+ K +iaVy : H*(T') — H*(T') is boundedly invertible for s > —1/2.
Proof. See, e.g., [16, Appendix D]. O

3. Properties of the Helmholtz Newton potential. A key ingredient of our
decomposition of the operators V', K, and A, A’ are low pass and high pass filters
that we introduce now:

LEMMA 3.1 (full space frequency splitting). Let ¢ € (0,1). Then one can construct
linear operators Hya and Lya defined on L*(R®) with the following properties:

(i) Hpa + Lga =1d

(i) | Hgafll s gay < Cs,s (qk‘l)s_s,||f||Hs(Rd) for all0 < s' < s and f € H*(R?)
(111) Lyaf is entire and

V" Lga fllz2®e) < C(vk)" | fllL2ray  Yn € No.

Here, the constants C, v depend on the choice of q and s but are independent of
k> k.
Proof. See [21, Lemmata 4.2, 4.3] for details. A sketch of the construction is as follows:
The operators Hga and Lga are defined in terms the Fourier transformation F :

L2(R2) — L2(Rd) by F(Hga(f)) := XRd\BM(O)]:(f) and F(Lga(f)) := XB;W,(O)]:(f)'
Here, n > 1 is a parameter that is selected depending on the chosen ¢ € (0,1) and xg
denotes the characteristic function of the set £ C R, 0

The Newton potential Ny (f) of f € L?(R?) with compact support is defined by

Nk(f) =G * f (31)

It is the solution of the inhomogeneous Helmholtz equation with right-hand side f
and satisfies the outgoing radiation condition if £k > 0 and the incoming radiation
condition if £ < 0. For N}, we have the following decomposition result:

LEMMA 3.2 (mapping properties of Ny). For every f € L%(R?) there holds

INK(D .8 + Nl 2(Br) < CrIFll2Ra).- (3.2)

Additionally, the following decomposition result holds: Let ¢ € (0,1) be arbitrary.
Then the high frequency operator Hga and the low frequency operator Lra can be
chosen such that for s >0 and 0 < s’ < s+ 2 the function Ni(Hgaf) satisfies

INK(Hea f)| 1 () < Co,or (ak ™)1 f ]l 11s . (3.3)

The constant Cs g is independent of ¢ € (0,1) and k > ko. The function Ni(Lgaf)
is entire and satisfies

IV Ni(Lpa )l 2y < COR™ Ml 2@y ¥n € No. (3.4)

Here, the constants C, v are independent of k > ko but depend on q.
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Proof. The estimate (3.2) is shown in [22, Lemma 3.5]. Inspection of the procedure
in [22, Lemma 3.5] reveals that the function v4 in [22, Lemma 3.5] coincides with
Ni(Lgaf), which shows (3.4). Finally, [22, Lemma 3.5] shows (3.3) for the case s = 0.
Inspection of the proof shows that it can be extended in a straight forwards way to
the case s > 0. O

An interpolation argument allows us to infer the following result:

COROLLARY 3.3. Let s > 0 and s € No. Fiz a cut-off function x with suppx C Bag.
Then for all f € B; . (B2r)

| N (Hia G g1+ 1y < Cosr @65 [ llg )y 0S8 <245, (35)
N (s )L 22 () < CllF L3 (B

Proof. The operator f — Ni(Hgaxf) is linear and, for every ¢ > 0, we have by
Lemma 3.2

| Nk (Hgax )l ge+2(8r) < Cell fllat(Bog)s (3.7)
INk(Hax )| L2(8r) < Celak™ )T fll ¢ (Bar)» (3.8)

for a constant C; > 0 that depends solely on ¢, R, and x. Since the spaces B3
are defined as interpolation spaces between standard Sobolev spaces, the estimates
(3.7) imply (3.6). Since (L?(Bgr), L*(BRr))s.co = L*(Bg) for every 6 € (0,1), the
estimate (3.5) for the special case s’ = 0 follows also from an interpolation argument
and (3.8). Finally, the general case in (3.5) follows from the interpolation inequality
|21 o+ < CH2||1L§9HZ||‘?3;+2 for s+2>0and §€(0,1).0

4. decomposition of layer potentials. The present section focuses on the

mapping properties of the layer potentials V and K with particular emphasis on
making the k-dependence explicit. We do this through an additive decomposition of
V and K into a leading order part that corresponds to the Laplace operator (i.e., Vo
and f(o) and regularizing parts.
We present two different types of decompositions: the first type is done for Lipschitz
domains and formulated in Subsection 4.1. Since the regularizing parts are defined
as solutions of transmission problems, the limited regularity of Lipschitz domains
imposes restrictions on the Sobolev range for which the decomposition can be done in a
meaningful way. We therefore consider in Section 4.2 the case of domains with analytic
boundary, where, by a modification of the procedure of Section 4.1, decompositions
are obtained that are valid for large ranges of Sobolev spaces.

4.1. decomposition of layer potentials: Lipschitz domains.
4.1.1. decomposition of the single layer potential. THEOREM 4.1 (decom-
position of V, Lipschitz domain). Let ¢ € (0,1) be given. Then one can write
V= ‘70 + §v + ./Zv,
where for every —1/2 < s < 1/2 the linear operators Sy : H=1/2Ts(T') — H3%(Bg)
and Ay : H=Y/?+5(T) — H3+5(Bg) satisfy the following bounds:
1Svell e (pry < Csor (@™ [l g-rrzsary,  0<s <3+s,

IV Av ol L2y < COR)" H[Vogll 2y < COVR) Helu-1ry  ¥n € No.
7



Here, the constant Cs ¢ is independent of ¢ and k > ko. The constants C, v are
independent of k > ko but depend on q. _

For s = +1/2 we have that Sy : H='/?T5(I") — BS;S(BR) and Ay : H=V/?+3(T') —
Bg:;f(BR) satisfy the following bounds:

1Svellge gy < Cowq’(gh™ )t el g-1/242(rys 0<s <3+s,

1Syl By (Br) S Cod®(ak™ ") 2 llepll gr-1/2+2 1y,

IV" Avgllr2(pry < COE)" M [Vopll L2y < COR)" Holg-1qry  ¥n € No.

Proof. We will exploit density of H'/?(T") in H~1/?*5(T) for —1/2 < s < 1/2. Let
therefore ¢ € H'/2(T") be given. Set u := Vi and ug := Vpp. Let x be a smooth
cut-off function with suppy C Beg and x|g, = 1. Then the function @ := u — xug
satisfies
— AU — k*u = f:= —(Ax)ug — 2V - Vg + k?xuo in QuUQt,
[a] =0 on T (in HY2(T)),
[Ona] =0 on T (in H~Y/2(I"),
U

satisfies a radiation condition at oo,

and f has compact support. The mapping properties of ‘70 on Lipschitz domains of
Lemma 2.1 imply for —1/2 < s < 1/2:

luoll g+ (Bry < Cllelg-1/2+er)y,  —1/2<s<1/2, (4.1)
ol psiepy < Cllella ey, s =172 (1.2)
We have therefore an explicit solution formula for @, namely,
@ = Ni(f)
Hence, we have the representation
u = xto + Ni(f) = xuo + Ni(Hza f) + Ni(Lga f) = xuo + Sve + Avep,

where the parameter ¢ in the definition of Hpa is still at our disposal.

We first consider the regularity of Sy. In view of Lemma 3.2 and Corollary 3.3 we
have to analyze the regularity properties of f. By interior regularity, we have that ug
is analytic away from T', and we get for s = +1/2:

11| g3t (Bamy < CR M@l =125 (r-

Next, the support properties of f imply that f = x’f for some smooth cut-off function
x'. Hence, Corollary 3.3 implies for s = +1/2

| Nk(Hga f)llL2(2) < Clak™")* "k [lol| gr-1/2+ (ry, (4.3)
||Nk(HRdf)HBg;;(BR) < Ck* ||l g-1/2+ (-

Interpolation then allows us to conclude for —1/2 < s < 1/2

INk(Hga f)ll L2(8r) < Clak™ )T k2l g-1/20+(r), (4.5)

||Nk(HRdf)||H3+S(BR) < Ok H‘PHH%/Hs(F)-
8



We have thus shown all the estimates for Sy for the cases s’ = 0 and s’ = 3 + s. For
the remaining intermediate estimates, we simply use another interpolation argument.
Specifically, for the case —1/2 < s < 1/2 we use the multiplicative interpolation
inequality with 8 = s'/(3 + s) to get

[Ne(Hra ) g () < C||Nk(HRdf)||1LEQBR)||Nk(HRdf)H§L13+s(BR)
< CR (k™)™ ol g-vmeao)-
Let us now turn to the Ng(Lgaf). From Lemma 3.2 we get
IV N )2y < COR M1 L20mam) < CORY™ K2 o]l 200
< COR)" Vool L2 (Bor) -
Density of H'/?(T) in H~/25(I") concludes the argument. 0

4.1.2. decomposition of the double layer potential. The method of proof
of Theorem 4.1 is applicable to the double layer potential as well for the end point
case s = —1/2:

THEOREM 4.2 (decomposition of K, Lipschitz domain). Let Q C Bg be a Lipschitz
domain and let g € (0,1) be given. Then

K= I?o + §K + ./ZK,
where Sk : L2(T) — Bg{;(BR) satisfies
HSKSDHB;(;(BR) < Ck*|loll 2y,
ISk ¢llr28r) < Ca*(ak™ )|l 2y

Here, the constant C' is independent of q and k > kog. The linear operator /TK :
L*(T) — B;/fo(BR) maps into a space of analytic functions, viz.,

IV Ak @llr2 () < COR)" T Kol L2y < COR) Hi@ll2qy  Yn € No.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. We proceed as in the proof of Theorem 4.1. This implies the form

K = Ko+ Sk + Ag;
here, S Kk and /TK are defined by

Sk + Ak = Ny(Hga f) + Ni(Lgaf),
where, for up = I~(0<p, the function f is given by

f=—=Axuo+ 2V - Vug + k*xuo

The mapping properties of l~(0 detailed in Lemma 2.2 imply IN{OQD € B217/020(32R).
Proceeding as in the proof of Theorem 4.1 we arrive at

| Ni(Hza )| 28y < Clak™ > V2 £l a2 .
< Cq2k_2(qk_1)1/2k2HIN(OS"”B;/;(BQR) < cq2(q/€—1)1/2”(p|\Lz(p),
”Nk(HRdf)HB;/:O(BR) < C||f||B;{;(BQR) < Ck* |||l 2ry-

The estimates for gKgo are obtained in exactly the same way as in Theorem 4.1. 0
9



4.2. decomposition of layer potentials: analytic boundaries. The method
of proof in Theorems 4.1 and 4.2 relies on (Sobolev) regularity of Vo or Ko as
a function on the ball Bog. However, these functions are only piecewise smooth
(higher order derivatives jump across I'), and the approach of Theorems 4.1, 4.2
could not exploit this piecewise smoothness. In order to exploit it, we need to modify
the definition of the operators Sy and Sx. Our approach to the construction of
decompositions will rely on a regularity theory for transmission problem, where the
transmission conditions are imposed on I'. This requires regularity of I'. We illustrate
what kind of result may be expected for the case of analytic I'.

THEOREM 4.3 (decomposition of V', analytic boundary). Let T' be analytic and q €
(0,1). Then

‘7 = ‘70 + §V,pw + VZV,pw
where the linear operators §V)pw and /va,pw satisfy the following for every s > —1:
(i) Svpw : H™Y/?+5(0) — H?(Bg) N H3*5(QR) with
”SV-,pw‘PHHS’(QR) < Cs/,sq2(qk71)1+57s H<PHH71/2+5(F), 0<s <s+3.

Here, the constant Cy ¢ > 0 is independent of ¢ and k > ko.
(i) Avpw : H™Y/2+3(T) — H?(Bg) maps into a space of piecewise analytic func-
tions and

IV Ay puwell2(n) < Cky™ max{n + 1,k}"(l¢)l g2y  Vn € No.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. We start again as in the proof of Theorem 4.1. We have

f=—(Ax)uo — 2Vyx - Vug + k% xuo,

where ug = ‘N/ng and x is the cut-off function of Theorem 4.1. By the mapping prop-
erties of Vy (cf. Lemma 2.4), we have that f is piecewise in H'**. More specifically,

ez @2r) < CE @l =172 (r)-

Let Eq and Eq+ be the Stein extension operators (see [25, Chap. V1.3, Thm. 5]) for
the sets 2 and Q. Additionally, let xo and yq+ be the characteristic functions of
and Q7. We observe

[ = Hge(Eq(fxa)) + Lre(Ea(fxa)) in €,
[ = Hga(Eq+(fxa+)) + Lre(Eq+ (fxa+)) in QF.

These formulas suggest to write f in the form f = fyi+: + f4 pw, Where

Sr+s|o = Hga (Eﬂ(fXQ))kh fH1+s|sz+ = Hpa (EQ+ (fXQ+))|Q+,
fapwlo = Lra(Ea(fxa))la, fapwla+ = Lra(Eq+ (fxa+)) o+,

The properties of Hga and Lras given in Lemma 3.1 then imply

I fersell 2 @avry < Cllfllz2ray < CK Vool L2(Ban)s (4.7)
[ faveellme@ary < Clak™ )™k ol g—1/overy, € {0,145},
anfA,pwHLz(Rd\F) < Ck/‘?(’yk)n”VogD”LQ(BQR) Vn € Ng. (49)
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It will be advisable to split fzi1+s once more, namely, to write

furee = Hga(fyges) + Lga(fies) =t frin + fa. (4.10)

Since Lga(fzi+s) is an entire function and fgi+s is piecewise smooth, we conclude
that ffin = Hga(fmi+s) is piecewise smooth. Concerning bounds for f,, we start
by noting that Lemma 3.1 implies

V" fall L2y < C(vk)" || frres

Inserting into this the estimates (4.8) and (4.7) leads to two different bounds:

L2(R4) Vn € Np.

IV" fallL2@ay < C(vE) " k"~ |||l gr-1/2+5(ry VY1 € No, (4.11)
IV" fallLz@ay < COR) K |VoellL2(Bary V1 € No. (4.12)

The estimate (4.11) together with interpolation inequalities implies

HfAHHf(]Rd)S(qk71)1+57tk2H‘pHH*1/2+S(F)7 te{0,1+ s} (4.13)

The bounds (4.8) and (4.13) imply for fin, = fri+s — fa
I frinllmre ey SIFares | e ravey + I fallge e
G R [ PRy t€{0,1+s}.  (4.14)

Next, Lemma 3.2 gives for Ni(ffin) = Ni(Hga fri+s)

INk(ffin)lL2(Bar) < Clak™)?|| fares || L2 ravry < Cq®(ak ™) ([0l 17245y -(4.15)
The regularity theory of Theorem B.6 then implies
[Nk(frin) | HetDr20) S
B frinll 2 @aey + | Frinll s @avey + BT T2 NG (Frin)l L2 (Ban) < CR2 @) 17240 (-
This estimate together with (4.15) can be written as

INk(frin) e @) SE2 (k™) ol gorrzeary,  t€{0,3+ s}

The (piecewise) multiplicative interpolation inequality then gives estimates for the
intermediate values 0 < s’ < 3 + s:

(34+s—s 3+s 3+s
N (Frin) Lo ey < CINrim) a2 INKFpim) 15 o
< Ok (gk=1)3+= el g—1/242(ry-
Upon setting §V,pw<p := Ni(frin)) we get the desired estimates for §V. We now

turn to the properties of Ay, which is defined as Ay pwe := Ni(fa) + Ne(fapw)-
Lemma 3.2 implies

1 1
S kNG (Fap) |5 Bary + D INe() | 125 (Ban)
=0 =0
k7Y fall e ey + 57 fapoll 2 ey < CEIVogllL2(Ban)- (4.16)
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(4.16) and Theorem B.4 produce
V™2 Ayl 120y < Cmax{n, K}y | |Voll 2(Bam) + Vol 122y | Y1 € No

for suitable constants C, v > 0 independent of n and k. Together with (4.16) and
the observation ||1~/0<p|\L2(QR) < Cll¢ll gr-s/2(ry (cf. Lemma 2.4) this implies the desired
estimates for /va_,pwgp. O

The proof of Theorem 4.3 relies on two facts, namely, on a piecewise shift theorem for
Vo and regularity theory for Helmholtz transmission problems. The same arguments
can therefore be used for the double layer potential K.

THEOREM 4.4 (decomposition of K, analytic boundary). Let T' be analytic and

q € (0,1). Then we can decompose K as
l? = KO + §K,pw + VZK,pw
such that for every s > —1:
(i) Sk.pw: HY/?*3(I') — H?(Bgr) N H3**(QR) with

HSK,prOHHS/(QR) < Co oqP(gh™ )+ eIl rrvz+s(rys 0<s <s+3

Here, the constant Cy ¢ > 0 is independent of ¢ and k > ko.
(i) A pw : H'/?+3(T) — H?(BR) maps into a space of piecewise analytic functions
and

IV" Ak @l L2 (0m) < Chy" max{n + 1, k}" @l g-1/2y  ¥n € No.

Here, the constants C, v > 0 are independent of k > ko but may depend on q.
Proof. The proof is analogous to that of Theorem 4.3. O

4.2.1. further mapping properties of the operators V and K. The results
of Section 4.2 permit us to formulate the following corollary.
COROLLARY 4.5. Let I" be analytic. Then

IVellLzn) < Cklloll g-s2(r), (4.17)
IVella@n < C lllella-1rzwy + Bl g (4.18)
K@l z2@n) < CEllel 172y, (4.19)
1Kol g n) < C [llell gy + Kl g-12my] 5 (4.20)
k2HVSD||H71(BR) < Ckz”SDHH*f*/?(F)a (4.21)
k2||KSD||H71(BR) < Ck2||90||H*1/2(F)' (4.22)

Furthermore, since for o € H~Y?(T) we have Vo, Ko € L?(BR), there holds for
every open subset w C Br:

IVollg-1w) < IVella-1(Br) I Kollg-—1(w) < 1K@l g-1(Bg)- (4.23)

Proof. For the L?- and H'-bounds, combine Theorems 4.3, 4.4 with Lemma 2.3.
For the H!-estimates, we proceed as follows. For the double layer potential K¢ €
L?(Qp) we use the differential equation to get for v € Ha(Bg)

E(Kp,v) = — A AKpv = — A A(Ske + Ax o).
. y ,



An integration by parts and the observations that Sx¢ and Agep € H?(Bg) (and
thus their normal derivative does not jump across I') yield together with Theorem 4.4

V(§KSD + AVKSD) Vo

‘k2<l~(g07v>} =
Qr

< C [ (gk™")2llell ey + K2 @l =172 ] V0] L2(B)-

Selecting s = —1 leads to the claim estimate. For H‘7Q0HH71(BR), we proceed analo-
gously. O

For later reference, we collect some interior regularity results for solutions to the
homogeneous Helmholtz equation.

LEMMA 4.6. Let w' CC w C R? be two bounded Lipschitz domains. Let u € L?(w)
solve the homogeneous Helmholtz equation. Then there exists C > 0 (depending only
on dist (w', 0w) > 0, w, and ko) such that

lullrewr < CK* ull zr-10)-
If u € HY(w), then we have

1Onull =172y < Ckllulln,e-

Proof. For every smooth cut-off function x with suppx C w we have |[xullg-1() <
Cllull fr-1(w)- Next, classical interior regularity gives us

IVull 2wy < CR?[lull L2
for all w’ CC w” CC w Next, to get the L2-estimate we observe that yu satisfies
—A(xu) + E*xu = 2k*xu — 2Vx - Vu — Ayu, xu=0 on dw.
Lax-Milgram for the operator —A + k2 Id then gives
Il < CRlxul -1y < OR 1 o,

We now turn to the case of u € H'(w). For v € H'(w) we have
/Vu-Vv—i—/Auv /Vu-Vv—k2/uv

which implies the stated estimate. O

5. decomposition of combined field operators. The combined field opera-
tors A and A’ of (1.3), (1.4) are linear combinations of the operators V and K. Hence,
the decompositions of the operators V and K of Section 4 imply decompositions of
A and A’. The purpose of the present section is to give these decompositions a form
that will be convenient later on. We restrict our attention to the case of analytic
boundaries T'.

[{Onu, v)| =

< Nlullrwllvlirw,

5.1. frequency splitting for function spaces on surfaces and domains.
An important tool for the analysis will the “frequency splitting” operators analogous
to the operators Hgra and Lga of Lemma 3.1. We have
LEMMA 5.1 (frequency splitting on domains). Let ¢ € (0,1) and Q be a bounded
Lipschitz domain. Then one can construct operators Lo and Hgq defined on L*(Q)
with the following properties:
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(i) Ho+ Lo =1d )
(it) |Hofllgo ) < Cos (g% [ 1120), where 0 < 8" < s and s > 0.
(iii) Lof is an entire function on R and

IV*"Lafllremay < C(YE)" [ fll2@)  ¥n € No.

Here, C, ¢ is independent of k and q; the constants C, v are independent of k.
Proof. Let Eq : L?(2) — L2?(RY) be the Stein extension operator. Then define
Hqf = (Hpa o Eqf)|q and Lqf := (Lga o Eqf). The properties then follow from
Lemma 3.1. O
LEMMA 5.2 (frequency splitting on surfaces). Let Q C R? be a bounded Lipschitz
domain with smooth boundary T'. Let s > 0 and g € (0,1). Then one can construct
operators Ly : H*(T') — HY/?*5(R%) and Hy : H*(T) — H*(T') with the following
properties:

(Z) Hp—l—"y(i)ntLF =1d ,

(ii) I H S ger ) < Cosr (@™~ 1 L aro(ry, where 0 < s < s.

(iii) Lrf is an entire function on R? and
IV Lo fllaeey < COR)" Y25 fllusy - ¥n € No.

Here, the constant C ¢ is independent of k and q; the constants C, v are independent
of k.

Proof. Related frequency splittings have been constructed in [21]. We therefore merely
sketch the construction. Let G : H3(T') — H'/?>*5(R%) be a lifting operator. Define
Hr = ~}" o Hga 0 G and Lr := Lga o G. The properties of Hgs and Lga given
Lemma 3.1 then imply the statements. For example, the bound for Hr follows from
the properties of Hya. Specifically, the multiplicative trace inequality (see, e.g., [20,
Thm. A.2]) yields

2s/(142s 1/(142s)
1Hrel 2y < [ Hpa(Go)lI7H o)™ 1 Hra (G 105200,

S (qkfl)sHG80||H1/2+5(Q)N(Q D2l e ry;

on the other hand, trace inequalities and the stability of Hra yield

| Hrol| g5 F)N||HR4(GSD)||H1/2+S sz)N||G<PHH1/2+ 5(Q) <H‘PHH s(D)-

Thus, the limiting cases s’ € {0, s} are proved. The intermediate cases 0 < s’ < s
follow by interpolation arguments. O
The frequency splitting in Lemma 5.2 relies on a frequency splitting in a domain and
the trace operator. This precludes a direct extension of the construction to negative-
index Sobolev spaces. Nevertheless, splittings can be defined on such spaces, and the
following lemma presents one possible construction.
LEMMA 5.3 (frequency splitting on surfaces, negative norms). Let Q C R be a
bounded Lipschitz domain with an analytic boundary T'. Let g € (0,1). Then one can
construct operators L1, HL® on H~Y(T) with the following properties:

(i) LY + H® =1d

(i) for -1 <s <s<1:

IHE fll e oy < Cla/R)* ™ I fll zs ()
14



(iii) L1 f is the restriction to T' of a function that is analytic on a tubular neigh-
borhood T' of I' and satisfies

V"L fl| p2ory < CEY2y™ max{k, nY N Fl =172y Vn € Np.

Proof. Consider on the compact manifold I" for the Laplace-Beltrami operator Ar the
eigenvalue problem

—Arp—Xp=0 onT.

There are countably many eigenfunctions ¢.,,, m € Ny, with associated eigenvalues
Am > 0, which we assume to be sorted in ascending order. Without loss of generality,
we impose the normalization ||y, || z2(ry = 1. We have Weyl’s formula (see [8, p. 155])

N(A) := card{ A\ | Am < A} ~ CpAETL

where the constant Cr depends solely on I'. Additionally, we have from Lemma C.1
the existence of a tubular neighborhood T of T" and constants C, v > 0 such that

IV omll L2y < CY" {Am,n}" Vn € Np. (5.1)

Furthermore, the functions (p,,)3_, are an orthonormal basis of L?(I') and an or-
thogonal basis of H(T'):

‘UHH T = Z [(u, om)2@myl® Vu € L*(T),

oo

||U||§11(r) = Z (1 + 22| {u, <Pm>L2(F)|2 Vu e H(D).

m=0

By interpolation, we get for 0 < s <1 and u € L*(T"):

el Zeqry ~ D (L4 A1, o 2oy .

m=0

By duality, distributions f € H*(T") with s € [-1,0] can be identified with sequences
(fm)oo_, such that ||f||§{5(r) ~ 3 oL+ A28 fn]?. We will write (formally) f =
> o fm®m to express this identification.

We now define the operators Hn“ and L1 by

chlegf = Z fm®@m, L?egf = Z fm®em

m:Am >nk m:Ay, <nk

Then clearly H“Y + L = Id. Next, in the tubular neighborhood T of I' we have

IV"LE f ey < Y Ul V" emlle2ery < Cy" max{nk,n}™ > [fnl

m:Ag, <nk m:Ag, <nk
< Cy" max{nk,n}" Z (14 X2,)1/2 Z (14 A2,)=1/2|f,,|2
m:Am, <nk m:Ag, <nk

< Cy™ max{nk,n}" (1 + (nk))Y*/N0k)|| f|| - 1/2(T
< Ck"?y" max{nk,n}" I £1l =172
15



For HR® f, we compute for —1 < s’ < s <1:

||H;egf||§1s'<r> <C Z (1 +)\m)2s |fm|2 <o +77k)2(5 75)”][”%15@‘)7
m:Am >nk

which finishes the proof. O

REMARK 5.4. The factor k%/2 in the estimates for L1:* is not optimal and can be
reduced (see Remark C.2). Also, the proof shows that the term || f||z-1/>(r) in the
bounds for L can be reduced to || f|| z-1(r) at the expense of further powers of k.

5.2. decomposition of A and A’. We recall the definition of A(C,~,T \ T)
given in Definition 1.1 and the definition of the jump operator [-] in Section 1.1.1.
LEMMA 5.5 (decomposition of A). Let I be analytic and let s > 0. Fiz g € (0,1).
Then the operator A can be written as

1 ~
A:ﬂ:§+KQ+RA+k[AA]

where Ry : HY(T') — H*TY(T) and A4 satisfy for some constant C, which is inde-
pendent of k > ko and q, and a constant v > 0, which is independent of k > ko,

| Rallgs+1(0y—msry < Ck, | Rall sy —me () < 4,
Aap € U(CCy, v, QR)),  Co = ll@llm-1/2r) + klloll r-s72(r)-

Proof. Before turning to the proof, we point out that, since only the jump of the
potential A A across I' appears in the decomposition of A, there is some freedom
in the choice of A4. In particular, A4 can be selected such that (AAf)|Q+ =0
or (AAf)|Q = 0. Indeed, we will construct A4 such that AAf =0on QT if A=
—1/2+ K —inV is considered and AAf =0onQifA=1/24+ K —inV.

We will only consider the operator A given in (1.3a) (i.e., the case A = —1/2 4+
K —inV), the other case belng handled analogously. Since A = v(z)”t(K in‘7), the
decompositions of K and V of Theorems 4. 4, 4.3 produce

1 i (@ e : it (T o
A= {_5 + KO} + {'Y(l)nt (SK,pw - lnSV,pw) - 177V0} + {"YO ¢ (AK,pw — IUAV,pw) }

With the aid of the high and low frequency operators Hr and Lr of Lemma 5.2, we
write Vo = HrVp + vthpVo and therefore arrive at the decomposition

A=-1/2+ Ko+ Ra + 7" Aa,
R4 = 70 (SK)W — 1nSv,pw> —iHrnVo,
./ZA = —ink_lLFVQ + k_leK,pw - ink_lvz‘ﬂpw'

It remains to obtain the stated bounds. Theorems 4.3, 4.4 and Lemma 5.2 produce
(for notational convenience, we employ the same parameter ¢ € (0,1) in the splittings
of Theorems 4.3, 4.4 and Lemma 5.2)

V& SV puo | 1+ (y e () < O, [V SV o || s (o) s (ry < CPkY,
Ve Sk o | rve oy ey < Cakey V™ Sk | s (y s () < O,
| HoVo | s (ry— s (ry < C, | HrVoll g vy ey < Cqk™".
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By selecting ¢ sufficiently small, we can obtain the desired bounds for R4. For Ay
we see that Theorems 4.3, 4.4, and Lemma 5.2 together with the mapping properties
of Vy yield

pe H VX)) = AspeUCCy,7,QR), Cy = ||l g-1/2(r) tEll ol zr-3/2(r)-

This concludes the proof. O

REMARK 5.6. The operator —1/2 + Ky is invertible while the operator 1/2 + K
has a one-dimensional kernel. It is convenient to have decompositions with invertible
leading term. By Lemma 2.5, the operator 1/2 + Ko —iVy is invertible. Inspection of
the proof of Lemma 5.5 shows that we can achieve a decomposition of the following
form:

1 ~
1/2+K—i7]V:§+K0+iVO+RA+k[.AA]

where the operators Ry and .ZA have the regularity properties stated in Lemma 5.5.
The next two lemmas provide decompositions of A’—the difference between these two
results lies in the range of Sobolev spaces on which they are defined: While Lemma 5.7
covers the case s > 0, Lemma 5.9 extends the range to s > —1/2 at the expense of
further powers of k.

LEMMA 5.7 (decomposition of A"). Let I' be analytic and let s > 0. Fiz q € (0,1).
Then the operator A’ can be written in the form

1 ~ ~
A= :|:§ + K{+ Rar + k[Aar 1] + [0nAar 2]

where R : H*(T') — H*T(T) and Ay satisfy for some constants C, v > 0 that are
independent of k > ko

| Rarl| go+1(ry—ms(ry < CK, | Rarll s (ry—ms () < @,
AA’,i(Pem(CCsauWaQR))u Csa = k||90||H*3/2(F)7 i€ {172}'

Proof. We consider the case A’ = 1 + K’ + inV, the case A’ = —1/2+ K' +inV
being handled by analogous arguments. We recall that the operator A’ is given by
Alp = ¥V — inyi"tVe. In view of 4"V, = 1/2 + K|, we can write with the
decomposition of Theorem 4.3

1 . ~ - ) B _ B
A/ — 5 =+ Ké —+ r-)/i’n«t (Sv,pw + AV,pw) + inryént (VO + SV,pw + AV7pw) . (52)

Here, the parameter g appearing in the definition of the decomposition of Theorem 4.3
is still at our disposal. Using the high and low frequency operators Hg of Lq (the
parameter ¢ appearing in their definition will be selected shortly) we can set
Ry = ”yf”tgv,pw + inﬂyé”tgv_,pw + in’yé"tHQVO,
Aar = -k xa (invzv,pw + inLQ‘Nfo) ,

AA’,2 = _XQAV,pwa
17



where xq denotes the characteristic function for ). Theorem 4.3 yields

1V SV o | 1+ 0y — e 0y < Caky 1SV po || 112 () — 12 (1) < C°
176" SV puwll 142 () 1= () < Cg?, 176" SVl 2 () — e () < Cg’k™
176" HaVoll i+ (ry—m=(ry < C, 76" HoVoll o (ry—mre (ry < Cgk™".

Selecting g appropriately gives the desired bounds for R4.. From Theorem 4.3,
Lemma 5.1, and Lemma 2.4 we infer

Avop and  Ax1p € A(CCy,v, Qp), Cop = kllollg-3/2(r)-

d

REMARK 5.8. The operator —1/2 + K, is invertible while the operator 1/2 + K|, has
a one-dimensional kernel. By Lemma 2.5, the operator 1/2 + K( + iV} is invertible.
Inspection of the proof of Lemma 5.7 shows that we can achieve a decomposition of
the following form:

1 ~ ~
U2+ K'+inV = 5 + Ki = iVp + Ra + k[Aa 1] + (00 A o],

where the operators Ra and .,ZA/J-, i € {1,2} have the regqularity properties stated in
Lemma 5.7.

LEMMA 5.9 (decomposition of A"). Let I' be analytic and let —1/2 < s < 0. Fiz
q € (0,1). Then the operator A’ can be written in the form

1 ~ ~
A = :l:§ + K{+ Rar + k[Aa 1] + [0nAar 2]

where Rar : H¥(T') — H*TY(T) and Ay satisfy for some constants C, v > 0 and a
tubular neighborhood T of T' that are all independent of k > kg

| Rar|| ro+1(ry—ms(ry < Ck, | Rarll e (ry—ms(r) < ¢

Aarap € U(CCy, v, T)), Cyp = k”@”H*W?(F) + kd/QH@HH*l(r),

AA/-,2<P S Q[(COL,O)’Y?T))v OLP = k”gp”H*?’/?(F)'

Proof. The proof is very similar to that of Lemma 5.7. We start from (5.2). Using
the frequency splitting operators H*“ and L1 of Lemma 5.3, we can define

Rar = HY (1S + 176 Sv s + 10V
./ZA/J = k_l)(Q (—i’l].zz(v)pw — Lgey (’yi’ntgv,pw + in'y(i)ntgv,pw + i’l]V())) ,
-/Z(A/,Z = _XQ-’ZV,pw-

Using the mapping properties of §V)pw and Vy we can infer from Lemma 5.3 that

R 4+ has the desired mapping properties. For the operators .ZA/J, .%NlA/,Q we get from
Theorem 4.3 and the mapping properties of Vj that
9" SV, pw + 7" Sy pw + Vol L2 (ry—m-1.(r) < Ck.
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From Lemma 5.3 we therefore get
Apap € U(CC,y,T),  Cp=k"2|lg)g-1(r) + kel zr-s/2(r)

and an analogous estimate for VZA/,Q. 0

REMARK 5.10. The proof of Lemma 5.9 shows that in the context of smooth domains,
further decompositions are possible. In particular, it is possible to exploit the smooth-
ing properties of Ko and K{. Since Ko : L*(T) — HY(T) and K}, : L*(T') — H'(T")
we see that the splittings Ko = H1 Ko + LrY K and Ky = Hr K| + LEYK{) lead,
for example, to

|HEYKol|L2r2 < Cq/k, |HEY K| L2 < Cq/k.

Inserting this in the decompositions of Lemmata 5.5, 5.9 shows that the operators A,
A’ can be we written as sums of three terms: +1/21d, an operator that is small (as
an operator L*(T') — L*(T)), and an operator that maps into a trace class of analytic
Sfunctions.

6. decomposition of the inverse of combined field operators. On smooth
surfaces, it is well-known, [5,9], that the operators A and A’ of the form given in
(1.3b), (1.4b) (i.e., the operator 1/2 + K — inV and 1/2 + K’ + inV') are invertible
as operators acting on L?(T"). In fact, 1/2 + K — inV is invertible as an operator on
H*(T) for s > 0 and 1/2+ K’ 4+ inV as an operator on H*(T'), s > —1/2, [6,7]. Since
the decomposition of their inverses is the primary aim of the paper, we state the main
results of this section here:

THEOREM 6.1. Let T be analytic and choose s, sy > 0. Let A =1/2+ K —inV.
Then the decomposition of A~ given in Theorem 6.11 is valid.

Proof. Since the L?(I')-invertibility of A is known, Lemma 6.4 below shows that A is
invertible on H*(T") for arbitary s > 0. The result then follows from Theorem 6.11. O
THEOREM 6.2. Let I' be analytic and choose s, s4 > —1/2. Let A’ = 1/2+ K'+inV.
Then the decomposition of (A’)~% given in Theorem 6.13 is valid.

Proof. Since the H~'/2(I')-invertibility of A’ is known, Lemma 6.4 shows that A’
is invertible on H*(I') for arbitary s > —1/2. The statement then follows from
Theorems 6.12, 6.13. O

The decomposition results Theorem 6.1, 6.2 involve the norms [[A™!||gsa—psa and
l(A") || groa —m=a, where the Sobolev index s4 may be chosen arbitrarily. These
decomposition results are particularly useful if the k-dependence of these norms is
available. In general, little is known about their k-dependence. A notable exception
are star-shaped domains, for which the following was recently been shown:

LEMMA 6.3 ([7]). Let the Lipschitz domain S be star-shaped with respect to the origin.
Then there exists a constant C > 0 independent of k such that for the operators Ay,
A} given in (1.3b), (1.4b), there holds

A 22 = [(AZ))  Hlpeere < C.

Less is known about the invertibility properties of the operators (1.3a) and (1.4a).
Nevertheless, due to the smoothness of I, we know that the invertibility of the oper-
ators A and A’ on one Sobolev space H*(I') implies invertibility on all spaces H* (T'),
s’ > s:

LEMMA 6.4. Let T be analytic. If A is boundedly invertible on H*(T') for some s > 0,
then it is boundedly invertible on HY (T) for all 8 > s. If A’ is boundedly invertible

on H*(T) for some s > —1/2, then it is boundedly invertible on H* () for all &' > s.
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Proof. This follows from elliptic regularity and the jump conditions satisfied by the
potential operators V and K. We illustrate a typical case, namely, A = —1/2 +
K —inV. Let A be boundedly invertible on H*(I') for some s > 0 and let s’ > s.
Let ¢ € H*(I) solve Ap = f € H*(I'). Then ¢ € H™Ls'}(T), which follows
from the smoothing properties Ko : L? — H! and Vy : L? — H'. Hence, A is
boundedly invertible on H* (I') for s < ' < 1. For s’ > 1, we start by noting that
we may assume that A is boundedly invertible on H®(T') for some § > 1/2. Consider
the potential u = K¢ — inV, where ¢ € H*(T') solves Ap = f € H¥(T'). Then
u satisfies in €2 the homogeneous Helmholtz equation and the boundary condition
yitu = (=1/2 + K —inV)p = f. Elliptic regularity then ensures u € HS/+1/2(Q).
Since u satisfies the jump conditions

[u] = ¢, [Onu] = iny, (6.1)

we see that in QT the potential u satisfies the homogeneous Helmholtz equation
ext

together with y¢*tu — inyc*tu = vy — inyi*u € H* ~1(T). Elliptic regularity then
gives u € H¥ T1/2(Qr N Q). The jump conditions (6.1) finally lead to ¢ € H* (I'). O

6.1. analytic regularity. In this section, we study the equations Ap = f and
A’'p = f for analytic I and analytic right-hand side f. The solution ¢ is then likewise
analytic and our goal is to study the k-dependence of the solution .

6.1.1. the operator A. LEMMA 6.5. Let I' be analytic and let T be a tubular
neighborhood of T'. Suppose g € A(Cyy, g, T\T') for some C, 74 > 0. Let p € H/?(T)
satisfy

1 : ex in
(i§+K—mV) e =7"9—1"9
Then ¢ = &%y — &M u, where, with the operator A defined in (6.2),

u€ACCy, 7, Qr),  Cu=Cy+ k7 |VAp||12(0n) + | A0 12(00p)-

The constants C' and v depend solely on I', 4, ko, and the choice of R.

Proof. Before proving the lemma, we stress the following points: First, the existence
of ¢ is stipulated as an assumption. Second, as will be discussed in more detail
below, k™| VAl 2+ | A@l L2 (0n) grows only algebraically in k under appropriate
assumptions. Thirdly, it is allowed to select g such that it vanishes in € or in QT; in
fact, this is how Lemma 6.5 will be employed below. Finally, in view of Lemma B.5
it is possible to select u such that it vanishes on Q or Q.

We define the potential u on QU Q' by

u=Ap:=Kp—inVe. (6.2)

Then u satisfies the homogeneous Helmholtz equation on Q U QT together with

YWru=g]  if (—5+K—inV)e=]g], (6.3)
=g if (3 +K—inV)p=[g]. (6.4)

We will only consider the first case (corresponding to an interior Dirichlet problem)—
the method of proof can be applied to the second case as well. Also, for simplicity of
notation we assume that ¢ = 0 on Q. This is not a restriction and can realized with
the aid of Lemma B.5.
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The jump relations satisfied by K and V (see [18, Thm. 6.11]) give us on I':

ext int

[ul =@, AU —7""u=ine. (6.5)

The first jump relation shows that we have to prove u € A(C., Yu, Qr). To that end,
we note that u solves by (6.3)

—Au—k?’u=0 onQ, ety = g.

In view of the analyticity of I" and g, Theorem B.2 implies the existence of a tubular
neighborhood T of I such that u € A(Cy, 7, TNQ), where C; < C (Cy + k7 ul,0)
for a C' > 0 independent of u and k.

The jump relations (6.5) imply the Robin boundary conditions

ext ext int int

Y — Iyt = 1" e — inygMu =1 g. (6.6)

The analyticity of T' implies the existence of a tubular neighborhood of T' (again
denoted T') and an analytic function G= € A(CC1k, v, TNQ) with "G~ = g. Next,
Lemma B.5 implies the existence of a function G' and a tubular neighborhood of T'
(again denoted T') with G € A(CC1k,v, T N QT) and 7§*'G = "G~ = g. Then,
Theorem B.3 gives u € A(CCa,~v, T NQT), where Co = C1 + k™ ||u||4 0+np,- Since
u = Ap, we have so far obtained u € A(CC,y,~, T\I') with C, defined in the statement
of the lemma. Interior regularity (see [19, Prop. 5.5.1]) finally gives estimates for u
not only near T' but in all of Qg, i.e., u € A(CCy, Yu, Qg) for suitable C, v, > 0. O

The existence of ¢ is stipulated as an assumption in Lemma 6.5. We formulated
¢ € HY%(T) since this readily implies Ap € H'(Qg) and the constant C, can be
estimated in terms of ||| g1/2(ry. However, it will be more convenient in the following
to bound C,, in terms of [|¢|[z2(ry and ||Ag|| g1/2(ry, which we now show how to do:

LEMMA 6.6. Assume the hypotheses of Lemma 6.5. If p € HY/?(T') then

HESDHLZ(QR) + k71||vg<P||L2(QR) <C [k71||<P||H1/2(F) + klloll g-1/2ry + k2|\<p|\H,3/2(F)} .
If o € L*(T') and Ap € H'/?(T) then

1AelL2(0n) + B VARl L200) < C (1Al 12y + B0l sr-1/2(r) + K2l @l g-sr2(ry ] -

Proof. If ¢ € H'Y/?(T"), then we can insert the result of Corollary 4.5 to get

lApllL2p) < C [k”@”H*l/?(F) + k2||90||H*3/2(F)] ;
IVAp| 20y < C [||80||H1/2(r) + k2|\<p|\H,1/2(F) + k3|\¢|\H,3/2(F)] )

which is the first estimate. For the second one, we consider again the case where
Ay (see (6.2)) solves an interior Dirichlet problem. If ¢ € L?(T), then it is a priori
not clear that Ap € H 1(QRr). However, this can be inferred as follows: We write
A=41/2+ Ko + S, where, by Theorem 4.4, the operator S : L?(T') — H'(T'). Since
likewise Ko : L?(T") — H(T'), we conclude from Ap € H'/?(T') that 1/2¢ € H'/?(T).
In particular, Ay € HY(QR). To get bounds for u := Ay, we restrict our attention to
the case A = —1/24 K —inV as in the proof of Lemma 6.5 and note that (4.21)—(4.23)
of Corollary 4.5 produce

K lull -1 (o) + K lull r-1(8am) < C [KPllll gr-1/20y + B2 lollgr-sr2y] - (6.7)
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Next, u is the solution of the following interior Dirichlet problem:
—Au=k*Ap e L*(Q) inQ, Yty = g == Agp.

Standard a priori bounds for Laplace Dirichlet problems together with (6.7) and (6.7)
imply

lullr.e < Cllgllgzmy + k2 lelg-12my + E el g-s2r) -
Lemma 4.6 allows us to infer
I ul| =172 (ry < CEllull#.0, lull gr2om) < CE ullg-1(Byr)-  (6.8)

The jump condition (6.5) satisfied by u reads v{**u — vi"u = inp. Rewriting this as
Tty = yinty + ik, we infer that u solves in QF

—Au=k*u on QF, Yty = M+ ik, ulopr = uloBg-

A priori bounds for the Laplace operator together with (6.8) give us

lull g2 @pva) <€ {||k2u||H*1(QR\§) + ™ ull gr-1s2 ey + kllel 172y + ”u”Hl/?(c”)BR)}

< Ck [llgll /2y + K@l -2y + RNl g-s2y) 5
which concludes the argument. 0
If the operator A is invertible on H*4(T") and a bound on ||A™|| gsa—p=a is available,
then then we obtain the following regularity assertion for A~1:
COROLLARY 6.7. Let I' be analytic, T' be a tubular neighborhood of I', and Cg, v4 > 0.
Let A be boundedly invertible on H*4(T") for some s4 > 0. Then there exist constants
C, v > 0 such that for every g € A(Cy,~q, T\T) the solution ¢ € H*4(T') of Ap = [g]
satisfies

5
o=, weWCCu~,0R), C,:=Cok(A+E’|| A geacnma) f[i= 5 tsa.

Furthermore, u is given explicitly by (6.2), i.e., u = A(A[g]).
Proof. From the trace inequality (and, in the limiting case s4 = 0, a multiplicative
trace inequality) we get
9]l ezea (ry < CCkAFY20 gl L2y < CCkY2, gl ey < CCok.
Therefore, by assumption we obtain for ¢ = A~![g]
el 2y < Cllellmeawy < CC(A, sa, k)llg)llaeary < CIA™ e cpea k*4 V20,
Lemma 6.6 then implies for the function u = ggp

lull 20y + k7 IVl L2in) < CRTPFAC A mreatoa.

An appeal to Lemma 6.5 concludes the argument. O
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6.1.2. the operator A’. For the operator A’, one can proceed very similarly as
for the operator A.
LEMMA 6.8. Let T be a tubular neighborhood of T' and let g1 € A(Cy,, 71, T\T') and
g2 €A(Cyy,v2, T\T). Let p € H-Y2(T') satisfy

1 : ex in ex in
(15 + K+ an) @ = k(6" 91 — 70" 91) + (7§92 — 71" g2)
Then ¢ = v{*t'u — vi™y for a function

u € A(CCy, Qr) Cu=0Cq, +Cy, + kil”@”H*lﬂ(r) + Ellll zr-s/2(ry.-

The constants C, v > 0 depend only on I, vg,, v4,, and ko.
Proof. We introduce the potential u := V¢, which satisfies the homogeneous Helmholtz

equation in Q U QT. Additionally, it satisfies the jump conditions v{"'u = §%u and

) 1 1
ity + inu = (5 +K' +inV)p and Afu+inu = (—5 + K' +inV)ep onT.

Let us assume that A’ = 1/2 + K’ 4 inV, since the case of A’ = —1/2 + K' +inV is
handled with analogous arguments. For simplicity of notation, we assume, as we may
in view of Lemma B.5, that g; = go = 0 on Q.

Then u solves the homogeneous Helmholtz equation in  with Robin boundary con-
dition vi™u + inu = kv g1 + vi"t gy on I'. The analyticity of g; and go then implies
by Theorem B.3 the existence of a tubular neighborhood T of T" and a constant v > 0
such that

ueACC,,v,T' NQ), Cr, = [k Vull 20 + llull2) + Cg, + Cy,] (6.9)

By means of Lemma B.5, we may view v¢"u as the trace y§*'u of a function @ €

A(CC!, 5, T" NQT), where the tubular neighborhood T" and the constant ¥ depend
solely on I, 7, and ko. In QF, the function u satisfies the homogeneous Helmholtz

equation and, in view of the jump condition v§*u = 4{"*u, on I" the Dirichlet bound-

ary condition y§*'u = y§**u. Hence, we conclude from Theorem B.2 the existence
of a tubular neighborhood (again denoted T') and constants C, 7, > 0 that depend

solely on I' and 7 such that
uem(ccga’yuvaQ+)v O’Z = O'{L_FkilHuH'H,Q+ﬁBR'
Corollary 4.5 implies

K=l pan < C K7 Il a2y + Ellol m-s/2r)

so that we conclude u € A(CCy,7y, T \T') with C, defined in the statement of the
lemma. Finally, interior regularity (see [19, Prop. 5.5.1]) gives estimates not only near
I but in all of Qg, ie., u € A(CCy,Vu, Qr) for suitable v,, C > 0. Observing that
yinty — v§%ty = ¢ concludes the proof. [

COROLLARY 6.9. Let I' be analytic, T be a tubular neighborhood of I', and Cy,, Cl,,
vg > 0. Let A’ be boundedly invertible on H*4(T') for some sa > —1/2. Then there
exist constants C, v > 0 independent of k > ko such that for all g1 € A(Cy,, vy, T\T),

g2 € A(Cy,, vy, T\T) the solution ¢ € H*4(T') of Ap = k[g1] + [Ong2] satisfies

Y = [8ﬂu]7 u € Q’[(COL,O)’Yv QR)) C%’ = (Ogl + ng) (1 + kB”(A/)_lnHSA‘*HSA) ’
)
8= §—|—sfg, s = max{sa,0}.
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Furthermore, u is given explicitly as u = V((A))"[g]).
Proof. We use Lemma 6.8. Using s4 > —1/2 and the assumption that A’ is invertible
on H*4(T') gives for the solution ¢ of A’ = k[g1] + [Ong2)

el 172ty < Cllellareary < CINA) T m2a—roallklg1] + [Ongollmeary

< CNA) Hlaea—roallklon] + Ongalll .t o)

<A rea—prea KAT2(Cyy + Cyy).

Hence, we get
_ ot _
ContCoath™ [l =120y HRlRl 1-5/2(r) < C(Con+Co) (14 K2 (A sroa e )

An appeal to Lemma 6.8 concludes the proof. O

6.2. finite regularity. This section is the core of the paper and provides de-
composition results for the operators A~ and (A’)~! as operators acting on Sobolev
spaces H®(I"). These results are formulated as Theorems 6.11, 6.12. Before working
out the details, we formulate a lemma that isolates an important structural element
of the proof of Theorems 6.11, 6.12.

LEMMA 6.10 (“iteration lemma”). Let T be a tubular neighborhood of T'. Let s,
sp € R, and v1, v2, v > 0 be given. Let Cmootn(k), Csorve(k) > 0 be two, possibly
k-dependent numbers.
Assume that B : H*(T') — H*(T") satisfies the following conditions:

(i) B can be decomposed as

B=By+Bs+R

where By : H*(I') — H*(T") is boundedly invertible, R is a bounded linear oper-
ator with

IRB; e (ry—mery < g < 1
and B4 is a bounded linear operator of the form
B = k[Baa] + [0,Baz]
with
Baip € AComootn(B) @l iy, 7, T\T) Ve € H(T),  ie{1,2}.

(ii) B~ is a bounded linear operator in H*(T') and H*= (T') (with possibly k-dependent
norms).

(i11) If ¢ € H*(T') satisfies By = k[g1] + [Ong2] for some g1 € A(Cy,,71,T\T), g2 €
A(Cyy, 72, T\T), then ¢ = [u] (or, p = [Opu]) for some u € A(Csorve (k)(Ca, +
CG2)7 s QR) "

Under these assumptions there exist constants C, ¥ > 0 depending only on v1, 72,

and T, and ko such that B~! can be written as

B™'=Bz+Bsp
where Bp has the form Bgf = [Bgf] (or Bgf = [0,Bpf]) and

HBZHHS(F)HHS(F) <(1- q)_l||B(J71HHS(F)&HS(F)7

EBf S Ql(CB7§7QR)7 CB = écsolve(k) Csmooth<k)||f”H5(F)'
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Proof. For f € H*(T') consider the following iteration:

(pginite — 0, A — 0,

Boézinite = f _ B((pi‘l'inite + (pﬁ),
B(s'A — _BA(Sfinite
n n ’
(P{l'Tlite — (P{l'inite + (SZL'Z'niiEe7 @ﬁqu = @ﬁ 4 5;;1

The sequences (/€)% and (1), converge as we now show. Define the residual
Ty i= f — B(pl™ + pA). Then

a1 = = Blep{1' + wnia) = [ = Bloh™ + 677+ o + 67
=1y — B&["" — Bo; = 1, — (Bo + Ba + R)6} ™" — BS;}!
_ —Ré'}:inite _ B.A57f1inite _ B(S;il — —Ré'}:inite — —RBo_l’I“n.

The assumption || RBy || g+ (rymr+ (ry < ¢ < 1 therefore implies |7, || gy < ¢" |70l r+(r)
and thus [|6£7% | zrory < ¢"|| By i 0y (o) |70l 1+ (r)- We conclude that the sum
S0 o 0hmite converges in H*(I'). Since B is a bounded linear operator, also the sum

n=

S22 64 converges in H*(T'). We thus define the operators Bz and Bp by

n=0"n
o0 oo
B : li finite _ finite Br : Ii A A.
z: fr lim gy 2)% : B lim gy 2%5"
n= n—=

It is easy to see that || Bz||gsry—mem) < (1= )7 By s (r)—ms(r)- Next, in view
of lim,, o 077" = 0, we obtain from (6.11) that lim,, ., /™€ + 7 is the solution
of By = f. To obtain the representation Bgf = [Bgf] (or Bpf = [0,Bp]), we sum
the terms in (6.12) to get the relation

B(Bpf)=—-BaBzf.

Thus, by assumptions on the operators B and By, we see that Bgf has the form
Bgpf = [Bgpf] (or [0,Bpf]) for an operator Bp that satisfies

EBf € Ql(Ccsolve(k)csrrwoth(k)HJPHHS(F)a77 QR)'
for appropriate 7. O

6.2.1. the operator A. We show that the operator A=! of (1.3) can be de-
composed into a zero-th order operator with k-independent bounds and an analytic
part.

THEOREM 6.11 (decomposition of A=), Let I' be analytic, s, sa > 0. Let A be
invertible on H™™55aX(T").  Then there exist constants C, v > 0 independent of
k > ko with the following properties: The operator A™' can be written as

AT = A 45" Ag o — M Ag
where the linear operators Az und VZAA satisfy

Az sy —m= () < C,

Aurf €A(CC, 7, QR),  Cp =K (1 4 ED/sa ||A*1|\HSAhHSA) 1 e -
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Proof. Before turning to the proof, we point out that, since only the jump of Ay f
across I' appears in the decomposition of A~ there is some freedom in the choice
of A4. In particular, A4 can be selected such that (Aaf)lg+ = 0 or (Aaf)|a = 0.
In fact, the proof shows that we construct A, such that VZAf =0on Q" if A =
—1/2 + K — inV is considered and Aaf = 0on Q if A = 1/2+ K —inV. We
also point out that, although A is assumed to be invertible on H*(T'), the bound
A= s (ry— e (ry is immaterial —only the bound [[A™!| gsa(ry—pea(r) appears in
the estimates.

Our starting point is Lemma 2.5, which asserts that —1/2 + Ky and 1/2 + Ky + iV}
are invertible operators on H*(I'). Lemma 5.5 and Remark 5.6 permit us to write

A=—%+K0+RA+k[ﬂA], ifA=-1/2+ K —inV,
AZ%-‘FKO—FiVQ-FRA—Fk[vZA]a fA=1/2+K-inV.

with operators R 4 and A 4 having the properties stated in Lemma 5.5. In the notation
of Lemma 6.10, we set

T+ Ko+iVp, ifA=1/2+K —inV,

R=Ry, Bu1=Ax, Bu>=0, By=
A TALT AL A ’ {—%+K0 ifA=—1/24 K —inV

In view of Lemma 5.5, the norm |[Ra||gs(r)—msr) can be made arbitrarily small.
We may therefore assume that ||RB071HH5(F)<_H5(p) < 1. Furthermore, Lemma 5.5
together with the trivial embedding H*(T') ¢ H~'/2(T') ¢ H~3/?(T") implies that
Csmootn(k) < Ck. Finally, Corollary 6.7 provides us, again in the terminology of
Lemma 6.10, with

Clotve(k) ~ E2(1 + E/2T54C(A, 54, k)). (6.14)

Thus, Csotve(k)Camootn (k) ~ k3(1 + k5/2T54C(A, s4,k)), and Lemma 6.10 implies
the result. O

6.2.2. the operator A’. The operator A’ is handled with similar techniques.
THEOREM 6.12 (decomposition of (A’)~1). Let T' be analytic, s > 0, sa > —1/2.
Let A’ be boundedly invertible on H™™{*5a}(T"). Then there exist constants C, v > 0
independent of k > ko with the following properties: The operator (A')~1 can be
written as

(A/)il = /Z + FYleztAiA/.,in'U - FY,lintAA’,inv
where the linear operators A’y and gA’,inv satisfy with sz := max{s4,0}

IAZ |z 0y =0y < C,
AVA’,invf € Ql(CCfv% QR)? Cf = (1 + k5/2+5X H(A/)ilanA‘_HsA) HfHHS(F)'

Proof. We point out that, although A’ is assumed to be invertible on H*(T'), the
bound [[(A") || g=(ry—m=(r) is immaterial—only the bound [[(A") ™| gea(ry—meoa )
appears in the estimates. With Lemma 5.7 and Remark 5.8 we write
wo st Ko Rat KA ] + 00 A 2] if A= —1/2+ K' +inV,
L+ Ky +iVo + Rar + k[Aa 1] + [0n A o] A =1/2+ K +inV.
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This has the form required in Lemma 6.10, if we set
1 / : / .

-5+ K ifA'=-1/24+ K+inV ~ ~ .

= 2 0 ’ R=Ru Bai=Aau, i€{1,2).
’ {§+K(3+ivo ifA =1/24 K +inV A AT 2}

By Lemma 2.5, the operator By is invertible on H*(I"). Hence, selecting ¢ in Lemma 5.7
appropriately, we may assume ||RB; * | s (ry—ms(ry < 1. Lemma 5.7 provides the nec-
essary information about the mapping properties of EAJ-, 1 € {1,2}. Since s > 0, we
conclude that (in the notation of Lemma 6.10) Cymooth (k) ~ k. From Corollary 6.9
we obtain

Cotwe (k) ~ K4 (1 K255 (4) " grea e ) (6.15)

Lemma 6.10 then implies the result. O

Theorem 6.12 restricts its attention to the case s > 0. However, the case s = —1/2 is
particular interest given that it is the energy space for the operator K’. We therefore
modify the arguments slightly to cover this case as well:

THEOREM 6.13 (decomposition of (A’)~!, negative norms). Let I' be analytic, s4 >
—1/2, =1 < 5 < 0. Let A" be boundedly invertible on H™™ssa(T). Then the
operator (A')™1 can be written as

(A) 7 =AY+ Ay =" A
where the linear operators A’y and Ay satisfy with sh = max{s4,0}

A% | e () () < C,
Apf €MOCHYT),  Cpim k2 (14BN eacren ) 1 e

Here, C, v > 0, and the tubular neighborhood T of I' are independent of k > k.
Proof. We proceed as in the proof of Theorem 6.12 but replace the decomposition of
Lemma 5.7 with that of Lemma 5.9. That lemma leads to Cymoorn (k) < k%2 + k ~
k2. Since Cyorpe (k) is given by (6.15) we get the desired result. O

Appendix A. Proofs of Lemmata 2.1, 2.2. Proof of Lemma 2.1: The result
for —1/2 < s < 1/2 being known in the literature (see, e.g., [18]), we restrict our
attention to the limiting cases s = +1/2. We start with the case s = 1/2. Set
u = Voo for ¢ € L2(T'). Then u € H32(Qg) with 1wl g2r2(0,) < CllellL2ry, which
can be seen as follows: By [29, Thms. 3.3, 4.11] we have |[Vop||g1(r) < Cllollp2ry)-
Since Wént/emtf/ocp = Vb, the uniqueness assertion of [14, Thm. 5.15] implies that
u="Vop € H32(Qg). Next, [14, Thm. 5.6, Cor. 5.7] imply

lull 13720, + IVEVPull 2y + 1wl 220y + [(Ve)* L2y < Cllollizry (A1)

here, the notation v* denotes the non-tangential maximal functions (see [29]) and
0(x) = dist(z,T') denotes the distance from T'.

Additionally, we have from [14, Prop. 2.18] that u € BS{;(BR) if and only if u €
L?*(BR) and Vu € By/? (Br). It therefore remains to assert Vu € B2 (Br). To

2,00 2,00
that end, consider v = 0;u for a fixed 7 and let v, := v* p. be its regularization, where
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pe is a standard mollifier with length scale e. We have by standard arguments for
each fixed z € Bg such that v € H!(Bac(x)):

v —vellL2(B.(2)) < ElIVV]L2(By. (o))

IVvell 2B, (@) < VY| L2(Bs. (2))-

For € > 0 we denote by S. := UzerB:(z) the tubular neighborhood of T' of width e.
Covering the set Br \ S3c C Uzepp\s,. B<(z) we infer with the aid of Besicovitch’s
covering theorem

v = vellL2(Ba\ss.) < CellVollL2(ars.) < 51/2||51/2V2U||L2(QR) < 61/2”‘PHL2(F)7
IVl L2Ba\ss) < ClIVOIL2Bas.) < Ce216Y2V0] L2 (an) < Ce™ 2|0l Loy

For the regularized function v. we have with the definition of the non-tangential
maximal function and (A.1)

lvellz2(s.) < CllvllLa(sney < Ce™? (07| 2y < O30l 2(ry-
Finally, for the derivative we compute
IVellz2(sy) < CeMvllLa(s,.) < Ce™ V2w |2y < Ce™ 2|l L2y,

Thus, we obtain the following estimate for the K-functional:

1/2

K(v,e) < v =vellL2(Bg) +llvellri(sr) < Ce ol L2ry-

Since € > 0 is arbitrary, we conclude v € B;{;(BR).

For the case s = —1/2 we start by noting that Vo : H~1(I') — L*(T), which follows
from the self-adjointness of Vp, the above cite result by Verchota that Vg : L?(T') —
HY(T'), and a duality argument. Next, we approximate ¢ € H (') by functions
(n)nen C L2(I). As above, [14, Thm. 5.15] implies that the functions Vo, are
the unique harmonic functions with Dirichlet data Vp¢,. Combining an estimate due
to Dahlberg (see [14, Thm. 5.3]) and [14, Cor. 5.5] implies that Vop, € HY?(Qgr)
together with

IVownll /2 0m) < CllVoeullrary < Cllgnlla-1(ry-

By lincarity of Vp, the sequence (Voo )n is a Cauchy sequence in H/2(Qp). Fur-
thermore, it converges pointwise to Vop. We conclude that Vo € HY/?(QR) and
Vool gizon) < Cllelm-1(r)- Appealing once more to [14, Cor. 5.5], we get for
u = Vop that |[u|r2y + |lullgr/2y) < Cllella-1(r). Using now the same argu-
ments as in the case s = 1/2, we conclude ||u||B;(020(BR) < Ollell a1 (ry-

The remaining cases —1/2 < s < 1/2 can now be inferred from the limiting cases
s = £1/2 by an interpolation argument. a

Proof of Lemma 2.2: The proof is very similar to that of Lemma 2.1. The case

s = 1/2 is see as follows: For ¢ € H'(T) ¢ HY*T'), we have Koo € H'(QR).

We have """ Ky = (F1/2 4+ Ko)p € HY2(T) c L*(T). By [14, Cor. 5.5], the

interior and exterior non-tangential limits Tr""*/** Ky on E‘ exist and are in L?(T).
int/ext 1~

These must coincide with the interior and exterior traces -, Koy and we conclude
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T e Koo = 4" Ko = (F1/2 + Ko)p. By [29, Thm. 3.3] we have (F1/2 +
Ko)p € HY(09), so that [14, Thm. 5.15] implies Kop € H32(Qg). Then [14, Cor. 5.7]
implies I?Ocp € H3/2(QR) with ||I?QQD||H3/2(QR) < CHgDHHl(p).

For the case s = —1/2, we proceed as in the proof of Lemma 2.1. First, we show for
¢ € L?(T) that

Kol 12 + 1(Eow) L2y < Clloll ey

The assertion Kop € 321/020 (Br) follows from this in the same way as in the proof of
Lemma 2.1. Finally, for —1/2 < s < 1/2 the assertion Ko : HY/25(I') — H™**(Qp)

follows by an interpolation argument from Ko : HY/2t5(I') — Hs(Qp) for the
limiting cases s = £1/2, which have just been proved. O

Appendix B. regularity assertions for parameter-dependent elliptic PDEs.

B.1. analytic regularity. We start with a lemma that shows that membership
in the class 2 of analytic functions is preserved under analytic changes of variables:
LEMMA B.1. Let G, G; C R? be bounded open sets. Assume that g : G — R? is
analytic, |detg’| > 0 on Gy and that g(G1) C G. Let f; : G1 — C, fo: G — C be
analytic and assume that fo € A(Cr,vs,G). Then the function F : z — fi(z)(f20
9)(z) satisfies F' € A(CCy,7',G) for some constants C, ~' that depend solely on -,
fi, g, and k.

Proof. The case d = 2 is taken directly from [19, Lemma 4.3.1]. Inspection of the
proof of [19, Lemma 4.3.1] shows that it can be generalized to d > 2. O
Next, we recall that if a function u satisfies the differential equation

-V (BVu) + Kcu=f (B.1)

and if the function F' provides a sufficiently smooth change of variables, then the
transformed function @ := w o F solves

—V - (BV#) + k2 det F'¢i = det F'f,

where B = Bo F,¢=coF, and f: f o F. Finally, for the convenience of referring
to the assumptions on the coefficients B, ¢, we make the following assumptions: The
matrix-valued function B is pointwise symmetric positive definite and

0 < Amin < B(z) Vz€w, (B.2a)
V™|l Loo () < Ceveanl, V"Bl Lo (w) < Cpypn! Vn € Ng.  (B.2b)

THEOREM B.2 (Dirichlet b.c.). Let w C R? be a bounded Lipschitz domain with
analytic boundary. Assume (B.2). Let u € H'(w) solve (B.1) on w for an f €
A(Cy, vy, w). Assume that u satisfies ulo, = Glow for a G € A(Cq,va,wNT’), where
T' is a tubular neighborhood of Ow. Fiz a tubular neighborhood T of Ow with T C T".
Then u satisfies

w € ACCy, v, wNT),  Cu:i=k 2Cs+ Ca+kYulrrnw.

where the constants C and v, depend solely on vya, vf, Ow, ko, and the constants of
(B.2).
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Proof. Consider the function z := u — G. Since G € A(Cq,va,w NT’), it suffices to
establish z € A(CCy,vu,w NT). The function z satisfies

—k72V - (BV2)—cz=f =k 2f—k 2V (BVG) —cG onT Nu, Z|low = 0.

The assumptions on f and G and Lemma B.1 imply f € A(C(k™2Cs+Cq), 7, T' Nw)
for some constants C, . From [19, Props. 5.5.1, 5.5.2] we get z € A(C(k~2Cy +Cq +
kilnzHH_’T/mw),’y,Tﬂw). Since kilnzHH_’T/mw <C (OG + kilﬂuHH_,T/m,), the desired
result now follows. [

THEOREM B.3 (Robin b.c.). Let w C R be a bounded Lipschitz domain with analytic
boundary. Assume (B.2). Let u € H'(w) solve (B.1) on w for an f € A(Cy,vs,w).
Assume that u satisfies

nt nt wnt wnt

M= 99" G+ k(" G2)vg e

where, for some tubular neighborhood T' of dw we have G1 € A(Cqy,va,,w NT)
and Gy is analytic on T'. Here, the trace operators v and vi™ are understood with

respect to w. Fiz a tubular neighborhood T of Ow with T C T'. Then u satisfies
u € UCCy,Yu,wNT),  Cyu:=k2Cy+k 'Cq + k5 |ullr, 100,

where C' and 7y, depend solely on vya,, vr, Ow, Ga, ko, and the constants of (B.2).
Proof. The proof is sketched for a related 2D problem in [19, Prop. 5.4.5, Rem. 5.4.6].
The key observation is again that Lemma B.1 allows us to locally flatten the boundary
while preserving the structure of the differential equation and the boundary condi-
tions. Then the technique employed in [19, Prop. 5.4.5] is applicable. O

THEOREM B.4 (transmission conditions). Let ', w C R? be two bounded domains
with w' CC w. Denote v := dw' and assume that v is analytic. Assume (B.2). Let
u € HY(w) solve (B.1) on w for an f € A(Cy,vs,w\ 7). Fizw” CCw. Then

u € A(CCy, Yu, " \ ), C, = k:_2Cf + k_1||u||7.(,w

for some constants C, v, > 0 that depend solely on s, w', W', w, ko, and the
constants of (B.2).
Proof. The interesting estimates are those near the boundary ~. Here, the standard
procedure of locally flattening v can be brought to bear in view of Lemma B.1.
Then, [19, Prop. 5.5.4] is applicable. O
LEMMA B.5. Let w C R? be a bounded Lipschitz domain with analytic boundary Ow.
Set wt =R\ @. Let T be a tubular neighborhood of dw. Let G € A(Cq,va, T Nw).
Then there exists a tubular neighborhood T of Ow and constants C, g that depend
solely on g, Ow, ko with the following property: There exists a Ge Ql(C'CG,'yé,fﬂ
w™T) with "yg””té = 4i™G. Here, v and & are the trace operators with respect to
w.
Proof. The idea is to define G by reflection at dw. One can define boundary fitted
coordinates ¢ : Ow x (—¢,¢) — R? via ¥(z, p) := x + pii(x), where 7i(z) is the (outer)
normal vector of Jw at x € Ow. Since Ow is assumed to be analytic, 1 is likewise
analytic. For ¢ > 0 sufficiently small, the range of ¢ is a tubular neighborhood
(denoted T) of dw and restricted to T, the inverse 1)~! of 1) exists and is analytic.
We write ¢~ (z) = (y(z), p(z)). For z € T Nw™ we then define G*(z) by Gt (z) :=
G((a(z), —p(z))). The analyticity of 1y~ and Lemma B.1 then implies the result. O
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B.2. finite regularity. THEOREM B.6. Let w’ and w C R? be two bounded
domains with w' CC w. Denote by v := 0w’ and assume that v is analytic. Assume
(B.2). Letu € H'(w) solve (B.1) on w for some f € H*(w \ 7) with s > 0. Fix
Ww" CCw. If s € Ny, then

Z k™| V2 o) < C Zk7j72||vjf||L2(w\'y) + lull 2wy |, (B3)
n—0 j=0

where the constant C depends on s but is independent of k > ko and u. If we assume
s >0, then for some C > 0 independent of k > ko and u:

[ull vy < C B F L2y + 1 ey + 52 ull L2 (w)] - (B.4)

Proof. We start by observing that standard elliptic regularity (note that the interface
~y is smooth) for

-V.-(BV@)=f onw
gives for s > 0 and any domain @ with w”’ CC & CCw
[0 ro+2 @) S F L= @\ + ull 2@)-
We apply this result with f: f + E2cu, multiply through with k~*°, and get
B0 ull gevr @y SE N lae @y + 52 ullga@v + 5 lull2@)- (B.5)
For even integer s € 2Ny, we can iterate (B.5) to get

s/2
k75||u||Hs+2(w~\7)SZ E=2 fll m2i @ + K llull L2y, s € 2N, (B.6)
=0
For odd s € 1 4 2Ny we get analogously
(+D/2-1
E72lull gste @y S kM| f Il mr2ie vy + Ellull i@y + 5l 2y

=0

The bound (BG) with s =0 pI‘OduCGS HUHHQ(w”\V)S/HfHLQ(w\'y) + k2HUHL2(w\'y)~ Com-
bining this with the standard (piecewise) interpolation inequality

1/2 1/2 _
el 271 vy STl 12 oy el 2y SE T Nl 72 ) + Bl 2

and appropriately adjusting the domains, we can conclude for s € Ny
k8 ull ey S S &£l s @) + B lull 22y (B.7)
j=0

from which we derive (B.3). For the proof of (B.4) we introduce the notation o := |s]
and observe the (piecewise) interpolation inequality

—0 ‘] S
HuHHs(w\w)g||u||22($\7)||u||1}a+2(w\a,)v 01 := o122
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For every €1 > 0 we get from Young’s inequality
el zrs oy SE77 O [l 22y + 1 O Nl Eroe o)
Selecting €1 := k*(1=91) we arrive at
[l 210 () SES Ul L2 (o) + B0 72 (]| o2 o) - (B.8)

Next, we use again a (piecewise) interpolation inequality to bound for 0 < j < o < s
and Young’s inequality

s— s 1-j/s s s
E I s @mS F 1 o) 11 oy SE I z2@am + 1 e (B.9)

Combining (B.9), (B.8), (B.7) we arrive at the desired bound (B.4). O

Appendix C. regularity of Laplace-Beltrami eigenfunctions. Let Q C R? be
a bounded domain with an analytic boundary T'. Let (¢m,A2,), m € Ny, be the
eigenpairs of the Laplace-Beltrami operator, i.e.,

—Arpm = A2 om onT.

We assume that the eigenvalues A, > 0 are sorted in ascending order and that the
eigenfunctions (¢, )men, are orthonormalized in L?(T).

LEMMA C.1 (analytic regularity of ,,). LetI' be analytic. Then there exist constants
C, v > 0 independent of m such that

IVE@mllL2ry < Cmax{An,,n}"y" Vn € Np, (C.1)

where Vi denotes the surface gradient. Furthermore, there exists a tubular neighbor-
hood T of T' (depending solely on T') such that all functions ., can be extended to
analytic functions (again denoted v,,) on T that satisfy

IV omllL2ry < Cmax{Ay,,n}"y" Vn € Np. (C.2)

Proof. Sketch of the proof: If v : U — T for some U C R?! is one of the analytic
charts, then the Laplace-Beltrami operator Ar applied to a function u : I' — R has
the following form on U:

Z_: (Vg7 0;(uon)),

% \

where g = det G is the determinant of the metric tensor G given by Gy, := 0y - 95

and the matrix (¢*)¢._, is the (pointwise) inverse of G. The matrix G is pointwise

7,7=1 i
symmetric positive definite and thus also its inverse (g%)¢ j=1- By the analyticity of
the charts, the matrices (g% )f j—1 and the function g are analytic. On U, the pull-back
Om = @ o~ of the eigenfunction ¢,, satisfies for the analytic, pointwise symmetric

positive definite matrix A;; = \/§gij
_/\;sz ’ (Avﬁm) - \/§<ﬁm =0,
Fix K cC K’ cC U. Then [19, Prop. 5.5.1] gives

IV 2G| L2 (k) < max{n, Am}" 29" AVl 2y + A2 I 8mll L2 () - (C-3)
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We have [|omll g1y ~ Am, and [[om |2y = 1. Hence,
1nllzzaey € 1Bl iy < Chm (C.4)
Combining (C.3), (C.4) we see that
||V”+2$m||L2(K) < C'max{n, )\m}”+27" Vn e NgU{-1,-2}.

Returning to I" gives (C.1) in view of Lemma B.1. To see (C.2), we define the extension
of ¢,, in the trivial way: In a tubular neighborhood T of T" one can define boundary
fitted coordinates I' X [—e,e] — T via (z,p) — x + pii(z), where 7i(z) is the (outer)
normal vector at z € I". For sufficiently small ¢, this is a bijection, and we can define
the extension by ¢, (x + pfi(z)) = @ (). O

REMARK C.2. Taking the trivial extension to the tubular neighborhood T is clearly
not the only choice. For example, if one is only interested in extending ¢,, only to
QFNT then one can select the extension to be @y, (x4 pii(x)) = @ (x)e?/ m@x{Am:k}
leading to slightly improved bounds in (C.2).
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