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MAPPING PROPERTIES OF COMBINED FIELD HELMHOLTZ

BOUNDARY INTEGRAL OPERATORS

JENS MARKUS MELENK∗

Abstract. For the Helmholtz equation (with wavenumber k) and analytic curves or surfaces
Γ we analyze the mapping properties of the single layer, double layer as well combined potential
boundary integral operators. A k-explicit regularity theory for the single layer and double layer
potentials is developed, in which these operators are decomposed into three parts: the first part is
the single or double layer potential for the Laplace equation, the second part is an operator with
finite shift properties, and the third part is an operator that maps into a space of piecewise analytic
functions. For all parts, the k-dependence is made explicit. We also develop a k-explicit regularity
theory for the inverse of the combined potential operator A = ±1/2+K − iηV and its adjoint, where
V and K are the single layer and double layer operators for the Helmholtz kernel and η ∈ R is a
coupling parameter with |η| ∼ |k|. The decomposition of the inverses A−1 and (A′)−1 takes the
form of a sum of two operators A1, A2 where A1 : Hs(Γ) → Hs(Γ) with bounds independent of k
and a smoothing operator A2 that maps into a space of analytic functions on Γ. The k-dependence
of the mapping properties of A2 is made explicit.

Key words. high frequency scattering, boundary integral operators, combined field
equations, Helmholtz equation, regularity theory

AMS subject classification. 35J05, 35J25, 65N38, 78A45

1. introduction. Acoustic and electromagnetic scattering problems are often
treated with boundary integral equation (BIE) methods. In a time-harmonic acoustic
setting, the relevant boundary integral operators (BIOs) include the classical single
layer and double layer potential operators and, more importantly, the combined field
Helmholtz operatorsA′ (see (1.4)) and A (see (1.3)); the former is attributed to Burton
& Miller, [9], while the latter is commonly associated with the names of Brakhage
& Werner [3], Leis [15], and Panič [23]. These BIOs depend in a non-linear way on
the wavenumber k under consideration. Yet, especially in the high-frequency regime
of large k, an understanding of how the boundary integral operators (BIOs) and the
solutions of the BIEs depend on k is important for various purposes, for example,
for the design and analysis of efficient numerical schemes based on such BIEs. The
present paper is devoted to a detailed analysis of the mapping properties of the BIOs
A and A′ emphasizing the k-dependence.
The above mentioned reference have shown for smooth geometries (see [5] for the
extension to Lipschitz geometries) that the combined field BIOs A and A′ are invert-
ible on scales of Sobolev spaces. However, the k-dependence of these norms was left
unspecified. For the special case of circular and spherical geometries the single and
double layer potentials can be simultaneously diagonalized by Fourier techniques so
that (using intricate large argument and large order asymptotics of Bessel functions) a
complete k-explicit analysis of the operators A, A′ and their inverses is possible, [11].
In this special cases, even k-uniform L2-ellipticity is proved in [11]. More generally, [7]
establishes for star-shaped domains k-uniform bounds for the norms ‖A−1‖L2←L2 and
‖(A′)−1‖L2←L2 . Estimates for ‖A‖L2←L2 and ‖A′‖L2←L2 , which depend on k, are pro-
vided in [4]. Norm bounds alone, however, are not sufficient for a sharp stability of
analysis discretizations of the operators A and A′, especially in the context of high
order methods. This observation was the starting point of the present paper, which
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provides a significantly more refined regularity theory for the operators A, A′ and
their inverses. In fact, the present analysis permits us to develop in the companion
paper [17] a k-explicit convergence theory for the hp-version of the boundary element
method (hp-BEM).
Our k-explicit regularity theory takes the form of an additive decomposition of the
operators into several terms with different mapping properties. Section 4 provides
these decompositions for the classical single and double layer potentials. These oper-
ators are decomposed into three parts: the first part is the corresponding operator for
the Laplace equation and therefore k-independent; the other two terms have smooth-
ing properties but their operator norms depend on k (we make this k-dependence
explicit). Our principal decomposition results for the layer potential are for analytic
geometries (see Theorems 4.3, 4.4); however, it is also possible to obtain similar re-
sults for Lipschitz boundaries, which is worked out in Theorems 4.1, 4.2. Section 6 is
at the heart of this paper and provides the additive decompositions for the inverses of
the combined field operators in Theorems 6.11, 6.12; here, we restrict our attention
to analytic geometries.
The result of the present paper have counterparts in the context of differential equa-
tions and finite elements. Indeed, analogous decomposition results have recently been
obtained in [21, 22] for several Helmholtz boundary value problems.
The paper is organized as follows: the remainder of this first section introduces gen-
eral notation and various boundary integral operators. Section 2 collects mapping
properties of the classical single layer and double layer potential operators on Lips-
chitz domains. In particular, the limiting cases studied in Lemmata 2.1, 2.2 appear
to be new. Section 3 studies the mapping properties of the Newton potential for the
Helmholtz equation. Section 4 provides decomposition results for the Helmholtz single
layer and double layer potential operators both for Lipschitz domains and domains
with analytic boundaries. Section 5 applies the results of Section 4 to the combined
field operators. The final Section 6 is a key section of the paper in that it provides
decomposition results for the inverses of the combined field operators.

1.1. notation and general assumptions.

1.1.1. general notation. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz
domain with a connected boundary. Throughout this work, we will futhermore assume
for the case d = 2 the scaling assumption diamΩ < 1. We set Γ := ∂Ω and Ω+ :=
Rd \ Ω. Throughout the paper, we assume that the open ball BR := BR(0) of radius
R around the origin contains Ω, i.e., Ω ⊂ BR. We set ΩR := (Ω∪Ω+)∩BR = BR \Γ.
We will denote by γint

0 and γext
0 the interior and exterior trace operator on Γ. The

interior and exterior co-normal derivative operators are denoted by γint
1 , γext

1 , i.e., for
sufficiently smooth functions u, we set γint

1 u := γint
0 ∇u · ~n and γext

1 u := γext
0 ∇u · ~n,

where, in both cases ~n is the unit normal vector point out of Ω. As is standard, we
introduce the jump operators

[u] = γext
0 u− γint

0 u, [∂nu] = γext
1 u− γint

1 u.

For linear operators Ã that map into spaces of piecewise defined functions, we define
the operators [Ã] and [∂nÃ] in an analogous way, e.g., [Ã]ϕ = [Ãϕ]. Sobolev spaces
Hs are defined in the standard way, [1, 27]. We stress, however, that if an open set
ω ⊂ Rd consists of m ∈ N components of connectedness ωi, i = 1, . . . ,m, then the
space Hs(ω) can be identified with the product space

∏m
i=1H

s(ωi) equipped with

the norm
(∑m

i=1 ‖u‖2
Hs(ωi)

)1/2

. For a domain ω ⊂ R
d, we will also employ the
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Besov spaces Bs
1/2,∞(ω), which are defined in the standard way by the real method of

interpolation (see, e.g., [2,27,28]). Sets of analytic functions will play a very important
role in our theory. We therefore introduce the following definition.
Definition 1.1. For an open set T and constant Cf , γf > 0 we set

A(Cf , γf , T ) := {f ∈ L2(T ) | ‖∇nf‖L2(T ) ≤ Cfγ
n
f max{n+ 1, |k|}n ∀n ∈ N0}.

Here, |∇nu(x)|2 =
∑

α∈Nd
0 :|α|=n

n!

α!
|Dαu(x)|2.

For domains ω ⊂ R
d, it is convenient to introduce the k-dependent norm ‖u‖H,ω by

‖u‖2
H,ω := ‖u‖2

L2(ω) + k2‖∇u‖2
L2(ω).

Tubular neighborhoods T of Γ are open sets of such that T ⊃ {x ∈ Rd | dist(x,Γ) < ε}
for some ε > 0.
Throughout the paper, we will use the following conventions:
Convention 1.2.

(i) We assume |k| ≥ k0 > 0 for some fixed k0 > 0.
(ii) If the wavenumber k appears outside the boundary integral operators and poten-

tials such as Vk and Ṽk, then it is just a short-hand for |k|. In particular, k
stands for |k| on the right-hand side of estimates. For example, k ≥ k0 stands
for |k| ≥ k0.

1.1.2. layer potentials. In recent years, boundary element methods (BEM)
and BIOs have been made accessible to a wider audience through several monographs,
e.g., [12,18,24,26]. We refer to these books for more information about the operators
studied here.
We denote by V , K, K ′ the usual single layer, double layer, and adjoint double layer
operators for the Helmholtz equation. The single layer and double layer potentials
are denoted by Ṽ and K̃. More specifically, we define the Helmholtz kernel Gk by

Gk(x, y) :=

{
i

4H
(1)
0 (k|x− y|), d = 2,

eik|x−y|

4π|x−y| , d = 3,
for k > 0,

Gk := G−k for k < 0,

where H
(1)
0 is the first kind Hankel function of order zero. The limiting case k = 0

corresponds to the Laplace operator and is defined as G0(x, y) = −1/(2π) ln |x − y|
for the case d = 2 and G0(x, y) = 1/(4π|x − y|) for the case d = 3. The potential

operators Ṽ and K̃ are defined by

(Ṽ ϕ)(x) :=

∫

Γ

Gk(x, y)ϕ(y) dsy , (K̃ϕ)(x) :=

∫

Γ

∂nyGk(x, y)ϕ(y) dsy , x ∈ R
d\Γ.

From these potentials, the single layer, double layer, and adjoint double layer operators
are defined as follows:

V := γint
0 Ṽ , K :=

1

2

(
γint
0 K̃ + γext

0 K̃
)
, K ′ := γint

1 Ṽ − 1

2
Id . (1.1)

If need be, we will write Vk, Kk, K ′k to clarify the k-dependence. We mention in

passing that for k 6= 0, the potentials Ṽk and K̃k are solutions of the homogeneous
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Helmholtz equation on Rd\Γ; for k > 0 they satisfy the outgoing Sommerfeld radiation
condition while for k < 0, they satisfy the incoming radiation condition.
We finally turn to the definition of adjoint operators. We have for all k ∈ R for the
L2(Γ) scalar product and all ϕ, ψ ∈ H1/2(Γ):

(Vkϕ, ψ)L2(Γ) = (ϕ, V−kψ)L2(Γ), (1.2a)

(Kkϕ, ψ)L2(Γ) = (ϕ,K ′−kψ)L2(Γ), (1.2b)

i.e., the adjoints of Vk and Kk are V−k and K ′−k, respectively. It is worth pointing

out that we have the connections Ṽ−kϕ = Ṽkϕ and K̃−kϕ = K̃kϕ.

1.1.3. combined field operators. For a coupling parameter η ∈ R \ {0} we
consider four combined field operators. The operator A has one of the following two
forms:

A = Ak = −1

2
+K − iηV (1.3a)

A = Ak =
1

2
+K − iηV. (1.3b)

The operator A′ has one of the following two forms:

A′ = A′k = −1

2
+K ′ + iηV, (1.4a)

A′ = A′k =
1

2
+K ′ + iηV. (1.4b)

We use the same notation for the operators in (1.3a), (1.3b) and (1.4a), (1.4b) since
most of our results will be valid for both cases.
In order to avoid keeping track of the precise dependence of various constants on η,
we assume throughout this paper that

C−1
η |k| ≤ |η| ≤ Cη|k| (1.5)

for some fixed Cη > 0.

2. properties of the Laplace single and double layer potentials. In this
section, we collect some mapping properties of the potential operators Ṽ0 and K̃0 for
the Laplace equation.

2.1. Lipschitz domains. For Lipschitz domains Ω and −1 ≤ s ≤ 1 one can
define the Sobolev spaces Hs(Γ) intrinsically. It is then known (see also Lemmata 2.1,
2.2 below) that for |s| ≤ 1/2 the operators

Ṽ0 : H−1/2+s(Γ) → H1(BR) ∩H1+s(ΩR) (2.1a)

K̃0 : H1/2+s(Γ) → H1+s(ΩR) (2.1b)

are bounded linear operators (relevant literature includes [10,13,14,29]; see also Lem-
mata 2.1, 2.2 below). The following Lemma 2.1 clarifies into what space of functions

defined on the ball BR (as opposed to ΩR) the potential operator Ṽ0 maps elements
in the limiting cases s = ±1/2:

Lemma 2.1 (mapping properties of Ṽ0). For −1/2 < s < 1/2 we have that Ṽ0 :
H−1/2+s(Γ) → H1+s(BR) is a bounded linear operator. The limiting cases s = ±1/2

take the forms Ṽ0 : H−1(Γ) → B
1/2
2,∞(BR) and Ṽ0 : L2(Γ) → B

3/2
2,∞(BR).
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Proof. The result for −1/2 < s < 1/2 are known in the literature (see, e.g., [18]). The
proofs of the limiting cases s = ±1/2 are relegated to Appendix A.

The potential operator K̃0 produces functions that jump across Γ. This implies that,
viewed as a function on the ball BR, one cannot hope for more regularity than K̃0ϕ ∈
B

1/2
2,∞(BR); this is indeed the case for the limiting case s = −1/2:

Lemma 2.2 (mapping properties of K̃0). For −1/2 ≤ s ≤ 1/2 we have K̃0 :
H1/2+s(Γ) → H1+s(ΩR). For the limiting case s = −1/2 we have the additional

result K̃0 : L2(Γ) → B
1/2
2,∞(BR).

Proof. See Appendix A.

2.2. smooth domains. The mapping properties given in (2.1) are restricted to
the range |s| ≤ 1/2 for Lipschitz domains. For smooth domains, the range can be
extended, for example, to include all s ≥ −1. To that end, we note
Lemma 2.3. Let Γ be of class C∞. Then there exists C > 0 depending only on Ω and
R such that for ϕ ∈ H1/2(Γ) there holds

‖Ṽ0ϕ‖L2(ΩR) ≤ C‖ϕ‖H−3/2(Γ), ‖K̃0ϕ‖L2(ΩR) ≤ C‖ϕ‖H−1/2(Γ).

Proof. Set u := Ṽ0ϕ. We only aim at estimating ‖u‖L2(Ω) since ‖u‖L2(ΩR\Ω) is
estimated similarly. To that end, let w ∈ H2(Ω) solve

−∆w = u in Ω, ∂nw = 0 on Γ.

Then w ∈ H2(Ω) together with ‖w‖H2(Ω).‖u‖L2(Ω) and therefore

‖u‖2
L2(Ω) =

∣∣∣∣
∫

Γ

γint
1 uw

∣∣∣∣.‖γint
1 u‖H−3/2(Γ)‖w‖H2(Ω).‖γint

1 u‖H−3/2(Γ)‖u‖L2(Ω).

Next, we use the representation γint
1 u = γint

1 Ṽ0ϕ = (1
2 +K ′0)ϕ and [18, Thm. 7.2] to

bound ‖γint
1 u‖H−3/2(Γ) ≤ C‖ϕ‖H−3/2(Γ).

We proceed in a similar manner to bound ‖K̃0ϕ‖L2(Ω). Let u = (K̃0ϕ)|Ω and let
w ∈ H2(Ω) ∩H1

0 (Ω) solve

−∆w = u in Ω, w|Γ = 0.

Then ‖w‖H2(Ω).‖u‖L2(Ω) and therefore

‖u‖2
L2(Ω) =

∣∣∣∣
∫

Γ

γint
1 wγ0u

∣∣∣∣.‖u‖H−1/2(Γ)‖γint
1 w‖H1/2(Γ).‖u‖H−1/2(Γ)‖u‖L2(Γ).

From the representation γint
0 u = (− 1

2 + K0)ϕ and the mapping properties of K0

on smooth domains, [18, Thm. 7.2], we get again ‖u‖H−1/2(Γ) ≤ C‖ϕ‖H−1/2(Γ).

Lemma 2.3 allows us to extend the operators Ṽ0 and K̃0 to operators defined on
H−3/2(Γ) and H−1/2(Γ) respectively. We thus have

Lemma 2.4. Let Γ be of class C∞. Then the operators Ṽ0 and K̃0 are bounded linear
operators

Ṽ0 : H−1/2+s(Γ) → H1+s(ΩR), K̃0 : H1/2+s(Γ) → H1+s(ΩR)

for every s ≥ −1 and every R > 0 such that Ω ⊂ BR.
Proof. The case s > −1/2 is shown in [18, Cor. 6.14]. The case s = −1 follows
from Lemma 2.3. An interpolation argument then provided the intermediate range
−1 ≤ s ≤ −1/2.
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2.3. invertibility properties. For future reference, we recall the following re-
sults:
Lemma 2.5. Let Γ be smooth and α ∈ R \ {0} be fixed. If d = 2, assume additionally
that diamΩ < 1. Then:

(i) − 1
2 +K0 : Hs(Γ) → Hs(Γ) is boundedly invertible for s ≥ 0.

(ii) 1
2 +K0 + iαV0 : Hs(Γ) → Hs(Γ) is boundedly invertible for s ≥ 0.

(iii) − 1
2 +K ′0 : Hs(Γ) → Hs(Γ) is boundedly invertible for s ≥ −1/2.

(iv) 1
2 +K ′0 + iαV0 : Hs(Γ) → Hs(Γ) is boundedly invertible for s ≥ −1/2.

Proof. See, e.g., [16, Appendix D].

3. Properties of the Helmholtz Newton potential. A key ingredient of our
decomposition of the operators Ṽ , K̃, and A, A′ are low pass and high pass filters
that we introduce now:
Lemma 3.1 (full space frequency splitting). Let q ∈ (0, 1). Then one can construct
linear operators HRd and LRd defined on L2(Rd) with the following properties:

(i) HRd + LRd = Id
(ii) ‖HRdf‖Hs′(Rd) ≤ Cs,s′(qk−1)s−s′‖f‖Hs(Rd) for all 0 ≤ s′ ≤ s and f ∈ Hs(Rd)

(iii) LRdf is entire and

‖∇nLRdf‖L2(Rd) ≤ C(γk)n‖f‖L2(Rd) ∀n ∈ N0.

Here, the constants C, γ depend on the choice of q and s but are independent of
k ≥ k0.

Proof. See [21, Lemmata 4.2, 4.3] for details. A sketch of the construction is as follows:
The operators HRd and LRd are defined in terms the Fourier transformation F :
L2(R2) → L2(Rd) by F(HRd(f)) := χRd\Bkη(0)F(f) and F(LRd(f)) := χBkη(0)F(f).
Here, η > 1 is a parameter that is selected depending on the chosen q ∈ (0, 1) and χE

denotes the characteristic function of the set E ⊂ Rd.
The Newton potential Nk(f) of f ∈ L2(Rd) with compact support is defined by

Nk(f) := Gk ⋆ f. (3.1)

It is the solution of the inhomogeneous Helmholtz equation with right-hand side f
and satisfies the outgoing radiation condition if k > 0 and the incoming radiation
condition if k < 0. For Nk we have the following decomposition result:
Lemma 3.2 (mapping properties of Nk). For every f ∈ L2(Rd) there holds

‖Nk(f)‖H,BR + k−1‖Nk(f)‖H2(BR) ≤ CR‖f‖L2(Rd). (3.2)

Additionally, the following decomposition result holds: Let q ∈ (0, 1) be arbitrary.
Then the high frequency operator HRd and the low frequency operator LRd can be
chosen such that for s ≥ 0 and 0 ≤ s′ ≤ s+ 2 the function Nk(HRdf) satisfies

‖Nk(HRdf)‖Hs′(BR) ≤ Cs,s′ (qk−1)2+s−s′‖f‖Hs(Rd). (3.3)

The constant Cs,s′ is independent of q ∈ (0, 1) and k ≥ k0. The function Nk(LRdf)
is entire and satisfies

‖∇nNk(LRdf)‖L2(BR) ≤ C(γk)n−1‖f‖L2(Rd) ∀n ∈ N0. (3.4)

Here, the constants C, γ are independent of k ≥ k0 but depend on q.
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Proof. The estimate (3.2) is shown in [22, Lemma 3.5]. Inspection of the procedure
in [22, Lemma 3.5] reveals that the function vA in [22, Lemma 3.5] coincides with
Nk(LRdf), which shows (3.4). Finally, [22, Lemma 3.5] shows (3.3) for the case s = 0.
Inspection of the proof shows that it can be extended in a straight forwards way to
the case s > 0.
An interpolation argument allows us to infer the following result:
Corollary 3.3. Let s ≥ 0 and s 6∈ N0. Fix a cut-off function χ with suppχ ⊂ B2R.
Then for all f ∈ Bs

2,∞(B2R)

‖Nk(HRd(χf))‖Hs′ (BR) ≤ Cs,s′(qk−1)2+s−s′‖f‖Bs
2,∞(B2R), 0 ≤ s′ < 2 + s, (3.5)

‖Nk(HRd(χf))‖B2+s
2,∞(BR) ≤ Cs‖f‖Bs

2,∞(B2R). (3.6)

Proof. The operator f 7→ Nk(HRdχf) is linear and, for every t ≥ 0, we have by
Lemma 3.2

‖Nk(HRdχf)‖Ht+2(BR) ≤ Ct‖f‖Ht(B2R), (3.7)

‖Nk(HRdχf)‖L2(BR) ≤ Ct(qk
−1)2+t‖f‖Ht(B2R), (3.8)

for a constant Ct > 0 that depends solely on t, R, and χ. Since the spaces Bs
2,∞

are defined as interpolation spaces between standard Sobolev spaces, the estimates
(3.7) imply (3.6). Since (L2(BR), L2(BR))θ,∞ = L2(BR) for every θ ∈ (0, 1), the
estimate (3.5) for the special case s′ = 0 follows also from an interpolation argument
and (3.8). Finally, the general case in (3.5) follows from the interpolation inequality
‖z‖Hθ(s+2) ≤ C‖z‖1−θ

L2 ‖z‖θ
Bs+2

2,∞

for s+ 2 > 0 and θ ∈ (0, 1).

4. decomposition of layer potentials. The present section focuses on the
mapping properties of the layer potentials Ṽ and K̃ with particular emphasis on
making the k-dependence explicit. We do this through an additive decomposition of
Ṽ and K̃ into a leading order part that corresponds to the Laplace operator (i.e., Ṽ0

and K̃0) and regularizing parts.
We present two different types of decompositions: the first type is done for Lipschitz
domains and formulated in Subsection 4.1. Since the regularizing parts are defined
as solutions of transmission problems, the limited regularity of Lipschitz domains
imposes restrictions on the Sobolev range for which the decomposition can be done in a
meaningful way. We therefore consider in Section 4.2 the case of domains with analytic
boundary, where, by a modification of the procedure of Section 4.1, decompositions
are obtained that are valid for large ranges of Sobolev spaces.

4.1. decomposition of layer potentials: Lipschitz domains.

4.1.1. decomposition of the single layer potential. Theorem 4.1 (decom-

position of Ṽ , Lipschitz domain). Let q ∈ (0, 1) be given. Then one can write

Ṽ = Ṽ0 + S̃V + ÃV ,

where for every −1/2 < s < 1/2 the linear operators S̃V : H−1/2+s(Γ) → H3+s(BR)

and ÃV : H−1/2+s(Γ) → H3+s(BR) satisfy the following bounds:

‖S̃V ϕ‖Hs′ (BR) ≤ Cs,s′q2(qk−1)1+s−s′‖ϕ‖H−1/2+s(Γ), 0 ≤ s′ ≤ 3 + s,

‖∇nÃV ϕ‖L2(BR) ≤ C(γk)n+1‖Ṽ0ϕ‖L2(BR) ≤ C(γk)n+1‖ϕ‖H−1(Γ) ∀n ∈ N0.
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Here, the constant Cs,s′ is independent of q and k ≥ k0. The constants C, γ are
independent of k ≥ k0 but depend on q.
For s = ±1/2 we have that S̃V : H−1/2+s(Γ) → B3+s

2,∞(BR) and ÃV : H−1/2+s(Γ) →
B3+s

2,∞(BR) satisfy the following bounds:

‖S̃V ϕ‖Hs′ (BR) ≤ Cs,s′q2(qk−1)1+s−s′‖ϕ‖H−1/2+s(Γ), 0 ≤ s′ < 3 + s,

‖S̃V ϕ‖Bs+3
2,∞(BR) ≤ Csq

2(qk−1)−2‖ϕ‖H−1/2+s(Γ),

‖∇nÃV ϕ‖L2(BR) ≤ C(γk)n+1‖Ṽ0ϕ‖L2(BR) ≤ C(γk)n+1‖ϕ‖H−1(Γ) ∀n ∈ N0.

Proof. We will exploit density of H1/2(Γ) in H−1/2+s(Γ) for −1/2 ≤ s ≤ 1/2. Let

therefore ϕ ∈ H1/2(Γ) be given. Set u := Ṽ ϕ and u0 := Ṽ0ϕ. Let χ be a smooth
cut-off function with suppχ ⊂ B2R and χ|BR ≡ 1. Then the function ũ := u − χu0

satisfies

−∆ũ− k2ũ = f := −(∆χ)u0 − 2∇χ · ∇u0 + k2χu0 in Ω ∪ Ω+,

[ũ] = 0 on Γ (in H1/2(Γ)),

[∂nũ] = 0 on Γ (in H−1/2(Γ)),

ũ satisfies a radiation condition at ∞,

and f has compact support. The mapping properties of Ṽ0 on Lipschitz domains of
Lemma 2.1 imply for −1/2 ≤ s ≤ 1/2:

‖u0‖H1+s(BR) ≤ C‖ϕ‖H−1/2+s(Γ), −1/2 < s < 1/2, (4.1)

‖u0‖B1+s
2,∞(BR) ≤ C‖ϕ‖H−1/2+s(Γ), s = ±1/2. (4.2)

We have therefore an explicit solution formula for ũ, namely,

ũ = Nk(f)

Hence, we have the representation

u = χu0 +Nk(f) = χu0 +Nk(HRdf) +Nk(LRdf) =: χu0 + S̃V ϕ+ ÃV ϕ,

where the parameter q in the definition of HRd is still at our disposal.
We first consider the regularity of S̃V . In view of Lemma 3.2 and Corollary 3.3 we
have to analyze the regularity properties of f . By interior regularity, we have that u0

is analytic away from Γ, and we get for s = ±1/2:

‖f‖B1+s
2,∞(B2R) ≤ Ck2‖ϕ‖H−1/2+s(Γ).

Next, the support properties of f imply that f = χ′f for some smooth cut-off function
χ′. Hence, Corollary 3.3 implies for s = ±1/2

‖Nk(HRdf)‖L2(BR) ≤ C(qk−1)3+sk2‖ϕ‖H−1/2+s(Γ), (4.3)

‖Nk(HRdf)‖B3+s
2,∞(BR) ≤ Ck2‖ϕ‖H−1/2+s(Γ). (4.4)

Interpolation then allows us to conclude for −1/2 < s < 1/2

‖Nk(HRdf)‖L2(BR) ≤ C(qk−1)3+sk2‖ϕ‖H−1/2+s(Γ), (4.5)

‖Nk(HRdf)‖H3+s(BR) ≤ Ck2‖ϕ‖H−1/2+s(Γ). (4.6)
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We have thus shown all the estimates for S̃V for the cases s′ = 0 and s′ = 3 + s. For
the remaining intermediate estimates, we simply use another interpolation argument.
Specifically, for the case −1/2 < s < 1/2 we use the multiplicative interpolation
inequality with θ = s′/(3 + s) to get

‖Nk(HRdf)‖Hs′ (BR) ≤ C‖Nk(HRdf)‖1−θ
L2(BR)‖Nk(HRdf)‖θ

H3+s(BR)

≤ Ck2(qk−1)3+s−s′‖ϕ‖H−1/2+s(Γ).

Let us now turn to the Nk(LRdf). From Lemma 3.2 we get

‖∇nNk(LRdf)‖L2(BR) ≤ C(γk)n−1‖f‖L2(B2R) ≤ C(γk)n−1k2‖u0‖L2(B2R)

≤ C(γk)n+1‖Ṽ0ϕ‖L2(B2R).

Density of H1/2(Γ) in H−1/2+s(Γ) concludes the argument.

4.1.2. decomposition of the double layer potential. The method of proof
of Theorem 4.1 is applicable to the double layer potential as well for the end point
case s = −1/2:

Theorem 4.2 (decomposition of K̃, Lipschitz domain). Let Ω ⊂ BR be a Lipschitz
domain and let q ∈ (0, 1) be given. Then

K̃ = K̃0 + S̃K + ÃK ,

where S̃K : L2(Γ) → B
5/2
2,∞(BR) satisfies

‖S̃Kϕ‖B
5/2
2,∞(BR)

≤ Ck2‖ϕ‖L2(Γ),

‖S̃Kϕ‖L2(BR) ≤ Cq2(qk−1)1/2‖ϕ‖L2(Γ).

Here, the constant C is independent of q and k ≥ k0. The linear operator ÃK :

L2(Γ) → B
5/2
2,∞(BR) maps into a space of analytic functions, viz.,

‖∇nÃKϕ‖L2(BR) ≤ C(γk)n+1‖K̃0ϕ‖L2(BR) ≤ C(γk)n+1‖ϕ‖L2(Γ) ∀n ∈ N0.

Here, the constants C, γ > 0 are independent of k ≥ k0 but may depend on q.
Proof. We proceed as in the proof of Theorem 4.1. This implies the form

K̃ = K̃0 + S̃K + ÃK ;

here, S̃K and ÃK are defined by

S̃Kϕ+ ÃKϕ := Nk(HRdf) +Nk(LRdf),

where, for u0 = K̃0ϕ, the function f is given by

f = −∆χu0 + 2∇χ · ∇u0 + k2χu0

The mapping properties of K̃0 detailed in Lemma 2.2 imply K̃0ϕ ∈ B
1/2
2,∞(B2R).

Proceeding as in the proof of Theorem 4.1 we arrive at

‖Nk(HRdf)‖L2(BR) ≤ C(qk−1)2+1/2‖f‖
B

1/2
2,∞(B2R)

≤ Cq2k−2(qk−1)1/2k2‖K̃0ϕ‖B
1/2
2,∞(B2R)

≤ Cq2(qk−1)1/2‖ϕ‖L2(Γ),

‖Nk(HRdf)‖
B

5/2
2,∞(BR)

≤ C‖f‖
B

1/2
2,∞(B2R)

≤ Ck2‖ϕ‖L2(Γ).

The estimates for ÃKϕ are obtained in exactly the same way as in Theorem 4.1.
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4.2. decomposition of layer potentials: analytic boundaries. The method
of proof in Theorems 4.1 and 4.2 relies on (Sobolev) regularity of Ṽ0ϕ or K̃0ϕ as
a function on the ball B2R. However, these functions are only piecewise smooth
(higher order derivatives jump across Γ), and the approach of Theorems 4.1, 4.2
could not exploit this piecewise smoothness. In order to exploit it, we need to modify
the definition of the operators S̃V and S̃K . Our approach to the construction of
decompositions will rely on a regularity theory for transmission problem, where the
transmission conditions are imposed on Γ. This requires regularity of Γ. We illustrate
what kind of result may be expected for the case of analytic Γ.
Theorem 4.3 (decomposition of Ṽ , analytic boundary). Let Γ be analytic and q ∈
(0, 1). Then

Ṽ = Ṽ0 + S̃V,pw + ÃV,pw

where the linear operators S̃V,pw and ÃV,pw satisfy the following for every s ≥ −1:

(i) S̃V,pw : H−1/2+s(Γ) → H2(BR) ∩H3+s(ΩR) with

‖S̃V,pwϕ‖Hs′ (ΩR) ≤ Cs′,sq
2(qk−1)1+s−s′‖ϕ‖H−1/2+s(Γ), 0 ≤ s′ ≤ s+ 3.

Here, the constant Cs′,s > 0 is independent of q and k ≥ k0.

(ii) ÃV,pw : H−1/2+s(Γ) → H2(BR) maps into a space of piecewise analytic func-
tions and

‖∇nÃV,pwϕ‖L2(ΩR) ≤ Ckγn max{n+ 1, k}n‖ϕ‖H−3/2(Γ) ∀n ∈ N0.

Here, the constants C, γ > 0 are independent of k ≥ k0 but may depend on q.
Proof. We start again as in the proof of Theorem 4.1. We have

f = −(∆χ)u0 − 2∇χ · ∇u0 + k2χu0,

where u0 = Ṽ0ϕ and χ is the cut-off function of Theorem 4.1. By the mapping prop-
erties of Ṽ0 (cf. Lemma 2.4), we have that f is piecewise in H1+s. More specifically,

‖f‖H1+s(Ω2R) ≤ Ck2‖ϕ‖H−1/2+s(Γ).

Let EΩ and EΩ+ be the Stein extension operators (see [25, Chap. VI.3, Thm. 5]) for
the sets Ω and Ω+. Additionally, let χΩ and χΩ+ be the characteristic functions of Ω
and Ω+. We observe

f = HRd(EΩ(fχΩ)) + LRd(EΩ(fχΩ)) in Ω,

f = HRd(EΩ+(fχΩ+)) + LRd(EΩ+(fχΩ+)) in Ω+.

These formulas suggest to write f in the form f = fH1+s + fA,pw, where

fH1+s |Ω = HRd(EΩ(fχΩ))|Ω, fH1+s |Ω+ = HRd(EΩ+(fχΩ+))|Ω+ ,

fA,pw|Ω = LRd(EΩ(fχΩ))|Ω, fA,pw|Ω+ = LRd(EΩ+(fχΩ+))|Ω+ ,

The properties of HRd and LRd given in Lemma 3.1 then imply

‖fH1+s‖L2(Rd\Γ) ≤ C‖f‖L2(Rd) ≤ Ck2‖Ṽ0ϕ‖L2(B2R), (4.7)

‖fH1+s‖Ht(Rd\Γ) ≤ C(qk−1)1+s−tk2‖ϕ‖H−1/2+s(Γ), t ∈ {0, 1 + s}, (4.8)

‖∇nfA,pw‖L2(Rd\Γ) ≤ Ck2(γk)n‖Ṽ0ϕ‖L2(B2R) ∀n ∈ N0. (4.9)
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It will be advisable to split fH1+s once more, namely, to write

fH1+s = HRd(fH1+s) + LRd(fH1+s) =: ffin + fA. (4.10)

Since LRd(fH1+s) is an entire function and fH1+s is piecewise smooth, we conclude
that ffin = HRd(fH1+s) is piecewise smooth. Concerning bounds for ffin, we start
by noting that Lemma 3.1 implies

‖∇nfA‖L2(Rd) ≤ C(γk)n‖fH1+s‖L2(Rd) ∀n ∈ N0.

Inserting into this the estimates (4.8) and (4.7) leads to two different bounds:

‖∇nfA‖L2(Rd) ≤ C(γk)nq1+sk1−s‖ϕ‖H−1/2+s(Γ) ∀n ∈ N0, (4.11)

‖∇nfA‖L2(Rd) ≤ C(γk)nk2‖Ṽ0ϕ‖L2(B2R) ∀n ∈ N0. (4.12)

The estimate (4.11) together with interpolation inequalities implies

‖fA‖Ht(Rd) . (qk−1)1+s−tk2‖ϕ‖H−1/2+s(Γ), t ∈ {0, 1 + s}. (4.13)

The bounds (4.8) and (4.13) imply for ffin = fH1+s − fA

‖ffin‖Ht(Rd\Γ).‖fH1+s‖Ht(Rd\Γ) + ‖fA‖Ht(Rd\Γ)

.(qk−1)1+s−tk2‖ϕ‖H−1/2+s(Γ), t ∈ {0, 1 + s}. (4.14)

Next, Lemma 3.2 gives for Nk(ffin) = Nk(HRdfH1+s)

‖Nk(ffin)‖L2(B2R) ≤ C(qk−1)2‖fH1+s‖L2(Rd\Γ) ≤ Cq2(qk−1)1+s‖ϕ‖H−1/2+s(Γ).(4.15)

The regularity theory of Theorem B.6 then implies

‖Nk(ffin)‖H(s+1)+2(ΩR).

ks+1‖ffin‖L2(Rd\Γ) + ‖ffin‖H1+s(Rd\Γ) + k(s+1)+2‖Nk(ffin)‖L2(B2R) ≤ Ck2‖ϕ‖H−1/2+s(Γ).

This estimate together with (4.15) can be written as

‖Nk(ffin)‖Ht(ΩR).k
2(qk−1)3+s−t‖ϕ‖H−1/2+s(Γ), t ∈ {0, 3 + s}.

The (piecewise) multiplicative interpolation inequality then gives estimates for the
intermediate values 0 ≤ s′ ≤ 3 + s:

‖Nk(ffin)‖Hs′ (ΩR) ≤ C‖Nk(ffin)‖(3+s−s′)/(3+s)
L2(ΩR) ‖Nk(ffin)‖s′/(3+s)

H3+s(ΩR)

≤ Ck2(qk−1)3+s−s′‖ϕ‖H−1/2+s(Γ).

Upon setting S̃V,pwϕ := Nk(ffin)) we get the desired estimates for S̃V . We now
turn to the properties of AV,pw, which is defined as AV,pwϕ := Nk(fA) +Nk(fA,pw).
Lemma 3.2 implies

1∑

j=0

k−j‖Nk(fA,pw)‖Hj(B2R) +
1∑

j=0

k−j‖Nk(fA)‖Hj(B2R)

.k−1‖fA‖L2(Rd) + k−1‖fA,pw‖L2(Rd) ≤ Ck‖Ṽ0ϕ‖L2(B2R). (4.16)
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(4.16) and Theorem B.4 produce

‖∇n+2ÃV,pwϕ‖L2(ΩR) ≤ Cmax{n, k}n+2γn
[
‖Ṽ0ϕ‖L2(B2R) + k‖Ṽ0ϕ‖L2(B2R)

]
∀n ∈ N0

for suitable constants C, γ > 0 independent of n and k. Together with (4.16) and

the observation ‖Ṽ0ϕ‖L2(ΩR) ≤ C‖ϕ‖H−3/2(Γ) (cf. Lemma 2.4) this implies the desired

estimates for ÃV,pwϕ.
The proof of Theorem 4.3 relies on two facts, namely, on a piecewise shift theorem for
Ṽ0 and regularity theory for Helmholtz transmission problems. The same arguments
can therefore be used for the double layer potential K̃.
Theorem 4.4 (decomposition of K̃, analytic boundary). Let Γ be analytic and

q ∈ (0, 1). Then we can decompose K̃ as

K̃ = K̃0 + S̃K,pw + ÃK,pw

such that for every s ≥ −1:
(i) S̃K,pw : H1/2+s(Γ) → H2(BR) ∩H3+s(ΩR) with

‖S̃K,pwϕ‖Hs′ (ΩR) ≤ Cs′,sq
2(qk−1)1+s−s′‖ϕ‖H1/2+s(Γ), 0 ≤ s′ ≤ s+ 3

Here, the constant Cs′,s > 0 is independent of q and k ≥ k0.

(ii) ÃK,pw : H1/2+s(Γ) → H2(BR) maps into a space of piecewise analytic functions
and

‖∇nÃK,pwϕ‖L2(ΩR) ≤ Ckγn max{n+ 1, k}n‖ϕ‖H−1/2(Γ) ∀n ∈ N0.

Here, the constants C, γ > 0 are independent of k ≥ k0 but may depend on q.
Proof. The proof is analogous to that of Theorem 4.3.

4.2.1. further mapping properties of the operators Ṽ and K̃. The results
of Section 4.2 permit us to formulate the following corollary.
Corollary 4.5. Let Γ be analytic. Then

‖Ṽ ϕ‖L2(ΩR) ≤ Ck‖ϕ‖H−3/2(Γ), (4.17)

‖Ṽ ϕ‖H1(ΩR) ≤ C
[
‖ϕ‖H−1/2(Γ) + k2‖ϕ‖H−3/2(Γ)

]
, (4.18)

‖K̃ϕ‖L2(ΩR) ≤ Ck‖ϕ‖H−1/2(Γ), (4.19)

‖K̃ϕ‖H1(ΩR) ≤ C
[
‖ϕ‖H1/2(Γ) + k2‖ϕ‖H−1/2(Γ)

]
, (4.20)

k2‖Ṽ ϕ‖H−1(BR) ≤ Ck2‖ϕ‖H−3/2(Γ), (4.21)

k2‖K̃ϕ‖H−1(BR) ≤ Ck2‖ϕ‖H−1/2(Γ). (4.22)

Furthermore, since for ϕ ∈ H−1/2(Γ) we have Ṽ ϕ, K̃ϕ ∈ L2(BR), there holds for
every open subset ω ⊂ BR:

‖Ṽ ϕ‖H−1(ω) ≤ ‖Ṽ ϕ‖H−1(BR), ‖K̃ϕ‖H−1(ω) ≤ ‖K̃ϕ‖H−1(BR). (4.23)

Proof. For the L2- and H1-bounds, combine Theorems 4.3, 4.4 with Lemma 2.3.
For the H−1-estimates, we proceed as follows. For the double layer potential K̃ϕ ∈
L2(ΩR) we use the differential equation to get for v ∈ H1

0 (BR)

k2〈K̃ϕ, v〉 = −
∫

ΩR

∆K̃ϕv = −
∫

ΩR

∆(S̃Kϕ+ ÃKϕ)v.
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An integration by parts and the observations that S̃Kϕ and ÃKϕ ∈ H2(BR) (and
thus their normal derivative does not jump across Γ) yield together with Theorem 4.4

∣∣∣k2〈K̃ϕ, v〉
∣∣∣ =

∣∣∣∣
∫

ΩR

∇(S̃Kϕ+ ÃKϕ) · ∇v
∣∣∣∣

≤ C
[
q2(qk−1)s‖ϕ‖H1/2+s(Γ) + k2‖ϕ‖H−1/2(Γ)

]
‖∇v‖L2(BR).

Selecting s = −1 leads to the claim estimate. For ‖Ṽ ϕ‖H−1(BR), we proceed analo-
gously.
For later reference, we collect some interior regularity results for solutions to the
homogeneous Helmholtz equation.
Lemma 4.6. Let ω′ ⊂⊂ ω ⊂ Rd be two bounded Lipschitz domains. Let u ∈ L2(ω)
solve the homogeneous Helmholtz equation. Then there exists C > 0 (depending only
on dist (ω′, ∂ω) > 0, ω, and k0) such that

‖u‖H,ω′ ≤ Ck2‖u‖H−1(ω).

If u ∈ H1(ω), then we have

‖∂nu‖H−1/2(ω) ≤ Ck‖u‖H,ω.

Proof. For every smooth cut-off function χ with suppχ ⊂ ω we have ‖χu‖H−1(ω) ≤
C‖u‖H−1(ω). Next, classical interior regularity gives us

‖∇u‖L2(ω′) ≤ Ck2‖u‖L2(ω′′)

for all ω′ ⊂⊂ ω′′ ⊂⊂ ω Next, to get the L2-estimate we observe that χu satisfies

−∆(χu) + k2χu = 2k2χu− 2∇χ · ∇u− ∆χu, χu = 0 on ∂ω.

Lax-Milgram for the operator −∆ + k2 Id then gives

‖χu‖H,ω ≤ Ck2‖χu‖H−1(ω) ≤ Ck2‖u‖H−1(ω).

We now turn to the case of u ∈ H1(ω). For v ∈ H1(ω) we have

|〈∂nu, v〉| =

∣∣∣∣
∫

ω

∇u · ∇v +

∫

ω

∆uv

∣∣∣∣ =

∣∣∣∣
∫

ω

∇u · ∇v − k2

∫

ω

uv

∣∣∣∣ ≤ ‖u‖H,ω‖v‖H,ω,

which implies the stated estimate.

5. decomposition of combined field operators. The combined field opera-
tors A and A′ of (1.3), (1.4) are linear combinations of the operators V and K. Hence,
the decompositions of the operators V and K of Section 4 imply decompositions of
A and A′. The purpose of the present section is to give these decompositions a form
that will be convenient later on. We restrict our attention to the case of analytic
boundaries Γ.

5.1. frequency splitting for function spaces on surfaces and domains.

An important tool for the analysis will the “frequency splitting” operators analogous
to the operators HRd and LRd of Lemma 3.1. We have
Lemma 5.1 (frequency splitting on domains). Let q ∈ (0, 1) and Ω be a bounded
Lipschitz domain. Then one can construct operators LΩ and HΩ defined on L2(Ω)
with the following properties:
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(i) HΩ + LΩ = Id
(ii) ‖HΩf‖Hs′(Ω) ≤ Cs,s′(qk−1)s−s′‖f‖Hs(Ω), where 0 ≤ s′ ≤ s and s ≥ 0.

(iii) LΩf is an entire function on Rd and

‖∇nLΩf‖L2(Rd) ≤ C(γk)n‖f‖L2(Ω) ∀n ∈ N0.

Here, Cs,s′ is independent of k and q; the constants C, γ are independent of k.
Proof. Let EΩ : L2(Ω) → L2(Rd) be the Stein extension operator. Then define
HΩf = (HRd ◦ EΩf)|Ω and LΩf := (LRd ◦ EΩf). The properties then follow from
Lemma 3.1.
Lemma 5.2 (frequency splitting on surfaces). Let Ω ⊂ Rd be a bounded Lipschitz
domain with smooth boundary Γ. Let s > 0 and q ∈ (0, 1). Then one can construct
operators LΓ : Hs(Γ) → H1/2+s(Rd) and HΓ : Hs(Γ) → Hs(Γ) with the following
properties:

(i) HΓ + γint
0 LΓ = Id

(ii) ‖HΓf‖Hs′ (Γ) ≤ Cs,s′ (qk−1)s−s′‖f‖Hs(Γ), where 0 ≤ s′ ≤ s.

(iii) LΓf is an entire function on Rd and

‖∇nLΓf‖L2(Rd) ≤ C(γk)n−(1/2+s)‖f‖Hs(Γ) ∀n ∈ N0.

Here, the constant Cs,s′ is independent of k and q; the constants C, γ are independent
of k.
Proof. Related frequency splittings have been constructed in [21]. We therefore merely
sketch the construction. Let G : Hs(Γ) → H1/2+s(Rd) be a lifting operator. Define
HΓ := γint

0 ◦ HRd ◦ G and LΓ := LRd ◦ G. The properties of HRd and LRd given
Lemma 3.1 then imply the statements. For example, the bound for HΓ follows from
the properties of HRd . Specifically, the multiplicative trace inequality (see, e.g., [20,
Thm. A.2]) yields

‖HΓϕ‖L2(Γ) ≤ ‖HRd(Gϕ)‖2s/(1+2s)
L2(Ω) ‖HRd(Gϕ)‖1/(1+2s)

H1/2+s(Ω)

. (qk−1)s‖Gϕ‖H1/2+s(Ω).(qk−1)s‖ϕ‖Hs(Γ);

on the other hand, trace inequalities and the stability of HRd yield

‖HΓϕ‖Hs(Γ).‖HRd(Gϕ)‖H1/2+s(Ω).‖Gϕ‖H1/2+s(Ω).‖ϕ‖Hs(Γ).

Thus, the limiting cases s′ ∈ {0, s} are proved. The intermediate cases 0 < s′ < s
follow by interpolation arguments.
The frequency splitting in Lemma 5.2 relies on a frequency splitting in a domain and
the trace operator. This precludes a direct extension of the construction to negative-
index Sobolev spaces. Nevertheless, splittings can be defined on such spaces, and the
following lemma presents one possible construction.
Lemma 5.3 (frequency splitting on surfaces, negative norms). Let Ω ⊂ Rd be a
bounded Lipschitz domain with an analytic boundary Γ. Let q ∈ (0, 1). Then one can
construct operators Lneg

Γ , Hneg
Γ on H−1(Γ) with the following properties:

(i) Lneg
Γ +Hneg

Γ = Id
(ii) for −1 ≤ s′ ≤ s ≤ 1:

‖Hneg
Γ f‖Hs′ (Γ) ≤ C(q/k)s−s′‖f‖Hs(Γ)
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(iii) Lneg
Γ f is the restriction to Γ of a function that is analytic on a tubular neigh-

borhood T of Γ and satisfies

‖∇nLneg
Γ f‖L2(T ) ≤ Ckd/2γn max{k, n}n‖f‖H−1/2(Γ) ∀n ∈ N0.

Proof. Consider on the compact manifold Γ for the Laplace-Beltrami operator ∆Γ the
eigenvalue problem

−∆Γϕ− λ2ϕ = 0 on Γ.

There are countably many eigenfunctions ϕm, m ∈ N0, with associated eigenvalues
λm ≥ 0, which we assume to be sorted in ascending order. Without loss of generality,
we impose the normalization ‖ϕm‖L2(Γ) = 1. We have Weyl’s formula (see [8, p. 155])

N(λ) := card{λm |λm ≤ λ} ∼ CΓλ
d−1,

where the constant CΓ depends solely on Γ. Additionally, we have from Lemma C.1
the existence of a tubular neighborhood T of Γ and constants C, γ > 0 such that

‖∇nϕm‖L2(T ) ≤ Cγn{λm, n}n ∀n ∈ N0. (5.1)

Furthermore, the functions (ϕm)∞m=0 are an orthonormal basis of L2(Γ) and an or-
thogonal basis of H1(Γ):

‖u‖2
L2(Γ) =

∞∑

m=0

|〈u, ϕm〉L2(Γ)|2 ∀u ∈ L2(Γ),

‖u‖2
H1(Γ) =

∞∑

m=0

(1 + λ2
m)|〈u, ϕm〉L2(Γ)|2 ∀u ∈ H1(Γ).

By interpolation, we get for 0 ≤ s ≤ 1 and u ∈ L2(Γ):

‖u‖2
Hs(Γ) ∼

∞∑

m=0

(1 + λ2
m)s|〈u, ϕm〉L2(Γ)|2.

By duality, distributions f ∈ Hs(Γ) with s ∈ [−1, 0] can be identified with sequences
(fm)∞m=0 such that ‖f‖2

Hs(Γ) ∼
∑∞

m=0(1 + λ2
m)s|fm|2. We will write (formally) f =∑∞

m=0 fmϕm to express this identification.
We now define the operators Hneg

Γ and Lneg
Γ by

Hneg
Γ f :=

∑

m:λm>ηk

fmϕm, Lneg
Γ f :=

∑

m:λm≤ηk

fmϕm

Then clearly Hneg
Γ + Lneg

Γ = Id. Next, in the tubular neighborhood T of Γ we have

‖∇nLneg
Γ f‖L2(T ) ≤

∑

m:λm≤ηk

|fm|‖∇nϕm‖L2(T ) ≤ Cγn max{ηk, n}n
∑

m:λm≤ηk

|fm|

≤ Cγn max{ηk, n}n

√ ∑

m:λm≤ηk

(1 + λ2
m)1/2

√ ∑

m:λm≤ηk

(1 + λ2
m)−1/2|fm|2

≤ Cγn max{ηk, n}n(1 + (ηk)2)1/4
√
N(ηk)‖f‖H−1/2(Γ)

≤ Ckd/2γn max{ηk, n}n‖f‖H−1/2(Γ).
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For Hneg
Γ f , we compute for −1 ≤ s′ ≤ s ≤ 1:

‖Hneg
Γ f‖2

Hs′ (Γ)
≤ C

∑

m:λm>ηk

(1 + λm)2s′ |fm|2 ≤ C(1 + ηk)2(s
′−s)‖f‖2

Hs(Γ),

which finishes the proof.
Remark 5.4. The factor kd/2 in the estimates for Lneg

Γ is not optimal and can be
reduced (see Remark C.2). Also, the proof shows that the term ‖f‖H−1/2(Γ) in the
bounds for Lneg

Γ can be reduced to ‖f‖H−1(Γ) at the expense of further powers of k.

5.2. decomposition of A and A′. We recall the definition of A(C, γ, T \ Γ)
given in Definition 1.1 and the definition of the jump operator [·] in Section 1.1.1.
Lemma 5.5 (decomposition of A). Let Γ be analytic and let s ≥ 0. Fix q ∈ (0, 1).
Then the operator A can be written as

A = ±1

2
+K0 +RA + k[ÃA]

where RA : Hs(Γ) → Hs+1(Γ) and ÃA satisfy for some constant C, which is inde-
pendent of k ≥ k0 and q, and a constant γ > 0, which is independent of k ≥ k0,

‖RA‖Hs+1(Γ)←Hs(Γ) ≤ Ck, ‖RA‖Hs(Γ)←Hs(Γ) ≤ q,

ÃAϕ ∈ A(CCϕ, γ,ΩR)), Cϕ = ‖ϕ‖H−1/2(Γ) + k‖ϕ‖H−3/2(Γ).

Proof. Before turning to the proof, we point out that, since only the jump of the
potential ÃAϕ across Γ appears in the decomposition of A, there is some freedom
in the choice of ÃA. In particular, ÃA can be selected such that (ÃAf)|Ω+ = 0

or (ÃAf)|Ω = 0. Indeed, we will construct ÃA such that ÃAf = 0 on Ω+ if A =

−1/2 +K − iηV is considered and ÃAf = 0 on Ω if A = 1/2 +K − iηV .
We will only consider the operator A given in (1.3a) (i.e., the case A = −1/2 +

K − iηV ), the other case being handled analogously. Since A = γint
0 (K̃ − iηṼ ), the

decompositions of K̃ and Ṽ of Theorems 4.4, 4.3 produce

A =
{
−1

2
+K0

}
+

{
γint
0

(
S̃K,pw − iηS̃V,pw

)
− iηV0

}
+

{
γint
0

(
ÃK,pw − iηÃV,pw

)}
.

With the aid of the high and low frequency operators HΓ and LΓ of Lemma 5.2, we
write V0 = HΓV0 + γint

0 LΓV0 and therefore arrive at the decomposition

A = −1/2 +K0 +RA + γint
0 ÃA,

RA = γint
0

(
S̃K,pw − iηS̃V,pw

)
− iHΓηV0,

ÃA = −iηk−1LΓV0 + k−1ÃK,pw − iηk−1ÃV,pw.

It remains to obtain the stated bounds. Theorems 4.3, 4.4 and Lemma 5.2 produce
(for notational convenience, we employ the same parameter q ∈ (0, 1) in the splittings
of Theorems 4.3, 4.4 and Lemma 5.2)

‖γint
0 S̃V,pw‖H1+s(Γ)←Hs(Γ) ≤ Cq2, ‖γint

0 S̃V,pw‖Hs(Γ)←Hs(Γ) ≤ Cq3k−1,

‖γint
0 S̃K,pw‖H1+s(Γ)←Hs(Γ) ≤ Cqk, ‖γint

0 S̃K,pw‖Hs(Γ)←Hs(Γ) ≤ Cq2,

‖HΓV0‖H1+s(Γ)←Hs(Γ) ≤ C, ‖HΓV0‖Hs(Γ)←Hs(Γ) ≤ Cqk−1.
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By selecting q sufficiently small, we can obtain the desired bounds for RA. For ÃA

we see that Theorems 4.3, 4.4, and Lemma 5.2 together with the mapping properties
of V0 yield

ϕ ∈ H−1/2(Γ) =⇒ ÃAϕ ∈ A(CCϕ, γ,ΩR), Cϕ := ‖ϕ‖H−1/2(Γ)+k‖ϕ‖H−3/2(Γ).

This concludes the proof.

Remark 5.6. The operator −1/2 + K0 is invertible while the operator 1/2 + K0

has a one-dimensional kernel. It is convenient to have decompositions with invertible
leading term. By Lemma 2.5, the operator 1/2 +K0 − iV0 is invertible. Inspection of
the proof of Lemma 5.5 shows that we can achieve a decomposition of the following
form:

1/2 +K − iηV =
1

2
+K0 + iV0 +RA + k[ÃA]

where the operators RA and ÃA have the regularity properties stated in Lemma 5.5.

The next two lemmas provide decompositions of A′—the difference between these two
results lies in the range of Sobolev spaces on which they are defined: While Lemma 5.7
covers the case s ≥ 0, Lemma 5.9 extends the range to s ≥ −1/2 at the expense of
further powers of k.

Lemma 5.7 (decomposition of A′). Let Γ be analytic and let s ≥ 0. Fix q ∈ (0, 1).
Then the operator A′ can be written in the form

A′ = ±1

2
+K ′0 +RA′ + k[ÃA′,1] + [∂nÃA′,2]

where RA′ : Hs(Γ) → Hs+1(Γ) and ÃA′ satisfy for some constants C, γ > 0 that are
independent of k ≥ k0

‖RA′‖Hs+1(Γ)←Hs(Γ) ≤ Ck, ‖RA′‖Hs(Γ)←Hs(Γ) ≤ q,

ÃA′,iϕ ∈ A(CCϕ, γ,ΩR)), Cϕ = k‖ϕ‖H−3/2(Γ), i ∈ {1, 2}.

Proof. We consider the case A′ = 1
2 + K ′ + iηV , the case A′ = −1/2 + K ′ + iηV

being handled by analogous arguments. We recall that the operator A′ is given by
A′ϕ = γint

1 Ṽ ϕ − iηγint
0 Ṽ ϕ. In view of γint

1 Ṽ0 = 1/2 + K ′0 we can write with the
decomposition of Theorem 4.3

A′ =
1

2
+K ′0 + γint

1

(
S̃V,pw + ÃV,pw

)
+ iηγint

0

(
Ṽ0 + S̃V,pw + ÃV,pw

)
. (5.2)

Here, the parameter q appearing in the definition of the decomposition of Theorem 4.3
is still at our disposal. Using the high and low frequency operators HΩ of LΩ (the
parameter q appearing in their definition will be selected shortly) we can set

RA′ = γint
1 S̃V,pw + iηγint

0 S̃V,pw + iηγint
0 HΩṼ0,

ÃA′,1 = −k−1χΩ

(
iηÃV,pw + iηLΩṼ0

)
,

ÃA′,2 = −χΩÃV,pw,
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where χΩ denotes the characteristic function for Ω. Theorem 4.3 yields

‖γint
1 S̃V,pw‖H1+s(Γ)←Hs(Γ) ≤ Cqk, ‖γint

1 S̃V,pw‖Hs(Γ)←Hs(Γ) ≤ Cq2

‖γint
0 S̃V,pw‖H1+s(Γ)←Hs(Γ) ≤ Cq2, ‖γint

0 S̃V,pw‖Hs(Γ)←Hs(Γ) ≤ Cq3k−1

‖γint
0 HΩṼ0‖H1+s(Γ)←Hs(Γ) ≤ C, ‖γint

0 HΩṼ0‖Hs(Γ)←Hs(Γ) ≤ Cqk−1.

Selecting q appropriately gives the desired bounds for RA′ . From Theorem 4.3,
Lemma 5.1, and Lemma 2.4 we infer

ÃA′,2ϕ and ÃA′,1ϕ ∈ A(CCϕ, γ,ΩR), Cϕ := k‖ϕ‖H−3/2(Γ).

Remark 5.8. The operator −1/2 +K ′0 is invertible while the operator 1/2 +K ′0 has
a one-dimensional kernel. By Lemma 2.5, the operator 1/2 +K ′0 + iV0 is invertible.
Inspection of the proof of Lemma 5.7 shows that we can achieve a decomposition of
the following form:

1/2 +K ′ + iηV =
1

2
+K ′0 − iV0 +RA + k[ÃA′,1] + [∂nÃA′,2],

where the operators RA and ÃA′,i, i ∈ {1, 2} have the regularity properties stated in
Lemma 5.7.
Lemma 5.9 (decomposition of A′). Let Γ be analytic and let −1/2 ≤ s ≤ 0. Fix
q ∈ (0, 1). Then the operator A′ can be written in the form

A′ = ±1

2
+K ′0 +RA′ + k[ÃA′,1] + [∂nÃA′,2]

where RA′ : Hs(Γ) → Hs+1(Γ) and ÃA′ satisfy for some constants C, γ > 0 and a
tubular neighborhood T of Γ that are all independent of k ≥ k0

‖RA′‖Hs+1(Γ)←Hs(Γ) ≤ Ck, ‖RA′‖Hs(Γ)←Hs(Γ) ≤ q,

ÃA′,1ϕ ∈ A(CCϕ, γ, T )), Cϕ = k‖ϕ‖H−3/2(Γ) + kd/2‖ϕ‖H−1(Γ),

ÃA′,2ϕ ∈ A(CC̃ϕ, γ, T )), C̃ϕ = k‖ϕ‖H−3/2(Γ).

Proof. The proof is very similar to that of Lemma 5.7. We start from (5.2). Using
the frequency splitting operators Hneg

Γ and Lneg
Γ of Lemma 5.3, we can define

RA′ = Hneg
Γ

(
γint
1 S̃V,pw + iηγint

0 S̃V,pw + iηV0

)
,

ÃA′,1 = k−1χΩ

(
−iηÃV,pw − Lneg

Γ

(
γint
1 S̃V,pw + iηγint

0 S̃V,pw + iηV0

))
,

ÃA′,2 = −χΩÃV,pw.

Using the mapping properties of S̃V,pw and V0 we can infer from Lemma 5.3 that

RA′ has the desired mapping properties. For the operators ÃA′,1, ÃA′,2 we get from
Theorem 4.3 and the mapping properties of V0 that

‖γint
1 S̃V,pw + iηγint

0 S̃V,pw + iηV0‖L2(Γ)←H−1(Γ) ≤ Ck.
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From Lemma 5.3 we therefore get

ÃA′,1ϕ ∈ A(CCϕ, γ, T ), Cϕ = kd/2‖ϕ‖H−1(Γ) + k‖ϕ‖H−3/2(Γ)

and an analogous estimate for ÃA′,2.
Remark 5.10. The proof of Lemma 5.9 shows that in the context of smooth domains,
further decompositions are possible. In particular, it is possible to exploit the smooth-
ing properties of K0 and K ′0. Since K0 : L2(Γ) → H1(Γ) and K ′0 : L2(Γ) → H1(Γ)
we see that the splittings K0 = Hneg

Γ K0 + Lneg
Γ K0 and K ′0 = Hneg

Γ K ′0 + Lneg
Γ K ′0 lead,

for example, to

‖Hneg
Γ K0‖L2←L2 ≤ Cq/k, ‖Hneg

Γ K ′0‖L2←L2 ≤ Cq/k.

Inserting this in the decompositions of Lemmata 5.5, 5.9 shows that the operators A,
A′ can be we written as sums of three terms: ±1/2 Id, an operator that is small (as
an operator L2(Γ) → L2(Γ)), and an operator that maps into a trace class of analytic
functions.

6. decomposition of the inverse of combined field operators. On smooth
surfaces, it is well-known, [5, 9], that the operators A and A′ of the form given in
(1.3b), (1.4b) (i.e., the operator 1/2 + K − iηV and 1/2 + K ′ + iηV ) are invertible
as operators acting on L2(Γ). In fact, 1/2 +K − iηV is invertible as an operator on
Hs(Γ) for s ≥ 0 and 1/2 +K ′+ iηV as an operator on Hs(Γ), s ≥ −1/2, [6,7]. Since
the decomposition of their inverses is the primary aim of the paper, we state the main
results of this section here:
Theorem 6.1. Let Γ be analytic and choose s, sA ≥ 0. Let A = 1/2 + K − iηV .
Then the decomposition of A−1 given in Theorem 6.11 is valid.
Proof. Since the L2(Γ)-invertibility of A is known, Lemma 6.4 below shows that A is
invertible on Hs(Γ) for arbitary s ≥ 0. The result then follows from Theorem 6.11.
Theorem 6.2. Let Γ be analytic and choose s, sA ≥ −1/2. Let A′ = 1/2+K ′+ iηV .
Then the decomposition of (A′)−1 given in Theorem 6.13 is valid.
Proof. Since the H−1/2(Γ)-invertibility of A′ is known, Lemma 6.4 shows that A′

is invertible on Hs(Γ) for arbitary s ≥ −1/2. The statement then follows from
Theorems 6.12, 6.13.
The decomposition results Theorem 6.1, 6.2 involve the norms ‖A−1‖HsA←HsA and
‖(A′)−1‖HsA←HsA , where the Sobolev index sA may be chosen arbitrarily. These
decomposition results are particularly useful if the k-dependence of these norms is
available. In general, little is known about their k-dependence. A notable exception
are star-shaped domains, for which the following was recently been shown:
Lemma 6.3 ( [7]). Let the Lipschitz domain Ω be star-shaped with respect to the origin.
Then there exists a constant C > 0 independent of k such that for the operators Ak,
A′k given in (1.3b), (1.4b), there holds

‖A−1
k ‖L2←L2 = ‖(A′−k)−1‖L2←L2 ≤ C.

Less is known about the invertibility properties of the operators (1.3a) and (1.4a).
Nevertheless, due to the smoothness of Γ, we know that the invertibility of the oper-
ators A and A′ on one Sobolev space Hs(Γ) implies invertibility on all spaces Hs′

(Γ),
s′ ≥ s:
Lemma 6.4. Let Γ be analytic. If A is boundedly invertible on Hs(Γ) for some s ≥ 0,
then it is boundedly invertible on Hs′

(Γ) for all s′ ≥ s. If A′ is boundedly invertible
on Hs(Γ) for some s ≥ −1/2, then it is boundedly invertible on Hs′

(Γ) for all s′ ≥ s.
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Proof. This follows from elliptic regularity and the jump conditions satisfied by the
potential operators Ṽ and K̃. We illustrate a typical case, namely, A = −1/2 +
K − iηV . Let A be boundedly invertible on Hs(Γ) for some s ≥ 0 and let s′ > s.
Let ϕ ∈ Hs(Γ) solve Aϕ = f ∈ Hs′

(Γ). Then ϕ ∈ Hmin{1,s′}(Γ), which follows
from the smoothing properties K0 : L2 → H1 and V0 : L2 → H1. Hence, A is
boundedly invertible on Hs′

(Γ) for s ≤ s′ ≤ 1. For s′ > 1, we start by noting that
we may assume that A is boundedly invertible on Hes(Γ) for some s̃ ≥ 1/2. Consider

the potential u = K̃ϕ − iηṼ ϕ, where ϕ ∈ Hes(Γ) solves Aϕ = f ∈ Hs′

(Γ). Then
u satisfies in Ω the homogeneous Helmholtz equation and the boundary condition
γint
0 u = (−1/2 + K − iηV )ϕ = f . Elliptic regularity then ensures u ∈ Hs′+1/2(Ω).

Since u satisfies the jump conditions

[u] = ϕ, [∂nu] = iηϕ, (6.1)

we see that in Ω+ the potential u satisfies the homogeneous Helmholtz equation
together with γext

1 u− iηγext
0 u = γint

1 u− iηγint
0 u ∈ Hs′−1(Γ). Elliptic regularity then

gives u ∈ Hs′+1/2(ΩR ∩Ω+). The jump conditions (6.1) finally lead to ϕ ∈ Hs′

(Γ).

6.1. analytic regularity. In this section, we study the equations Aϕ = f and
A′ϕ = f for analytic Γ and analytic right-hand side f . The solution ϕ is then likewise
analytic and our goal is to study the k-dependence of the solution ϕ.

6.1.1. the operator A. Lemma 6.5. Let Γ be analytic and let T be a tubular
neighborhood of Γ. Suppose g ∈ A(Cg, γg, T \Γ) for some Cg, γg > 0. Let ϕ ∈ H1/2(Γ)
satisfy

(
±1

2
+K − iηV

)
ϕ = γext

0 g − γint
0 g

Then ϕ = γext
0 u− γint

0 u, where, with the operator Ã defined in (6.2),

u ∈ A(CCu, γ,ΩR), Cu = Cg + k−1‖∇Ãϕ‖L2(ΩR) + ‖Ãϕ‖L2(ΩR).

The constants C and γ depend solely on Γ, γg, k0, and the choice of R.
Proof. Before proving the lemma, we stress the following points: First, the existence
of ϕ is stipulated as an assumption. Second, as will be discussed in more detail
below, k−1‖∇Ãϕ‖L2(ΩR)+‖Ãϕ‖L2(ΩR) grows only algebraically in k under appropriate
assumptions. Thirdly, it is allowed to select g such that it vanishes in Ω or in Ω+; in
fact, this is how Lemma 6.5 will be employed below. Finally, in view of Lemma B.5
it is possible to select u such that it vanishes on Ω or Ω+.
We define the potential u on Ω ∪ Ω+ by

u = Ãϕ := K̃ϕ− iηṼ ϕ. (6.2)

Then u satisfies the homogeneous Helmholtz equation on Ω ∪ Ω+ together with

γint
0 u = [g] if (− 1

2 +K − iηV )ϕ = [g], (6.3)

γext
0 u = [g] if (1

2 +K − iηV )ϕ = [g]. (6.4)

We will only consider the first case (corresponding to an interior Dirichlet problem)—
the method of proof can be applied to the second case as well. Also, for simplicity of
notation we assume that g = 0 on Ω+. This is not a restriction and can realized with
the aid of Lemma B.5.
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The jump relations satisfied by K̃ and Ṽ (see [18, Thm. 6.11]) give us on Γ:

[u] = ϕ, γext
1 u− γint

1 u = iηϕ. (6.5)

The first jump relation shows that we have to prove u ∈ A(Cu, γu,ΩR). To that end,
we note that u solves by (6.3)

−∆u− k2u = 0 on Ω, γint
0 u = g.

In view of the analyticity of Γ and g, Theorem B.2 implies the existence of a tubular
neighborhood T of Γ such that u ∈ A(C1, γ, T ∩Ω), where C1 ≤ C

(
Cg + k−1‖u‖H,Ω

)

for a C > 0 independent of u and k.
The jump relations (6.5) imply the Robin boundary conditions

γext
1 u− iηγext

0 u = γint
1 u− iηγint

0 u =: g̃. (6.6)

The analyticity of Γ implies the existence of a tubular neighborhood of Γ (again
denoted T ) and an analytic function G− ∈ A(CC1k, γ, T ∩Ω) with γint

0 G− = g̃. Next,
Lemma B.5 implies the existence of a function G and a tubular neighborhood of Γ
(again denoted T ) with G ∈ A(CC1k, γ, T ∩ Ω+) and γext

0 G = γint
0 G− = g̃. Then,

Theorem B.3 gives u ∈ A(CC2, γ, T ∩ Ω+), where C2 = C1 + k−1‖u‖H,Ω+∩BR
. Since

u = Ãϕ, we have so far obtained u ∈ A(CCu, γ, T \Γ) with Cu defined in the statement
of the lemma. Interior regularity (see [19, Prop. 5.5.1]) finally gives estimates for u
not only near Γ but in all of ΩR, i.e., u ∈ A(CCu, γu,ΩR) for suitable C, γu > 0.
The existence of ϕ is stipulated as an assumption in Lemma 6.5. We formulated
ϕ ∈ H1/2(Γ) since this readily implies Ãϕ ∈ H1(ΩR) and the constant Cu can be
estimated in terms of ‖ϕ‖H1/2(Γ). However, it will be more convenient in the following
to bound Cu in terms of ‖ϕ‖L2(Γ) and ‖Aϕ‖H1/2(Γ), which we now show how to do:

Lemma 6.6. Assume the hypotheses of Lemma 6.5. If ϕ ∈ H1/2(Γ) then

‖Ãϕ‖L2(ΩR) + k−1‖∇Ãϕ‖L2(ΩR) ≤ C
[
k−1‖ϕ‖H1/2(Γ) + k‖ϕ‖H−1/2(Γ) + k2‖ϕ‖H−3/2(Γ)

]
.

If ϕ ∈ L2(Γ) and Aϕ ∈ H1/2(Γ) then

‖Ãϕ‖L2(ΩR) + k−1‖∇Ãϕ‖L2(ΩR) ≤ C
[
‖Aϕ‖H1/2(Γ) + k2‖ϕ‖H−1/2(Γ) + k3‖ϕ‖H−3/2(Γ)

]
.

Proof. If ϕ ∈ H1/2(Γ), then we can insert the result of Corollary 4.5 to get

‖Ãϕ‖L2(ΩR) ≤ C
[
k‖ϕ‖H−1/2(Γ) + k2‖ϕ‖H−3/2(Γ)

]
,

‖∇Ãϕ‖L2(ΩR) ≤ C
[
‖ϕ‖H1/2(Γ) + k2‖ϕ‖H−1/2(Γ) + k3‖ϕ‖H−3/2(Γ)

]
,

which is the first estimate. For the second one, we consider again the case where
Ãϕ (see (6.2)) solves an interior Dirichlet problem. If ϕ ∈ L2(Γ), then it is a priori

not clear that Ãϕ ∈ H1(ΩR). However, this can be inferred as follows: We write
A = ±1/2 +K0 + S, where, by Theorem 4.4, the operator S : L2(Γ) → H1(Γ). Since
likewise K0 : L2(Γ) → H1(Γ), we conclude from Aϕ ∈ H1/2(Γ) that 1/2ϕ ∈ H1/2(Γ).

In particular, Ãϕ ∈ H1(ΩR). To get bounds for u := Ãϕ, we restrict our attention to
the case A = −1/2+K−iηV as in the proof of Lemma 6.5 and note that (4.21)–(4.23)
of Corollary 4.5 produce

k2‖u‖H−1(Ω) + k2‖u‖H−1(B2R) ≤ C
[
k2‖ϕ‖H−1/2(Γ) + k3‖ϕ‖H−3/2(Γ)

]
. (6.7)
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Next, u is the solution of the following interior Dirichlet problem:

−∆u = k2Ãϕ ∈ L2(Ω) in Ω, γint
0 u = g := Aϕ.

Standard a priori bounds for Laplace Dirichlet problems together with (6.7) and (6.7)
imply

‖u‖H,Ω ≤ C
[
‖g‖H1/2(Γ) + k2‖ϕ‖H−1/2(Γ) + k3‖ϕ‖H−3/2(Γ)

]
.

Lemma 4.6 allows us to infer

‖γint
1 u‖H−1/2(Γ) ≤ Ck‖u‖H,Ω, ‖u‖H1/2(∂BR) ≤ Ck2‖u‖H−1(B2R). (6.8)

The jump condition (6.5) satisfied by u reads γext
1 u− γint

1 u = iηϕ. Rewriting this as
γext
1 u = γint

1 u+ ikϕ, we infer that u solves in Ω+

−∆u = k2u on Ω+, γext
1 u = γint

1 u+ ikϕ, u|∂BR = u|∂BR .

A priori bounds for the Laplace operator together with (6.8) give us

‖u‖H1(ΩR\Ω) ≤ C
[
‖k2u‖H−1(ΩR\Ω) + ‖γext

1 u‖H−1/2(Γ) + k‖ϕ‖H−1/2(Γ) + ‖u‖H1/2(∂BR)

]

≤ Ck
[
‖g‖H1/2(Γ) + k2‖ϕ‖H−1/2(Γ) + k3‖ϕ‖H−3/2(Γ)

]
,

which concludes the argument.

If the operator A is invertible on HsA(Γ) and a bound on ‖A−1‖HsA←HsA is available,
then then we obtain the following regularity assertion for A−1:

Corollary 6.7. Let Γ be analytic, T be a tubular neighborhood of Γ, and Cg, γg > 0.
Let A be boundedly invertible on HsA(Γ) for some sA ≥ 0. Then there exist constants
C, γ > 0 such that for every g ∈ A(Cg, γg, T \Γ) the solution ϕ ∈ HsA(Γ) of Aϕ = [g]
satisfies

ϕ = [u], u ∈ A(CCϕ, γ,ΩR), Cϕ := Cgk(1+kβ‖A−1‖HsA←HsA ) β :=
5

2
+sA.

Furthermore, u is given explicitly by (6.2), i.e., u = Ã(A−1[g]).

Proof. From the trace inequality (and, in the limiting case sA = 0, a multiplicative
trace inequality) we get

‖[g]‖HsA (Γ) ≤ CCgk
sA+1/2, ‖[g]‖L2(Γ) ≤ CCgk

1/2, ‖[g]‖H1/2(Γ) ≤ CCgk.

Therefore, by assumption we obtain for ϕ = A−1[g]

‖ϕ‖L2(Γ) ≤ C‖ϕ‖HsA (Γ) ≤ CC(A, sA, k)‖[g]‖HsA (Γ) ≤ C‖A−1‖HsA←HsA ksA+1/2Cg.

Lemma 6.6 then implies for the function u = Ãϕ

‖u‖L2(ΩR) + k−1‖∇u‖L2(ΩR) ≤ Ck7/2+sACg‖A−1‖HsA←HsA .

An appeal to Lemma 6.5 concludes the argument.
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6.1.2. the operator A′. For the operator A′, one can proceed very similarly as
for the operator A.
Lemma 6.8. Let T be a tubular neighborhood of Γ and let g1 ∈ A(Cg1 , γ1, T \ Γ) and
g2 ∈ A(Cg2 , γ2, T \ Γ). Let ϕ ∈ H−1/2(Γ) satisfy

(
±1

2
+K ′ + iηV

)
ϕ = k(γext

0 g1 − γint
0 g1) + (γext

1 g2 − γint
1 g2)

Then ϕ = γext
1 u− γint

1 u for a function

u ∈ A(CCu,ΩR) Cu = Cg1 + Cg2 + k−1‖ϕ‖H−1/2(Γ) + k‖ϕ‖H−3/2(Γ).

The constants C, γ > 0 depend only on Γ, γg1 , γg2 , and k0.

Proof. We introduce the potential u := Ṽ ϕ, which satisfies the homogeneous Helmholtz
equation in Ω ∪ Ω+. Additionally, it satisfies the jump conditions γint

0 u = γext
0 u and

γint
1 u+ iηu = (

1

2
+K ′ + iηV )ϕ and γext

1 u+ iηu = (−1

2
+K ′ + iηV )ϕ on Γ.

Let us assume that A′ = 1/2 +K ′ + iηV , since the case of A′ = −1/2 +K ′ + iηV is
handled with analogous arguments. For simplicity of notation, we assume, as we may
in view of Lemma B.5, that g1 = g2 = 0 on Ω+.
Then u solves the homogeneous Helmholtz equation in Ω with Robin boundary con-
dition γint

1 u+ iηu = kγint
0 g1 + γint

1 g2 on Γ. The analyticity of g1 and g2 then implies
by Theorem B.3 the existence of a tubular neighborhood T ′ of Γ and a constant γ > 0
such that

u ∈ A(CC′u, γ, T
′ ∩ Ω), C′u :=

[
k−1‖∇u‖L2(Ω) + ‖u‖L2(Ω) + Cg1 + Cg2

]
.(6.9)

By means of Lemma B.5, we may view γint
0 u as the trace γext

0 ũ of a function ũ ∈
A(CC′u, γ̃, T

′′ ∩ Ω+), where the tubular neighborhood T ′′ and the constant γ̃ depend
solely on Γ, γ, and k0. In Ω+, the function u satisfies the homogeneous Helmholtz
equation and, in view of the jump condition γext

0 u = γint
0 u, on Γ the Dirichlet bound-

ary condition γext
0 u = γext

0 ũ. Hence, we conclude from Theorem B.2 the existence
of a tubular neighborhood (again denoted T ) and constants C, γu > 0 that depend
solely on Γ and γ̃ such that

u ∈ A(CC′′u , γu, T ∩ Ω+), C′′u = C′u + k−1‖u‖H,Ω+∩BR
.

Corollary 4.5 implies

k−1‖u‖H,B2R ≤ C
[
k−1‖ϕ‖H−1/2(Γ) + k‖ϕ‖H−3/2(Γ)

]

so that we conclude u ∈ A(CCu, γu, T \ Γ) with Cu defined in the statement of the
lemma. Finally, interior regularity (see [19, Prop. 5.5.1]) gives estimates not only near
Γ but in all of ΩR, i.e., u ∈ A(CCϕ, γu,ΩR) for suitable γu, C > 0. Observing that
γint
1 u− γext

1 u = ϕ concludes the proof.
Corollary 6.9. Let Γ be analytic, T be a tubular neighborhood of Γ, and Cg1 , Cg2 ,
γg > 0. Let A′ be boundedly invertible on HsA(Γ) for some sA ≥ −1/2. Then there
exist constants C, γ > 0 independent of k ≥ k0 such that for all g1 ∈ A(Cg1 , γg, T \Γ),
g2 ∈ A(Cg2 , γg, T \ Γ) the solution ϕ ∈ HsA(Γ) of Aϕ = k[g1] + [∂ng2] satisfies

ϕ = [∂nu], u ∈ A(CCϕ, γ,ΩR), Cϕ := (Cg1 + Cg2)
(
1 + kβ‖(A′)−1‖HsA←HsA

)
,

β =
5

2
+ s+A, s+A := max{sA, 0}.
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Furthermore, u is given explicitly as u = Ṽ ((A′)−1[g]).
Proof. We use Lemma 6.8. Using sA ≥ −1/2 and the assumption that A′ is invertible
on HsA(Γ) gives for the solution ϕ of A′ϕ = k[g1] + [∂ng2]

‖ϕ‖H−1/2(Γ) ≤ C‖ϕ‖HsA (Γ) ≤ C‖(A′)−1‖HsA←HsA ‖k[g1] + [∂ng2]‖HsA (Γ)

≤ C‖(A′)−1‖HsA←HsA ‖k[g1] + [∂ng2]‖
Hs

+
A (Γ)

≤ ‖(A′)−1‖HsA←HsA ks+
A+3/2(Cg1 + Cg2 ).

Hence, we get

Cg1+Cg2+k
−1‖ϕ‖H−1/2(Γ)+k‖ϕ‖H−3/2(Γ) ≤ C(Cg1+Cg2)

(
1 + k5/2+s+

A‖(A′)−1‖HsA←HsA

)
.

An appeal to Lemma 6.8 concludes the proof.

6.2. finite regularity. This section is the core of the paper and provides de-
composition results for the operators A−1 and (A′)−1 as operators acting on Sobolev
spaces Hs(Γ). These results are formulated as Theorems 6.11, 6.12. Before working
out the details, we formulate a lemma that isolates an important structural element
of the proof of Theorems 6.11, 6.12.
Lemma 6.10 (“iteration lemma”). Let T be a tubular neighborhood of Γ. Let s,
sB ∈ R, and γ1, γ2, γ > 0 be given. Let Csmooth(k), Csolve(k) ≥ 0 be two, possibly
k-dependent numbers.
Assume that B : Hs(Γ) → Hs(Γ) satisfies the following conditions:

(i) B can be decomposed as

B = B0 +BA +R

where B0 : Hs(Γ) → Hs(Γ) is boundedly invertible, R is a bounded linear oper-
ator with

‖RB−1
0 ‖Hs(Γ)←Hs(Γ) ≤ q < 1

and BA is a bounded linear operator of the form

BA = k[B̃A,1] + [∂nB̃A,2]

with

B̃A,iϕ ∈ A(Csmooth(k)‖ϕ‖Hs(Γ), γ, T \ Γ) ∀ϕ ∈ Hs(Γ), i ∈ {1, 2}.

(ii) B−1 is a bounded linear operator in Hs(Γ) and HsB (Γ) (with possibly k-dependent
norms).

(iii) If ϕ ∈ Hs(Γ) satisfies Bϕ = k[g1] + [∂ng2] for some g1 ∈ A(Cg1 , γ1, T \ Γ), g2 ∈
A(Cg2 , γ2, T \ Γ), then ϕ = [u] (or, ϕ = [∂nu]) for some u ∈ A(Csolve(k)(CG1 +
CG2), γ,ΩR).

Under these assumptions there exist constants C̃, γ̃ > 0 depending only on γ1, γ2,
and Γ, and k0 such that B−1 can be written as

B−1 = BZ +BB

where BB has the form BBf = [B̃Bf ] (or BBf = [∂nB̃Bf ]) and

‖BZ‖Hs(Γ)←Hs(Γ) ≤ (1 − q)−1‖B−1
0 ‖Hs(Γ)←Hs(Γ),

B̃Bf ∈ A(CB , γ̃,ΩR), CB := C̃Csolve(k)Csmooth(k)‖f‖Hs(Γ).
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Proof. For f ∈ Hs(Γ) consider the following iteration:

ϕfinite
0 := 0, ϕA0 := 0, (6.10)

B0δ
finite
n := f −B(ϕfinite

n + ϕAn ), (6.11)

BδAn := −BAδfinite
n , (6.12)

ϕfinite
n+1 := ϕfinite

n + δfinite
n , ϕAn+1 := ϕAn + δAn . (6.13)

The sequences (ϕfinite
n )∞n=0 and (ϕAn )∞n=0 converge as we now show. Define the residual

rn := f −B(ϕfinite
n + ϕAn ). Then

rn+1 = f −B(ϕfinite
n+1 + ϕAn+1) = f −B(ϕfinite

n + δfinite
n + ϕAn + δAn )

= rn −Bδfinite
n −BδAn = rn − (B0 +BA +R)δfinite

n −BδAn

= −Rδfinite
n −BAδ

finite
n −BδAn = −Rδfinite

n = −RB−1
0 rn.

The assumption ‖RB−1
0 ‖Hs(Γ)←Hs(Γ) ≤ q < 1 therefore implies ‖rn‖Hs(Γ) ≤ qn‖r0‖Hs(Γ)

and thus ‖δfinite
n ‖Hs(Γ) ≤ qn‖B−1

0 ‖Hs(Γ)←Hs(Γ)‖r0‖Hs(Γ). We conclude that the sum∑∞
n=0 δ

finite
n converges in Hs(Γ). Since B is a bounded linear operator, also the sum∑∞

n=0 δ
A
n converges in Hs(Γ). We thus define the operators BZ and BB by

BZ : f 7→ lim
n→∞

ϕfinite
n =

∞∑

n=0

δfinite
n , BB : f 7→ lim

n→∞
ϕAn =

∞∑

n=0

δAn .

It is easy to see that ‖BZ‖Hs(Γ)←Hs(Γ) ≤ (1 − q)−1‖B−1
0 ‖Hs(Γ)←Hs(Γ). Next, in view

of limn→∞ δ
finite
n = 0, we obtain from (6.11) that limn→∞ ϕ

finite
n +ϕAn is the solution

of Bϕ = f . To obtain the representation BBf = [B̃Bf ] (or BBf = [∂nB̃B]), we sum
the terms in (6.12) to get the relation

B(BBf) = −BABZf.

Thus, by assumptions on the operators B and BA, we see that BBf has the form
BBf = [B̃Bf ] (or [∂nB̃Bf ]) for an operator B̃B that satisfies

B̃Bf ∈ A(CCsolve(k)Csmooth(k)‖f‖Hs(Γ), γ̃,ΩR).

for appropriate γ̃.

6.2.1. the operator A. We show that the operator A−1 of (1.3) can be de-
composed into a zero-th order operator with k-independent bounds and an analytic
part.
Theorem 6.11 (decomposition of A−1). Let Γ be analytic, s, sA ≥ 0. Let A be
invertible on Hmin{s,sA}(Γ). Then there exist constants C, γ > 0 independent of
k ≥ k0 with the following properties: The operator A−1 can be written as

A−1 = AZ + γext
0 ÃA−1 − γint

0 ÃA−1

where the linear operators AZ und ÃA−1 satisfy

‖AZ‖Hs(Γ)←Hs(Γ) ≤ C,

ÃA−1f ∈ A(CCf , γ,ΩR), Cf := k3
(
1 + k5/2+sA‖A−1‖HsA←HsA

)
‖f‖Hs(Γ).
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Proof. Before turning to the proof, we point out that, since only the jump of ÃAf
across Γ appears in the decomposition of A−1, there is some freedom in the choice
of ÃA. In particular, ÃA can be selected such that (ÃAf)|Ω+ = 0 or (ÃAf)|Ω = 0.

In fact, the proof shows that we construct ÃA such that ÃAf = 0 on Ω+ if A =
−1/2 + K − iηV is considered and ÃAf = 0 on Ω if A = 1/2 + K − iηV . We
also point out that, although A is assumed to be invertible on Hs(Γ), the bound
‖A−1‖Hs(Γ)←Hs(Γ) is immaterial—only the bound ‖A−1‖HsA (Γ)←HsA (Γ) appears in
the estimates.
Our starting point is Lemma 2.5, which asserts that −1/2 +K0 and 1/2 +K0 + iV0

are invertible operators on Hs(Γ). Lemma 5.5 and Remark 5.6 permit us to write

A = −1

2
+K0 +RA + k[ÃA], if A = −1/2 +K − iηV ,

A =
1

2
+K0 + iV0 +RA + k[ÃA], if A = 1/2 +K − iηV .

with operatorsRA and ÃA having the properties stated in Lemma 5.5. In the notation
of Lemma 6.10, we set

R = RA, B̃A,1 = ÃA, B̃A,2 = 0, B0 =

{
1
2 +K0 + iV0, if A = 1/2 +K − iηV ,

− 1
2 +K0 if A = −1/2 +K − iηV

In view of Lemma 5.5, the norm ‖RA‖Hs(Γ)←Hs(Γ) can be made arbitrarily small.

We may therefore assume that ‖RB−1
0 ‖Hs(Γ)←Hs(Γ) < 1. Furthermore, Lemma 5.5

together with the trivial embedding Hs(Γ) ⊂ H−1/2(Γ) ⊂ H−3/2(Γ) implies that
Csmooth(k) ≤ Ck. Finally, Corollary 6.7 provides us, again in the terminology of
Lemma 6.10, with

Csolve(k) ∼ k2(1 + k5/2+sAC(A, sA, k)). (6.14)

Thus, Csolve(k)Csmooth(k) ∼ k3(1 + k5/2+sAC(A, sA, k)), and Lemma 6.10 implies
the result.

6.2.2. the operator A′. The operator A′ is handled with similar techniques.
Theorem 6.12 (decomposition of (A′)−1). Let Γ be analytic, s ≥ 0, sA ≥ −1/2.
Let A′ be boundedly invertible on Hmin{s,sA}(Γ). Then there exist constants C, γ > 0
independent of k ≥ k0 with the following properties: The operator (A′)−1 can be
written as

(A′)−1 = A′Z + γext
1 ÃA′,inv − γint

1 ÃA′,inv

where the linear operators A′A and ÃA′,inv satisfy with s+A := max{sA, 0}
‖A′Z‖Hs(Γ)←Hs(Γ) ≤ C,

ÃA′,invf ∈ A(CCf , γ,ΩR), Cf :=
(
1 + k5/2+s+

A‖(A′)−1‖HsA←HsA

)
‖f‖Hs(Γ).

Proof. We point out that, although A′ is assumed to be invertible on Hs(Γ), the
bound ‖(A′)−1‖Hs(Γ)←Hs(Γ) is immaterial—only the bound ‖(A′)−1‖HsA (Γ)←HsA (Γ)

appears in the estimates. With Lemma 5.7 and Remark 5.8 we write

A′ =

{
− 1

2 +K ′0 +RA′ + k[ÃA′,1] + [∂nÃA′,2] if A′ = −1/2 +K ′ + iηV ,
1
2 +K ′0 + iV0 +RA′ + k[ÃA′,1] + [∂nÃA′,2] if A′ = 1/2 +K ′ + iηV .
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This has the form required in Lemma 6.10, if we set

B0 =

{
− 1

2 +K ′0 if A′ = −1/2 +K + iηV ,
1
2 +K ′0 + iV0 if A′ = 1/2 +K + iηV

R = RA′ , B̃A,i = ÃA′,i, i ∈ {1, 2}.

By Lemma 2.5, the operatorB0 is invertible onHs(Γ). Hence, selecting q in Lemma 5.7
appropriately, we may assume ‖RB−1

0 ‖Hs(Γ)←Hs(Γ) < 1. Lemma 5.7 provides the nec-

essary information about the mapping properties of B̃A,i, i ∈ {1, 2}. Since s ≥ 0, we
conclude that (in the notation of Lemma 6.10) Csmooth(k) ∼ k. From Corollary 6.9
we obtain

Csolve(k) ∼ k−1
(
1 + k5/2+s+

A‖(A′)−1‖HsA←HsA

)
. (6.15)

Lemma 6.10 then implies the result.

Theorem 6.12 restricts its attention to the case s ≥ 0. However, the case s = −1/2 is
particular interest given that it is the energy space for the operator K ′. We therefore
modify the arguments slightly to cover this case as well:

Theorem 6.13 (decomposition of (A′)−1, negative norms). Let Γ be analytic, sA ≥
−1/2, −1 ≤ s ≤ 0. Let A′ be boundedly invertible on Hmin{s,sA}(Γ). Then the
operator (A′)−1 can be written as

(A′)−1 = A′Z + γext
1 ÃA′ − γint

1 ÃA′

where the linear operators A′A and ÃA′ satisfy with s+A := max{sA, 0}

‖A′A‖Hs(Γ)←Hs(Γ) ≤ C,

ÃA′f ∈ A(CCf , γ, T ), Cf := kd/2
(
1 + k5/2+s+

A‖(A′)−1‖HsA←HsA

)
‖f‖Hs(Γ).

Here, C, γ > 0, and the tubular neighborhood T of Γ are independent of k ≥ k0.

Proof. We proceed as in the proof of Theorem 6.12 but replace the decomposition of
Lemma 5.7 with that of Lemma 5.9. That lemma leads to Csmooth(k) ≤ kd/2 + k ∼
kd/2. Since Csolve(k) is given by (6.15) we get the desired result.

Appendix A. Proofs of Lemmata 2.1, 2.2. Proof of Lemma 2.1: The result
for −1/2 < s < 1/2 being known in the literature (see, e.g., [18]), we restrict our
attention to the limiting cases s = ±1/2. We start with the case s = 1/2. Set

u := Ṽ0ϕ for ϕ ∈ L2(Γ). Then u ∈ H3/2(ΩR) with ‖u‖H3/2(ΩR) ≤ C‖ϕ‖L2(Γ), which
can be seen as follows: By [29, Thms. 3.3, 4.11] we have ‖V0ϕ‖H1(Γ) ≤ C‖ϕ‖L2(Γ).

Since γ
int/ext
0 Ṽ0ϕ = V0ϕ, the uniqueness assertion of [14, Thm. 5.15] implies that

u = Ṽ0ϕ ∈ H3/2(ΩR). Next, [14, Thm. 5.6, Cor. 5.7] imply

‖u‖H3/2(ΩR) + ‖
√
δ∇2u‖L2(ΩR) + ‖u∗‖L2(Γ) + ‖(∇u)∗‖L2(Γ) ≤ C‖ϕ‖L2(Γ); (A.1)

here, the notation v∗ denotes the non-tangential maximal functions (see [29]) and
δ(x) = dist(x,Γ) denotes the distance from Γ.

Additionally, we have from [14, Prop. 2.18] that u ∈ B
3/2
2,∞(BR) if and only if u ∈

L2(BR) and ∇u ∈ B
1/2
2,∞(BR). It therefore remains to assert ∇u ∈ B

1/2
2,∞(BR). To

that end, consider v = ∂iu for a fixed i and let vε := v ⋆ρε be its regularization, where
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ρε is a standard mollifier with length scale ε. We have by standard arguments for
each fixed x ∈ BR such that v ∈ H1(B2ε(x)):

‖v − vε‖L2(Bε(x)) ≤ ε‖∇v‖L2(B2ε(x)),

‖∇vε‖L2(Bε(x)) ≤ ‖∇v‖L2(B2ε(x)).

For ε > 0 we denote by Sε := ∪x∈ΓBε(x) the tubular neighborhood of Γ of width ε.
Covering the set BR \ S3ε ⊂ ∪x∈BR\S3ε

Bε(x) we infer with the aid of Besicovitch’s
covering theorem

‖v − vε‖L2(BR\S3ε) ≤ Cε‖∇v‖L2(BR\Sε) ≤ ε1/2‖δ1/2∇2u‖L2(ΩR) ≤ ε1/2‖ϕ‖L2(Γ),

‖∇vε‖L2(BR\S3ε) ≤ C‖∇v‖L2(BR\Sε) ≤ Cε−1/2‖δ1/2∇v‖L2(ΩR) ≤ Cε−1/2‖ϕ‖L2(Γ).

For the regularized function vε we have with the definition of the non-tangential
maximal function and (A.1)

‖vε‖L2(Sε) ≤ C‖v‖L2(S2ε) ≤ Cε1/2‖v∗‖L2(Γ) ≤ Cε1/2‖ϕ‖L2(Γ).

Finally, for the derivative we compute

‖∇vε‖L2(S3ε) ≤ Cε−1‖v‖L2(S4ε) ≤ Cε−1/2‖v∗‖L2(Γ) ≤ Cε−1/2‖ϕ‖L2(Γ).

Thus, we obtain the following estimate for the K-functional:

K(v, ε) ≤ ‖v − vε‖L2(BR) + ε‖vε‖H1(BR) ≤ Cε1/2‖ϕ‖L2(Γ).

Since ε > 0 is arbitrary, we conclude v ∈ B
1/2
2,∞(BR).

For the case s = −1/2 we start by noting that V0 : H−1(Γ) → L2(Γ), which follows
from the self-adjointness of V0, the above cite result by Verchota that V0 : L2(Γ) →
H1(Γ), and a duality argument. Next, we approximate ϕ ∈ H−1(Γ) by functions

(ϕn)n∈N ⊂ L2(Γ). As above, [14, Thm. 5.15] implies that the functions Ṽ0ϕn are
the unique harmonic functions with Dirichlet data V0ϕn. Combining an estimate due
to Dahlberg (see [14, Thm. 5.3]) and [14, Cor. 5.5] implies that Ṽ0ϕn ∈ H1/2(ΩR)
together with

‖Ṽ0ϕn‖H1/2(ΩR) ≤ C‖V0ϕn‖L2(Γ) ≤ C‖ϕn‖H−1(Γ).

By linearity of Ṽ0, the sequence (Ṽ0ϕn)n is a Cauchy sequence in H1/2(ΩR). Fur-

thermore, it converges pointwise to Ṽ0ϕ. We conclude that Ṽ0ϕ ∈ H1/2(ΩR) and

‖Ṽ0ϕ‖H1/2(ΩR) ≤ C‖ϕ‖H−1(Γ). Appealing once more to [14, Cor. 5.5], we get for

u := Ṽ0ϕ that ‖u∗‖L2(Γ) + ‖u‖H1/2(ΩR) ≤ C‖ϕ‖H−1(Γ). Using now the same argu-
ments as in the case s = 1/2, we conclude ‖u‖

B
1/2
2,∞(BR)

≤ C‖ϕ‖H−1(Γ).

The remaining cases −1/2 < s < 1/2 can now be inferred from the limiting cases
s = ±1/2 by an interpolation argument. 2

Proof of Lemma 2.2: The proof is very similar to that of Lemma 2.1. The case
s = 1/2 is see as follows: For ϕ ∈ H1(Γ) ⊂ H1/2(Γ), we have K̃0ϕ ∈ H1(ΩR).

We have γ
int/ext
0 K̃0ϕ = (∓1/2 + K0)ϕ ∈ H1/2(Γ) ⊂ L2(Γ). By [14, Cor. 5.5], the

interior and exterior non-tangential limits Trint/ext K̃0ϕ on Γ exist and are in L2(Γ).

These must coincide with the interior and exterior traces γ
int/ext
0 K̃0ϕ and we conclude
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Trint/ext K̃0ϕ = γ
int/ext
0 K̃0ϕ = (∓1/2 +K0)ϕ. By [29, Thm. 3.3] we have (∓1/2 +

K0)ϕ ∈ H1(∂Ω), so that [14, Thm. 5.15] implies K̃0ϕ ∈ H3/2(ΩR). Then [14, Cor. 5.7]

implies K̃0ϕ ∈ H3/2(ΩR) with ‖K̃0ϕ‖H3/2(ΩR) ≤ C‖ϕ‖H1(Γ).
For the case s = −1/2, we proceed as in the proof of Lemma 2.1. First, we show for
ϕ ∈ L2(Γ) that

‖K̃0ϕ‖H1/2(ΩR) + ‖(K̃0ϕ)∗‖L2(Γ) ≤ C‖ϕ‖L2(Γ).

The assertion K̃0ϕ ∈ B
1/2
2,∞(BR) follows from this in the same way as in the proof of

Lemma 2.1. Finally, for −1/2 < s < 1/2 the assertion K̃0 : H1/2+s(Γ) → H1+s(ΩR)

follows by an interpolation argument from K̃0 : H1/2+s(Γ) → H1+s(ΩR) for the
limiting cases s = ±1/2, which have just been proved. 2

Appendix B. regularity assertions for parameter-dependent elliptic PDEs.

B.1. analytic regularity. We start with a lemma that shows that membership
in the class A of analytic functions is preserved under analytic changes of variables:
Lemma B.1. Let G, G1 ⊂ Rd be bounded open sets. Assume that g : G1 → Rd is
analytic, | det g′| > 0 on G1 and that g(G1) ⊂ G. Let f1 : G1 → C, f2 : G → C be
analytic and assume that f2 ∈ A(Cf , γf , G). Then the function F : x 7→ f1(x)(f2 ◦
g)(x) satisfies F ∈ A(CCf , γ

′, G) for some constants C, γ′ that depend solely on γ,
f1, g, and k0.
Proof. The case d = 2 is taken directly from [19, Lemma 4.3.1]. Inspection of the
proof of [19, Lemma 4.3.1] shows that it can be generalized to d > 2.
Next, we recall that if a function u satisfies the differential equation

−∇ · (B∇u) + k2cu = f (B.1)

and if the function F provides a sufficiently smooth change of variables, then the
transformed function û := u ◦ F solves

−∇ · (B̂∇û) + k2 detF ′ĉû = detF ′f̂ ,

where B̂ = B ◦ F , ĉ = c ◦ F , and f̂ = f ◦ F . Finally, for the convenience of referring
to the assumptions on the coefficients B, c, we make the following assumptions: The
matrix-valued function B is pointwise symmetric positive definite and

0 < λmin < B(x) ∀x ∈ ω, (B.2a)

‖∇nc‖L∞(ω) ≤ Ccγ
n
c n!, ‖∇nB‖L∞(ω) ≤ CBγ

n
Bn! ∀n ∈ N0. (B.2b)

Theorem B.2 (Dirichlet b.c.). Let ω ⊂ Rd be a bounded Lipschitz domain with
analytic boundary. Assume (B.2). Let u ∈ H1(ω) solve (B.1) on ω for an f ∈
A(Cf , γf , ω). Assume that u satisfies u|∂ω = G|∂ω for a G ∈ A(CG, γG, ω∩T ′), where
T ′ is a tubular neighborhood of ∂ω. Fix a tubular neighborhood T of ∂ω with T ⊂ T ′.
Then u satisfies

u ∈ A(CCu, γu, ω ∩ T ), Cu := k−2Cf + CG + k−1‖u‖H,T ′∩ω.

where the constants C and γu depend solely on γG, γf , ∂ω, k0, and the constants of
(B.2).
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Proof. Consider the function z := u −G. Since G ∈ A(CG, γG, ω ∩ T ′), it suffices to
establish z ∈ A(CCu, γu, ω ∩ T ). The function z satisfies

−k−2∇ · (B∇z) − cz = f̃ := k−2f − k−2∇ · (B∇G) − cG on T ′ ∩ ω, z|∂ω = 0.

The assumptions on f and G and Lemma B.1 imply f̃ ∈ A(C(k−2Cf +CG), γ̃, T ′∩ω)
for some constants C, γ̃. From [19, Props. 5.5.1, 5.5.2] we get z ∈ A(C(k−2Cf +CG +
k−1‖z‖H,T ′∩ω), γ, T ∩ω). Since k−1‖z‖H,T ′∩ω ≤ C

(
CG + k−1‖u‖H,T ′∩ω

)
, the desired

result now follows.
Theorem B.3 (Robin b.c.). Let ω ⊂ Rd be a bounded Lipschitz domain with analytic
boundary. Assume (B.2). Let u ∈ H1(ω) solve (B.1) on ω for an f ∈ A(Cf , γf , ω).
Assume that u satisfies

γint
1 u = γint

0 G1 + ik(γint
0 G2)γ

int
0 u

where, for some tubular neighborhood T ′ of ∂ω we have G1 ∈ A(CG1 , γG1 , ω ∩ T ′)
and G2 is analytic on T ′. Here, the trace operators γint

0 and γint
1 are understood with

respect to ω. Fix a tubular neighborhood T of ∂ω with T ⊂ T ′. Then u satisfies

u ∈ A(CCu, γu, ω ∩ T ), Cu := k−2Cf + k−1CG1 + k−1‖u‖H,T ′∩ω,

where C and γu depend solely on γG1 , γf , ∂ω, G2, k0, and the constants of (B.2).
Proof. The proof is sketched for a related 2D problem in [19, Prop. 5.4.5, Rem. 5.4.6].
The key observation is again that Lemma B.1 allows us to locally flatten the boundary
while preserving the structure of the differential equation and the boundary condi-
tions. Then the technique employed in [19, Prop. 5.4.5] is applicable.
Theorem B.4 (transmission conditions). Let ω′, ω ⊂ Rd be two bounded domains
with ω′ ⊂⊂ ω. Denote γ := ∂ω′ and assume that γ is analytic. Assume (B.2). Let
u ∈ H1(ω) solve (B.1) on ω for an f ∈ A(Cf , γf , ω \ γ). Fix ω′′ ⊂⊂ ω. Then

u ∈ A(CCu, γu, ω
′′ \ γ), Cu := k−2Cf + k−1‖u‖H,ω

for some constants C, γu > 0 that depend solely on γf , ω′, ω′′, ω, k0, and the
constants of (B.2).
Proof. The interesting estimates are those near the boundary γ. Here, the standard
procedure of locally flattening γ can be brought to bear in view of Lemma B.1.
Then, [19, Prop. 5.5.4] is applicable.
Lemma B.5. Let ω ⊂ Rd be a bounded Lipschitz domain with analytic boundary ∂ω.
Set ω+ := Rd \ ω. Let T be a tubular neighborhood of ∂ω. Let G ∈ A(CG, γG, T ∩ ω).

Then there exists a tubular neighborhood T̃ of ∂ω and constants C, γ eG that depend

solely on γG, ∂ω, k0 with the following property: There exists a G̃ ∈ A(CCG, γ eG, T̃ ∩
ω+) with γext

0 G̃ = γint
0 G. Here, γext

0 and γint
0 are the trace operators with respect to

ω.
Proof. The idea is to define G̃ by reflection at ∂ω. One can define boundary fitted
coordinates ψ : ∂ω× (−ε, ε) → Rd via ψ(x, ρ) := x+ ρ~n(x), where ~n(x) is the (outer)
normal vector of ∂ω at x ∈ ∂ω. Since ∂ω is assumed to be analytic, ψ is likewise
analytic. For ε > 0 sufficiently small, the range of ψ is a tubular neighborhood
(denoted T ) of ∂ω and restricted to T , the inverse ψ−1 of ψ exists and is analytic.
We write ψ−1(x) = (γ(x), ρ(x)). For x ∈ T ∩ ω+ we then define G+(x) by G+(x) :=
G(ψ(a(x),−ρ(x))). The analyticity of ψ−1 and Lemma B.1 then implies the result.
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B.2. finite regularity. Theorem B.6. Let ω′ and ω ⊂ Rd be two bounded
domains with ω′ ⊂⊂ ω. Denote by γ := ∂ω′ and assume that γ is analytic. Assume
(B.2). Let u ∈ H1(ω) solve (B.1) on ω for some f ∈ Hs(ω \ γ) with s ≥ 0. Fix
ω′′ ⊂⊂ ω. If s ∈ N0, then

s∑

n=0

k−(n+2)‖∇n+2u‖L2(ω′′\γ) ≤ C




s∑

j=0

k−j−2‖∇jf‖L2(ω\γ) + ‖u‖L2(ω)



 , (B.3)

where the constant C depends on s but is independent of k ≥ k0 and u. If we assume
s ≥ 0, then for some C > 0 independent of k ≥ k0 and u:

‖u‖Hs+2(ω′′\γ) ≤ C
[
ks‖f‖L2(ω) + ‖f‖Hs(ω) + ks+2‖u‖L2(ω)

]
. (B.4)

Proof. We start by observing that standard elliptic regularity (note that the interface
γ is smooth) for

−∇ · (B∇ũ) = f̃ on ω

gives for s ≥ 0 and any domain ω̃ with ω′′ ⊂⊂ ω̃ ⊂⊂ ω

‖ũ‖Hs+2(ω′′\γ).‖f̃‖Hs(eω\γ) + ‖u‖L2(eω).

We apply this result with f̃ = f + k2cu, multiply through with k−s, and get

k−s‖u‖Hs+2(ω′′\γ).k
−s‖f‖Hs(eω\γ) + k−(s−2)‖u‖Hs(eω\γ) + k−s‖u‖L2(eω). (B.5)

For even integer s ∈ 2N0, we can iterate (B.5) to get

k−s‖u‖Hs+2(ω′′\γ).

s/2∑

j=0

k−2j‖f‖H2j(ω\γ) + k2‖u‖L2(ω\γ), s ∈ 2N0. (B.6)

For odd s ∈ 1 + 2N0 we get analogously

k−s‖u‖Hs+2(ω′′\γ).

(s+1)/2−1∑

j=0

k−2j−1‖f‖H2j+1(ω\γ) + k‖u‖H1(ω\γ) + k−1‖u‖L2(ω\γ).

The bound (B.6) with s = 0 produces ‖u‖H2(ω′′\γ).‖f‖L2(ω\γ) + k2‖u‖L2(ω\γ). Com-
bining this with the standard (piecewise) interpolation inequality

‖u‖H1(ω\γ).‖u‖1/2
H2(ω\γ)‖u‖

1/2
L2(ω\γ).k

−1‖u‖H2(ω\γ) + k‖u‖L2(ω\γ)

and appropriately adjusting the domains, we can conclude for s ∈ N0

k−s‖u‖Hs+2(ω′′\γ).

s∑

j=0

k−j‖f‖Hj(ω\γ) + k2‖u‖L2(ω\γ), (B.7)

from which we derive (B.3). For the proof of (B.4) we introduce the notation σ := ⌊s⌋
and observe the (piecewise) interpolation inequality

‖u‖Hs(ω\γ).‖u‖1−θ1

L2(ω\γ)‖u‖
θ1

Hσ+2(ω\γ), θ1 :=
s

σ + 2
.
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For every ε1 > 0 we get from Young’s inequality

‖u‖Hs(ω\γ).ε
1/(1−θ1)
1 ‖u‖L2(ω\γ) + ε

−1/θ1

1 ‖u‖Hσ+2(ω\γ).

Selecting ε1 := ks(1−θ1) we arrive at

‖u‖Hs(ω\γ).k
s‖u‖L2(ω\γ) + ks−σ−2‖u‖Hσ+2(ω\γ). (B.8)

Next, we use again a (piecewise) interpolation inequality to bound for 0 ≤ j ≤ σ < s
and Young’s inequality

ks−j‖f‖Hj(ω\γ).
(
ks‖f‖L2(ω\γ)

)1−j/s ‖f‖j/s
Hs(ω\γ).k

s‖f‖L2(ω\γ) +‖f‖Hs(ω\γ). (B.9)

Combining (B.9), (B.8), (B.7) we arrive at the desired bound (B.4).

Appendix C. regularity of Laplace-Beltrami eigenfunctions. Let Ω ⊂ Rd be
a bounded domain with an analytic boundary Γ. Let (ϕm, λ

2
m), m ∈ N0, be the

eigenpairs of the Laplace-Beltrami operator, i.e.,

−∆Γϕm = λ2
mϕm on Γ.

We assume that the eigenvalues λm ≥ 0 are sorted in ascending order and that the
eigenfunctions (ϕm)m∈N0 are orthonormalized in L2(Γ).
Lemma C.1 (analytic regularity of ϕm). Let Γ be analytic. Then there exist constants
C, γ > 0 independent of m such that

‖∇n
Γϕm‖L2(Γ) ≤ Cmax{λm, n}nγn ∀n ∈ N0, (C.1)

where ∇Γ denotes the surface gradient. Furthermore, there exists a tubular neighbor-
hood T of Γ (depending solely on Γ) such that all functions ϕm can be extended to
analytic functions (again denoted ϕm) on T that satisfy

‖∇nϕm‖L2(T ) ≤ Cmax{λm, n}nγn ∀n ∈ N0. (C.2)

Proof. Sketch of the proof: If γ : U → Γ for some U ⊂ Rd−1 is one of the analytic
charts, then the Laplace-Beltrami operator ∆Γ applied to a function u : Γ → R has
the following form on U :

1√
g

d−1∑

i,j=1

∂i

(√
ggij∂j(u ◦ γ)

)
,

where g = detG is the determinant of the metric tensor G given by Gij := ∂iγ · ∂jγ
and the matrix (gij)d

i,j=1 is the (pointwise) inverse of G. The matrix G is pointwise

symmetric positive definite and thus also its inverse (gij)d
i,j=1. By the analyticity of

the charts, the matrices (gij)d
i,j=1 and the function g are analytic. On U , the pull-back

ϕ̂m := ϕ ◦ γ of the eigenfunction ϕm satisfies for the analytic, pointwise symmetric
positive definite matrix Aij =

√
ggij

−λ−2
m ∇ · (A∇ϕ̂m) −√

gϕ̂m = 0,

Fix K ⊂⊂ K ′ ⊂⊂ U . Then [19, Prop. 5.5.1] gives

‖∇n+2ϕ̂m‖L2(K) ≤ max{n, λm}n+2γn
(
λ−1

m ‖∇ϕ̂m‖L2(K′) + λ−2
m ‖ϕ̂m‖L2(K′)

)
. (C.3)
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We have ‖ϕm‖H1(Γ) ∼ λm, and ‖ϕm‖L2(Γ) = 1. Hence,

‖ϕ̂m‖L2(K′) ≤ C, ‖ϕ̂m‖H1(K′) ≤ Cλm. (C.4)

Combining (C.3), (C.4) we see that

‖∇n+2ϕ̂m‖L2(K) ≤ Cmax{n, λm}n+2γn ∀n ∈ N0 ∪ {−1,−2}.

Returning to Γ gives (C.1) in view of Lemma B.1. To see (C.2), we define the extension
of ϕm in the trivial way: In a tubular neighborhood T of Γ one can define boundary
fitted coordinates Γ × [−ε, ε] → T via (x, ρ) 7→ x + ρ~n(x), where ~n(x) is the (outer)
normal vector at x ∈ Γ. For sufficiently small ε, this is a bijection, and we can define
the extension by ϕm(x+ ρ~n(x)) = ϕm(x).
Remark C.2. Taking the trivial extension to the tubular neighborhood T is clearly
not the only choice. For example, if one is only interested in extending ϕm only to
Ω+∩T then one can select the extension to be ϕm(x+ρ~n(x)) = ϕm(x)e−ρ/ max{λm,k},
leading to slightly improved bounds in (C.2).

REFERENCES

[1] R. A. Adams. Sobolev Spaces. Academic Press, 1975.
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