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Adaptive hp-FEM for the contact problem with Tresca

friction in linear elasticity: The primal-dual formulation and a

posteriori error estimation

P. Dörsek, J.M. Melenk

Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna

Abstract

We present an a priori analysis of the hp-version of the finite element method for the
primal-dual formulation of frictional contact in linear elasticity. We employ a novel
hp-mortar projection operator, which is uniformly stable in the mesh width and grows
slowly in the polynomial degree. We derive an hp-FEM residual error indicator, develop
an hp-adaptive strategy that is based on testing for analyticity, and show in numerical
examples that the adaptive algorithm can lead to exponential rates of convergence.

Key words: Finite elements, hp-adaptivity, linear elasticity, Tresca friction, residual
error indicator
2000 MSC: 65N30, 65N50, 74B05, 74M10, 74M15, 74S05

1. Introduction

This paper is a continuation of the analysis of hp-FEM for frictional contact prob-
lems started in [10]. While the primal formulation used in [10] as the basis of an
hp-approximation is appealing in theory, efficient numerical solution strategies are not
straightforward. The alternative is to dualise on the continuous level. This leads us
to a mixed finite element method for the primal-dual formulation of the frictional con-
tact problem, where a non-conforming approximation for the Lagrange multiplier on the
boundary is used. This approach was applied in [6] in the context of hp-boundary element
methods and is the basis of the present article.

The first part of this article is devoted to a priori error estimates for the hp-version
of the finite element method (hp-FEM) in 2D and 3D. The key ingredient is a novel hp-
mortar projection operator with a bound independent of the mesh widths h and growing
slowly in the polynomial degree p. While the construction of the mortar projection oper-
ator is motivated by the present primal-dual formulation of a friction problem, it is also
of interest for the analysis of the hp-FEM for mortar methods (see, e.g., [32] for related
results). The mortar projection operator allows us to obtain an inf-sup condition for
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appropriately chosen approximation spaces, and thus leads to a priori error estimates. In
particular, if the discretisation resolves the transition points well enough, the convergence
rates resulting from the numerical scheme are optimal up to the reduction following from
the non-uniform stability of the mortar projection operators.

In the second part of the paper, we generalise the residual error indicator for the
frictional contact problem introduced in [15] to our high-order context using methods
from [28]. Here, we restrict our attention to the 2D situation as is done in [28]; we
mention that we believe an extension to 3D is possible. We prove reliability, and show
that efficiency holds true provided the non-conformity of the Lagrange multiplier, which
can be estimated in our scheme, is negligible.

Finally, we provide numerical results for two two-dimensional model problems from
[15]. We demonstrate numerically that hp-adaptivity can lead to exponential convergence
for the non-linear friction problem under consideration. Our hp-adaptive strategy is based
on testing for analyticity as suggested in [13].

2. Problem formulation

Let Ω ⊆ Rd, d = 2, 3, be a polygonal or polyhedral Lipschitz domain. We decompose
its boundary Γ with normal vector ~ν into three relatively open, disjoint parts ΓD, ΓN,
and ΓC. For simplicity, we assume that |ΓD| > 0. On ΓD, we prescribe homogeneous
Dirichlet conditions, on ΓN Neumann conditions with given traction ~t, and on ΓC con-
tact conditions with Tresca friction and a friction coefficient g, which we assume to be
constant. The volume forces are denoted by ~F . Furthermore, we assume that contact
holds on the entirety of ΓC. In the following, we will assume that ΓC is a single edge (if
d = 2) or face (if d = 3) of the polyhedral domain Ω.

We denote by Hs(Ω) the usual Sobolev spaces on Ω, and similarly on the boundary
parts, with norms defined through the Slobodeckij seminorms (see, e.g., [31]). In partic-
ular, for s > 0, we denote by Hs

00(ΓC) the functions in Hs(ΓC) whose extension to ∂Ω
by zero is in Hs(∂Ω). The dual spaces of Hs

00(ΓC) and Hs(ΓC) are denoted H−s(ΓC) and
H−s

00 (ΓC) respectively: (Hs
00(ΓC))

′
= H−s(ΓC) and (Hs(ΓC))

′
= H−s

00 (ΓC). The Besov
spaces Bs

2,q(Ω), s ∈ (k, k + 1), k ∈ N0, q ∈ [1,∞], are defined as the interpolation spaces

(Hk(Ω),Hk+1(Ω))s−k,q (note that the J- and the K-method of interpolation generate the
same spaces with equivalent norms, see e. g. [34, Lemma 24.3]). For q = 2, the Besov
space Bs

2,2(Ω) and the Sobolev space Hs(Ω) coincide with equivalent norms, which yields
that fractional order Sobolev spaces can be defined by interpolation.

We apply standard notation of linear elasticity: ~εij(~v) := 1
2

(

∂vi

∂xj
+

∂vj

∂xi

)

denotes the

small strain tensor and ~σ(~v) := C~ε(~v) the stress tensor, where C is the Hooke tensor,
which is assumed to be uniformly positive definite. For a vector field ~µ on ΓC, µn := ~µ ·~ν
is its normal component and ~µt := ~µ− (~µ · ~ν)~ν its tangential component. With the trace
operator γ0,ΓD

: (H1(Ω))d → (H1/2(ΓD))d, we set

V :=
{

~v ∈
(

H1(Ω)
)d

: γ0,ΓD
(~v) = 0

}

, (2.1)

W :=

{

~µ ∈
(

H
−1/2
00 (ΓC)

)d

: ~µ · ~ν = 0

}

, (2.2)

Λ :=
{

~µ ∈W : ‖~µ‖L∞(ΓC) ≤ 1
}

, (2.3)
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define the bilinear forms a : V × V → R and b : V ×W → R by

a(~v, ~w) :=

∫

Ω

σ(~v) : ε(~w)d~x, (2.4a)

b(~v, ~µ) :=

∫

ΓC

g~vt · ~µds~x, (2.4b)

the linear form L : V → R and the convex, nondifferentiable functional j : V → R by

L(~v) :=

∫

Ω

~F · ~vd~x+

∫

ΓN

~t · ~vds~x, (2.5)

j(~v) :=

∫

ΓC

g|~vt|ds~x. (2.6)

The primal version of the continuous version of the linearly elastic contact problem
with Tresca friction then reads:

Find ~u ∈ V such that for all ~v ∈ V

a(~u,~v − ~u) + j(~v) − j(~u) ≥ L(~v − ~u); (2.7)

this variational inequality is equivalent to the minimisation problem for the energy func-
tional J(~v) := 1

2a(~v,~v) − L(~v) + j(~v) (see [12]).
Following [19, pp. 197], we can derive an equivalent primal-dual or saddle point

formulation:
Find (~u,~λ) ∈ V × Λ such that for all (~v, ~µ) ∈ V × Λ

a(~u,~v) +b(~v,~λ)=L(~v), (2.8a)

b(~u, ~µ− ~λ) ≤0. (2.8b)

The unique solvability of the two formulations follows by standard arguments since the
Hooke tensor C is uniformly positive definite and ΓD has positive measure, see [19, 15, 22].

Choosing a discrete subspace VN ⊆ V and a discretisation jN : VN → R of j, we
obtain the discrete primal formulation:

Find ~uN ∈ VN such that for all ~vN ∈ VN

a(~uN , ~vN − ~uN) + jN (~vN ) − jN (~uN ) ≥ L(~vN − ~uN ). (2.9)

With a discrete subset ΛN ⊆W , the discrete saddle point problem reads:
Find (~uN , ~λN ) ∈ VN × ΛN such that for all (~vN , ~µN ) ∈ VN × ΛN

a(~uN , ~vN ) +b(~vN , ~λN )=L(~vN ), (2.10a)

b(~uN , ~µN − ~λN ) ≤0. (2.10b)

3. A priori error estimates: The primal-dual formulation

3.1. hp-FEM discretisation

Let TN be partitions of Ω consisting of affine quadrilateral or hexahedral elements,
together with polynomial degrees pN,K ≥ 2 for allK ∈ TN , and assume that the boundary
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parts ΓC, ΓD and ΓN are resolved by the mesh. As it is standard, we denote by hN,K

the diameter of element K ∈ TN . We denote the set of edges (d = 2) or faces (d = 3) on
the contact boundary by EC,N ; for example, for d = 2,

EC,N := {E : E ⊂ ΓC is an edge of TN} . (3.1)

The sets of edges (or faces) on ΓN and ΓD are denoted by EN,N and ED,N , and we let
EI,N be the set of interior edges (or faces). We see that for every E ∈ EC,N , there exists
a unique KE ∈ TN such that E is an edge or face of KE . We denote by Qr the tensor
product polynomials of degree r ∈ N0. For each element K ∈ TN , let pN,K ∈ N be a
polynomial degree. We now set

VN := {~vN ∈ V : ~vN |K ∈ QpN,K for all K ∈ TN} , (3.2a)

WN :=
{

~µN ∈ W : ~µN |E ∈ QpN,KE
−2 for all E ∈ EC,N

}

, (3.2b)

ΛN :=
{

~µN ∈ WN : |~µN (~x)| ≤ 1 for all ~x ∈ GE,pN,KE
−2 and all E ∈ EC,N

}

, (3.2c)

where GE,q denotes the Gaussian quadrature points with (q + 1)d−1 points on E.

Remark 3.1. In [10], the primal formulation is considered and its discretisation is solved
by a primal-dual method. That method is different from the present approach, which
is based on discretising the primal-dual formulation. In fact, while uniqueness of the
discrete Lagrange multiplier ~λN follows from Theorem 3.9 here, it is given in the setting
of [10] only for special geometric arrangements and choices of quadrature formulae.

The convergence analysis of the present section rests on a mortar projection opera-
tor, which in turn, relies on the existence of a polynomial approximation operator with
optimal (in h and p) approximation properties. Since the mortar projection operator
is constructed on meshes consisting of quadrilateral/hexahedra, the presence of hanging
nodes is mandatory in an adaptive setting. Since polynomial approximation operators
of Clément type do not seem to exist in the literature for this setting, we formulate their
existence as an assumption:

Assumption 3.2. There exists a family of Scott-Zhang type quasi-interpolation opera-
tors (IN )N , IN : V → VN , preserving piecewise polynomials on ΓC

∑

K∈TN

p2
N,K

h2
N,K

‖u− INu‖2
L2(K) + |u− INu|2H1(K) . ‖u‖2

H1(Ω) ∀u ∈ H1(Ω). (3.3)

Remark 3.3. The existence of an hp-Scott-Zhang type operator IN is stipulated as an
assumption since the such operators do not seem to exist in the literature for the 3D
situation and meshes with hanging nodes. Nevertheless, Assumption 3.2 is reasonable in
view of the following facts: In two space dimensions and on regular meshes such operators
have been constructed in [27] under the assumption that pN,K ∼ pN,K′ for all elements
K, K ′ ∈ TN with K ∩K ′ 6= ∅. For the three-dimensional case with hanging nodes, some
results for lower order elements are provided in [18].
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3.2. A priori estimates in 2D and 3D

For the choice of VN , WN , and ΛN given in (3.2) one can show convergence of the

discrete approximations (~uN , ~λN ) ∈ VN × ΛN to the exact solutions (~u, λ) ∈ V × Λ if
supK∈TN

hN,K/pN,K → 0 as N → ∞. This convergence result can be obtained using
Glowinski’s theorem (see [19, Section 1.1.52, Theorem 5.3] and [14, Chapter I, Theorem
5.2]) in a way similar to the procedure in [25] for the Signorini problem. The aim of the
present section is, however, the a priori result of Theorem 3.4 below that can lead to
convergence rates. Setting

βN := max
E∈EC,N

[

p
3/4
N,E(1 + log2 pN,E)

]−1

, (3.4)

the main result of this section is:

Theorem 3.4. Let Assumption 3.2 be valid, and let VN , WN , ΛN be given by (3.2). Let

(~u,~λ) ∈ V × Λ be the solution of (2.8) and let (~uN , ~λN ) be the solution of (2.10). Then
there exists a constant C > 0 independent of N such that for all (~vN , ~µN ) ∈ VN × ΛN

there holds

‖~u− ~uN‖2
H1(Ω) ≤ C

[

b(~u,~λN − ~µ) + b(~u,~λ− ~µN )

+ β−2
N

(

‖~u− ~vN‖2
H1(Ω) + ‖~λ− ~µN‖2

H
−1/2

00 (ΓC)

)]

and (3.5)

‖~λ− ~λN‖
H

−1/2

00 (ΓC)
≤ Cβ−1

N

(

‖~u− ~uN‖H1(Ω) + ‖~λ− ~µN‖
H

−1/2

00 (ΓC)

)

. (3.6)

Proof. The proof of the theorem relies on several auxiliary results and can be found
at the end of Section 3.4. As in the case of linear saddle point problems, the key step
towards showing error estimates are bounds for the inf-sup constant of the bilinear form
b in (2.4b). We will obtain these bounds in Theorem 3.9 with the aid of a so-called Fortin
projector PN : V → VN (see, e.g., [4, Section 12.5]). Specifically, we will construct this
operator only for the case d = 3 and merely state the corresponding result for the case
d = 2. The construction is based on the work done in [8] for the case d = 2, but contains
improved estimates even for that case. �

3.3. An hp-mortar projection operator

Consider a rectangle Ω = (a, b) × (c, d) ⊂ R2, and a sequence of partitions TN of Ω
into rectangles, together with a vector of polynomial degrees (pN,K)K∈TN . We admit
hanging nodes of arbitrary order in TN but assume shape-regularity of the elements. Set
Ṽ := H1/2(Ω). We denote by ṼN the space of all functions v ∈ Ṽ such that v|K ∈
QpN,K for all K ∈ TN . On the interelement edges, we use a minimum rule, and resolve
hanging nodes by matching the polynomials on the two respective edges. Finally, WN :=
{

µN ∈W : µN |K ∈ QpN,K−2 for all K ∈ TN

}

.

3.3.1. The operator Π̃K̂,q

Let K̂ := I2 = [−1,+1]2 be the reference element, Ê := [−1,+1] the reference edge,
ΠK̂,q the projection onto Qq with respect to the scalar product of L2(K̂) and ΠÊ,q
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correspondingly for Ê, and (Lj)j≥0 the Legendre polynomials as given in [31]. We define

a skew projection operator Π̃K̂,q : H1/2(K̂) → Qq for v ∈ H1/2(K̂) by

Π̃K̂,qv(x1, x2) = ΠK̂,q−2v(x1, x2)

+ κ−,q(v)(x1)Lq−1(x2) + κ+,q(v)(x1)Lq(x2)

+ κq,−(v)(x2)Lq−1(x1) + κq,+(v)(x2)Lq(x1)

+

q
∑

i=q−1

q
∑

j=q−1

ϕq,i,j(v)Li(x1)Lj(x2), (3.7)

where

κ−,q(v) := −1

2

[

(−1)q−1ΠK̂,q−2v(·,−1) + ΠK̂,q−2v(·,+1)
]

, (3.8a)

κ+,q(v) := −1

2

[

(−1)qΠK̂,q−2v(·,−1) + ΠK̂,q−2v(·,+1)
]

, (3.8b)

κq,−(v) := −1

2

[

(−1)q−1ΠK̂,q−2v(−1, ·) + ΠK̂,q−2v(+1, ·)
]

, (3.8c)

κq,+(v) := −1

2

[

(−1)qΠK̂,q−2v(−1, ·) + ΠK̂,q−2v(+1, ·)
]

, (3.8d)

and

ϕq,q−1,q−1(v) := −1

2

[

(−1)q−1κq,−(v)(−1) + κq,−(v)(+1)
]

, (3.9a)

ϕq,q−1,q(v) := −1

2
[(−1)qκq,−(v)(−1) + κq,−(v)(+1)] , (3.9b)

ϕq,q,q−1(v) := −1

2

[

(−1)q−1κq,+(v)(−1) + κq,+(v)(+1)
]

, (3.9c)

ϕq,q,q(v) := −1

2
[(−1)qκq,+(v)(−1) + κq,+(v)(+1)] , (3.9d)

A direct calculation shows that Π̃K̂,q satisfies

ΠK̂,q−2Π̃K̂,qv = ΠK̂,q−2v (3.10)

and

Π̃K̂,qv|∂K̂ = 0 for all v ∈ H1/2(K̂). (3.11)

Furthermore, by definition, it is clear that

Π̃K̂,qΠK̂,q−2v = Π̃K̂,q−2v for all v ∈ H1/2(K̂). (3.12)

3.3.2. Auxiliary results

Lemma 3.5 (B
1/2
2,1 -Hs p-version inverse inequality). For every d ≥ 1 and s ∈ [0, 1/2],

there exists a constant C > 0 such that for all q ∈ N and all polynomials vq ∈ Qq,

‖vq‖B
1/2

2,1 (Id)
. q1−2s‖vq‖Hs(Id) for s < 1/2

‖vq‖B
1/2

2,1 (Id)
.

(

1 +
√

ln q
)

‖vq‖H1/2(Id).
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Proof. We use the characterisation of fractional Sobolev and Besov spaces in terms of
the K-functional given by K(t, w) := infv∈H1(Id) ‖w−v‖L2(Id)+t‖v‖H1(Id). By [7, p.193,
equation (7.4)], we have, for every ε ∈ (0, 1) that

‖vq‖B
1/2

2,1 (Id)
∼

∫ 1

0

t−1/2K(t, vq)
dt

t
=

∫ ε

0

t−1/2K(t, vq)
dt

t
+

∫ 1

ε

t−1/2K(t, vq)
dt

t
. (3.13)

For the first term in (3.13), we estimate

∫ ε

0

t−1/2K(t, vq)
dt

t
≤

∫ ε

0

t1/2‖vq‖H1(Id)

dt

t
= 2

√
ε‖vq‖H1(Id).

By tensorising the inverse inequality of [3, Proposition 4.1],

√
ε‖vq‖H1(Id) ≤ Cq2(1−s)

√
ε‖vq‖Hs(Id).

For the second term in (3.13), we apply, for s > 0, the Cauchy-Schwarz inequality to
obtain

∫ 1

ε

t−1/2K(t, vq)
dt

t
≤

√

∫ 1

ε

t2s−3dt‖vq‖Hs(Id).

This yields

∫ 1

ε

t−1/2K(t, vq)
dt

t
≤











√

log ε−1‖vq‖H1/2(Id), if s = 1/2,
1

1−2s

√
ε2s−1 − 1‖vq‖Hs(Id) if 0 < s < 1/2,

1
2 (ε−1/2 − 1)‖vq‖L2(Id) if s = 0.

Here, the case s = 0 follows from the trivial estimate K(t, vq) ≤ ‖vq‖L2(Id). Selecting
ε := q−2 and inserting the resulting bound in (3.13) allows us to conclude the proof. �

Lemma 3.6. The operator Π̃K̂,q of (3.7) satisfies the stability estimate

‖Π̃K̂,qvq‖H1/2(K̂) ≤ C(1 + ln q)q1/2‖vq‖H1/2(K̂) for all vq ∈ Qq−2. (3.14)

Proof. As, similarly as in [23, p. 52, Theorem 10.2],

‖w‖H1/2(I2) ≤ C

(
∫

I

(

‖w(·, t)‖2
H1/2(I) + ‖w(t, ·)‖2

H1/2(I)

)

dt

)1/2

, (3.15)

we see that

‖κ−,q(vq)(x1)Lq−1(x2)‖2
H1/2(K̂)

.‖κ−,q(vq)‖L2(Ê)‖Lq−1‖H1/2(Ê)

+ ‖κ−,q(vq)‖H1/2(Ê)‖Lq−1‖L2(Ê). (3.16)

As vq ∈ Qq−2, by [34, (32.8)],

‖κ−,q(vq)‖L2(Ê) ≤
1

2

(

‖vq(·,−1)‖L2(Ê) + ‖vq(·,−1)‖L2(Ê)

)

. ‖vq‖B
1/2

2,1 (K̂)
, (3.17)

7



and therefore by Lemma 3.5 with s = 1/2,

‖κ−,q(vq)‖L2(Ê) . (1 +
√

ln q)‖vq‖H1/2(K̂). (3.18)

For the other term in (3.16), apply [3, Proposition III.4.1] to obtain

‖κ−,q(vq)‖H1/2(Ê) . q‖κ−,q(vq)‖L2(Ê). (3.19)

As B
1/2
2,1 (Ê) is continuously embedded in C0(Ê), we obtain from Lemma 3.5 with s = 0

|ϕq,q−1,q−1(v)| . ‖κq,−(v)‖
B

1/2

2,1 (Ê)
. q‖κ−,q(vq)‖L2(Ê). (3.20)

Analogous results hold true for the other terms. Since ‖Lj‖2
L2(Ê)

= 2/(2j + 1) and

‖Lj‖H1/2(Ê) ∼
√

ln(j + 1) (see the proof of [1, Lemma 10]), we obtain the result. �

Set Π̃K,qv := Π̃K̂,q(v ◦ FK) ◦ F−1
K , where FK : K̂ → K is the (affine) element map.

With JN : Ṽ → ṼN an arbitrary operator, we define the operator PN on Ṽ elementwise
by

(PNv)K := JNv|K + Π̃K,pN,K ((v − JNv)|K). (3.21)

It follows by (3.11) that PN : Ṽ → ṼN is well-defined (as PNv|∂K = JNv|∂K for all
K ∈ TN ) and by (3.10) that

〈v − PNv, µN 〉 = 0 for all µN ∈WN . (3.22)

Proposition 3.7 (von Petersdorff inequality). There exists a constant C > 0 inde-

pendent of the mesh such that, if v|K ∈ H
1/2
00 (K) for all K ∈ TN , then

|v|2
H

1/2

00 (Ω)
≤ C

∑

K∈TN

|v|2
H

1/2

00 (K)
. (3.23)

For the proof, see [2, Theorem 4.1].

Lemma 3.8. The operators (PN ) defined in (3.21) satisfy the stability estimate

‖PNv‖H1/2(Ω) ≤ ‖JNv‖H1/2(Ω)

+ C

{

∑

K∈TN

[

p
3/4
N,K(1 + log2 pN,K)

]2 (

h−1
N,K‖v − JNv‖2

L2(K) + |v − JNv|2H1/2(K)

)

}1/2

.

Proof. By the triangle inequality,

‖PNv‖H1/2(Ω) ≤ ‖JNv‖H1/2(Ω) + ‖PNv − JNv‖H1/2(Ω).

Clearly, (PNv − JNv)|K = Π̃K,pN,K ((v − JNv)|K) vanishes on ∂K for every K ∈ TN , so
we can apply Proposition 3.7 to obtain

‖PNv − JNv‖2
H1/2(Ω) ≤ C

∑

K∈TN

‖Π̃K,pN,K ((v − JNv)|K)‖2

H
1/2

00 (K)
.
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Scaling and [17, Lemma 6] yields

‖Π̃K,pN,K ((v − JNv)|K)‖
H

1/2

00 (K)
. h

1/2
N,K‖Π̃K̂,pN,K

((v − JNv)|K ◦ FK)‖
H

1/2

00 (K̂)

. h
1/2
N,K(1 + ln pN,K)‖Π̃K̂,pN,K

((v − JNv)|K ◦ FK)‖H1/2(K).

By (3.12) and Lemma 3.6 we see that

‖Π̃K̂,pN,K
((v − JNv)|K ◦ FK)‖H1/2(K)

. ‖Π̃K̂,pN,K
ΠK̂,pN,K−2((v − JNv)|K ◦ FK)‖H1/2(K̂)

. (1 + ln pN,K)p
1/2
N,K‖ΠK̂,pN,K−2((v − JNv)|K ◦ FK)‖H1/2(K̂),

Finally, the H1/2-stability of ΠK̂,q, which follows from an interpolation argument using

[5, Theorem 2.4], reads

‖ΠK̂,pN,K−2((v − JNv)|K ◦ FK)‖H1/2(K̂) . p
1/4
N,K‖(v − JNv)|K ◦ FK‖H1/2(K̂).

The result now follows by a scaling argument. �

3.4. Proof of Theorem 3.4

We are now ready to give an a priori convergence rate result for the finite element
method formulated in (2.10). We first prove an inf-sup condition using the results of the
last section. For simplicity, we restrict ourselves to the situation that ΓC consists of a
single rectangular surface.

Theorem 3.9. Let Assumption 3.2 be valid. Then we have the discrete inf-sup condition

inf
~µN∈WN

sup
~vN∈VN

b(~vN , ~µN )

‖~vN‖H1(Ω)‖~µN‖
H

−1/2

00 (ΓC)

≥ CβN , (3.24)

where the constant C > 0 is independent of N and βN is defined in (3.4).

Proof. Given an affine mapping F : [0, 1] × [0, 1] → ΓC, the trivial extension by zero

Z : H
1/2
00 (ΓC) → H1/2(Γ), a lifting operator L : H1/2(Γ) → H1(Ω) and the Scott-Zhang

operator IN of Assumption 3.2, we set

P̃Nv := INLZ(PN (γ0,ΓC
v ◦ F ) ◦ F−1),

where PN is the operator given in Lemma 3.8 with JN := γ0,ΓC
INL. As PN (v ◦F )|∂ΓC

=

0, the operator P̃N : V → VN is well-defined. Due to the fact that g is constant, b is just
a scalar multiple of the L2-scalar product on ΓC, and thus, by Lemma 3.8.

‖P̃Nv‖H1(Ω) . β−1
N ‖v‖H1(Ω) and

b(v − P̃Nv, µN ) = 0 for all v ∈ V and µN ∈ ΛN .

We conclude the proof with an appeal to [4, Lemma 12.5.22]. �
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Remark 3.10. Analysing the proofs of Lemmas 3.6 and 3.8, we see that the same result
can be proved in dimensions other than d = 3 in a similar way. Then, the bounds βN

are given by

βN = max
E∈EC,N

[

p
(d−2)/2+1/4
N,E

(

1 + ln2 pN,E

)

]−1

. (3.25)

The following abstract a priori error estimate for mixed variational inequalities follows
in the same way as in [16, Theorem 6]:

Proposition 3.11. Let V, W be Banach spaces and let a : V×V → R and b : V×W → R

be continuous bilinear forms. Suppose that a is elliptic and that b satisfies an inf-sup
condition. Given continuous linear functionals F : V → R and G : W → R and a closed
convex set Λ ⊂ W, let (u, λ) ∈ V × Λ satisfy:

a(u, v) + b(v, λ)=F (v) ∀v ∈ V (3.26a)

b(u, µ− λ) ≤G(µ− λ) ∀µ ∈ Λ. (3.26b)

Let (VN )N ⊂ V, (WN )N ⊂ W be sequences of finite-dimensional subspaces and let
(ΛN )N ⊂ W be a sequence of closed, convex subsets. Assume that b satisfies a non-
uniform discrete inf-sup condition on (VN ,WN )N with constants (βN )N , and that Λ and
(ΛN )N are uniformly bounded, i.e., there exists a constant C > 0 such that for all µ ∈ Λ,
‖µ‖W < C and for all N and µN ∈ ΛN , ‖µN‖W < C.

Then, the discretisation of (3.26) obtained by replacing V, W, Λ with VN , WN , ΛN

has a unique solution (uN , λN ) ∈ VN × ΛN and satisfies the following a priori estimate:
for all µ ∈ Λ, µN ∈ ΛN , and vN ∈ VN there holds

‖u− uN‖2
V .

[

b(u, λN − µ) −G(λN − µ) + b(u, λ− µN ) −G(λ− µN )

+ β−2
N

(

‖u− vN‖2
V + ‖λ− µN‖2

W

)

]

and (3.27)

‖λ− λN‖W . β−1
N (‖u− uN‖V + ‖λ− µN‖W ) . (3.28)

Proof of Theorem 3.4: Theorem 3.4 now follows by applying Proposition 3.11
together with Theorem 3.9.

3.5. Remarks on the 2D situation

The two-dimensional situation Ω ⊂ R2 differs from the 3D case in that the restriction
of any mesh to the contact boundary ΓC consists of line segments. The construction
of the mortar projection operator PN is then also possible for triangulations of Ω that
consist of triangles and quadrilaterals without hanging nodes. In this situation, Assump-
tion 3.2 is satisfied by [27]. For ease of future reference, we formulate this observation as
Theorem 3.13 below. The setting is as follows:

Let TN be a shape-regular regular mesh consisting of affine quadrilateral and/or
affine triangles. We assume that the element size and polynomial degree of neighboring
elements is comparable:

Assumption 3.12. There exists a constant C > 0 such that

hN,K ≤ ChN,K′ and pN,K ≤ CpN,K′ ∀K,K ′ ∈ TN with K ∩K ′ 6= ∅ (3.29)
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On meshes satisfying Assumption 3.12, we consider the spaces VN ⊂ V defined as

VN = {~v ∈ V |~v|K ∈ SpN,K ∀K ∈ TN} (3.30)

where Sr = Qr if K is a quadrilateral and Sr = Pr = span{xiyj | 0 ≤ i, j, 0 ≤ i+j ≤ r}
if K is a triangle. The spaces WN and the sets ΛN are defined as in (3.2). Within this
setting, we have the following reliability result:

Theorem 3.13 (primal-dual apriori estimates in 2D). Let VN , WN , ΛN be given

as above and let Assumption 3.12 be valid. Let (~u,~λ) ∈ V ×W and (~uN , ~λN ) ∈ VN ×ΛN

be the solutions of (2.10). Then there exists C > 0 such that for all (~vN , ~µN) ∈ VN ×ΛN

the estimates (3.5) and (3.6) are satisfied with βN given by

β2D
N = max

E∈EC,N

[

p
1/4
N,E

(

1 + ln2 pN,E

)

]−1

instead of (3.4).

Proof. The proof follows from Remark 3.10 and the observation that Assumption 3.2
is satisfied by [27]. �

4. A posteriori error indication: The residual error indicator in 2D

Reasoning as in [15, Theorem 6.6], one can show:

Theorem 4.1. Let ~u ∈ V be the solution of the continuous minimisation formulation in
Problem (2.8), and let ~w ∈ V be arbitrary.

Then, for all ~r ∈
(

L2(Ω)
)d×d

,

1

2
a(~u− ~w, ~u− ~w) ≤

∫

Ω

C (ε(~w) − ~r) : (ε(~w) − ~r) d~x

+ inf
~µ∈Λ

[

sup
~v∈V

1

a(~v,~v)

(

−
∫

Ω

C~r : ε(~v)d~x+ L(~v) − b(~v, ~µ)

)2

+ j(~w) − b(~w, ~µ)

]

. (4.1)

In the following, let d = 2 and adopt the setting of Section 3.5. Let (~u, λ) ∈ V ×Λ solve
(2.8) and (~uN , λN ) ∈ VN × ΛN solve (2.9) with VN , WN , and ΛN specified in Section 2.
We denote by ΠΛ : L2(ΓC) → Λ the L2(ΓC) projection onto Λ, and we will further

abbreviate ~̃λN := ΠΛ
~λN .

Selecting ~w := ~uN , ~r := ε(~uN ) and ~µ := ~̃λN in Theorem 4.1 and applying the Korn
inequality (see [22, Lemma 6.2]), we have the error estimate

‖~u− ~uN‖2
H1(Ω) ≤ C

{

sup
~v∈V

‖~v‖−2
H1(Ω)

(

−a(~uN , ~v) + L(~v) − b(~v, ~̃λN )
)2

+ j(~uN) − b(~uN , ~̃λN )
}

.

Inserting the function ~λN ∈ ΛN obtained by solving Problem (2.10), we obtain by the

definition of the H
−1/2
00 -norm that

‖~u− ~uN‖2
H1(Ω) ≤ C

[

sup
~v∈V

‖~v‖−2
H1(Ω)

[

−a(~uN , ~v) + L(~v) − b(~v,~λN )
]2

+ j(~uN) − b(~uN , ~̃λN ) + g2‖~λN − ~̃λN‖2

H
−1/2

00 (ΓC)

]

. (4.2)
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Applying the definition of the discrete problem, we can insert ~vN ∈ VN and substitute ~v
by −~v, which yields

sup
~v∈V

‖~v‖−1
H1(Ω)

[

−a(~uN , ~v) + L(~v) − b(~v,~λN )
]

≤ sup
~v∈V

‖~v‖−1
H1(Ω)

[

a(~uN , ~v − ~vN ) − L(~v − ~vN ) + b(~v − ~vN , ~λN )
]

(4.3)

Let Div σ(~uN ) := (σji,j(~uN ))i=1,...,d be the vector divergence operator. For K ∈ TN ,
define the interior residuals by

~rK := −Div σ(~uN ) − ~F (4.4)

and for E ∈ EN the boundary residuals by

~RE :=



















1
2 [σ(~uN ) · ~ν]E if E ∈ EI,N ,

(σ(~uN) · ~ν)t + g(~λN )t if E ∈ EC,N

σ(~uN ) · ~ν − ~t if E ∈ EN,N ,

0 if E ∈ ED,N ,

(4.5)

where
[σ(~uN ) · ~ν]E := σ(~uN)|KE,1 · ~νKE,1 + σ(~uN )|KE,2 · ~νKE,2

is the boundary jump with E the common edge of KE,1 and KE,2 and ~νKE,1 pointing
from KE,1 to KE,2, and ~νKE,2 = −~νKE,1 . Decomposing the integrals, integrating by parts
on each element, applying the Cauchy-Schwarz inequality and regrouping the interior
boundary terms as usual, we obtain

a(~uN , ~v − ~vN ) − L(~v − ~vN ) + b(~v − ~vN , ~λN )

=
∑

K∈TN

[

∫

K

~rK · (~v − ~vN )d~x+
∑

E⊆∂K

∫

E

~RE · (~v − ~vN )ds~x

]

≤
∑

K∈TN

[

‖~rK‖L2(K)‖~v − ~vN‖L2(K) +
∑

E⊆∂K

‖ ~RE‖L2(E)‖~v − ~vN‖L2(E)

]

. (4.6)

We estimate the remaining terms in (4.2) setting, for E ∈ EC,N ,

jE(~v) :=

∫

E

g|~v|ds~x, bE(~v, ~µ) :=

∫

E

g~vt · ~µds~x.

Then,

j(~uN ) − b(~uN , ~̃λN ) =
∑

E∈EC,N

[

jE(~uN ) − bE(~uN , ~̃λN )
]

.

Furthermore, as ~λN , ~̃λN ∈ H
−1/2
00 (ΓC), by [2, Theorem 4.1],

‖~λN − ~̃λN‖2

H
−1/2

00 (ΓC)
≤

∑

E∈EC,N

‖~λN − ~̃λN‖2

H
−1/2

00 (E)
.
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Defining the local error indicators by

η2
N,K :=h2

N,Kp
−2
N,K‖~rK‖2

L2(K) + hN,Kp
−1
N,K

∑

E⊆∂K

‖ ~RE‖2
L2(E)

+ j∂K∩ΓC
(~uN ) − b∂K∩ΓC

(~uN , ~̃λN ) + g2‖~λN − ~̃λN‖2

H
−1/2

00 (∂K∩ΓC)
, (4.7)

where the last three terms vanish if ∂K ∩ ΓC = ∅, and the global error indicator by

η2
N :=

∑

K∈TN

η2
N,K , (4.8)

Theorem 4.2 (Reliability). Assume the setting of Section 3.5 and let Assumption 3.12
be valid. Then there exists a constant C > 0 such that the residual error indicator given
by (4.7), (4.8) satisfies

‖~u− ~uN‖H1(Ω) ≤ CηN for all N. (4.9)

Proof. The proof combines (4.2), (4.3), (4.6), and selects for ~vN in (4.6) the hp-Clément
interpolant IN~v of [27]. �

Remark 4.3 (numerical realization of ηK). Considering the definition of the local
error indicator, we see that for edges E on ΓC, we need to calculate an integral of the

absolute value of a polynomial and the H
−1/2
00 -norm of the nonconformity of ~λN . In

general, these terms cannot be calculated exactly; however, they can easily be estimated:
For the integration error, we distinguish cases: Assuming that (~uN )t does not change

sign, we can actually calculate the integral exactly, as
∫

E |(~uN )t|ds~x = |
∫

E(~uN )tds~x|. If
(~uN )t does change sign, we estimate the integral by the maximum of |(~uN )t| on the given
interval times the interval length, jE(~uN ) ≤ hN,E‖(~uN)t|E‖L∞(E).

For the nonconformity of ~λN , we proceed similarly: We first estimate the H
−1/2
00 -norm

by the L2-norm, and then the resulting integral by the difference between the maximum
of the absolute value of ~λN minus one times the square root of the interval length.

Note that the maximum of a polynomial can be efficiently estimated using an expan-
sion into a Legendre series in the following way: For a polynomial p of degree q ≥ 2, let
p =

∑q
j=0 cjLj . With x∗ chosen such that p0 :=

∑2
j=0 cjLj attains the maximum of its

absolute value at x∗, we have that

‖p‖L∞(I) ≤ EST := |p0(x
∗)| +

q
∑

j=3

|cj |, (4.10)

where we used that ‖Lj‖L∞(I) = 1 for all j ≥ 0.

Theorem 4.4 (Efficiency). Let Assumption 3.12 be valid. For each K let ~̄rK ∈ SpN,K

be a polynomial approximation of ~rK . For each edge E, let ~̄RE be a polynomial approxi-
mation of ~RE of degree pE, where pE = min{pN,K |E is edge of K ∈ TN}.

For K ∈ TN denote by Kpatch the union of elements of TN that share an edge with K.
Let ~rpatch and ~̄rpatch be defined on Kpatch in an elementwise fashion by ~rpatch|K′ = rK′

and ~̄rpatch|K′ = ~̄rK′ for all K ′ ⊂ Kpatch.
13



Let β ∈ (1/2, 1]. Then there exists a constant C > 0 such that the residual error
indicator satisfies

η2
N,K . p2β

N,K

(

pN,K‖~u− ~uN‖2
H1(Kpatch)

+ h2
N,Kp

−3+2β
N,K ‖~̄rKpatch

− ~rKpatch
‖L2(Kpatch)

+ hN,Kp
−1
N,K

∑

E⊆∂K

‖ ~̄RE − ~RE‖2
L2(E) + g2hN,Kp

−1
N,K‖~λN − ~λ‖2

L2(∂K∩ΓC)

)

+ gh
1/2
N,∂K∩ΓC

‖~uN − ~u‖L2(∂K∩ΓC) + g‖~u‖L2(∂K∩ΓC)‖~λ− ~λN‖L2(∂K∩ΓC)

+ g2‖~λN − ~λ‖2
L2(∂K∩ΓC) (4.11)

for all N and all K ∈ TN .

Proof. The proof basically follows the efficiency proof in [28] for the terms ‖~rK‖L2(K)

and ‖ ~RE‖L2(E) in (4.7). See Appendix A for the details.

For the contributions j∂K∩ΓC (~uN )− b∂K∩ΓC(~uN , ~̃λN ) and ‖~λN − ~̃λN‖
H

−1/2

00 (∂K∩ΓC)
in

(4.7) we proceed as follows: For K with ∂K ∩ ΓC 6= ∅, we have jE(~u) = bE(~u,~λ). Thus

by the inverse triangle and Cauchy-Schwarz inequalities and the fact that ‖~̃λN‖L2(E) ≤
‖~λN‖L2(E) ≤ h

1/2
N,E,

jE(~uN) − bE(~uN , ~̃λN ) = jE(~uN ) − jE(~u) + bE(~u,~λ) − bE(~u, ~̃λN )

+ bE(~u, ~̃λN ) − bE(~uN , ~̃λN )

≤ gh
1/2
N,E‖~uN − ~u‖L2(E) + g‖~u‖L2(E)‖~λ− ~̃λN‖L2(E) + g‖~u− ~uN‖L2(E)‖~̃λN‖L2(E).

Next, as ΠΛλ = λ and ΠΛ is Lipschitz continuous with respect to the L2-norm, we obtain

‖~λN − ~̃λN‖
H

−1/2

00 (E)
≤ ‖~λN − ~̃λN‖L2(E) ≤ ‖~λN − ~λ‖L2(E) + ‖~λ− ~̃λN‖L2(E)

≤ 2‖~λN − ~λ‖L2(E),

which allows us to conclude the argument. �

Remark 4.5. In the above efficiency result, as we have to take square roots, the terms

gh
1/2
N,E‖~uN − ~u‖L2(E) and g‖~u‖L2(E)‖~λ − ~λN‖L2(E) are of the wrong order compared to

the other terms. Note, however, that these terms result from the terms estimating the
error in numerical integration of ~uN by using ~λN and the nonconformity of ~λN . Our
numerical results confirm that after some steps in the adaptive algorithm, those terms
are negligible, showing that for practical problems, the error indicator is efficient.

5. Numerical experiments

We consider the two two-dimensional numerical problems described in [15, Examples
6.12 and 6.13]. We apply the primal-dual formulation (2.9) with the spaces VN and
WN given in (3.2), i.e., we use affine quadrilaterals and admit hanging nodes. We re-
quire the “one hanging node rule” and that all irregular nodes be one-irregular. In the
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Algorithm 5.1 decision h or p

1: % parameter δ > 0
2: % input: element K to be refined

3: expand ~uN |K ◦ FK =

pN,K
∑

i,j=0

uK,ijLi(x)Lj(y)

4: compute bK by a least squares fit of data uK,ij to the law ln |uK,ij | ∼ C − bK(i+ j).
5: if bK < δ then
6: flag K for h-refinement
7: else
8: if K has no edge on ΓC then
9: flag K for p-enrichment

10: else
11: let E be edge of K on ΓC

12: compute EST as described in Remark 4.3 such that ‖(~λN )t‖L∞(E) ≤ EST
13: if EST ≤ 1 then
14: flag K for p-enrichement
15: else
16: flag K for h-refinement
17: end if
18: end if
19: end if

context of non-uniform polynomial degree distributions, differing polynomial degrees on
neighbouring elements are resolved by using the minimum rule on the common edge.

We compare four discretisations: an h-uniform and an h-adaptive method with poly-
nomial degree 2, a p-uniform method, starting with polynomial degree 2, and an hp-
adaptive method, starting with polynomial degree 3.

The error indicators ηK of (4.7) are employed and are estimated as described in
Remark 4.3. In the h-adaptive methods, we mark all elements for refinement where the
local estimated error ηK satisfies ηK ≥ 0.5

#TN

∑

K∈TN
ηK . In the hp-adaptive scheme, each

adaptive step refines those 20% of the elements that have the largest error indicator.
In the hp-adaptive setting, the decision of whether to do an h- or a p-refinement, is
done based on locally testing for analyticity as done in [13, Strategy II] for triangles
and earlier on quadrilaterals in [26, 20]. The details of the procedure are described in
Algorithm 5.1. The computations are performed with δ = 1 in Algorithm 5.1. Compared
to [13, Strategy II], Algorithm 5.1 checks additionally ‖(~λN )t‖L∞(E) and enforces h-

refinement if ‖(~λN )t‖L∞(E) > 1. The motivation behind this is to “find” the (unknown)
transition point from sliding to sticking and the observation in our numerical experiments
that ~λN is non-conforming only in few elements near the transition point. Indeed, in the
final refinement step of our numerical experiments the transition point is sufficiently
resolved and the Lagrange multiplier actually satisfies |~λ|L∞(ΓC) ≤ 1.

All calculations were done using maiprogs ([24]). For the static condensation of the
internal degrees of freedom, pardiso was used ([29, 30, 21]). After a diagonal rescaling
of the resulting matrix, the variational inequality of the first kind on the boundary was
solved by the MPRGP algorithm suggested in [11], applying the modifications made in
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Figure 5.1: Example 5.1, estimated errors vs. problem size

[33] to be able to deal with two-sided constraints.

Example 5.1. Let Ω = (0, 4) × (0, 4), assume homogeneous Dirichlet conditions on
ΓD := {4} × (0, 4), frictional contact on ΓC := (0, 4) × {0} and Neumann conditions
on ΓN := ({0} × (0, 4)) ∪ ((0, 4) × {4}), where ~t(0, s) = (150(5 − s),−75)daN/mm2 for
s ∈ (0, 4) and ~t = 0 on (0, 4) × {4}. The elasticity parameters are chosen to be E =
1500daN/mm2 and ν = 0.4, the friction coefficient is g = 450daN/mm2, and plane stress
is assumed. The initial mesh is uniform and consists of 16 elements.

Figure 5.1 shows the estimated errors for the h-uniform and adaptive, the p-uniform
and the hp-adaptive methods. Assuming an error behaviour of the form ‖u−uN‖H1(Ω) =
CN−α for the uniform h- and p-version and the adaptive h-version, we obtain by a least
squares fit rates of about α = 0.44 for h- and α = 0.33 for the p-uniform method
and about α = 0.64 for the adaptive scheme. Similarly, assuming a behaviour of the
form ‖u − uN‖H1(Ω) = C exp(−γN1/3) for the hp-adaptive scheme, a least squares fit
yields a convergence rate of about γ = 0.36, which confirms that the hp-adaptivity as
suggested here leads to exponential convergence. The p-refinement near the transition
point between sliding and sticking boundary conditions that can be seen in Figure 5.3
can be justified by the fact that the Lagrange multiplier actually is conforming at this
refinement level (see Figure 5.2 for the refinement of the entire domain).

Figure 5.4 shows a parameter study for the dependence of the convergence on the
refinement control parameter δ of Algorithm 5.1. The fastest convergence of about
γ = 0.41 is obtained for δ = 0.6. For medium values of δ, we recover exponential
convergence.
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Figure 5.2: Example 5.1, hp-adaptivity, final refinement

Example 5.2. In the second example, Ω = (0, 10) × (0, 2), we have Dirichlet condi-
tions on ΓD = (0, 10) × {2}, frictional contact on ΓC := (0, 10) × {0} and Neumann
conditions on ΓN := ({0} × (0, 2)) ∪ ({10} × (0, 2)), where ~t(0, s) = (500, 0)daN/mm2

and ~t(10, s) = (250s − 750,−100)daN/mm2 for s ∈ (0, 2). The elasticity parameters
are E = 1000daN/mm2 and ν = 0.3, the friction coefficient is g = 175daN/mm2, and
we again assume plane stress. The initial mesh consists of four elements generated by
dividing only along the x-axis.

The estimated errors are plotted in Figure 5.5. Using an assumed error behaviour
as in Example 5.1, we obtain rates of α = 0.38 for the uniform h-version, α = 0.32
for the uniform p-version, α = 0.57 for the adaptive h-version and γ = 0.33 for the
hp-adaptive scheme. Again, the hp-adaptivity yields exponential convergence. The plots
of the refinements in Figures 5.6 and 5.7 show a strong h-refinement near the transition
point between sticking and sliding.
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[29] O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, in:

19



 1

 10

 100

 1000

 10000

 100  1000  10000  100000

er
ro

r 
in

di
ca

to
r

displacement degrees of freedom

h-uniform, p=2
h-adaptive, p=2

p-uniform
hp-adaptive

Figure 5.5: Example 5.2, estimated errors vs. problem size

 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 5 3 3 6 4 4 6 6 6 6 5 3 3 3 3 6 6 6 6 6 3 3 3 3 6 6 6 6 5 4 4 4 4 6 6 6 6 7 3 3 3 3 5 4 3 6 6 6 6 7 4 4 4 4 4 4 4 6 6 6 6 8 4 4 4 4 5 5 4
 6 5 5 5 6 6 6 6

 4 4 4 3
 7 6
 3 3 3 3

 6
 5  5

 5  5
 6  5

 4

 3 3 3 3
 4 4 4
 6 6 6 6  7

 3 4 4 3

 7

 6  5

 8  6

 6  6

 6

 5
 4  4

 4

 7  6

 3
 4  4

 3

 6

 8
 8  8

 8  7

 6

 6
 8 8 8 8  7

 6

 6 8 6 6
 5 7 5 5 5 6 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 3 3 4 3 4 3 4 3 4 4 5 4 4 4 5 4 6 5 7 5 6 5 7 6 7 6 8 6 7 6 5 5 5 5

 9  7
 7  5

 6

 9  7

 7  5

 6

 9

 9  9

 9
 6

 7  5

 5

 4
 4  4

 4

 5  6
 6  6

 6

 5 5 5 5
 5  7 7 7 7

 3 3 4 4
 5 6
 3 3 3 5 5 5 5 4 5 4 4 4 4 3 3 4 3 3 4 3 3 3 3 4 4 4 4 4 4 4 4

 7

 7  7

 7  6

 6  6

 6

 4 4 4 4 4 4 4
 5 4 4
 7  5

 5

 6  5

 6  5

 5  4

 5

 7  5

 5

 5  5

 5

 6

 6  6

 6  5

 5  4

 5

 6

 5  5

 5  6

 5  5

 6

 5

 4  4

 5  6

 6  6

 6

 4

 4  4

 5

 6

 6  6

 6  7

 7  7

 7

 6

 5  5

 4
 4  4

 5  4 4 4 4
 5  7

 4 4 4 4 4 4 4
 5 6
 4 4 4 5 5 5 5 4 3 5 5 5 5 5 5 5 3 3 3 5 4 4 3 3 3

 6
 6  6

 6  7

 4 4 4 4
 4 4 4
 6  5

 5

 6

 6  6

 6
 7

 4
 4  4

 4

 5  5

 5
 5  5

 5

 6

 6  7

 7
 9

 9  9

 9

 6

 5  7

 7  9

 6
 5  6

 6  7
 7 7 7 7 7 8 8 8 8 6 8 8 8 8 6 7 5 7 5 7 5 6 5 5 4 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 5 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 5 6 6

 5 5 8 6

 6
 6  8 8 8 8

 7

 5

 7  8
 8  8

 8

 6

 3 3 3 3
 4  4

 4

 6  6

 3 3 3 3
 4  4

 3 3 3 3

 8
 6

 6  6

 6

 4
 4  5

 4

 8  6
 6  6

 6

 4 4 5 5
 7  6 6 6 6

 3 4 4 4
 6 6 6 6 6 3 4 4 4 6 6 6 6 5 5 5 5 5 5 5 5 5 7 7 7 7 4 4 4 4 4 6 6 6 6 3 3 3 3 4 5 5 5 5 4 3 6 3 3 5 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 5.6: Example 5.2, hp-adaptivity, final refinement

Computational science—ICCS 2002, Part II (Amsterdam), vol. 2330 of Lecture Notes in Comput.
Sci., Springer, Berlin, 2002, pp. 355–363.
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A. Proof of Theorem 4.4

In this section, we simplify the notation and write hK and pK for the element size
and the polynomial degree of an element K ∈ TN , i.e., we drop the explicit reference to
the index N .

A.1. Preliminaries

Let FK : S → K be the element map for K, that is, FK is one-to-one and onto and
bilinear, and assume that FK maps I, interpreted as an edge of the reference element, to
the edge E of K. Then, using the bubble functions on the reference interval I := [−1, 1],

ψI(x) := dist(x, ∂I), (A.1)

and reference element S := [−1, 1]2,

ψS(~x) := dist(~x, ∂S), (A.2)

we define the element bubble function on K and the edge bubble function on E by

ψK := cKψS ◦ F−1
K , ψE := cEψI ◦ F−1

K , (A.3)
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where the scaling factors cK , cE > 0 are chosen in such a way that
∫

K

ψKd~x = measK,

∫

E

ψEds~x = measE. (A.4)

A.2. Proof of Theorem 4.4

Consider (2.8a) and (2.10a) and integrate by parts on each element to obtain

a(~u− ~uN , ~v) = a(~u,~v) − a(~uN , ~v) = L(~v) − b(~v,~λ) − a(~uN , ~v)

= −
∑

K∈TN





∫

K

~rK~vd~x+
∑

E⊆∂K

∫

E

~RE~vds~x



 + g

∫

ΓC

(~λN − ~λ)~vds~x. (A.5)

The remainder of this section is devoted to bounding ~rK and ~RE in terms of ~u− ~uN . As
is standard in residual based error estimation, we start with ~rK :

Lemma A.1. Let β ∈ (1/2, 1] and let Assumption 3.12 be valid. Let ~̄rK ∈ SpK . Then
there exists C > 0 such that

‖~rK‖L2(K) ≤ C
[

pβ
K‖~̄rK − ~rK‖L2(K) + h−1

N,Kp
2
K‖~u− ~uN‖H1(K)

]

.

Proof. Let ~v := ψβ
K~̄rK , where ~̄rK is a polynomial approximation of ~rK of degree pK .

Plugging this into (A.5) yields

a(~u− ~uN , ψ
β
K~̄rK) = −

∫

K

~rKψ
β
K~̄rKd~x. (A.6)

Thus,
∫

K

ψβ
K |~̄rK |2d~x =

∫

K

ψβ
K~̄rK(~̄rK − ~rK)d~x− a(~u− ~uN , ψ

β
K~̄rK), (A.7)

and the Cauchy-Schwarz inequality and the boundedness of a give, together with the
Poincaré inequality, which is applicable due to the fact that ψβ

K~̄rK = 0 on Γ,

∫

K

ψβ
K |~̄rK |2d~x ≤ ‖ψβ/2

K ~̄rK‖L2(K)‖(~̄rK − ~rK)ψ
β/2
K ‖L2(K)

+ C‖~u− ~uN‖H1(K)‖ψβ
K~̄rK‖H1(K)

≤ ‖ψβ/2
K ~̄rK‖L2(K)‖(~̄rK − ~rK)ψ

β/2
K ‖L2(K)

+ C‖~u− ~uN‖H1(K)|ψβ
K~̄rK |H1(K). (A.8)

Applying the inverse inequalities in [28, Theorem 2.5] together with a scaling argument,
we see that

|ψβ
K~̄rK |2H1(K) = ‖∇(ψβ

K~̄rK)‖2
L2(K) ≤ 2

[

‖(∇ψβ
K)~̄rK‖2

L2(K) + ‖ψβ
K∇~̄rK‖2

L2(K)

]

≤ C
[

h−2
K ‖ψβ−1

K ~̄rK‖2
L2(K) + h−2

K p
2(2−β)
K ‖ψβ/2

K ~̄rK‖2
L2(K)

]

≤ Ch−2
K p

2(2−β)
K ‖ψβ/2

K ~̄rK‖2
L2(K). (A.9)
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Inserting this in (A.8), we get

‖ψβ/2
K ~̄rK‖L2(K) ≤ C

[

‖(~̄rK − ~rK)ψ
β/2
K ‖L2(K) + h−1

K p2−β
K ‖~u− ~uN‖H1(K)

]

≤ C
[

‖~̄rK − ~rK‖L2(K) + h−1
K p2−β

K ‖~u− ~uN‖H1(K)

]

. (A.10)

Finally, by the triangle inequality and [28, Theorem 2.5], we arrive at

‖~rK‖L2(K) ≤ ‖~̄rK − ~rK‖L2(K) + ‖~̄rK‖L2(K) ≤ ‖~̄rK − ~rK‖L2(K) + Cpβ
K‖ψβ/2

K ~̄rK‖L2(K)

≤ C
[

(1 + pβ
K)‖~̄rK − ~rK‖L2(K) + h−1

K p2
K‖~u− ~uN‖H1(K)

]

≤ C
[

pβ
K‖~̄rK − ~rK‖L2(K) + h−1

K p2
K‖~u− ~uN‖H1(K)

]

. (A.11)

�

The next step of the standard procedure in residual error estimation is to estimate the
edge contributions ~RE .

Lemma A.2. Assume the hypotheses of Lemma A.1. Let E ∈ EI,N and set pE :=
min{pKE , pK′

E
}, where KE, K ′

E are the elements that share edge E. Set Epatch :=

K ∪K ′ ∪E and pE := min{pKE , pK′

E
}. Let ~̄RE be a polynomial approximation to ~RE or

degree pE. Then there exists C > 0 such that

‖ ~RE‖L2(E) ≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(Epatch)

+ h
1/2
E p−1+2β

E ‖~rpatch‖L2(Epatch)

]

,

where the function rpatch is defined as ~rKE on KE and as ~rK′

E
on K ′

E.

Proof. Let ~v be an extension to Epatch of ψβ
E
~̄RE constructed by applying [28, Lemma

2.6] together with a scaling argument, and patching the results for the two neighbouring
elements KE and K ′

E of E together. This extension satisfies by [28, Lemma 2.6] for any
ε ∈ (0, 1]:

‖~v‖2
L2(Epatch) ≤ CεhE‖ψβ/2 ~̄RE‖2

L2(E), (A.12)

‖∇~v‖2
L2(Epatch) ≤ C

(

ε−1 + εp
2(2−β)
E

)

h−1
E ‖ψβ/2 ~̄RE‖2

L2(E). (A.13)

Plugging this choice of ~v into (A.5) yields

a(~u− ~uN , ψ
β
E
~̄RE) = −

∑

K⊆Epatch

[
∫

K

~rKψ
β
E
~̄REd~x+

∫

E

~REψ
β
E
~̄REds~x

]

+ g

∫

E∩ΓC

(~λN − ~λ)ψβ
K
~̄REds~x. (A.14)

Since by assumption E ∈ EI,N we have measE ∩ ΓC = 0. In view of the definition of
~RE , we get

∫

E

ψβ
E
~̄R2

Ed~x =

∫

E

ψβ
E
~̄RE( ~̄RE − ~RE)d~x +

∫

E

~REψ
β
E
~̄REds~x
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=

∫

E

ψβ
E
~̄RE( ~̄RE − ~RE)d~x − 1

2
a(~u− ~uN , ~v)

− 1

2

∫

Epatch

~rEpatch
~vd~x. (A.15)

The Cauchy-Schwarz inequality and the boundedness of a yield, together with the
Poincaré inequality,

∫

E

ψβ
E
~̄R2

Ed~x ≤ ‖ψβ/2
E

~̄RE‖L2(E)‖( ~̄RE − ~RE)ψ
β/2
E ‖L2(E)

+ C
[

‖~u− ~uN‖H1(Epatch)‖~v‖H1(Epatch)

+ ‖~rEpatch
‖L2(Epatch)‖~v‖L2(Epatch)

]

≤ ‖ψβ/2
E

~̄RE‖L2(E)‖( ~̄RE − ~RE)ψ
β/2
E ‖L2(E)

+ C
[

‖~u− ~uN‖H1(Epatch)|~v|H1(Epatch)

+ ‖~rEpatch
‖L2(Epatch)‖~v‖L2(Epatch)

]

. (A.16)

Inserting the estimate (A.12), (A.13) produces

‖ψβ/2
E

~̄RE‖L2(E) ≤ C
[

‖ ~̄RE − ~RE‖L2(E) + h
−1/2
E (εp

2(2−β)
E + ε−1)1/2‖~u− ~uN‖H1(Epatch)

+ h
1/2
E ε1/2‖~rEpatch

‖L2(Epatch)

]

. (A.17)

Choosing ε = p−2
E yields

‖ψβ/2 ~̄RE‖L2(E) ≤ C
[

‖ ~̄RE − ~RE‖L2(E) + h
−1/2
E pE‖~u− ~uN‖H1(Epatch)

+ h
1/2
E p−1

E ‖~rEpatch
‖L2(Epatch)

]

. (A.18)

Using the triangle inequality, we obtain with [28, Lemma 2.4] that

‖ ~RE‖L2(E) ≤ ‖ ~̄RE − ~RE‖L2(E) + ‖ ~̄RE‖L2(E)

≤ C
[

‖ ~̄RE − ~RE‖L2(E) + pβ
E‖ψ

β/2
E

~̄RE‖L2(E)

]

≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(Epatch)

+ h
1/2
E p−1+β

E ‖~rEpatch
‖L2(Epatch)

]

. (A.19)

Estimating ‖~rEpatch
‖L2(Epatch) with the aid of (A.11) gives us

‖ ~RE‖L2(E) ≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(Epatch)

+ h
1/2
E p−1+β

E

(

pβ
E‖~̄rEpatch

− ~rEpatch
‖L2(Epatch)

+ h−1
E p2

K‖~u− ~uN‖H1(Epatch)

)

]
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≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(Epatch)

+ h
1/2
E p−1+2β

E ‖~̄rEpatch
− ~rEpatch

‖L2(Epatch)

]

. (A.20)

�

Lemma A.2 treats the case of interior edges. The case of edges on the Neumann boundary
and on the contact boundary are handled in an analogous way. We merely record the
result:

Lemma A.3. Assume the hypotheses of Lemma A.2. For E ∈ EN,N ∪ EC,N denote by
KE ∈ TN the element with E ⊂ ∂KE. Set pE := pKE . Then:

(i) If E ∈ EN,N , then

‖ ~RE‖L2(E) ≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(KE)

+ h
1/2
E p−1+2β

E ‖~rKE‖L2(KE)

]

.

(ii) If E ∈ EC,N , then

‖ ~RE‖L2(E) ≤ C
[

pβ
E‖ ~̄RE − ~RE‖L2(E) + h

−1/2
E p1+β

E ‖~u− ~uN‖H1(KE)

+ h
1/2
E p−1+2β

E ‖~rKE‖L2(KE)

]

+ gpβ
E‖~λN − ~λ‖L2(E).

Proof of Theorem 4.4: The proof of Theorem 4.4 follows from a combination
of Lemmas A.1, A.2, and A.3. For elements K ∈ TN with ∂K ∩ ΓC = ∅, we get for
meas ∂K ∩ ΓC = 0 due to the local comparability of h and p with an adequate element
patch Kpatch ⊇ Epatch for all E ⊆ ∂K, as β > 1/2,

η2
N,K = h2

Kp
−2
K ‖~rK‖2

L2(K) + hKp
−1
K

∑

E⊆∂K

‖ ~RE‖2
L2(E)

.
[

h2
Kp

−2
K

(

p2β
K ‖~̄rK − ~rK‖2

L2(K) + h−2
K p4

K‖~u− ~uN‖2
H1(K)

)

+ hKp
−1
K

∑

E⊆∂K

(

p2β
K ‖ ~̄RE − ~RE‖2

L2(E) + h−1
K p

2(1+β)
K ‖~u− ~uN‖2

H1(Epatch)

+ hKp
−2(1−2β)
K ‖~̄rEpatch

− ~rEpatch
‖2
L2(Epatch)

)]

. p2β
K

(

pK‖~u− ~uN‖2
H1(Kpatch) + h2

Kp
−3+2β
K ‖~̄rKpatch

− ~rKpatch
‖L2(Kpatch)

+ hKp
−1
K

∑

E⊆∂K

‖ ~̄RE − ~RE‖2
L2(E)

)

. (A.21)

Proceeding similarly for E ⊆ ∂K ∩ ΓC and noting that the terms below involving ~λN

vanish whenever ∂K ∩ ΓC = ∅, we obtain the result. �
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