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Runge-Kutta convolution quadrature for

operators arising in wave propagation

Lehel Banjai Christian Lubich Jens Markus Melenk

October 11, 2010

Abstract

An error analysis of Runge-Kutta convolution quadrature is presented for a class of non-
sectorial operators whose Laplace transform satisfies, besides the standard assumptions of ana-
lyticity in a half-plane Re s > σ0 and a polynomial bound O(sµ1) there, the stronger polynomial
bound O(sµ2 ) in convex sectors of the form | arg s| ≤ π/2 − θ < π/2 for θ > 0. The order of
convergence of the Runge-Kutta convolution quadrature is determined by µ2 and the underlying
Runge-Kutta method, but is independent of µ1.

Time domain boundary integral operators for wave propagation problems have Laplace trans-
forms that satisfy bounds of the above type. Numerical examples from acoustic scattering show
that the theory describes accurately the convergence behaviour of Runge-Kutta convolution
quadrature for this class of applications. Our results show in particular that the full classical
order of the Runge-Kutta method is attained away from the scattering boundary.

1 Introduction

Convolution quadrature is a numerical scheme to evaluate expressions of the form

u(t) =

∫ t

0
k(t− τ)g(τ)dτ, 0 ≤ t ≤ T, (1.1)

for given g and k. We refer to [11] for a recent review of convolution quadrature and its applications,
to [12] and [3] for Runge-Kutta convolution quadratures, and to [10] for the type of analysis that
will be used in the present paper. The basis of the numerical realization as well as the analysis
of convolution quadrature is not the function k but its Laplace transform K = L k, which is
important since in many applications it is the transfer function K, and not the kernel k, that is
known explicitly and more easily analysed and computed with. This fact and the excellent stability
properties of convolution quadrature have resulted in numerous recent papers investigating its use
in applications and its fast numerical implementation [2, 4, 5, 6, 8, 13, 14, 15].

In the present paper, we focus on the convergence analysis of Runge-Kutta convolution quadra-
ture for non-sectorial transfer functions K, or, more generally, operators K, that are analytic in
a half-plane Re s > σ0 and polynomially bounded there. Such operators appear naturally in the
context of time-domain wave propagation problems, [1, 9]. For multistep-based convolution quadra-
ture, it has been observed already in [10] that the achievable convergence order is limited by p = 2
due to the requirement of A-stability of the underlying ODE-solver for this class of problems. On
the other hand, A-stable Runge-Kutta methods of arbitrary order are available and convolution
quadratures based on them often outperform those based on linear multistep methods; see [2, 13]
for numerical comparisons of convolution quadratures based on Radau IIA Runge-Kutta methods
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and on BDF multistep methods. An analysis of Runge-Kutta-based convolution quadrature for
non-sectorial operators has recently been presented in [3]. The analysis of [3] is sharp for the class
of kernels with Laplace transforms K that are polynomially bounded in a half-plane, i.e., that sat-
isfy (2.1) below. Several kernel transforms K arising in practice, however, have more structure in
that they satisfy a more stringent growth condition on convex sectors of the form | arg s| ≤ π/2− θ
(θ > 0 arbitrary) than on the half-plane Re s > σ0. Assumption 2.1 below formalizes this behaviour.
Indeed, as is seen for example from the results of [1] and [9], Assumption 2.1 is the appropriate
setting for various kernel transforms K arising in wave propagation problems. As an application
of our convergence result Theorem 3.2, we will also study in Section 5 a Runge-Kutta convolution
quadrature for a boundary integral equation formulation of a wave scattering problem. The nu-
merical results for this scattering problem show that the theory of the present paper accurately
describes the behaviour of Runge-Kutta convolution quadrature for this problem class. This was
not possible with previously available theories.

The present paper, therefore, concentrates on kernels with Laplace transforms K that conform
to Assumption 2.1. In this setting, we prove that the order of convergence attainable by Runge-
Kutta convolution quadrature is controlled by the growth properties of K on sectors of the form
| arg s| < π/2−θ rather than growth conditions on the half-plane Re > σ0. Our numerical examples
indicate that our theoretical error estimates are sharp.

2 Preparation

2.1 Problem class

We are interested in computing convolutions of the form (1.1). Throughout this paper, we will
assume that the Laplace transform K(s) = L k (s)of the (possibly distributional) kernel k(t) has
the following property:

Assumption 2.1. K is analytic in the half-plane Re s > σ0 and satisfies, for some real exponent
µ1 and bounding factor M1(σ0) > 0,

|K(s)| ≤M1(σ0)|s|µ1 for Re s > σ0. (2.1)

Furthermore, there is an exponent µ2 ≤ µ1 such that for every r > 0 there exists M2(σ0, r) > 0
such that

|K(s)| ≤M2(σ0, r)|s|µ2 for |s| > σ0 and 0 ≤ | Im s|
Re s

≤ r. (2.2)

An important class of transfer functions K satisfies bounds of the form (2.3) below. These are
covered by Assumption 2.1 as a direct calculation shows:

Lemma 2.2. Let K be analytic in the half-plane Re s > σ0 > 0 and satisfy for some real exponent
µ and ν ≥ 0

|K(s)| ≤M(σ0)
|s|µ

(Re s)ν
for all Re s > σ0. (2.3)

Then K satisfies Assumption 2.1 with µ1 = µ, µ2 = µ − ν, M1(σ0) = M(σ0)
σν
0

, and M2(σ0, r) =

M(σ0)(
√
1 + r2)ν .

If we write K(s) = sℓKℓ(s) with an integer ℓ > µ1 + 1, then the Laplace inversion formula

kℓ(t) =
1

2π i

∫

σ+iR
estKℓ(s) ds, t ≥ 0 (σ > σ0)
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defines a continuous and exponentially bounded function kℓ, which has k as its ℓth distributional
derivative. We write the convolution with k as

u(t) = K(∂t)g (t) = (k ∗ g)(t) =
( d
dt

)ℓ
∫ t

0
kℓ(t− τ) g(τ) dτ, t > 0,

for functions g on [0, T ] whose extension to t < 0 by 0 is ℓ times continuously differentiable.

2.2 Runge-Kutta methods

We employ standard notation form-stage Runge-Kutta discretizations based on the Butcher tableau
described by the matrix A = (aij)

m
i,j=1 ∈ R

m×m and the vectors b = (b1, . . . , bm)T ∈ R
m and

c = (c1, . . . , cm)T ∈ [0, 1]m. In terms of A, b, c, an m-stage Runge-Kutta discretization of the initial
value problem y′ = f(t, y), y(0) = y0, is given by the recurrence

Yni = yn + h

m∑

j=1

aijf(tn + cjh, Ynj), i = 1, . . . ,m,

yn+1 = yn + h
m∑

j=1

bjf(tn + cjh, Ynj);

here, h is the time-step and tj = jh. The values Yni and yn are approximations to y(tn + cih) and
y(tn), respectively. This Runge-Kutta method is said to be of (classical) order p ≥ 1 and stage
order q if for sufficiently smooth right-hand side f ,

Y0i − y(cih) = O(hq+1), for i = 1, . . . ,m, and y1 − y(t1) = O(hp+1),

as h → 0. Furthermore, we recall that the weights bi and nodes ci define a quadrature formula of
order p:

m∑

i=1

bic
k−1
i =

1

k
, k = 1, 2, . . . , p. (2.4)

Using the notation 1 = (1, 1, . . . , 1)T ,

the Runge-Kutta method is said to be A-stable if I−zA is non-singular for Re z ≤ 0 and the
stability function

R(z) = 1 + zbT (I − zA)−11 (2.5)

satisfies |R(z)| ≤ 1 for Re z ≤ 0. Note that if A−1 exists, then R(∞) = 1− bTA−11.
For the analysis in the remainder of the paper we will make some extra assumptions on the

Runge-Kutta method. We list these next.

Assumption 2.3. (a) The Runge-Kutta method is A-stable with (classical) order p ≥ 1 and stage
order q ≤ p.

(b) The stability function satisfies |R(i y)| < 1 for all real y 6= 0.

(c) R(∞) = 0.

(d) The Runge-Kutta coefficient matrix A is invertible.
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Remark 2.4. Conditions (c), (d) are ensured, for example, for stiffly accurate Runge-Kutta meth-
ods, which satisfy bTA−1 = (0, 0, . . . , 0, 1)T and therefore R(∞) = 0, [7, Chap. IV, Prop. 3.8].
Important examples of RK-methods satisfying Assumption 2.3 are the stiffly accurate Radau IIA
(with order p = 2m−1 and stage order q = m) and the Lobatto IIIC families (with order p = 2m−2
and stage order q = m− 1), [7]. Conditions (b) and (c) are not satisfied for the Gauss collocation
methods (with p = 2m and q = m), for which the stability function is of unit modulus along the
imaginary axis.

2.3 Miscellaneous order properties of Runge-Kutta methods

Lemma 2.5. A Runge-Kutta method with invertible coefficient matrix A satisfies

bTA−1(I−zA)−11 = R(z)−R(∞) (2.6)

and, with ecz := (ec1z, ec2z, . . . , ecmz)T , the following for small |z|:

zbT ecz = ez − 1 + O(zp+1), (2.7)

zAecz = ecz − 1+O(zq+1), (2.8)

bT (I−zA)−1ecz = ez +O(zp), (2.9)

(z − w)bT (I−wA)−1ecz = ez −R(w) + O(zq+1). (2.10)

The implied constant in (2.10) is independent of w bounded away from inverses of eigenvalues of A.

Proof. Identity (2.6) is easily proved:

bTA−1(I−zA)−11 = bTA−1(I−zA+ zA)(I−zA)−11 = R(z)− 1 + bTA−11 = R(z)−R(∞).

The order condition (2.4) implies (2.7) as follows:

zbT ecz =

∞∑

j=0

1

j!
zj+1bT (cjl )l=1,...,m =

p−1∑

j=0

1

(j + 1)!
zj+1 +O(zp+1) = ez − 1 + O(zp+1).

Applying one step of the Runge-Kutta method to the initial value problem y′ = y, y(0) = 1,
with time step z, gives

Y0 = 1+ zAY0.

Substituting the stage order condition Y0i = eciz +O(zq+1) implies (2.8).
Similarly, one step of the Runge-Kutta discretization of y′ = et + y, y(0) = 0, with time step z,

gives
y1 = zbT (I−zA)−1ecz = zez +O(zp+1).

This proves (2.9).
To prove (2.10) notice that

zbT (I−wA)−1ecz = zbT ecz +wbT (I−wA)−1zAecz
(2.7),(2.8)

= ez − 1 + wbT (I−wA)−1(ecz − 1+O(zq+1)) + O(zp+1)

= ez −R(w) + wbT (I−wA)−1ecz +wbT (I−wA)−1 O(zq+1) + O(zp+1).

Rearranging the terms produces the desired result.
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2.4 The spectrum of the Runge-Kutta differentiation symbol

The following matrix-valued function ∆ plays a key role in the definition and the analysis of Runge-
Kutta convolution quadrature:

∆(ζ) :=

(
A+

ζ

1− ζ
1bT)−1 . (2.11)

In case R(∞) = 0, using the Sherman-Morrison formula and 1− bTA−11 = R(∞) = 0 shows that
∆(ζ) can be written as a linear polynomial in ζ:

∆(ζ) = A−1 − ζA−11bTA−1.
Concerning the spectrum σ(∆(ζ)), we have the following.

Lemma 2.6. For a Runge-Kutta method with invertible matrix A, the following is true for |ζ| < 1:

(i) The spectrum of ∆(ζ) is given as

σ(∆(ζ)) = σ(A−1) ∪ {z ∈ C : R(z)ζ = 1}.

Hence, for an A-stable method σ(∆(ζ)) is contained in the open right half-plane for |ζ| < 1.

(ii) For z /∈ σ(∆(ζ)) we have, if R(∞) = 0,

bTA−1(z I−∆(ζ))−1 =
1

1−R(z)ζ
bTA−1(z I−A−1)−1.

Proof. We start with the following identity of [12, Lemma 2.4]:

(z I−∆(ζ))−1 = A(zA− I)−1 − ζ

1−R(z)ζ
(zA− I)−11bT (zA− I)−1. (2.12)

This readily implies (i). To see (ii), we combine (2.12) with (2.6) to get

bTA−1(z I−∆(ζ))−1 = bT (zA− I)−1 +
(R(z)−R(∞))ζ

1−R(z)ζ
bT (zA− I)−1

=
1−R(∞)ζ

1−R(z)ζ
bT (zA− I)−1.

3 Runge-Kutta convolution quadrature

Runge-Kutta based convolution quadratures of (1.1) have been presented in [12]. While the error
analysis of [12] assumed K to be analytic and polynomially bounded outside a sector with an acute
angle to the negative real axis, the same algorithmic procedure can be used in the present case
of kernels with Laplace transforms K that are analytic merely in a half-plane Re s > σ0. For
a Runge-Kutta method satisfying Assumption 2.3, the convolution quadrature approximation to
u(tn+1) at time tn+1 = (n+ 1)h is then given by

uh(tn+1) := bTA−1
n∑

j=0

Wn−j(K) (g(tj + clh))
m
l=1 (3.1)
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where the (m×m-matrix) convolution weights are defined by the power series expansion

K

(
∆(ζ)

h

)
=

∞∑

n=0

Wn(K)ζn, (3.2)

Here, the m×m-matrix ∆(ζ) has already been introduced in (2.11). The weights Wn(K) can be
efficiently computed using FFT as described in [12].

Remark 3.1. (2.11) shows that for A-stable Runge-Kutta methods and all ζ sufficiently small,
the spectrum of ∆(ζ) is contained in a fixed compact set S of the (open) right half-plane. Hence,
for h0 sufficiently small, the spectrum σ(∆(ζ)/h) is contained in the domain of analyticity of K for
all h ≤ h0 and therefore the map ζ 7→ K(∆(ζ)/h) is analytic on a sufficiently small ball centered
at the origin. Thus, the matrices Wn(K) defined by (3.2) are indeed well-defined.

To extend the discrete solution uh to all t ≥ 0, we may use the zero extension of g to negative
times, g(t) ≡ 0, for t ≤ 0, and define

uh(t) := bTA−1
∞∑

j=0

Wj(K) (g(t− tj + clh− h))ml=1 .

The following theorem gives an error estimate for the Runge-Kutta convolution quadrature error
and is the main result of the paper.

Theorem 3.2. Let K satisfy Assumption 2.1 and the Runge-Kutta method Assumption 2.3. Let
r > max(p + µ1, p, q + 1) and g ∈ Cr([0, T ]) satisfy g(0) = g′(0) = · · · = g(r−1)(0) = 0. Then there
exists h̄ > 0 such that for 0 < h ≤ h̄ and t ∈ [0, T ],

|uh(t)− u(t)| ≤ C hmin(p,q+1−µ2)
(
|g(r)(0)| +

∫ t

0
|g(r+1)(τ)|dτ

)
.

The constant C is independent of h and g, but does depend on the Runge-Kutta method, on h̄, T ,
and the constants in Assumption 2.1.

The proof of this theorem covers the remainder of this section. Applying the Laplace transfor-
mation L to the error eh = uh − u yields, again with the notation ecsh = (ec1sh, . . . , ecmsh)T ,

L eh(s) =

{
bTA−1K

(
∆(e−sh)

h

)
ecshe−sh −K(s)

}
L g(s). (3.3)

The key ingredient of our error analysis is the following representation of the expression in curly
brackets in (3.3):

Lemma 3.3. Let K satisfy Assumption 2.1 and let the Runge-Kutta method satisfy Assumption 2.3.
For every σ1 > σ0, there exist constants ρ1 > 0 and h1 > 0 such that for 0 < h ≤ h1 and all s with
Re s ≥ σ1 and |sh| < ρ1,

bTA−1K

(
∆(e−sh)

h

)
ecshe−sh = K(s) + sµ1+pO(hp) + sq+1O(hq+1−µ2).

The implied constants in the O-notation are independent of h and s.
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Proof. We start from the Cauchy integral formula, with ζ = e−sh,

bTA−1K

(
∆(ζ)

h

)
=

1

2π i

∫

Γ
K

( z
h

)
bTA−1(z I−∆(ζ))−1 dz

with a contour Γ in the right half-plane that encloses the spectrum of ∆(ζ). By Lemma 2.6, we
thus have

bTA−1K

(
∆(ζ)

h

)
=

1

2π i

∫

Γ
K

( z
h

) 1

1−R(z)ζ
bTA−1(z I−A−1)−1 dz. (3.4)

For |sh| sufficiently small, i.e., for ζ = e−sh in a sufficiently small neighbourhood of 1, Assump-
tion 2.3 implies that there is a unique solution to the equation R(z) = 1/ζ that lies in the vicinity
of the origin and which we denote by

ẑ = ŝh satisfying R(ŝh) = esh.

Since R(z) = ez +O(zp+1), we obtain

ŝh = sh
(
1 + O

(
(sh)p

))
. (3.5)

We take the residue at ẑ out of the above contour integral, so that

bTA−1K

(
∆(ζ)

h

)
= −K

(
ẑ

h

)
1

R′(ẑ)ζ
bTA−1(ẑ I−A−1)−1

+
1

2π i

∫

ΓA

K
( z
h

) 1

1−R(z)ζ
bTA−1(z I−A−1)−1 dz,

where ΓA is a contour that encloses the eigenvalues of A−1 (which have positive real part by
assumption) and all solutions of R(z) = 1/ζ other than ẑ. This contour can be chosen to lie within
a fixed sector | arg z| ≤ π

2−θ with θ > 0, since for sufficiently small |sh|, the set {z : R(z) = 1/ζ}\{ẑ}
is contained in a fixed compact subset of the open right half plane. We have, since esh = 1/ζ = R(ẑ)
and R(ẑ) = eẑ +O(ẑp+1) and applying Lemma 2.5,

bTA−1(ẑ I−A−1)−1ecsh = −bT (I−ẑA)−1R(ẑ)c = −bT (I−ẑA)−1
(
ecẑ +O(ẑp+1)

)
= −eẑ +O(ẑp+1).

Moreover, we note R′(ẑ) = eẑ +O(ẑp). Hence we obtain, recalling ζ = e−sh and ẑ = ŝh,

bTA−1K

(
∆(e−sh)

h

)
ecshe−sh = K(ŝ)

(
1 + O((ŝh)p

)

+
1

2π i

∫

ΓA

K
( z
h

) 1

1−R(z)e−sh
bTA−1(z I−A−1)−1ecshe−sh dz.

For the first term on the right-hand side we note, using the bounds (3.5) and |K ′(s)| ≤ M |s|µ1−1

(which is obtained from the Cauchy integral formula for derivatives),

K(ŝ) = K(s) + O(sµ1(sh)p).

¿From Lemma 2.5 we have, uniformly for z ∈ ΓA,

bT (I−zA)−1ecsh =
esh −R(z)

sh− z
+ α(z, sh) with α(z, sh) = O((sh)q+1),
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so that the contour integral reduces to

1

2π i

∫

ΓA

K
( z
h

) 1

sh− z
dz +

1

2π i

∫

ΓA

K
( z
h

) α(z, sh)

esh −R(z)
dz.

The first integral vanishes by Cauchy’s integral theorem, and by Assumption 2.1 the second integral
is bounded by O(h−µ2(sh)q+1). All taken together, we have obtained the stated result.

Proof. (of Theorem 3.2). We proceed along the lines of [10, Theorem 3.1]. Let σ1 ≥ σ0 be given
by Lemma 3.3. The Laplace transform of the error eh(t) = u(t)− uh(t) is

L eh(s) =

{
bTA−1K

(
∆(e−sh)

h

)
ecshe−sh −K(s)

}
L g(s).

Hence, if this expression is integrable along σ1 + iR, we have by the inverse Laplace transform

eh(t) =
1

2π i

∫

σ1+iR
est

{
bTA−1K

(
∆(e−sh)

h

)
ecshe−sh −K(s)

}
L g(s)ds.

Note that along the integration contour, |est| = eσ1t ≤ eσ1T .
Let us first consider the special case L g (s) = s−r−1, i.e., g(t) = tr/r!, and study the integral

I =

∫ ∞

−∞

∣∣∣∣
{
bTA−1K

(
∆(e−sh)

h

)
ecshe−sh −K(s)

}
s−r−1

∣∣∣∣ dω, s = σ1 + iω.

We split the integral into three parts:

I ≤ I1 + I2 + I3 :=

∫

|sh|<ρ1

∣∣∣∣
{
bTA−1K

(
∆(e−sh)

h

)
ecshe−sh −K(s)

}
s−r−1

∣∣∣∣ dω

+

∫

|sh|≥ρ1

∣∣∣∣b
TA−1K

(
∆(e−sh)

h

)
ecshe−sh s−r−1

∣∣∣∣ dω

+

∫

|sh|≥ρ1

|K(s) s−r−1|dω,

with the constant ρ1 > 0 of Lemma 3.3.
The bound (2.1) on K(s) implies I3 = O(hr−µ1). Starting from (3.4) and proceeding along the

lines of the proof of Lemma 3.3, one can show

bTA−1K

(
∆(e−sh)

h

)
= O(h−max(0,µ1)) (3.6)

if one observes that by periodicity of the exponential function, one may assume that | Im sh| ≤ π
and then distinguishes the cases of

∣∣e−sh − 1
∣∣ being small and not small. The bound (3.6) then

implies

I2 ≤ Ch−max(0,µ1)

∫

|s|>ρ1/h
|s|−r−1dω = O(hr−max(0,µ1)).

With the estimate of Lemma 3.3, if r > p+ µ1 and r > q + 1,

I1 ≤ Chp
∫

|sh|≤ρ1

|s|p+µ1−r−1dω + Chq+1−µ2

∫

|sh|≤ρ1

|s|q−rdω = O(hp) + O(hq+1−µ2).
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The generalization from the special case L g(s) = s−r−1 to that of general g is achieved with the
observation

sup
Re s=σ1

∣∣∣sr+1
(
L g(s)− s−r−1g(r)(0)

)∣∣∣ = sup
Re s=σ1

∣∣∣L g(r+1)(s)
∣∣∣ ≤

∫ ∞

0
e−σ1t

∣∣∣g(r+1)(t)
∣∣∣ dt.

Finally, by extending g as the rth degree Taylor polynomial at t we can see that the above inte-
gration interval can be reduced to [0, t].

Remark 3.4. The proof of Theorem 3.2 shows that condition (2.2) could be weakened slightly:
The bound (2.2) merely needs to hold on a fixed sector that depends on the Runge-Kutta method
employed. While the condition R(∞) = 0 in Assumption 2.3 covers the practically relevant cases,
Theorem 3.2 also holds under the weakened condition |R(∞)| < 1, if the convolution weights Wn

in (3.2) are defined by the relation K(∆(ζ)/h) = (1− ζR(∞))
∑∞

n=0Wn(K)ζn.

4 A scalar numerical example

Let us consider the functions

K1(s) = i tan(
√
− i s) =

1− e−2 iw

1 + e−2 iw
, Re s > 0, (4.1)

K2(s) = K1(s)− 1 (4.2)

where the principal branch of the square root is used; hence, w =
√
− i s belongs to the fourth

quadrant, i.e., Rew > 0 and Imw < 0. It is easy to check that K1 has singularities located on the
imaginary axis at the points sn = i π2(n + 1/2)2, n ∈ Z0. Fairly straightforward analysis shows
that the functions K1 and K2 satisfy Assumption 2.1:

Lemma 4.1. (i) For every fixed σ0 > 0 the function K1 satisfies Assumption 2.1 with µ1 = 1/2
and µ2 = 0.

(ii) For every fixed σ0 > 0 the function K2 satisfies Assumption 2.1 with µ1 = 1/2 and arbitrary
µ2 < 0.

We omit the details of the proof. We point out here that K2 decays exponentially on sectors
| arg s| ≤ π/2−θ0 < π/2, which is the reason for our being able to select any µ2 in Assumption 2.1:
Let s = |s|ei θ with |θ| ≤ π/2 − θ0 for some θ0 > 0. Then Imw = |s|1/2 sin(θ/2 − π/2) ≤
−|s|1/2 sin(θ0/2) and inspection of (4.1) shows that K2(s) = K1(s)− 1 = O(e−θ0|s|

1/2
).

We apply the 3-stage Radau IIA method (stage order q = 3, classical order p = 5) to the
convolution (1.1) with

g(t) = e−
1

2
t sin7 t.

and kernel K(s) = K1(s)s
µ with µ ∈ {−1/2, 0, 1/2}. In Table 1 we present the maximum error

of the convolution quadrature on the interval t ∈ [0, T ] with T = 2.5 and N steps. Theorem 3.2
predicts a convergence behaviour O(h4−µ) and the numerical results for µ = −1/2 and µ = 1/2
confirm this. However, for µ = 0 the results indicate a full order convergence O(h5). This can be
explained by writing K1(s) = 1+K2(s). For K(s) ≡ 1, the convolution quadrature gives the exact
result, whereas K2(s) = K1(s) − 1 satisfies Assumption 2.1 with µ1 = 1/2 and any µ2 < 0. Since
convolution quadrature is linear, Theorem 3.2 therefore asserts an O(h5)-convergence. This shows
that our theory predicts also this, at first sight, exceptional case.
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µ = −1/2 µ = 0 µ = 1/2

N error rate error rate error rate

4 4.0× 10−2 0.0 6.2× 10−2 0.0 9.7 × 10−2 0.0
8 1.5× 10−3 4.8 2.3× 10−3 4.8 7.7 × 10−3 3.6
16 6.0× 10−5 4.6 1.6× 10−4 3.9 1.5 × 10−3 2.3
32 1.8× 10−6 5.0 4.5× 10−6 5.1 1.2 × 10−4 3.6
64 8.4× 10−8 4.4 1.2× 10−7 5.2 1.0 × 10−5 3.6
128 3.6× 10−9 4.5 4.0× 10−9 4.9 9.0 × 10−7 3.5

Table 1: Convergence of the 3-stage Radau IIA based convolution quadrature ofK(∂t)g forK(s) = K1(s)s
µ.

The function K satisfies Assumption 2.1 with µ1 = µ+ 1/2 and µ2 = µ.

µ = 1/2 µ = 1 µ = 3/2

N error rate error rate error rate

4 3.9× 10−2 0.0 1.8× 10−1 0.0 4.3 × 10−1 0.0
8 1.8× 10−3 4.4 1.2× 10−2 3.9 4.7 × 10−2 3.2
16 1.1× 10−4 4.0 5.0× 10−4 4.6 2.4 × 10−3 4.3
32 3.8× 10−6 4.9 2.0× 10−5 4.6 1.6 × 10−4 3.9
64 1.3× 10−7 4.9 7.1× 10−7 4.8 6.9 × 10−6 4.6
128 4.0× 10−9 5.0 2.2× 10−8 5.0 2.8 × 10−7 4.6

Table 2: Convergence of the 3-stage Radau IIA based convolution quadrature of K(∂t)g for K(s) =
K1(s)s

µe−s. The function s 7→ K(s) satisfies Assumption 2.1 with µ1 = µ+ 1/2 and any µ2 < 0.

Next, we consider the case K(s) = K1(s)s
µe−s for which our theory, under the stated smooth-

ness assumptions on g, predicts optimal convergence O(h5) irrespective of µ. This is seen in Table 2
for µ = 1/2 and µ = 1. For µ = 3/2 a reduced order convergence is observed. This is a consequence
of g not having sufficiently many zero derivatives at t = 0. Setting g(t) = e−t/2 sin8(t) recovers the
optimal order convergence.

5 Application to acoustic scattering

5.1 Boundary integral operators

Let Ω ⊂ R
3 be a bounded Lipschitz domain with boundary Γ. The single layer boundary integral

potential for the equation −∆û+ s2û = 0 is given by

S(s)ϕ(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ϕ(y)dΓy, x ∈ R
3 \ Γ.

We denote its boundary trace by

V (s)ϕ(x) :=

∫

Γ

e−s|x−y|

4π|x− y|ϕ(y)dΓy, x ∈ Γ.

In terms of the standard Sobolev spaces H1/2(Γ) and H−1/2(Γ), these operators have the following
properties:
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Lemma 5.1. Let σ > 0.

(i) V (s) : H−1/2(Γ) → H1/2(Γ) is boundedly invertible with

‖V −1(s)‖H−1/2(Γ)←H1/2(Γ) ≤ C(σ)
|s|2
Re s

, Re s ≥ σ > 0. (5.1)

(ii) For x ∈ R
3 \ Γ the point evaluation of the single layer potential at x is a bounded linear

operator with norm bounded as

‖S(s) · (x)‖
C←H−1/2(Γ) ≤ C(σ,dist(x,Γ))e−Re s dist(x,Γ)|s|, Re s ≥ σ > 0. (5.2)

Proof. Assertion (i) is shown in [1]. To see (ii), let x ∈ Ω+ with δ = dist(x,Γ) > 0 and Ω+ = R
3\Ω.

Let dx(y) = |x− y|. Then,

|S(s)ϕ(x)| ≤
∥∥∥∥
e−sdx

4πdx

∥∥∥∥
H1/2(Γ)

‖ϕ‖H−1/2(Γ) ≤ C

∥∥∥∥
e−sdx

dx

∥∥∥∥
H1(Ω)

‖ϕ‖H−1/2(Γ)

≤ C

∥∥∥∥
e−sdx

dx

(
1 + |s|+ 1

dx

)∥∥∥∥
L2(Ω)

‖ϕ‖H−1/2(Γ) ≤ C(σ, δ)|s| |e−sδ | ‖ϕ‖H−1/2(Γ) .

Hence, the operator ϕ 7→ S(s)ϕ(x) : H−1/2(Γ) → C is bounded as stated in (5.2) for x ∈ Ω+. A
similar estimate is obtained for x ∈ Ω by writing

∥∥∥∥
e−sdx

4πdx

∥∥∥∥
H1/2(Γ)

≤ C

∥∥∥∥
e−sdx

4πdx

∥∥∥∥
H1(ΩR)

,

with ΩR = Ω+ ∩BR, with BR = {x ∈ R
3 : |z| < R} and R chosen such that Ω ⊂ BR.

As has been demonstrated in [1], the operators S and V can be used to solve sound-soft
scattering problems. More precisely, given g(·, t) ∈ H1/2(Γ), we can define the convolution integral

ψ = V −1(∂t)g (5.3)

and observe that u = S(∂t)ψ = SV −1(∂t)g satisfies the wave equation

∂2t u(x, t) = ∆u(x, t), (x, t) ∈ Ω± × [0, T ],

u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω±,

u(x, t) = g(x, t), (x, t) ∈ Γ× [0, T ]

both in the interior Ω− = Ω and the exterior Ω+ = R
3 \Ω domain.

5.2 Numerical results

Convolution quadrature can also be done in an operator-valued setting. Lemma 5.1 informs us that
s 7→ V −1(s) (viewed as an operator H1/2(Γ) → H−1/2(Γ)) satisfies Assumption 2.1 with µ1 = 2
and µ2 = 1. For fixed x 6∈ Γ, we have furthermore

∣∣S(s)V −1(s)g(x)
∣∣ ≤ C(σ,dist(x,Γ))

|s|3
Re s

e−Re sdist(x,Γ)
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N 5 10 15 20 30

eN,Γ 8.7× 10−2 1.6× 10−2 4.5× 10−3 1.9 × 10−3 5.7 × 10−4

order – 2.5 3.1 3.0 3.0

eN,x 2.3× 10−1 1.7× 10−2 3.0× 10−3 8.5 × 10−4 1.3 × 10−4

order: – 3.8 4.3 4.4 4.6

Table 3: Convergence of the 3-stage Radau IIA convolution quadrature of a time-domain boundary integral
operator. The error on the boundary Γ in appropriate norm is denoted by eN,Γ, whereas eN,x denotes the
error at the point x 6∈ Γ.

so that in this case Assumption 2.1 is satisfied with µ1 = 3 and any µ2. Hence, Theorem 3.2
yields that, if g vanishes to sufficient order near t = 0, Runge-Kutta convolution quadrature leads
to convergence O(hq) for the approximation of ψ = V −1(∂t)g (in the ‖ · ‖H−1/2(Γ) norm) and to
optimal convergence O(hp) for the point evaluation away from the boundary. Detailed numerical
experiments that support these conclusions are given next.

We have performed numerical experiments with the right-hand side

g(x, t) = cos

(
1

2
π(t− α · x)

)
e−2(t−α·x−4)

2

, α = (1, 0, 0)T ,

a non-convex domain Ω contained in a ball of radius 1 centred at the origin and defined in [2], and
a time interval of length T = 6. Note that although g(x, 0) is not exactly zero, it is almost so:
|g(x, 0)| ≤ 7.2 × 10−10, for |x| ≤ 1, and also its higher derivatives are small at time t = 0. This
discrepancy does not seem to have any influence on the results of the numerical experiments.

We have used a piecewise-constant Galerkin discretization in space with 1.4 × 104 triangular
panels discretizing Γ. All the computations were done with the techniques described in [2]. Since
no analytic solution is known we have estimated the error on the boundary by

eN,Γ :=


h

N∑

j=0

‖ψN (tj)− ψ2N (tj)‖2H−1/2(Γ)




1/2

,

where ψN is the discrete solution obtained by convolution quadrature with time-step h = T/N ,
i.e., we have compared the numerical solution with the numerical solution obtained with the time-
step halved. In order to make sure that the space discretization does not significantly affect the
results, we have computed eN,Γ for N = 20 with a finer space discretization of 2.3 × 104 panels;
this computation gave the same result up to two digits accuracy.

The results of these numerical experiments, as documented in Table 3, suggest a convergence
order O(h3) when computing (5.3) using the 3-stage Radau IIA method. The 3-stage Radau IIA
method being of stage order q = 3, this is exactly as the theory predicts. We mention that the
results of this experiment have already appeared in [3]. They were the original motivation for the
present work.

Another interesting numerical experiment motivated by the theory is to investigate the conver-
gence of the numerical solution at a point outside the domain; the results of this experiment have
not previously appeared in print. We have computed the error

eN,x := ‖uN (x, ·)− u2N (x, ·)‖ℓ2 =


h

N∑

j=0

(uN (x, tj)− u2N (x, tj))
2




1/2
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for x = (1.5, 0, 0)T ∈ Ω+. Here, uN is the Runge-Kutta convolution quadrature approximation
to SV −1(∂t)g, which is computed using the internal stage values in the approximation of ψ =
V −1(∂t)g. The theory predicts optimal order convergence and the numerically obtained estimate
of the order given in Table 3 supports this.
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