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A POSTERIORI ERROR ANALYSIS OF hp-FEM FOR SINGULARLY

PERTURBED PROBLEMS

JENS M. MELENK AND THOMAS P. WIHLER

Abstract. We consider the approximation of singularly perturbed linear second-order bound-
ary value problems by hp-finite element methods. In particular, we include the case where the
associated differential operator may not be coercive. Within this setting we derive an a poste-
riori error estimate for a natural residual norm. The error bound is robust with respect to the
perturbation parameter and fully explicit with respect to both the local mesh size h and the
polynomial degree p.

1. Introduction

A posteriori error estimation and adaptivity for low-order methods has seen a significant de-
velopment in the last decades as witnessed by several monographs [1, 3, 28] on a posteriori error
estimation, and on convergence and optimality of adaptive algorithms; see, e.g., [7, 26, 13]. The
situation is less developed for high-order finite element methods (hp-FEM), where both the local
mesh size can be reduced and the local approximation order can be increased to improve the
accuracy.

In an hp-context, several adaptive strategies and algorithms have been proposed (see [23] for
an overview and comparison). The first work on hp-adaptive strategies for finite element approx-
imations of elliptic problems was presented in [25]. In addition, methods based on smoothness
estimation techniques were proposed in [11, 15, 16, 19], or in the recent approach [12, 29, 30]
involving Sobolev embeddings, which will also be exploited in the present article. Moreover, a
prediction technique was developed in [22]. Further hp-adaptive approaches in the literature in-
clude, for example, the use of a priori knowledge, mesh optimization strategies, the Texas-3-step
algorithm, or the application of reference solution strategies; see, e.g., [2, 8, 9, 14, 24]. Research
focusing on the convergence of hp-adaptive FEM has been developed only recently in [5, 6].

In spite of the practical success of these hp-adaptive algorithms, a posteriori error estimation
in hp-FEM is still a topic of active research, and several, structurally different a posteriori error
estimators for hp-FEM for standard elliptic problems are available in the literature. We mention
in particular the one of residual type, featuring a reliability-efficiency gap in the approximation
order [10, 22], and the p-robust estimators of [4] which assumes the elliptic problem to be in
divergence form.

Here, we present an a posteriori error estimator for hp-FEM that is suitable for singularly
perturbed problems; it is of residual type and results from merging the techniques of [27] for
singular perturbations with p-explicit estimators from [22]. More precisely, on an interval Ω =
(a, b) ⊂ R, a < b, we consider the singularly perturbed boundary value problem

−εu′′(x) + d(x)u(x) = f(x), x ∈ Ω, (1)

u(a) = u(b) = 0. (2)

Here, ε > 0 is a possibly small constant, d ∈ L∞(Ω) is a given function, and f ∈ L2(Ω) is the
right-hand side. We use standard notation: For an open set D ⊆ Ω, we let L2(D) be the standard
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2 J. M. MELENK AND T. P. WIHLER

Lebesgue space of all square-integrable functions on D with norm ‖ · ‖L2(D), and L∞(D) is the
space of all essentially bounded functions on D with norm L∞(D).

We propose the following variational formulation of (1)–(2): Find u ∈ H1
0 (Ω), the standard

L2-based Sobolev space of first order with vanishing trace, such that

a(u, v) := ε

∫
Ω

u′(x)v′(x) dx +

∫
Ω

d(x)u(x)v(x) dx =

∫
Ω

f(x)v(x) dx ∀v ∈ H1
0 (Ω). (3)

Throughout this paper, we make the general assumption that the solution of (3) exists and is
unique. Evidently, this the case if d ≥ 0.

The article is organized as follows: In the following Section 2 we provide the hp-framework
and hp-FEM for the discretization of (1)–(2). Furthermore, Section 3 contains some hp-quasi-
interpolation results, and the hp-a posteriori error analysis. In addition, we present some numerical
tests in Section 4. Finally, we summarize our work in Section 5.

2. hp-FEM Discretization

In order to discretize the boundary value problem (1)–(2) by means of an hp-finite element
method, let us introduce a partition T = {Kj}Nj=1 of N ≥ 1 (open) elements Kj = (xj−1, xj),

j = 1, 2, . . . , N on Ω = (a, b), with

a = x0 < x1 < x2 < . . . < xN−1 < xN = b.

The length of an element Kj is denoted by hj = xj − xj−1, j = 1, 2, . . . , N . For each element

Kj ∈ T , it will be convenient to introduce the patch K̃j =
⋃
{Ki ∈ T |Ki ∩ Kj 	= ∅} as the

union of Kj and of the elements adjacent to it. In addition, to each element Kj we associate
a polynomial degree pj ≥ 1, j = 1, 2, . . . , N . These numbers are stored in a polynomial degree
vector p = (p1, p2, . . . , pN). Then, we define an hp-finite element space by

Vhp(T ,p) =
{
v ∈ H1

0 (Ω) : v|Kj ∈ Ppj (Kj), j = 1, 2, . . . , N
}
,

where, for p ≥ 1, we denote by Pp the space of all polynomials of degree at most p. We say that the
pair (T ,p) of a partition T and of a degree vector p is μ-shape regular, for some constant μ > 0
independent of j, if

μ−1hj+1 ≤ hj ≤ μhj+1, μ−1pj+1 ≤ pj ≤ μpj+1, j = 1, . . . , N − 1, (4)

i.e., if both the element sizes and polynomial degrees of neighboring elements are comparable.
We can now discretize the variational formulation (3) by finding a numerical approxima-

tion uhp ∈ Vhp(T ,p) such that

a(uhp, v) =

∫
Ω

fv dx ∀v ∈ Vhp(T ,p). (5)

As in the continuous case, we generally suppose that, for a given hp-space Vhp(T ,p), a unique
numerical solution uhp ∈ Vhp(T ,p) of (5) exists.

Furthermore, let us introduce the following norm on H1
0 (Ω):

|||v|||2 :=
N∑
j=1

|||v|||2Kj
:=

N∑
j=1

(
ε ‖v′‖2L2(Kj)

+
∥∥∥√|d|v∥∥∥2

L2(Kj)

)
. (6)

We note that, if d ≥ 0 on Ω, then the norm |||·||| equals the natural energy norm corresponding

to the bilinear form a(·, ·) from (3). More precisely, in that case we have that a(v, v) = |||v|||2 for
any v ∈ H1

0 (Ω).

3. Robust A Posteriori Error Analysis

The goal of this section is to derive an a posteriori error analysis for the hp-FEM (5) with
respect to the residual

Rhp[ehp] := sup
v∈H1

0 (Ω)

v �≡0

|a(u− uhp, v)|
|||v||| ,
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where u ∈ H1
0 (Ω) and uhp ∈ Vhp(T ,p) are the exact and numerical solutions of (3) and (5),

respectively, and ehp = u − uhp signifies the error. Again, let us notice that, if d ≥ 0, then the
residual Rhp[ehp] equals the norm |||ehp||| of the error.

In order to state our main result, let us denote by ΠKj , for j = 1, 2, . . . , N , the elementwise

L2-projection onto Ppj (Kj). Moreover, let

[[u′
hp]](xj) = u′

hp(x
+
j )− u′

hp(x
−
j ) = lim

x↘xj

u′(x)− lim
x↗xj

u′(x), 1 ≤ j ≤ N − 1,

signify the jump of u′
hp at the mesh point xj , and define [[u′

hp]](x0) = [[u′
hp]](xN ) = 0.

3.1. Main Result. We shall prove the following a posteriori error bound:

Theorem 3.1. For the error ehp = u − uhp between the exact solution u ∈ H1
0 (Ω) of (3) and

its numerical approximation uhp ∈ Vhp(T ,p) from (5), there holds the following a posteriori error
estimate:

Rhp[ehp]
2 ≤ C

N∑
j=1

η2Kj
. (7)

Here, for j = 1, 2, . . . , N ,

η2Kj
:= αj

(∥∥ΠKjf + εu′′
hp − duhp

∥∥2

L2(Kj)
+

∥∥f −ΠKjf
∥∥2

L2(Kj)

)
+

1

2
ε2γj−1

∣∣[[u′
hp]](xj−1)

∣∣2 + 1

2
ε2γj

∣∣[[u′
hp]](xj)

∣∣2 (8)

are local error indicators, where we let

αj =

{
min

{
ε−1h2

jp
−2
j , ‖1/d‖L∞(K̃j)

}
, if 1/d ∈ L∞(K̃j),

ε−1h2
jp

−2
j , otherwise,

(9)

(with obvious modifications if j = 0 or j = N), and

βj = αjh
−1
j + 2

√
ε−1αj . (10)

Moreover,

γj =
βjβj+1

βj + βj+1
, (11)

for 1 ≤ j ≤ N − 1, and γ0 = γN = 0. The constant C > 0 is independent of u, uhp, f , ε, T , and
of p.

3.2. hp-Quasi-Interpolation. The proof of Theorem 3.1 will require the construction of an hp-
version quasi-interpolant that is both L2- and H1-stable. This is the subject of this section.

Proposition 3.2. Let the pair (T ,p) be μ-shape regular (see (4)) and v ∈ H1
0 (Ω). Then, there

exists a quasi-interpolant πVhp(T ,p)v ∈ Vhp(T ,p) of v such that, for any j = 1, 2, . . . , N , there
holds∥∥v − πVhp(T ,p)v

∥∥
L2(Kj)

≤ CI ‖v‖L2(K̃j)
,

∥∥v − πVhp(T ,p)v
∥∥
L2(Kj)

≤ CI
hj

pj
‖v′‖L2(K̃j)

,∥∥(v − πVhp(T ,p)v)
′∥∥

L2(Kj)
≤ CI ‖v′‖L2(K̃j)

.
(12)

Furthermore, we have the nodal estimates

|(v − πVhp(T ,p)v)(xi)|2 ≤ CI

[ 1

hi + hi+1
‖v − πVhp(T ,p)v‖2L2(Ki∪Ki+1)

+ ‖v − πVhp(T ,p)v‖2L2(Ki∪Ki+1)
‖(v − πVhp(T ,p)v)

′‖2L2(Ki∪Ki+1)

]
.

Here, CI > 0 is a constant that depends solely on μ; in particular, it is independent of v, T , and
of p.
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Proof. Let us, without loss of generality, assume that Ω = (0, 1). The result can be shown with the
techniques developed for the higher-dimensional case in [17, 18]. In the present, one-dimensional
case, a simpler argument can be brought to bear. Let x−1 = −h1 and xN+1 = 1 + hN and ϕi,
i = 0, . . . , N + 1 be the standard piecewise linear hat functions associated with the nodes xi,
i = −1, . . . , N + 1. The extra nodes x−1 and xN+1 define in a natural way the elements K0 and
KN+1. The (open) patches ωi, i = 0, . . . , N , are given by the supports of the functions ϕi, i.e.,
ωi = (suppϕi)

◦ = Ki ∪Ki+1 ∪ {xi}.
Polynomial approximation (see, e.g., [20, Proposition A.2]) gives the existence of a quasi-

interpolation operator Jp : L2(−1, 1) → Pp(−1, 1) that is uniformly (in p ≥ 0) stable, i.e.,
‖Jpv‖L2(−1,1) ≤ C‖v‖L2(−1,1) for all v ∈ L2(−1, 1) and has the following properties for v ∈
H1(−1, 1):

(p+ 1)‖v − Jpv‖L2(−1,1) + ‖(v − Jpv)
′‖L2(−1,1) ≤ C‖v′‖L2(−1,1).

Furthermore, if v is antisymmetric with respect to the midpoint x = 0, then Jpv can be assumed
to be antisymmetric as well, i.e., (Jpv)(0) = 0 (this follows from studying the antisymmetric part
of the original function Jpv).

The approximation πVhp(T ,p)v is now constructed with the aid of a “partition of unity argument”
as described in [21, Theorem 2.1]. For ω0 and ωN , extend v anti-symmetrically, i.e., v(x) :=
−v(−x) for x ∈ K0 and v(x) := −v(1 − x) for x ∈ KN+1. Then v is defined on each patch
ωi, i = 0, . . . , N . For each patch ωi, let p′i := min{pi, pi+1} (with the understanding p0 = p1
and pN+1 = pN ). The above operator Jp then induces for each patch ωi by scaling an operator
J i : L2(ωi)→ Pp′

i−1(ωi) with the following properties:

p′i + 1

hi
‖v − J iv‖L2(ωi) + ‖(v − J iv)′‖L2(ωi) ≤ C‖v′‖L2(ωi);

here, we have exploited the μ-shape regularity of the mesh. We note that (J0v)(0) = 0 and
(JNv)(1) = 0. Also, the operators J i are uniformly (in the polynomial degree) stable in L2(ωi).

The approximation πVhp(T ,p)v is now taken to be πVhp(T ,p)v :=
∑N

i=0 ϕiJ
iv. The desired approx-

imation properties follow now from [21, Theorem 2.1].
Finally, the nodal estimate results from the observation that at the nodes, there holds the

identity πVhp(T ,p)v(xi) = (J iv)(xi), and from a multiplicative trace inequality (see Appendix,
Lemma A.1). �

The above proposition implies the following bounds.

Corollary 3.3. For v ∈ H1
0 (Ω), the quasi-interpolant from Proposition 3.2 satisfies∥∥v − πVhp(T ,p)v

∥∥2

L2(Kj)
≤ C2

Iαj |||v|||2K̃j
, j = 1, 2, . . . , N,

and ∣∣(v − πVhp(T ,p)v)(xj)
∣∣2 ≤ C2

I γj

(
|||v|||2K̃j

+ |||v|||2K̃j+1

)
, j = 1, 2, . . . , N − 1,

where αj and γj are defined in (9) and (11), respectively, and CI is the constant from (12).

Proof. We proceed along the lines of [27]. Using the bounds from Proposition 3.2, we have for
each element Kj ∈ T that

∥∥v − πVhp(T ,p)v
∥∥2

L2(Kj)
≤ C2

I

h2
j

εp2j
ε ‖v′‖2L2(K̃j)

.

Furthermore, if 1/d ∈ L∞(K̃j), then∥∥v − πVhp(T ,p)v
∥∥2

L2(Kj)
≤ C2

I ‖v‖
2
L2(K̃j)

≤ C2
I ‖1/d‖L∞(K̃j)

∥∥∥√|d|v∥∥∥2

L2(K̃j)
.

Combining these two estimates, yields the first bound.
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In order to prove the second estimate, we apply, for 1 ≤ j ≤ N − 1, a multiplicative trace
inequality (see Appendix, Lemma A.1):∣∣(v − πVhp(T ,p)v)(xj)

∣∣2
≤ h−1

j

∥∥v − πVhp(T ,p)v
∥∥2

L2(Kj)
+ 2

∥∥v − πVhp(T ,p)v
∥∥
L2(Kj)

∥∥(v − πVhp(T ,p)v)
′∥∥

L2(Kj)
.

Then, invoking the above bounds as well as the estimates from Proposition 3.2, we get∣∣(v − πVhp(T ,p)v)(xj)
∣∣2 ≤ C2

I

(
αjh

−1
j |||v|||

2
K̃j

+ 2
√
αj |||v|||K̃j

‖v′‖L2(K̃j)

)
≤ C2

I

(
αjh

−1
j |||v|||

2
K̃j

+ 2
√
ε−1αj |||v|||2K̃j

)
≤ C2

I βj |||v|||2K̃j
,

with βj from (10). Since xj is also a boundary point of Kj+1, we similarly obtain that∣∣(v − πVhp(T ,p)v)(xj)
∣∣2 ≤ C2

Iβj+1 |||v|||2K̃j+1
.

Therefore,∣∣(v − πVhp(T ,p)v)(xj)
∣∣2 =

βj+1

βj + βj+1

∣∣(v − πVhp(T ,p)v)(xj)
∣∣2 + βj

βj + βj+1

∣∣(v − πVhp(T ,p)v)(xj)
∣∣2

≤ C2
I γj

(
|||v|||2K̃j

+ |||v|||2K̃j+1

)
,

with γj from (11). Thus, we have shown the second estimate. �

3.3. Proof of Theorem 3.1. We are now in a position to prove the hp-a posteriori error
bound (7).

From the definitions of the exact solution u from (3) and the numerical solution uhp defined
in (5), it follows that, for any v ∈ H1

0 (Ω) and any vhp ∈ Vhp(T ,p),

a(u, v)− a(uhp, v) = a(u, v − vhp)− a(uhp, v − vhp)

=

∫
Ω

f(v − vhp) dx− ε

∫
Ω

u′
hp(v − vhp)

′ dx−
∫
Ω

duhp(v − vhp) dx.

Integrating by parts elementwise in the second integral leads to∫
Ω

u′
hp(v − vhp)

′ dx =

N∑
j=1

∫
Kj

u′
hp(v − vhp)

′ dx

= −
N∑
j=1

∫
Kj

u′′
hp(v − vhp) dx+

N∑
j=1

(
u′
hp(x

−
j )(v − vhp)(xj)− u′

hp(x
+
j−1)(v − vhp)(xj−1)

)
= −

N∑
j=1

∫
Kj

u′′
hp(v − vhp) dx−

N−1∑
j=1

[[u′
hp]](xj)(v − vhp)(xj),

and thus, choosing vhp = πVhp(T ,p)v to be the hp-interpolant from Section 3.2, we arrive at

a(u, v)− a(uhp, v) =

N∑
j=1

(
ΠKjf + εu′′

hp − duhp

)
(v − πVhp(T ,p)v) dx

+
N∑
j=1

(
f −ΠKjf

)
(v − πVhp(T ,p)v) dx+ ε

N−1∑
j=1

[[u′
hp]](xj)(v − πVhp(T ,p)v)(xj).
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Hence, applying the Cauchy-Schwarz inequality, we obtain

|a(u, v)− a(uhp, v)| ≤
N∑
j=1

∥∥ΠKjf + εu′′
hp − duhp

∥∥
L2(Kj)

∥∥v − πVhp(T ,p)v
∥∥
L2(Kj)

+

N∑
j=1

∥∥f −ΠKjf
∥∥
L2(Kj)

∥∥v − πVhp(T ,p)v
∥∥
L2(Kj)

+

N−1∑
j=1

ε
∣∣[[u′

hp]](xj)
∣∣ ∣∣(v − πVhp(T ,p)v)(xj)

∣∣ .
The bounds from Corollary 3.3 lead to

|a(u, v)− a(uhp, v)| ≤ CI

N∑
j=1

√
αj

∥∥ΠKjf + εu′′
hp − duhp

∥∥
L2(Kj)

|||v|||K̃j

+ CI

N∑
j=1

√
αj

∥∥f −ΠKjf
∥∥
L2(Kj)

|||v|||K̃j

+ CI

N−1∑
j=1

(
|||v|||2K̃j

+ |||v|||2K̃j+1

)1/2

ε
√
γj

∣∣[[u′
hp]](xj)

∣∣ .
The Cauchy-Schwarz inequality yields

|a(u, v)− a(uhp, v)|

≤ CI

⎛⎝ N∑
j=1

αj

∥∥ΠKjf + εu′′
hp − duhp

∥∥2

L2(Kj)
+ αj

∥∥f −ΠKjf
∥∥2

L2(Kj)

⎞⎠1/2 ⎛⎝2

N∑
j=1

|||v|||2K̃j

⎞⎠1/2

+ CI

⎛⎝N−1∑
j=1

ε2γj
∣∣[[u′

hp]](xj)
∣∣2⎞⎠1/2 ⎛⎝N−1∑

j=1

(
|||v|||2K̃j

+ |||v|||2K̃j+1

)⎞⎠1/2

Observing that

N∑
j=1

|||v|||2K̃j
≤ 3 |||v|||2 ,

N−1∑
j=1

(
|||v|||2K̃j

+ |||v|||2K̃j+1

)
≤ 6 |||v|||2 ,

we finally see that

|a(u, v)− a(uhp, v)| ≤
√
12CI

⎛⎝ N∑
j=1

η2Kj

⎞⎠1/2

|||v||| ,

with ηKj from (8). Dividing both sides of this inequality by |||v||| and taking the supremum for

all v ∈ H1
0 (Ω) shows Theorem 3.1.

Remark 3.4. In the case d ≥ 0, following along the lines of [27], it is possible to prove ε-robust local
lower bounds for the error in terms of the error indicators ηKj and the data oscillation terms. This
approach, however, results in efficiency bounds that will be slightly suboptimal with respect to the
local polynomial degrees due to the need of applying p-dependent norm equivalences (involving
cut-off functions); cf. [22].

4. Numerical Experiments

The purpose of this section is to illustrate the a posteriori error estimates from Theorem 3.1
by means of some numerical experiments. We will emphasize on the robustness of the error
indicators with respect to ε as ε → 0, and on the capability of hp-FEM to deliver exponential
rates of convergence.
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We shall apply an hp-adaptive algorithm which is based on the following ingredients:

• The a posteriori error estimate from Theorem 3.1.
• Dörfler marking: In order to mark elements for refinement, we fix a parameter θ ∈ (0, 1)
(in the experiments below we choose θ = 0.5) such that

θ

N∑
j=1

η2Kj
≤

M∑
j′=1

η2Kj′ , (D)

where the indices j′ are chosen such that the error indicators ηKj′ from (8) are sorted in
descending order, and M is minimal.
• hp-refinement criterion: The decision of whether a marked element is refined with respect
to h (element bisection) or p (increasing the local polynomial order by 1) is based on the
elementwise smoothness indicator

Fj :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
supx∈Kj

∣∣∣∣
d
pj−1

dx
pj−1 uhp(x)

∣∣∣∣

h
−1/2
j

∥∥∥∥∥
d
pj−1

uhp

dx
pj−1

∥∥∥∥∥
K2(Kj)

+ 1√
2
h
1/2
j

∥∥∥∥
d
pj uhp

dx
pj

∥∥∥∥
K2(Kj )

if dpj−1

dxp−1uhp|Kj 	≡ 0

1 if dpj−1

dxpj−1uhp|Kj ≡ 0

(F)

introduced in [12, Eq. (3)]. Here, the basic idea is to monitor the constant in the
Sobolev embedding H1 ↪→ L∞, and thereby to decide whether or not the local solu-

tion is smooth. More precisely, if u
(pj−1)
hp is nearly constant on Kj then Fj ≈ 1, and Fj

is getting smaller if u
(pj−1)
hp is less smooth. In this way, uhp is classified smooth on Kj

if Fj ≥ τ and otherwise nonsmooth, for a prescribed parameter τ (in our experiments we
choose τ = 0.6). For ease of evaluation, note that, by taking the derivative of order pj −1,
the smoothness indicator Fj is applied to linear functions only; in this case, it can be

shown that 1
2 ≈

√
3√

6+1
≤ Fj ≤ 1; cf. [12, Section 2.2].

Combing the above ideas leads to the following hp-adaptive refinement algorithm:

Algorithm 4.1. Choose prescribed parameters θ ∈ (0, 1) and τ ∈
( √

3√
6+1

, 1
)

for the Dörfler

marking as well as for the hp-decision process as described before, respectively. Furthermore,
consider a (coarse) initial mesh T 0, and an associated polynomial degree vector p0. Set n = 0.
Then, perform the following iteration (until a given maximum iteration number is reached, or until
the estimated error is sufficiently small):

(1) Compute the numerical solution un
hp ∈ Vhp(T n,pn) from (5), and evaluate the error indica-

tors {ηKj}Kj∈T n defined in (8).
(2) Mark the elements in T n based on the Dörfler marking (D).
(3) For each marked element Kj evaluate the smoothness indicator Fj from (F); if Fj ≥ τ then

increase the polynomial degree pj by 1, i.e., pj ← pj + 1, otherwise bisect Kj into two new
elements (taking pj for both elements).

In the ensuing experiments, we will choose a uniform initial mesh consisting of 10 elements,
and set the polynomial degree to be 1 on each of them.

4.1. Example 1: We begin by looking at the singularly perturbed reaction-diffusion problem

−εu′′ + u = 1 on Ω = (−1, 1), u(−1) = u(1) = 0.

This problem is coercive and has exactly one (analytic) solution. For small ε � 1 the exact
solution exhibits a boundary layer at x = 0 and x = 1 which needs to be resolved properly by
the hp-adaptive FEM. In Figure 1 the hp-mesh after 24 adaptive refinement steps is displayed
for ε = 10−4. We observe that the boundary layer is resolved by some mild h-refinement and
by increasing p in the same area. Moreover, the mesh remains unrefined in the center of the
domain where the exact solution is nearly constant 1. In addition, in Figure 2 we show the errors
measured with respect to the norm |||·||| from (6) as well as the estimated errors. The exponential
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Figure 1. Example 1 for ε = 10−4: Adaptively generated hp-mesh after 24
refinement steps (17 elements, maximal polynomial degree 18).

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

number of degrees of freedom

en
er

gy
 e

rr
or

 

 

ε=1
ε=0.1
ε=0.01
ε=0.001
ε=0.0001

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

number of degrees of freedom

es
tim

at
ed

 e
rr

or

 

 

ε=1
ε=0.1
ε=0.01
ε=0.001
ε=0.0001

Figure 2. Example 1: Energy error (left) and estimated error (right) for different
choices of ε.

decay of both quantities for different choices of ε becomes clearly visible in the semi-logarithmic
plot. Finally, the efficiency indices, i.e., the ratio between the estimated and true errors, are
depicted in Figure 3; they oscillate between 1 and 4, and do not deteriorate as ε → 0, thereby
clearly testifying to the robustness of the a posteriori error estimate from Theorem 3.1.

4.2. Example 2: In this experiment, we consider Airy’s equation

−εu′′ + xu = 1 on Ω = (−1, 1), u(−1) = u(1) = 0.

The particularity of this example is that, for 0 < ε� 1, the corresponding differential operator is
coercive for x ≥ 1, however, it becomes hyperbolic near x = −1; this becomes evident in Figure 4
(left), where the numerical solution is shown for ε = 10−4. The oscillating regime for x < 0
requires a proper resolution by the hp-FEM as shown in the hp-mesh in Figure 5. The decay of
the estimated error is plotted in Figure 4 (right) for various choices of ε. In particular, for small ε,
we see that, after a number of initial refinements resolving the oscillations, the algorithm provides
exponentially converging results.
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Figure 3. Example 1: Efficiency indices for different choices of ε.
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Figure 4. Example 2 for ε = 10−4. Left: Numerical solution, which is highly
oscillatory for x < 0. Right: Estimated errors for different choices of ε.
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Figure 5. Example 2 for ε = 10−4: Adaptively generated hp-mesh after 75
refinement steps (55 elements, maximal polynomial degree 13).

5. Conclusions

In this paper we have studied the numerical approximation of linear second-order boundary
value problems (with possibly non-constant reaction coefficient) by the hp-FEM. In particular, we
have derived an a posteriori error estimate for a natural residual-type norm that is robust with
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respect to the (possibly) small perturbation parameter and explicit with respect to the local mesh
size and polynomial degree. Numerical experiments for both coercive as well as partly coercive
differential equations underline the robustness of the error bound. In addition, an appropriate
combination of the error estimate with a smoothness testing procedure reveals that the method is
able to achieve exponential rates of convergence.

Appendix A. A Multiplicative Trace Inequality

Lemma A.1. Let h > 0 and w ∈ H1(0, h). Then, the multiplicative trace inequality

max {|w(0)|, |w(h)|}2 ≤ h−1‖w‖2L2(0,h) + 2‖w‖L2(0,h)‖w′‖L2(0,h)

holds true.

Proof. By density of C∞([0, h]) in H1(0, h), we may suppose that w is smooth. There holds

w(0)2 =

∫ h

0

d

dx

[(
h−1x− 1

)
w(x)2

]
dx = h−1

∫ h

0

w(x)2 dx+ 2

∫ h

0

(
h−1x− 1

)
w(x)w′(x) dx.

Then, applying the Cauchy-Schwarz inequality and noticing that
∣∣1− h−1x

∣∣ < 1 for x ∈ (0, h),
results in

|w(0)|2 ≤ h−1‖w‖2L2(0,h) + 2‖w‖L2(0,h)‖w′‖L2(0,h).

By symmetry, the same bound can be obtained for |w(h)|2. This completes the proof. �
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