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Wave-Number Explicit Convergence Analysis for
Galerkin Discretizations of the Helmholtz Equation

(extended version)

J.M. Melenk∗ S. Sauter†

Abstract

In this paper, we develop a new stability and convergence theory for highly indefinite
elliptic partial differential equations by considering the Helmholtz equation at high wave
number as our model problem. The key element in this theory is a novel k-explicit
regularity theory for Helmholtz boundary value problems that is based on decomposing
the solution into in two parts: the first part has the H2-Sobolev regularity expected
of elliptic PDEs but features k-independent regularity constants; the second part is
an analytic function for which k-explicit bounds for all derivatives are given. This
decomposition is worked out in detail for several types of boundary value problems
including the case Robin boundary conditions in domains with analytic boundary and
in convex polygons.

As the most important practical application we apply our full error analysis to the
classical hp-version of the finite element method (hp-FEM) where the dependence on
the mesh width h, the approximation order p, and the wave number k is given explicitly.
In particular, under the assumption that the solution operator for Helmholtz problems
grows only polynomially in k, it is shown that quasi-optimality is obtained under the
conditions that kh/p is sufficiently small and the polynomial degree p is at least O(log
k).

AMS Subject Classification: 35J05, 65N12, 65N30
Key Words: Helmholtz equation at high wavenumber, stability, convergence, hp−finite ele-
ments

1 Introduction

In this paper we analyze the numerical solution of highly indefinite boundary value problems,
which arise, for example, when electromagnetic or acoustic scattering problems are modelled
in the frequency domain and discretized by Galerkin methods. As our model problem we
consider the Helmholtz equation at high wave numbers k.

∗(melenk@tuwien.ac.at), Institut für Analysis und Scientific Computing, Technische Universität Wien,
Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria.

†(stas@math.uzh.ch), Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich,
Switzerland
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For low order h-version finite element methods, it is well-known that unique solvability
of the discrete problem is only guaranteed under very restrictive stability conditions. More
precisely, the minimal dimension N , e.g., of a P1 finite element space has to satisfy N & k2d,
where d ∈ {1, 2, 3} denotes the spatial dimension. In the present paper, we demonstrate
that it is possible to ensure stability and quasi-optimality under the substantially relaxed
condition N & kd. A different way of stating this result is that quasi-optimality of a piecewise
polynomial based FEM can be achieved in a setting where (on average) the number of degrees
of freedom per wavelength is independent of k. At first glance, this seems to contradict the
results of [4] where it is proved that, for any (even generalized) finite element method, N & kd

is not a sufficient condition to guarantee quasi-optimality in general. However, in [4] only
polynomial approximations of fixed order have been considered and a key result of this paper
is that the polynomial order must be chosen in a wave-number dependent way in order to
derive optimal stability conditions.

This quasi-optimality result hinges on two observations. Firstly, as was already exploited
in [6,29,30,35], the proof of quasi-optimality of Galerkin methods for Helmholtz problems can
be reduced to the question of how well certain adjoint problems can be approximated from the
ansatz space. Secondly, approximability questions are closely related to regularity issues. The
key ingredient of the present paper, therefore, are new k-explicit regularity results for solutions
of the Helmholtz equation. These regularity assertions take the form of a decomposition
of the solution into a highly oscillatory, but analytic part uA and an “elliptic” part with
k-independent regularity properties. Although the constant in the regularity estimate for
uA depends critically on the wavenumber, it is the smoothness of the part uA that can be
exploited in numerical schemes. As the most important application, we illustrate this point
for higher order finite element methods by showing that, for domains with analytic boundary,
the condition

kh

p
small together with p ≥ C log k (1.1)

suffices to ensure stability and convergence if one makes the reasonable assumption that
the solution operator for the Helmholtz problem grows at most polynomially in the wave
number k. For polygonal Ω, the condition (1.1) is modified in the sense that appropriate
geometric mesh refinement is required in small neighborhoods of the vertices. While an at most
polynomial growth (in k) of the norm of the Helmholtz solution operator is stipulated as an
extra assumption in our regularity theory (see Assumptions 4.7, 4.17 for the precise statement)
we believe it to be reasonable in view of known results for special cases such as Helmholtz
problems associated with star-shaped domains, [26, 31], and numerical evidence, [28].

Helmholtz problems have been studied to a considerable extent in the past decades with the
ambitious goal of understanding the influence of critical parameters such as the wave number
and, in the case of numerical schemes, the choice of the discretization and its parameters.
Results in this direction include sharp estimates for the inf-sup constant of the continuous
equations, lower estimates for the convergence rates, one-dimensional analysis by using the
discrete Green’s function as well as a dispersion analysis for standard and non-standard finite
element discretizations (see, e.g., [2,3,5,6,8–10,12–15,17–23,29,33–35,39,40] and the references
therein). In spite of a large body of literature, it seems that an understanding of the behavior
of numerical schemes that is fully explicit in the wave number and discretization parameters
such as the mesh size h and the approximation order p is only available in very structured
situations such as one-dimensional cases or fully regular tensor-product situations. The present
paper considers a significantly more general situation and discusses the following three cases:
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1. Bounded domains in Rd (d ∈ {2, 3}) with analytic boundary and Robin boundary con-
ditions.

2. Exterior domains in R
d, (d ∈ {2, 3}) with analytic boundaries and Dirichlet boundary

conditions.

3. Convex two-dimensional polygons with Robin boundary conditions.

For these three cases, we show (under the above mentioned assumption of polynomial
growth of the appropriate Helmholtz solution operator) quasi-optimality if the scale resolution
condition (1.1) is met. The same condition has already been identified in the companion
paper [30], where a simpler full space problem was analyzed.

The paper is structured as follows. In Section 2, we formulate the model Helmholtz prob-
lems and corresponding abstract Galerkin discretization. In Section 3, we briefly recapitulate
the general convergence theory where the stability and convergence follows from approxima-
bility of certain adjoint problems. In Section 4, which is at the heart of the paper, we present
a decomposition of the Helmholtz solution into a high-frequency and a low-frequency part.
The high-frequency part is in the Sobolev space H2 but features k-independent bounds in
the H2-norm. The low-frequency part belongs to some high-order weighted Sobolev spaces
– irrespective of the fact that we only assume that the right-hand side f ∈ L2 (Ω) has finite
regularity. The ability to decompose the solution of Helmholtz problems into such two parts
appears to be a general feature. Similar decompositions are developed in [28] for the solutions
of boundary integral formulations of scattering problems. Finally, in Section 5 we consider the
hp-finite element method as an example and show that, by a suitable choice of the polynomial
degree p, the condition N & kd ensures discrete stability and optimal convergence rates.

1.1 Function Spaces and Notation

We employ standard notation concerning Sobolev spaces, [1]. For a bounded Lipschitz domain
Ω ⊂ Rd, d ∈ {2, 3}, and k > 0 we introduce the following k-dependent norms:

‖u‖2
H,Ω := k2‖u‖2

L2(Ω) + |u|2H1(Ω), (1.2a)

‖u‖2
1/2,H,∂Ω := |u|2H1/2(∂Ω) + k‖u‖2

L2(∂Ω), (1.2b)

‖u‖2
3/2,H,∂Ω := k−2|u|2H3/2(∂Ω) + ‖u‖2

1/2,H,∂Ω; (1.2c)

here, the norm (1.2c) will only be employed for smooth ∂Ω so that it is indeed well-defined.
A large part of the analysis will be concerned with domains with analytic boundary or

convex polygons. For ease of future reference we therefore introduce

Assumption 1.1 Ω ⊂ Rd, d ∈ {2, 3} is a bounded Lipschitz domain. Either it has an
analytic boundary or it is a convex polygon in R2 with vertices Aj, j = 1, . . . , J.

For domains Ω that have a smooth boundary or are polygonal (not necessarily convex),
we introduce the following short-hand:

H1/2
pw (∂Ω) :=

{ {
g ∈ L2 (∂Ω) : g is edgewise in H1/2

}
if ∂Ω is a polygon,

H1/2 (∂Ω) if ∂Ω is smooth.
(1.3)

3



Furthermore, for domains satisfying Assumption 1.1, we require spaces of analytic functions,
specifically, the countably normed spaces introduced in [25]. These function spaces are defined
with the aid of weight functions Φ

p,
−→
β ,k

that we now define. For β ∈ [0, 1), p ∈ N0, and k > 0
we set

Φp,β,k(x) = min



1,

|x|
min

{
1, |p|+1

k+1

}





p+β

.

For a polygon Ω with vertices Aj , j = 1, . . . , J , and given
−→
β ∈ [0, 1)J , we define

Φ
p,
−→
β ,k

(x) =
J∏

j=1

Φp,βj ,k(x−Aj). (1.4)

If Ω ⊂ R
d is not a polygon, then we set,

Φ
p,
−→
β ,k

(x) :≡ 1 (1.5)

for all p and any
−→
β . We use the symbol ∇n to denote derivatives of order n, more precisely,

for a function u : Ω → R, Ω ⊂ Rd, we write

|∇nu(x)|2 =
∑

α∈Nd
0 :|α|=n

n!

α!
|Dαu(x)|2. (1.6)

Definition 1.2 Given Cu, γ, k > 0, we set

B−→
β ,k

(Cu, γ) := {u ∈ H1(Ω) | ‖u‖H,Ω ≤ Cuk ∧ (1.7)

‖Φ
p,
−→
β ,k

∇p+2u‖L2(Ω) ≤ Cu(γmax{p, k})p+2 ∀p ∈ N0}, (1.8)

where the weight functions Φ
p,
−→
β ,k

are given by (1.4) if Ω is a polygon and by (1.5) otherwise.

Of additional interest to us will be the unit ball in H2(Ω) and the subset of B−→
β ,k

(Cu, γ)
obtained by the scaling condition Cu = 1:

Hosc (γ, k) : = B2
−→
β ,k

(1, γ), (1.9)

Hell : =
{
v ∈ H2 (Ω) : ‖v‖H2(Ω) ≤ 1

}
. (1.10)

We close this section with some general comment on constants: C > 0 denotes a generic
constant that may have different values in different occurrences. However, it will not depend
on critical parameters. We will use the symbol “. ” to compare two quantities A . B if there
exists a constant C > 0 such that A ≤ CB, where C is independent of the parameters k, p, q
(which will be introduced in the sequel) and – if A and B contain norms of functions – also
is independent of these functions. We write A ∼ B if A . B together with B . A.

2 Model Helmholtz Problems and their Discretization

We start by introducing the three model problems that will be analyzed in the paper.
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2.1 Robin Boundary Conditions for a Bounded Domain

2.1.1 The Continuous Problem

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain. The Helmholtz equation with
wavenumber

k ≥ k0 > 0 (2.1)

is given by
−∆u − k2u = f in Ω. (2.2a)

As boundary conditions we consider Robin boundary conditions

∂u

∂n
− i ku = g on ∂Ω. (2.2b)

The weak form is given by

Find u ∈ H1 (Ω) :

∫

Ω

∇u·∇v−k2uv−i

∫

∂Ω

kuv =

∫

Ω

fv+

∫

∂Ω

gv ∀v ∈ H1 (Ω) . (2.3)

Proposition 2.1 ( [29, Prop. 8.1.3]) Let Ω be a bounded Lipschitz domain. Then, there is
a constant C (Ω, k) > 0 such that for all f ∈ (H1 (Ω))

′
, g ∈ H−1/2 (Γ), a unique solution u of

problem (2.2) exists and depends continuously on the data.

2.1.2 Abstract Galerkin Discretization

The conforming Galerkin discretization of (2.3) is based on the definition of a finite dimensional
subspace S ⊂ H1 (Ω) and given by

Find uS ∈ S :

∫

Ω

∇uS · ∇v − k2uSv − i

∫

∂Ω

kuSv =

∫

Ω

fv +

∫

∂Ω

gv ∀v ∈ S. (2.4)

2.2 Dirichlet Boundary Conditions for an Exterior Domain

Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded domain and let Ωc := R

d\Ω denote its exterior. For
f ∈ L2(Rd) with supp f ⊂ BR for some ball BR of radius R, we consider the problem of
finding u such that

−∆u − k2u = f in Ωc, u|∂Ω = g, (2.5a)

and the Sommerfeld radiation condition
∣∣∣∣
∂u

∂r
− i ku

∣∣∣∣ = o
(
‖x‖

1−d
2

)
as ‖x‖ → ∞ (2.5b)

is satisfied. We define the spaces

VR :=
{
u|Ωc∩BR

: u ∈ H1 (Ωc)
}

and VR,0 :=
{
u|Ωc∩BR

: u ∈ H1
0 (Ωc)

}
. (2.6)

Next, we will introduce the Dirichlet-to-Neumann operator. Let Bc
R := Rd\BR and ΓR :=

∂BR. It can be shown that, for given h ∈ H1/2 (ΓR), the problem:

find w ∈ H1
loc (Bc

R) such that





(−∆ − k2)w = 0 in Bc
R,

w = h on ΓR,∣∣∣∣
∂w

∂r
− i kw

∣∣∣∣ = o
(
‖x‖

1−d
2

)
‖x‖ → ∞
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has a unique weak solution. The mapping h 7→ w is called the Steklov-Poincaré operator
and denoted by SP : H1/2 (ΓR) → H1

loc (Bc
R). The Dirichlet-to-Neumann map is given by

TR := γ1SP : H1/2 (ΓR) → H−1/2 (ΓR), where γ1 := ∂/∂n is the normal derivative trace
operator on ΓR. The operator TR allows us to restrict (2.5a) to a finite domain: Find u ∈ VR

such that
−∆u− k2u = f in Ωc ∩BR =: Ωc

R,
u = g on Γ,

∂u/∂n = TRu on ΓR.
(2.7)

The weak formulation to this problem is given by

Find u ∈ VR with u|∂Ω = g :

∫

Ωc
R

(
∇u · ∇v − k2uv

)
−
∫

ΓR

(TRu) v =

∫

Ωc
R

fv ∀v ∈ VR,0.

(2.8)

Proposition 2.2 ( [31]) Let Ω be a bounded Lipschitz domain which is star-shaped with re-
spect to the origin. Then, (2.8) admits a unique solution u ∈ VR for all g ∈ H1/2 (Γ) and
f ∈ V ′

R which depends continuously on the data.

2.2.1 Abstract Galerkin Discretization

Again the conforming Galerkin discretization is based on the definition of a finite-dimensional
subspace S ⊂ VR and given by

Find uS ∈ S with uS|∂Ω = gS :

∫

Ω

∇uS ·∇v−k2uSv−
∫

ΓR

(TRuS) v =

∫

Ω

fv ∀v ∈ S∩VR,0.

(2.9)
Here, gS ∈ S denotes some approximation to g in (2.7).

3 Abstract Stability and Convergence Analysis

In this section, we identify in an abstract setting conditions on the approximation properties
of ansatz spaces that ensure quasi-optimality of a Galerkin discretization.

3.1 Variational Formulations and Adjoint Problems

Many Helmholtz boundary value problems can be cast in the following abstract form:

find u ∈ V s.t. a(u, v) − b(u, v) = l(v) ∀v ∈ V. (3.1)

Here, the space V is a suitable subspace of a Sobolev space H1(Ω̃) that reflects the possi-

ble presence of essential Dirichlet boundary conditions. The sesquilinear form a : H1(Ω̃) ×
H1(Ω̃) → C has the form

a (u, v) :=

∫

eΩ

∇u · ∇v − k2uv, (3.2)

and the continuous sesquilinear form b encodes the boundary conditions. Finally, l is a
bounded antilinear functional on V . For example, the model problems of Section 2.1 and
Section 2.2 (with additionally g = 0) have this form: In the setting of Section 2.1, we may
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choose Ω̃ = Ω, V = H1(Ω) and b(u, v) = i
∫

∂Ω
uv; in the setting of Section 2.2 with g = 0 we

have Ω̃ = Ωc
R, V = VR,0, and b(u, v) =

∫
∂BR

TRuv.

Of interest to us will adjoint problems associated with (3.1). That is, given an antilinear
functional l on V , we consider

find u ∈ V s.t. a(v, u) − b(v, u) = l(v) ∀v ∈ V. (3.3)

An important observation is that the adjoint problems for the Helmholtz problems of Sec-
tions 2.1, 2.2 are themselves Helmholtz problems:

Lemma 3.1 i Denote by Sk : (f, g) 7→ u the solution operator for the problem of Sec-
tion 2.1. The adjoint solution operator S⋆

k for the problem:

Find z ∈ H1(Ω) s.t.

∫

Ω

(
∇v · ∇z − k2vz

)
− i

∫

∂Ω

vz =

∫

Ω

vf +

∫

∂Ω

vg ∀v ∈ H1(Ω)

(3.4)

is given by S⋆
k(f, g) = Sk(f, g).

ii Denote by Sc
k : (f, g) 7→ u the solution operator for the problem of Section 2.2. For

the special case g = 0, denote by Sc,⋆
k : f 7→ z to the solution operator for the adjoint

problem

Find z ∈ VR,0 s.t.

∫

Ωc
R

(
∇v · ∇z − k2vz

)
−
∫

ΓR

TRvz =

∫

Ωc
R

vf ∀v ∈ VR,0. (3.5)

Then, Sc,⋆
k (f) = Sc

k(f, 0).

Proof. We will only show (ii) since (i) is shown with similar ideas. By [30, Lemma 3.10]
we have for the adjoint T ⋆

R (with respect to the (·, ·)L2(ΓR) inner product) the representation

T ⋆
Rz = TRz. Hence, (3.5) is equivalent to finding z ∈ VR,0 such that

∫

Ωc
R

∇v · ∇z − k2vz −
∫

ΓR

vTRz =

∫

Ωc
R

fv ∀v ∈ VR,0. (3.6)

By replacing v with v, we recognize that z = Sc
k(f, 0), which concludes the proof.

3.2 Abstract Stability and Convergence Analysis

It is well-known that in the context of variational problems that admit a G̊arding inequality,
Galerkin methods are asymptotically quasi-optimal, i.e., quasi-optimality is ensured if the
ansatz space is sufficiently rich, (see [36], [7]). The following theorem restricts this general
setting to one that is applicable to Helmholtz problems and formulates an abstract condition
on the approximation properties of the ansatz space that guarantees quasi-optimality. In
particular, the model problems of Sections 2.1 and 2.2 (with g = 0) are covered by the
following theorem.

Theorem 3.2 Let Ω ⊂ Rd, d ≥ {2, 3} be a bounded Lipschitz domain. Let V ⊂ H1(Ω) be a
closed subspace of H1(Ω), and let the sesquilinear form a be given by (3.2). Let the following
additional hypotheses be true:
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i b : V × V → C is a continuous sesquilinear form with

|b(u, v)| ≤ Cb‖u‖H,Ω‖v‖H,Ω ∀u, v ∈ V. (3.7)

ii There exist θ ≥ 0 and γ > 0 such that the following G̊arding inequality holds:

Re (a(u, u) − b(u, u)) + θk2‖u‖2
H,Ω ≥ γ‖u‖2

H,Ω ∀u ∈ V. (3.8)

iii The adjoint problem

find z ∈ V s.t. a(v, z) − b(v, z) = (v, f)L2(Ω) ∀v ∈ V (3.9)

is uniquely solvable for every f ∈ L2(Ω). Let S̃⋆
k : f 7→ z denote this solution operator

with (possibly k-dependent norm)

Cadj := sup
f∈L2(Ω)\{0}

‖S̃⋆
kf‖H,Ω

‖f‖L2(Ω)

. (3.10)

Let S ⊂ V be a closed subspace and define the adjoint approximability

η(S) := sup
f∈L2(Ω)\{0}

inf
v∈S

‖S̃⋆
kf − v‖H,Ω

‖f‖L2(Ω)

. (3.11)

Then, the condition

θkη(S) ≤ γ

2(1 + Cb)
(3.12)

implies the following statements:

1. The discrete inf-sup condition is satisfied:

inf
u∈S\{0}

sup
v∈S\{0}

|a(u, v) − b(u, v)|
‖u‖H,Ω‖v‖H,Ω

≥ γ

2 + γ/(1 + Cb) + 2θkCstab
> 0. (3.13)

2. The Galerkin method based on S is quasi-optimal, i.e., for every u ∈ H there exists a
unique uS ∈ S with a(u− uS, v) − b(u− uS, v) = 0 for all v ∈ S, and there holds

‖u− uS‖H,Ω ≤ 2

γ
(1 + Cb) inf

v∈S
‖u− v‖H,Ω, (3.14)

‖u− uS‖L2(Ω) ≤ (1 + Cb)η(S)‖u− uS‖H,Ω. (3.15)

Proof. The proof follows very closely the proofs of [30, Thms. 4.2, 4.3]. Details can be
found in Appendix B.

Theorem 3.2 is applicable to the model problems of Sections 2.1, 2.2 with θ = 2 and γ = 1
as we now show:

Corollary 3.3 Let k ≥ k0.

i For the model problem of Section 2.1 the assumptions of Theorem 3.2 are satisfied for
the choices V = H1(Ω), θ = 2, γ = 1, and a constant Cb > 0 that depends solely on Ω.
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ii For the model problem of Section 2.2 with g = 0 the assumptions of Theorem 3.2 are
satisfied for the choices V = VR,0 (see (2.8)), θ = 2, γ = 1, and a constant Cb > 0 that
depends solely on k0 and R.

In both cases, the constant Cadj is finite (but possibly k-dependent) for any k ≥ k0.

Proof. To see (i) we note that b(u, v) = i(u, v)L2(∂Ω). By [30, Cor. 3.2] Cb is bounded
uniformly in k. By Lemma 3.1 and Proposition 2.1 the solvability of the adjoint problem is
ensured. ¿From Re b(u, u) = 0, it follows that the G̊arding inequality is satisfied with θ = 2
and γ = 1.

To see (ii) we observe b(u, v) =
∫

∂BR
TRuv. [30, Lemma 3.3] give a bound for Cb that is

uniform in k; additionally, [30, Lemma 3.3] provides Re b(u, u) ≤ −CR−1‖u‖2
L2(∂BR) ≤ 0 so

that again θ = 2 and γ = 1 are valid choices. The unique solvability of the adjoint problem
follows again by Lemma 3.1 and Proposition 2.2.

The usefulness of Theorem 3.2 rests on the ability to quantify the adjoint approximability
η(S) in terms of the wavenumber k and properties of the approximation space S. Since
η(S) depends on the solution operator S⋆

k of some adjoint Helmholtz problems, we need a
regularity for these operators in which the influence of k is made explicit. This is the purpose
of the following Section 4. There, we construct for the model problems of Section 2 for every
f ∈ L2(Ω) a stable splitting S̃⋆

kf = Ck,A(f)uA,f +CH2(f)uH2(f), where uA,f ∈ Hosc(γ, k) and
uH2,f ∈ Hell and Ck,A(f) and CH2(f) are constants; we recall that the spaces Hosc(γ, k) and
Hell are introduced in (1.9), (1.10). Furthermore, we show that

CH2 := sup
f∈L2(Ω)\{0}

|CH2(f)| <∞, Ck,A := sup
f∈L2(Ω)\{0}

|Ck,A(f)| <∞.

Accepting this decomposition result for the moment, we can formulate

Lemma 3.4 The adjoint approximability (3.11) is bounded by

η (S) ≤ Ck,AηA (S) + CH2ηH2 (S) , (3.16)

where

ηA (S) := sup
v∈Hosc(γ,k)\{0}

inf
w∈S

‖v − w‖H and ηH2 (S) := sup
v∈H2(Ω)

‖v‖H2(Ω)=1

inf
w∈S

‖v − w‖H . (3.17)

Proof. Follows by the triangle inequality. We refer to [30, Lemma 5.10], where a similar
calculation is worked out.

The important conclusion of Lemma 3.4 is that the stability and convergence estimates for
Helmholtz problems follow from two types of approximation properties: ηA (S) measures the
approximability of the Galerkin space S for analytic, highly oscillating functions and ηH2 (S)
measures the standard approximation property of S for H2-functions. We mention at this
point that our analysis in Section 4 will show that the constant CH2 in (3.16) can be bounded
uniformly in k and that Ck,A in (3.16) will have—due to our assumptions—a polynomial
growth in k. We emphasize that estimates for ηA (S), ηH2 (S) involve neither any stability nor
any regularity issues for Helmholtz problems. Finally, we point out that Lemma 3.1 shows
that the regularity properties of the adjoint problems for our model problems of Sections 2.1,
2.2 can be inferred from those of the “original” model problems. The focus of the present
paper is therefore the regularity of these “original” problems.
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4 Stable Decompositions of the Helmholtz Solutions

4.1 Preliminaries

In this section, we will develop the theoretical tools which will be used for the regularity
estimates of the Helmholtz problems.

4.1.1 Frequency Splitting

The key role for proving the refined regularity results are played by a frequency splitting
of the right-hand side and some estimates of the solution operators applied to the high and
low frequency part of the right-hand side. We start with introducing the frequency splitting.
For functions on Rd the splitting is defined via the Fourier transform and, for functions on
closed surfaces of finite domains, it is defined via the composition of a lifting operator of the
boundary data with the frequency splitting for functions in Rd. Recall the definition of the
Fourier transform for functions with compact support

û (ξ) = F (u) (ξ) = (2π)−d/2

∫

Rd

e− i〈ξ,x〉 u (x) dx ∀ξ ∈ R
d

and the inversion formula

u (x) = F−1 (û) (x) = (2π)−d/2

∫

Rd

ei〈x,ξ〉 û (ξ) dξ ∀x ∈ R
d.

• For functions f ∈ L2
(
Rd
)

the high frequency filter HRd and the low frequency filter LRd

are defined by

F(LRdf) = χηkF(f), F(HRdf) = (1 − χηk)F(f), (4.1a)

where χηk is the characteristic function of the ball Bηk(0).

• Let Ω ⊂ Rd be a bounded Lipschitz domain and let EΩ : L2(Ω) → L2(Rd) be the
extension operator of Stein, [38, Chap. VI]. Then for f ∈ L2 (Ω) we set

LΩf := (LRd (EΩf))|Ω and HΩf := (HRd (EΩf))|Ω . (4.1b)

• Let ∂Ω be smooth or (in 2D) polygonal. We remind the reader of the space H
1/2
pw (∂Ω)

introduced in (1.3) and define operatorsHN
∂Ω and LN

∂Ω as follows. For smooth boundaries,
there exists a lifting operator GN with the mapping property GN : Hs(∂Ω) → H3/2+s(Ω)
for every s > 0 and ∂nG

Ng = g. For polygonal domains, we have the existence of
a simplified lifting operator GN : H

1/2
pw (∂Ω) → H2(Ω) with ∂nG

Ng = g (see, e.g.,
Lemma A.1 for details).

We then define HN
∂Ω and LN

∂Ω as follows:

HN
∂Ω(g) := ∂nHΩ(GN (g)), LN

∂Ω(g) := ∂nLΩ(GN (g)). (4.1c)

In particular, for both smooth domains and polygons, we have HN
∂Ω : H

1/2
pw (∂Ω) →

H
1/2
pw (∂Ω) and LN

∂Ω : H
1/2
pw (∂Ω) → H

1/2
pw (∂Ω).
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Remark 4.1 One has significant freedom in the choice of the lifting operator GN . Here,
we selected GN independent of k. For the Dirichlet problem in Sec. 4.3 we will select the
corresponding lifting operator GD in a k-dependent manner. This could likewise be done
here and would alter the k-dependence for the “analytic” part in the decomposition result
Theorem 4.9.

Lemma 4.2 Let η > 1 be the parameter appearing in the definition of HRd in (4.1a). Then,
the frequency splitting via (4.1a) satisfies for all 0 ≤ s′ ≤ s the estimates

‖HRdf‖Hs′ (Rd) ≤ C̃s′,s (ηk)s′−s ‖f‖Hs(Rd) ∀f ∈ Hs(Rd), (4.2)

‖HΩf‖Hs′ (Ωd) ≤ C̃s′,s (ηk)s′−s ‖f‖Hs(Ω) ∀f ∈ Hs(Ω). (4.3)

If ∂Ω is smooth, then the operator HN
∂Ω satisfies for 0 ≤ s′ ≤ s

‖HN
∂Ωg‖Hs′(∂Ω) ≤ Cs′,s (ηk)s′−s ‖g‖Hs(∂Ω). (4.4)

For smooth or polygonal ∂Ω, we have for s′ ∈ {0, 1/2} and s = 1/2

‖HN
∂Ωg‖Hs′

pw(∂Ω) ≤ C(ηk)s′−s‖g‖
H

1/2
pw (∂Ω)

. (4.5)

In particular, in (4.2)–(4.5) one can select, for any s′ < s and any q ∈ (0, 1) a parameter
η such that Cη−(s−s′) ≤ q < 1.

Proof. For s ≥ s′ and f ∈ Hs
(
Rd
)

it holds

‖HRdf‖2
Hs′(Rd) ≤ Cs′

∫

Rd\Bηk(0)

(
1 + ‖ξ‖2s′

)
|F (f)|2

≤ Cs′ sup
r≥ηk

1 + r2s′

1 + r2s

∫

Rd\Bηk(0)

(
1 + ‖ξ‖2s) |F (f)|2 ≤ C̃s′,s (ηk)2(s′−s) ‖f‖2

Hs(Rd) .

The corresponding estimate for HΩ follows from the properties of HRd and the continuity
properties of the Stein extension operator EΩ. We mention in passing that this argument also
works for Lipschitz domains Ω.

The estimate (4.4) for the case of smooth ∂Ω and 0 < s′ ≤ s follow from the continuity
properties of the trace operator. The limiting case s′ = 0 is shown by a multiplicative trace
inequality by observing that for ζ > 1/2 we have ‖u‖L2(∂Ω) . ‖u‖1−1/(2ζ)

L2(Ω) ‖u‖1/(2ζ)

Hζ(Ω)
(see, e.g., [27,

Thm. A.2] for a short proof). Using this with ζ := s+ 1/2 and recalling the definition of HN
∂Ω

as in (4.1c)) we get

‖HN
∂Ωg‖L2(∂Ω) . ‖∇HΩG

Ng‖1−1/(2s+1)
L2(Ω) ‖∇HΩG

Ng‖1/(2s+1)

Hs+1/2(Ω)

. (ηk)−(s+1/2)(1−1/(2s+1))‖GNg‖Hs+3/2(Ω) . (ηk)−s‖GNg‖Hs+3/2(Ω)

. (ηk)−s‖g‖Hs(Ω).

Finally, we consider the case of polygonal domains Ω ⊂ R2. The result follows by the same
arguments as above if one observes that the mapping v 7→ ∂nv maps H2(Ω) into H

1/2
pw (∂Ω).

The low frequency part represents an analytic function as can be seen from the following
lemma.
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Lemma 4.3 The low frequency parts of the splittings (4.1a), (4.1b) satisfy

‖∇pLRdf‖L2(Rd) ≤ (ηk)p ‖f‖L2(Rd) ∀p ∈ N0 ∀f ∈ L2(Rd), (4.6)

‖∇pLΩf‖L2(Ω) ≤ C (ηk)p ‖f‖L2(Ω) ∀p ∈ N0 ∀f ∈ L2 (Ω) . (4.7)

The constant C in (4.7) is independent of p, η, and k. If f ∈ Hs(Ω) for some s ≥ 0, then the
following stronger estimates are valid:

‖∇pLΩf‖L2(Ω) ≤ C (ηk)p−s ‖f‖Hs(Ω) ∀f ∈ Hs (Ω) ∀p ∈ N0, p ≥ s. (4.8)

Again, the constant C > 0 is independent of p, η, and k.
For s > 0 the operator LN

∂Ω is obtained as the normal trace to ∂Ω of an entire function,
viz., LN

∂Ωg = n · ∇LΩ(GNg)|∂Ω, where the entire function LΩG
Ng satisfies:

• if ∂Ω is smooth and g ∈ Hs(∂Ω) for some s > 0, then

‖LΩG
Ng‖H3/2+s(Ω) . ‖g‖Hs(∂Ω),

‖∇pLΩG
Ng‖L2(Ω) . (ηk)p−3/2−s‖g‖Hs(∂Ω) ∀p ∈ N0, p ≥ s+ 3/2,

• if Ω is a polygon, then

‖LΩG
Ng‖H2(Ω) . ‖g‖

H
1/2
pw (∂Ω)

,

‖∇p+2LΩG
Ng‖L2(Ω) . (ηk)p‖g‖

H
1/2
pw (∂Ω)

∀p ∈ N0. (4.9)

In particular for analytic boundaries ∂Ω we have that LN
∂Ωg is an analytic function and for

polygonal Ω, the function LN
∂Ωg is piecewise analytic on ∂Ω.

Proof. We recall the multinomial formula
∑

|α|=n
n!
α!

∏d
i=1 ξ

2αi
i =

(∑d
i=1 ξ

2
i

)n

. Then, by

Parseval’s relation we have, for all p ∈ N0,

‖∇pLΩf‖L2(Ω) ≤ ‖∇pLRdEΩf‖L2(Rd) =

√∫

Bηk(0)

‖ξ‖2p |F(EΩf)|2

≤
√∫

Bηk(0)

‖ξ‖2(p−s) |‖ξ‖s F(EΩf)|2 ≤ C (ηk)p−s ‖f‖Hs(Ω) . (4.10)

The estimates for LΩG
Ng follow by definition.

Note that the statements of Lemma 4.2 and 4.3 imply that the splittings f = LΩf +HΩf
and g = LN

∂Ωg +HN
∂Ω are stable in appropriate scales of Sobolev norms.

4.1.2 Properties of the Solution Operators Nk and S∆
k

We consider the regularity for two types of problems.
1.) The Helmholtz problem in the full space R

d with Sommerfeld radiation condition is
given by: Find U ∈ H1

loc(R
d) such that

(
−∆ − k2

)
U = f in R

d (4.11)
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and the Sommerfeld radiation condition (2.5b) are satisfied in a weak sense (cf. [32]). Here,
∂/∂r denotes the derivative in radial direction x/ ‖x‖. We assume that f is local so that
supp f ⊂ BR for R > 0, where BR denotes the ball with radius R about the origin. It
can be shown that, for given g ∈ H1/2 (Γ), the problem (4.11), (2.5b) has a unique solution
U ∈ H1

loc

(
Rd
)

in a weak sense (cf. [24]). The solution can be represented as a acoustic volume
potential

U (x) := (Nkf) (x) :=

∫

Rd

Gk (x− y) f (y) dy ∀x ∈ R
d, (4.12)

where

Gk (z) :=





− ei k|z|

2 i k
d = 1,

i
4
H

(1)
0 (k ‖z‖) d = 2,

ei k‖z‖

4π‖z‖
d = 3.

In [30], it is explained that (Nkf)|Ω is the solution operator on finite domains Ω if Dirichlet-
to-Neumann boundary conditions are imposed at ∂Ω.

2.) For a bounded domain Ω ⊂ Rd with smooth boundary let S∆
k be the solution operator

for the Laplace problem with Robin boundary conditions, i.e., u = S∆
k (g) solves

−∆u+ k2u = 0, in Ω, ∂nu− iku = g on ∂Ω. (4.13)

In the following we will analyze the regularity properties of the solution operators Nk and
S∆

k . The following lemma is a direct consequence of [30, Lemma 3.4].

Lemma 4.4 (properties of Nk) For f ∈ L2(Rd) with supp f ⊂ BR, the function u :=
Nk(f) satisfies −∆u− k2u = f on BR. Additionally, for every q ∈ (0, 1) one can select η > 1
(appearing in the definition of the operator HRd as in (4.1a)) such that

‖Nk(HRdf)‖H,BR
≤ k−1q‖f‖L2(Rd), (4.14a)

‖Nk(HRdf)‖H2(BR) . ‖f‖L2(Rd). (4.14b)

Lemma 4.5 (properties of S∆
k ) Let Ω be a bounded Lipschitz domain. For g ∈ H−1/2 (∂Ω),

let u = S∆
k g denote the solution of (4.13). Then:

‖u‖H,Ω . ‖g‖H−1/2(∂Ω), (4.15)

‖u‖H,Ω . k−1/2‖g‖L2(∂Ω), (4.16)

‖u‖L2(∂Ω) . k−1‖g‖L2(∂Ω). (4.17)

If ∂Ω is sufficiently smooth or if Ω is a convex polygon (in 2D), then the following shift theorem

is true: If g ∈ H1/2(∂Ω) if ∂Ω is smooth or if g ∈ H
1/2
pw (∂Ω) if Ω a convex polygon, then

‖u‖H2(Ω) . ‖g‖
H

1/2
pw (∂Ω)

+ k1/2‖g‖L2(∂Ω). (4.18)

Proof. The function u satisfies
∫

Ω

∇u · ∇v + k2

∫

Ω

uv − ik

∫

∂Ω

uv =

∫

∂Ω

gv ∀v ∈ H1(Ω).
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Taking v = u and considering the real and imaginary parts separately yields immediately the
bounds (4.15), (4.17), (4.16).

Since u satisfies
−∆u+ k2u = 0, ∂nu = g + iku

the standard shift theorem (which is applicable for smooth ∂Ω and convex polygons with
piecewise H1/2-Neumann data, [16, Cor. 4.4.3.8]) gives

‖u‖H2(Ω) . k2‖u‖L2(Ω) + ‖g‖
H

1/2
pw (∂Ω)

+ k‖u‖H1/2(∂Ω).

Using (4.16) we get (4.18).

Lemma 4.6 (properties of S∆
k ◦HN

∂Ω) Let Ω have a smooth boundary or let Ω be a convex
polygon. Let q ∈ (0, 1), and let S∆

k be the solution operator for (4.13). Then there exists η > 1

defining the high frequency filter HN
∂Ω such that for every g ∈ H

1/2
pw (∂Ω) there holds

‖S∆
k (HN

∂Ωg)‖H,Ω ≤ qk−1‖g‖
H

1/2
pw (∂Ω)

,

‖S∆
k (HN

∂Ωg)‖H2(Ω) . ‖g‖
H

1/2
pw (∂Ω)

.

Proof. The combination of (4.16) and Lemma 4.2 gives the first estimate. The second
estimate follows from (4.18) and, again, Lemma 4.2.

4.2 The Case of a Bounded Domain with Robin Boundary Condi-

tions

We consider the following problem:

−∆u − k2u = f in Ω ⊂ Rd, ∂nu− iku = g on ∂Ω. (4.19)

Assumption 4.7 The solution operator (f, g) 7→ u := Sk(f, g) for (4.19) grows only polyno-
mially in k:

‖u‖H,Ω . kα
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
(4.20)

for some α ≥ 0.

Remark 4.8 Let Assumption 1.1 be valid. Then it is proved in [29] that (4.20) holds with
α = 0 if Ω is star-shaped with respect to a ball.

The goal of this section is the proof of the following result:

Theorem 4.9 (decomposition for bounded domain) Let Assumptions 1.1 and 4.7 be

valid. Then there exist constants C, γ > 0,
−→
β ∈ [0, 1)J independent of k such that for

every f ∈ L2(Ω) and g ∈ H
1/2
pw (∂Ω) the solution u = Sk(f, g) can be written as u = uA + uH2,

where, for all p ∈ N0, it holds

‖uA‖H,Ω ≤ Ckα
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
, (4.21a)

‖Φ
p,
−→
β ,k

∇p+2uA‖L2(Ω) ≤ Cγpkα−1 max{p, k}p+2
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
, (4.21b)

‖uH2‖H2(Ω) + k‖uH2‖H,Ω ≤ C
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
. (4.21c)

Concerning the weight functions Φ
p,
−→
β ,k

, we remind the reader of our convention introduced in
Section 1.1, namely, Φ

p,
−→
β ,k

≡ 1 if Ω has an analytic boundary.
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Proof. The proof is based on Lemmata 4.14, 4.15 below. By linearity of the operator Sk

it suffices to consider the decomposition of u = Sk(f, 0) and u = Sk(0, g) separately. Writing
f (0) := f we get for Sk(f

(0), 0) from Lemma 4.14 that

u = u
(0)
A + u

(0)

H2 + Sk(f
(1), 0) for some f (1) ∈ L2 (Ω) ,

where u
(0)
A , u

(0)
H2 satisfy the desired bounds and ‖f (1)‖L2(Ω) ≤ q‖f (0)‖L2(Ω) for some q ∈ (0, 1).

Hence, we may iterate and can write u as a sum of series (one of analytic functions and one
of H2-functions) that can be bounded (in appropriate norms) by geometric series. For the
decomposition of Sk(0, g) we proceed completely analogously.

Remark 4.10 For the case of polygonal Ω the Theorem 4.9 merely asserts the existence of−→
β ∈ [0, 1)J with the stated properties. The proof of Lemmata 4.14, 4.15 relies on [25]. A

closer inspection of the proofs there reveals that for convex Ω, any
−→
β ∈ (0, 1)J may be chosen.

In view of Lemma 3.1, the following corollary is evident:

Corollary 4.11 Under the hypotheses of Theorem 4.9, the statement of Theorem 4.9 holds
verbatim for the adjoint solution operator (f, g) 7→ S⋆

R,k(f, g) (see (3.4)).

Lemma 4.12 (analyticity of Sk(LΩf, L
N
∂Ωg)) Let Assumption 1.1 be valid. Then there exist

constants C, K > 0,
−→
β ∈ [0, 1)J independent of k such that, for every g ∈ H

1/2
pw (∂Ω) and

f ∈ L2 (Ω) , the function uA = Sk(LΩf, L
N
∂Ωg) is analytic on Ω and satisfies for all p ∈ N0 the

estimates

‖uA‖H,Ω ≤ Ckα
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
, (4.22)

‖Φ
p,
−→
β ,k

∇p+2uA‖L2(Ω) ≤ CKp max{k, p+ 2}p+2kα−1
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
. (4.23)

Proof. We first restrict our attention here to the case of polygonal Ω with edges Γj ,
j = 1, . . . , NΓ, and remark on the case of analytic ∂Ω at the end of the proof.

Let u := Sk(LΩf, L
N
∂Ωg). Set f̃ := LΩf and g̃ := LN

∂Ωg = ∂nLΩG
Ng. From Lemma 4.3 we

have that f̃ is an entire function. Note that for any Γj there exists an open neighborhood Tj

of Γj such that the normal nj : Γj → S1 can be extended to an analytic function n⋆
j : Tj → R

2

(in the present case of a polygon, this is trivial since nj is a constant vector). We set Gj :=〈
n⋆

j ,∇LΩG
Ng
〉

and assume that the open neighborhood Tj of Γj is such that Gj is analytic
on Tj (in view of Lemma 4.3, which asserts that Gj is an entire function, this is again trivial).
We note Gj |Γj

= g̃. Furthermore, from Lemma 4.3, we have the following estimates:

‖∇pf̃‖L2(Ω) . (ηk)p‖f‖L2(Ω) ∀p ∈ N0, (4.24)

‖Gj‖L2(Tj) ≤ ‖∇LΩG
Ng‖L2(Ω) ≤ ‖LΩG

Ng‖H2(Ω) . ‖g‖
H

1/2
pw (∂Ω)

, (4.25)

‖∇p+1Gj‖L2(Tj) . ‖∇p+2LΩG
Ng‖L2(Ω)

(4.9)

. (ηk)p‖g‖
H

1/2
pw (∂Ω)

∀p ∈ N0. (4.26)

The bounds (4.25), (4.26) for p = 0 together with the multiplicative trace inequality give
‖g̃‖L2(∂Ω) . ‖g‖

H
1/2
pw (∂Ω)

. This bound together with (4.24) and Assumption 4.7 implies (4.22).
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The regularity estimate (4.23) will be derived by applying [25, Prop. 5.4.5, Rem. 5.4.6]
and estimating the constants therein. To that end, we set ε := 1/k and note that u solves

−ε2∆u− u = ε2f̃ on Ω,

ε2∂nu = ε(εg̃ + i u) on ∂Ω

Then [25, Prop. 5.4.5] is applicable with

Cf = ε2‖f‖L2(Ω), CG1 = ε‖g‖H1/2(∂Ω), CG2 = ε, Cb = 0, Cc = 1,
γf = O(1), γG1 = O(1), γG2 = O(1), γb = 0, γc = 0,

resulting in the existence of constants C, K > 0 and
−→
β ∈ [0, 1)J with

‖Φ
p,
−→
β ,k

∇p+2Sku‖L2(Ω) . Kp+2 max{p+ 2, k}p+2
(
k−2‖f‖L2(Ω) + k−1‖u‖H,Ω + k−1‖g‖

H
1/2
pw (∂Ω)

)

for all p ∈ N0. Inserting (4.22) and using α ≥ 0, we arrive at (4.23).
For the case of analytic ∂Ω, we proceed analogously. The main difference is that is suffices

to consider a single tubular neighborhood T of ∂Ω and that the analytic extension n⋆ of the
normal vector is no longer constant on T . Therefore, the estimate (4.26) (we write G instead
of Gj) is replaced with

‖∇p+1G‖L2(T ) . γp max{p, ηk}p‖g‖
H

1/2
pw (∂Ω)

∀p ∈ N0

for a constant γ that reflects the size of the domain of analyticity of n⋆. The remainder of the
proof follows the above arguments but appeals to [25, Remark 5.4.6].

Remark 4.13 The k-dependence in the estimates of Lemma 4.12 is likely to be suboptimal
for several reasons. We treated the contributions stemming from the boundary data g in a
rather generous way to treat the case of domains with analytic boundary and polygons in a
unified way. However, sharper estimates are available for the lifting GN for the case of smooth
domains than for the polygonal case, and therefore sharper estimates are possible for the case
of analytic boundaries.

One important motivation for our choice of the formulation of Assumption 4.7 was the
fact that it holds for a class of practically relevant situations.

It will turn out that the function uA can be approximated exponentially well, e.g., by hp
finite elements so that the algebraic growth of the regularity constant can be absorbed by the
exponential convergence factor and the exponential convergence of this part of the solution is
preserved.

Lemma 4.14 (properties of Sk(f, 0)) Let Assumptions 1.1 and 4.7 be valid. Let q ∈ (0, 1).

Then there exist constants C, K > 0,
−→
β ∈ [0, 1)J independent of k such that for every

f ∈ L2(Ω) the function u = Sk(f, 0) can be written as u = uA + uH2 + ũ, where

‖uA‖H,Ω ≤ Ckα‖f‖L2(Ω),

‖Φ
p,
−→
β ,k

∇p+2uA‖L2(Ω) ≤ Ckα−1Kp max{p+ 2, k}p+2‖f‖L2(Ω) ∀p ∈ N0,

‖uH2‖H,Ω ≤ qk−1‖f‖L2(Ω),

‖uH2‖H2(Ω) ≤ C‖f‖L2(Ω),
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and the remainder ũ = Sk(f̃ , 0) satisfies

−∆ũ − k2ũ = f̃ , ∂nũ− ikũ = 0,

where
‖f̃‖L2(Ω) ≤ q‖f‖L2(Ω).

Proof. Define
uI
A := Sk(LΩf, 0), uI

H2 := Nk(HΩf).

Here, the parameter η defining the filter operators LΩ and HΩ is still at our disposal and will
be selected at the end of the proof. Then, uI

A satisfies the desired bounds by Lemma 4.12.
Lemma 4.4 gives

‖uI
H2‖H,Ω ≤ q′k−1‖f‖L2(Ω),

‖uI
H2‖H2(Ω) . ‖f‖L2(Ω).

Here, the parameter q′ ∈ (0, 1) depends on η and is still at our disposal.
The function uI := u− (uI

A + uI
H2) solves

−∆uI − k2uI = 0, ∂nu
I − ikuI = ikuI

H2 − ∂nu
I
H2 . (4.27)

We note with the multiplicative trace inequality

‖ikuI
H2‖L2(∂Ω) . k‖uI

H2‖1/2

L2(Ω)‖uI
H2‖1/2

H1(Ω) . k1/2‖uI
H2‖H,Ω . q′k−1/2‖f‖L2(Ω),(4.28a)

‖ikuI
H2‖H1/2(∂Ω) . k‖uI

H2‖H1(Ω) . q′‖f‖L2(Ω), (4.28b)

∥∥∂nu
I
H2

∥∥
L2(∂Ω)

.
∥∥∇uI

H2

∥∥1/2

L2(Ω)

∥∥uI
H2

∥∥1/2

H2(Ω)
.

√
q′

k
‖f‖L2(Ω) , (4.28c)

∥∥∂nu
I
H2

∥∥
H

1/2
pw (∂Ω)

.
∥∥uI

H2

∥∥
H2(Ω)

. ‖f‖L2(Ω). (4.28d)

This implies in particular

‖ i kuI
H2 − ∂nu

I
H2‖H

1/2
pw (∂Ω)

. ‖f‖L2(Ω). (4.29)

Next, we define the functions uII
A and uII

H2 by

uII
A : = Sk(0, L

N
∂Ω(ikuI

H2 − ∂nu
I
H2)),

uII
H2 : = S∆

k (HN
∂Ω(ikuI

H2 − ∂nu
I
H2)).

Then, the analytic part uII
A satisfies again the desired analyticity bounds by Lemma 4.12. For

the function uII
H2 we obtain from Lemma 4.6 the estimates

‖uII
H2‖H,Ω ≤ q′k−1‖ikuI

H2 − ∂nu
I
H2‖H

1/2
pw (∂Ω)

. q′k−1‖f‖L2(Ω),

‖uII
H2‖H2(Ω) . ‖ikuI

H2 − ∂nu
I
H2‖H

1/2
pw (∂Ω)

. ‖f‖L2(Ω).

We now set uA := uI
A + uII

A and uH2 := uI
H2 + uII

H2 and conclude for the function ũ :=
u− (uA + uH2) that it satisfies

−∆ũ − k2ũ = f̃ := 2k2uII
H2, ∂nũ− ikũ = 0.

For f̃ we compute
‖f̃‖L2(Ω) ≤ 2k‖uII

H2‖H,Ω . q′‖f‖L2(Ω).

Hence, by selecting q′ sufficiently small, we arrive at the desired bound.
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Lemma 4.15 Let Assumptions 1.1, 4.7 be valid. Let q ∈ (0, 1). Then there exist constants

C, γ > 0,
−→
β ∈ [0, 1)J independent of k such that for every g ∈ H

1/2
pw (∂Ω) the function

u = Sk(0, g) can be written as u = uA + uH2 + ũ, where

‖uA‖H,Ω ≤ Ckα‖g‖
H

1/2
pw (∂Ω)

,

‖Φ
p,
−→
β ,k

∇p+2uA‖L2(Ω) ≤ Ckα−1γp max{p+ 2, k}p+2‖g‖
H

1/2
pw (∂Ω)

,

‖uH2‖H,Ω ≤ qk−1‖g‖
H

1/2
pw (∂Ω)

,

‖uH2‖H2(Ω) ≤ C‖g‖
H

1/2
pw (∂Ω)

,

and the remainder ũ = Sk(0, g̃) satisfies

−∆ũ − k2ũ = 0 ∂nũ− ikũ = g̃,

where
‖g̃‖

H
1/2
pw (∂Ω)

≤ q‖g‖
H

1/2
pw (∂Ω)

.

Proof. The proof is very similar to that of Lemma 4.14. Define

uI
A : = Sk(0, L

N
∂Ωg),

uI
H2 : = S∆

k (HN
∂Ωg),

where S∆
k is the solution operator for (4.13). Then uI

A is analytic and satisfies the desired
analyticity estimates by Lemma 4.12. For uI

H2 we have by Lemma 4.6

‖uI
H2‖H,Ω ≤ q′k−1‖g‖

H
1/2
pw (∂Ω)

, (4.30)

‖uI
H2‖H2(Ω) . ‖g‖

H
1/2
pw (∂Ω)

, (4.31)

where the parameter q′ < 1 is at our disposal and depends on η defining HN
∂Ω and LN

∂Ω. Hence,
the function uI := uI

A + uI
H2 satisfies

−∆uI − k2uI = −2k2uI
H2, ∂nu

I − ikuI = g

together with
‖2k2uI

H2‖L2(Ω) . k‖uI
H2‖H,Ω . q′‖g‖

H
1/2
pw (∂Ω)

. (4.32)

Next, we define uII
A and uII

H2 by

uII
A : = Sk(LΩ(2k2uI

H2), 0),

uII
H2 : = Nk(HΩ(2k2uI

H2)).

Here, in order to apply the operator Nk, we extend HΩ

(
2k2uI

H2

)
by zero outside of Ω. By

Lemma 4.12 and (4.32), we see that uII
A satisfies the desired analyticity estimates. For the

function uII
H2, we obtain from Lemma 4.4

‖uII
H2‖H,Ω ≤ q′k−1‖2k2uI

H2‖L2(Ω) . q′‖uI
H2‖H,Ω . q′

2
k−1‖g‖

H
1/2
pw (∂Ω)

,

‖uII
H2‖H2(Ω) . ‖2k2uI

H2‖L2(Ω) . k‖uI
H2‖H,Ω . q′‖g‖

H
1/2
pw (∂Ω)

.
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We set uA := uI
A + uII

A and uH2 := uI
H2 + uII

H2. Then uA and uH2 satisfy the desired estimates
and ũ := u− (uA + uH2) satisfies

−∆ũ− k2ũ = 0, ∂nũ− ikũ = g̃ := ikuII
H2 − ∂nu

II
H2

with

‖g̃‖
H

1/2
pw (∂Ω)

≤ k‖uII
H2‖H1/2(∂Ω) +

∥∥∂nu
II
H2

∥∥
H

1/2
pw (Ω)

. k‖uII
H2‖H,Ω +

∥∥uII
H2

∥∥
H2(Ω)

. q′‖g‖
H

1/2
pw (∂Ω)

.

The result follows by selecting q′ sufficiently small.

4.3 The Exterior Dirichlet Problem

In the present section, we study the problem (2.7) of Section 2.2. Throughout this section,
we will make the following assumption:

Assumption 4.16 1. ∂Ω analytic

2. supp f ⊂ BR for fixed R.

We recall that the solution operator Sc
k for problem (2.7) and the adjoint solution operator

Sc,⋆
k have been introduced in Lemma 3.1. Concerning the mapping properties of Sc

k, we will
make a polynomial growth assumption:

Assumption 4.17 The solution operator Sc
k for the Helmholtz problem (2.7) grows only poly-

nomially in k:
‖u‖H,R . kα

(
‖f‖L2(Ωc

R) + k‖g‖1/2,H,∂Ω

)
(4.33)

for some α ≥ 0 where
‖v‖2

H,R := k2‖v‖2
L2(Ωc

R) + |v|2H1(Ωc
R).

Remark 4.18 Assumption 4.17 is true with α = 0 for star-shaped Ω. This is shown for the
case g = 0 in [31, Lemma 3.5]. The case g 6= 0 can be reduced to the case g = 0 via a lifting
argument in the standard way: Given g ∈ H1/2(∂Ω), Lemma 4.21 below gives a function ug

with ug|∂Ω = g and −∆ug − k2ug = −2k2ug on Ωc ∩B2R. Using a suitable cut-off function χ,
the function ũ := χug satisfies ũ|∂Ω = g, ũ ≡ 0 outside a ball of radius R, ‖ũ‖H,R . ‖g‖1/2,H,∂Ω

and ‖ − ∆ũ− k2ũ‖L2(Ωc
R) . k‖ug‖H,R . ‖g‖1/2,H,∂Ω.

The precise k-dependence of Sc
k is hard in general. Sharper bounds than the ones stipu-

lated in Assumption 4.17 are available for special geometries, e.g., circles and sphere in [32,
Thm. 2.6.2].

The main result of this section is a decomposition result for the solution of (2.7). We
show in Theorem 4.19 that the solution can be decomposed in a low frequency part with good
regularity constants and an analytic part which contains the high oscillations of the solution.
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Theorem 4.19 (decomposition for exterior Dirichlet problem) Let Assumptions 4.16
and 4.17 be true. For f ∈ L2(Ωc

R) and g ∈ H3/2(∂Ω) the solution u = Sc
k(f, g) of (2.5a) admits

a decomposition u = uA + uH2, where for all p ≥ 2

‖uA‖H,Ωc
R

. kα
(
‖f‖L2(Ωc

R) + ‖g‖1/2,H,∂Ω

)
,

‖∇puA‖L2(Ωc
R) . γp max{p, k}p

(
kα−1 ‖f‖L2(Ωc

R) + (k + kα)‖g‖1/2,H,∂Ω

)
,

‖uH2‖H,R . k−1‖f‖L2(Ωc
R) + ‖g‖1/2,H,∂Ω,

‖uH2‖H2(Ωc
R) . ‖f‖L2(Ωc

R) + k‖g‖3/2,H,∂Ω.

Proof. The proof is a consequence of the lemmata of Section 4.5 by reasoning as in the
proof of Theorem 4.9.

Corollary 4.20 Theorem 4.19 holds verbatim (with g = 0) for the adjoint solution operator
Sc,⋆

k in view of Lemma 3.1.

The following two subsections are devoted to the details of the proof of Theorem 4.19.

4.4 k-dependent Lifting operators for Dirichlet Problems

Lemma 4.21 (Lifting operator GD from ∂Ω to Ωc ∩B2R.) Let Ω ⊂ R
d be a bounded Lip-

schitz domain with smooth ∂Ω. Then the exists a trace lifting operator

GD : H1/2 (∂Ω) → H1 (Ωc ∩B2R)

such that, for any g ∈ H1/2(∂Ω), the function ug = GDg solves

−∆ug + k2ug = 0, Ωc ∩B2R, ug|∂Ω = g, ug|∂B2R
= 0

and satisfies for a constant C independent of k:

‖ug‖H,2R ≤ C‖g‖1/2,H,∂Ω. (4.34)

If g ∈ H3/2(∂Ω) then additionally

‖ug‖H2(Ωc
R) ≤ Ck‖g‖3/2,H,∂Ω. (4.35)

Proof. 1. step: We start with an estimate on a tubular neighborhood of ∂Ω. For a
univariate function v ∈ H1(0, 1), we get for δ ∈ (0, 1) from v(x) = u(0)+

∫ x

0
v′(t) dt the bound

‖v‖L2(0,δ) ≤ C
(√

δ|v(0)| + δ‖v′‖L2(0,1)

)
, (4.36)

where the constant C > 0 is independent of δ. If we introduce the set Sδ := {x ∈ Ωc | dist(x, ∂Ω) <
δ}, then the univariate result (4.36) implies

‖v‖L2(Sδ) ≤ C
(√

δ‖v‖L2(∂Ω) + δ‖v‖H1(Ωc∩B2R)

)
∀v ∈ H1(Ωc ∩B2R), (4.37)
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where, for sufficiently small δ, the constant C > 0 is independent of δ. Next, we select δ = 1/k
and a cut-off function χ ∈ C∞

0 (Rd) with χ ≡ 1 on ∂Ω, ‖∇jχ‖L∞(Rd) ≤ Ckj, j ∈ {0, 1},
suppχ ∩ Ωc ⊂ S1/k. Then, we arrive at

‖χv‖H,R .
(√

k‖v‖L2(∂Ω) + ‖v‖H1(Ωc∩B2R)

)
∀v ∈ H1(Ωc ∩B2R). (4.38)

2. step: We recall that ug is the minimizer in the ‖ · ‖H,2R-norm over all functions that satisfy
the boundary conditions. Let ũg solve

−∆ũg = 0 on Ωc ∩ B2R, ũg|∂Ω = g, ũg|∂B2R
= 0.

Then
‖ũg‖H1(Ωc∩B2R) . ‖g‖H1/2(∂Ω).

In view of (4.38) the function χũg satisfies

‖χũg‖H,2R .
√
k‖g‖L2(∂Ω) + ‖ũg‖H1(Ωc∩B2R) . ‖g‖1/2,H,∂Ω.

This shows the bound for ‖ug‖H,2R.
3. step: To get the H2 estimate, we use elliptic regularity to conclude

‖ug‖H2(Ωc∩B2R) . k2‖ug‖L2(Ωc∩B2R) + ‖g‖H3/2(∂Ω) . k‖ug‖H,2R + ‖g‖H3/2(∂Ω) . k‖g‖3/2,H,∂Ω,

which finishes the proof.
We define the frequency splitting of the Dirichlet traces by means of operators LD

Ωc
R

and

HD
Ωc

R
as follows: For g ∈ H1/2(∂Ω), we let GD be the trace lifting operator of Lemma 4.21 and

then set
LD

Ωc
R
g :=

(
LΩc∩B2R

GDg
)∣∣

Ωc
R

, HD
Ωc

R
g :=

(
HΩc∩B2R

GDg
)∣∣

Ωc
R

,

LD
∂Ωg :=

(
LD

Ωc
R
g
)∣∣∣

∂Ω
, HD

∂Ωg :=
(
HD

Ωc
R
g
)∣∣∣

∂Ω
.

(4.39)

In view of the stability properties of the operators LΩc∩B2R
, HΩc∩B2R

, given by Lemmata 4.2,
4.3 we get (with η > 1 defining these operators)

‖LD
Ωc

R
g‖ H,R

(4.8)

. ‖GDg‖H,R

(4.34)

. ‖g‖1/2,H,∂Ω, (4.40a)

‖∇p+1LD
Ωc

R
g‖L2(Ωc

R)

(4.8),(4.34)

. (ηk)p‖g‖1/2,H,∂Ω, ∀p ∈ N0, (4.40b)

‖HD
Ωc

R
g‖H,R

(4.3)

. ‖GDg‖H,R

(4.34)

. ‖g‖1/2,H,∂Ω, (4.40c)

‖HD
Ωc

R
g‖L2(Ωc

R)

(4.3)

. (ηk)−1‖GDg‖H1(Ωc∩B2R)

(4.34)

. (ηk)−1‖g‖1/2,H,∂Ω, (4.40d)

‖HD
Ωc

R
g‖H,R

(4.3)

. (ηk)−1‖GDg‖H2(Ωc∩B2R)

(4.35)

. η−1‖g‖3/2,H,∂Ω, (4.40e)

‖HD
Ωc

R
g‖H2(Ωc

R)

(4.3)

. ‖GDg‖H2(Ωc∩B2R)

(4.35)

. k‖g‖3/2,H,∂Ω. (4.40f)

Remark 4.22 The trace theorem in the multiplicative form yields

‖u‖1/2,H,∂Ω . ‖u‖H,R ∀u ∈ H1 (Ωc
R) ,

‖u‖3/2,H,∂Ω . k−1 ‖u‖H2(Ωc
R) + ‖u‖H,R ∀u ∈ H2 (Ωc

R) .
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Hence, from (4.40) it follows

∥∥HD
∂Ωg
∥∥

1/2,H,∂Ω
.

∥∥∥HD
Ωc

R
g
∥∥∥
H,R

(4.41)

. ‖g‖1/2,H,∂Ω, (4.41a)

∥∥HD
∂Ωg
∥∥

1/2,H,∂Ω
.

∥∥∥HD
Ωc

R
g
∥∥∥
H,R

(4.41)

. η−1‖g‖3/2,H,∂Ω, (4.41b)

∥∥HD
∂Ωg
∥∥

3/2,H,∂Ω
. k−1

∥∥∥HD
Ωc

R
g
∥∥∥

H2(Ωc
R)

+
∥∥∥HD

Ωc
R
g
∥∥∥
H,R

(4.41),(4.41)

. ‖g‖3/2,H,∂Ω. (4.41c)

4.5 Proof of Theorem 4.19

Lemma 4.23 (analysis of Sc(LΩcf, 0)) Let Assumptions 4.16 and 4.17 be satisfied. The
function u = Sc

k(LΩcf, 0) is analytic on an open neighborhood of Ωc
R and satisfies

‖∇pSc
k(LΩcf, 0)‖L2(Ωc

R) . kα−1γp max{p, k}p‖f‖L2(Ωc).

Proof. Note that by replacing R in (2.7) by 2R and denoting the corresponding solution
by u2R it holds u = u2R|Ωc

R
. As a consequence it suffices to apply from [25, Section 5.5]

a) the interior estimates and b) the local estimates at the boundary Γ = ∂Ω. In other
words, [25, Theorem 5.3.10] directly applies to this situation. Rewriting the equation satisfied
by u as

−ε2∆u− u = ε2LΩcf, ε := 1/k,

and noting that ε2LΩcf satisfies

‖∇p(LΩcf)‖L2(B2R) . (ηk)p‖f‖L2(Ωc
R) ∀p ∈ N0,

we may apply [25, Thm. 5.3.10] with E = ε = 1/k, Cc = 1, γf = O(1), Cf = O(ε2‖f‖L2(Ωc
R)),

and k‖u‖L2(Ωc∩B2R) + ‖∇u‖L2(Ωc∩B2R) . kα‖f‖L2(Ωc
R) to get

‖∇p+2u‖L2(Ωc
R) . Kp max{p+ 2, k}p+2

(
k−2‖f‖L2(Ωc

R) + k−1‖u‖H,R

)

. Kp max{p+ 2, k}p+2kα−1‖f‖L2(Ωc
R) ∀p ∈ N0,

where we exploited the assumption α ≥ 0.

Lemma 4.24 (analysis of Sc(0, LD
∂Ωg)) The function u = Sc

k(0, L
D
∂Ωg) is analytic on an

open neighborhood of Ωc
R and satisfies

‖Sc
k(0, L

D
∂Ωg)‖H,R . kα‖g‖1/2,H,∂Ω,

‖∇pSc
k(0, L∂Ωg)‖L2(Ωc

R) . (k + kα)γp max{p, k}p‖g‖1/2,H,∂Ω ∀p ≥ 2.

Proof. Assumption 4.17 gives us

‖u‖H,R . kα+1‖g‖1/2,H,∂Ω.

Next, interior regularity as derived in [25, Prop. 5.5.1] gives

‖∇p+2u‖L2(Ωc
R\S) . Kp+2 max{p, k}p+2k−1‖u‖H,R ∀p ∈ N0,
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where S is a tubular neighborhood of ∂Ω of width O (1). These are the desired bounds away
from ∂Ω. For the behavior of u near ∂Ω, we write u = ũ+LD

Ωc
R
g and set f̃ := −∆LD

Ωc
R
g+k2LD

Ωc
R
g.

Then, (4.40) gives us

‖∇pLD
Ωc

R
g‖L2(Ωc

R) . (ηk)p−1‖g‖1/2,H,∂Ω ∀p ∈ N0,

‖∇pf̃‖L2(Ωc
R) . (ηk)p+1‖g‖1/2,H,∂Ω ∀p ∈ N0.

Near ∂Ω, the function ũ satisfies −∆ũ − k2ũ = −f̃ together with ũ|∂Ω = 0. Hence, [25,
Thm. 5.3.10] gives us

‖∇p+2ũ‖L2(S) . max{p+ 2, k}p+2
(
k‖g‖1/2,H,∂Ω + k−1‖ũ‖H,R

)
∀p ∈ N0.

This concludes the argument.

Lemma 4.25 (decomposition of Sc(f, 0)) Let q ∈ (0, 1). The solution u = Sc
k(f, 0) can be

decomposed as u = uA + uH2 + ũ, where uA is analytic on Ωc
R, uH2 ∈ H2(Ωc

R), and

‖∇puA‖L2(Ωc
R) . kα−1γp max{p, k}p ‖f‖L2(Ωc

R) , ∀p ∈ N0,

‖uH2‖H,R . qk−1‖f‖L2(Ωc
R),

‖uH2‖H2(Ωc
R) . ‖f‖L2(Ωc

R).

Additionally, ũ = Sc
k(f̃ , 0) for a function f̃ ∈ L2(Ωc

R) with

‖f̃‖L2(Ωc) ≤ q‖f‖L2(Ωc).

Proof. Extend f by zero to Rd (and denote again by f the extended function). Define

uI
A := Sc

k(LRdf, 0), uI
H2 := Nk(HRdf).

Then we know by Lemma 4.23 that uI
A is analytic and satisfies the desired bounds. Lemma 4.4

implies that uI
H2 satisfies (by choosing η suitably)

‖uI
H2‖H,R ≤ qk−1‖f‖L2(Ωc), (4.42a)

‖uI
H2‖H2(BR) . ‖f‖L2(Ωc). (4.42b)

The function uI := u− (uI
A + uI

H2) satisfies

−∆uI − k2uI = 0, uI|∂Ω = −uI
H2 |∂Ω.

The trace inequality gives us ‖uI
H2‖H1/2(∂Ω) . qk−1‖f‖L2(Ωc) and the multiplicative trace

inequality (cf. (4.29))
√
k‖uI

H2‖L2(∂Ω) ≤ ‖uI
H2‖H,R . qk−1‖f‖L2(Ωc).

That is, we have ‖uI
H2‖1/2,H,∂Ω . qk−1‖f‖L2(Ωc). Furthermore, we have from the trace estimate

‖uI
H2‖H3/2(∂Ω) . ‖uI

H2‖H2(BR) that ‖uI
H2‖3/2,H,∂Ω . k−1‖f‖L2(Ωc). Let uII be the lifting of uI|∂Ω

given by Lemma 4.21. Then:

uII|∂Ω = uI|∂Ω,

‖uII‖H,R

(4.34)

. qk−1‖f‖L2(Ωc),

‖uII‖H2(Ωc
R)

(4.35)

. ‖f‖L2(Ωc),

∆uII + k2uII = 2k2uII =: f̃ ,
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and
‖f̃‖L2(Ωc) ≤ 2k2‖uII‖L2(Ωc) . k‖uII‖H,R . q‖f‖L2(Ωc).

We now set uA := uI
A, uH2 := uI

H2 + uII and note that the function ũ := u − uA − uH2 =
u − uI

A − uI
H2 − uII has the desired properties. Readjusting the constant q concludes the

argument.

Lemma 4.26 (decomposition of Sc
k(0, g)) Let q ∈ (0, 1). The solution u = Sc

k(0, g) can be
decomposed as u = uA + uH2 + ũ with

‖uA‖H,R . kα‖g‖1/2,H,∂Ω,

‖∇puA‖L2(Ωc
R) . (k + kα)γp max{p, k}p‖g‖1/2,H,∂Ω ∀p ≥ 2,

‖uH2‖H,R . ‖g‖1/2,H,∂Ω,

‖uH2‖H,R . q‖g‖3/2,H,∂Ω,

‖uH2‖H2(Ωc
R) . k‖g‖3/2,H,∂Ω,

and ũ = Sc
k(0, g̃), where g̃ satisfies

‖g̃‖3/2,H,∂Ω ≤ q‖g‖3/2,H,∂Ω,

‖g̃‖1/2,H,∂Ω ≤ q‖g‖1/2,H,∂Ω.

Proof. We split g = LD
∂Ωg +HD

∂Ωg and define

uI
A := Sc

k(0, L
D
∂Ωg), uI

H2 := GD(HD
∂Ωg),

where GD is the trace lifting operator of Lemma 4.21. The function uI
A satisfies the desired

analytic regularity estimates (cf. Lemma 4.24). From (4.41), we get

‖HD
∂Ωg‖1/2,H,∂Ω . ‖g‖1/2,H,∂Ω,

‖HD
∂Ωg‖1/2,H,∂Ω . q‖g‖3/2,H,∂Ω,

‖HD
∂Ωg‖3/2,H,∂Ω . ‖g‖3/2,H,∂Ω,

where the parameter q ∈ (0, 1) is still at our disposal. Lemma 4.21 gives

‖uI
H2‖H,R . ‖HD

∂Ωg‖1,2,H,∂Ω .

{
‖g‖1/2,H,∂Ω,
q‖g‖3/2,H,∂Ω,

(4.43a)

‖uI
H2‖H2(Ωc

R) . k‖HD
∂Ωg‖3/2,H,∂Ω . k‖g‖3/2,H,∂Ω. (4.43b)

Hence, the function uII := u− (uI
A + uI

H2) satisfies

−∆uII − k2uII = 2k2uI
H2, uII|∂Ω = 0,

and from (4.43a)

‖2k2uI
H2‖L2(Ωc

R) .

{
k‖g‖1/2,H,∂Ω,

qk‖g‖3/2,H,∂Ω.
(4.44)

Next, we define

uII
A : = Sc

k(LΩc(2k2uI
H2), 0),

uII
H2 : = Nk(HΩc(2k2uI

H2)),
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and get from Lemma 4.23 that uII
A is analytic, more precisely,

‖∇puII
A‖L2(Ωc

R) . kα−1γp max{p, k}p
∥∥LΩc2k2uI

H2

∥∥
L2(Ωc

R) ∀p ∈ N0.

By using
∥∥LΩc(k2uI

H2)
∥∥

L2(Ωc
R) . k2

∥∥uI
H2

∥∥
L2(Ωc

R)

(4.44)

. k‖g‖1/2,H,∂Ω

we finally obtain

‖∇puII
A‖L2(Ωc

R) . kαγp max{p, k}p‖g‖1/2,H,∂Ω ∀p ∈ N0. (4.45)

The function uII
H2 satisfies by Lemma 4.4

‖uII
H2‖H,R . qk−1‖k2uI

H2‖L2(Ωc
R) . q‖g‖1/2,H,∂Ω,

‖uII
H2‖H2(Ωc

R) . ‖k2uI
H2‖L2(Ωc

R) . k‖uI
H2‖H,R

(4.43a)

. qk‖g‖3/2,H,∂Ω.

Set uA := uI
A + uII

A and uH2 := uI
H2 + uII

H2. The function ũ := u− (uA + uH2) satisfies

−∆ũ− k2ũ = 0, ũ|∂Ω = −uII
H2 ,

and, for s ∈ {1/2, 3/2},

‖ũ‖s,H,∂Ω = ‖uII
H2‖s,H,∂Ω . q‖g‖s,H,∂Ω.

Choosing q appropriately concludes the argument.

5 Application to hp-Finite Elements

The present section shows how the regularity theory developed in Section 4 is applicable in the
context of high order finite element spaces. We proceed in two steps: Section 5.1 quantifies
ηA(S) and ηH2(S) (see Lemma 3.4). Section 5.2 applies these results to the specific examples
of Section 2.1, 2.2.

5.1 hp-FEM Approximation results for ηA and ηH2(S)

This section is devoted to the estimates of the split adjoint approximation properties ηA (S)
and ηH2 (S) in the case where S is chosen as an hp−finite element space.

We have performed the regularity theory in Section 4 for domains with analytic boundaries
and polygons. These two cases require different types of meshes that we now introduce.

5.1.1 Domains with Analytic Boundary

We adopt the setting of [11]. The triangulation Th consists of elements which are the image of
the reference triangle (in 2D) or the reference tetrahedron (in 3D). We do not allow hanging
nodes and assume – as is standard – that the element maps of elements sharing an edge or
a face induce the same parametrization on that edge or face. The maximal mesh width is
denoted by h := maxK∈Th

diamK. Additionally, we make the following assumption on the

element maps FK : K̂ → K.
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Assumption 5.1 (quasi-uniform regular triangulation) Each element map FK can be
written as FK = RK ◦ AK, where AK is an affine map (corresponding to the scaling hK =
diamK of the triangle K) and RK is an h-independent analytic map which corresponds to the
metric distortion at the possibly curved boundary. The maps RK and AK satisfy for constants
Caffine, Cmetric, γ > 0 independent of h:

‖A′
K‖L∞( bK) ≤ Caffineh, ‖(A′

K)−1‖L∞( bK) ≤ Caffineh
−1

‖(R′
K)−1‖L∞( eK) ≤ Cmetric, ‖∇nRK‖L∞( eK) ≤ Cmetricγ

nn! ∀n ∈ N0.

Here, K̃ = AK(K̂).

Remark 5.2 Triangulations satisfying Assumption 5.1 can be obtained by patchwise construc-
tion of the mesh: Let T macro be a fixed triangulation (with curved elements) with analytic
element maps that resolves the geometry. If the triangulation Th is obtained by quasi-uniform
refinements of the reference element K̂ and the final mesh is obtained by mapping the subdivi-
sions of the reference element with the macro element maps, then the resulting element maps
satisfy the assumptions of Assumption 5.1.

For meshes Th satisfying Assumption 5.1 with element maps FK we denote the usual space
of piecewise (mapped) polynomials by

Sp,1(Th) := {u ∈ H1(Ω) | ∀K ∈ Th : u|K ◦ FK ∈ Pp}, (5.1)

where Pp denotes the space of polynomials of degree p.

Proposition 5.3 Let Assumption 5.1 be satisfied. Then for ηA, ηH2 introduced in Lemma 3.4
there holds

ηH2 (S) ≤ C
h

p

(
1 +

kh

p

)
ηA (S) ≤ C

((
h

h+ σ

)p

+ k

(
kh

σp

)p)(
1 +

kh

p

)
,

where C, σ > 0 are independent of k, h, p:

Proof. The proof of both estimates are simple consequences of the procedure in [30,
Thm. 5.5].

5.1.2 Polygonal Domains

For simplicity, we restrict our attention here to a special situation, namely, affine, shape
regular triangulations of the polygon Ω that consist of (a) quasi-uniform triangulations (with
mesh size h) away from the vertices and (b) geometric meshes in an O(h)-neighborhood of
the vertices. We mention already now that h = O(p/k) will be a choice of particular interest.
We denote by Aj , j = 1, . . . , J , the vertices of the polygon Ω. The ball with radius ch about
Aj is denoted by Bch (Aj).

Assumption 5.4 For h > 0, L ∈ N, σ ∈ (0, 1) the mesh Th(L) is an affine, shape regular
triangulation of Ω such that:

1. The restriction of Th(L) to Ω \ (∪J
j=1Bch(Aj)) is a quasi-uniform triangulation of that

set with mesh size h. Like the shape regularity constants, the constant c is independent
of h, L.
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2. For each vertex Aj, the set restriction of Th(L) to Bh(Aj) ∩Ω is a geometric mesh with
grading factor σ ∈ (0, 1) and L layers (see, e.g., [37] for the precise definition).

We mention that the smallest elements in the triangulation are those abutting the vertices
and they are of size hmin = O(hσL). Furthermore, the number of elements in Th(L) is given
by |Th(L)| = O(h−2 + L).

Remark 5.5 The meshes of Assumption 5.4 are based on a geometric refinement in an O(h)-
neighborhood of the vertices. The corresponding hp-finite element spaces with suitable choices
of p, L, and h (see Theorem 5.8) can be regarded as spaces of (quasi-) minimal dimension
which lead to unique solvability of the arising Galerkin discretizations and to quasi-optimal
error estimates.

Further enrichments of these finite element spaces merely need to focus on the approx-
imability of the solution u. Good choices of the mesh T and the polynomial degree p of the
enriched space depend on regularity properties of the solution and can be selected either in an
a priori or an a posteriori way.

On the geometric meshes of Assumption 5.4, we consider the Sp,1(Th(L)) as defined in
(5.1). We have the following approximation results:

Proposition 5.6 Let Th(L) be a triangulation of the polygon Ω that satisfies Assumption 5.4.
Assume

kh

p
< C̃, (5.2a)

p ≤ C ′L, (5.2b)

for some C̃, C ′ > 0. Then for some c, b, σ0 > 0 independent of h, k, p there holds

ηH2 (S) ≤ C
h

p
, ηA (S) ≤ Ck

(
(hk)1−βmin eckh−bp +

(
kh

σ0p

)p)
,

where βmin = minj=1,...,J βj. (Recall that according to Remark 4.10 any (small) positive choice
of βj is admissible for convex domains.)

Proof. Since the meshes Th(L) are finer than quasi-uniform meshes with mesh size h, the
bound for ηH2(S) follows by standard arguments.

To see the bound for ηA(S), we apply the approximation theory of [25, Chap. 3]. Let
u ∈ Hosc (γ, k) and define the approximation v ∈ Sp,1(Th(L)) elementwise with the aid of
the operator Π∞

p of [25, Thm. 3.2.20]: v|K ◦ FK := Π∞
p (u ◦ FK), where FK is the element

map for K. We note that the elements of Th(L) can be divided into two categories, namely,
those belonging to a geometric mesh near the vertices, T geo

j , j = 1, . . . , J , and those in a

quasi-uniform mesh T unif
h of mesh size h.

Let us first consider the error u − v near the vertices. Let S be a fixed sector with apex
Aj, where Aj is a vertex of the polygon Ω. In the notation of [25, Chap. 3], the assumption
u ∈ Hosc (γ, k) means u ∈ B2

β,1/k(S,Cu, γ), where Cu = O(1). Then, [25, Lemma 3.4.7] gives

(inspection of the proof of [25, Lemma 3.4.7] shows that it is applicable with H = O(h))

∑

K∈T geo
j

‖u− v‖2
H,K ≤

(
1 +

k2h2

p4

) ∑

K∈T geo
j

p4 ‖u− v‖2
L∞(K) + ‖∇(u− v)‖2

L2(K)

.

(
1 +

k2h2

p4

)
k2
{

(hk)2−2βj echk−bp +p7
(
hkσL

)2−2βj
}
, (5.3)
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where we applied Hölder’s inequality for the first estimate. The constant b > 0 is independent
of h, k, and p. The factor (1 + k2h2/p4) can be bounded in view of the assumption (5.3) and
p ≥ 1. Next, in view of the assumption on L in (5.3) we arrive at

∑

K∈T geo
j

‖u− v‖2
H,K . k2(kh)2(1−βj )eckh−bp, (5.4)

where we suitably adjusted the constant b > 0. This is the desired estimate for the elements in
T geo

j . For the remaining elements in T unif
h , we proceed by standard approximation arguments

as follows. For each K ∈ T unif
h set

C2
K :=

∑

n≥0

(
1

2γmax {k, n}

)2(n+2)

‖Φ
n,
−→
β ,k

∇n+2u‖2
L2(K).

Then, ∑

K∈Th(L)

C2
K ≤ 2.

Consider now an element K with d := dist(K,Aj) ≥ ch for all vertices Aj. Abbreviate
β := βmin. Then we have, for all n ∈ N0, (cf. [25, Lemma 4.2.2])

‖∇n+2u‖L2(K) ≤ CK(2γ)n+2 max{n, k}n+2

(
max{1,

min{1, n+1
k+1

}
d

}
)n+β

=: RHS. (5.5)

By distinguishing the three cases a) n ≥ k, b) n ≤ k together with n + 1 ≤ (k + 1)d, and c)
n ≤ k together with n + 1 > (k + 1)d, we arrive at

RHS . CK min{1, kd}2−β(2γ)n+2 max{k, n/d}n+2 ∀n ∈ N0.

Combining now [30, Lemma C.2] with [25, Thm. 3.2.20] gives the existence of some C, σ0 > 0
such that for q ∈ {0, 1}

hq‖u− v‖Hq(K) ≤ CCK min{1, kd}2−β

((
h/d

σ0 + h/d

)p+1

+

(
kh

σ0p

)p+1
)
. (5.6)

We next distinguish the cases d ≥ 1/k and d < 1/k. For d ≥ 1/k we have in view of d ≥ ch

(
k + h−1

)
min{1, kd}2−β

(
h/d

σ0 + h/d

)p+1

=
(
k + h−1

)( h/d

σ0 + h/d

)p+1

. k

(
h/d

σ0 + h/d

)p

. k

(
h/d

σ0 + h/d

)1−β (
h/d

σ0 + h/d

)p−1+β

. kmin{1, h/d}1−β

(
1

cσ0 + 1

)p

. kmin{1, hk}1−β

(
1

cσ0 + 1

)p

, (5.7)

where we additionally exploited the monotonicity properties of x 7→ (x/(σ0 + x))p−1+β and
p ≥ 1 together with β ≥ 0. For the case h . d < 1/k, we have

(k + h−1) min{1, kd}2−β . h−1(kd)2−β = k(kh)1−β

(
d

h

)2−β

. kmin{1, kh}1−β

(
d

h

)2−β

.
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Exploiting again the monotonicity properties of x 7→ (x/(1 + x))p−1+β together with p ≥ 1,
β ≥ 0, and d ≥ ch we conclude also for the case d < 1/k

(
k + h−1

)
min{1, kd}2−β

(
h/d

σ0 + h/d

)p+1

. kmin{1, kh}1−β

(
1

cσ0 + 1

)p

. (5.8)

Inserting the estimates (5.7), (5.8) into (5.6), we get

k‖u− v‖L2(K) + |u− v|H1(K) . CKk

(
min{1, kh}1−β

(
1

cσ0 + 1

)p

+

(
kh

σ0p

)p)
.

By summing over all elements K that are in the quasi-uniform mesh T unif
h

√ ∑

K∈T unif
h

‖u− v‖2
H,K . k

(
min{1, kh}1−β

(
1

cσ0 + 1

)p

+

(
kh

σ0p

)p)
. (5.9)

Combining (5.4) with (5.9) and appropriately adjusting constants proves the claim of the
proposition.

5.2 Stability and Convergence Analysis of hp-FEM for the Model
Problems of Section 2

In view of the oscillatory nature of solutions of Helmholtz problems, it is reasonable to expect
that a minimal condition for stability is that the dimension N of the ansatz space has to satisfy
N = O(kd). The next theorem shows that, indeed, the polynomial degree p and the mesh size
h can be selected such that the resulting approximation spaces has dimension N = O(kd) and
at the same time ensures quasi-optimality of the Galerkin FEM.

Since we will refer to the same hypotheses several times in the section, we formulate them
as an assumption:

Assumption 5.7 i If the model problem of Section 2.1 (cf. (2.3)) is considered, then

Assumptions 1.1 and 4.7 are valid. The given data satisfy f ∈ L2(Ω) and g ∈ H
1/2
pw (∂Ω).

The discrete formulation (2.4) is used with an hp-FEM S. If Ω has an analytic boundary,
then the hp-FEM space S described in Section 5.1.1 is used; If Ω is a polygon, then the
hp-FEM space S described in Section 5.1.2 is is used with the additional assumption
L = O(p).

ii If the exterior Dirichlet problem (2.8) is considered, Assumptions 4.16 and 4.17 are
valid. The given data satisfy f ∈ L2(Ωc

R) and g = 0 on ∂Ω1. The Galerkin method (2.9)
with gS = 0 is based on the VR,0-conforming subspace of the hp-FEM spaces described in
Section 5.1.1. The DtN-operator TR is assumed to be realized exactly.

Theorem 5.8 (discrete stability of hp-FEM) Consider the setup of Assumption 5.7. As-

sume k > k0 > 1. Then there exist constants δ, C̃ > 0 that are independent of h, p, and k
such that the conditions

kh

p
≤ δ and p ≥ 1 + C̃ log k (5.10)

1The assumption g = 0 is made here to avoid further consistency estimates. Note that, for the analysis, we
assumed g ∈ H3/2 (∂Ω) which can be transformed in the standard way to the case of homogeneous boundary
conditions by a trace lifting of g to some function ug ∈ H2 (Ωc

R) and then modifying the right-hand side f .
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imply the following: The discrete problem (2.4) or (2.9) has a unique solution which satisfies

‖u− uS‖H ≤ 2(1 + Cb) inf
v∈S

‖u− v‖H ,

‖u− uS‖L2(Ω) ≤ C
h

p
inf
v∈S

‖u− v‖H ;

here, Cb and C are constants that are independent of h, p, k, and f , g.

Proof. In the interest of brevity, we will not consider the case of geometric meshes and
restrict our attention to cases where quasi-uniform meshes that satisfy Assumption 5.1 are
appropriate.

¿From Lemma 3.4 and Proposition 5.3 we conclude that

η (S) ≤ C

{
Ck,A

((
h

h+ σ0

)p

+ k

(
kh

σ0p

)p)
+ CH2

h

p

}(
1 +

kh

p

)
. (5.11)

Assumption 5.7 implies via Theorems 4.9 resp. 4.19 that the constants Ck,A, CH2 may be
assumed to have the form

Ck,A = Ckα−1 and CH2 = C, (5.12)

where C is independent of k, h, p. By Lemma 3.4, the stability condition (3.12) is therefore
satisfied, if

kα

(
h

h + σ0

)p

+ kα+1

(
kh

σ0p

)p

+
hk

p
≤ ρ, (5.13)

for some ρ > 0 that is independent of k, h, p. Without loss of generality, we may require that
ρ < 1. By selecting δ sufficiently small, we can ensure

kh

p
≤ δ ≤ ρ/3,

kh

σ0p
≤ δ/σ0 ≤ 1/2.

Finally, since the computational domain is bounded, we have h/(σ0 + h) ≤ θ < 1. Therefore,
the left-hand side of (5.13) can be bounded by

kαθp + kα+12−p + ρ/3.

This can be bounded by ρ if p ≥ C̃ log k for sufficiently large C̃.

Remark 5.9 Let k > k0 > 1. Selecting

p := 1 +
⌈
C̃ log k

⌉
, h :=

δp

k

for the constants δ, C̃ > 0 of Theorem 5.8, we see that stability of the Galerkin method can
be ensured with hp-FEM spaces of dimension N := dimS ∼ (p/h)d ∼ kd. In other words:
stability is given with a fixed number of degrees of freedom per wavelength.

Let us compare this with the lowest order FEM, i.e., the choice p = 1. In this case, the
requirement (5.13) reads

kαh + kα+1 (kh) + hk ≤ ρ.

Even if we assume that α = 0, this condition leads to the condition k2h . 1 so that the
minimal number of unknowns of the P1-finite element space is dimS1,1 ≈ k2d. This illustrates
the substantial savings for the choice p ≈ log k over the lowest order case p = 1.
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In order to get explicit convergence rates we employ Theorem 4.9 resp. Theorem 4.19. Let

Cf,g := ‖f‖L2(Ω) + ‖g‖
H

1/2
pw (∂Ω)

Proposition 5.10 Let Assumption 5.7 be satisfied and let kh/p . 1. For the Robin problem
on bounded domains (2.3) we get

• for analytic domains

inf
v∈S

‖u− v‖H . Cf,g

{
h

p
+ kα−1

((
C2h

h+ σ0

)p

+ k

(
kh

σ0p

)p)}
(5.14a)

• for convex polygonal domains we assume (5.2) and obtain

–

for p ≥ 1 + C̃ log k inf
v∈S

‖u− v‖H . Cf,g

{
h

p
+ kα−1 (hk)1−βmin e−c̃p

}
, (5.14b)

where βmin ∈ (0, 1) is as in (5.6) and, according to Remark 4.10, can be chosen
arbitrary small.

–
for p = O (1) inf

v∈S
‖u− v‖H . Cf,g

(
h+ (hk)1−βmin kα

)
. (5.14c)

For problem (2.8), we obtain

inf
v∈S

‖u− v‖H . Cf,0

{
h

p
+ kα−1

((
C2h

h+ σ0

)p

+ k

(
kh

σ0p

)p)}
. (5.14d)

Proof. We consider first the Robin problem on bounded, analytic domains and define
Ck,A := CCf,gk

α−1 and CH2 := CCf,g, where C is as in (4.21). Theorem 4.9 defines a splitting
u = uA + uH2 with the property that the scaled functions ũA, ũH2 given by the conditions
Ck,AũA = uA and CH2ũH2 = uH2 satisfy ũA ∈ Hosc (γ, k) and ũH2 ∈ Hell.

Hence, by arguing as for (5.11) and using Proposition 5.3 we obtain

inf
v∈S

‖u− v‖H . Cf,g

{
h

p
+ kα−1

(
(hk)1−β e−c̃p +k

(
kh

σ0p

)p)}
.

For sufficiently large C̃ = O (1) (in (5.14b)) the last term can be absorbed in the second term
and we obtain the assertion.

The proof of (5.14b) and (5.14c) is analogously and based on Proposition 5.6.
The proof for the problem (2.8) is analogous by using Theorem 4.19.
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A Lifting

Lemma A.1 Let Ω ⊂ R2 be a polygon, where all internal angles are different from 0, π,
and 2π. Then there exists a linear operator G : H

1/2
pw (∂Ω) → H2(Ω) with ∂nG = g and

‖G‖H2(Ω) ≤ C‖g‖
H

1/2
pw (∂Ω)

.

Proof. In the interest of brevity, we base the proof on the solvability theory in convex
polygons.
step 1: Let T be a (convex) triangle. Then one can infer from [16, Cor. 4.4.3.8] the existence

of CT > 0 such that for every g ∈ H
1/2
pw (∂T ) with

∫
∂T
g = 0 there holds for the solution

u ∈ H2(T ) of

−∆u = 0 in T , ∂nu = g on ∂T ,

∫

T

u = 0

the a priori bound ‖u‖H2(T ) ≤ CT‖g‖H
1/2
pw (∂T )

.

step 2: Let S = {(r cosϕ | r sinϕ) | 0 < r < 2δ, 0 < ϕ < ω} with edges Γ1, Γ2 meeting at the
origin. Set Γ1,δ := {(r, 0) | 0 < r < δ}, Γ2,δ := {(r cosω, r sinω) | 0 < r < δ}.

For the case of a convex sector, i.e., 0 < ω < π/2, it is easy to construct with the aid of
the first step a bounded linear operator L :

∏2
i=1{u ∈ H1/2(Γi) | supp u ⊂ Γi,δ} → H2(S) with

(∂nL(f1, f2))|Γi
= fi (i ∈ {1, 2}) ‖L(f1, f2)‖H2(S) ≤ C

∑2
i=1 ‖fi‖H1/2(Γi).

For the case of a non-convex sector, i.e., π/2 < ω < 2π, let S ′ := B2δ \ S and let
E : H2(S ′) → H2(R2 be the extension operator of Stein, [38, Chap. VI]. Then S ′ is a convex
sector of the form considered above. Then it is easy to check that (E(L(−f1,−f2)))|S′ ∈
H2(S ′) has the desired lifting property for S.
step 3: Localizing with the aid of partitions of unity, we can reduce the construction of the
lifting to the question of liftings from an infinite line to a half space and from two edges
that meet at a common vertex V to the enclosed sector. The first case is well-known (see,
e.g., [16, Thm. 1.5.1.2]). The second case is covered by step 2.

B Proof of Theorem 3.2

We present the proof of Theorem 3.2.
Given u ∈ S, define z ∈ V by θk2S̃⋆

ku and let zS ∈ S be the best approximation to z in
the ‖ · ‖H-norm. Then:

Re (a(u, u+ z) − b(u, u+ z)) =

Re (a(u, u) − b(u, u)) + θk2‖u‖2
L2(Ω)︸ ︷︷ ︸

≥γ‖u‖2
H

+ Re
(
a(u, z) − b(u, z) − θk2‖u‖2

L2(Ω)

)

︸ ︷︷ ︸
=0

With the preparatory consideration, we compute

Re (a(u, u+ zS) − b(u, u+ zS)) =

Re (a(u, u+ z) − b(u, u+ z)) + Re (a(u, zS − z) − b(u, zS − z))

≥ γ‖u‖2
H − (1 + Cb)‖u‖H‖z − zS‖H

≥ γ‖u‖2
H − (1 + Cb)‖u‖Hη(S)θk2‖u‖L2(Ω)

≥ (γ − (1 + Cb)θkη(S)) ‖u‖2
H.
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Furthermore, we have

‖u− zS‖H ≤ ‖u‖H + ‖z − zS‖H + ‖z‖H
≤ ‖u‖H + θk2‖u‖L2(Ω)η(S) + θk2Cadj‖u‖L2(Ω)

≤ (1 + θkη(S) + θkCadj) ‖u‖2
H

so that

inf
06=u∈S

sup
06=v∈S

Re a(u, v) − b(u, v)

‖u‖H‖v‖H
≥ γ − (1 + Cb)θkη(S)

1 + θkη(S) + θkCadj

≥ γ

2 + γ/(1 + Cb) + 2θkCadj

This shows (3.13).
We next show the L2-bound (3.14). To that end, denote e := u− uS and define ψ := S⋆

ke
and let ψS ∈ S be the best approximation to ψ. Then in view of the Galerkin orthogonality

‖e‖2
L2(Ω) = a(e, ψ) − b(e, ψ) = a(e, ψ − ψS) − b(e, ψ − ψS)

≤ (1 + Cb)‖e‖H‖ψ − ψS‖H ≤ (1 + Cb)η(S)‖e‖H‖e‖L2(Ω).

Hence,
‖e‖L2(Ω) ≤ (1 + Cb)η(S)‖e‖H,

which is (3.14). To infer from this a bound for ‖e‖H, we notice that Galerkin orthogonality
gives for arbitrary v ∈ S

γ‖e‖2
H ≤ Re

(
a(e, e) − b(e, e) + θk2‖e‖2

L2(Ω)

)
= Re

(
a(e, u− v) − b(e, u− v) + θk2‖e‖2

L2(Ω)

)

≤ (1 + Cb)‖e‖H‖u− v‖H + θk2‖e‖2
L2(Ω)

≤ (1 + Cb)‖e‖H‖u− v‖H + θk‖e‖L2(Ω)k‖e‖L2(Ω)

≤ (1 + Cb)‖e‖H‖u− v‖H + θ(1 + Cb)kη(S)‖e‖H‖e‖H
≤ (1 + Cb)‖e‖H‖u− v‖H + γ/2‖e‖2

H.

We conclude the desired estimate (3.14) for ‖e‖H
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