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Small Velocity and finite Temperature Variations in Kinetic Relaxation Models
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WAVENUMBER-EXPLICIT HP -BEM FOR HIGH FREQUENCY

SCATTERING

MAIKE LÖHNDORF∗ AND JENS MARKUS MELENK†

Abstract. For the Helmholtz equation (with wavenumber k) and analytic curves or surfaces Γ we
analyze the Galerkin discretization of classical combined field integral equations in an L2-setting. We
give abstract conditions on the approximation properties of the ansatz space that ensure stability
and quasi-optimality of the Galerkin method. Special attention is paid to the hp-version of the
boundary element method (hp-BEM). Under the assumption of polynomial growth of the solution
operator we show stability and quasi-optimality of the hp-BEM if the following scale resolution
condition is satisfied: the polynomial degree p is at least O(log k) and kh/p is bounded by a number
that is sufficiently small, but independent of k. Under this assumption, the constant in the quasi-
optimality estimate is independent of k. Numerical examples in 2D illustrate the theoretical results
and even suggest that in many cases quasi-optimality is given under the weaker condition that kh/p
is sufficiently small.

Key words. high order boundary element method, high frequency scattering, com-
bined field integral equation, Helmholtz equation

AMS subject classification. 65N38, 65R20, 35J05

1. Introduction. Acoustic and electromagnetic scattering problems are often
treated with boundary integral equation methods. In a time-harmonic acoustic set-
ting, popular boundary integral operators (BIOs) are the combined field integral
operators, namely, those usually attributed to Burton & Miller, [8] (see (1.5)) and
those commonly associated with the names of Brakhage & Werner [3], Leis [12], and
Panič [20] (see (1.4)). The present paper is devoted to the study of discretizations
of these two combined field BIOs for the case of smooth (more precisely: analytic)
geometries paying special attention to the situation of large wavenumbers k.
In the present context of smooth geometries, the combined field operators Ak and
A′k are L2(Γ)-invertible and compact perturbations of the identity. At first glance,
therefore, the stability and convergence theory of Galerkin discretizations of the com-
bined field BIEs does not seem to pose difficulties since general functional analytic
arguments yield asymptotic quasi-optimality. However, these general arguments give
no indication of how the wavenumber k enters in the estimates and, in particular,
affects the onset of quasi-optimal convergence. The recent k-explicit regularity the-
ory for Helmholtz BIOs developed in [16] allows us be explicit at this point for the
hp-version of the BEM in Corollaries 3.18, 3.21: For analytic geometries and under
the assumption that the solution operator for the combined field BIO grows at most
polynomially in the wavenumber k, a scale resolution condition of the form

kh

p
sufficiently small and p ≥ C log k (1.1)

ensures quasi-optimality of the hp-BEM. We stress that, by [7], the assumption of
polynomial growth of the norm of the inverse of the combined field BIO is ensured
for star-shaped domains so that the present paper provides a complete k-explicit
convergence theory for the case of star-shaped domains with analytic boundary. It is
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worth rephrasing the scale resolution condition (1.1) as follows: If the approximation
order p is selected as p = O(log k), then the onset of quasi-optimality is achieved
for h = O(p/k), i.e., for a fixed number of degrees of freedom per wavelength. The
numerical results of Section 4 illustrate that indeed a scale resolution condition of the
form (1.1) ensures quasi-optimality of the hp-BEM. The side condition p = O(log k)
in (1.1) may be viewed as expressing the possibility of “pollution”, i.e., the possibility
that the onset of quasi-optimality of the method is k-dependent. Nevertheless, our
numerical experiments show that the weaker condition “kh/p small” alone is often
sufficient for quasi-optimality of the hp-BEM. Put differently: in contrast to the finite
element method, the BEM does not appear to be very susceptible to “pollution.”
To the authors’ knowledge, the only other k-explicit stability analysis for discretiza-
tions of combined field BIOs is provided in [9], where the special cases of circular
or spherical geometries are studied; in that setting the double layer and single layer
operators can be diagonalized simultaneously by Fourier techniques, which allows [9]
to show that the combined field BIOs are even L2-elliptic.
The result of the present paper have counterparts in the context of differential equa-
tions and finite elements. Decomposition results analogous to those of [16] have re-
cently been obtained in [17, 18] for several Helmholtz boundary value problems. A
k-explicit convergence theory for the hp-version of the finite element method has also
been developed in [17,18] using similar techniques; also there, the key scale resolution
condition on the mesh size h and the approximation order p takes the form (1.1).
The present paper analyzes the classical hp-BEM for high frequency scattering prob-
lems. This approach mandates a scale resolution condition of the form “kh/p suffi-
ciently small” and thus for problems in Rd, the problem size N will scaling at least
like N = O(kd−1). To circumvent or mitigate this scale resolution condition, integral
equation methods that are based on non-polynomial ansatz spaces have attracted sig-
nificant attention in recent years; we refer to the survey [4] for an up-to-date account.
While these non-standard methods can perform very impressively, their stability is
typically not analyzed; a notable exception is the analysis of [9] for the special case
of a circular/spherical geometry.
The paper is organized as follows: The remainder of this first section introduces gen-
eral notation and various boundary integral operators. Section 2 collects the relevant
results from [16] and rephrases them in a simplified form suitable for our L2-based
analysis. Section 3 shows how the regularity theory of Section 2 permits a k-explicit
stability and convergence analysis of the hp-BEM. We acknowledge here that our
technique, which derives the stability of the method from approximation results for
suitable adjoint problems, has previously been used in the literature, for example,
in [15, 17, 18] and notably [2] in a BEM-context. In Section 4 finally, we present
numerical results for the hp-BEM in 2D.

1.1. Notation and General Assumptions.

1.1.1. General Notation. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz
domain with a connected boundary. Throughout this work we assume that Γ :=
∂Ω is analytic. Furthermore, we assume for the case d = 2 the scaling condition
diamΩ < 1. We set Ω+ := Rd \ Ω. Throughout the paper, we assume that the
open ball BR := BR(0) of radius R around the origin contains Ω, i.e., Ω ⊂ BR. We
set ΩR := (Ω ∪ Ω+) ∩ BR = BR \ Γ. We will denote by γint

0 and γext
0 the interior

and exterior trace operator on Γ. The interior and exterior co-normal derivative
operators are denoted by γint

1 , γext
1 , i.e., for sufficiently smooth functions u, we set

γint
1 u := γint

0 ∇u ·~n and γext
1 u := γext

0 ∇u ·~n, where, in both cases ~n is the unit normal
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vector point out of Ω. As is standard, we introduce the jump operators

[u] = γext
0 u− γint

0 u, [∂nu] = γext
1 u− γint

1 u.

For linear operators Ã that map into spaces of piecewise defined functions, we define
the operators [Ã] and [∂nÃ] in an analogous way, e.g., [Ã]ϕ = [Ãϕ]. Sobolev spaces
Hs are defined in the standard way, [1, 24]. We stress, however, that if an open set
ω ⊂ Rd consists of m ∈ N components of connectedness ωi, i = 1, . . . ,m, then the
space Hs(ω) can be identified with the product space

∏m
i=1H

s(ωi) equipped with the

norm
(∑m

i=1 ‖u‖2
Hs(ωi)

)1/2

. Sets of analytic functions will play a very important role

in our theory. We therefore introduce the following definition.
Definition 1.1. For an open set T and constant Cf , γf > 0 we set

A(Cf , γf , T ) := {f ∈ L2(T ) | ‖∇nf‖L2(T ) ≤ Cfγ
n
f max{n+ 1, |k|}n ∀n ∈ N0}.

Here, |∇nu(x)|2 =
∑

α∈Nd
0
:|α|=n

n!

α!
|Dαu(x)|2.

Tubular neighborhoods T of Γ are open sets of such that T ⊃ {x ∈ Rd | dist(x,Γ) < ε}
for some ε > 0.
Throughout the paper, we will use the following conventions:
Convention 1.2.

(i) We assume |k| ≥ k0 > 0 for some fixed k0 > 0.
(ii) If the wavenumber k appears outside the boundary integral operators such as

Ak, A′k, then it is just a short-hand for |k|. In particular, k stands for |k| in
estimates. For example, k ≥ k0 means |k| ≥ k0.

1.1.2. Layer Potentials. In recent years, boundary element methods (BEM)
and BIOs have been made accessible to a wider audience through several monographs,
e.g., [10,14,21,23]. We refer to these books for more information about the operators
studied here.
We denote by Vk, Kk, K ′k the usual single layer, double layer, and adjoint double layer
operators for the Helmholtz equation. The single layer and double layer potentials
are denoted by Ṽk and K̃k. More specifically, we define the Helmholtz kernel Gk by

Gk(x, y) :=

{
i

4H
(1)
0 (k|x− y|), d = 2,

eik|x−y|

4π|x−y| , d = 3,
for k > 0,

Gk := G−k for k < 0,

where H
(1)
0 is the first kind Hankel function of order zero. The limiting case k = 0

corresponds to the Laplace operator and is defined as G0(x, y) = −1/(2π) ln |x − y|
for the case d = 2 and G0(x, y) = 1/(4π|x − y|) for the case d = 3. The potential

operators Ṽk and K̃k are defined by

(Ṽkϕ)(x) :=

∫

Γ

Gk(x, y)ϕ(y) dsy , (K̃kϕ)(x) :=

∫

Γ

∂nyGk(x, y)ϕ(y) dsy , x ∈ R
d\Γ.

From these potentials, the single layer, double layer, and adjoint double layer operators
are defined as follows:

Vk := γint
0 Ṽk, Kk :=

1

2

(
γint
0 K̃k + γext

0 K̃k

)
, K ′k := γint

1 Ṽk − 1

2
Id . (1.2)
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We mention in passing that for k 6= 0, the potentials Ṽk and K̃k are solutions of
the homogeneous Helmholtz equation on Rd \ Γ; for k > 0 they satisfy the outgoing
Sommerfeld radiation condition while for k < 0, they satisfy the incoming radiation
condition.
We have for all k ∈ R for the L2(Γ) scalar product and all ϕ, ψ ∈ H1/2(Γ):

(Vkϕ, ψ)L2(Γ) = (ϕ, V−kψ)L2(Γ), (1.3a)

(Kkϕ, ψ)L2(Γ) = (ϕ,K ′−kψ)L2(Γ), (1.3b)

i.e., the adjoints of Vk and Kk are V−k and K ′−k, respectively.

1.1.3. Combined Field Operators. For a coupling parameter η ∈ R \ {0} we
consider the following two combined field operators

Ak =
1

2
+K − iηV, (1.4)

A′k =
1

2
+K ′ + iηV. (1.5)

In order to avoid keeping track of the precise dependence of various constants on η,
we assume throughout this paper that

C−1
η |k| ≤ |η| ≤ Cη|k| (1.6)

for some fixed Cη > 0. On smooth surfaces, it is well-known, [6,8], that the operators
Ak and A′k are invertible as operators acting on L2(Γ). In fact, Ak is invertible as an
operator on Hs(Γ), s ≥ 0, and A′k is invertible as an operator on Hs(Γ), s ≥ −1/2.
In general, little is known about the k-dependence of the norms of their inverses. A
notable exception are star-shaped geometries, for which recently the following was
shown:
Lemma 1.3 ( [7]). Let the Lipschitz domain Ω be star-shaped with respect to the
origin. Then there exists a constant C > 0 independent of k ≥ k0 such that for the
operators Ak, A

′
k there holds

‖A−1
k ‖L2(Γ)←L2(Γ) = ‖(A′−k)−1‖L2(Γ)←L2(Γ) ≤ C.

We will see that in the context of high order Galerkin BEM (see Corollaries 3.18,
3.21), a case of particular interest is the one where ‖A−1‖L2(Γ)←L2(Γ) grows only
polynomially in k. Lemma 1.3 indicates that this assumption is reasonable. The
numerical examples in Section 4 include geometries that are not star-shaped, but
where this polynomial growth assumption is satisfied.

1.2. Galerkin Discretization. Associated with the operators Ak and A′k are
the sesquilinear forms ak and a′k (which are linear in the first and anti-linear in the
second argument) given by

ak(u, v) := (Aku, v)0 =
1

2
(u, v)0 + (Kku, v)0 − iη(Vku, v)0,

a′k(u, v) := (A′ku, v)0 =
1

2
(u, v)0 + (K ′ku, v)0 + iη(Vku, v)0.

Here and in the following, we use the short-hand (·, ·)0 to denote the L2(Γ)-inner
product. Given f ∈ L2(Γ) we study the operator equations Aku = f and A′ku = f .
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For a given XN ⊂ L2(Γ), these operator equations are discretized as follows:

find uN ∈ XN s.t. ak(uN , v) = (f, v)0 ∀v ∈ XN , (1.7)

find u′N ∈ XN s.t. a′k(u′N , v) = (f, v)0 ∀v ∈ XN . (1.8)

Since Ak and A′k are compact perturbations of the identity operator, unique solvability
of (1.7), (1.8) and quasi-optimality is given if XN is sufficiently large. The purpose
of the present paper is to make the k-dependence of the required approximation
properties of XN explicit.

2. Regularity. Subsections 2.1 and 2.2 collect results from [16]. These results,
however, are simplified to be directly applicable to the L2-convergence theory, which
is the focus of the present paper.

2.1. Decomposition of Ak and A′k.

2.1.1. Decomposition of Ak. The following lemma is derived from [16, Lemma 5.5,
Remark 5.6]:
Lemma 2.1 (decomposition of Ak). Fix q ∈ (0, 1) and α ∈ R. Then the operator Ak

can be written as

Ak =
1

2
+K0 + iαV0 +RA + k[ÃA]

where RA : L2(Γ) → H1(Γ) and ÃA satisfy for some constant C > 0, which is
independent of k ≥ k0 and q, and a constant γ > 0, which is independent of k ≥ k0,

‖RA‖H1(Γ)←L2(Γ) ≤ Ck, ‖RA‖L2(Γ)←L2(Γ) ≤ q,

ÃAϕ ∈ A(Ck‖ϕ‖L2, γ,ΩR) ∀ϕ ∈ L2(Γ).

Remark 2.2. Our reason for permitting the choice α 6= 0 in the decomposition of
Lemma 2.1 is that the operator 1/2 + K0 has a one-dimensional kernel. However,
the operator 1/2 + K0 − iV0 is invertible (see, e.g., [16, Lemma 2.5]). We will see
below that it is convenient to work with a decomposition of Ak whose leading term is
invertible.
The next lemma is derived from [16, Lemma 5.7, Remark 5.8]:
Lemma 2.3 (decomposition of A′k). Fix q ∈ (0, 1) and α ∈ R. Then the operator A′k
can be written in the form

A′k =
1

2
+K ′0 + iαV0 +RA′ + k[ÃA′,1] + [∂nÃA′,2]

where RA′ : L2(Γ) → H1(Γ) and ÃA′ satisfy for some constants C, γ > 0 that are
independent of k ≥ k0

‖RA′‖H1(Γ)←L2(Γ) ≤ Ck, ‖RA′‖L2(Γ)←L2(Γ) ≤ q,

ÃA′,iϕ ∈ A(Ck‖ϕ‖L2 , γ,ΩR) ∀ϕ ∈ L2(Γ), i ∈ {1, 2}.

Remark 2.4. As in Remark 2.2, the operator 1/2+K ′0 has a one-dimensional kernel.
However, the operator 1/2 +K ′0 + iV0 is invertible (see, e.g., [16, Lemma 2.5]).
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2.2. Decomposition of A−1
k and (A′k)−1. The following result is taken from

[16, Cor. 6.7] and exploits the fact that Ak is L2(Γ)-invertible:
Lemma 2.5. Let T be a tubular neighborhood of Γ, and Cg, γg > 0. Then there exist
constants C, γ > 0 such that for every g ∈ A(Cg, γg, T \ Γ) the solution ϕ ∈ L2(Γ) of
Akϕ = [g] satisfies

ϕ = [u], u ∈ A(CCϕ, γ,ΩR), Cϕ := Cgk(1 + k5/2‖A−1
k ‖L2←L2).

For the proof of the next result, we refer to [16, Cor. 6.9] and make use of the fact
that A′k is L2(Γ)-invertible:
Lemma 2.6. Let Γ be analytic, T be a tubular neighborhood of Γ, and Cg1

, Cg2
,

γg > 0. Then there exist constants C, γ > 0 independent of k ≥ k0 such that for
all g1 ∈ A(Cg1

, γg, T \ Γ), g2 ∈ A(Cg2
, γg, T \ Γ) the solution ϕ ∈ L2(Γ) of Akϕ =

k[g1] + [∂ng2] satisfies

ϕ = [∂nu], u ∈ A(CCϕ, γ,ΩR), Cϕ := (Cg1
+ Cg2

)
(
1 + k5/2‖(A′k)−1‖L2←L2

)
.

We now present the decomposition result for A−1
k of [16, Thm. 6.11]:

Theorem 2.7 (decomposition of A−1
k ). Let Γ be analytic. Let Ak be boundedly

invertible on L2(Γ). Then there exist constants C, γ > 0 independent of k ≥ k0 with
the following properties: The operator A−1

k can be written as

A−1
k = AZ + γext

0 ÃA−1 − γint
0 ÃA−1

where the linear operators AZ und ÃA−1 satisfy for all f ∈ Hs(Γ)

‖AZ‖L2←L2 ≤ C,

ÃA−1f ∈ A(CCf , γ,ΩR), Cf := k3
(
1 + k5/2‖A−1

k ‖L2←L2

)
‖f‖L2(Γ).

Finally, we have an analogous result for the adjoint (A′k)−1 (see [16, Thm. 6.12]):
Theorem 2.8 (decomposition of (A′k)−1). Let Γ be analytic. Then there exist con-
stants C, γ > 0 independent of k ≥ k0 with the following properties: The operator
(A′k)−1 can be written as

(A′k)−1 = A′Z + γext
1 ÃA′,inv − γint

1 ÃA′,inv

where the linear operators A′A and ÃA′,inv satisfy

‖A′Z‖L2←L2 ≤ C,

ÃA′,invf ∈ A(CCf , γ,ΩR), Cf :=
(
1 + k5/2‖(A′k)−1‖L2←L2

)
‖f‖L2(Γ).

3. L2-Stability and Convergence. Our stability and convergence theory rests
on viewing the operators Ak and A′k as perturbation of the zero-th order operators
A0 and A′0 given by:

A0 = +1/2 +K0 − iV0, (3.1)

A′0 = +1/2 +K ′0 + iV0 (3.2)

We view these operators as operators acting on L2(Γ) and note that the operator A′0
is the L2(Γ)-adjoints of the operator A0.
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3.1. Regularity Properties of Auxiliary Adjoint Problems. In view of
(1.3) we have

ak(u, v) = a′−k(v, u) ∀u, v ∈ L2(Γ),

which expresses the fact that the L2(Γ)-adjoint of Ak is given by A′−k:

Lemma 3.1. For every k ∈ R \ {0} the operators Ak and A′−k are L2(Γ)-adjoints of
each other.

We recall from Lemmata 2.1, 2.3 that the operators Ak − A0 and A′−k − A′0 can be
decomposed into two parts, namely, a part that is arbitrarily small as an operator
L2(Γ) → L2(Γ) and an operator that maps into a class of analytic functions. In
view of this observation and the fact that the operators A−1

k and (A′−k)−1 can, by
Theorems 2.7, 2.8, be decomposed into a zero-th order operator (that is uniformly
bounded in k) and an operator that maps into a class of analytic functions, we can
can formulate the following result:

Lemma 3.2. Let Γ be analytic. Let q, q′ ∈ (0, 1) be given. Then

A−1
k (Ak −A0) = TA + [Ãk,A,inv],

(A′−k)−1(A′−k −A′0) = TA′ + k[Ã−k,A′,inv,1] + [∂nÃ−k,A′,inv,2],

where for some C, γ > 0 independent of k ≥ k0 and all ϕ ∈ L2(Γ):

‖TA‖L2←L2 ≤ q, ‖TA′‖L2←L2 ≤ q′,

Ãk,A,invϕ ∈ A(CCϕ, γ,ΩR), Cϕ = k3(1 + k5/2‖A−1
k ‖L2←L2)‖ϕ‖L2(Γ),

Ã−k,A′,inv,iϕ ∈ A(CC′ϕ, γ,ΩR), C′ϕ = (1 + k5/2‖(A′−k)−1‖L2←L2)‖ϕ‖L2(Γ), i ∈ {1, 2}.

Proof. We first prove the decomposition result for (A′−k)−1(A′−k−A′0). From Lemma 2.3
and Theorem 2.8 we get

(A′−k)−1 = A′Z + [∂nÃA′,inv],

A′−k −A′0 = RA′ + k[ÃA′,1] + [∂nÃA′,2].

Hence, we obtain

(A′−k)−1 = A′ZRA′ + [∂nÃA′,inv]RA′ + (A′−k)−1
(
k[ÃA′,1] + [∂nÃA′,2]

)
.

We set TA := A′ZRA′ . From Theorem 2.8 we know that ‖A′Z‖L2←L2 is bounded
uniformly in k. Lemma 2.3 tells us that ‖RA′‖L2←L2 can be made arbitrarily small.
Hence, TA has the desired property. For ϕ ∈ L2(Γ) we get from Theorem 2.8 and
Lemma 2.3

ÃA′,invRA′ϕ ∈ A(CCϕ,1, γ,ΩR), Cϕ,1 =
(
1 + k5/2‖(A′−k)−1‖L2←L2

)
‖ϕ‖L2(Γ),

kÃA′,1ϕ, ÃA′,2ϕ ∈ A(CCϕ,2, γ,ΩR), Cϕ,2 =
(
1 + k5/2‖(A′−k)−1‖L2←L2

)
‖ϕ‖L2(Γ).

Lemma 2.6 then allows us to define the operators Ã−k,A′,inv,i, i ∈ {1, 2} with the
stated properties.
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The decomposition of A−1
k (Ak −A0) is performed in an analogous way by making use

of Theorem 2.7, Lemma 2.1, and Lemma 2.5: We can write

A−1
k = AZ + [ÃA−1 ],

Ak −A0 = RA + k[ÃA].

Therefore, A−1
k (Ak − A0) = AZRA + [ÃA−1 ]RA + A−1

k k[ÃA]. Again, we set TA :=

AZRA and see that its norm can be made arbitrarily small. The properties of ÃA−1

given in Theorem 2.7 and those of ÃA given in Lemma 2.1 together with Lemma 2.5
then imply the result.

3.2. Abstract Convergence Analysis. For the approximation space XN ⊂
L2(Γ) we denote by ΠL2

N : L2(Γ) → XN the L2(Γ)-projection onto XN . It will be
useful to quantify the approximation of analytic functions from the space XN :
Definition 3.3. Let T be a fixed tubular neighborhood of Γ. For every γ > 0, define
η1(N, k), η2(N, k, γ), η(N, k, γ) by

η1(N, k, γ) := sup{‖k[u]− ΠL2

N k[u]‖L2(Γ) |u ∈ A(1, γ, T \ Γ)},
η2(N, k, γ) := sup{‖[∂nu] − ΠL2

N [∂nu]‖L2(Γ) |u ∈ A(1, γ, T \ Γ)},
η(N, k, γ) := η1(N, k, γ) + η2(N, k, γ).

We point out that, by linearity, we have for functions u ∈ A(Cu, γ, T \ Γ) the

bound ‖k[u]−ΠL2

N k[u]‖L2(Γ) ≤ Cuη1(N, k, γ) and an analogous estimate for ‖[∂nu]−
ΠL2

N [∂nu]‖L2(Γ).
We will also need stability properties of the spaces XN for the operators A0 and A′0;
for future reference we formulate these as assumptions:
Assumption 3.4. The space XN satisfies a uniform discrete inf-sup condition for
the operator 1/2 +K0 − iV0, i.e., there exists γ0 > 0 independent of N such that

0 < γ0 ≤ inf
06=u∈XN

sup
06=v∈XN

|((1/2 +K0 − iV0)u, v)0|
‖u‖0 ‖v‖0

. (3.3)

The inf-sup condition (3.3) is equivalent to

0 < γ0 ≤ inf
06=u∈XN

sup
06=v∈XN

|((1/2 +K ′0 + iV0)u, v)0|
‖u‖0 ‖v‖0

, (3.4)

with the same constant γ0 > 0.
Remark 3.5. For the present case of smooth surfaces Γ, the operators K0 : L2(Γ) →
L2(Γ) and V0 : L2(Γ) → L2(Γ) are compact. Hence, Assumption 3.4 is satisfied, for
example, for standard hp-BEM spaces, when the discretization is sufficiently fine.
We close this subsection with two approximation results.
Lemma 3.6. Let Γ be analytic. Let q ∈ (0, 1) be given and let η(N,−k, γ) be given by
Definition 3.3. Then

‖(Id−ΠL2

N )(A′−k −A′0)‖L2←L2 ≤ q + Ckη(N,−k, γ),

‖(Id−ΠL2

N )(A′−k)−1(A′−k −A′0)‖L2←L2 ≤ q + C
{

1 + k5/2‖(A′−k)−1‖L2←L2

}
η(N,−k, γ),

for a γ > 0 that is independent of k ≥ k0 (but possibly depends on q).
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Proof. From Lemma 2.3, we have A′−k − A′0 = RA′ + k[ÃA′,1] + [∂nÃA′,2] where

‖RA′‖L2←L2 can be made arbitrarily small. Thus, ‖(Id−ΠL2

N )RA′‖L2←L2 ≤ ‖RA′‖L2←L2

can be made arbitrarily small. The L2(Γ)-approximation of the remaining terms

[ÃA′,1], [∂nÃA′,2] directly lead to the stated estimate.

From Lemma 3.2 we get the decomposition (A′−k)−1(A′−k−A′0) = TA′+k[Ã−k,A′,inv,1]+

[∂nÃ−k,A′,inv,2], where ‖TA′‖L2←L2 can be made arbitrarily small. It is easy to see
that the L2(Γ)-approximation of the remaining terms leads to the stated estimate.
Lemma 3.7. Let Γ be analytic. Let q ∈ (0, 1) be given and let η1(N, k, γ) be given by
Definition 3.3. Then

‖(Id−ΠL2

N )(Ak −A0)‖L2←L2 ≤ q + Ckη1(N, k, γ),

‖(Id−ΠL2

N )A−1
k (Ak −A0)‖L2←L2 ≤ q + Ck2

{
1 + k5/2‖A−1

k ‖L2←L2

}
η1(N, k, γ),

for a γ > 0 that is independent of k ≥ k0 (but possibly depends on q).

Proof. The proof follows the lines of Lemma 3.6. The estimate for ‖(Id−ΠL2

N )(Ak −
A0)‖L2←L2 follows from Lemma 2.1. Lemma 3.2 finally leads to the second bound.

3.2.1. The Case of the Operator Ak. At the heart of our analysis is the
following quasi-optimality result:
Theorem 3.8. Let Γ be analytic, η1, η2 be given by Definition 3.3, and let Assump-
tion 3.4 Then there exist constants ε, γ > 0 independent of k ≥ k0 such that under
the assumption

kη1(N, k, γ) ≤ ε,
(
1 + k5/2‖(A′−k)−1‖L2←L2

)
η(N,−k, γ) ≤ ε (3.5)

the following is true: If u ∈ L2(Γ) and uN ∈ XN are two functions that satisfy the
Galerkin orthogonality

ak(u − uN , v) = 0 ∀v ∈ XN (3.6)

then with γ0 as stated in Assumption 3.4

‖u− uN‖L2(Γ) ≤ 2

(
1 +

‖A0‖L2←L2

γ0

)
inf

wN∈XN

‖u− wN‖L2(Γ). (3.7)

Proof. We introduce the abbreviation e := u− uN . Let wN ∈ XN be arbitrary. Then
by the triangle inequality

‖e‖0 ≤ ‖u− wN‖0 + ‖uN − wN‖0. (3.8)

Hence, we have to estimate ‖uN − wN‖0. By the discrete inf-sup condition we can
find a vN ∈ XN with ‖vN‖0 = 1 and γ0‖uN − wN‖0 ≤ (A0(uN − wN ), vN )0. With
the Galerkin orthogonality (Ak(u − uN), vN )0 = 0, we then obtain

γ0‖uN − wN‖0 ≤ ((A0 −Ak)(uN − wN ), vN )0 + (Ak(uN − wN ), vN )0

= ((A0 −Ak)(uN − wN ), vN )0 + (Ak(u− wN ), vN )0

= ((Ak −A0)e, vN )0 + (A0(u− wN ), vN )0

≤ ‖A0‖L2←L2‖u− wN‖0 + ((Ak −A0)e, vN )0. (3.9)
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In order to treat the term ((Ak −A0)e, vN )0 we define ψ ∈ L2(Γ) by

((Ak −A0)z, vN )0 = (z,A′−kψ)0 ∀z ∈ L2(Γ). (3.10)

Lemma 3.2 tells us

ψ = (A′−k)−1(A′−k −A′0)vN (3.11)

By selecting z = e in (3.10), using Galerkin orthogonality satisfied by the error e and

orthogonality properties of ΠL2

N we obtain

((Ak −A0)e, vN )0

= (e,A′−kψ)0 = (Ake, ψ)0 = (Ake, ψ − ΠL2

N ψ)0

= (A0e, ψ − ΠL2

N ψ)0 + ((Ak − A0)e, ψ − ΠL2

N ψ)0

= (A0e, ψ − ΠL2

N ψ)0 + ((Ak − A0)e− ΠL2

N (Ak −A0)e, ψ − ΠL2

N ψ)0.

Hence, from (3.11) and ‖vN‖0 = 1

|((Ak −A0)e, vN )0| ≤
{
‖A0‖L2←L2 + ‖(Id−ΠL2

N )(Ak −A0)‖L2←L2

}

× ‖(Id−ΠL2

N )(A′−k)−1(A′−k −A′0)‖L2←L2 ‖e‖0.

From Lemmata 3.6, 3.7 we get for arbitrary q ∈ (0, 1)

|((Ak −A0)e, vN )0| ≤ {‖A0‖L2←L2 + q + Ckη1(N, k, γ)} (3.12)

×
{
q + C

(
1 + k5/2‖(A′−k)−1‖L2←L2

)
η(N,−k, γ)

}
‖e‖0.

Select now q ∈ (0, 1) such that (‖A0‖L2←L2 + q)q < 1/2. Then the constants C and
γ in (3.12) are fixed and independent of k ≥ k0. We can furthermore select ε > 0
independent of k such that the assumption (3.5) then guarantees that the product of
the two curly braces in (3.12) is bounded by 1/2. Combining (3.8), (3.9), and (3.12)
therefore yields

‖e‖0 ≤
(

1 +
‖A0‖L2←L2

γ0

)
‖u− wN‖0 +

1

2
‖e‖0,

which leads to the desired estimate.
Theorem 3.8 provides quasi-optimality under the assumption that uN ∈ XN exists.
However, the discrete inf-sup condition follows easily from Theorem 3.8. In particular,
we obtain that the discrete inf-sup constant is, up to a constant which is independent
of k, and N , the inf-sup constant for the continuous problem. This is a consequence
of the following, general result:
Theorem 3.9. Let X be a Hilbert space with norm ‖ · ‖X . Let XN ⊂ X be a finite-
dimensional subspace. Let a : X × X → C be a continuous sesquilinear form that
satisfies the inf-sup condition

0 < γa ≤ inf
06=u∈X

sup
06=v∈X

|a(u, v)|
‖u‖X‖v‖X

.

Let Cqopt > 0 be such that any pair (u, uN) ∈ X × XN that satisfies the Galerkin
orthogonality

a(u− uN , v) = 0 ∀v ∈ XN

10



enjoys the best approximation property

‖u− uN‖X ≤ Cqopt inf
v∈XN

‖u− v‖X .

Then the discrete inf-sup condition holds, i.e.,

inf
06=u∈XN

sup
06=v∈XN

|a(u, v)|
‖u‖X‖v‖X

=: γN ≥ γa
1

1 + Cqopt
> 0.

Proof. We first show that the restriction of the sesquilinear form a toXN×XN induces
an injective operator XN → X ′N . To see this, let uN ∈ XN satisfy a(uN , v) = 0 for
all v ∈ XN . Our assumption is then applicable to the pair (u, uN) = (0, uN ), and we
get ‖uN‖X = ‖u− uN‖X ≤ Cqopt infv∈XN ‖u− v‖X ≤ Cqopt‖u‖X = 0. By dimension
arguments, therefore, the Galerkin projection operator PN : X → XN given by

a(u− PNu, v) = 0 ∀v ∈ XN

is well-defined. Additionally, the quasi-optimality assumption produces the stability
result ‖PNu‖X ≤ ‖u‖X + ‖u− PNu‖X ≤ (1 + Cqopt)‖u‖X .
It is known that

inf
06=u∈XN

sup
06=v∈XN

|a(u, v)|
‖u‖X‖v‖X

= inf
06=v∈XN

sup
06=u∈XN

|a(u, v)|
‖u‖X‖v‖X

.

We will therefore just compute the second inf-sup constant. To that end, let v ∈
XN \ {0}. Then by Galerkin orthogonality and v ∈ XN

sup
06∈u∈XN

|a(u, v)|
‖u‖X‖v‖X

= sup
06∈u∈X

|a(PNu, v)|
‖PNu‖X‖v‖X

= sup
06=u∈X

|a(u, v)|
‖PNu‖X‖v‖X

≥ 1

1 + Cqopt
sup

06=u∈X

|a(u, v)|
‖u‖X‖v‖X

≥ 1

1 + Cqopt
γa.

Taking the infimum over all v ∈ XN concludes the argument.
Combining Theorems 3.9 and 3.8 yields:
Corollary 3.10. Assume the hypotheses of Theorem 3.8. If the approximation space
XN satisfies (3.5), then (1.7) is uniquely solvable and the quasi-optimality result (3.7)
is true.

3.2.2. The Case of the Operator A′k. The results of Section 3.2.1 for the
discretization of the operator Ak have clearly analogs for the discretization of the
operator A′k. Since the procedure is very similar to that of Section 3.2.1, we merely
state the results and leave their proofs to the reader.
Theorem 3.11. Let Γ be analytic, η1, η be given by Definition 3.3, and let Assump-
tion 3.4 be valid. Then there exist constants ε, γ > 0 independent of k ≥ k0 such that
under the assumption

kη(N, k, γ) ≤ ε, k2
(
1 + k5/2‖A−1

−k‖L2←L2

)
η1(N,−k, γ) ≤ ε (3.13)

the following is true: If u ∈ L2(Γ) and uN ∈ XN are two functions that satisfy the
Galerkin orthogonality

a′k(u − uN , v) = 0 ∀v ∈ XN (3.14)
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then with γ0 as stated in Assumption 3.4

‖u− uN‖L2(Γ) ≤ 2

(
1 +

‖A′0‖L2←L2

γ0

)
inf

wN∈XN

‖u− wN‖L2(Γ). (3.15)

Proof. See Appendix A.
Corollary 3.12. Assume the hypotheses of Theorem 3.11. If the approximation
space XN satisfies (3.13), then (1.8) is uniquely solvable and the quasi-optimality
result (3.15) is true.

3.3. Classical hp-BEM. The analysis of the preceding section shows that the
stability and convergence analysis of discretizations of the operators Ak and A′k can
be reduced to questions of approximability. As an example of the abstract theory, we
consider the classical hp-BEM. We restrict our attention here to a situation in which
the h-dependence can be obtained by scaling arguments.
We let K̂d−1 = {x ∈ Rd−1 | 0 < xi < 1,

∑d−1
i=1 xi < 1} and K̂d = {x ∈ Rd | 0 <

xi < 1,
∑d

i=1 xi < 1} be the references simplices in Rd−1 and Rd. By T we denote
a triangulation of Γ into elements K ∈ T , where the elements K are assumed to be
the images of K̂d−1 under smooth element maps FK : K̂d−1 → K. The element maps

FK are furthermore required to be C1-diffeomorphisms between K̂d−1 and K. For
p ∈ N0, we then define the hp-BEM space Sp(T ) by

Sp(T ) = {u ∈ L2(Γ) |u|K ◦ FK ∈ Pp ∀K ∈ T }, (3.16)

where Pp is the vector space of all polynomials of degree p.
To motivate the class of triangulations of Assumption 3.15 below, we consider the
following two examples:
Example 3.13. Let d = 2 and Γ = ∂Ω ⊂ Rd be an analytic curve. Let the analytic
function R : [0, 1) → Γ be a parametrization of Γ. Denote by T̂ a uniform mesh on

[0, 1) with mesh size h. Define the mesh T by “transporting” the elements of T̂ to
Γ via R. Then the element maps FK have the form FK = R ◦ AK , where AK is an
affine map with ‖∇AK‖ ≤ Ch and ‖(∇AK)−1‖ ≤ Ch−1. These element maps have
the form stipulated in Definition 3.15 below.
Example 3.14. Let d = 3 and Γ = ∂Ω be analytic. Let T d be a patchwise constructed
mesh on the domain Ω as given in [18, Example 5.1]. There, the element maps

FK : K̂d → K have the form FK = RK ◦AK for an affine map AK with ‖∇AK‖ ≤ Ch
and ‖(∇AK)−1‖ ≤ Ch−1 and the functions RK satisfy

‖(∇RK)−1‖L∞( eKd) ≤ Cmetric, ‖∇nRK‖L∞( eKd) ≤ Cmetricγ
nn! ∀n ∈ N0;

here, K̃d = AK(K̂d) is the image of the reference simplex K̂d under the affine map
AK . The mesh T d on the domain Ω induces in a canonical way a mesh mesh on
Γ = ∂Ω. This trace mesh has the properties specified in the Definition 3.15 below.
The two examples motivate the following assumptions on the triangulation of Γ:
Definition 3.15 (quasi-uniform triangulation). A triangulation Th of the analytic
manifold Γ is said to be a quasi-uniform mesh with mesh size h if the following is true:
Each element map FK can be written as FK = RK ◦AK , where AK is an affine map
and the maps RK and AK satisfy for constants Caffine, Cmetric, γT > 0 independent
of h:

‖∇AK‖L∞( bK) ≤ Caffineh, ‖(∇AK)−1‖L∞( bK) ≤ Caffineh
−1

‖(∇RK)−1‖L∞( eK) ≤ Cmetric, ‖∇nRK‖L∞( eK) ≤ Cmetricγ
n
T n! ∀n ∈ N0.
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Here, K̃ = AK(K̂).
Lemma 3.16. Let Γ be analytic. Let Th be a quasi-uniform triangulation of Γ with
mesh size h in the sense of Definition 3.15. Fix a tubular neighborhood T of Γ. Let
XN = Sp(Th). Let C̃ > 0 be fixed and assume that h, p, and k satisfy

kh

p
≤ C̃.

Then, for every γ > 0 there exist C, σ > 0 (independent of h, p, and k ≥ k0) such
that

η(N, k, γ) ≤ η1(N, k, γ) + η2(N, k, γ) ≤ Ck3/2

{(
h

σ + h

)p+1

+

(
kh

σp

)p+1
}
.

Proof. We only sketch the arguments for the bound on η1, which quantifies how
well the jump k[u] of a piecewise analytic function can be approximated from XN =
Sp(Th). Using [16, Lemma B.5], we may assume that u|Ω+ = 0. Denote by ~n(x) the
outer normal vector of Ω at the point x ∈ Γ.
1. step: Let Th be a tubular neighborhood of Γ of width O(h) and u ∈ A(Cu, γu, T \Γ)
for a fixed tubular neighborhood of Γ. We assume that h is small (as compared to
the width of T ). With the aid of [13, Lemma 2.1] and the interpolation inequality

‖v‖
B

1/2

2,1 (Ω)
.‖v‖1/2

L2(Ω)‖v‖
1/2
H1(Ω), we conclude

‖∇nu‖L2(Th) ≤ C
√
khCu(γ′u)n max{k, n+ 1}n ∀n ∈ N0, (3.17)

where the constants C, γ′u are independent of k ≥ k0 and h.

2. step: The reference simplex K̂d can be written in the form K̂d = {(x̂, z) | 0 < z <

1, x̂ ∈ zK̂d−1}. The element maps FK : K̂d−1 → Γ have the form FK = RK ◦ AK .
Define

Ad
K : K̂d ∋ (x̂, z) 7→ (AK(x̂), hz) ,

Rd
K : K̃d ∋ (x̃, z̃) 7→ RK(x̃) − z̃~n(RK(x̃));

here K̃d is the image of K̂d under Ad
K , and x̃ ∈ K̃, z̃ ∈ R. The assumption on AK

implies readily that Ad
K : K̂d → K̃d satisfies

‖∇Ad
K‖L∞( bKd) ≤ Ch, ‖(∇Ad

K)−1‖L∞( bKd) ≤ Ch−1

for a constant C that is independent of h. The analyticity of Γ implies furthermore
that the function Rd

K satisfies for some constants c0, Cg, γg that depend solely on Γ
and the constants Cmetric, γT

‖(∇Rd
K)−1‖L∞( eKd) ≥ c0, ‖∇nRd

K‖L∞( eKd) ≤ Cgγgn! ∀n ∈ N0.

3. step: The images Kd = (Rd
K ◦ Ad

K)(K̂d) lie in a tubular neighborhood Th of Γ
that has width O(h). Furthermore, geometric considerations imply a finite overlap
property, namely, the existence of a constant M > 0 such that any x ∈ Ω is in no
more than M of these sets:

sup
x∈Ω

|{K ∈ Th |x ∈ Kd}| ≤M. (3.18)
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4. step: Define for each K ∈ Th the constant

C2
K :=

∑

n∈N0

1

(2γ′u max{k, n}n)2
‖∇nu‖2

L2(Kd) (3.19)

and note that (3.17) and (3.18) imply

∑

K∈Th

C2
K ≤M

∑

n∈N0

(
1

2γ′u max{k, n+ 1}n

)2

‖∇nu‖2
L2(Th) ≤

4

3
CMC2

ukh. (3.20)

5. step: We have u|Kd ∈ A(CK , 2γ
′
u,K

d), and [18, Lemma C.1] implies that the

function u ◦ Rd
K satisfies u ◦ Rd

K ∈ A(CCK , γ̃u, K̃
d), where the constants C and γ̃u

depend solely on γ′u, γg, and Cg. Since the map Ad
K is affine and F d

K = Rd
K ◦Ad

K , we
get for constants C, γ independent of k and h

‖∇n(u ◦ F d
K)‖L2( bKd) ≤ CCKh

−d/2(γh)n max{k, n}n ∀n ∈ N0.

Next, [18, Lemma C.2] gives for constants C, σ > 0 independent of h, p, and k ≥ k0

inf
π∈Pp

‖u ◦ F d
K − π‖L∞( bKd) ≤ CCKh

−d/2

((
h

σ + h

)p+1

+

(
kh

σp

)p+1
)
,

where Pp is the space of d-variate polynomials of degree p. Hence, taking the trace

on the d− 1-dimensional face K̂d−1 produces

inf
π∈Pp

‖u ◦ FK − π‖L∞( bK) ≤ CCKh
−d/2

((
h

σ + h

)p+1

+

(
kh

σp

)p+1
)
,

where Pp denotes the space of d− 1-variate polynomials of degree p. Scaling back to
the element K and summing over all elements K ∈ Th yields

inf
π∈Sp(Th)

‖u− π‖2
L2(Γ) ≤

∑

K∈Th

CC2
Kh
−dhd−1

((
h

σ + h

)p+1

+

(
kh

σp

)p+1
)2

≤ CC2
uk

((
h

σ + h

)p+1

+

(
kh

σp

)p+1
)2

.

Recalling that that we are actually interested in the approximation of the function
ku instead of u, we see that we have obtained the desired bound for η1.
Theorem 3.17 (quasi-optimality for A). Let Γ be analytic. Let Th a quasi-uniform
mesh on Γ of mesh size h in the sense of Definition 3.15. Let XN = Sp(Th). Then
there exist constants C, ε, σ > 0 independent of h, k, and p such that the following
is true: If the scale resolution condition

{
k5/2 + k4‖(A′−k)−1‖L2←L2

}{( h

σ + h

)p+1

+

(
kh

σp

)p+1
}

≤ ε (3.21)

is satisfied, then (1.7) has a unique solution uN which satisfies

‖u− uN‖L2(Γ) ≤ C inf
v∈Sp(Th)

‖u− v‖L2(Γ), (3.22)
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where C > 0 is independent of k ≥ k0.

Proof. Combine Theorem 3.8 with Lemma 3.16.

We now turn to a corollary covering the case of polynomial growth of k 7→ ‖(A′−k)−1‖L2←L2 .
This assumption is quite reasonable in view of Lemma 1.3 (which stated that β = 0
in the following corollary for the special case of star-shaped geometries).

Corollary 3.18. Assume the hypotheses of Theorem 3.17. Assume additionally the
existence of C, β ≥ 0 independent of k such that

‖(A′−k)−1‖L2←L2 ≤ Ckβ . (3.23)

Then there exist constants C1, C2 independent of h, k, and p such that for

hk

p
≤ C1 and p ≥ C2 log k (3.24)

the quasi-optimality assertion (3.22) of Theorem 3.17 is true.

Remark 3.19. Corollary 3.18 can be phrased in a different way: the onset of quasi-
optimality of the BEM is guaranteed for the choice

p = ⌈C2 log k⌉ and h = C1
p

k
.

The corresponding problem size N := dimSp(Th) is given by N = dimSp(Th) ∼
h−(d−1)pd−1 ∼ kd−1; i.e., the onset of quasi-optimality of the BEM is achieved with
a fixed number of degrees of freedom per wavelength.

Results corresponding to the above ones for the operator Ak hold for the operator
A′k. We merely record the statements.

Theorem 3.20 (quasi-optimality for A′). Let Γ be analytic. Let Th a quasi-uniform
mesh of mesh size h in the sense of Definition 3.15. Let XN = Sp(Th). Then there
exist constants C, ε, σ > 0 independent of h, k, and p such that the following is true:
If the scale resolution condition

{
k7/2 + k6‖A−1

k ‖L2←L2

}{( h

σ + h

)p+1

+

(
kh

σp

)p+1
}

≤ ε (3.25)

is satisfied, then (1.8) has a unique solution uN which satisfies

‖u− uN‖L2(Γ) ≤ C inf
v∈Sp(Th)

‖u− v‖L2(Γ), (3.26)

where C > 0 is independent of k.

Corollary 3.21. Assume the hypotheses of Theorem 3.20. Assume additionally
the existence of C, β ≥ 0 independent of k such that ‖A−1

k ‖L2←L2 ≤ Ckβ . Then
there exist constants C1, C2 independent of h, k, and p such that for hk

p ≤ C1 and

p ≥ C2 log k the quasi-optimality assertion (3.26) of Theorem 3.20 is true.

Remark 3.22. As in Remark 3.22, Corollary 3.21 can be phrased in a different way:
the onset of quasi-optimality of the BEM is guaranteed for the choice p = ⌈C2 log k⌉
together with h = C1

p
k . The corresponding problem size N := dimSp(Th) is given

by N = dimSp(Th) ∼ h−(d−1)pd−1 ∼ kd−1; i.e., the onset of quasi-optimality of the
BEM is achieved with a fixed number of degrees of freedom per wavelength.
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4. Numerical Results. All our numerical examples are based on the operator
A′k = 1/2 + K ′k + iηVk, where the coupling parameter is η = k or η = 1. The
ansatz spaces XN are taken to be standard hp-BEM spaces of piecewise polynomials
of degree p. Specifically, let T = {Ki | i = 1, . . . , N} be a partition of Γ into N
elements and let FK : [−1, 1] → Γ be the element maps. Then Sp(T ) = {u ∈
L2(Γ) |u|K ◦ FK ∈ Pp ∀K ∈ T }. Here, Pp denotes the univariate polynomials
of degree p. The element maps FK are constructed as described in Example 3.13,
i.e., the uniform mesh T̂ in parameter space is transported to the curve Γ by its
parametrization. The basis of Sp(T ) selected for the computations is taken to be the
push-forward of the L2-normalized Legendre polynomials on the reference element
[−1, 1]. The BEM operatorsK ′ and V are set up with an hp-quadrature with pmax+2
quadrature points in each direction per quadrature cell (usually, pmax = 20). Details
of the fast quadrature technique employed are described in [11]. Systematically, the
number of elements N is taken proportional to k.
Denoting by PT ,p : L2(Γ) → Sp(T ) the Galerkin projector, which is characterized by

a′k(u− PT ,pu, v) = 0 ∀v ∈ Sp(T ),

we approximate the Galerkin error ‖ Id−PT ,p‖L2←L2 by the formula

‖ Id−PT ,p‖L2←L2 ≈ sup
06=v∈Spmax (T )

‖v − PT ,pv‖L2

‖v‖L2

. (4.1)

Unless stated otherwise, we select pmax = 20 for the computation of (4.1).
Since for smooth domains we may expect the quasi-optimality constant to be asymp-
totically 1 (see the discussion in Section 5 below) we do not present in our numerical
examples ‖ Id−PT ,p‖L2←L2 of (4.1) but instead the Galerkin Error Measure

E :=
√
‖ Id−PT ,p‖2

L2←L2 − 1. (4.2)

We also report the extremal singular values σmin(M−1A′) and σmax(M−1A′) for
p = 10, where M denotes the mass matrix for the space Sp(T ) and A′ represents
the stiffness matrix for the discretization of A′k. These numbers give a very good
indication of 1/‖(A′k)−1‖L2←L2 and ‖A′k‖L2←L2 . The singular values are computed
with the Lapack-routine zgesvd.
The examples below are selected to illustrate the theoretical results of the paper and
to test its limits. The geometries of Examples 4.1 and 4.2 are a circle and an ellipse
and hence fully covered by our theory (recall that C(Ak, 0, k) = C(A′−k, 0,−k) = O(1)
by [7]). The geometries in Examples 4.3, 4.4, 4.5, 4.6 are no longer star-shaped so
that bounds for C(Ak, 0, k) = C(A′−k, 0,−k) = O(1) are not known. In Examples 4.5,
4.6 we even leave the realm of smooth geometries; in the terminology of [5, Thm. 5.1]
these geometries are “trapping domains” and the wavenumbers selected in our com-
putations are precisely the critical wavenumbers identified there. Clearly, the choice
of the coupling parameter η in (1.4) affects the norm C(Ak, 0, k) and thus, in turn,
the conditions on the approximation properties of the discrete spaces XN for quasi-
optimality. We therefore also perform calculations for the choice η = 1 in Examples 4.4
and 4.6.
Example 4.1. Ω = B1(0) is a circle with radius r = 1. The mesh has N = k elements
of equal size. The element maps FK are obtained with the aid of the parameterization
{(r cosϕ, r sinϕ) |ϕ ∈ [0, 2π)} of the circle. The coupling parameter η is selected as
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k=1024
k=256
k=128
k=64
k=32
k=16
k=8
k=4

k σmax(M−1A′) σmin(M−1A′)
4 1.26835 0.5
8 1.54632 0.5
16 1.89880 0.5
32 2.40042 0.5
64 2.98223 0.5
128 3.76487 0.5
256 4.73099 0.5
1024 7.48469 0.5

Fig. 4.1. (see Example 4.1) Circle with radius r = 1, η = k. Left: Galerkin Error Measure E
(see (4.2)). Right: Estimate of ‖A′k‖L2←L2 and 1/‖(A′k)−1‖L2←L2 .
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ellipse, a=1, b=1/4, η = k

 

 

k=256
k=128
k=64
k=32
k=16
k=8
k=4

k σmax(M−1A′) σmin(M−1A′)
4 1.41593 0.489
8 1.71889 0.5
16 2.01108 0.5
32 2.64065 0.5
64 3.43955 0.5
128 4.57966 0.5
256 6.0845 0.5

Fig. 4.2. (see Example 4.2) Ellipse with semi-axes a = 1 and b = 1/4. Left: Galerkin Error
Measure E (see (4.2)). Right: Estimate of ‖A′k‖L2←L2 and 1/‖(A′k)−1‖L2←L2

η = k. Fig. 4.1 shows the Galerkin Error Measure of (4.2) as a function of p; we also
give an indication of ‖A′k‖L2←L2 and ‖(A′k)−1‖L2←L2 .

Example 4.2. Ω is an ellipse with semi-axes a = 1 and b = 1/4. The boundary Γ
is parametrized in the standard way by {(a cosϕ, b sinϕ) |ϕ ∈ [0, 2π)}. The element
maps are obtained by uniformly subdividing the parameter interval [0, 2π), and the
mesh has N = k elements. The coupling parameter η is η = k. The numerical results
are presented in Fig. 4.2.

Example 4.3. Ω = B1/2(0) \ B1/4(0) is the annular region between two circles
of radii 1/2 and 1/4. The normal vector appearing in the definition of K ′k always
points outwards. The boundary ∂Ω is parametrized in the standard way with polar
coordinates. The wave number is related to the number of elements N by N = 2k, and
each of the two components of connectedness of ∂Ω has N/2 elements. The coupling
parameter η is η = k. The results can be found in Fig. 4.3.

Example 4.4. The setup is as in Example 4.3 with coupling parameter η = 1 instead
of η = k. The result are presented in Fig. 4.4.
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k=512
k=256
k=128
k=64
k=32
k=16
k=8
k=4

k σmax(M−1A′) σmin(M−1A′)
4 2.36155 0.500129
8 2.35101 0.497189
16 2.54262 0.238509
32 2.81275 0.500153
64 3.2893 0.51368−1

128 3.69209 0.914729−1

256 4.37155 0.884842−1

512 5.1591 0.275835−2

Fig. 4.3. (see Example 4.3) Ω = B1/2(0) \ B1/4(0). Left: Galerkin Error Measure E (see

(4.2)). Right: Estimate of ‖A′k‖L2←L2 and ‖(A′k)−1‖L2←L2 .
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k=512
k=256
k=128
k=64
k=32
k=16
k=8
k=4

k σmax(M−1A′) σmin(M−1A′)
4 1.84018 0.304956
8 1.64098 0.147632
16 1.67512 0.102911
32 1.65914 0.603251−1

64 1.70917 0.190993−1

128 1.87601 0.911284−2

256 1.99572 0.834516−2

Fig. 4.4. (see Example 4.4) Ω = B1/2(0) \ B1/4(0). Coupling parameter η = 1. Left: Galerkin

Error Measure E (see (4.2)). Right: Estimate of ‖A′k‖L2←L2 and ‖(A′k)−1‖L2←L2 .

Example 4.5. Ω is the C-shaped domain given by

Ω = ((−r/3, r/3) × (−r/2, r/2)) \ ((0, r/3) × (−r/6, r/6)), r = 1/2.

For different values of the parmeter m ∈ 3N, we select the number of elements N and
the wavenumber k according to

N = 20m, k =
3π

r
.

The meshes are uniform on Γ. The coupling parameter is η = k. The results can be
found in Fig. 4.5.
Example 4.6. The setup is the same as in Example 4.5 with the exception that the
coupling parameter η is chosen as η = 1 instead of η = k and that pmax = 15 instead
of pmax = 20. The numerical results can be found in Fig. 4.6.

Discussion of the Numerical Examples.

1. We recall that in all numerical examples the mesh size h is proportional to
1/k. In the calculations based on smooth geometries, i.e., Examples 4.1,
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m=3
m=6
m=12
m=24

m k = 6πm σmax(M−1A′) σmin(M−1A′)
3 56.5487 2.721 2.24795−1

6 113.097 2.99077 1.40383−1

12 226.195 3.59232 7.80885−2

24 452.389 4.86965 4.14679−2

Fig. 4.5. C-shaped domain (see Example 4.5), η = k. Left: Galerkin Error Measure E (see
(4.2)). Right: Estimate of ‖A′k‖L2←L2 and ‖(A′k)−1‖L2←L2 .
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m=48
m=24
m=12
m=6
m=3

m k = 6πm σmax(M−1A′) σmin(M−1A′)
3 56.5487 1.59341 1.24977−2

6 113.097 1.71847 3.42968−3

12 226.195 1.88635 1.02321−3

24 452.389 2.10001 2.27319−4

48 904.779 2.40774 8.30718−5

Fig. 4.6. C-shaped domain (see Example 4.6), η = 1. Left: Galerkin Error Measure E (see
(4.2)). Right: Estimate of ‖A′k‖L2←L2 and ‖(A′k)−1‖L2←L2 .

4.2, 4.3, 4.4, we observe that the Galerkin Error Measure E tends to zero
as p → ∞. This shows that indeed, asymptotically, the quasi-optimality
constant is 1. Closer inspection of the numerical results indicates an O(1/p)-
behavior, which is consistent with the finite shift properties of V0 andK ′0. It is
noteworthy that in Example 4.4, where η = 1 the asymptotic behavior of the
Galerkin Error Measure appears to be O(1/(pk)). Hence, for that geometry,
the combined η and k dependence appears to be O((1 + |η|)/(kp)).

2. In the case of a circle (Example 4.1), an ellipse (Example 4.2), and the case
of an annular geometry with coupling parameter η = k (Example 4.3) we
observe that the condition

kh

p
sufficiently small (4.3)

is already enough to ensure quasi-optimality of the Galerkin hp-BEM. The
side condition p = O(log k) of (1.1) is not visible. For the special case of a
circle, this absence of “pollution” may be expected in view the analysis of [2].

3. The C-shaped geometry in the Examples 4.5, 4.6 is not smooth. Hence, the
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operator K ′k is no longer smoothing and one cannot expect the Galerin Error
Measure E of (4.2) to tend to zero. This is indeed visible in Figs. 4.5, 4.6.
The sharp decrease of the the Galerkin Error Measure E for large p is likely
to be a numerical artefact since E is obtained by comparing lower values of
p with the result for pmax = 20 in the case of Fig. 4.5 and pmax = 15 in
Fig. 4.6.

4. The work [7] shows that C(A′k, 0, k) = ‖(A′k)−1‖L2←L2 is bounded uniformly
in k for star-shaped geometries. Indeed, the numerical results for the case of
a circle (Example 4.1) and an ellipse (Example 4.2) confirm this. In contrast,
the geometries of Examples 4.3 and 4.5 are not star-shaped and we observe
in Figs. 4.3, 4.4, 4.5, 4.6 that C(A′k, 0, k) is not bounded uniformly in k but
grows algebraically. The norm ‖A′k‖L2←L2 is seen to grow (mildly) in k in all
examples. This is in accordance with known results. For example, [9] shows
‖A′k‖L2←L2 = O(k1/3) for the case of a circle and [5] proves ‖A′k‖L2←L2 =
O(k1/2) for general 2D Lipschitz domains. For the convenience of the reader,
we present the tables of Figs. 4.1–4.6 in the form of graphs in Fig. 4.7.

5. For the C-shaped geometry of Examples 4.5, 4.6, a lower bound for C(A′k, 0, k)
is given in [5, Thm. 5.1] as

C(A′k, 0, k) ≥ Ck9/10

(
1 +

|η|
k

)−1

.

We observe in particular that selecting η = O(1) instead of η = O(k) leads
to an increase of the bound by a factor k. Our numerical examples (see
the tables in Figs. 4.5, 4.6 or the graphs in Fig. 4.7) indicate that the lower
bounds of [5, Thm. 5.1] are essentially sharp.

6. In the case of circular/elliptic geometries and even in the case of the non-
convex geometry of an annulus, we did not observe a “pollution” effect; in
other words, quasi-optimality of the Galerkin BEM takes place as soon as
kh/p is sufficiently small. The more stringent scale resolution condition (1.1)
that stipulates p = O(log k) might, however, be needed in more general sit-
uations. This is the purpose of selecting η = 1 in the Examples 4.4, 4.6. It
has the effect of increasing C(A′k, 0, k), which, according to the analysis of
Section 3, puts conditions on the approximation properties of the hp-BEM
spaces. Indeed, the plots in Figs. 4.4, 4.6 indicate that the condition “kh/p
small” alone is insufficient to ensure quasi-optimality of the Galerkin BEM.

5. concluding remarks. Our convergence theory rests on the stability of the
discretization of the operators A0 and A′0 given by (3.1), (3.2). In the present context
of smooth geometries, it is possible select A0 = A′0 = 1

2 Id and thus circumvent
Assumption 3.4. The key argument is Lemma 5.1 below, which could then be used
to show that Lemma 3.2 is valid almost verbatim (the powers of k for the analytic
contributions may change) with A0 = A′0 = 1

2 Id instead of the expressions given in
(3.1), (3.2). Nevertheless, we have not opted for this analytical developement. The
decompositions of Lemmata 2.1, 2.3 are based on decompositions of potentials defined
on Rd \ Γ and then appropriate traces on Γ are taken to infer decompositions of Ak,
A′k. With this technique, the operators 1

2 +K0 and 1
2 +K ′0 appear quite naturally,

and one may hope to be able to develop a decomposition theory (and then in turn a
convergence theory) for problems with piecewise smooth geometries. In contrast, the
decomposition of K0 of Lemma 5.1 below rests heavily on the smoothness of Γ, and
it is not clear that a generalization to non-smooth geometries could at all be possible.
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Fig. 4.7. Extremal singular values of M
−1

A
′ for Examples 4.1 (top left), 4.2 (top right), 4.3

(middle left), 4.4 (middle right), 4.5 (bottom left), 4.6 (bottom right).

Lemma 5.1. Let Γ be analytic. Let q ∈ (0, 1). Then the operators Ak and A′k can be
decomposed as

Ak =
1

2
+RA + k[ÃA], A′k =

1

2
+RA′ + k[ÃA′,1] + [∂nÃA′,2],
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where for constants C, γ > 0 and a tubular neighborhood T of Γ, which are all
independent of k ≥ k0:

‖RA‖H1(Γ)←L2(Γ) ≤ Ck, ‖RA‖L2(Γ)←L2(Γ) ≤ q,

ÃAϕ ∈ A(Ckmax{1,d/2−1}‖ϕ‖L2, γ, T \ Γ)) ∀ϕ ∈ L2(Γ),

‖RA′‖H1(Γ)←L2(Γ) ≤ Ck, ‖RA′‖L2(Γ)←L2(Γ) ≤ q,

ÃA′,iϕ ∈ A(Ckmax{1,d/2−1}‖ϕ‖L2 , γ, T \ Γ)) ∀ϕ ∈ L2(Γ), i ∈ {1, 2}.

Proof. The ingredient is a further decomposition of K0 and K ′0 using the frequency
splitting operators Hneg

Γ and Lneg
Γ of [16, Lemma 5.3]. We can write

K0 = Hneg
Γ K0 + γint

0 Lneg
Γ K0, K0 = Hneg

Γ K ′0 + γint
0 Lneg

Γ K ′0.

Since K0 : L2(Γ) → H1(Γ) and K ′0 : L2(Γ) → H1(Γ), we obtain from [16, Lemma 5.3]
for arbitrary q ∈ (0, 1)

‖Hneg
Γ K0‖L2←L2 ≤ Cq/k, ‖Hneg

Γ K0‖H1←L2 ≤ C,

‖Hneg
Γ K ′0‖L2←L2 ≤ Cq/k, ‖Hneg

Γ K ′0‖H1←L2 ≤ C.

For the analytic parts Lneg
Γ K0 and Lneg

Γ K ′0, [16, Lemma 5.3] asserts the existence of
a tubular neighborhood T of Γ and a constants C, γ > 0 (possibly depending on the
choice of q) with

‖∇nLneg
Γ K0f‖L2(T ) ≤ Ckd/2γn max{n, k}n‖f‖L2(Γ) ∀n ∈ N0,

‖∇nLneg
Γ K ′0f‖L2(T ) ≤ Ckd/2γn max{n, k}n‖f‖H−1/2(Γ) ∀n ∈ N0.

Combining these results with Lemmata 2.1, 2.3 leads to the desired statement.

Appendix A. Proof of Theorem 3.11. Proof of Theorem 3.11: We introduce the
abbreviation e := u−uN . Let wN ∈ XN be arbitrary. Then by the triangle inequality

‖e‖0 ≤ ‖u− wN‖0 + ‖uN − wN‖0. (A.1)

Hence, we have to estimate ‖uN − wN‖0. By the discrete inf-sup condition we can
find vN ∈ XN with ‖vN‖0 = 1 and γ0‖uN − wN‖0 ≤ (A′0(uN − wN ), vN )0. With the
Galerkin orthogonality (A′k(u − uN), vN )0 = 0, we then produce

γ0‖uN − wN‖0 ≤ ((A′0 −A′k)(uN − wN ), vN )0 + (A′k(uN − wN ), vN )0

= ((A′0 −A′k)(uN − wN ), vN )0 + (A′k(u− wN ), vN )0

= ((A′k −A′0)e, vN )0 + (A′0(u − wN ), vN )0

≤ ‖A′0‖L2←L2‖u− wN‖0 + ((A′k −A′0)e, vN )0. (A.2)

In order to treat the term ((A′k −A′0)e, vN )0 we define ψ ∈ L2(Γ) by

((A′k −A′0)z, vN )0 = (z,A−kψ)0 ∀z ∈ L2(Γ). (A.3)

Lemma 3.2 tells us

ψ = A−1
−k(A−k −A0)vN (A.4)
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By selecting z = e in (A.3), using Galerkin orthogonality satisfied by the error e and

orthogonality properties of ΠL2

N we obtain

((A′k −A′0)e, vN )0

= (e,A−kψ)0 = (A′ke, ψ)0 = (A′ke, ψ − ΠL2

N ψ)0

= (A′0e, ψ − ΠL2

N ψ)0 + ((A′k −A′0)e, ψ − ΠL2

N ψ)0

= (A′0e, ψ − ΠL2

N ψ)0 + ((A′k −A′0)e− ΠL2

N (A′k −A′0)e, ψ − ΠL2

N ψ)0.

Hence, from (A.4) and ‖vN‖0 = 1

|((A′k −A′0)e, vN )0| ≤
{
‖A′0‖L2←L2 + ‖(Id−ΠL2

N )(A′k −A′0)‖L2←L2

}

× ‖(Id−ΠL2

N )A−1
−k(A−k −A0)‖L2←L2 ‖e‖0.

From Lemmata 3.6, 3.7 we get for arbitrary q ∈ (0, 1)

|((A′k −A′0)e, vN )0| ≤ {‖A′0‖L2←L2 + q + Ckη(N, k, γ)} (A.5)

×
{
q + Ck2

(
1 + k5/2‖A−1

−k‖L2←L2

)
η1(N,−k, γ)

}
‖e‖0.

Select now q ∈ (0, 1) such that (‖A′0‖L2←L2 + q)q < 1/2. Then the constants C and γ
in (A.5) are fixed and independent of k. We can furthermore select ε > 0 independent
of k such that the assumption (3.13) then guarantees that the product of the two
curly braces in (A.5) is bounded by 1/2. Combining (A.1), (A.2), and (A.5) therefore
yields

‖e‖0 ≤
(

1 +
‖A′0‖L2←L2

γ0

)
‖u− wN‖0 +

1

2
‖e‖0,

which leads to the desired estimate. 2
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[20] O. I. Panič. On the solubility of exterior boundary-value problems for the wave equation and
for a system of Maxwell’s equations. Uspehi Mat. Nauk, 20(1 (121)):221–226, 1965.

[21] S. Sauter and C. Schwab. Randelementmethoden. Teubner, 2004.
[22] C. Schwab. Variable order composite quadrature of singular and nearly singular integrals.

Computing, 53(2):173–194, 1994.
[23] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite

and Boundary Elements. Springer Verlag, 2008.
[24] Luc Tartar. An introduction to Sobolev spaces and interpolation spaces, volume 3 of Lecture

Notes of the Unione Matematica Italiana. Springer, Berlin, 2007.

24


	titelseite02-10.pdf
	report02

