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Abstract

We analyze the reduced model for thin-film devices in stationary micromagnetics proposed in [7,
DeSimone, Kohn, Müller, Otto, Schäfer 2001]. We introduce an appropriate functional analytic
framework and prove well-posedness of the model in that setting. The scheme for the numerical ap-
proximation of solutions consists of two ingredients: The energy space is discretized in a conforming
way using Raviart-Thomas finite elements; the non-linear but convex side constraint is treated with a
penalty method. This strategy yields a convergent sequence of approximations as discretization and
penalty parameter vanish. The proof generalizes to a large class of minimization problems and is of
interest beyond the scope of thin-film micromagnetics. Numerical experiments support our findings
and illustrate the performance of the proposed algorithm.

Keywords: quadratic programming, convex constraints, penalty method, thin-film micromagnetics
Mathematics Subject Classification (2010): 65K05, 65K15, 49M20

1 Introduction and Abstract Setting

Let Ω ⊆ R
n be a domain and H ⊆ L2(Ω) denote a continuously embedded Hilbert space with norm

‖u‖2L2(Ω) . ‖u‖2H = (u, u)H. Let |||u|||2 = 〈〈u , u〉〉 be a continuous semi-norm on the space H which is

induced by the bilinear form 〈〈· , ·〉〉. Let g : H → L2(Ω) be a continuous mapping that is defined on the
whole space H. We assume that g is pointwise convex, i.e. for two functions u, v ∈ H and for any choice
of λ ∈ (0, 1), the inequality

g(λu+ (1− λ)v) ≤ λg(u) + (1− λ)g(v)

holds true pointwise almost everywhere. Given some linear and continuous functional Φ : H → R, we
define the quadratic energy functional

e(u) =
1

2
|||u|||2 − Φ(u). (1)

Minimization problem (M): Find a minimizer u∗ of e(·) subject to the convex side constraint

g(u∗) ≤ 0 ∈ L2(Ω). (2)

The side constraint (2) defines a closed and convex set A := {u ∈ H | g(u) ≤ 0 a.e.} of admissible
functions. As a general assumption, we state the coercivity of the energy functional on the set of
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admissible functions:

lim
‖u‖H→∞
u∈A

e(u) = ∞, inf
u∈A

e(u) > −∞
(A1)

Under these assumptions the direct method of calculus of variations [5] provides existence of a minimizer
u∗ ∈ A. Moreover, if ||| · ||| is a norm, the minimizer u∗ is unique. The side constraint, however, may be
difficult to treat numerically. Suitable optimality conditions—also referred to as KKT equations—may
be hard to derive. A black box scheme for the numerical solution of this class of minimization problems
is desirable, and we proceed to present a convergent penalty method.

We define the function

(u)+(x) :=

{
u(x), if u(x) ≥ 0

0, else

pointwise almost everywhere. With a parameter ε > 0, we introduce the penalty energy

1

2ε
‖(g(u))+‖2L2(Ω).

Minimizing the energy (1) over the set A of admissible functions can be interpreted as minimizing the
energy functional

e0(u) :=

{
e(u), for u ∈ A
∞, else

over the full space H. We observe that this functional is not smooth since it has a sharp energy barrier
at the boundaries of A. The idea of the penalty method is to approximate the energy functional e0 by
a regularization. Given ε > 0, we seek a minimizer uε ∈ H of the penalized energy

eε(u) := e(u) +
1

2ε
‖(g(u))+‖2L2(Ω).

Throughout, we assume coercivity of the penalized energy functional for each fixed ε > 0, which essen-
tially is an additional assumption on the function g:

lim
‖u‖H→∞
u∈H

eε(u) = ∞, inf
u∈H

eε(u) > −∞ ∀ε > 0.
(A2)

In order to solve the unconstrained penalized minimization problem we need to discretize the energy
space H. Let (hn)n∈N be a positive zero sequence and let (Xhn)n∈N

be a sequence of finite dimensional
subspaces of H. We assume

Xhi ⊆ Xhj for i ≤ j and
⋃

n∈N

Xhn = H (3)

These conditions state that the sequence of discrete spaces is nested and that for vanishing discretization
parameter the discrete subspaces become dense in H. Both of these assumptions are usually satisfied for
regular discretizations based on some mesh Thn of the domain Ω, where Thn+1 is a uniform refinement
of Thn .

Let u0h denote a solution to the discretized constrained minimization problem. A solution to the
penalized continuous problem is denoted by uε0. Only uεh, a solution to the discretized and penalized
problem, is computed in practice. In Section 2, we prove that this numerical approach is justified in the
sense that any choice of zero sequences (εn, hn) → (0, 0) yields convergence of the computable quantities
un := uεnhn

, i.e.

lim
n→∞

un = u∗

in an appropriate sense. To be precise, we prove convergence with respect to the weak topology of
H as well as the topology induced by the semi-norm ||| · |||. Recall that the solution u∗ is in general

2



not unique. We clarify our notion of convergence: Each subsequence of (un)n∈N has a convergent
subsequence (unk

)k∈N
whose limit u∗ := limk unk

is a minimizer. If u∗ is uniquely determined, the full
sequence converges un → u∗.

We apply our numerical scheme to the minimization problem proposed in [7] for the simulation of
thin-film devices in micromagnetics. For that model, we define a functional analytic framework and
analyze existence and uniqueness of solutions as well as continuous dependence on the given data in
Section 3. Since the model problem fits into our abstract setting, we may use the penalty method to
treat the side constraint. In Section 4 we use Raviart-Thomas finite elements to discretize the energy
space H. The behavior of our algorithm is studied with numerical experiments.

There is a vast literature on penalty methods. None of the results we found, however, could be applied
to the thin-film model in micromagnetics discussed in Section 3. For discrete minimization problems with
finite dimensional energy space arising, for example, in the context of mathematical finance, penalty
methods are well understood and convergence is established, see [21] and the references therein. One
may therefore be tempted to first discretize the continuous problem and then apply a penalty method to
the obtained discrete minimization problem. There is no obvious mathematical justification, however,
that refinement of the discretization does not increase the penalty error introduced.

In the context of infinite dimensional problems, a lot of effort has been put into developing efficient
numerical schemes for the solution of quadratic minimization problems bound to side constraints, see
e.g. [15, 16] and the references therein. Since it is known that the system of equations of the penalized
discrete problem becomes ill-conditioned as ε → 0, it is natural to ask for other, more robust methods
for specific applications. All of these methods, however, are based on properties of the corresponding
KKT-system or on orthogonal projections onto the admissible set. Apparently the non-linearity of the
function g and the non-local norm of our energy space are significant enhancements to the problem
complexity, and we failed to transfer ideas from the literature to our model problem.

In some cases, as the large-body limit in micromagnetics or contact problems, penalty methods have
been applied successfully. Even convergence in certain norms has been proven, see e.g. [2, 3, 19]. These
convergence results, however, are based on KKT-like conditions and require knowledge of the nature of
the Lagrange multipliers associated with the inequality constraints. Since the thin-film model problem
under consideration resembles the one treated in [2, 3], as a first attempt we tried to transfer or modify
the proofs in the publications mentioned to our setting. One crucial ingredient in the analysis of the
works concerned with the large-body limit is, however, that the energy space is L2(Ω). In particular its
dual space consists of Lebesgue functions only. In our case the dual space includes distributions, which
required us to develop a new approach to prove convergence of our method. The new approach applies
to a large class of problems, and we are confident that it is of interest beyond the specific application in
thin-film micromagnetics. It avoids use of KKT equations; it avoids estimates that require information
about the Lagrange multipliers.

2 An abstract convergence result

Before stating the abstract convergence result, we introduce some notation and collect the necessary
assumptions: Let ε, h ≥ 0. We denote by (M) the continuous and constrained minimization problem
with solution u∗. The discretized and penalized minimization problem is referred to as (M ε

h) with solution
uεh. In case of ε = 0 we have a constrained—and possibly discrete—problem (M0

h) with solution u0h; the
case h = 0 corresponds to a continuous—and possibly penalized—problem (M ε

0 ) with solution uε0. Our
notation identifies (M0

0 ) = (M) and u00 = u∗. We stress that if ||| · ||| is a norm, all problems (M ε
h) allow

for a uniquely determined solution uεh. In this case, the particularly interesting situation is the one where
the energy norm ||| · ||| is not equivalent to the norm ‖ · ‖H and where H endowed with ||| · ||| is hence not
a Hilbert space.

Our aim is to prove convergence of un := uεnhn
to a minimizer u∗ in an appropriate sense. We first

need to specify the assumptions on the choice of penalty and discretization parameters εn and hn. For
the penalty parameter, we assume that (εn)n∈N ⊆ R>0 is an arbitrary zero sequence εn → 0. Concerning
the discretization, we assume that (Xh)h∈I with I ⊆ R>0 is a monotone family of finite dimensional
subspaces of H with

⋃
h>0Xh = H. An arbitrary zero sequence (hn)n∈N ⊆ I then satisfies the conditions

(3). The corresponding discrete admissible sets are denoted by Ah := A∩Xh.
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With these notions and assumptions in hand, we show convergence un → u∗:

Theorem 1 (Convergence as (h, ε) → (0, 0)). Let (hn)n∈N and (εn)n∈N be arbitrary positive zero se-
quences. The sequence of minimizers un := uεnhn

of (M εn
hn

) satisfies convergence in the following sense:

Any subsequence (unk
)k∈N

contains a convergent subsequence
(
unkℓ

)
ℓ∈N

whose limit is a minimizer u∗

of the continuous constrained problem (M). Convergence holds with respect to both the weak topology of
H and the topology induced by the semi-norm ||| · |||, i.e.

unkℓ
⇀ u∗ and |||unkℓ

− u∗||| → 0. (4)

Moreover, the entire sequence of energies converges:

e(un) → e(u∗) as well as eεn(un) → e(u∗). (5)

If the minimizer u∗ is uniquely determined, we do not only have convergence of the energy sequences (5),
but also convergence of the full sequence, i.e. (4) holds with unkℓ

replaced by un.

The remainder of the section is concerned with the proof of Theorem 1. It consists of four parts.
As a first observation, we state the stability of the penalty method. By this we mean that given some
sequence (un)n∈N ⊆ H and some zero sequence εn → 0 such that the energies eεn(un) are uniformly
bounded, a weak limit u must satisfy the admissibility condition u ∈ A.

Proposition 2 (Stability of the penalty method). Let εn → 0 be a non-negative zero sequence. Let
(un)n∈N ⊆ H satisfy

sup
n∈N

eεn(un) <∞ (6)

and

un ⇀ u∞

for some u∞ ∈ H. Then, limn→∞ ‖(g(un))+‖2L2(Ω) = 0 and u∞ ∈ A, i.e. the weak limit u∞ satisfies the
constraint

g(u∞) ≤ 0.

Proof. By convexity of the functions ‖ · ‖2L2(Ω), (·)+, and g, the function

u 7→ ‖(g(u))+‖2L2(Ω)

is convex. Together with continuity we deduce that it is weakly lower semi-continuous.
¿From the weak convergence un ⇀ u∞ we thus obtain

‖(g(u∞))+‖2L2(Ω) ≤ lim inf
n∈N

‖(g(un))+‖2L2(Ω). (7)

¿From (6) we obtain the upper bound

lim sup
n∈N

e(un) ≤ lim sup
n∈N

eεn(un) <∞. (8)

The weak lower semicontinuity of e(·)—together with un ⇀ u∞—yields the lower bound

e(u∞) ≤ lim inf
n∈N

e(un) ≤ lim inf
n∈N

eεn(un) ≤ sup
n∈N

eεn(un) <∞. (9)

The combination of (8) and (9) shows that both sequences e(un) and eεn(un) are bounded. Moreover, we
have eεn(un) = e(un) +

1
2εn

‖(g(un))+‖2L2(Ω) according to the definition of both energies. This produces

2εn(eεn(un)− e(un)) = ‖(g(un))+‖2L2(Ω).

The assumption εn → 0 proves together with (7) that

‖(g(u∞))+‖2L2(Ω) ≤ lim inf
n∈N

‖(g(un))+‖2L2(Ω)

≤ lim sup
n∈N

‖(g(un))+‖2L2(Ω) = lim sup
n∈N

2εn(eεn(un)− e(un)) = 0,

i.e. limn→∞ ‖(g(un))+‖2L2(Ω) = 0 and u∞ ∈ A.
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Next, we analyze convergence for fixed h ≥ 0 and εn → 0.

Lemma 3 (Convergence as ε → 0). Let h ≥ 0 be fixed and let (εn)n∈N ⊆ R>0 be an arbitrary positive
zero sequence εn → 0. The minimizers uεnh of (M εn

h ) satisfy weak convergence with respect to the

norm topology of H in the following sense: Any subsequence
(
u
εnk

h

)
k∈N

contains a weakly convergent

subsequence
(
u
εnkℓ

h

)
ℓ∈N

whose limit is a minimizer u0h of the constrained problem (M0
h), i.e.

u
εnkℓ

h ⇀ u0h. (10)

In addition, the energy sequence converges:

e(uεnh ) → e(u0h). (11)

If the solution u0h of the constrained problem is uniquely determined, we have weak convergence of the

full sequence, i.e. (10) holds with u
εnkℓ

h replaced by uεnh .

Proof. We may assume without loss of generality that εn < 1. Since uεnh is the minimizer of the
unconstrained problem (M εn

h ) and by definition of eεn(·) we have

e1(u
εn
h ) ≤ eεn(u

εn
h ) ≤ eεn(u

0
h) = e(u0h). (12)

Therefore, the sequence of minimizers uεnh has bounded energy. From assumption (A2) and in particular

coercivity of e1(·), we obtain boundedness of uεnh in norm. This means that any subsequence
(
u
εnk

h

)
k∈N

is bounded and must have a weakly convergent subsequence u
εnkℓ

h ⇀ u∗h. It remains to prove that first
u∗h ∈ Ah and that second it is indeed a minimizer of e(·).

The first statement, i.e. u∗h ∈ Ah, follows immediately from Proposition 2. From

e(u
εnkℓ

h ) ≤ eεnkℓ
(u
εnkℓ

h ) ≤ e(u0h)

and weak lower semicontinuity of e(·) we conclude

e(u∗h) ≤ lim inf
ℓ∈N

e(u
εnkℓ

h ) ≤ lim sup
ℓ∈N

e(u
εnkℓ

h ) ≤ e(u0h).

Since u0h ∈ Ah is a minimizer of e(·), there must hold e(u∗h) = e(u0h), i.e. u
∗
h ∈ Ah is a minimizer of (M0

h)

as well. Moreover, we obtain convergence in energy e(u
εnkℓ

h ) → e(u0h).

In particular, this proves that each subsequence e(u
εnk

h ) contains a subsequence e(u
εnkℓ

h ) which tends
to the independent limit e(u0h). Elementary calculus thus predicts that the entire energy sequence
e(uεnh ) converges to e(u0h). Finally, if u

∗
h is uniquely determined, we have seen that each subsequence of

(uεnh )n∈N contains a subsequence whose weak limit is the unique u∗h. From this one can already conclude
limn→∞ uεnh = u∗h in the weak topology.

In a third step we use similar arguments to prove convergence for fixed ε ≥ 0 as h→ 0.

Lemma 4 (Convergence as h→ 0). Let ε ≥ 0 be fixed and let (hn)n∈N ⊆ I be an arbitrary zero sequence
hn → 0. Then, the minimizers uεhn

of (M ε
hn

) satisfy weak convergence with respect to the norm topology

of H in the following sense: Any subsequence
(
uεhnk

)
k∈N

contains a weakly convergent subsequence
(
uεhnkℓ

)

ℓ∈N

whose limit is a minimizer uε0 of the continuous penalized problem (M ε
0 ), i.e.

uεhnkℓ

⇀ uε0 (13)

Moreover, the entire energy sequence converges:

eε(u
ε
hn
) → eε(u

ε
0). (14)

If the solution uε0 of the continuous problem is uniquely determined, we have weak convergence of the full
sequence, i.e. (13) holds with uεhnkℓ

replaced by uεhn
.
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Proof. We assume without loss of generality hn ≤ 1. Then, from monotonicity of spaces we have
X1 ⊆ Xhn and hence

eε(u
ε
hn
) ≤ eε(u

ε
1). (15)

Put differently, the sequence (uεhn
)n∈N has bounded energy. From coercivity (A2) we deduce boundedness

of the sequence in H. In particular, each subsequence
(
uεhnk

)
k∈N

is also bounded and has therefore a

weakly convergent subsequence

uεhnkℓ

⇀ uε∗.

It remains to prove that uε∗ is a minimizer.
Let uε0 denote a minimizer of the continuous problem (M ε

0 ). ¿From
⋃
h>0Xh = H, we know that for

each δ > 0 there is an integer L ∈ N such that for all ℓ ≥ L there exists some ũεhnkℓ

∈ Xhnkℓ
with

‖uε0 − ũεhnkℓ

‖H ≤ δ.

Together with continuity of eε(·), we know that for arbitrary η > 0 there exists some index L ∈ N such
that for all ℓ ≥ L we may thus choose ũεhnkℓ

∈ Xhnkℓ
with

eε(ũ
ε
hnkℓ

) ≤ eε(u
ε
0) + η.

Recall that uεhnkℓ

is a minimizer and therefore eε(u
ε
hnkℓ

) ≤ eε(ũ
ε
hnkℓ

). Since this holds for all η > 0, and

together with (weak lower semi-)continuity of eε(·), we conclude

eε(u
ε
∗) ≤ lim inf

ℓ→∞
eε(u

ε
hnkℓ

) ≤ eε(u
ε
0).

This means that uε∗ is in fact a minimizer. Moreover, the preceding estimates yield lim infℓ∈N eε(u
ε
hnkℓ

) =

eε(u
ε
0). By extracting an additional subsequence, we may thus generate limℓ∈N eε(u

ε
hnkℓ

) = eε(u
ε
0).

Arguing as in Lemma 3, we may conclude convergence of the energy sequence as well as weak convergence
of the full sequence provided that the limit is unique.

So far, we have proven (all limits are with respect to the weak topology)

lim
h→0

lim
ε→0

uεh = u∗ = lim
ε→0

lim
h→0

uεh;

we next prove the statement of Theorem 1. We stress that no assumptions on the regularity of the
analytical solution are necessary; no knowledge about existence or estimates for Lagrange multipliers are
used.

Proof of Theorem 1. Let uεn0 denote a minimizer of the continuous and penalized problem (M εn
0 ) and let

u0hn
denote a minimizer of the discrete constrained problem (M0

hn
). We observe

e(u00) ≤ e(uεnhn
) ≤ eεn(u

εn
hn
) ≤ eεn(0) = e(0) = 0. (16)

Therefore the sequence un := uεnhn
is bounded and every subsequence (unk

)k∈N
has a weakly convergent

subsequence unkℓ
⇀ ũ∗. From Lemma 4 we obtain the existence of a subsequence, which we write for

simplicity as (uεshs
)s∈N, such that the associated sequence (u0hs

)s∈N converges weakly to a minimizer u∗

and e(u0hs
) → e(u∗). Hence,

e(uεshs
) ≤ eεs(u

εs
hs
) ≤ eεs(u

0
hs
) = e(u0hs

) → e(u∗).

¿From this it follows, again by weak lower semicontinuity of e(·), that e(ũ∗) ≤ e(u∗). Recalling eεs(u
εs
hs
) ≤

eεs(u
0
h0
) = e(u0h0

), we see that uεshs
satisfies the assumptions of Proposition 2, and therefore ũ∗ ∈ A.
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Finally we obtain that ũ∗ is a minimizer, i.e. the desired convergence result with respect to the weak
topology. Moreover,

e(u∗) = e(ũ∗) ≤ lim inf
s∈N

e(uεshs
) ≤ lim sup

s∈N

e(uεshs
) ≤ lim sup

s∈N

e(u0hs
) = e(u∗)

proves convergence of the energy e(uεshs
) → e(u∗). The same argument with e(·) replaced by eεs(·) yields

eεs(u
εs
hs
) → e(u∗). Arguing as above, we may even derive energy convergence e(un) → e(u∗) as well as

eεn(un) → e(u∗).
The strong convergence in the energy semi-norm |||·||| is obtained by a bootstrapping argument: Recall

the definition of the energy

e(u) =
1

2
|||u|||2 − Φ(u).

In other words, the energy semi-norm satisfies

|||u|||2 = 2e(u) + 2Φ(u).

¿From the construction above, we have us := uεshs
⇀ ũ∗ and e(us) → e(ũ∗). Recall that Φ(u) is linear

and continuous with respect to the H-norm so that that Φ(us) → Φ(ũ∗). Together we see

|||us|||2 = 2e(us) + 2Φ(us) −→ 2e(ũ∗) + 2Φ(ũ∗) = |||ũ∗|||2.

Since ||| · ||| stems from a continuous semi-scalar product we immediately conclude

|||ũ∗ − us|||2 = 〈〈ũ∗ − us , ũ
∗ − us〉〉 = |||ũ∗|||2 − 2〈〈ũ∗ , us〉〉 + |||us|||2

−→ |||ũ∗|||2 − 2|||ũ∗|||2 + |||ũ∗|||2 = 0,

which means convergence in the energy semi-norm.

3 Thin-film micromagnetics

For many applications in stationary micromagnetics, the model due to Landau and Lifshits [18] is nowa-
days accepted as relevant. From a computational point of view it is highly challenging. Different
length scales involved make large samples of several µm in diameter hardly accessible for direct calcula-
tions. Therefore, various reduced models have been proposed and analyzed that cover certain asymptotic
regimes, see [9] for an overview.

Here, we discuss the reduced model proposed in [7]. It covers the regime of very thin but relatively
large ferromagnetic samples. In [8] the authors obtain the reduced model for vanishing thickness of the
sample—under certain assumptions—as Γ-limit of the full problem due to Landau and Lifshits.

Micromagnetic thin-film problem (TF ): Let Ω ⊆ R
2 be a bounded Lipschitz domain that rep-

resents the ferromagnetic sample, whose thickness is neglected by the model. With an in-plane applied
exterior field f : Ω → R

2, we seek a magnetization m∗ : Ω → R
2 that satisfies the convex pointwise

constraint g(m) = |m| − 1 ≤ 0 almost everywhere and minimizes the reduced energy

e(m) =
1

2

∫

R3

|∇p|2 dx+
q

2

∫

Ω

m2
2 dx−

∫

Ω

f ·m dx. (17)

The magnetic potential p : R3 → R is determined by the reduced magnetostatic Maxwell equation

∫

R3

∇p · ∇v dx =

∫

Ω

m · ∇v(x, 0) dx for all v ∈ D(R3) := C∞
c (R3), (18)

stated here in a distributional sense. The material dependent parameter q > 0 measures the strength of
the uniaxial crystalline anisotropy. For soft materials such as permalloy, where q ≪ 1, one usually drops
this energy contribution by setting q = 0.
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3.1. The magnetostatic Maxwell equation. The magnetic potential is the solution of the variational
formulation (18). Understanding the potential p is crucial to define the appropriate function space for
the magnetization m. We denote by n the outer normal in R

2 of Ω and by [·] the jump across Ω. For
smooth m ∈ C1(Ω), every weak solution p of (18) which is sufficiently smooth, i.e. p ∈ C2(R3 \ Ω) ∩
C(R3) ∩ C1(R2 × R≥0) ∩ C1(R2 × R≤0), solves the strong form

∆p = 0 in R
3 \ Ω,

[
∂p

∂x3

]
= ∇ ·m on Ω,

[p] = 0 on Ω,

m · n = 0 on Γ = ∂Ω ⊆ R
2.

(19)

We give a brief definition of some Sobolev spaces needed in the following. The reader is referred
to e.g. [1] for a detailed discussion. The Sobolev space H1(G) for some Lipschitz domain G is defined in
the usual way

H1(G) = {u ∈ L2(G) | ∇u ∈ L2(G) in a weak sense}

and equipped with the natural norm ‖u‖2H1(G) = ‖u‖2L2(G) + ‖∇u‖2L2(G). We then define the fractional
order Sobolev space

H1/2(Ω) = {u ∈ L2(Ω) | there is some ũ ∈ H1(R3) with ũ|Ω = u}

as the space of traces of H1 functions restricted to Ω. This space may be equipped with the norm

‖u‖H1/2(Ω) = inf
ũ∈H1(R3)
ũ|Ω=u

‖ũ‖H1(R3),

which yields a Hilbert space. Finally its dual space with respect to the extended L2 scalar product is
denoted by H̃−1/2(Ω).

Recall the definition of the simple-layer potential

Sϕ(x) =
1

4π

∫

Ω

ϕ(y)

|x− y| dy x ∈ R
3 \ Ω (20)

associated with the Laplace-operator in 3D. The operator S can be extended continuously to S ∈
L(H̃−1/2(Ω);H1

ℓoc(R
3)) and its trace

V ϕ(x) =
1

4π

∫

Ω

ϕ(y)

|x− y| dy for x ∈ Ω

can be extended continuously to V ∈ L(H̃−1/2(Ω);H1/2(Ω)), see [25]. Moreover, the operator V satisfies
the ellipticity estimate

‖ϕ‖2
H̃−1/2(Ω)

≤ Ceℓℓ〈ϕ , V ϕ〉H̃−1/2(Ω)×H1/2(Ω)

with some constant Ceℓℓ > 0 that depends only on Ω. Altogether, we have that

(ϕ, ψ)V := 〈ϕ , V ϕ〉H̃−1/2(Ω)×H1/2(Ω) (21)

defines an equivalent scalar product on H̃−1/2(Ω).

Proposition 5 (Jump conditions of the simple-layer potential). Given some ϕ ∈ H̃−1/2(Ω), the simple-
layer potential Sϕ satisfies

[Sϕ] = 0 ∈ H1/2(Ω) and

[
∂Sϕ

∂x3

]
= −ϕ ∈ H̃−1/2(Ω).
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Remark. The proof of Proposition 5 can be found e.g. in [24, Thm. 3.3.1] for the simple-layer potential
defined on a closed surface in R

3. Whereas the proof of the continuity follows literally, the proof of the
jump relation for the normal derivative needs some modifications for the present case of a screen. We
use similar ideas as in [25]: Choose some bounded Lipschitz domain G− such that Ω ⊆ ∂G− and such

that the normal vector n of G− satisfies n|Ω = (0, 0, 1). Given some ϕ ∈ H̃−1/2(Ω), the second Green’s
formula for u := Sϕ in the interior and exterior domains G− and G+ := R

3\G− and the same arguments
as in the proof of [24, Thm. 3.3.1] yield the statement.

Corollary 6. With the simple-layer potential S from (20) and given ∇ · m ∈ H̃−1/2(Ω), the function
S(−∇ ·m) is a solution to the Maxwell equation (18).

Remark. First, we have shown that the regularity assumption ∇ · m ∈ H̃−1/2(Ω), ensures existence
of p. Second, we want to comment on the constraint m · n = 0 on Γ that arises for smooth solutions.
Suppose m ·n 6= 0 on Γ, then a solution to the reduced Maxwell equation (18) does not in general satisfy
p ∈ H1

ℓoc(R
3). Assume e.g. m = (1, 0)T constant. Then, m · n 6= 0 ∈ L2(Γ) and ∇ · m = 0 ∈ L2(Ω).

Choose some smooth and bounded domain G ⊆ R
3 with Ω ⊆ G. Integration by parts in the Maxwell

equation (18) yields for all v ∈ D(G)
∫

G

∇p · ∇v dX =

∫

Ω

m · ∇v dx = −
∫

Ω

∇ ·mv dx+

∫

Γ

(m · n)v|Γ ds. (22)

On the right-hand side of (22), the integral over Ω vanishes due to the choice of m. The functional
v 7→

∫
Γ(m · n)v ds cannot be extended to a linear functional on H1(G) since the restriction to Γ is not

well-defined. We conclude that v 7→ (∇p,∇v)Ω does not define a continuous functional in H1(G). This
means ∇p 6∈ L2(G) and, therefore, p 6∈ H1(G).

3.2. Energy space. A function v ∈ L2(Ω) is called a weak divergence of m ∈ L2(Ω)2 if it satisfies
∫

Ω

vϕ dx = −
∫

Ω

m · ∇ϕdx for all ϕ ∈ D(Ω). (23)

In this case, and according to the fundamental theorem of calculus of variations, the weak divergence of
m is unique, and we simply write ∇ ·m := v.

We define the space

H1(∇·; Ω) := {m ∈ L2(Ω)2 | ∇ ·m ∈ L2(Ω)} (24)

with the canonical norm ‖m‖H1(∇·;Ω) := (‖m‖2L2(Ω)2 +‖∇·m‖2L2(Ω))
1/2. We further define H1

0 (∇·; Ω) :=
D(Ω)2

‖·‖H1(∇·;Ω) .

Proposition 7 ([13, Theorem 2.5 and Theorem 2.6]). The mapping fn : v 7→ v · n|Γ defined on D(Ω)2

can be extended by continuity to a linear and continuous mapping from H1(∇·; Ω) into H−1/2(Γ). There
holds H1

0 (∇·; Ω) = ker(fn) = {m ∈ H1(∇·; Ω) |m · n = 0}, and D(Ω)2 is dense in H1
0 (∇·; Ω).

We have to do one last step to define the appropriate space for the magnetization. Namely, we have
to permit ∇ ·m ∈ H̃−1/2(Ω) ⊇ L2(Ω).

We define the energy space for the magnetization

H = H1
0 (∇·; Ω)

‖·‖H

(25)

where

‖m‖2H := ‖m‖2L2(Ω)2 + ‖∇ ·m‖2
H̃−1/2(Ω)

. (26)

By construction H is a Hilbert space and D(Ω)2 is a dense subspace.
Finally, we make a last remark on H before analyzing the existence of minimizers m∗ in our function

setting.
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Lemma 8. For all functions m ∈ H, we have 〈∇ ·m , 1〉H̃−1/2(Ω)×H1/2(Ω) = 0.

Proof. According to the Gauss divergence theorem, there holds for all m ∈ D(Ω)2

∫

Ω

∇ ·m dx =

∫

Γ

m · n ds = 0,

where the right-hand side vanishes in our case. This implies for all m ∈ D(Ω)2

(∇ ·m, 1)L2(Ω) = 〈∇ ·m , 1〉H̃−1/2(Ω)×H1/2(Ω) = 0.

Due to the density of D(Ω)2 in H, the statement immediately follows by continuity.

Given m ∈ H, we may represent p as the simple-layer potential of ∇ · m ∈ H̃−1/2(Ω). From the
mapping properties of the simple-layer potential, we immediately conclude p ∈ H1

ℓoc(R
3) ⊇ range(S).

However, H1
ℓoc(R

3) is not a normed space. Also, the fact ∇p ∈ L2(R3)3 implies further regularity and
is necessary for the energy e(m) defined in (17) to be finite. We now establish an appropriate Hilbert
space for the magnetostatic potential p.

We define the set

B̃2
1(R

3) := {u ∈ H1
ℓoc(R

3) | ∇u ∈ L2(R3)3} (27)

associated with the semi-norm ‖u‖B2
1(R

3) := ‖∇u‖L2(R3)3 . Further, we define the Beppo-Levi space

B2
1(R

3) := B̃2
1(R

3)/R (28)

by factoring out the constant functions. Note that ‖ · ‖B2
1(R

3) now in fact is a norm.

Proposition 9 ([6, Corollaire 1.1, Théorème 2.1]). B2
1(R

3) is a Hilbert space, and D(R3) is a dense
subspace of B2

1(R
3).

Lemma 10. There is a continuous linear lifting operator L : H1/2(Ω) → B2
1(R

3), i.e. for v ∈ H1/2(Ω)
we have

v = (Lv)|ω and ‖∇(Lv)‖L2(R3)3 ≤ C‖v‖H1/2(Ω)

with C > 0 the operator norm of L.

Proof. First, choose some bounded Lipschitz domain G ⊆ (R3) with Ω ⊆ ∂G. Let v ∈ H1/2(Ω) be
given. Then, e.g. from [20, Theorem 3.37], we conclude existence of some extension ṽ ∈ H1(G) with
‖ṽ‖H1(G) . ‖v‖H1/2(Ω). The results of [6, Théorème 8.1] provide the existence of a linear and continuous

lifting operator from H1(G) to B2
1(R

3), which finally proves the full linear and continuous extension.

3.3. Well-posedness of the micromagnetic thin-film problem. We proceed to analyze well-
posedness of the problem (TF ) in our functional analytic setting. As a first observation, in Proposition 12,
we prove that for any given m ∈ H there exists a uniquely determined magnetostatic potential p ∈
B2

1(R
3). Moreover, we will see that

∫
R3 |∇p|2 dx = ‖∇·m‖2V . This reveals that we can restate our energy

functional from (17)–(18) in the abstract form

e(m) =
1

2
|||m|||2 − Φ(m) (29)

of Section 1 with energy semi-norm and linear functional

|||m|||2 := ‖∇ ·m‖2V + q‖m2‖2L2(Ω) and Φ(m) = (f ,m)L2(Ω). (30)

The outline of the remaining section now reads as follows: In Lemma 13, we prove that the energy e(m)
and the penalized energy

eε(m) = e(m) +
1

2ε
‖(|m| − 1)+‖2L2(Ω) (31)
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satisfy the coercivity assumptions (A1)–(A2). Lemma 14 states that the energy semi-norm is in fact
positive definite if q > 0. This yields not only existence, but even uniqueness of the minimizer m∗.
Finally, Lemma 16 uses the corresponding variational inequality to prove continuous dependence of m∗,
on the data.

We collect the main results of this section in the following theorem:

Theorem 11. The following statements on the micromagnetic thin-film problem (TF ) are true:

(i) The micromagnetic thin-film problem fits into the abstract setting of Section 1 with the definitions
of (30). The energy functionals e(m) and eε(m) = e(m)+ 1

2ε‖(|m|−1)+‖2L2(Ω) satisfy the coercivity

assumptions (A1)–(A2).

(ii) The micromagnetic thin-film problem has a solution m∗ ∈ A. For q > 0, ||| · ||| is a norm and hence
the minimizer m∗ is unique. However, H endowed with the norm ||| · ||| is not complete.

(iii) If m1 and m2 are solutions of (TF ) for applied fields f1 and f2, respectively, then

|||m1 −m2||| ≤
√
2‖f1 − f2‖1/2L1(Ω), (32)

i.e. m∗ depends Hölder continuously on the applied field f .

We recall the variational formulation
∫

R3

∇p · ∇v dx = −
∫

ω

∇ ·m v dx for all v ∈ D(R3). (33)

of the magnetostatic Maxwell equation. As discussed above, m ∈ H satisfies all constraints and the
necessary regularity. Therefore, (33) may be stated as

(∇p,∇v)L2(R3)3 = −〈∇ ·m , v〉H̃−1/2(Ω)×H1/2(Ω) for all v ∈ D(R3) (34)

in our functional setting.

Proposition 12. The following statements are true:

(i) Given m ∈ H, there is a uniquely determined p ∈ B2
1(R

3) with (34).

(ii) Equation (34) holds with D(R3) replaced with the full space B2
1(R

3).

(iii) The mapping P : H → L2(R3)3 that maps m to the corresponding stray field P(m) := −∇p is a
linear and continuous operator.

(iv) For m, m̃ ∈ H, there holds 〈Pm , Pm̃〉L2(R3)3 = 〈∇ ·m , V (∇ · m̃)〉H̃−1/2(Ω)×H1/2(Ω).

(v) In particular, there holds ‖Pm‖2L2(R3)3 = ‖∇ ·m‖2V ≃ ‖∇ ·m‖2
H̃−1/2(Ω)

.

Proof. Let m ∈ H be fixed. We first consider Fm(v) := 〈∇ · m , v〉H̃−1/2(ω)×H1/2(ω) for arbitrary v ∈
D(R3). According to Lemma 8, we have

〈∇ ·m , v〉H̃−1/2(Ω)×H1/2(Ω) = 〈∇ ·m , v − λ〉 for all constants λ ∈ R.

We consider the cylindrical domain Ω̂ := Ω × [0, 1]. With v ∈ D(R3) and λ := (1/|Ω̂|)
∫
Ω̂
v dx, the

continuity of the trace operator and a Poincaré inequality show

‖v − λ‖H1/2(Ω) . ‖v − λ‖H1(Ω̂) . ‖∇v‖L2(Ω̂)3 ≤ ‖∇v‖L2(R3)3 .

This proves that Fm defines a linear and continuous functional Fm : D(R3) → R with respect to ‖·‖B2
1(R

3)

and operator norm ‖Fm‖ ≤ ‖∇ ·m‖H̃−1/2(Ω). Since D(R3) is dense in B2
1(R

3), the functional Fm may

be extended continuously to the entire Beppo-Levi space while preserving the operator norm. Since the
left-hand side of (34) is the scalar product of B2

1(R
3), the variational formulation may be extended to

the full space B2
1(R

3). This proves (ii).
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The Riesz representation theorem provides existence and uniqueness of a solution p ∈ B2
1(R

3), since
(34) may be written as

(p, v)B2
1(R

3) = Fm(v) for all v ∈ B2
1(R

3),

which yields statement (i).
The Riesz theorem furthermore implies

‖Pm‖L2(R3)3 = ‖p‖B2
1(R

3) = ‖Fm‖ . ‖∇ ·m‖H̃−1/2(ω).

In particular the mapping P : H → L2(R3)3 is well defined and continuous. Linearity follows from the
composition P : m 7→ ∇ ·m 7→ p 7→ −∇p, which finally proves (iii).

Now, we prove the converse estimate ‖∇ ·m‖H̃−1/2(ω) . ‖Fm‖. Lemma 10 and (34) imply

|〈∇ ·m , v〉H̃−1/2(Ω)×H1/2(Ω)|
‖v‖H1/2(Ω)

.
|〈Pm , ∇(Lv)〉L2(R3)3 |

‖∇(Lv)‖L2(R3)3
≤ ‖Pm‖L2(R3)3

for arbitrary v ∈ H1/2(Ω) \ {0}. Taking the supremum over all v ∈ H1/2(Ω) \ {0} we obtain

‖∇ ·m‖H̃−1/2(Ω) . ‖Pm‖L2(R3)3 . (35)

For Pm̃ = −∇p̃, the representation p̃ = S(−∇ · m̃) and the variational equality (34) for Pm = −∇p
imply

(Pm,Pm̃)L2(R3)3 = −〈∇ ·m , p̃〉H̃−1/2(Ω)×H1/2(Ω) = −〈∇ ·m , V (−∇ · m̃)〉H̃−1/2(Ω)×H1/2(Ω).

The choice m̃ = m yields (Pm,Pm)L2(R3)3 = ‖∇ ·m‖2V , which allows us to conclude the proof.

Note that as a direct consequence of Proposition 12, we may indeed rewrite our energy functional
from (17)–(18) in the form (29)–(30). The semi-norm ||| · ||| . ‖ · ‖H of (30) is obviously continuous on
H. Since H ⊆ L2(Ω)2 is by construction a continuously embedded Hilbert space, the thin-film problem
fits into the general setting of Section 1. It only remains to prove the assumptions (A1) and (A2),
which guarantees the existence of minimizers and allows us to apply our convergent numerical scheme
of Section 2.

Lemma 13. For the micromagnetic thin-film model (TF ), the energy functional of e(m) of (29)–(30)
and the penalized energy eε(m) = e(m) + 1

2ε‖(|m| − 1)+‖2L2(Ω) satisfy the coercivity assumptions (A1)

and (A2). In particular, (TF ) has a minimizer m∗.

Proof. For the energy e(m) of the constrained problem, the coercivity follows by an easy argument: Let
(mn)n∈N ⊆ A with limn→∞ ‖mn‖H = ∞. Since |mn| ≤ 1 almost everywhere in Ω, we have that

‖mn‖L2(Ω) ≤ |Ω|1/2 and
∣∣(f ,mn)L2(Ω)

∣∣ ≤ ‖f‖L1(Ω).

¿From the boundedness of the L2-norm of mn, we get limn→∞ ‖∇ · mn‖H̃−1/2(Ω) = ∞. From the

boundedness of the scalar product (f ,mn)L2(Ω) and the equivalence of norms ‖ · ‖V ≃ ‖ · ‖H̃−1/2(Ω) we

obtain

e(mn) ≥ C‖∇ ·mn‖2
H̃−1/2(Ω)

− ‖f‖L1(Ω) −→ ∞.

The proof of assumption (A2) is a little bit more involved as also the L2-norm of a sequence (mn)n∈N

with lim supn ‖mn‖H = ∞ may be possibly unbounded. From equivalence of norms ‖∇ · m‖V h ‖∇ ·
m‖H̃−1/2(ω), we get the existence of a constant C1 > 0 such that

eε(m) ≥ C1‖∇ ·m‖2
H̃−1/2(Ω)

+
q

2
‖m2‖2L2(Ω) +

1

2ε
‖(|m| − 1)+‖2L2(Ω) − (f ,m)L2(Ω).
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Let Ω≥ denote the set where |m| ≥ 1, and Ω< its complement, i.e. |m(x)| < 1 for x ∈ Ω<. We use
Hölder’s inequality to estimate the linear contribution

∫

Ω

f ·m dx ≤ ‖f‖L2(Ω)‖m‖L2(Ω≥) + ‖f‖L1(Ω).

Next, for the penalty energy contribution it holds that
∫

Ω

(|m| − 1)2+ dx =

∫

Ω≥

|m|2 − 2|m|+ 1 dx

≥ ‖m‖2L2(Ω≥) − 2‖m‖L2(Ω≥)|Ω≥|1/2 + |Ω≥|
≥ ‖m‖2L2(Ω≥) − 2‖m‖L2(Ω≥)|Ω|1/2,

(36)

Applying these inequalities we obtain

eε(m) ≥ 1

2ε
‖(|m| − 1)+‖2L2(Ω) − (f ,m)L2(Ω) + C1‖∇ ·m‖2

H̃−1/2(Ω)

≥ 1

2ε

(
‖m‖2L2(Ω≥) − 2|Ω|1/2‖m‖L2(Ω≥)

)
− ‖f‖L2(Ω)‖m‖L2(Ω≥) − ‖f‖L1(Ω) + C1‖∇ ·m‖2

H̃−1/2(Ω)

=
1

2ε

(
‖m‖2L2(Ω≥) −

(
2|Ω|1/2 + 2ε‖f‖L2(Ω)

)
‖m‖L2(Ω≥) − 2ε‖f‖L1(Ω)

)
+ C1‖∇ ·m‖2

H̃−1/2(Ω)
.

Defining the constants C2 = 2|Ω|1/2 + 2ε‖f‖L2(Ω) and C3 = 2ε‖f‖L1(Ω), we conclude

eε(m) ≥ 1

2ε

(
‖m‖2L2(Ω≥) − C2‖m‖L2(Ω≥) − C3

)
+ C1‖∇ ·m‖2

H̃−1/2(Ω)
. (37)

From

‖m‖L2(Ω) ≤ ‖m‖L2(Ω≥) + ‖m‖L2(Ω<) ≤ ‖m‖L2(Ω≥) + |Ω|1/2, (38)

we conclude the proof with the following observations: Let (mn) ⊆ H be a sequence of magnetizations
with lim supn ‖mn‖H = ∞. Then lim supn ‖∇ ·mn‖H̃−1/2(Ω) = ∞ or lim supn ‖mn‖L2(Ω) = ∞. Hence,

at least one contribution, either the ‖ · ‖V -norm of the divergence or the L2-norm of m, will cause the
energy to be unbounded.

So far, we have seen that the thin-film minimization problem fits into the general setting of Sections 1
and 2. The existence of solutions m∗ follows for any q ≥ 0 by the direct method of calculus of variations.
The following lemma gives additional information on the uniqueness of the solutions: If q > 0, then the
energy semi-norm ||| · ||| is in fact positive definite and thus a norm. Uniqueness of the minimizer m∗

follows in this case.

Lemma 14. Let m ∈ H with ∇ ·m = 0 ∈ H̃−1/2(Ω) and m2 = 0 ∈ L2(Ω). Then m = 0 ∈ H.

Proof. Note that ∇ ·m = 0 ∈ L2(Ω). Therefore m is an element of the space H1(∇·; Ω). Furthermore
the extension

m̂ =

{
m(x) x ∈ Ω

0 otherwise

is an element of H1(∇·;R2) with ∇ · m̂ = 0. Indeed, taking a sequence (mn)n∈N ⊂ D(Ω) ⊂ H with
mn → m in H, we obtain for any test function ϕ ∈ D(R2)

(m̂,∇ϕ)L2(R2) = lim
n→∞

(m̂n,∇ϕ)L2(R2) = − lim
n→∞

(∇ ·mn, ϕ)L2(Ω) = (∇ ·m, ϕ)L2(Ω) = 0.

Next, we show that m̂ = 0 ∈ L2(R2) which in turn implies m = 0 ∈ H. For this, we choose a sequence
of mollifiers ψε ∈ D(R2) with supp(ψ) ⊆ [−ε, ε]2 and

ψε ⋆ m̂ −→ m̂ ∈ L2(R2) as ε→ 0 (39)
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componentwise, where ⋆ denotes the convolution of functions, cf. [20, Theorem 3.4]. ¿From e.g. [22,
Lemma 2.13], we know

ψε ⋆ m̂ ∈ H1(∇·;R2) ∩ D(R2)2 with ∇ · (ψε ⋆ m̂) = ψε ⋆ (∇ · m̂) = 0.

¿From m̂2 = 0 ∈ L2(R2), we additionally know

ψε ⋆ m̂ =

(
ψε ⋆ m̂1

0

)

which trivially implies ∂(ψε⋆m̂2)
∂x2

= 0. Together with ∇ · (ψε ⋆ m̂) = 0 this means

∂(ψε ⋆ m̂1)

∂x1
= 0.

Since (ψε ⋆ m̂1) ∈ D(R2) is a smooth function with compact support, ∇(ψε ⋆ m̂1) = 0 already implies
ψε ⋆ m̂1 = 0.

Remark. For q > 0, the norm ‖ · ‖H is obviously stronger than ||| · ||| and these two norms are not
equivalent. To see this, let Ω = (−1, 1)2 and X, Y ∈ D(R) with suppX ⊆ (−1, 1) and suppY ⊆ (−1, 1).
Assume X 6= 0 and Y 6= 0. Define the sequence (mn)n∈N by

mn
1 (x1, x2) := −nX(x1)Y

′(nx2), mn
2 (x1, x2) := X ′(x1)Y (nx2).

Then

∇ ·mn = 0, mn ∈ D(Ω), |||mn|||2 = ‖mn
2‖2L2(Ω) =

1

n
‖X ′‖L2(R)‖Y ‖L2(R) (40)

and

‖mn‖2H = ‖mn‖2L2(Ω) =
1

n
‖X ′‖L2(R)‖Y ‖L2(R) + n‖X‖L2(R)‖Y ′‖L2(R). (41)

This shows that a bound of the form ‖m‖H ≤ C|||m||| cannot hold on H. In fact, the example shows
that norm equivalence cannot hold for any domain Ω ⊂ R

2. Moreover, since (H, ‖ · ‖H) is continuously
and bijectively embedded into (H, ||| · |||), Banach’s open mapping theorem predicts that (H, ||| · |||) is not
complete.

So far, we have proved (i) and (ii) of Theorem 11. As a last issue in this section, we show continuous
dependence of the solutions on the given data. To that end we need the corresponding variational
inequality. The following standard result can be found e.g. in [17] and is formulated here in our setting
for the convenience of the reader.

Lemma 15. Let H be a Hilbert space with continuous semi-scalar product 〈〈· , ·〉〉. Furthermore, let
Φ ∈ L(H ;R) and let A ⊆ H denote a closed and convex subset. Given the energy functional

e(u) =
1

2
〈〈u , u〉〉 − Φ(u),

an element u∗ ∈ A is a minimizer, i.e.

e(u∗) ≤ e(v) for all v ∈ A, (42)

if and only if u∗ satisfies the variational inequality

〈〈u∗ , u∗ − v〉〉 ≤ Φ(u∗ − v) for all v ∈ A. (43)

Lemma 16. If m1 and m2 are solutions to (TF ) for applied fields f1 and f2, respectively, then

|||m1 −m2||| ≤
√
2‖f1 − f2‖1/2L1(Ω). (44)
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Proof. To obtain the estimate (44), note that solving the minimization problem (M) is equivalent to
solving the variational inequality

〈〈m , m−w〉〉 ≤ (f ,m−w) ∀w ∈ A,

see Lemma 15. Since m1 solves the variational inequality for f1 and m2 solves the variational inequality
for f2, we have

|||m1 −m2|||2 = 〈〈m1 , m1 −m2〉〉 + 〈〈m2 , m2 −m1〉〉 ≤ (f1,m1 −m2)L2 + (f2,m2 −m1)L2

= (f1 − f2,m1 −m2)L2

≤ ‖f1 − f2‖L1(Ω)‖m1 −m2‖L∞(Ω).

The observation |m1(x)−m2(x)| ≤ 2 and taking the square root concludes the proof.

4 Discretization and experimental analysis

The last step to apply our numerical scheme is to provide a conforming discretization of the energy space
H. Note that H1(∇·; Ω) ⊆ H dense. The Raviart-Thomas finite elements introduced in [23] to discretize
H1(∇·; Ω) are thus a natural choice for the discretization of such an energy space, cf. [13].

4.1. The space of Raviart-Thomas finite elements. Let Th be a regular triangulation of the
domain Ω in the sense of Ciarlet, i.e.:

• Each element Tj ∈ Th is a non-degenerate and closed triangle,

• Th covers Ω, i.e. Ω =
⋃
T∈Th

T ,

• The intersection Ti ∩ Tj , for i 6= j, is either empty, a common vertex, or a common edge.

The global mesh size h is defined by h = maxT∈Th
diam(T ). Moreover, the set of all edges of a triangu-

lation is denoted by Eh and EΩ
h is the set of all interior edges.

We define the space of lowest order Raviart-Thomas finite elements by

RT 0(Th) = {mh ∈ P1(Th)2 | [mh · nE ]E = 0 ∀E ∈ EΩ
h and mh · n = 0 on Γ},

where P1(Th) denotes the space of piecewise linear and discontinuous functions, nE denotes a normal
vector on the edge E, and [·]E denotes the jump across an edge of the triangulation.

We stress that the crucial property [mh · nE ]E = 0 ensures the H1(∇·; Ω) conformity of the discrete
space RT 0(Th). Since H1(∇·; Ω) ⊆ H, the set

Ah := {mh ∈ RT 0(Th) | |mh| ≤ 1 a.e.}

is a conforming discretization of our admissible set A.
Next, we describe the standard basis of RT 0(Th). Each interior edge E ∈ EΩ

h belongs to precisely
two elements T+ and T−. For such an edge E, let P+ and P− be the vertices of T+ and T− opposite E;
in other words, T± = conv(E ∪ {P±}) as shown in Figure 1. For each E ∈ EΩ

h , we define

ψE =

{
± |E|

2|T±| (x− P±), for x ∈ T±

0, elsewhere
(45)

and notice that the jump [ψE · n] across any edge vanishes. This implies ψE ∈ RT 0(Th). Moreover, it
can be shown that the set

B = {ψE |E ∈ EΩ
h }

is a basis of RT 0(Th), cf. [13].
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T
−

T+

E

P
−

P+

Figure 1: Each interior edge E belongs to precisely two triangles T+ and T−. The points opposite of E
are denoted by P+ and P−, respectively.

Remark. The variational inequality (43) for both, the continuous and the discrete constrained minimiza-
tion problem, provides a tool to derive a priori error estimates. Indeed, (43) applied on the continuous
and the discrete level gives us for arbitrary wh ∈ Ah

|||m∗ −m0
h|||2 = 〈〈m∗ , m∗〉〉 − 2〈〈m∗ , m0

h〉〉+ 〈〈m0
h , m

0
h〉〉

≤ 〈〈m∗ , m0
h〉〉 + (f,m∗ −m0

h)L2 − 2〈〈m∗ , m0
h〉〉+ 〈〈m0

h , w
0
h〉〉 + (f,m0

h −w0
h)L2

= −〈〈m∗ , m0
h〉〉+ (f,m∗ −wh)L2 + 〈〈m0

h , wh〉〉
= 〈〈m0

h , wh −m∗〉〉+ (f,m∗ −wh)L2

= 〈〈m∗ −m0
h , m

∗ −wh〉〉 − 〈〈m∗ , m∗ −wh〉〉+ (f,m∗ −wh)L2 .

Applying the trivial inequality 2ab ≤ a2 + b2 to the term 〈〈m∗ −m0
h , m

∗ −wh〉〉, we see

|||m∗ −m0
h|||2 ≤ 1

2
|||m∗ −m0

h|||2 +
1

2
|||m∗ −wh|||2 − 〈〈m∗ , m∗

h −wh〉〉+ (f,m∗ −wh)L2

|||m∗ −m0
h|||2 ≤ |||m∗ −wh|||2 − 2〈〈m∗ , m∗ −wh〉〉 + 2(f,m∗ −wh)L2 .

Since wh ∈ Ah was arbitrary the last inequality still holds when taking the infimum over all wh ∈ Ah on
the right-hand side. Choosing wh = Πhm

∗ with a suitable interpolation operator Πh : H1(Ω) → RT 0(Th),
one can prove an a priori rate of

|||m∗ −m0
h||| = O(

√
h),

provided that m∗ ∈ H1(Ω)2 with ∇·m ∈ H1(Ω). Note, however, that norm convergence of the constrained
problem does not imply norm convergence of the penalized system.

4.2. A simple damped Newton algorithm. The penalized energy functional eε(m) is Fréchet
differentiable with derivative

Deε(m)(w) = (∇ ·m,∇ ·w)V + q(m2,w2)− (f ,w)L2(Ω) +

(
(|m| − 1)+

ε|m| m,w

)

L2(Ω)

(see [11] for the detailed derivation of the last term). Since eε(m) is convex, we have that finding a
global minimizer of (M ε

h) is equivalent to solving the variational problem

De(mε
h)(wh) = 0 ∀wh ∈ RT 0(Th).

We apply Newton’s algorithm to solve this equation. Note that this derivative of the penalized
energy functional is not continuously differentiable due to the penalty energy. Hence no classical result
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on convergence of Newton’s algorithm applies. Let Th denote some regular triangulation with #EΩ
h =: ND

interior edges. Given some coefficient vector x ∈ R
ND the discrete Euler-Lagrange equation reads

(∇ ·
ND∑

i=1

xiψi,∇ ·wh)V + q(

ND∑

i=1

xiψi,2,wh,2)L2 − (f,wh)L2 +
1

ε
(λεh

ND∑

i=1

xiψi,wh) = 0

for all wh ∈ RT 0(Th). Obviously this equation holds for all wh ∈ RT 0(Th) if and only if it holds for all
basis functions (ψi)

ND

i=1 of RT 0(Th). Hence we seek the zeros of the discrete function F : RND → R
ND

defined by

Fj(x) = (∇ ·mε
h(x),∇ · ψj)V + q(mε

h,2(x), ψj,2)L2 +
1

ε
(λεhm

ε
h(x), ψj)L2 − (f, ψj)L2 . (46)

The notation mε
h(x) indicates that the discrete magnetization mε

h = mε
h(x) depends on the given

coefficient vector mε
h =

∑ND

i=1 xiψi. A crucial step is the computation of the derivative of the function
F . In equation (46), the derivative of the first two scalar products can be computed easily. The fourth
contribution vanishes, since it is just a constant. The third term, however, is more involved. The

derivative of (|m|−1)+
|m| is not defined classically at the points where |mε

h(x)| = 1. However, since the

scalar product is computed by use of numerical quadrature, this exceptional situation is not expected to
be encountered numerically at any quadrature point. In our implementation, points where |m(x)| = 1
are treated in the same way as points where |m(x)| < 1. The following formula for the Jacobian of the
non-linear contribution is obtained by straight forward calculations.

Lemma 17. The Jacobian DFNL ∈ R
ND×ND of the function FNL : RND → R

ND defined by

x 7→ (g(x), ψj)L2 with g(x) :=
(|mε

h(x)| − 1)+
|mε

h(x)|
mε
h(x)

is given by

(DFNL)(x)i,j = (
∂g(x)

∂xi
, ψj)L2 ,

where at any x ∈ Ω with |mε
h(x)(x)| 6= 1 the derivative of g either reads ∂g(x)

∂xi
(x) = 0 in the case

|mε
h(x)(x)| < 1 or, if |mε

h(x)(x)| > 1,

∂g(x)

∂xi
(x) = ψi −




1
|mε

h|
− m

ε
h,1

|mε
h|3

−m
ε
h,1m

ε
h,2

|mε
h|3

−m
ε
h,1m

ε
h,2

|mε
h|3

1
|mε

h|
− m

ε
h,2

|mε
h|3


 · ψi.

In our simulation runs, we found that the Newton algorithm did not converge in all cases. For smooth
functions the following modified algorithm, often referred to as relaxed Newton algorithm or damped
Newton method, converges globally. However, this is at the cost of decreased order of convergence.

Damped Newton algorithm:

Let x(0) ∈ R
ND denote some initial value and set ℓ = 0.

(i) Evaluate F (x(ℓ)) and compute the derivative DF (ℓ).

(ii) Compute the search direction δ ∈ R
ND by solving the linear system DF (ℓ)δ = −F (x(ℓ)).

(iii) Find minimal k such that |F (x(ℓ) + 0.5kδ)| < |F (x(ℓ))|

(iv) Define x(ℓ+1) := x(ℓ) + 0.5kδ

(v) Either stop or ℓ 7→ ℓ+ 1 and goto (i)

Output: An approximation x to some root of the function F .

Note that step (iii) ensures a reduction of the residual in each step. As a stopping criterion we simply
check |F (x)| < 10−8. More sophisticated stopping criteria that, e.g., also deal with the possibility of not
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Figure 2: Initial mesh Th of the simulation domain Ω = (−0.5, 0.5)2.

being able to find a root up to rounding errors could be chosen. This, however, was not necessary in any
of our simulation runs so that we could work with the simpler criterion.

Let Th be some given mesh with triangles T1, . . . , TNT and ND = #EΩ
h interior edges. Let χTj denote

the characteristic function of a triangle Tj. Note that {χT1 , . . . , χTNT
} is a basis of the space P0(Th) of

piecewise constant functions on the mesh. Then, we define the system matrices

V ∈ R
NT×NT , Vi,j := (χTj , V χTi)L2 ,

Q ∈ R
ND×ND , Qi,j := (ψj,2, ψi,2)L2 ,

D ∈ R
NT×ND , Di,j := (∇ · ψj)|Ti .

(47)

We define the vectors bj := (f , ψj)L2 and aj(x) :=
(

(|mε
h(x)|−1)+
|mε

h(x)|
|mε

h(x)|, ψj
)
L2
. Finally the evaluation

of the function F (x) and the derivative matrix DF(x) read

F (x) = DTVDx+ qQx+ a(x)− b,

DF(x) = DTVD+ qQ+DFNL(x).

Note that the matrix V is dense. We apply matrix compression techniques well-known from bound-
ary element analysis to store and work with the matrix in a data-sparse manner. Among the many
strategies available, we use here hierachical matrices [14], which have log-linear complexity for storing
V and realizing the matrix-vector multiplication z 7→ Vz. Our implementation utilizes the HLib library
(http://www.hlib.org) for the computation of the matrix V.

4.3. Numerical experiments. We study the behavior of our algorithm with a simple set of experi-
ments. We choose the sample to be the unit square Ω = (−0.5, 0.5)2. The applied field is constant—a
standard assumption in thin-film micromagnetics [7]. Since for this non-linear problem no analytical so-
lution is available, we estimate the error by comparing with a reference solution mref that is computed
on a relatively fine grid. Throughout, the anisotropy parameter is q = 1.

4.3.1 Convergence in h

In this first experiment we are interested in the convergence as h → 0 for fixed ε. To be precise, we
choose ε = 10−2 and we compute the solutions mε

h on a sequence of uniformly refined meshes of Ω.
The applied field is f = (1,−0.5)T . The initial mesh with #Th = 16 triangles is shown in Figure 2.
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Figure 3: Error mε
h −mref measured in various norms and plotted versus the mesh size h. The slopes

corresponding to O(h) and O(
√
h) in the double logarithmic scale are shown for reference.

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

 

 

|e(mε
h) − eref |

O(h)

h

Figure 4: Error in the energy |e(mε
h) − eref | ≈ |e(mε

h) − e(mε
0)| versus the mesh size h. The slope
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Figure 5: Left: Length of the magnetization mref . Right: Region of Ω where the penalty term is active,
i.e. |mref | > 1 somewhere in the corresponding triangle.

The reference solution mref was computed on a mesh Th with 262, 144 triangles, which corresponds to
392, 704 degrees of freedom for the discrete space RT 0(Th). Figure 5 shows the length of the discrete
magnetization and the region of Ω where the penalty term is active.

Figure 3 shows the estimated error in the energy norm |||mε
h −mref ||| ≈ |||mε

h −mε
0||| as well as the

full space norm ‖mε
h −mref‖H. We also plot the contributions of the L2-norms ‖mε

h −mref‖L2(Ω) and
‖mε

h,2 − mref,2‖L2(Ω) as well as the error of the divergence in the V -norm ‖∇ ·mε
h − ∇ · mref‖V . All

quantities are plotted versus the mesh size h. Finally, Figure 4 shows the energy error |e(mε
h)−eref |. We

computed the reference quantity eref = −0.5815508709 by extrapolation from the sequence of energies
e(mε

h) with Aitken’s ∆2-method.
The dominant error contribution is the error in the divergence ‖∇ · (mε

h −mref )‖V . We observe an

asymptotic behavior of O(
√
h). The error in the L2-norm decays linearly O(h) and is of higher order.

Also the error in the first component, which is not controlled by the energy functional, decays at the
same linear rate. The error in the energy decays linearly at O(h)—which is what we expect since the
energy is a quadratic quantity.

4.3.2 Convergence in ε

In this second experiment we study the convergence of mε
h to m0

h as ε → 0. We compute discrete and
penalized solutions to the same problem as in the first experiment in Section 4.3.1. But this time we
compute the solutions mε

h for varying penalty parameter on a fixed mesh with #Th = 4, 096 triangles.
This corresponds to 6, 080 degrees of freedom of the discrete space RT 0(Th) and a mesh size of h = 0.0312.
The reference solution mref was computed with a value of ε = 3.05 · 10−5.

Figure 6 shows the estimated error in the energy norm |||mε
h −mref ||| ≈ |||mε

h −mε
0||| as well as the

full space norm ‖mε
h −mref‖H. We also plot the contributions of the L2-norms ‖mε

h −mref‖L2(Ω) and
‖mε

h,2 − mref,2‖L2(Ω) as well as the error of the divergence in the V -norm ‖∇ ·mε
h − ∇ · mref‖V . All

quantities are plotted versus the penalty parameter ε. Figure 7 shows the error |e(mε
h) − eref | in the

energy. We computed the reference quantity eref = −0.5760956532 by extrapolation from the sequence
of energies e(mε

h) with Aitken’s ∆2-method.
We observe two major differences to the error with respect to h-refinements. First, we observe that

the error in the energy norm decays with order 1/2, i.e. |||mε
h −m0

h||| = O(
√
ε). This is similar to the

error decay with respect to h. In contrast, however, the error in the energy also only decays at the same
order 1/2 with respect to ε. This is a bit surprising since the energy is a quadratic quantity. Apparently,
the error from the approximation by the penalty method is reflected in the energy mainly through the
linear L2-contribution (f ,m)L2 . The second difference is that the error in the L2-norm and the error of
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Figure 8: Error in the energy norm |||mε
h − mref ||| ≈ |||mε

h − m∗||| versus the number of triangles #Th
for different choices of ε = hα. The slope corresponding to O(#T 1/3

h ) in the double logarithmic scale is
shown for reference. Left: Applied field f = (1,−0.5)T . Right: Applied field f = (2, 2)T .

the divergence in the V -norm are of the same order.

4.3.3 Choice of ε = hα

It is an open question how to balance the parameters ε and h in numerical calculations. So far, we
only looked at the error contributions independently. Putting everything together might yield a different
picture. To empirically understand the optimal choice of ε = hα, we perform a series of calculations for
varying α ∈ {0.5, 0.8, 1.0, 1.2, 1.5}. We use the same geometry and parameters as in the first experiment
in Section 4.3.1. The reference solution mref was computed on a mesh with #Th = 65, 536 triangles
which corresponds to 98, 048 degrees of freedom. The penalty parameter of the reference solution is
ε = 6.52 · 10−4.

Figure 8 (left) shows the error in the energy norm for the sequences of solutions mε
h with ε = hα

plotted versus the number of triangles #Th of the corresponding mesh. We clearly see that α = 0.5 leads
to a reduced order of convergence compared to the other choices. The plot is not clearly visible beyond
α = 0.8. This is because the discretization error dominates the total error. In order to obtain more
conclusive data, in a second experiment, we applied a larger field f = (2, 2)T . This choice emphasizes
certain effects. The error contributions from the discretization and the penalty scheme are well balanced
for our purposes. Figure 8 (right) shows the results of this second simulation run. We observe that
the choice of α = 1 is optimal. Choice of α < 1 leads to a reduced order of convergence; the choice
of α > 1 leads to the same order of convergence as α = 1. We note that the energy norm error, in

both simulation, is approximately O(#T −1/3
h ). Recalling the relation h ∼ #T −1/2

h , this means that the

convergence behavior O(#T −1/3
h ) is of higher order than

√
h. One possible explanation is that, as the

mesh size decreases, the active set is better resolved, see also the more detailed experimental analysis
in [11]. We are not sure, however, whether this accelerated convergence effect is only a pre-asymptotic
phenomenon due to an inadequate resolution of the active set at the beginning of the calculations.

5 Conclusions

In the first part of the paper we presented a general convergence result for penalty methods. The proof
applies to a large class of quadratic minimization problems. We stress that it does not involve any
optimality conditions, and the assumptions on the inequality constraints are very weak.

In the second part of the paper we analyzed the thin-film model in micromagnetics from [7]. In
contrast to the original works [8, 9], our perspective is that of the numerical analyst. We construct an
appropriate Hilbert space and prove well-posedness of the problem in this setting. We note that the
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uniqueness of the solution in the case q 6= 0 is not stated in the prior works [7, 8, 9, 10]. The present
work generalizes and extends the results of [11] and [12].

Parts of the dissertation [10] are also concerned with the numerical simulation of the same thin-film
model problem. There, the author uses an interior point method to compute admissible approximations to
the magnetization. While admissibility is mandatory in many applications, we feel that a good qualitative
and even quantitative understanding of the present thin-film model can be obtained with numerical
methods that relax the admissibility constraint. Additionally, we were able to give a mathematical
convergence result for the algorithms presented here.

The numerical experiments show that there is still some work to do. The observation that uniform
meshes lead to a sub-linear order of convergence is consistent with the observations in [10]. If the applied
field is sufficiently weak so that the constraint |m| ≤ 1 is not active, the minimization problem reduces to
a certain linear integral equation. ¿From the literature on boundary element methods it is then clear that
the divergence ∇ ·m has generic singularities along the boundary of Ω. A heuristic adaptive algorithm
developed in [11] shows that the rate of convergence can be improved. There are some open questions
in this context, however, since adaptive mesh refinements towards the boundary of Ω is suboptimal for
the approximation of m in the L2-norm. Also a posteriori error estimators that measure the error with
respect to h and ε are not justified rigorously.

Despite these open questions, the numerical experiments presented here did support our analytical
results—convergence in the energy norm holds for arbitrary choices of (h, ε) → (0, 0). The system matrix
V of (47) is the bottle-neck in the calculations. From that point of view, our simple Newton method
is quite successful. The size of the computations is mainly limited by memory consumption and the
building time of V, i.e. by effects emerging from the nature of the problem.
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