ASC Report No. 28/2011

Quasi-optimal convergence rate for an
adaptive boundary element method

M. Feischl, M. Karkulik, JM. Melenk, D. Praetorius

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien
www.asc.tuwien.ac.at ISBN 978-3-902627-04-9




Most recent ASC Reports

27/2011  N. Happenhofer, O. Koch, F. Kupka
IMEX Methods for the ANTARES Code
26/2011  Michael Dreher, Angar Jiingel
Compact families of piecewise constant functions in Lp(0, T;B)

25/2011  Jens Geier, Anton Arnold
WKB-based schemes for two-band Schrédinger equations in the highly ascilla-
tory regime

24/2011  Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-Leite, Petra
Goldenits, Michael Karkulik, Markus Mayr, Dirk Praetorius
HILBERT-A MATLAB Implementation of Adaptive 2D-BEM

23/2011  JinMyong Kim, Anton Arnold, Xiaohua Yao
Estimates for a class of oscillatory integrals and decay rates for wave-type equa-
tions

22/2011  Markus Aurada, Michael Feischl, Michael Karkulik, Dirk Praetorius
Adaptive coupling of FEM and BEM: Simple error estimators and convergence

21/2011  Michael Feischl, Michael Karkulik, Jens Markus Melenk, Dirk Praetorius
Residual a-posteriori error stimates in BEM: Convergence of h-adaptive algo-
rithms

20/2011  Markus Aurada, Michael Feischl, Michael Karkulik, Dirk Praetorius
Adaptive coupling of FEM and BEM: Simple error estimators and convergence

19/2011  Petra Goldenits, Dirk Praetorius, Dieter Suess
Convergent geometric integrator for the Landau-Lifshitz-Gilbert equation in mi-
cromagnetics

18/2011 M. Aurada, M. Feischl, M. Karkulik, D. Praetorius
A Posteriori Error Estimates for the Johnson-Nédélec FEM-BEM Coupling

Institute for Analysis and Scientific Computing
Vienna University of Technology

Wiedner HauptstraBe 8-10

1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196
ISBN 978-3-902627-04-9 AS C

TU WIEN

(© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.




QUASI-OPTIMAL CONVERGENCE RATE FOR AN
ADAPTIVE BOUNDARY ELEMENT METHOD

M. FEISCHL, M. KARKULIK, J. M. MELENK, AND D. PRAETORIUS

ABSTRACT. For the simple layer potential V' that is associated with the 3D Laplacian, we consider
the weakly singular integral equation V¢ = f. This equation is discretized by the lowest order
Galerkin boundary element method. We prove convergence of an h-adaptive algorithm that is
driven by a weighted residual error estimator. Moreover, we identify the approximation class for
which the adaptive algorithm converges quasi-optimally with respect to the number of elements.
In particular, we prove that adaptive mesh refinement is superior to uniform mesh refinement.

1. INTRODUCTION

For a surface I' C R3, we consider the lowest order Galerkin boundary element method for the
weakly singular integral equation

(1) Vo(x) = ﬁ/r |j(_y;| dr(y) = f(x) forxeT.

We postpone a precise statement of our mathematical framework to Section 2. Problem (1) is an
example of a boundary integral equation arising in elliptic partial differential equations; the analysis
of such equations and the understanding of their numerical treatment has reached a certain level
of maturity as witnessed by the recent monographs [31, 33, 38, 42]. However, adaptivity, which is
the topic here, is not covered in these references.

We analyze a standard h-adaptive boundary element method (ABEM) of the form

(2) | solve | —| estimate |—| mark |—| refine |

In the context of the finite element method on shape-regular meshes, h-adaptive algorithms of
this type (AFEM) have been analyzed in the last 15 years and are by now fairly well understood.
The works of Déorfler [20], Morin, Nochetto, and Siebert [34, 35], Binev, Dahmen, and DeVore [7],
Stevenson [43], and Cascén, Kreuzer, Nochetto, and Siebert [19] were milestones for linear model
problems and residual error estimates. The work [32] transferred these arguments to other error
estimators by use of local equivalences. Very recently, also convergence and quasi-optimality for a
nonlinear model problem have been proved [6].

The situation is considerably less developed for the adaptive boundary element method (ABEM).
While several a posteriori error estimator for (1) are available in the literature, cf. [11, 13, 14, 17, 18,
22, 23, 24, 25, 39, 27, 30, 37, 41] and references therein, and numerous numerical studies indicate
convergence of ABEM as well as superiority of ABEM over simple uniform mesh refinement, a
rigorous mathematical justification of ABEM still appears to be missing. Such an analysis is the
purpose of the present paper for the model equation (1).

The first work on convergence of ABEM known to the authors is [16], where convergence is
guaranteed by use of a feedback control which occasionally leads to uniform refinements by a
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numerical check of the saturation assumption. This result is somewhat unsatisfactory, since the
feedback control is computationally expensive and seemed to be unnecessary in practice. The second
work on convergence of ABEM is [26]. Under the saturation assumption, [26] proved contraction
of ABEM in each step of the adaptive loop, where an (h — h/2)-based estimator is used to mark
certain elements for refinement. Their arguments have been relaxed in [2, 3], but still the analysis
hinges on a weakened saturation assumption. Moreover, since the saturation assumption cannot
be guaranteed mathematically and even fails to hold in general, cf. [8, 21], the results of [2, 3, 26]
are still mathematically unsatisfactory. Besides this, all these works do not show that ABEM is
superior to uniform mesh refinement.

Here, we consider the weigthed residual error estimator employed in [11, 17, 18] for 2D BEM
and in [12] for 3D BEM. We prove linear convergence of ABEM (Theorem 3.1) and identify an
approximation class for which the ABEM converges at the optimal rate (Theorem 4.1). Our
procedure follows structurally [19]; however, given the non-local nature of the integral operator
V' and the Sobolev norms studied here, new tools such as the inverse estimate of Proposition 3.3
had to be developped. Very recently and independently of our work, Gantumur [28] presented an
analogous convergence result, which relies on similar ideas and mathematical ingredients. In his
work, however, the focus is rather on the hypersingular integral equation with a pseudo-differential
operator of order +1, whereas the simple layer operator V studied here is of order —1. For the
weakly singular integral equation (1), our result is stronger in two ways: First, the analysis of [28]
is stated for C1! surfaces, whereas the present work covers polyhedral geometries. Second, the
error estimator considered in [28] is only reliable up to the weighted residual estimator used here,
i.e. the algorithm proposed in [28] needs to compute two error estimators.

We close the introduction with some general remarks on the model problem (1) under consid-
eration. First, the simple layer potential V of the 3D Laplacian is the prototype of an elliptic
pseudo-differential operator of order —1. With appropriate modifications, our results can be trans-
fered to the simple layer potentials of other elliptic equations such as the Lamé or Stokes equation.
Second, although the paper is mainly concerned with the 3D problem, our analytical techniques
also work for 2D, where certain proofs are even simpler.

For numerical experiments, the reader is referred to [11, 12, 17, 18], whereas this work provides
the mathematical explanation for those empirical observations.

2. SETTING

In this section, we introduce our model problem, its Galerkin discretization, and the adaptive
algorithm that we analyze. The convergence of this adaptive algorithm is proved in Section 3;
quasi-optimality of the algorithm is shown in Section 4.

2.1. Model problem. Let Q C R? be a polyhedral Lipschitz domain, i.e. we have 0Q = U, Ty,
where the T'; are plane surface pieces. The usual Sobolev spaces on 2 are denoted by Lo(£2) and
H'(2). Sobolev spaces with noninteger order on 92 or relatively open parts I' of 9 are defined
by use of the Sobolev-Slobodeckij seminorm (see, e.g., [38, Def. 2.4.1]). The dual space of H/?(T')
is denoted by H~Y/ 2(I'). We denote by (-,-) the La-scalar product which is extended to duality
between H~Y/2(I') and HY/2(T'), if the arguments of (-,-) are in these spaces. Let I' C 99 be a
relatively open subset. Our model problem reads: For given f € HY/?(I'), find ¢ € HY 2(T) such
that

3) Vo=f onl.
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Here, V' denotes the simple-layer potential of the 3D Laplacian

() Vo) =1 |

20 i),
x — vl
which is a continuous, elliptic, and symmetric isomorphism between the Sobolev spaces H-1/2 ()
and H'/2(I"). Throughout, |- | denotes the absolute value of a scalar as well as the Euclidean norm
of a vector, and n(y) denotes the exterior normal vector on 92 at some point y € I

Since V : H~Y 2(I') = HY?(T') is an elliptic and symmetric isomorphism, it provides a scalar
product defined by (¢,1) = (V). We denote by ||| - [||*> := (-,-) the induced energy norm,
which is an equivalent norm on H~1/2 (T'). In particular, the theorem of Riesz-Fischer proves the
existence and uniqueness of the solution ¢ € H~Y2(T") of (3) stated in the variational form

(5) (¢ w) = (f,0) forally e H-VA(D).
Remark 1.  The model problem (3) arises naturally in boundary integral equation methods. For
example:

(i) Let I' = 092 and let K be the double layer potential
1 y —X)-n(y
Kg(x) ﬁf Y90 oy ariy).

Carf x—yP
Upon setting f = (K 4 1/2)g, where g € HY?(T') is given, the model problem (3) can be used
to solve the Laplace (Dirichlet) problem
—Au=0 in €,
u=g on ' = 0Q.

(i) For T' C 9Q an open screen, (3) is equivalent to the Dirichlet screen problem

—Au = 0 in R3\ T,
u = f on I,
W) = O(x™)  as|x| - o

O

2.2. Triangulation of I' and Galerkin discretization. @ We suppose that we are given an
initial regular triangulation & of I' into flat compact triangles, see [9, Definition 3.3.11]. From this,
we generate a sequence of regular triangulations & by local newest vertex bisection, see Section 4
below. The index ¢ will later on denote the ¢-th step of the proposed h-adaptive algorithm. We
consider the lowest order Galerkin discretization of (5). The space PY(&) is the space of piecewise
constant functions on the triangulation &. Again, the Riesz-Fischer theorem applies and guarantees
existence and uniqueness of the solution ®, € P%(&,) of the Galerkin formulation:

(6) Find &, € PO(&) s.t. (D, W) = (f,¥,) for all U, € PUE).

In the remainder of this paper, we use the following additional notation: The set of vertices of &
is denoted by A;. Our analysis will rely on the notion of patches. The set wy(F) = {E' IS
ENE # @} C & denotes the usual element patch of an element E € &,. Moreover, for a subset
Ry C &, we define the patch w(Ry) = {E' € & : 3E€ Ry E' € wy(E)} C &. Finally, for a set
Re C & of elements, |JRy = UEeRe E CT denotes the subregion of T' covered by the elements in
Re.
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Some of our results will not depend on the fact that the sequence of meshes (&), is generated
by newest vertex bisection but only relies on shape-regularity of the triangulation. To capture this,
we recall the following standard notation: A mesh & is called ~y-shape reqular (or: ~y-isotropic) if

iam(E)?
(7) o(&r) := max diam(E)”

< .
Beg,  |E| =

analogously, a sequence of meshes (&), is y-shape regular if (7) is valid uniformly in ¢.

2.3. Adaptive mesh refinement algorithm and main results. We study an h-adaptive
algorithm that is driven by the local contributions of a weighted residual error estimator. In order

to define this estimator in (9) below, we introduce with the surface area | - | the local mesh size
function h, € P°(&;) by
(8) hel g = ho(E) = |E|"/2,

where & is a regular triangulation I" that is generated by the adaptive loop in Alg. 2.1 below. For
the Galerkin solution ®; of (6) with respect to &, we define the error estimator u, by

1/2
(9) e = 10> Tr (Ve = Pllary = (D me(B)?) ", where (B =he(E) [V (VO = )3,
Ee&,

Here, V(-) denotes the surface gradient. Note that the definition of 1, requires additional regularity
f € HYT) of the given data, which is assumed from now on. Reliability of u, has been proven
in [12, Corollary 4.2], i.e. u; provides a computable upper bound for the error in the energy norm

A2 A =172
(10) |||¢_(I)€||| < Crellu’f’
where the constant C}e depends only on the shape of the elements of & and on I'.

Remark 2. The constant Cye depends on the shape of all possible vertex patches wy . = {E S
E:z€ E}, where z is a vertex of . Local refinement is done by use of newest vertex bisection,
see Section 4 below. Among others, this ensures that only finitely many shapes of elements E € &
are generated over all steps £ € Ny of the adaptive loop. In particular, only finitely many shapes of
node patches occur, and the constant Cye is therefore known to be bounded for all £ € Ny. O

Using the Dorfler marking (11) introduced in [20] to single out the elements E € & for refinement,
our version of the adaptive loop (2) reads as follows:

Algorithm 2.1. Input: Initial triangulation &, parameter 0 < 0 < 1, counter £ := 0.

(i) Compute the Galerkin solution ®; with respect to &.
(ii) Compute refinement indicators pg(E) from (9) for all E € &,.
(ili) Determine a set My C & of minimal cardinality such that

(11) > B > 0u.
EeMy

(iv) Refine at least marked elements E € My by newest vertex bisection to obtain Eypy1.
(v) Update counter £ — £+ 1 and goto (i).

O

The main results of our work on the weakly singular integral equation (1) and the work [28] of

Gantumur on the hypersingular integral equation read as follows: The usual version (2) of ABEM,

which is stated in the algorithm above, leads to a sequence of adaptively generated triangulations

and corresponding discrete solutions. A weighted sum of Galerkin error and weighted residual

error estimator, called quasi-error in [19], then is contractive in each step of the adaptive loop
4



(Theorem 3.1). This proves linear convergence of ABEM independently of the adaptivity parameter
0 < 6 < 1 chosen. Moreover, for sufficiently small adaptivity parameters 0 < 6 < 6,, we prove that
the convergence rate of ABEM is optimal with respect to the number of elements (Theorem 4.1).
That is, the adaptive algorithm leads to the best possible convergence rate, constrained by the
mesh refinement strategy and the use of the weighted residual error estimator.

While our proofs imitate the current convergence and quasi-optimality concepts for adaptive
finite element schemes, cf. [19], our analysis has to circumvent additional difficulties which arise
from the non-locality of the integral operator V' and the non-local Sobolev norms involved. In
particular, we prove a novel inverse estimate (Proposition 3.3) which might be of independent
interest. Altogether, this work and [28] provide analytical results on ABEM for pseudo-differential
operators of order +1 which are comparable to those on AFEM of [19].

3. CONVERGENCE

In this section, we prove convergence of Algorithm 2.1 in the spirit of [19]. We mention that the
proof of Theorem 3.1 does not need the minimality condition on M, in step (7i7) of Algorithm
2.1. It is only necessary that the set of marked elements M, satisfies the Dorfler Marking (11). In
particular, the following theorem also holds for uniform mesh refinement, where M, = &,.

Theorem 3.1. There are constants 0 < A\, k < 1 such that the quasi-error is contractive, i.e.
(12) App1 <k Ap with Ag:=|||¢ — Pl||* + M.

The constants A,k > 0 depend only on the adaptivity parameter 0 < 6 < 1, y-shape reqularity of
the sequence (E¢)¢, and on T'. In particular, this implies convergence elim llp—Dyl|| =0 = elim Lhg.
— 00 — 00

Remark 3. Theorem 8.1 also holds for mesh refinement strategies other than newest vertex
bisection. The essential ingredients are: First, the sequence of generated meshes & has to be
uniformly ~v-shape regular. Second, marked elements E € My have to be refined such that the local
mesh-size hyy1|g < qhe|g is uniformly decreased by some factor 0 < g < 1. These assumptions are
satisfied by each feasible mesh refinement strategy and, in particular, for newest vertex bisection,
the popular red-green-blue refinement, and longest edge bisection, see e.g. [45, Chapter 5]. ]

The proof of Theorem 3.1 is carried out in Section 3.3. It relies on the estimator reduction found
in Proposition 3.2 and some inverse estimate for the discrete space VP?(&) stated in Proposi-
tion 3.3.

3.1. Estimator reduction of residual error estimator pg. The following proposition states
that, in each step of the adaptive loop, the error estimator is contractive up to some perturbation
which only depends on the difference of two successive Galerkin solutions. In fact, the contraction
constant k for the error estimator puy essentially gives the contraction constant x for the quasi-error

Ag of (12)
Proposition 3.2. Algorithm 2.1 guarantees estimator reduction
~ 1/2
(13) i1 < Fpd + Crea I3 V0V (Rea1 — @) 3, 0.

The constants 0 < k < 1 and Creq > 0 depend only on the adaptivity parameter 0 < 0 < 1.
5



Proof. Using the triangle inequality and the Young inequality (a + b)? < (14 6)a® + (1 + 612,
we obtain for arbitrary § > 0
M§+1 = Hh;ﬁVF(V@ZH - f)H%Q(r)
(14) < (I 3V (Ve = Dllzam + 115 V0V (@esr = 80)a(ry)’
< (L 0) 1/ Ve (Ve = D,y + 1+ 87D VeV (@ein = @)l

We consider the first term elementwise and split it into marked and non-marked elements

1/2 1/2 1/2
g AV (Ve — NI,m = Y. IhAVe Ve — O+ Y. 1AV (Ve — HI2,m
EeM, Ee&\ M,

Marked elements E € My are refined so that hey1|p < qhy|g with ¢ = 271/2 < 1, since the sons
have half the area of E. Elements E € & \ My satisfy at least hyy1|p < h¢|g. Hence,

que(E)*  for E € My,

W2 (VO — |2, g <
1he Ve (V@ = Pl m) < e( E)? for E € &\ M,.

According to the Dorfler Marking (11), we see

1/2
/2 Vr(Vae— AI2,m <a D meE)?+ > mE? = —1—q) > w(E)
EeM, Ee&E\ M, EeM,

<(1-001-9)pi.
Combining this with (14), we obtain
_ 1/2
P < (1401 =001 —q))pu; + (140 1)thJ/rlvFV(‘I’é+1 - ‘I’Z)H%Q(F)-
Finally, we choose § > 0 sufficiently small so that kK = (1 4+ ) (1 — (1 — ¢)f) < 1. This concludes
the proof. O

3.2. Inverse estimate on V’PO(Eg). The following proposition is the main result of this sec-

tion. It allows us to estimate the perturbation term Hh%_lepV(CI)gH — @)/l 1,(r)y in the estimator
reduction (13) by the energy norm |||®; — Pglf|.

Proposition 3.3. There is some constant Ci,y > 0 such that
(15) by > eV Loy < Cin [1We]l| - for all W, € PO(E)).
The constant Ciny > 0 depends only on I' and the ~y-shape regularity of &.

Remark 4. Under the assumption that T is C1, Gantumur [28] proves the inverse estimate (15)
by wavelet-based techniques. Moreover, for CY'-surfaces T, his work provides similar estimates for
the double layer potential K , its adjoint K', and the hypersingular integral operator W. Our analysis
leads to the same estimates for polyhedral I'. While the far-field bound in Lemma 3.6 follows from
general potential estimates, the proof of near-field bound in Lemma 3.7 has to be modified to the
integral operator at hand. O

The proof of Proposition 3.3 is given below and depends on several technical lemmata, which
are proven in the following. We start with some trace inequality.
6



Lemma 3.4 (trace inequality). For I' C R? a hyperplane and B C R3 a ball with center in T
and radius rg > 0, there is a constant Cirace > 0 such that

_ 1
(16) Crrace 1l ymrm) < —lulli, ) + el o IVullros)  for allu e H(B).

B ‘
The constant Cipace > 0 does neither depend on I', B, nor on u or on rp.

Proof. We consider the reference configuration [' = R? and the ball B = B; (0) C R3 centered at
the origin with radius 1. From the multiplicative trace inequality [9, Theorem 1.6.6], we infer

1812 ) < Wl Il s, < 1,5 Nl g, for all @ e HY(B),

where §+ = {:C €B : X3 > 0}. Next,

1/2

1l @1 3y = (NI g, + 112, 5 IV, 5) 72 < NAI2, ) + 8 |Vl 1 5

The statement now follows by use of common scaling arguments. O

For the remainder of this section, we use the following notation. For 7 > 0 and x € R?, we denote
by B,(x) the open ball in R? centered at x with radius r. For § > 0, we define a neighborhood Ug
of an element E by

ECUg:= U B25hg(E)(X)‘
xel

By the y-shape regularity of the mesh, we can select § > 0 and M € N, which depend solely on
and the polyhedral boundary I, such that Uy NI is contained in the patch of F

(17a) UgNT C | Jwi(B)
and that the covering I' C Upcg, Uk is locally finite

(17Db) #{Up : E€& and x € Ug} < M for all x € R®.

In fact, M may be taken to be the maximum number of elements in a node patch, i.e. M =
m%/x #{E €& :z€ E} for an appropriate choice of § > 0.
zENy

Lemma 3.5 (Caccioppoli-type inequality). Let ¢ € Ly(T"). For each E_E &, define ufgr =
V(xr\vy) as the far-field of uw = Vip with respect to E. With Q™' = R3\Q, it then holds that
ul®r|o € C°(Q), uldr|gex € C(QY), and ul¥|y, € C®(Ug). Furthermore,

ar 1 ar
(18) HDzu% HL2(Bahg(E)(X)) < Ceacc he(E) HvufE HLQ(B26hZ(E)(X)) for allx € E.

The constant Ceace > 0 depends only on the v-shape regularity of €.

Proof. The far-field v € HY(Q) x H} (Q%) solves the transmission problem

~Aufr = 0 in QU Qe
[wlar] = 0 on I’
19 ar
(19) [Onuf] = —¥xrw, onT
W) = O/Ix]) as x| - oo,

7



where [] denotes the jump across T', see e.g. [38]. Moreover, since u2" is (weakly) harmonic, it holds

that w13 | € C(Q) and uld"|gex € C(QY). Fix x’ € E. For a test function v € D(Bash, () (X)),
we use integration by parts to see

(ular —Av) = —/ uf Av dx
Bash, () (x')

= — / farAv dx — / farAv dx
Bosn, () (x/ )N Bosn,(g) (x/)NE2ex*

=— / Aufdy dx + / OStar y ar — / w9y T
Basn,(m)(x')NQ I'NBasp, () (x') I'NBasn, (m) (X')

Aufarv dx + / 8nu%r vdl — / far Opv dl’
I'NBash, () (X))

/Bmshz(}a)(x/)ﬁQe"t I'NBasp, (m) (X')

Au%rv dx + / [Bnu%r]v dl — / [u%r] O dl.
TNBasn, () (X')

‘/BQtih[(E)(X,)m(QUQEXt) TN Basn, () (X')

According to (19), the volume integral and the second boundary integral vanish. Moreover, I' N
Basn,(g) (x x') C Ug. Therefore, also the first boundary integral vanishes. This means that —Aufar =
0 on Bysp,(py(X') in the sense of distributions. Weyl’s Lemma (see, e.g., [36, Theorem 2.3.1]) reveals

ufs € C%°(Bygy, .(p)(X')). Integration by parts yields

0= —/ Auld v dx = / Vuld . Vo dx — / Onuldr v dl
Basn, () (x') Bosn, () (x') OBasn () (X')

:/ Vuld . Vo dx,
Basn,(m) (X))

since v vanishes on the boundary of Basp,(g)(X').
The Caccioppoli inequality (18) now is a manifestation of interior regularity. According to [36,
Lemma 5.7.1], it holds that

(20)

1
ID*ull 28,y S Iflle2 (s, 0 + 7 HVUHL%BHh)+ﬁ”u”L2(Br+h)

for each u € H'(B,,4) such that v € H*(B,) and Au = f on B, with balls B, C B, with
radii 0 < r < 7+ h and some f € L*(B,,;) . The constant hidden in the < notation depends
only on the space dimension, but is independent of ,h > 0 and u, f. We use the last estimate

for u = ul¥ — cp, where cp = fB%h (%) uf¥ (y)dy. According to (20), f = 0. With this and a
Poincaré inequality, we conclude the proof. O

Lemma 3.6 (far-field bound). With the assumptions and notations of Lemma 3.5, it holds that
1 2 f I f I

(21) g * Vw13, ) < Crue VU |7, 07

The constant Cgy > 0 depends only on I' and the y-shape reqularity of &.

Proof. Without loss of generality, we may assume that £ C R? and that the center of mass of F

is cg = 0. We now consider the scaled element E = h,'E so that |E| = 1. All angles of £ are

controlled in terms of the v-shape regularity of &£. Consequently, there is a constant ¢ > 0 which
8



depends only on ~y such that EC [—c, ¢]?. In particular, there are finitely many X, ...,Xy € [—c¢, c]?

with |x; — x| < 6/2 if Bs(X;) N Bs(Xx) # 0 such that

[_C’ C]Q - U Bé(ij)'
j=1

Note that the number N € N depends only on the radius § > 0, whence on « and on I'. Conse-
quently, there are also X1,...,Xy € E such that

N
- U Bs(x
j=1
and hence by scaling x1,...,xy € F such that

N
E C | Bsn,m) (x)).
j=1
Now, let B; := By, (g)(x;) and El := Bosn,(p)(xi). Using the trace inequality (16) and Caccioppoli’s
inequality (18), we infer for all ¢ that
1
\V/ far <
[Vrug HL2 (B;NE) ~ he(E)
1 far far
S iy Ve sy + 1901, )

We use the last estimate to get

VUi 12, ) + IVUE e ID*WE | s,

=

ar ar ar 1 ar
|Vrul ||L2(E><Z||vruf 122y < N,W Z B 5 S 7y 1V Wawe)

This concludes the proof of (21). O

Lemma 3.7 (near-field bound). Let ¢ € Ly(I"). For each E € &, define wi™ =V (¢Yxuynr) as
the near-field of u = V) with respect to E. Then, ws¥|p € HY(T), ul|q € Hl(Q) and

1/2 near 1/2
(22) > e * Vel 17, i) < Coear g W13,y
Ee&,
Moreover, for discrete 1 = ¥, € PY(&,), it holds that
near 1/2
(23) D VU L0y < Crear 10> Vel -
Ee&y

The constant Cyear > 0 depends only on I' and the vy-shape reqularity of &.

Proof. According to [44], V : Ly(I') — HY(T') is a bounded linear operator. Therefore, for each
Ee&

VU™ |5y < IV (@xvenr)lm @y S lvxvearlcam) = 19, wgnr)-

Summing the last estimate over & and using the finite overlap property (17b) of the set Ug, we
thus see

1/2 1/2
SR PV 13 = S EIVeul 12, e S D 1B, wanr = g %13, r)-
Ee& Ee& Eec&,

9



where all estimates hold with constants which depend only on the vy-shape regularity. This concludes
the proof of (22).

To prove (23), we fix an element E € &;. Taking into account (17a) and applying the gradient,
we see

1

VU (x) = — Y. Uy(E) vxi"UE”F(Y) dl'(y) forall x e R3\T,
0 E’ Ix —yl

E’EUJ[(E)

where W,(E") denotes the value of ¥, € P°(&) on the element E’. The number of elements E’ in
the patch wy(E) is bounded in terms of the y-shape regularity and thus

Vol Y wE@)R( [ [Vt |are)

E'cwy(E)

Since the mesh & is y-shape regular, we can select a constant ¢ > 0, which depends solely on the
shape regularity constant 7, such that for each E' we have Ug C Ben,( E)(bE/), where Bep,,( E)(b pr) is
the ball of radius chy(E) centered at the barycenter by of E'. We integrate over Ug and estimate
the remaining integral

vt acs 3w [ ()

E,EWg(E)

< S |u(E)P /B

E’Ec%(E)

vxﬁ( dF(y))2 dx

1

2
chy(m) (bpr) Beny () (bp )N g Xy

where we denote by I'g the plane that is spanned by E’. Scaling arguments then yield
1 2
Voo (x)]2 dx < U, (E thE?’/ (/ 7d1“y) dx
| 19 S 1B Phe(B) o TP

B E'€wy(E) B1(0)
The use of polar coordinates in R? for the inner integral and R? for the outer integral shows

1 2
/ </ — dP(y)) dx < o00.
B1(0) “JB1(0)NR2 x — Yl

Finally, we are thus led to

near 1 2
/ Vu™(x)Pdx S > U (E)Ph(E)® S 1Ry Yol 2, ()
Ue E'€w(E)

Summing this last estimate over all E € & gives (23). O

Proof of Proposition 3.3. We adopt the notation of Lemma 3.5 and Lemma 3.7 for ¢ = ¥, € P°(&)
and note that VU, = vy + u%‘r for each F € &. We now write

(24)

h1/2v VU 2 _ h1/2v VU 2 < h1/2v far (|2 h1/2v near ||2

| r €||L2(r) = Z [y "V £||L2(E) ~ Z 1Ry " Vrug HLQ(E) + Z lhy " Vrug ||L2(E)
Ee& Ee& Eec&,

The far-field contribution on the right hand side is bounded by use of the far-field bound (21) of

Lemma 3.6 and a triangle inequality for ufgr = VW, —up?

1/2
25) S IRV 0 S S IV 0 S S ITVRAE 0+ 3 IV 0
Ee&) Ee&, Ee&, Ee&)
10



The first term in (25) is estimated by stability of V' and the finite overlap property (17b)
S IVVEI 0 S ITVE, 0 S 16l
Ee&y

Here, U C R? is an arbitrary Lipschitz domain with [ geg, Ur © U which may thus be chosen
independently of ¢. The second term in (25) is bounded with the help of the discrete near-field
bound (23). Finally, the near-field contribution in on the right hand side of (24) is bounded by the
near-field bound (22). Up to now, this proves

1/2 1/2
12TV Ul oy S NVl oayapy + > Wl .

Finally, an inverse estimate from [29, Theorem 3.6] for the H~'2norm states

1/2
(26) g Wl ry S Il = 1l

where the hidden constant depends only on I' and the v-shape regularity of £. This and norm
equivalence ||| - ||| ~ || - Hﬁ_l/Q(F) conclude the proof of (15). O

3.3. Proof of contraction theorem (Theorem 3.1). We first note that due to nestedness
PY(E) C PY(Ery1) and Galerkin orthogonality

(6 — Pey1, Ups1) =0 for all Wppy € PO(Eps1),

the Pythagoras theorem states

o = Pesill® = llld — Pelll® — [l o1 — el

Combining the estimator reduction (13) and the inverse estimate (15), we see

~ 1/2 ~
(27) i S Fpd + Creall g VOV (@ega — @), 0y < Fpif + CreaCly, [ 1 — D%
For sufficiently small A > 0, the weighted sum of the last two estimates gives

Appr = |6 = egall* + Aufey < llé — Pelll® + A& 47 + (ACredChay — 1) || @41 — @]])?
<l — De||* + NF .-

We introduce an additional parameter € > 0 and use the reliability (10) of uy to see
lld = elll® + A& 7 < (1= Ae) I — Pell® + AR + Cige) i < 5 Ay,

where = max{1 — A\e, & + C2e}. Recall that A > 0 and 0 < & < 1. For sufficiently small € > 0,

we obtain 0 < k < 1 and conclude the proof. O

Remark 5.  Following the seminal work [5], it can be shown that adaptive boundary or finite
element methods converge a-priori, i.e.: limy_,o |||Prs1 — P¢|l| = 0 in the context of the preced-
ing proof. We stress that estimate (27) is then already sufficient to obtain estimator convergence
limy_ oo ,u? = 0. This concept of estimator reduction is followed in [3] to prove convergence of
(h — h/2)-based adaptive mesh-refinement. In [2], this result is extended to include the adaptive
resolution of the given data so that the overall scheme only deals with discrete integral operators,
i.e. matrices. O
11



4. QUASI-OPTIMALITY

In this section, we prove a quasi-optimality result for Algorithm 2.1. To that end, let T denote the
set of all regular triangulations that can be obtained from the initial mesh & by arbitrary steps
of newest vertex bisection. We assume that the initial triangulation & satisfies the admissibility
condition of [7], i.e. each interior edge e = EL N E_ with E,, F_ € & is either the reference edge
of both F and E_ or of none of them. Under this assumption, it has been shown in [7] that the
closure step in newest vertex bisection, which avoids hanging nodes, has optimal complexity in the
sense of

{—1
(28) #E — #E0 < Covpy Y #M;,
5=0
where Cyp, > 0 depends only on &.
Now, let Ty = {5* eT : #E&—#E N } denote the set of all triangulations that have at most
N elements more than the initial triangulation &. For given s > 0, we write ¢ € Ay if and only if

29 = sup (N* _inf p1,) < oo,
(29) [0ls = sup (N* inf 1) < oo

Here, p, denotes the weighted residual error estimator with respect to £. The idea behind the
definition of Ay is that it characterizes the best possible convergence behavior p, = O(N~%). The
main theorem states that the triangulations & generated by Algorithm 2.1 satisfy py = O(N—%)
for the corresponding error estimators, i.e. the sequence of estimators have a quasi-optimal decay.
The proof of this theorem is carried out in Section 4.4.

Theorem 4.1. There is a constant 0 < 0, < 1 such that for all adaptivity parameters 0 < 0 < 6,
the discrete solutions ®y generated by Algorithm 2.1 satisfy

(30) Cotll — @elll < pe < Copt (#E0 — #E0)~°

provided that ¢ € Ay for some s > 0. The constant Cope > 0 then depends on |¢|s, the use of newest
vertez bisection, and the appropriate labeling of the reference edges to ensure (28).

Remark 6. For quasi-uniform meshes &, it has been shown in [10] that the weighted residual
error estimator g is not only reliable, see (10), but also efficient, i.e.

(31) fe < Cett Il — 2ol

for some Cog > 0. An immediate consequence of Theorem 4.1 is that the convergence order for
adaptive mesh refinement is at least as good as for uniform mesh-refinement. To see this, we
denote by ((I)?mf)ZGN a sequence of Galerkin solutions computed with uniform mesh refinement. If

[l¢ — @] = O(N™Y), we conclude from (31) that ¢ € Ay. With Theorem 4.1, we infer that
adaptive mesh-refinement has at least the same convergence order t. O

Remark 7. Theorem 4.1 is stated for 3D and newest vertex bisection. For 2D, the constants in
all estimates depend on the uniform boundedness of the K-mesh constant (or: local mesh-ratio)

(32) K(E) = max {hy(E)/(E") : E,E' € & with ENE" # 0}

instead of the y-shape regularity. The work [4, Section 2.2] provides a local mesh-refinement for 2D

BEM, which guarantees optimality of the closure (28) as well as k(&) < 2k(&y). With this mesh

refinement, Theorem 4.1 holds for 2D accordingly. O
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Remark 8. The characterization of the approximation class Ag remains an open issue for future
research. For the 2D Dirichlet problem V¢ = (K + 1/2)g, see Remark 1, it is shown in [1] that

~ sup [ N° inf inf - )
ol = sup (V° int _iat o - .l

i.e., pg-adaptive mesh refinement recovers in fact the best possible convergence rate for the error in

H-Y2(1). O

4.1. Weak efficiency of weighted residual estimator. Although the efficiency estimate (31)
is observed in numerical experiments, see e.g. [12], it has not been shown mathematically, yet.
However, for the proof of Theorem 4.1 it suffices to provide some weaker efficiency estimate of the

type

(33) Coit e < [ll¢ = @l + osce,

where the data oscillations oscy are locally dominated by the error estimator, i.e.

(34) osci = Z osce(E)?  with  osco(F)? < Coge Z we(E)?  for all E € &.
Ee&, E'cwy(E)

Both (33) and (34) are proven in the following proposition.

Proposition 4.2.  Let Py denote the Scott-Zhang projection onto the space of continuous, E;-
piecewise affine functions S* (&), cf. [40], which is defined in a way that Py is a continuous operator
with respect to both Lo-norm and H'-norm on T'. Then, (33)~(34) hold with

(35) osce(E) = |hy/*Vr(1 = P)(V®y — f)llrymy for all E € &.
The constants Cegt, Coge > 0 depend only on v-shape regularity of €.

Proof. Let Ry := V®, — f € HY(T') abbreviate the residual. By the triangle inequality and the
inverse estimate

I *VeVillawy S IVellpsay — for all Vi € 81 (&)
from [15, Proposition 3.1] for the H/?-norm, we see
1/2 1/2 1/2
e = 10>V Rall Loy < g VrPeRe| Loy + by * V(1 = PO Rell ooy
S IPeRell gra/2(py + osce.
The Ly- and H Lstability of P, imply the H'/2-stability. Together with the stability of V :
H-Y2(I') — HY2(T"), we see
HPZRZHHW(F) S HRZHHW(F) = |V (% — ¢)HH1/2(F) S 1®e — ¢Hf{r—1/2(r)-
Norm equivalence ||| - ||| =~ || - Hﬁ_l/g(r) thus proves (33).
Finally, (34) follows from the local H'-stability of Py, i.e.

IVrPel Ly () S IVEvllLywuey — for all v e HY(T).

Since py(F) = thQVpRgHLz(E), this gives

1/2 1/2 1/2
osce(E) < w(E) + ||hy/ VrPeRol| 1y m) S 1e(E) + 1hy VRl Ly w(E)) S < > W(E/)Z)
B'Cw(E)
and concludes the proof. O
13



4.2. Discrete local reliability. In this subsection, we prove that the energy error of two Galerkin
solutions is bounded by the estimator contributions on the refined elements. Such a result is needed
to prove the optimality of the Dorfler marking in Proposition 4.4.

Proposition 4.3. Let & € T be an arbitrary refinement of & with corresponding Galerkin
solution ®, € P°(E,). Define the set

(36) Ry = wg(gg \ 5*) = {E e& JF' € Ey \5* . FEe wg(El)}
of elements E € & that belong to the patch of a refined element E' € &\ €. Then, there holds
#Ry < #wi(Ry) < Cop#(E0\ &)

as well as
2\ 1/2
(37) 1@, — el < Can (S pe(BP)
EeR,
The constant Cqi, > 0 depends only on I' and the use of newest vertex bisection. The constant

Cly, > 0 depends only on ~y-shape regularity.

Proof. The bounds on the cardinality of R, follow from the fact that for v-shape regular meshes,
the number of patches meeting at one element is uniformly bounded by a constant depending solely
on 7.

We now show (37). As (-,-) = (V-,-) induces an equivalent scalar product on the space
H~Y2(I'), we have

| — @[] = (V(Ps — By) , s — By) = (f — VD, D, — Dy).

The last equality follows from Galerkin orthogonality since ®, — ®, € PY(E,).
Let 7, € SY(&) denote the hat function associated with a node z € N;. The set of nodes
lying in a refined element is denoted by N :=A;N (U (&N 5*)). Additionally, we introduce

the layer around the refined elements, i.e., Sy := Ry \ (é’g \5*). Note that this gives us a disjoint
decomposition

Rg = (5@ \ 5*) USg as well as gg = (5@ \ 5*) U (5@ \ Rg) USg
We define an operator m : PY(E,) — P°(&;) Ep-elementwise by

0 for £ € &\ &,

(W) (E) := {Q*(E) elsewhere.

Recall that x := zze/\fﬁ 1. satisfies x € S'(&) with xug,\e, = 1. For any U, € PO(E,), the
Galerkin orthogonality on P°(&,) and the above definition of 7, prove

(f=V®,Vr = (f =V, (1 —m)¥s)r
= < S n(f - V), (1 - ”)\I’*>r

ZEMR
= (> m(-ve) vy — (D nlf VO, Wlys, ). -
zeNJ zeNF

The first equality follows from Galerkin orthogonality, the second from supp((1 — 7)) Wy) = &\ &
The third one follows from taking into account the supports of 7, for z € ./\/Za and the definition of
14



mp. We conclude

(f =V, W )r < H ;R n:(f — V(I)Z)HHI/Q(F)H\IJ*HE—I/Q(F)
zeN,

7 32 = veol| g s

eNR
(38) o

S DIRAERL D LA

+Hhe_1/z > nz(f—V<I>/z)HL2(P)Hhi/zxp*um(r),

zeNF
where we used hy = h, on S;. The inverse inequality (26) from [29, Theorem 3.6] for the H~1/2(I')-
norm then yields
(39)
F-vsnin s (| 5 s -Vl + i 3 s -ve
€

z G./\/ZR

I LR PR

Now we estimate the term inside the parentheses analogously as in [12]. We choose a decomposition
N = UL, MY, where the N} are pairwise disjoint and supp(n., )Nsupp(n.,) = 0 for z1 € N}, z0 € N}
with ¢ # 7. With w, = supp(n,) and h, = diam(7,), [12, Lemma 2.1] gives

2
| 5 s veoll sl S wtr-veol,.,
(40) ZENR i=1 ZENRQNZ
S Z l[n-(f — V‘I)Z)H?{lﬂ(w )
zeNF
We now argue as in [12, Theorem 3.2] and use the interpolation estimate || - HHI/Q( r S S eyl

| 71(ry to see

lIn:(f — V‘I)Z)Hél/z(%) < m=(f - Vq)é)H?{l/?(r)
(41) S n=(f = V@)l L2 @) 17 (f = V@) 11 ()
S ha(1+ 022 Ve (:(f = Vo)) lza

(w2)

where the last estimate follows from Friedrichs’ inequality. Using (V (®, — ®y), x¢) = 0 for every
characteristic function x,; € P°(&) and Poincaré’s inequality we get

IVe(=(f = V@)l 2@,y < 1(Ven)(f = V@)l 2@,y + [0V (f = Vo)l 12,
(42) S bt (f = Vo)l r2(.) + IVe(f = Vo)l 12
SIVe(f = V@)l 22 (w,)-

We combine the estimates (40)—(42) to see

(43) | ENjRan V8, S > BelVe(f = VOOl S 10 *Tr(f = VOO r.
z€ zeN/

15



The second term in parentheses in (39) is estimated analogously

~1/2 ? Y 2 i
[ 3 nz(f—V@)‘LQ(F) S X w nz(f—V@)(LQ(F)
B =1 seNFoNg
SO b = Veo)llia.
ZE./\/'ZR
< S IV — V)2,
ZE./\/ZR

From (42) we conclude
(14) |2 32 mar = ve)
zGJ\/ZR
Plugging (43)—(44) into (39) and setting ¥, = &, — &, finally gives
1/2
1 = ell* = (f = Ve, W) S Iy *Vo(f = Vo)l 12 19 = ell gosagr

S Ve (f = Voo 12 ry)-

L2(r)

)-
Norm equivalence ||| - ||| ~ || - HE,I/Q(F) concludes the proof. We stress that Cq, > 0 depends

formally on the shape of node patches w,, where Friedrichs’ and Poincares’ inequalities are used.
Since newest vertex bisection only leads to finitely many shapes of these patches, Cyqy, is independent
of & but depends on the use of newest vertex bisection. O

Remark 9. We stress that the reliability (10) of e is a consequence of the discrete local re-
liability (37) and quasi-optimality of the Galerkin method: We may assume ¢ # ®;. Galerkin
orthogonality and discrete local reliability (37) give

e = elll® = lll¢ — Dull* + |Psc — @ell* < [l — Pull® + Cori-

for each refinement &, of E. Now, we exploit the best approrimation property of the Galerkin
method and its consequence that uniform mesh refinement always leads to convergence. Given
e > 0, we find a uniform refinement & of & such that

I — ullI* < elll — ||

We conclude
C2
[l — @) < %u? for all € > 0,
—
i.e., the reliability (10) of pe even with Cye = Cqyy. O

4.3. Optimality of Dérfler marking. So far, we have proven that Dorfler marking (11) guar-
antees contraction (12) of the quasi-error Ay defined in (12). In this section, we prove the converse
estimate, i.e. a certain contraction of the quasi-error implies that the set of refined elements satisfies
the Dorfler marking.

Proposition 4.4.  There are constants 0 < 64, k. < 1 such that for all refinements & € T of
Er which satisfy A, < k,.Ay for the corresponding quasi-errors of (12), the set Ry C & of (36)
satisfies the Dorfler marking

(45) Op; < Y. (E)
Eecwp(Ry)
16



for all0 < 6 < 6,. Here, w(Ry) ={E €& : IE € Ry: E' € wy(E)} is the set of refined elements
Er\ &« plus two additional layers of elements. The constants 6, and K, depend on T' and the use of
newest vertex bisection.

The proof needs an estimate for the oscillation terms.

Lemma 4.5. Let &, be an arbz’tmry refinement of E with corresponding oscillations
osc; = Y 2 Ve =BV~ )} )
Ecé,
and Ry := we(&Er \ Ex) be defined in (36). Then,
(46) Z oscy(E)? < 2 Z oscy (E)? + C3 Z pe(E)?
EEE{\R@ Eegg\Rg EcR,

with some constant Cs > 0 that depends solely on I' and the vy-shape reqularity of &.

Proof. Take an element E € & \ Ry. For a function v we have (Pyv)|p = (P4v)|g due to the (local)
definition of the Scott-Zhang projection. Using stability of Py after a triangle inequality yields

oscy(E)? = hy(B)||Vr(1 = Pg) (Ve — f)]17, ()
<20 (B)|Vr(1 =B (Vs — )7,
+2h¢(E)|[Vr (1 = PV (9 — ©4)||7, ()
< 208¢,(E)?
+ 2Capxh*(E)”vFV(‘I>é - ‘I)*)”%Q(W(E)y

with some constant Cypx > 0. In the last step, we used hy = hy on w(E). Taking the sum of this
last estimate over all E € & \ R gives

S osce(B) <2 Y 05¢u(E)? + 2CoertapCapx|h2 2V (@ — €)1, 1)
Ee&\R, Ee&\Ry

with some constant Coyerlap > 0 that depends solely on ~-shape regularity, since the number of
patches w(E') the element E can be part of is bounded uniformly in ¢. The inverse estimate (15)
and the discrete local reliability of Proposition 4.3 then imply

1 PVrV (@ — 212, 0) S0~ P S Y pe(E)?
EcER,

Combining the last two estimates shows (46). O

Proof of Proposition 4.4. We note that the quasi-error from (12) is equivalent to the sum of error
and oscillations: First, weak efficiency (33) yields

(47) Ap=1ll¢ = Pell* + Ms < [ll¢ — Pel|* + osc
Conversely, the fact that oscillations are bounded by py, cf. (34), gives
(48) I — el + 0sci < 1o — @elll” + Auf = A

Assume that A, < k,Ay, where , will be chosen below. In view of (47)—(48), this can equivalently
be written as

e 16 — @[> + osc2 < B ([l6 — @el|* + osc?)
17



with a certain 0 < &, < 1 if k, is sufficiently small. Now, we choose x, sufficiently small to ensure
Ry < 1/2. The efficiency estimate (33) together with (49) gives

(1= 2R)Cu? < (1 - 28,) (16 — @l + osc?)
<16 = B2 + 0562 — 2 (|6 — @I + osc?)
< |||® — ®,]||* + osci — 20sc?.
The last two terms can be estimated by (34) and (46):

osc? — 20sc2 < Z oscy(E)? + Z oscy(E)? — 2 Z osc, (E)?

EeR, Eegg\Rg EEE{\R@
< (Cosc + 03) Z :U’K(E)2‘
Eew(Ry)

Combining the last two estimates and using the discrete local reliability, we obtain
(1- 2/’%*)0;1{2,“% < (03 + Cosc + Cglr) Z W(E)Z-
Eecw(Ry)

Choosing 6, := (1 — 2?;*)6”;1? (Cg 4+ Coge + Cglr)fl we conclude the proof. O

4.4. Proof of quasi-optimality theorem (Theorem 4.1). The proof of Theorem 4.1 is carried
out as in [19, Theorem 5.11] and follows the lines of [43]. For completeness’ sake, we recall it briefly.

Proof of Theorem 4.1. Choose €% := 6/, for some 0 < § < 1 which is determined later. Because of
¢ € Ag, we can choose a mesh & with

(50) #E —#E SV and  p? <2

As in (47) we infer A; < p2 < e = §A,. We claim that the overlay &, := & @ &. fulfils
(51) HE, < H#E+ #E. — #Ep,

(52) A, SAS A,

The first bound on the cardinality of &, follows according to [43] and hinges on the use of newest
vertex bisection. We stress that the quasi-error is not monotone (as the error estimator is not),
and therefore the first estimate in (52) has to be shown: First, the triangle inequality, the inverse
estimate (15), and h, < h. yield

2 = |nVr(Ve, - Iy
SV (Ve = Dl + 11 VeV (@, - @),
S H2 A+ (12 — 2.
By use of the Galerkin orthogonality [[|¢ — ®4||? + [||®x — @.[||*> = |||¢ — ®.[||?, we conclude
Ap = lld = ull? + 2 S Mllp — @cll” + M2 = A
Choosing ¢ > 0 sufficiently small in (52), we obtain A, < k,A; and may use Proposition 4.4 to see

Oup < > w(B)*.
Ecwp(Ry)

According to Algorithm 2.1, the set of marked elements has minimal cardinality, whence follows
#My < #we(Ry). We conclude

#HFMy < #Hwi(Re) S # (E0\ Ex) < #E — #E < #E. — #&o.

18



From (50) and the choice of € we conclude
(53) H#M, e Vs~ Azl/(%).
We use the optimality (28) of the mesh closure to obtain

/-1 /-1
HE —#E0 S D #M; <Y ATV
j=0 j=0

Using the contraction property (12) inductively we see A, < k=7 A, whence Aj_l/ (25) < =9/ (2S)A;1/ (28),

with 0 < k < 1 from Theorem 3.1. We thus end up with
—
#E — #E S A U@s}:mzjyzs<:A u@@
7=0

where the last step follows from the convergence of the geometric series. Raising this estimate to
the power —2s and using W < Ay finally gives

i S Ar S (#E—#E0)”
This concludes the proof. ]
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