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On the suboptimality of the p-version interior penalty
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Emmanuil H. Georgoulis∗, Edward Hall† & Jens Markus Melenk‡

February 20, 2009

Abstract

We address the question of the rates of convergence of the p-version interior penalty discontinuous
Galerkin method (p-IPDG) for second order elliptic problems with non-homogeneous Dirichlet bound-
ary conditions. It is known that the p-IPDG method admits slightly suboptimal a-priori bounds with
respect to the polynomial degree (in the Hilbertian Sobolev space setting). An example for which the
suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and
validated in practice through numerical experiments is presented. Moreover, the performance of p-
IPDG on the related problem of p-approximation of corner singularities is assessed both theoretically
and numerically, witnessing an almost doubling of the convergence rate of the p-IPDG method.

1 Introduction

Discontinuous Galerkin (DG) methods for elliptic problems have gained popularity in recent years. Their
great flexibility in the design of finite element methods make them good contenders in the area of hp-
adaptive algorithms. Moreover, DG methods have shown to be accurate and stable numerical methods
for the numerical approximation of convection-dominated convection-diffusion problems (see, e.g., [5] and
the references therein). Historically, DG methods incorporate ideas from the classical Nitsche’s method
for the treatment of non-homogeneous Dirichlet boundary conditions [10] and from the penalty method
[1].

To the best of our knowledge, the sharpest known general error bounds (in the Hilbertian Sobolev
space setting) for the hp-version interior penalty DG method for second-order elliptic PDEs are due to
Rivière, Wheeler and Girault [11] and Houston, Schwab and Süli [9]; when the error is measured in the
(natural) energy norm, the a-priori bounds are optimal with respect to the meshsize h but are suboptimal
with respect to the polynomial degree p by half an order of p.

Optimal error bounds for the hp-version interior penalty DG method are known in the case where the
underlying discontinuous Galerkin finite element space admits an H1-conforming subspace of the same
polynomial order up to the boundary; see, e.g., [6, Theorem 8.2] and the subsequent discussion therein.
In the case where the discontinuous Galerkin finite element space does not admit such an H1-conforming
subspace (e.g., when the mesh is highly irregular or when the Dirichlet boundary conditions are not
represented exactly as traces of finite element functions), hp-optimal error bounds in the energy norm
have been derived in [7] for the case of quadrilateral elements, provided the analytical solution admits
additional regularity in the framework of augmented Sobolev spaces. Recently, in [13], a variation of
the interior penalty DG method (which includes an additional penalization term resembling the local
discontinuous Galerkin method) is proposed and hp-optimal error bounds are proven for the case of
homogeneous Dirichlet boundary conditions.
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In this work, we focus on the p-version interior penalty discontinuous Galerkin finite element method
(p-IPDG), addressing the question of the rates of convergence for second order elliptic problems with
non-homogeneous Dirichlet boundary conditions, when the underlying analytical solution belongs to
a (standard) Hilbertian Sobolev space Hk. More specifically, we present an example for which the
suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and
validated through numerical experiments; hence, the known a-priori bounds from the literature [11, 9]
are sharp, i.e., the p-IPDG method is indeed suboptimal by half an order of p.

Furthermore, we investigate the question of convergence rates for the p-IPDG in the case where the
exact solution of the Dirichlet problem admits corner singularities of type rα, α > 0, at a vertex of the
computational domain Ω (where r is the polar distance from the vertex). For the standard conforming
p-version finite element method applied to the Poisson problems with corner singularities, it is well-known
that the convergence rate is twice that predicted by standard a-priori bounds based on the regularity of
the solution in Hilbertian Sobolev spaces [3]. Here, we show that a nearly order-doubling is also witnessed
for p-IPDG method through an analytical and numerical study.

The rest of this work is organised as follows. Section 2 contains the model problem and definition
of the interior penalty discontinuous Galerkin method. In Section 3, the question of suboptimal rate
of convergence for the p-IPDG method is studied. In Section 4, some approximation bounds on the
p-convergence of the L2-projection operator are presented, which are subsequently utilized in Section 5,
where the convergence behaviour of p-IPDG on corner singularities is discussed. Section 6 contains some
final comments.

2 Preliminaries

Let Ω be a bounded open polygonal domain in R
2. We consider the Poisson problem

−∆u = f in Ω, (2.1)

with f ∈ L2(Ω) together with Dirichlet boundary conditions

u = gD on ∂Ω. (2.2)

The norm of L2(ω), for ω ⊂ Ω will be denoted by ‖·‖L2(ω). We shall also denote by Hs(ω) the standard
Hilbertian Sobolev space of index s ≥ 0 of real-valued functions defined on ω ⊂ Ω and by ‖ · ‖Hs(ω) it
corresponding norm. We shall also refer in passing to the notions of an augmented Sobolev space (see [7]
for the definition of augmented Sobolev spaces) and to function spaces constructed via the real method
of interpolation (see, e.g., [14]).

Let T be a subdivision of the polygonal domain Ω into disjoint open elements κ constructed via affine
mappings Fκ : κ̂ → κ from some reference simplex or rectangle κ̂, which are assumed to be constructed
so as to ensure that the union of the closures of the elements κ ∈ T forms a covering of the closure of Ω,
i.e., Ω̄ = ∪κ∈T κ̄.

Definition 2.1 Let p := (pκ : κ ∈ T ) be the vector containing the polynomial degrees of the elements in
a given subdivision T as described above. We define the finite element space Sp with respect to T and p

by
Sp := {u ∈ L2(Ω) : u|κ ◦ F−1

κ ∈ Ppκ(κ̂)},
where Pp(κ̂) is the space of polynomials of degree at most p when κ̂ is the reference simplex and of degree
p in each variable, when κ̂ is the reference square.

We shall assume throughout that the mesh is fixed with a meshsize vector h := (hκ : κ ∈ T ) and the
local polynomial degree vector p, with pκ ≥ 1 for each κ ∈ T , varies. For p we assume bounded local
variation as pκ → ∞ for convergence, i.e., there exists constant ρ ≥ 1, independent of p, such that, for
any pair of elements κ and κ′ in T which share a side, we have ρ−1 ≤ pκ/pκ′ ≤ ρ as as pκ → ∞.

We denote by Γ the union of all open one-dimensional element faces associated with the subdivision
T . We also assume that Γ can be decomposed into two disjoint subsets ∂Ω and Γint := Γ\∂Ω.
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Further, we introduce some trace operators. Let κ, κ′ be two (generic) elements sharing an interface
e ⊂ Γint. Define the outward normal unit vectors n+ and n− on e corresponding to ∂κ and ∂κ′, respec-
tively. Let q ∈ Sp and φ ∈ [Sp]2. Then, with q+ := q|∂κ, q− := q|∂κ′ and φ+ := φ|∂κ, φ− := φ|∂κ′ , we
set

{q} :=
1

2
(q+ + q−), {φ} :=

1

2
(φ+ + φ−), [[q]] := q+n+ + q−n−, [[φ]] := φ+ · n+ + φ− · n−.

If e ⊂ ∂Ω, we define
{q} := q+, {φ} := φ+, [[q]] := q+n, [[φ]] := φ+ · n,

where n denotes the outward normal unit vector to ∂Ω.
The discontinuous Galerkin finite element method for the problem (2.1), (2.2) reads:

Find uDG ∈ Sp such that B(uDG, v) = l(v) ∀v ∈ Sp, (2.3)

where

B(u, v) :=
∑

κ∈T

∫

κ

∇u · ∇vdx +

∫

Γ

(θ[[u]]{∇v} − {∇u}[[v]] + σ[[u]][[v]]) ds, (2.4)

and

l(v) :=

∫

Ω

fvdx +

∫

∂Ω

gD(θ∇v · n + σv) ds,

with θ ∈ {−1, 1}, and the function σ to be defined later. If θ = −1 we shall refer to the method as the
symmetric version, and if θ = 1 we shall speak about (2.3) as the non-symmetric version of the IPDG
method. In the simpler case when Γint = ∅ (i.e., we have a one-element mesh), we recover the p-version
of the classical Nitsche’s method for the imposition of non-homogeneous Dirichlet boundary conditions.

Related to the bilinear form, we define the (natural) DG-energy norm:

|‖w|‖ :=
(∑

κ∈T

‖∇w‖2
L2(κ) + ‖√σ[[w]]‖2

L2(Γ)

)1/2

,

for any function w ∈ L2(Ω) such that w|κ ∈ H1(κ) for all κ ∈ T .

3 The convergence of the p-IPDG method

For the above DG method the following error bound holds, [11, 9, 7]:

Theorem 3.1 Let Ω be a polygonal domain, T a regular subdivision of Ω into shape-regular elements.
We define

σ := Cσ{
p2

h
},

for some Cσ > 0 (large enough) independent of h and of p, but dependent on ρ (which measures the local
variation of the polynomial degree). If u ∈ H1(Ω) is such that u|κ ∈ Hkκ+1(κ) for all κ ∈ T then the
solution uDG ∈ Sp satisfies:

|‖u − uDG|‖2 .
∑

κ∈T

h2sκ
κ

p2kκ−1
κ

‖u‖2
Hkκ+1(κ), (3.1)

with 1 ≤ sκ ≤ min{pκ, kκ}, pκ ≥ 1. 2

(Here and in the remainder of this work A . B and A & B is used instead of A ≤ CB and A ≥ CB,
respectively, for some positive generic constant C independent of p.)

Hence, in particular, assuming a fixed mesh and a uniform polynomial degree pκ = p, we conclude
that for u ∈ Hk+1(Ω) and for 1 ≤ s ≤ min{p, k}, we have

|‖u − uDG|‖ . p−k+1/2‖u‖Hk+1(Ω), (3.2)

i.e., the p-IPDG method (and its special case when Γint = ∅, the Nitsche’s method) converge at a
suboptimal rate with respect to the polynomial degree p, by half an order of p.
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In some cases it is possible to construct a non-trivial H1-conforming subspace of the finite element
space Sp up to the boundary with the same local polynomial degrees as Sp, thereby facilitating the
existence of an H1-conforming interpolant [3, 12] of the analytical solution onto the finite element space,
with hp-optimal convergence properties. Using this interpolant in the error analysis of the IPDG method,
one can recover hp-optimal bounds (see, e.g., [6, Theorem 8.2] and the subsequent discussion therein).
For instance, when the Dirichlet data gD can be represented exactly as traces of finite element functions
from Sp and the mesh contains simple hanging nodes (i.e., one hanging node per edge), a-priori error
bounds of the form

|‖u − uDG|‖ . p−k‖u‖Hk+1(Ω), (3.3)

for u ∈ Hk+1(Ω), have been shown [6]. This provides motivation to seek the cause of the potential
p-suboptimality in the general error bound (3.2) to boundary effects.

Remark 3.2 The hp-optimal rate of convergence for general Dirichlet boundary conditions can be recov-
ered (when the mesh consists of quadrilateral elements), if we make additional regularity assumptions on
the analytical solutions, namely, by assuming that it belongs element-wise to an augmented Sobolev space;
we refer to [7] for more details.

Example 3.3 We consider the boundary-value problem

−∆u = f in Ω := [−1, 1]× [0, 2]

with Dirichlet boundary conditions and f such that

u(x, y) = (x2 + y2)α/2,

for α ≥ 1 with α 6∈ 2N0. We approximate u using the p-version IPDG method on a fixed regular mesh T
(i.e., not containing any hanging nodes), which is constructed so that the origin (0, 0) is situated at the
midpoint of the face of an element; we denote by uDG the approximation of u by the p-IPDG method.

The key point of the setup of Example 3.3 is that the singularity is not located at a vertex of mesh, and
we have u ∈ Hα+1−ǫ(Ω), for all ǫ > 0. Therefore, the bound (3.2) implies

|‖u − uDG|‖ . p−α+1/2+ǫ,

for all ǫ > 0, as p → ∞. The sharpness of this bound is settled by the following result, concluding that
the p-IPDG is indeed suboptimal in p by half an order of p.

Proposition 3.4 For the Dirichlet problem described in Example 3.3 we have

|‖u − uDG|‖ & p−α+1/2,

as p → ∞.

Proof We denote by
Ep(v) := inf

vp∈Pp([−1,1])
‖v − vp‖L2(−1,1),

i.e., the best approximation in the L2-norm of a function v ∈ L2([−1, 1]) by univariate polynomials of
degree p on the interval [−1, 1]. Theorem 9 of [8] implies that for functions of the form v = |x|α for α > 0
and α 6∈ 2N0, we have

Ep(v) & p−α−1/2, (3.4)

for some constant C > 0. Moreover, it is a straightforward matter to see (cf. [8, Lemma 2]) that a
rescaling of the domain from [−1, 1] to [−h/2, h/2], for some h > 0 has only the effect of altering the
constant in (3.4) (since we have assumed a fixed mesh).

Let κ be the element whose boundary contains the origin (0, 0). We consider the part of the boundary
∂κ1 := [−hκ/2, hκ/2] × {0} on which we have u(x, 0) = |x|α. The bound (3.4) then implies that in this
case we have

‖u − uDG‖L2(∂κ1) & p−α−1/2,
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for some constant C > 0 independent of p. Therefore, recalling the definition of σ, we conclude that

|‖u − uDG|‖2 =
∑

κ∈T

‖∇(u − uDG)‖2
L2(κ) + ‖√σ(u − uDG)‖2

L2(Γ\∂κ1)
+ ‖√σ(u − uDG)‖2

L2(∂κ1)
& p−2α+1.

2

To investigate the setting of Example 3.3 numerically, we consider p-IPDG with one element (i.e.,
Γint = ∅); the p-convergence history is shown in Figure 1. The error appears to oscillate in magnitude for
even and for odd p. One possible reason behind this is the symmetry of the analytical solution (which
is an even function); for low polynomial degrees p we observe that the even degree approximations are
more accurate than the approximations with odd polynomial degree basis functions. We point out that
quadruple precision arithmetic has been used in the numerical experiments of this work, along with a
geometrically graded composite quadrature rules, graded towards the point (0, 0).

In Table 1, the error in the DG-norm is presented, grouped in even and odd polynomial degree
approximations, along with the p-convergence rates r(p) calculated as follows:

r(p) = − log error(p) − log error(p − 2)

log p − log(p − 2)
,

with p = 4, 6, 8, . . . or p = 3, 5, 7, . . . , respectively, where error(p) denotes the approximation error in the
respective (semi)norm when polynomial degree p basis functions are used.

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

DG−error
slope p−5/2

polynomial degree p

|‖u
−

u
D

G
|‖

Figure 1: Example 3.3: Convergence history for the p-IPDG for α = 3.

Next, we investigate the p-convergence of the individual components of the DG-norm error. To this
end, recalling that we work on a single-element mesh (and, therefore, Ω = κ and Γ = ∂κ), we study the
p-convergence of the errors

‖∇(u − uDG)‖L2(Ω) and ‖√σ(u − uDG)‖L2(∂Ω),

as p → ∞. The errors and the corresponding p-convergence rates are given in Tables 2 and 3, where the
dominance of the term ‖√σ(u − uDG)‖L2(∂Ω) over the term ‖∇(u − uDG)‖L2(Ω) is manifested; indeed the
p-convergence behaviour of ‖√σ(u − uDG)‖L2(∂Ω) essentially determines the p-convergence of the DG-
norm error (cf. Table 1). We note that for odd p the convergence rate appears to be increasing towards
the value 5/2.

4 Properties of the L2-projection operator

In the present section, we refine the analysis of [9] of the properties of the L2-projection operator. We
start with an improvement of the one-dimensional result [9, Lemma 3.5].
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p |‖u − uDG|‖ r(p) p |‖u − uDG|‖ r(p)

2 2.7634+00 – 1 1.2728+01 –
4 1.2643−01 4.45 3 8.0330−01 2.51
6 4.5238−02 2.53 5 1.3381−01 3.51
8 2.4020−02 2.20 7 5.1617−02 2.83
10 1.4674−02 2.21 9 2.6717−02 2.62
12 9.7691−03 2.23 11 1.6029−02 2.55
14 6.9029−03 2.25 13 1.0535−02 2.51
16 5.0964−03 2.27 15 7.3725−03 2.50
18 3.8919−03 2.29 17 5.4024−03 2.48
20 3.0529−03 2.30 19 4.1008−03 2.48
22 2.4478−03 2.32 21 3.2011−03 2.47
24 1.9987−03 2.33 23 2.5562−03 2.47
26 1.6573−03 2.34 25 2.0801−03 2.47
28 1.3925−03 2.35 27 1.7198−03 2.47
30 1.1835−03 2.36 29 1.4414−03 2.47
32 1.0160−03 2.36 31 1.2223−03 2.47
34 8.7996−04 2.37 33 1.0473−03 2.47

Table 1: Example 3.3: DG-norm errors and convergence rates for the p-IPDG for α = 3.

p ‖∇(u − uDG)‖L2(Ω) r(p) p ‖∇(u − uDG)‖L2(Ω) r(p)

2 1.7896+00 – 1 8.7949+00 –
4 5.3593−02 5.06 3 4.4791−01 2.71
6 1.5150−02 3.12 5 4.8958−02 4.33
8 6.5414−03 2.92 7 1.4964−02 3.52
10 3.4303−03 2.89 9 6.5336−03 3.30
12 2.0212−03 2.90 11 3.4306−03 3.21
14 1.2898−03 2.91 13 2.0217−03 3.17
16 8.7268−04 2.93 15 1.2901−03 3.14
18 6.1753−04 2.94 17 8.7284−04 3.12
20 4.5281−04 2.94 19 6.1763−04 3.11
22 3.4175−04 2.95 21 4.5287−04 3.10
24 2.6419−04 2.96 23 3.4179−04 3.09
26 2.0839−04 2.96 25 2.6422−04 3.09
28 1.6724−04 2.97 27 2.0841−04 3.09
30 1.3623−04 2.97 29 1.6726−04 3.08
32 1.1243−04 2.98 31 1.3624−04 3.08
34 9.3853−05 2.98 33 1.1244−04 3.07

Table 2: Example 3.3: ‖∇(u − uDG)‖L2(Ω)-error and convergence rates for α = 3.
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p ‖√σ(u − uDG)‖L2(∂Ω) r(p) p ‖√σ(u − uDG)‖L2(∂Ω) r(p)

2 2.1056+00 – 1 9.2003+00 –
4 1.1451−01 4.20 3 6.6684−01 2.39
6 4.2626−02 2.44 5 1.2454−01 3.28
8 2.3113−02 2.13 7 4.9401−02 2.75
10 1.4267−02 2.16 9 2.5906−02 2.57
12 9.5577−03 2.20 11 1.5657−02 2.50
14 6.7814−03 2.23 13 1.0339−02 2.48
16 5.0211−03 2.25 15 7.2588−03 2.47
18 3.8426−03 2.27 17 5.3314−03 2.47
20 3.0191−03 2.29 19 4.0541−03 2.46
22 2.4238−03 2.30 21 3.1689−03 2.46
24 1.9812−03 2.32 23 2.5333−03 2.46
26 1.6442−03 2.33 25 2.0633−03 2.46
28 1.3825−03 2.34 27 1.7071−03 2.46
30 1.1757−03 2.35 29 1.4316−03 2.46
32 1.0098−03 2.36 31 1.2147−03 2.46
34 8.7494−03 2.36 33 1.0412−03 2.46

Table 3: Example 3.3: ‖√σ(u − uDG)‖L2(∂Ω)-error and convergence rates for α = 3.

Lemma 4.1 Let I = (−1, 1) and denote Πp : L2(I) → Pp the L2-projection operator. Then

|(Πpu)(±1)| . ‖u‖1/2
L2(I)‖u‖

1/2
H1(I) ∀u ∈ H1(I). (4.1)

In particular, therefore,

|(Πpu)(±1)| . ‖u‖
B

1/2

2,1 (I)
∀u ∈ B

1/2
2,1 (I). (4.2)

Here, the space B
1/2
2,1 (I) = (L2(I), H1(I))1/2,1 is the interpolation space obtained by the real method (see,

e.g., [14]).

Proof We only show the multiplicative inequality (4.1) since the bound (4.2) follows from [14, Lemma 25.3].
Also, we will only consider the case p ≥ 2 and restrict out attention to evaluation at the right endpoint
+1. Since ‖u‖2

L∞(I) . ‖u‖L2(I)‖u‖H1(I), it suffices to establish the inequality for u − Πpu. Following [9,

Lemma 3.5], we expand u and u′ in Legendre series:

u =

∞∑

i=0

uiLi, ui =
2i + 1

2

∫

I

u(x) dx,

u′ =

∞∑

i=0

biLi, bi =
2i + 1

2

∫

I

u′(x) dx.

Orthogonality properties of the Legendre polynomials Li imply (see the proof of [9, Lemma 3.5] for
details)

ui =
bi−1

2i − 1
− bi+1

2i + 3
, i ≥ 2. (4.3)

Since Li(1) = 1 for all i ∈ N0, we get

(u − Πpu)(1) =
∞∑

i=p+1

ui =
bp

2p + 1
+

bp+1

2p + 3
,

and therefore

|(u − Πpu)(1)|2 =

∣∣∣∣
∞∑

i=p+1

ûi

∣∣∣∣
2

≤ 2

(
bp

2p + 1

)2

+ 2

(
bp+1

2p + 3

)2

.
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The terms in the last expression are now estimated using a telescoping sum:

(
bp

2p + 1

)2

=

∞∑

r=p

(
br

2r + 1

)2

−
(

br+2

2(r + 2) + 1

)2

=

∞∑

r=p

(
br

2r + 1
− br+2

2(r + 2) + 1

)(
br

2r + 1
+

br+2

2(r + 2) + 1

)

=

∞∑

r=p

ur+1

(
br

2r + 1
+

br+2

2(r + 2) + 1

)

=

∞∑

r=p

ur+1
1√

2(r + 1) + 1

√
2(r + 1) + 1

(
br

2r + 1
+

br+2

2(r + 2) + 1

)

.

(
∞∑

r=p

1

2(r + 1) + 1
|ur|2

)1/2( ∞∑

r=p

(2r + 1)

(
br

2r + 1

)2
)1/2

. ‖u‖L2(I)‖u′‖L2(I),

where we have used ‖u‖2
L2(I) =

∑∞
i=0 |ui|2 2

2i+1 and ‖u′‖2
L2(I) =

∑∞
i=0 |bi|2 2

2i+1 . We therefore conclude

|(u − Πpu)(1)|2 . ‖u‖L2‖u′‖L2. as desired.

2

Tensorization of Lemma 4.1 gives a result for the square.

Lemma 4.2 Let I = (−1, 1) and S = I2. Denote by Πp : L2(S) → Pp the L2(S)-projection. Then:

‖Πpu‖2
L2(∂S) . ‖u‖L2(S)‖u‖H1(S) ∀u ∈ H1(S).

This implies

‖Πpu‖L2(∂S) . ‖u‖
B

1/2

2,1 (S)
∀u ∈ B

1/2
2,1 (S).

Proof The two-dimensional L2-projection is the tensor product of one-dimensional projection operators:
Πp = Πx

p ◦ Πy
p. Then, letting Γ = I × {1} be one edge of S:

‖Πpu‖2
L2(Γ) =

∫

x∈I

∣∣Πy
p(Πx

pu)(x, 1)
∣∣2 dx .

∫

x∈I

‖Πx
pu(x, ·)‖L2(I)

(
‖Πx

pu(x, ·)‖L2(I) + ‖∂yΠx
pu(x, ·)‖L2(I)

)
dx

. ‖u‖2
L2(S) +

∫

x∈I

‖Πx
pu(x, ·)‖L2(I)‖Πx

p∂yu(x, ·)‖L2(I) dx.

For any t > 0, we can estimate further
∫

x∈I

‖Πx
pu(x, ·)‖L2(I)‖Πx

p∂yu(x, ·)‖L2(I) dx .

∫

x∈I

t−1‖Πx
pu(x, ·)‖2

L2(I) + t‖Πx
p∂yu(x, ·)‖2

L2(I) dx

. t−1‖u‖2
L2(S) + t‖∇u‖2

L2(S)

Optimizing t gives
∫

x∈I

‖Πx
pu(x, ·)‖L2(I)‖Πx

p∂yu(x, ·)‖L2(I) . ‖u‖L2(S)‖u‖H1(S).

2

Remark 4.3 1. Lemma 4.1 together with standard polynomial approximation properties implies for
every k > 1/2:

|(u − Πpu)(±1)| ≤ Ckp−(k−1/2)‖u‖Hk(−1,1) ∀u ∈ Hk(−1, 1),

for some constant Ck > 0, depending on the Sobolev index k.
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2. Lemma 4.2 can be generalized to hypercubes in R
d, d ≥ 2.

We conclude this section with a statement about the approximation properties of the L2-projector on
squares.

Lemma 4.4 Let S = (−1, 1)2 and denote by Πp : L2(S) → Pp the L2(S)-projection. Then for all
u ∈ H1(S):

‖u − Πpu‖H1(S) .
√

p inf
q∈Pp

‖u − q‖H1(S)

‖u − Πpu‖L2(∂S) . inf
q∈Pp

‖u − q‖
B

1/2

2,1 (S)
. inf

q∈Pp

‖u − q‖1/2
L2(S)‖u − q‖1/2

H1(S)

Proof The first estimate follows immediately from [4, Thm. 2.4], which states ‖Πpu‖H1(S) .
√

p‖u‖H1(S)

for all u ∈ H1(S). The second bound follows from Lemma 4.2.

2

5 Convergence in the presence of corner singularities

When the exact solution u admits a corner singularity of type rα (here (r, θ) denote polar coordinates
and the origin is assumed to be a vertex of Ω), it is known [3] that the conforming p-version finite element
method applied to the problem (2.1), (2.2) obeys a bound of the form

‖∇(u − up,conf)‖ . p−2α,

where up,conf denotes the conforming p-version finite element approximation. This is the well-known
order-doubling phenomenon of the p-version finite element method in the presence of corner singularities.
(Note that u = rα ∈ Hα+1−ǫ(Ω) for all ǫ > 0.)

In order to investigate the convergence behaviour of the p-IPDG method for problems with corner
singularities, we consider the following example.

Example 5.1 We consider the boundary-value problem

−∆u = f in Ω := [0, 1]× [0, 1]

with Dirichlet boundary conditions and f such that

u(x, y) = (x2 + y2)α/2.

We approximate u using the p-IPDG method on a fixed Cartesian mesh T , denoting the p-IPDG solution
by uDG.

Before formulating the convergence result for the p-IPDG applied to Example 5.1, we state an approxi-
mation result:

Lemma 5.2 Let S = (0, 1)2 and a function u ∈ H1(S) be given of the form u(r, θ) = rαφ(θ), where (r, θ)

are polar coordinates with respect to the origin. The function φ is assumed to be smooth. Let ΠH1

p and

ΠL2

p denote the H1(S) and L2(S)-projection operators onto Pp. Then:

‖u − ΠH1

p u‖H1(S) + p‖u − ΠH1

p u‖L2(S) + p1/2‖u − ΠH1

p u‖L2(∂S) . p−2α (5.1)

p−1/2‖u − ΠL2

p u‖H1(S) + p2‖u − ΠL2

p u‖L2(S) + p3/4‖u − ΠL2

p u‖L2(∂S) . p−2α. (5.2)

Proof By [2, Theorem 2.6], we have ‖u − ΠH1

p u‖H1(S) . p−2α. A standard duality argument for the

convex domain S = (0, 1)2 then gives additionally ‖u − ΠH1

p u‖L2(S) . p−2α−1. The estimate for ‖u −
ΠH1

p u‖L2(∂S) finally follows from the multiplicative trace inequality.
The H1-estimate in (5.2) follows from (5.1) and Lemma 4.4. The L2-bound follows from [2, Theorems

3.10, 3.12]. These two estimates together with Lemma 4.4 imply the L2(∂S)-bound.
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2

Proposition 5.3 Let α > 2. Then the p-IPDG for the problem described in Example 5.1, obeys the
bound

|‖u − uDG|‖ . p−2α+1/2, (5.3)

as p → ∞.

Proof For simplicity of presentation, we consider the case of a one-element mesh, i.e., T = {Ω}; the
general case follows analogously. We consider the extension B̃ of the bilinear form (2.4) into (H1(Ω) +
Sp) × (H1(Ω) + Sp) defined by

B̃(u, v) :=

∫

Ω

∇u · ∇vdx +

∫

∂Ω

(θuΠp(∇v) · n − Πp(∇u) · nv + σuv) ds, (5.4)

where Πp : L2(Ω) → [Sp]2 here denotes the (component-wise) L2-projection operator onto [Sp]2. Note

that B̃ = B on Sp × Sp. Also B̃ is coercive and continuous with respect to the energy norm (these
properties can be verified using standard arguments). Therefore, Strang’s Second Lemma implies

|‖u − uDG|‖ . inf
v∈Sp

|‖u − v|‖ + sup
χ∈Sp\{0}

|R(u, χ)|
|‖χ|‖ , (5.5)

where the residual R(u, χ) := B(u, χ) − B̃(u, χ) equals

R(u, χ) =

∫

∂Ω

(∇u · n − Πp(∇u) · n)χds.

Since the components of ∇u of have the form rα−1φ̃(θ) for a smooth φ̃, we get from Lemma 5.2

sup
χ∈Sp\{0}

|R(u, χ)|
|‖χ|‖ ≤ ‖σ−1/2(∇u · n − Πp(∇u) · n)‖L2(∂Ω) . p−1‖∇u − Πp(∇u)‖L2(∂Ω)

. p−1p−2(α−1)−3/4 = p−2α+1/4.

(5.6)

Additionally, Lemma 5.2 implies
inf

q∈Sp

|‖u − q|‖ . p−2α+1/2,

which allows us to conclude the proof.

2

To investigate the convergence history numerically, we consider the p-IPDG with one element (i.e.,
Γint = ∅); the errors in the DG-norm along with the corresponding convergence rates calculated in this
case by the formula

r(p) = − log error(p) − log error(p − 1)

log p − log(p − 1)
,

are given in Table 4. The convergence rate appears to be higher than what the bound (5.3) suggests for
this case (i.e., rate 11/2), but lower than 6, which is the expected convergence rate for the conforming
p-version finite element method for the same problem. It is not known at this point, if the bound (5.3)
is sharp, or if it can be further improved.

6 Conclusions

From the discussion above, we conclude that error bounds of the form (3.1) are sharp and that the p-
suboptimality is a result of suboptimal approximation of Dirichlet boundary conditions (assuming that
the underlying mesh is reasonable, e.g., containing simple hanging nodes [12]). Hence, in situations where
the Dirichlet boundary conditions are represented exactly (or approximated super-optimally) by traces
of finite element functions, the p-IPDG method converges optimally. We also investigated the question
of convergence rates for the p-IPDG method for problems with corner singularities, finding that the
convergence rate of the p-IPDG method for such problems appears to be slightly suboptimal.
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p |‖u − uDG|‖ r(p) p |‖u − uDG|‖ r(p)

1 1.5850+01 – 18 4.4933−06 5.84
2 3.4096+00 2.21 19 3.2758−06 5.84
3 2.2218−01 6.73 20 2.4270−06 5.84
4 3.9386−02 6.01 21 1.8243−06 5.85
5 8.7734−03 6.72 22 1.3895−06 5.85
6 2.8793−03 6.11 23 1.0710−06 5.85
7 1.1399−03 6.01 24 8.3472−07 5.85
8 5.1657−04 5.92 25 6.5718−07 5.85
9 2.5833−04 5.88 26 5.2211−07 5.86
10 1.3929−04 5.86 27 4.1855−07 5.85
11 7.9756−05 5.85 28 3.3817−07 5.86
12 4.7967−05 5.84 29 2.7512−07 5.87
13 3.0056−05 5.84 30 2.2542−07 5.87
14 1.9499−05 5.83 31 1.8602−07 5.85
15 1.3033−05 5.83 32 1.5429−07 5.89
16 8.9413−06 5.83 33 1.2914−07 5.78
17 6.2750−06 5.84 34 1.0853−07 5.82

Table 4: Example 5.1: p-Convergence of |‖u − uDG|‖ for α = 3.
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[8] Gui, W., and Babuška, I. The h, p and h-p versions of the finite element method in 1 dimension.
I. The error analysis of the p-version. Numer. Math. 49, 6 (1986), 577–612.
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