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Chapter 1

A new proof for existence ofH-matrix

approximants to the inverse of FEM matrices:
the Dirichlet problem for the Laplacian

Markus Faustmann, Jens M. Melenk, and Dirk Praetorius

Abstract We study the question of approximability of the inverse of the FEM stiff-

ness matrix for the Laplace problem with Dirichlet boundary conditions by block-

wise low rank matrices such as those given by the H-matrix format introduced

in [Hac99]. We show that exponential convergence in the local block rank r can

be achieved. Unlike prior works [BH03, Bör10a], our analysis avoids any a pri-

ori coupling r = O(| log h|) of r and the mesh width h. Moreover, the techniques

developed can be used to analyze other boundary conditions as well.

1.1 Introduction

The format of H-matrices was introduced in [Hac99] as blockwise low-rank matri-

ces that permit storage, application, and even a full (approximate) arithmetic with

log-linear complexity. This data-sparse format is well suited to represent exactly

sparse matrices arising from discretizations of differential operators and to represent

at high accuracy matrices stemming from discretizations of many integral operators,

for example, those appearing in boundary integral equation methods.

The inverse of the finite element (FEM) stiffness matrix corresponding to the

Dirichlet problem for elliptic operators with bounded coefficients can be approx-

imated in the format of H-matrices with an error that decays exponentially in

the block rank employed. This was first observed numerically in [Gra01]. Us-

ing properties of the continuous Green’s function, [BH03] proves this exponen-

tial decay in the block rank up to the discretization error. The work [Bör10a] im-

proves on the result [BH03] in several ways, in particular, by proving a correspond-

ing approximation result in the framework of H2-matrices. Whereas the analysis

of [BH03, Bör10a] is based on the solution operator on the continuous level (e.g.,

by studying the Green’s function), the present approach works on the discrete level.
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The exponential approximability in the block rank shown here, is therefore not lim-

ited by the discretization error. Moreover, in [BH03, Bör10a] the block rank r and
the mesh width h are coupled by r ∼ |log h|, which is not needed in our case,

since we prove an error estimate explicit in both r and h. We mention that the re-

sult presented here can be generalized in various ways. First, [FMP12b] shows that

with similar techniques other boundary conditions such as Neumann boundary con-

ditions can be treated, which was not done in [BH03, Bör10a]. Second, [FMP12a]

illustrates that approximation results for the inverses of discretizations of first kind

boundary integral operators can be obtained with the techniques employed here.

1.2 Main results

Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded polygonal (for d = 2) or polyhedral (for

d = 3) Lipschitz domain with boundary Γ := ∂Ω. We consider the bilinear form

a : H1
0 (Ω)×H1

0 (Ω) → R associated with the Poisson problem and given by

a(u, v) := 〈∇u,∇v〉 , (1.1)

where 〈·, ·〉 denotes the L2(Ω)-scalar product. For its discretization, we assume that

Ω is triangulated by a quasiuniform mesh Th = {T1, . . . , TNT
} of mesh width

h := maxTj∈Th
diam(Tj). The elements Tj ∈ Th are triangles (d = 2) or tetrahedra

(d = 3), and we assume that Th is regular in the sense of Ciarlet. The nodes are

denoted by xi ∈ Nh, for i = 1, . . . , NN . Moreover, the mesh Th is assumed to

be γ-shape regular in the sense of diam(Tj) ≤ γ |Tj |1/d for all Tj ∈ Th. In the

following, the notation . abbreviates ≤ up to a constant C > 0 which depends

only on Ω, the dimension d, and γ-shape regularity of Th. Moreover, we use ≃ to

abbreviate that both estimates . and & hold.

For the sake of definiteness, we consider the lowest order Galerkin discretization

of the bilinear form a(·, ·) by piecewise affine functions in S1,1
0 (Th) := S1,1(Th) ∩

H1
0 (Ω) with S1,1(Th) = {u ∈ C(Ω) : u|Tj ∈ P1, ∀Tj ∈ Th}, taking as the

basis of S1,1
0 (Th) the classical hat-functions associated with the interior nodes of

the triangulation. This basis is denoted by Bh := {ψj : j = 1, . . . , N}.
The Galerkin discretization of (1.1) results in a symmetric, positive definite ma-

trixA ∈ R
N×N with

Ajk = 〈∇ψj ,∇ψk〉 , ψj , ψk ∈ Bh.

Our goal is to derive an H-matrix approximation BH of the inverse matrix B =
A

−1. An H-matrix BH is a blockwise low rank matrix based on the concept of

“admissibility”, which we now introduce:

Definition 1 (bounding boxes and η-admissibility). A cluster τ is a subset of the

index set I = {1, . . . , N}. For a cluster τ ⊂ I, we say thatBRτ ⊂ R
d is a bounding

box if:
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(i) BRτ is a box with diameter Rτ ,

(ii) supp ψi ⊂ BRτ for all i ∈ τ .

Let η > 0. A pair of clusters (τ, σ) with τ, σ ⊂ I is η-admissible, if there exist
boxesBRτ , BRσ satisfying (i)–(ii) such that

max{Rτ , Rσ} ≤ η dist(BRτ , BRσ ). (1.2)

Definition 2 (blockwise rank-r-matrices). Let P be a partition of I ×I. A matrix

BH ∈ R
N×N is said to be a blockwise rank-r matrix, if for every η-admissible

cluster pair (τ, σ) ∈ P , the block BH|τ×σ is a rank-r-matrix, i.e., it has the form

BH|τ×σ = XτσY
T
τσ with Xτσ ∈ R

|τ |×r and Yτσ ∈ R
|σ|×r. Here and below, |σ|

denotes the cardinality of a finite set σ.

The following theorems are the main results of this paper. Theorem 1 shows that

admissible blocks can be approximated by rank-r-matrices:

Theorem 1. Fix η > 0. Let the cluster pair (τ, σ) be η-admissible. Fix q ∈ (0, 1).
Then, for k ∈ N there are matrices Xτσ ∈ R

|τ |×r, Yτσ ∈ R
|σ|×r of rank r ≤

Cdimq
−dkd+1 with

∥∥A−1|τ×σ −XτσY
T
τσ

∥∥
2
≤ Capx(1 + η)h−dqk. (1.3)

The constants Capx, Cdim > 0 depend only on Ω, d, and γ-shape regularity of Th.

The approximations for the individual blocks can be combined to gauge the approx-

imability of A−1 by blockwise rank-r matrices. Particularly satisfactory estimates

are obtained if the blockwise rank-r-matrices have additional structure. To that end,

we introduce the following definitions.

Definition 3 (cluster tree). A cluster tree with leaf size nleaf ∈ N is a binary tree

TI with root I such that for each cluster τ ∈ TI the following dichotomy holds:

either τ is a leaf of the tree and |τ | ≤ nleaf , or there exist so called sons τ
′, τ ′′ ∈ TI ,

which are disjoint subsets of τ with τ = τ ′∪τ ′′. The level function level : TI → N0

is inductively defined by level(I) = 0 and level(τ ′) := level(τ) + 1 for τ ′ a son of

τ . The depth of a cluster tree is depth(TI) := maxτ∈TI
level(τ).

Definition 4 (far field, near field, and sparsity constant). A partition P of I × I
is said to be based on the cluster tree TI , if P ⊂ TI × TI . For such a partition P
and fixed η > 0, we define the far field and the near field as

Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P\Pfar.

The sparsity constant Csp of such a partition is defined by

Csp := max

{
max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}| ,max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|

}
.
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The following Theorem 2 shows that the matrix A
−1 can be approximated by

blockwise rank-r-matrices at an exponential rate in the block rank r:

Theorem 2. Fix η > 0. Let a partition P of I × I be based on a cluster tree TI .

Then, there is a blockwise rank-r matrixBH such that

∥∥A−1 −BH

∥∥
2
≤ CapxCsp(1 + η)Ndepth(TI)e

−br1/(d+1)

. (1.4)

The constants Capx, b > 0 depend only on Ω, d, and γ-shape regularity of Th.

Remark 1. Typical clustering strategies such as the “geometric clustering” described

in [Hac09] and applied to quasiuniform meshes with O(N) elements lead to fairly

balanced cluster trees TI of depth O(logN) and feature a sparsity constant Csp

that is bounded uniformly in N . We refer to [Hac09] for the fact that the memory

requirement to storeBH is O
(
(r + nleaf)N logN

)
.

Remark 2. Using h ≃ N−1/d and 1
‖A−1‖2

≤ ‖A‖2 . hd/2−1 ≃ N−(d−2)/(2d), we

get a bound for the relative error

∥∥A−1 −BH

∥∥
2

‖A−1‖2
. CapxCsp(1 + η)N (d+2)/(2d)depth(TI)e

−br1/(d+1)

. (1.5)

1.3 Approximation of Galerkin solution on admissible blocks

In terms of functions and function spaces, the question of approximatingA−1|τ×σ ≈
XτσY

T
τσ by a low-rank factorization can be phrased as one of how well one can

approximate the solution φh from low-dimensional spaces on BRτ for data sup-

ported by BRσ . In order to study this question, we consider the question of finding

φh ∈ S1,1
0 (Th) such that

a(φh, ψh) = 〈∇φh,∇ψh〉 = 〈f, ψh〉 ∀ψh ∈ S1,1
0 (Th) (1.6)

with supp(f) ⊂ BRσ . By coercivity of a(·, ·), the solution φh is well-defined. In

the following, we extend the Galerkin solution by zero outside ofΩ and denote this

extension by φh as well. Due to the boundary conditions, this extension belongs to

H1(BRτ ). For η-admissible cluster pairs (τ, σ), the restriction of the solution φh to

BRτ can be approximated from a low-dimensional space. The heart of the matter is

stated in the following:

Proposition 1. Fix η > 0. Let the cluster pair (τ, σ) be η-admissible. Fix q ∈ (0, 1).
Then, for each k ∈ N there exists a sequence Vk of spaces with dim Vk ≤
Cdimq

−dkd+1 such that for arbitrary f with supp(f) ⊂ BRσ ∩ Ω, the solution

φh of (1.6) satisfies

min
v∈Vk

‖φh − v‖L2(BRτ ) ≤ Cbox(1 + η)qk‖f‖L2(BRσ∩Ω). (1.7)
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The constant Cdim > 0 depends only on Ω, d, and γ-shape regularity of Th, while
Cbox > 0 depends only on Ω.

The proof of Proposition 1 will be given at the end of this section. The basic

steps are as follows: First, one observes that supp(f) ⊂ BRσ ∩ Ω as well as the

admissibility condition dist(BRτ , BRσ) ≥ η−1 max{diam(BRτ ), diam(BRσ )} >
0 imply the orthogonality condition

〈∇φh,∇ψh〉 = 〈f, ψh〉L2(BRσ∩Ω) = 0 ∀ψh ∈ S1,1
0 (Th), supp(ψh)⊂BRτ (1.8)

i.e. φh is discrete harmonic on BRτ . Second, this observation will allow us to prove

a Caccioppoli-type estimate (Lemma 1) in which stronger norms of φh are estimated

by weaker norms of φh on slightly enlarged regions. Third, we proceed as in [BH03,

Bör10a] by iterating an approximation result (Lemma 2) derived from the Scott-

Zhang interpolation of the Galerkin solution φh. This iteration argument accounts

for the exponential convergence (Lemma 3).

1.3.1 The spaceHh(D) of discrete harmonic functions

Let D ⊂ R
d be a domain. A function u ∈ H1(D) is called discrete harmonic on

D ∩Ω, if

∫

D∩Ω

∇u · ∇ϕh dx = 0 ∀ϕh ∈ S1,1
0 (Th), supp(ϕh) ⊂ D ∩Ω. (1.9)

For domainsD, we need a space of functions that are piecewise affine and discrete

harmonic onD ∩Ω:

Hh(D) := {u ∈ H1(D) : ∃ũ ∈ L2(Rd) s.t. u|D = ũ|D, ũ|Ω ∈ S1,1
0 (Th),

supp(ũ) ⊂ Ω, u is discrete harmonic onD ∩Ω}.

Clearly, the finite dimensional space Hh(D) is a closed subspace of H1(D), and
we have φh ∈ Hh(BRτ ) for the solution φh of (1.6) with supp(f) ⊂ BRσ and

bounding boxes BRτ , BRσ which satisfy the η-admissibility criterion (1.2).

A main tool in our proofs is the Scott-Zhang projection

Jh : H1(Ω) → S1,1(Th)

introduced in [SZ90], which preserves homogeneousDirichlet boundary conditions,

i.e. it mapsH1
0 (Ω) to S1,1

0 (Th). By ωT :=
⋃
{T ′ ∈ Th : T ∩ T ′ 6= ∅}, we denote

the element patch of T , which contains T and all elements T ′ ∈ Th that have a

common node with T . Then, Jh has some local approximation property for Th-
piecewiseHℓ-functions u ∈ Hℓ

pw(Ω)
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‖u− Jhu‖
2
Hm(T ) ≤ Ch2(ℓ−m)

∑

T ′⊂ωT

|u|2Hℓ(T ′) , 0 ≤ m ≤ 1, m ≤ ℓ ≤ 2. (1.10)

The constant C > 0 depends only on γ-shape regularity of Th and the dimension d.
For a box BR with diameter R, we introduce the norm

|||u|||2h,R :=

(
h

R

)2

‖∇u‖2L2(BR) +
1

R2
‖u‖2L2(BR) ,

which is, for fixed h, equivalent to the H1-norm. The following lemma states a

Caccioppoli-type estimate for functions in Hh(B(1+δ)R)), where B(1+δ)R is a box

of diameter (1 + δ)R with the same center as the box BR.

Lemma 1. Let δ > 0 and h
R ≤ δ

2 . Let u ∈ Hh(B(1+δ)R) for a box B(1+δ)R of

diameter (1 + δ)R. Then, there exists a constant C > 0 which depends only on γ
and d, such that

‖∇u‖L2(BR) ≤ C
1 + δ

δ
|||u|||h,(1+δ)R . (1.11)

Proof. Let η be a smooth cut-off function with supp(η) ⊂ B(1+δ/2)R, η ≡ 1 on

BR, and ‖∇η‖L∞(BR) .
1
δR ,

∥∥D2η
∥∥
L∞(BR)

. 1
δ2R2 . Recall that h is the maximal

element width and 2h ≤ δR. Therefore, T ⊆ B(1+δ)R for all T ∈ Th with T ∩
supp(η) 6= ∅. With the abbreviate notation B := B(1+δ)R, we have

‖∇u‖L2(BR) ≤ ‖η∇u‖2L2(B) =

∫

B

∇u · ∇(η2u)− 2ηu∇η · ∇u dx.

By locality of the Scott-Zhang projection Jh : H1(Ω) → S1,1(Th), we observe

supp(Jh(η
2u)) ⊂ B. The orthogonality relation (1.9) implies

∣∣∣∣
∫

B

∇u · ∇(η2u)dx

∣∣∣∣ =
∣∣∣∣
∫

B

∇u · ∇(η2u− Jh(η
2u))dx

∣∣∣∣

≤ ‖∇u‖L2(B)

∥∥∇(η2u− Jh(η
2u))

∥∥
L2(B)

.

For the last term, we use the approximation property (1.10) and obtain

∥∥∇(η2u− Jh(η
2u))

∥∥2
L2(B)

. h2
∑

T∈Th
T⊆B

∥∥D2(η2u)
∥∥2
L2(T )

. h2
∥∥D2(η2u)

∥∥2
L2(B)

. h2
( ∥∥D2η

∥∥
L∞(B)

‖ηu‖L2(B) + ‖∇η‖L∞(B) ‖η∇u‖L2(B)

+ ‖Dη‖2L∞(B)‖u‖L2(B)

)2

.

(
h

δ2R2
‖u‖L2(B) +

h

δR
‖η∇u‖L2(B)

)2

.

Finally, we combine these estimates and use the Young inequality to see
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‖η∇u‖2L2(B) .
h

δR
‖∇u‖L2(B)

(
1

δR
‖u‖L2(B) + ‖η∇u‖L2(B)

)

+
1

δR
‖u‖L2(B) ‖η∇u‖L2(B)

≤ C
h2

δ2R2
‖∇u‖2L2(B) + C

1

δ2R2
‖u‖2L2(B) +

1

2
‖η∇u‖2L2(B) .

Moving the term 1
2 ‖η∇u‖

2
L2(B) to the left-hand side, we conclude the proof. ⊓⊔

1.3.2 Low-dimensional approximation inHh(D)

Let Πh,R : (H1(BR), |||·|||h,R) → (Hh(BR), |||·|||h,R) be the orthogonal projection,

which is well-defined sinceHh(BR) ⊂ H1(BR) is a closed subspace.

Lemma 2. Let δ > 0 and u ∈ Hh(B(1+2δ)R). Assume
h
R ≤ δ

2 . Let KH be an (infi-

nite) γ-shape regular triangulation ofRd and assume H
R ≤ δ

2 for the corresponding

mesh widthH . Let JH : H1(Rd) → S1,1(KH) be the Scott-Zhang projection. Then,
there exists a constant C > 0 which depends only on Ω, d, and γ, such that

(i)
(
u−Πh,RJHu

)
|BR ∈ Hh(BR)

(ii) |||u−Πh,RJHu|||h,R ≤ C 1+2δ
δ

(
h
R + H

R

)
|||u|||h,(1+2δ)R

(iii) dimW ≤ C
(

(1+2δ)R
H

)d
, whereW := Πh,RJHHh(B(1+2δ)R).

Proof. The statement (iii) follows from the fact that dim JH(Hh(B(1+2δ)R)) ≃

((1 + 2δ)R/H)d. For u ∈ Hh(B(1+2δ)R), we have u ∈ Hh(BR) as well and hence
Πh,R (u|BR) = u|BR , which gives (i). It remains to prove (ii): The assumption
H
R ≤ δ

2 implies
⋃
{K ∈ KH : ωK ∩ BR 6= ∅} ⊆ B(1+δ)R. The locality and the

approximation properties (1.10) of JH yield

1

H
‖u− JHu‖L2(BR) + ‖∇(u− JHu)‖L2(BR) . ‖∇u‖L2(B(1+δ)R) .

We apply Lemma 1 with R̃ = (1 + δ)R and δ̃ = δ
1+δ . Note that (1 + δ̃)R̃ =

(1 + 2δ)R, and h

R̃
≤ δ̃

2 follows from 2h ≤ δR = δ̃R̃. Hence, we obtain

|||u−Πh,RJHu|||
2
h,R = |||Πh,R (u− JHu)|||

2
h,R ≤ |||u− JHu|||

2
h,R

=

(
h

R

)2

‖∇(u− JHu)‖
2
L2(BR) +

1

R2
‖u− JHu‖

2
L2(BR)

.
h2

R2
‖∇u‖2L2(B(1+δ)R) +

H2

R2
‖∇u‖2L2(B(1+δ)R)

≤

(
C
1 + 2δ

δ

(
h

R
+
H

R

))2

|||u|||2h,(1+2δ)R ,



8 Markus Faustmann, Jens M. Melenk, and Dirk Praetorius

which concludes the proof. ⊓⊔

We have not specified the gridsizeH of KH to be used in Lemma 2. We will use

h < H below. Otherwise, we can choose a grid KH such that KH |Ω is a refinement

of Th and so the piecewise affine approximation constructed above is equal to the

Galerkin solution. In terms of matrix blocks, this corresponds to the case that the

ranks of the matrix blocks are comparable to the blocksize. Hence, in the estimate

above the term h
R ≤ H

R can be dropped.

Lemma 3. Let q, κ ∈ (0, 1), k ∈ N. Then, there exists a finite dimensional subspace

Vk of Hh(BR) with dimension dimVk ≤ Cdimq
−dkd+1 such that for every u ∈

Hh(B(1+κ)R) it holds

min
v∈Vk

|||u− v|||h,R ≤ qk |||u|||h,(1+κ)R . (1.12)

The constant Cdim > 0 depends only on Ω, d, and γ-shape regularity of Th.

Proof. We iterate the approximation result of Lemma 2 on boxes B(1+δj)R, with

δj := κk−j
k for j = 0, . . . , k. We note that κ = δ0 > δ1 > · · · > δk = 0. We

chooseH = qR
8kmax{C,1} , where C is the constant in Lemma 2.

If h ≥ H , then we select Vk = Hh(BR). Due to the choice of H we have

dimVk .
(
R
h

)d
. k

(
R
H

)d
≃ Cdimq

−dkd+1.

If h < H , we apply Lemma 2 with R̃ = (1 + δj)R and δ̃j = 1
2k(1+δj)

< 1
2 .

Note that δj−1 = δj + 1
k gives (1 + δj−1)R = (1 + 2δ̃j)R̃. The assump-

tion H

R̃
≤ 1

4k(1+δj)
=

δ̃j
2 is fulfilled due to our choice of H . For j = 1,

Lemma 2 provides an approximation w1 in a subspaceW1 of Hh(B(1+δ1)R) with

dimW1 ≤ C
(

(1+κ)R
H

)d
such that

|||u− w1|||h,(1+δ1)R
≤ 2C

H

(1 + δ1)R

1 + 2δ̃1

δ̃1
|||u|||h,(1+δ0)R

= 4C
kH

R
(1 + 2δ̃1) |||u|||h,(1+κ)R ≤ q |||u|||h,(1+κ)R .

Since u − w1 ∈ Hh(B(1+δ1)R), we can use Lemma 2 again and get an ap-

proximation w2 of u − w1 in a subspace W2 of Hh(B(1+δ1)R) with dimW2 ≤

C
(

(1+κ)R
H

)d
. Arguing as for j = 1, we get

|||u− w1 − w2|||h,(1+δ2)R
≤ q |||u− w1|||h,(1+δ1)R

≤ q2 |||u|||h,(1+κ)R .

Continuing this process k− 2 times leads to an approximation v :=
∑k

j=1 wi in the

space Vk :=
∑k

j=1Wj of dimension dimVk ≤ Ck
(

(1+κ)R
H

)d
= Cdimq

−dkd+1.

⊓⊔
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Now we are able to prove the main result of this section.

Proof (of Proposition 1). As mentioned in the beginning of this section, for φh the

assumptions of Lemma 3 are satisfied if we fix κ ∈ (0, 1) small enough such that

dist(B(1+κ)Rτ
, BRσ) > 0. The Poincaré inequality implies

‖φh‖
2
H1(Ω) . ‖∇φh‖

2
L2(Ω) = 〈f, φh〉 . ‖f‖L2(BRσ∩Ω) ‖φh‖H1(Ω) .

Furthermore, with h
Rτ

< 1, we get

|||φh|||h,(1+κ)Rτ
.

(
1 +

1

Rτ

)
‖φh‖H1(B2Rτ )

≤

(
1 +

1

Rτ

)
‖φh‖H1(Ω)

.

(
1 +

1

Rτ

)
‖f‖L2(BRσ∩Ω) ,

and we have a bound on the right-hand side of (1.12). Finally, the admissibility

condition leads to

min
v∈Vk

‖φh − v‖L2(BRτ )
≤ Rτ min

v∈Vk

|||φh − v|||h,Rτ
. (Rτ + 1)qk ‖f‖L2(BRσ∩Ω)

. (η + 1)diam(Ω)qk ‖f‖L2(BRσ∩Ω) ,

which concludes the proof. ⊓⊔

1.4 Proof of main results

We use the approximation of φh from the low dimensional spaces, given in Propo-

sition 1, to construct a blockwise low-rank approximation and consequently an H-

matrix approximation of the inverse FEM-matrix. The remaining steps of the proof

of Theorem 1 follow the lines of [Bör10a]. Therefore, we only sketch the proof.

Proof (of Theorem 1). If Cdimq
−dkd+1 ≥ min(|τ | , |σ|), we use the exact ma-

trix block Xτσ = A
−1|τ×σ and Yτσ = I ∈ R

|σ|×|σ|. If Cdimq
−dkd+1 <

min(|τ | , |σ|), let λi : L2(Ω) → R be continuous linear functionals satisfying

λi(ψj) = δij . We define the mappings

Λτ : L2(Ω) → R
|τ |, v 7→ (λi(v))i∈τ and Jτ : R|τ | → S1,1

0 (Th), x 7→
∑

j∈τ

xjψj .

Let Vk be the finite dimensional subspace from Proposition 1. We defineXτσ as an

orthogonal basis of the space V := {Λτv : v ∈ Vk} and Yτσ := A
−1|Tτ×σXτσ.

Then, the rank of Xτσ,Yτσ is bounded by dimVk ≤ Cdimq
−dkd+1. The error

estimate follows from combining the estimate in Proposition 1 with the stability

estimate hd/2 ‖x‖2 . ‖Jτx‖L2(Ω) . hd/2 ‖x‖2, see [Bör10a] for details. ⊓⊔
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Now, the estimates on each block can be put together to prove our main result.

Proof (of Theorem 2). Theorem 1 provides matricesXτσ ∈ R
|τ |×r,Yτσ ∈ R

|σ|×r,

and we define theH-matrixBH by

BH =

{
XτσY

T
τσ if (τ, σ) ∈ Pfar,

A
−1|τ×σ otherwise.

On each admissible block (τ, σ) ∈ Pfar, we use the blockwise estimate of Theo-

rem 1. On the other blocks, the error is zero by definition. Now, an estimate for the

global spectral norm by the local spectral norms from e.g. [Gra01, Hac09] leads to

∥∥A−1 −BH

∥∥
2
≤ Csp

(
∞∑

ℓ=0

max
{∥∥(A−1 −BH)|τ×σ

∥∥
2
: (τ, σ) ∈ P, level(τ) = ℓ

}
)

≤ CspCapx(1 + η)h−dqkdepth(TI).

Defining b = − ln(q)

C
1/(d+1)
dim

qd/(d+1) > 0, we obtain qk = e−br1/(d+1)

and hence

∥∥A−1 −BH

∥∥
2
. CapxCsp(1 + η)Ndepth(TI)e

−br1/(d+1)

,

which concludes the proof. ⊓⊔
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