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Markus Faustmann Jens Markus Melenk Dirk Praetorius
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Abstract

We study the question of approximability for the inverse of the FEM stiffness matrix for (scalar)
second order elliptic boundary value problems by blockwise low rank matrices such as those given
by theH-matrix format introduced in [Hac99]. We show that exponential convergence in the local
block rankr can be achieved. We also show that exponentially accurateLU -decompositions in the
H-matrix format are possible for the stiffness matrices arising in the FEM. Unlike prior works,
our analysis avoids any coupling of the block rankr and the mesh widthh and also covers mixed
Dirichlet-Neumann-Robin boundary conditions.

1 Introduction

The format ofH-matrices was introduced in [Hac99] as blockwise low-rank matrices that permit
storage, application, and even a full (approximate) arithmetic with log-linear complexity, [Gra01,
GH03, Hac09]. This data-sparse format is well suited to represent at high accuracy matrices arising
as discretizations of many integral operators, for example, those appearing in boundary integral
equation methods. Also the sparse matrices that are obtained when discretizing differential operator
by means of the finite element method (FEM) are amenable to a treatment byH-matrices; in fact,
they feature a lossless representation. Since theH-matrix format comes with an arithmetic that
provides algorithms to invert matrices as well as to computeLU -factorizations, approximations of
the inverses of FEM matrices or theirLU -factorizations are available computationally. Immediately,
the question of accuracy and/or complexity comes into sight. On the one hand, the complexity of the
H-matrix inversion can be log-linear if theH-matrix structure including the block ranks is fixed,
[Gra01, GH03, Hac09]. Then, however, the accuracy of the resulting approximate inverse is not
completely clear. On the other hand, the accuracy of the inverse can be controlled by means of
an adaptive arithmetic (going back at least to [Gra01]); the computational cost at which this error
control comes, is problem-dependent and not completely clear. Therefore, a fundamental question is
how well the inverse can be approximated in a selectedH-matrix format, irrespective of algorithmic
considerations. This question is answered in the present paper for FEM matrices arising from the
discretization of second order elliptic boundary value problems.

It was first observed numerically in [Gra01] that the inverse of the finite element (FEM) stiff-
ness matrix corresponding to the Dirichlet problem for elliptic operators with bounded coefficients
can be approximated in the format ofH-matrices with an error that decays exponentially in the
block rank employed . Using properties of the continuous Green’s function for the Dirichlet prob-
lem, [BH03] proves this exponential decay in the block rank, at least up to the discretization error.
The work [Bör10a] improves on the result [BH03] in several ways, in particular, by proving a cor-
responding approximation result in the framework ofH2-matrices; we do not go into the details
of H2-matrices here and merely mention thatH2-matrices are a refinement of the concept ofH-
matrices with better complexity properties, [Gie01, HKS00, HB02, Bör10b].

Whereas the analysis of [BH03, Bör10a] is based on the solution operator on the continuous
level (i.e., by studying the Green’s function), the approach taken in the present article is to work
on the discrete level. This seemingly technical difference has several important ramifications: First,
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the exponential approximability in the block rank shown hereis not limited by the discretization
error as in [BH03, B̈or10a]. Second, in contrast to [BH03, Bör10a], where the block rankr and the
mesh widthh are coupled byr ∼ |log h|, our estimates are explicit in bothr andh. Third, a unified
treatment of a variety of boundary conditions is possible and indeed worked out by us. Fourth, our
approach paves the way for a similar approximability result for discretizations of boundary integral
operators, [FMP13]. Additionally, we mention that we also allow here the case of higher order FEM
discretizations.

The last theoretical part of this paper (Section 6) shows that theH-matrix format admitsH-LU -
decompositions orH-Cholesky factorizations with exponential accuracy in the block rank. This is
achieved, following [Beb07, CDGS10], by exploiting that the off-diagonal blocks of certain Schur
complements are low-rank. Such an approach is closely related to the concepts of hierarchically
semiseparable matrices (see, for example, [Xia13, XCGL09, LGWX12] and references therein) and
recursive skeletonization (see [HG12, GGMR09]) and their arithmetic. In fact, several multilevel
“direct” solvers for PDE discretizations have been proposed in the recent past, [HY13, GM13,
SY12, Mar09]. These solvers take the form of (approximate) matrix factorizations. A key ingredient
to their efficiency is that certain Schur complement blocks are compressible since they are low-rank.
Thus, our analysis in Section 6 could also be of value for the understanding of these algorithms.
We close by stressing that our analysis in Section 6 ofH-LU -decompositions makes very few
assumptions on the actual ordering of the unknowns and does not explore beneficial features of
special orderings. It is well-known in the context of classical direct solvers that the ordering of
the unknowns has a tremendous impact on the fill-in in factorizations. One of the most successful
techniques for discretizations of PDEs are multilevel nested dissection strategies, which permit to
identify large matrix blocks that will not be filled during the factorization. An in-depth complexity
analysis for theH-matrix arithmetic for such ordering strategies can be found in [GKLB09]. The
recent works [HY13, GM13] and, in a slightly different context, [BL04], owe at least parts of their
efficiency to the use of nested dissection techniques.

2 Main results

Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded polygonal (ford = 2) or polyhedral (ford = 3) Lipschitz

domain with boundaryΓ := ∂Ω. We consider differential operators of the form

Lu := −div(C∇u) + b · ∇u+ βu, (1)

whereb ∈ L∞(Ω;Rd), β ∈ L∞(Ω), andC ∈ L∞(Ω;Rd×d) is pointwise symmetric with

c1 ‖y‖22 ≤ 〈C(x)y, y〉2 ≤ c2 ‖y‖22 ∀y ∈ R
d, (2)

with certain constantsc1, c2 > 0.
Forf ∈ L2(Ω), we consider the mixed boundary value problem

Lu = f in Ω, (3a)

u = 0 onΓD, (3b)

C∇u · n = 0 onΓN , (3c)

C∇u · n+ αu = 0 onΓR, (3d)

wheren denotes the outer normal vector to the surfaceΓ, α ∈ L∞(ΓR), α > 0 andΓ = ΓD ∪
ΓN ∪ ΓR, with the pairwise disjoint and relatively open subsetsΓD,ΓN ,ΓR. With the trace
operatorγ int

0 we defineH1
0 (Ω,ΓD) := {u ∈ H1(Ω) : γ int

0 u = 0 on ΓD}. The bilinear form
a : H1

0 (Ω,ΓD)×H1
0 (Ω,ΓD) → R corresponding to (3) is given by

a(u, v) := 〈C∇u,∇v〉L2(Ω) + 〈b · ∇u+ βu, v〉L2(Ω) + 〈αu, v〉L2(ΓR) . (4)

We additionally assume that the coefficientsα,C,b, β are such that the the coercivity

‖u‖2H1(Ω) ≤ Ca(u, u) (5)
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of the bilinear forma(·, ·) holds. Then, the Lax-Milgram Lemma implies the unique solvability of
the weak formulation of our model problem.

For the discretization, we assume thatΩ is triangulated by aquasiuniform mesh
Th = {T1, . . . , TN} of mesh widthh := maxTj∈Th

diam(Tj), and the DirichletΓD, Neu-
mannΓN , and RobinΓR-parts of the boundary are resolved by the meshTh. The elementsTj ∈ Th
are triangles (d= 2) or tetrahedra (d= 3), and we assume thatTh is regular in the sense of Ciarlet.
The nodes are denoted byxi ∈ Nh, for i = 1, . . . , N . Moreover, the meshTh is assumed to be
γ-shape regular in the sense ofh ∼ diam(Tj) ≤ γ |Tj |1/d for all Tj ∈ Th. In the following,
the notation. abbreviates≤ up to a constantC > 0 which depends only onΩ, the dimension
d, andγ-shape regularity ofTh. Moreover, we use≃ to abbreviate that both estimates. and& hold.

We consider the Galerkin discretization of the bilinear forma(·, ·) by continuous, piecewise
polynomials of fixed degreep ≥ 1 in Sp,1

0 (Th,ΓD) := Sp,1(Th) ∩ H1
0 (Ω,ΓD) with Sp,1(Th) =

{u ∈ C(Ω) : u|Tj
∈ Pp, ∀Tj ∈ Th}. We choose a basis ofSp,1

0 (Th,ΓD), which is denoted by
Bh := {ψj : j = 1, . . . , N}. Given that our results are formulated for matrices, assumptions on
the basisBh need to be imposed. For the isomorphismJ : RN → Sp,1

0 (Th,ΓD), x 7→∑N
j=1 xjψj ,

we require
hd/2 ‖x‖2 . ‖J x‖L2(Ω) . hd/2 ‖x‖2 , ∀x ∈ R

d. (6)

Remark 2.1 Standard bases forp = 1 are the classical hat functions satisfyingψj(xi) = δij and
for p ≥ 2 we refer to, e.g., [Sch98, KS99, DKP+08].

The Galerkin discretization of (4) results in a positive definite matrixA ∈ R
N×N with

Ajk = 〈C∇ψk,∇ψj〉L2(Ω) + 〈b · ∇ψk + βψk, ψj〉L2(Ω) + 〈αψk, ψj〉L2(ΓR) , ψk, ψj ∈ Bh.

Our goal is to derive anH-matrix approximationBH of the inverse matrixB = A
−1. An H-

matrixBH is a blockwise low rank matrix based on the concept of “admissibility”, which we now
introduce:

Definition 2.2 (bounding boxes andη-admissibility) A clusterτ is a subset of the index setI =
{1, . . . , N}. For a clusterτ ⊂ I, we say thatBRτ

⊂ R
d is abounding boxif:

(i) BRτ
is a hyper cube with side lengthRτ ,

(ii) suppψj ⊂ BRτ
for all j ∈ τ .

For η > 0, a pair of clusters(τ, σ) with τ, σ ⊂ I is η-admissible, if there exist boxesBRτ
,BRσ

satisfying (i)–(ii) such that

max{diamBRτ
, diamBRσ

} ≤ η dist(BRτ
, BRσ

). (7)

Definition 2.3 (blockwise rank-rmatrices) Let P be a partition ofI × I andη > 0. A matrix
BH ∈ R

N×N is said to be ablockwise rank-rmatrix, if for everyη-admissible cluster pair(τ, σ) ∈
P , the blockBH|τ×σ is a rank-rmatrix, i.e., it has the formBH|τ×σ = XτσY

T
τσ with Xτσ ∈

R
|τ |×r andYτσ ∈ R

|σ|×r. Here and below,|σ| denotes the cardinality of a finite setσ.

The following theorems are the main results of this paper. Theorem 2.4 shows that admissible
blocks can be approximated by rank-rmatrices:

Theorem 2.4 Fix η > 0, q ∈ (0, 1). Let the cluster pair(τ, σ) beη-admissible. Then, fork ∈ N

there are matricesXτσ ∈ R
|τ |×r, Yτσ ∈ R

|σ|×r of rankr ≤ Cdim(2 + η)dq−dkd+1 such that
∥∥A−1|τ×σ −XτσY

T
τσ

∥∥
2
≤ CapxNq

k. (8)

The constantsCapx, Cdim > 0 depend only on the boundary value problem(3), Ω, d, p, and the
γ-shape regularity ofTh.
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The approximations for the individual blocks can be combinedto gauge the approximability of
A

−1 by blockwise rank-rmatrices. Particularly satisfactory estimates are obtained if the blockwise
rank-rmatrices have additional structure. To that end, we introduce the following definitions.

Definition 2.5 (cluster tree) A cluster treewith leaf sizenleaf ∈ N is a binary treeTI with root
I such that for each clusterτ ∈ TI the following dichotomy holds: eitherτ is a leaf of the tree
and |τ | ≤ nleaf , or there exist so called sonsτ ′, τ ′′ ∈ TI , which are disjoint subsets ofτ with τ =
τ ′∪ τ ′′. Thelevel functionlevel : TI → N0 is inductively defined bylevel(I) = 0 andlevel(τ ′) :=
level(τ) + 1 for τ ′ a son ofτ . Thedepthof a cluster tree isdepth(TI) := maxτ∈TI

level(τ).

Definition 2.6 (far field, near field, and sparsity constant) A partition P of I × I is said to be
based on the cluster treeTI , if P ⊂ TI × TI . For such a partitionP and fixedη > 0, we define
thefar fieldand thenear fieldas

Pfar := {(τ, σ) ∈ P : (τ, σ) is η-admissible}, Pnear := P\Pfar.

Thesparsity constantCsp, introduced in [Gra01], of such a partition is defined by

Csp := max

{
max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}| ,max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|
}
.

The following Theorem 2.7 shows that the matrixA−1 can be approximated by blockwise
rank-rmatrices at an exponential rate in the block rankr:

Theorem 2.7 Fix η > 0. Let a partitionP of I × I be based on a cluster treeTI . Then, there is a
blockwise rank-rmatrixBH such that

∥∥A−1 −BH

∥∥
2
≤ CapxCspNdepth(TI)e

−br1/(d+1)

. (9)

The constantsCapx, b > 0 depend only on the boundary value problem(3),Ω, d, p, and theγ-shape
regularity ofTh.

Remark 2.8 Typical clustering strategies such as the “geometric clustering” described in [Hac09]
and applied to quasiuniform meshes withO(N) elements lead to fairly balanced cluster treesTI

of depthO(logN) and feature a sparsity constantCsp that is bounded uniformly inN . We refer
to [Hac09] for the fact that the memory requirement to storeBH is O

(
(r + nleaf)N logN

)
.

Remark 2.9 With the estimate 1
‖A−1‖2

. N−1 from [EG06, Theorem 2], we get a bound for the
relative error ∥∥A−1 −BH

∥∥
2

‖A−1‖2
. CapxCspdepth(TI)e

−br1/(d+1)

. (10)

Let us conclude this section with an observation concerning the admissibility condition (7). If
the operatorL is symmetric, i.e.b = 0, then the admissibility condition (7) can be replaced by the
weaker admissibility condition

min{diamBRτ
, diamBRσ

} ≤ η dist(BRτ
, BRσ

). (11)

This follows from the fact that Proposition 3.1 only needs an admissibility criterion of the form
diamBRτ

≤ η dist(BRτ
, BRσ

). Due to the symmetry ofL, deriving a block approximation for
the blockτ × σ is equivalent to deriving an approximation for the blockσ × τ . Therefore, we
can interchange roles of the boxesBRτ

andBRσ
, and as a consequence the weaker admissibility

condition (11) is sufficient. We summarize this observation in the following corollary.

Corollary 2.10 In the symmetric caseb = 0, the results from Theorem 2.4 and Theorem 2.7 hold
verbatim with the weaker admissibility criterion(11) instead of(7).
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3 Low-dimensional approximation of the Galerkin solution on
admissible blocks

In terms of functions and function spaces, the question of approximating the matrix blockA
−1|τ×σ

by a low-rank factorizationXτσY
T
τσ can be rephrased as one of how well one can approximate lo-

cally the solution of certain variational problems. More precisely, we consider, for dataf supported
byBRσ

∩ Ω, the problem to findφh ∈ Sp,1
0 (Th,ΓD) such that

a(φh, ψh) = 〈f, ψh〉L2(Ω), ∀ψh ∈ Sp,1
0 (Th,ΓD). (12)

We remark in passing that existence and uniqueness ofφh follow from coercivity of a(·, ·). The
question of approximating the matrix blockA−1|τ×σ by a low-rank factorization is intimately
linked to the question of approximatingφh|BRτ ∩Ω from low-dimensional spaces. The latter problem
is settled in the affirmative in the following proposition forη-admissible cluster pairs(τ, σ):

Proposition 3.1 Let (τ, σ) be a cluster pair with bounding boxesBRτ
, BRσ

. Assume
η dist(BRτ

, BRσ
) ≥ diam(BRτ

) for someη > 0. Fix q ∈ (0, 1). Let ΠL2

: L2(Ω) →
Sp,1
0 (Th,ΓD) be theL2(Ω)-orthogonal projection. Then, for eachk ∈ N there exists a space
Vk ⊂ Sp,1

0 (Th,ΓD) with dimVk ≤ Cdim(2 + η)dq−dkd+1 such that for arbitraryf ∈ L2(Ω)
with supp f ⊂ BRσ

∩ Ω, the solutionφh of (12)satisfies

min
v∈Vk

‖φh − v‖L2(BRτ ∩Ω) ≤ Cboxq
k‖ΠL2

f‖L2(Ω) ≤ Cboxq
k‖f‖L2(BRσ∩Ω). (13)

The constantCbox > 0 depends only on the boundary value problem(3) andΩ, whileCdim > 0
additionally depends onp, d, and theγ-shape regularity ofTh.

The proof of Proposition 3.1 will be given at the end of this section. The basic steps are as
follows: First, one observes thatsupp f ⊂ BRσ

∩ Ω together with the admissibility condition
dist(BRτ

, BRσ
) ≥ η−1diam(BRτ

) > 0 imply the orthogonality condition

a(φh, ψh) = 〈f, ψh〉L2(BRσ∩Ω) = 0, ∀ψh ∈ Sp,1
0 (Th,ΓD)with suppψh⊂BRτ

∩ Ω. (14)

Second, this observation will allow us to prove a Caccioppoli-type estimate (Lemma 3.4) in which
stronger norms ofφh are estimated by weaker norms ofφh on slightly enlarged regions. Third,
we proceed as in [BH03, B̈or10a] by iterating an approximation result (Lemma 3.5) derived from
the Scott-Zhang interpolation of the Galerkin solutionφh. This iteration argument accounts for the
exponential convergence (Lemma 3.6).

3.1 The spaceHh(D,ω) and a Caccioppoli type estimate

It will be convenient to introduce, forρ ⊂ I, the set

ωρ := interior



⋃

j∈ρ

suppψj


 ⊆ Ω; (15)

we will implicitly assume henceforth that such sets are unions of elements. LetD ⊂ R
d be a

bounded open set andω ⊂ Ω be of the form given in (15). The orthogonality property that we have
identified in (14) is captured by the following spaceHh(D,ω):

Hh(D,ω) := {u ∈ H1(D ∩ ω) : ∃ũ ∈ Sp,1
0 (Th,ΓD) s.t.u|D∩ω = ũ|D∩ω, supp ũ ⊂ ω,

a(u, ψh) = 0, ∀ ψh ∈ Sp,1
0 (Th,ΓD)with suppψh ⊂ D ∩ ω}. (16)

For the proof of Proposition 3.1 and subsequently Theorems 2.4 and 2.7, we will only need the
special caseω = Ω; the general caseHh(D,ω) with ω 6= Ω will be required in our analysis of
LU -decompositions in Section 6.2.
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Clearly, the finite dimensional spaceHh(D,ω) is a closed subspace ofH1(D ∩ ω), and we
haveφh ∈ Hh(BRτ

,Ω) for the solutionφh of (12) with supp f ⊂ BRσ
∩ Ω and bounding

boxesBRτ
, BRσ

that satisfy theη-admissibility criterion (7). Since multiplications of elements
of Hh(D,ω) with cut-off function and trivial extensions toΩ appear repeatedly in the sequel, we
note the following very simple lemma:

Lemma 3.2 Letω be a union of elements,D ⊂ R
d be bounded and open, andη ∈W 1,∞(Rd) with

supp η ⊂ D. For u ∈ Hh(D,ω) define the functionηu pointwise onΩ by (ηu)(x) := η(x)u(x)
for x ∈ D ∩ ω and(ηu)(x) = 0 for x 6∈ D ∩ ω. Then

(i) ηu ∈ H1
0 (Ω; ΓD)

(ii) supp(ηu) ⊂ D ∩ ω
(iii) If η ∈ Sq,1(Th), thenηu ∈ Sp+q,1

0 (Th,ΓD).

Proof: We only illustrate (i). Givenu ∈ Hh(D,ω) there exists by definition a functioñu ∈
Sp,1
0 (Th,ΓD) with supp ũ ⊂ ω. By the support properties ofη and ũ, the functionηu coincides

with ηũ. As the product of anH1(Ω)-function and a Lipschitz continuous function, the functionηũ
is inH1(Ω). �

A main tool in our proofs is a Scott-Zhang projectionJh : H1
0 (Ω; ΓD) → Sp,1

0 (Th; ΓD) of the
form introduced in [SZ90]. It can be selected to have the following additional mapping property for
any chosen unionω of elements:

suppu ⊂ ω =⇒ suppJhu ⊂ ω. (17)

By ωT :=
⋃ {T ′ ∈ Th : T ∩ T ′ 6= ∅}, we denote the element patch ofT , which containsT and all

elementsT ′ ∈ Th that have a common node withT . Then,Jh has the following local approximation
property forTh-piecewiseHℓ-functionsu ∈ Hℓ

pw(Th, ω) := {u ∈ L2(ω) : u|T ∈ Hℓ(T ) ∀T ∈
Th}

‖u− Jhu‖2Hm(T ) ≤ Ch2(ℓ−m)
∑

T ′⊂ωT

|u|2Hℓ(T ′) , 0 ≤ m ≤ 1, m ≤ ℓ ≤ p+ 1. (18)

The constantC > 0 depends only onγ-shape regularity ofTh, the dimensiond, and the polynomial
degreep. In particular, it is independent of the choice of the setω in (17).

In the following, we will construct approximations on nested boxes and therefore introduce the
notion of concentric boxes.

Definition 3.3 (concentric boxes)Two boxesBR,BR′ of side lengthR,R′ are said to be concen-
tric, if they have the same barycenter andBR can be obtained by a stretching ofBR′ by the factor
R/R′ taking their common barycenter as the origin.

For a boxBR with side lengthR ≤ 2 diam(Ω), we introduce the norm

|||u|||2h,R :=

(
h

R

)2

‖∇u‖2L2(BR∩ω) +
1

R2
‖u‖2L2(BR∩ω) ,

which is, for fixedh, equivalent to theH1-norm. The following lemma states a Caccioppoli-type
estimate for functions inHh(B(1+δ)R, ω), whereB(1+δ)R andBR are concentric boxes.

Lemma 3.4 Let δ ∈ (0, 1), h
R ≤ δ

4 and letω ⊆ Ω be of the form(15). LetBR, B(1+δ)R be two
concentric boxes. Letu ∈ Hh(B(1+δ)R, ω). Then, there exists a constantCreg > 0 which depends
only on the boundary value problem(3), Ω, d, p, and theγ-shape regularity ofTh, such that

‖∇u‖L2(BR∩ω) ≤ ‖∇u‖L2(BR∩ω) + 〈αu, u〉1/2L2(BR∩(ΓR∩ω)) ≤ Creg
1 + δ

δ
|||u|||h,(1+δ)R . (19)
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Proof: Let η ∈ S1,1(Th) be a piecewise affine cut-off function withsupp η ⊂ B(1+δ/2)R ∩ Ω,
η ≡ 1 onBR ∩ ω, 0 ≤ η ≤ 1, and‖∇η‖L∞(B(1+δ)R∩Ω) .

1
δR ,

∥∥D2η
∥∥
L∞(B(1+δ)R∩Ω)

. 1
δ2R2 . By

Lemma 3.2 we haveη2u ∈ Sp+2,1
0 (Th,ΓD) ⊂ H1

0 (Ω; ΓD) and

supp(η2u) ⊂ B(1+δ/2)R ∩ ω. (20)

Recall thath is the maximal element diameter and4h ≤ δR. Hence, for the Scott-Zhang operator
Jh, we havesuppJh(η2u) ⊂ B(1+δ)R; in view of (17) we furthermore havesuppJh(η2u) ⊂ ω so
that

suppJh(η
2u) ⊂ B withB := B(1+δ)R ∩ ω. (21)

With the coercivity of the bilinear forma(·, ·) and 1
δR . 1

δ2R2 , sinceδ < 1 andR ≤ 2 diam(Ω),
we have

‖∇u‖2L2(BR∩ω) + 〈αu, u〉L2(BR∩ω∩ΓR) ≤ ‖∇(ηu)‖2L2(B) + 〈αηu, ηu〉L2(B∩ΓR) (22a)

. a(ηu, ηu)

=

∫

B

C∇u · ∇(η2u) + u2C∇η · ∇η dx+
〈
b · ∇u+ βu, η2u

〉
L2(B)

+

〈b · (∇η)u, ηu〉L2(B) +
〈
αu, η2u

〉
L2(B∩ΓR)

+
1

δ2R2
‖u‖2L2(B)

.

∫

B

C∇u · ∇(η2u)dx+
〈
b · ∇u+ βu, η2u

〉
L2(B)

+

〈
αu, η2u

〉
L2(B∩ΓR)

+
1

δ2R2
‖u‖2L2(B)

= a(u, η2u) +
1

δ2R2
‖u‖2L2(B) . (22b)

Recall from (21) thatsuppJh(η2u) ⊂ B. The orthogonality relation (16) in the definition of the
spaceHh(B,ω) therefore implies

a(u, η2u) = a(u, η2u− Jh(η
2u))

≤ ‖C‖L∞(B) ‖∇u‖L2(B)

∥∥∇(η2u− Jh(η
2u))

∥∥
L2(B)

+
(
‖b‖L∞(B) ‖∇u‖L2(B) + ‖β‖L∞(B) ‖ηu‖L2(B)

)∥∥η2u− Jh(η
2u)
∥∥
L2(B)

+
∣∣∣
〈
αu, η2u− Jh(η

2u)
〉
L2(B∩ΓR)

∣∣∣ . (23)

The approximation property (18), the requirement (17), and the support properties ofη2u lead to
∥∥∇(η2u− Jh(η

2u))
∥∥2
L2(Ω)

. h2p
∑

T∈Th
T⊆B

∥∥Dp+1(η2u)
∥∥2
L2(T )

. (24)

Since, for eachT ⊂ B we haveu|T ∈ Pp, we getDp+1u|T = 0 andη ∈ S1,1(Th) implies
Djη|T = 0 for j ≥ 2. With the Leibniz product rule, the right-hand side of (24) can therefore be
estimated by
∥∥Dp+1(η2u)

∥∥
L2(T )

.
∥∥D2η2Dp−1u+ η∇ηDpu

∥∥
L2(T )

.
∥∥∇η · ∇ηDp−1u+ η∇ηDpu

∥∥
L2(T )

.
1

δR

∥∥∇ηDp−1u+ ηDpu
∥∥
L2(T )

.
1

δR
‖Dp(ηu)‖L2(T ) ,

where the suppressed constant depends onp. The inverse inequality‖Dp(ηu)‖L2(T ) .

h−p+1 ‖∇(ηu)‖L2(T ), see e.g. [DFG+01], leads to

∥∥∇(η2u− Jh(η
2u))

∥∥2
L2(Ω)

.
1

δ2R2
h2p

∑

T∈Th
T⊆B

‖Dp(ηu)‖2L2(T ) .
h2

δ2R2
‖∇(ηu)‖2L2(B)

.
h2

δ4R4
‖u‖2L2(B) +

h2

δ2R2
‖η∇u‖2L2(B) . (25)
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The same line of reasoning leads to

∥∥η2u− Jh(η
2u)
∥∥
L2(Ω)

.
h2

δ2R2
‖u‖L2(B) +

h2

δR
‖η∇u‖L2(B) . (26)

In order to derive an estimate for the boundary term in (23), we need a second smooth cut-off
function η̃ with supp η̃ ⊂ B(1+δ)R andη̃ ≡ 1 on supp(Jh(η

2u) − η2u) and‖∇η̃‖L∞(B(1+δ)R) .
1
δR . By Lemma 3.2 we can define the functionη̃u ∈ H1(Ω) with the support propertysupp η̃u ⊂
B(1+δ)R ∩ ω = B and therefore

‖η̃u‖H1(Ω) ≤ ‖u‖L2(B) + ‖∇(η̃u)‖L2(B) .
1

δR
‖u‖L2(B) + ‖∇u‖L2(B). (27)

Then, we get
∣∣∣
〈
αu, η2u− Jh(η

2u)
〉
L2(B∩ΓR)

∣∣∣ =
∣∣∣
〈
αη̃u, η2u− Jh(η

2u)
〉
L2(B∩ΓR)

∣∣∣

≤ ‖α‖L∞(B∩ΓR) ‖η̃u‖L2(B∩ΓR)

∥∥η2u−Jh(η2u)
∥∥
L2(B∩ΓR)

.

The multiplicative trace inequality forΩ and the estimate (27) gives

‖η̃u‖L2(Γ) . ‖η̃u‖1/2L2(Ω)‖η̃u‖
1/2
H1(Ω) .

1√
δR

‖u‖L2(B) + ‖u‖1/2L2(B)‖∇u‖
1/2
L2(B).

The multiplicative trace inequality forΩ and the estimates (25) – (26) imply

‖η2u− Jh(η
2u)‖L2(Γ) . ‖η2u− Jh(η

2u)‖L2(Ω) + ‖η2u− Jh(η
2u)‖1/2L2(Ω)‖∇(η2u− Jh(η

2u))‖1/2L2(Ω)

.

(
h2

δ2R2
‖u‖L2(B) +

h2

δR
‖∇u‖L2(B)

)
+

(
h

δR
‖u‖1/2L2(B) +

h√
δR

‖∇u‖1/2L2(B)

)(√
h

δR
‖u‖1/2L2(B) +

√
h√
δR

‖∇u‖1/2L2(B)

)

.
h3/2

(δR)2
‖u‖L2(B) +

h3/2

δR
‖∇u‖L2(B) +

h3/2

(δR)3/2
‖u‖1/2L2(B)‖∇u‖

1/2
L2(B)

.
h3/2

(δR)2
‖u‖L2(B) +

h3/2

δR
‖∇u‖L2(B).

Therefore,

‖η̃u‖L2(Γ)

∥∥η2u− Jh(η
2u)
∥∥
L2(Γ)

.

(
1√
δR

‖u‖L2(B) + ‖u‖1/2L2(B)‖∇u‖
1/2
L2(B)

)(
h3/2

(δR)2
‖u‖L2(B) +

h3/2

δR
‖∇u‖L2(B)

)

.
h3/2

(δR)5/2
‖u‖2L2(B) +

h3/2

(δR)3/2
‖u‖L2(B)‖∇u‖L2(B) +

h3/2

(δR)2
‖u‖3/2L2(B)‖∇u‖

1/2
L2(B) +

h3/2

δR
‖u‖1/2L2(B)‖∇u‖

3/2
L2(B).

Young’s inequality andh/(δR) ≤ 1/4 allow us to conclude (rather generously)
∣∣∣
〈
αu, η2u− Jh(η

2u)
〉
L2(B∩ΓR)

∣∣∣ . ‖η̃u‖L2(Γ)

∥∥η2u− Jh(η
2u)
∥∥
L2(Γ)

.
h2

(δR)2
‖∇u‖2L2(B)+

1

(δR)2
‖u‖2L2(B)=

(
1 + δ

δ

)2

|||u|||2h,(1+δ)R .(28)

Inserting the estimates (25), (26), (28) into (23) and with Young’s inequality, we get with (22b) that

‖∇(ηu)‖2L2(B) + 〈αηu, ηu〉L2(B∩ΓR) . a(u, η2u) +
1

δ2R2
‖u‖2L2(B)

. ‖∇u‖L2(B)

(
h

δ2R2
‖u‖L2(B) +

h

δR
‖η∇u‖L2(B)

)

+
(
‖∇u‖L2(B) + ‖ηu‖L2(B)

)( h2

δ2R2
‖u‖L2(B) +

h2

δR
‖η∇u‖L2(B)

)

+
h2

δ2R2
‖∇u‖2L2(B) +

1

δ2R2
‖u‖2L2(B)

≤ C(ε)
h2

δ2R2
‖∇u‖2L2(B) + C(ε)

1

δ2R2
‖u‖2L2(B) + ε ‖η∇u‖2L2(B) .
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Moving the termε ‖η∇u‖2L2(B) to the left-hand side and inserting this estimate in (22a), we con-
clude the proof. �

3.2 Low-dimensional approximation inHh(D,ω)

In this subsection, we will derive a low dimensional approximation of the Galerkin solution by
Scott-Zhang interpolation on a coarser grid.

We need to be able to extend functions defined onB(1+2δ)R ∩ ω to R
d. To this end, we use

an extension operatorE : H1(Ω) → H1(Rd), see e.g. [Ada75, Theorem 4.32], which satisfies
Eu = u onΩ and theH1-stability estimate

‖Eu‖H1(Rd) ≤ C ‖u‖H1(Ω) .

For a functionu ∈ Hh(B(1+2δ)R, ω) and a cut-off functionη ∈ C∞
0 (B(1+2δ)R) with supp η ⊂

B(1+δ)R, η ≡ 1 onBR ∩ω we can define the functionηu ∈ H1(Ω) with the aid of Lemma 3.2. We
note the support propertysupp(ηu) ⊂ B(1+2δ)R ∩ ω, due tosuppu ⊂ ω. Therefore, the extension
of ηu toΩ by zero is inH1(Ω). Therefore, we have

‖E(ηu)‖H1(Rd) ≤ C ‖ηu‖H1(ω) . (29)

Moreover, letΠh,R : (H1(BR ∩ω), |||·|||h,R) → (Hh(BR, ω), |||·|||h,R) be the orthogonal projection,
which is well-defined sinceHh(BR, ω) ⊂ H1(BR ∩ ω) is a closed subspace.

Lemma 3.5 Let δ ∈ (0, 1),BR,B(1+δ)R, andB(1+2δ)R concentric boxes,ω ⊆ Ω of the form(15)
andu ∈ Hh(B(1+2δ)R, ω). AssumehR ≤ δ

4 . LetKH be an (infinite)γ-shape regular triangulation
ofRd and assumeHR ≤ δ

4 for the corresponding mesh widthH. Letη ∈ C∞
0 (B(1+2δ)R) be a cut-off

function satisfyingsupp η ⊂ B(1+δ)R, η ≡ 1 onBR ∩ ω, and‖∇η‖L∞(B(1+2δ)R) .
1
δR . Moreover,

let JH : H1(Rd) → Sp,1(KH) be the Scott-Zhang projection andE : H1(Ω) → H1(Rd) be an
H1-stable extension operator. Then, there exists a constantCapp > 0, which depends only on the
boundary value problem(3), Ω, d, p, γ, andE such that

(i)
(
u−Πh,RJHE(ηu)

)
|BR∩ω ∈ Hh(BR, ω)

(ii) |||u−Πh,RJHE(ηu)|||h,R ≤ Capp
1+2δ

δ

(
h
R + H

R

)
|||u|||h,(1+2δ)R

(iii) dimW ≤ Capp

(
(1+2δ)R

H

)d
, whereW := Πh,RJHEHh(B(1+2δ)R, ω).

Proof: The statement (iii) follows from the fact thatdim JH(EHh(B(1+2δ)R, ω))|B(1+δ)R
.

((1 + 2δ)R/H)d. For u ∈ Hh(B(1+2δ)R, ω), we haveu|BR∩ω ∈ Hh(BR, ω) as well and hence
Πh,R (u|BR∩ω) = u|BR∩ω, which gives (i). It remains to prove (ii): The assumptionH

R ≤ δ
4 implies⋃{K ∈ KH : ωK ∩ BR 6= ∅} ⊆ B(1+δ)R. The locality and the approximation properties (18) of

JH yield

1

H
‖E(ηu)− JHE(ηu)‖L2(BR) + ‖∇(E(ηu)− JHE(ηu))‖L2(BR) . ‖∇E(ηu)‖L2(B(1+δ)R) .

We apply Lemma 3.4 with̃R = (1 + δ)R and δ̃ = δ
1+δ . Note that(1 + δ̃)R̃ = (1 + 2δ)R, and
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h

R̃
≤ δ̃

4 follows from4h ≤ δR = δ̃R̃. Hence, we obtain with (29)

|||u−Πh,RJHE(ηu)|||2h,R = |||Πh,R (E(ηu)− JHE(ηu))|||2h,R ≤ |||E(ηu)− JHE(ηu)|||2h,R

=

(
h

R

)2

‖∇(E(ηu)− JHE(ηu))‖2L2(BR∩ω) +
1

R2
‖E(ηu)− JHE(ηu)‖2L2(BR∩ω)

.
h2

R2
‖∇E(ηu)‖2L2(B(1+δ)R) +

H2

R2
‖∇E(ηu)‖2L2(B(1+δ)R) .

(
h2

R2
+
H2

R2

)
‖ηu‖2H1(Ω)

.

(
h2

R2
+
H2

R2

)
1

δ2R2
‖u‖2L2(B(1+δ)R∩ω) +

(
h2

R2
+
H2

R2

)
‖∇u‖2L2(B(1+δ)R∩ω)

≤
(
Capp

1 + 2δ

δ

(
h

R
+
H

R

))2

|||u|||2h,(1+2δ)R ,

which concludes the proof. �

By iterating this approximation result on suitable concentric boxes, we can derive a low-
dimensional subspace in the spaceHh and the bestapproximation in this space converges expo-
nentially, which is stated in the following lemma.

Lemma 3.6 LetCapp be the constant of Lemma 3.5. Letq, κ,R ∈ (0, 1), k ∈ N andω ⊆ Ω of the
form (15). Assume

h

R
≤ κq

8kmax{1, Capp}
. (30)

Then, there exists a subspaceVk of Sp,1
0 (Th,ΓD)|BR∩ω with dimension

dimVk ≤ Cdim

(
1 + κ−1

q

)d

kd+1,

such that for everyu ∈ Hh(B(1+κ)R, ω)

min
v∈Vk

|||u− v|||h,R ≤ qk |||u|||h,(1+κ)R . (31)

The constantCdim > 0 depends only on the boundary value problem(3), Ω, d, and theγ-shape
regularity ofTh.

Proof: We iterate the approximation result of Lemma 3.5 on boxesB(1+δj)R, with δj := κk−j
k for

j = 0, . . . , k. We note thatκ = δ0 > δ1 > · · · > δk = 0. We chooseH = κqR
8kmax{Capp,1}

.

If h ≥ H, then we selectVk = Hh(BR, ω). Due to the choice ofH we havedimVk .
(
R
h

)d
.

k
(
R
H

)d ≃ Cdim

(
1+κ−1

q

)d
kd+1.

If h < H, we apply Lemma 3.5 with̃R = (1 + δj)R and δ̃j = 1
2k(1+δj)

< 1
2 . Note that

δj−1 = δj +
1
k gives(1 + δj−1)R = (1 + 2δ̃j)R̃. The assumptionH

R̃
≤ 1

8k(1+δj)
=

δ̃j
4 is fulfilled

due to our choice ofH. Forj = 1, Lemma 3.5 provides an approximationw1 in a subspaceW1 of

Hh(B(1+δ1)R, ω) with dimW1 ≤ C
(

(1+κ)R
H

)d
such that

|||u− w1|||h,(1+δ1)R
≤ 2Capp

H

(1 + δ1)R

1 + 2δ̃1

δ̃1
|||u|||h,(1+δ0)R

= 4Capp
kH

R
(1 + 2δ̃1) |||u|||h,(1+κ)R ≤ q |||u|||h,(1+κ)R .

Sinceu − w1 ∈ Hh(B(1+δ1)R, ω), we can use Lemma 3.5 again and get an approximationw2 of

u−w1 in a subspaceW2 of Hh(B(1+δ2)R, ω) with dimW2 ≤ C
(

(1+κ)R
H

)d
. Arguing as forj = 1,

we get
|||u− w1 − w2|||h,(1+δ2)R

≤ q |||u− w1|||h,(1+δ1)R
≤ q2 |||u|||h,(1+κ)R .
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Continuing this processk − 2 times leads to an approximationv :=
∑k

j=1 wi in the spaceVk :=
∑k

j=1Wj of dimensiondimVk ≤ Ck
(

(1+κ)R
H

)d
= Cdim

(
1+κ−1

q

)d
kd+1. �

Now we are able to prove the main result of this section.

Proof of Proposition 3.1: Chooseκ = 1
1+η . By assumption, we havedist(BRτ

, BRσ
) ≥

η−1 diamBRτ
=

√
dη−1Rτ . In particular, this implies

dist(B(1+κ)Rτ
, BRσ

) ≥ dist(BRτ
, BRσ

)− κRτ

√
d ≥

√
dRτ (η

−1 − κ) =
√
dRτ

1

η(1 + η)
> 0.

The Galerkin solutionφh satisfiesφh|B(1+δ)R∩Ω ∈ Hh(B(1+δ)R,Ω). The coercivity (5) of the
bilinear forma(·, ·) implies

‖φh‖2H1(Ω) . a(φh, φh) = 〈f, φh〉 =
〈
ΠL2

f, φh

〉
.
∥∥∥ΠL2

f
∥∥∥
L2(Ω)

‖φh‖H1(Ω) .

Furthermore, withh
Rτ

< 1, we get

|||φh|||h,(1+κ)Rτ
.

(
1 +

1

Rτ

)
‖φh‖H1(Ω) .

(
1 +

1

Rτ

)∥∥∥ΠL2

f
∥∥∥
L2(Ω)

,

and we have a bound on the right-hand side of (31). We are now in the position to define the space
Vk, for which we distinguish two cases.
Case 1:The condition (30) is satisfied withR = Rτ . With the spaceVk provided by Lemma 3.6
we get

min
v∈Vk

‖φh − v‖L2(BRτ ∩Ω) ≤ Rτ min
v∈Vk

|||φh − v|||h,Rτ
. (Rτ + 1)qk

∥∥∥ΠL2

f
∥∥∥
L2(Ω)

. diam(Ω)qk
∥∥∥ΠL2

f
∥∥∥
L2(Ω)

,

and the dimension ofVk is bounded bydimVk ≤ C
(
(2 + η)q−1

)d
kd+1.

Case 2:The condition (30) is not satisfied. Then,hRτ
≥ κq

8kmax{1,Capp}
and we selectVk :={

v|BRτ ∩Ω : v ∈ Sp,1
0 (Th,ΓD)

}
. Then the minimum in (13) is obviously zero. By choice ofκ, the

dimension ofVk is bounded by

dimVk .

(
Rτ

h

)d

.

(
8kmax{Capp, 1}

κq

)d

.
(
(1 + η)q−1

)d
kd+1,

which concludes the proof of the non trivial statement in (13). The other estimate follows directly
from theL2(Ω)-stability of theL2(Ω)-orthogonal projection. �

4 The Neumann Problem

Our techniques employed in the previous chapter can be used to treat problems with purely Neu-
mann boundary conditions as well. Our model problem in this case reads in the strong form as

Lu := −div(C∇u) = f in Ω,

C∇u · n = 0 onΓ.

With these boundary conditions we observe that the operatorL has a kernel of dimension one,
since it vanishes on constant functions. In order to get a uniquely solvable problem, we study the
stabilized bilinear formaN : H1(Ω)×H1(Ω) → R given by

aN (u, v) := 〈C∇u,∇v〉+ 〈u, 1〉 〈v, 1〉 .
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One way to formulate the finite element method for the Neumann Problem is to use the discrete
Galerkin formulation of findingφh such that

aN (φh, ψh) = 〈f, ψh〉 , ∀ψh ∈ Sp,1(Th) (32)

for right-hand sidesf ∈ L2(Ω) satisfying the solvability condition〈f, 1〉 = 0. Usingv ≡ 1 as a
test function the solvability condition leads to〈φh, 1〉 = 0, so using this formulation we derive the
unique solution with integral mean zero.

With a basisBh := {ψj : j = 1, . . . , N} of Sp,1(Th), we get the symmetric, positive definite
stiffness matrixAN ∈ R

N×N defined by

A
N
jk = 〈C∇ψj ,∇ψk〉+ 〈ψj , 1〉 〈ψk, 1〉 , ψj , ψk ∈ Bh,

One should note that the numberN of degrees of freedom is different from the number of degrees
of freedom in the mixed problem (12). In order to shorten notation, we will denote both byN .

With this stabilization, we have the coercivity

‖u‖2H1(Ω) ≤ CaN (u, u) (33)

of the bilinear forma(·, ·).

For an admissible block(τ, σ) and corresponding bounding boxesBRτ
, BRσ

andf ∈ L2(Ω)
with supp f ⊂ BRσ

we have the orthogonality relation

aN (u, ψh) = 0, ∀ψh ∈ Sp,1(Th)with suppψh⊂BRτ
. (34)

Since our Galerkin solution has mean zero, we can drop the stabilization term and get
〈C∇u,∇ψh〉L2(BRτ )

= 0. This orthogonality and the zero mean property are captured in the
following space

HN
h (D,ω) := {u ∈ H1(D ∩ ω) : ∃ũ ∈ Sp,1(Th) s.t.u|D∩ω = ũ|D∩ω, supp ũ ⊂ ω,

aN (u, ψh) = 0, ∀ ψh ∈ Sp,1(Th)with suppψh ⊂ D ∩ ω}
∩ {u ∈ H1(Ω) : 〈u, 1〉L2(Ω) = 0}.

For functionsu ∈ HN
h (B(1+2δ)R, ω) the interior regularity result of Lemma 3.4 holds as well, since

using the orthogonality (34) and the zero mean condition lead to no additional terms in comparison
to the orthogonality (14). Therefore, we can proceed just as in the previous chapter and derive a low
rank approximation of the Galerkin solution, which is stated in the following proposition.

Proposition 4.1 Let (τ, σ) be a cluster pair with bounding boxesBRτ
, BRσ

. Assume
η dist(BRτ

, BRσ
) > diam(BRτ

) for someη > 0. Fix q ∈ (0, 1). Let ΠL2

: L2(Ω) →
Sp,1
0 (Th,ΓD) be theL2(Ω)-orthogonal projection. Then, for eachk ∈ N there exists a space
Vk ⊂ Sp,1(Th) with dimVk ≤ Cdim(2 + η)dq−dkd+1 such that for arbitraryf ∈ L2(Ω) with
supp f ⊂ BRσ

∩ Ω, the solutionφh of (12)satisfies

min
v∈Vk

‖φh − v‖L2(BRτ ∩Ω) ≤ Cboxq
k‖ΠL2

f‖L2(Ω) ≤ Cboxq
k‖f‖L2(BRσ∩Ω). (35)

The constantCbox > 0 depends only onC andΩ, whileCdim > 0 additionally depends on p, d,
and theγ-shape regularity ofTh.

Proof: Since the same Caccioppoli type estimate holds, we get the same approximation result as in
Lemma 3.5, and we can proceed as in the proof of Proposition 3.1. �

This approximation result can be transferred to the matrix level exactly in the same way as
in Section 5, where the mixed boundary value problem (3) is discussed, to derive anH-matrix
approximant for the matrix(AN )−1.
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5 Proof of main results

We use the approximation ofφh from the low dimensional spaces given in Proposition 3.1 to
construct a blockwise low-rank approximation ofA

−1 and in turn anH-matrix approximation of
A

−1. In fact, we will only use a FEM-isomorphism to transfer Proposition 3.1 to the matrix level,
which follows the lines of [B̈or10a, Theorem 2].

Proof of Theorem 2.4: If Cdim(2 + η)dq−dkd+1 ≥ min(|τ | , |σ|), we use the exact matrix block
Xτσ = A

−1|τ×σ andYτσ = I ∈ R
|σ|×|σ|.

If Cdim(2+ η)
dq−dkd+1 < min(|τ | , |σ|), letλi : L2(Ω) → R be continuous linear functionals

on L2(Ω) satisfyingλi(ψj) = δij . We defineRτ := {x ∈ R
N : xi = 0 ∀ i /∈ τ} and the

mappings

Λτ : L2(Ω) → R
τ , v 7→ (λi(v))i∈τ andJτ : Rτ → Sp,1

0 (Th,ΓD), x 7→
∑

j∈τ

xjψj .

Forx ∈ R
τ , (6) leads to the stability estimate

hd/2 ‖x‖2 . ‖Jτx‖L2(Ω) . hd/2 ‖x‖2 . (36)

Let Vk be the finite dimensional subspace from Proposition 3.1.
Because of (36) and theL2-stability ofJIΛI , the adjointΛ∗

I : RN → L2(Ω)′ of ΛI satisfies

‖Λ∗
Ib‖L2(Ω) = sup

v∈L2(Ω)

〈b,ΛIv〉2
‖v‖L2(Ω)

. ‖b‖2 sup
v∈L2(Ω)

h−d/2 ‖JIΛIv‖L2(Ω)

‖v‖L2(Ω)

≤ Ch−d/2 ‖b‖2 .

Moreover, ifb = (〈f, ψi〉)i∈I , we have(Λ∗
Ib)(ψi) = bi = 〈f, ψi〉 =

〈
ΠL2

f, ψi

〉
. Therefore,f

andΛ∗
Ib = ΠL2

f have the same Galerkin approximation.
LetVk be the finite dimensional subspace from Proposition 3.1. We defineXτσ as an orthogonal

basis of the spaceVτ := {Λτv : v ∈ Vk} andYτσ := A
−1|Tτ×σXτσ. Then, the rank ofXτσ,Yτσ

is bounded bydimVk ≤ Cdim(2 + η)dq−dkd+1.
The estimate (36) and the approximation result from Proposition 3.1 provide the error estimate

‖Λτφh − Λτv‖2 . h−d/2 ‖Jτ (Λτφh − Λτv)‖L2(Ω) ≤ h−d/2 ‖φh − v‖L2(BRτ ∩Ω)

≤ Cboxh
−d/2qk

∥∥∥ΠL2

f
∥∥∥
L2(Ω)

. Cboxh
−dqk ‖b‖2 .

SinceXτσX
T
τσ is the orthogonal projection fromRN ontoVτ , we get thatz := XτσX

T
τσΛτφh is

the best approximation ofΛτφh in Vτ and arrive at

‖Λτφh − z‖2 ≤ ‖Λτφh − Λτv‖2 . CboxNq
k ‖b‖2 .

If we defineYτ,σ := A
−1|Tτ×σXτσ, we getz = XτσY

T
τσb, sinceΛτφh = A

−1|τ×σb. �

The following lemma gives an estimate for the global spectral norm by the local spectral norms,
which we will use in combination with Theorem 2.4 to derive our main result, Theorem 2.7.

Lemma 5.1 ([Gra01, Hac09, Lemma 6.5.8])LetM ∈ R
N×N andP be a partitioning ofI × I.

Then,

‖M‖2 ≤ Csp

(
∞∑

ℓ=0

max{‖M|τ×σ‖2 : (τ, σ) ∈ P, level(τ) = ℓ}
)
.

Now we are able to prove our main result, Theorem 2.7.
Proof of Theorem 2.7: For each admissible cluster pair(τ, σ), Theorem 2.4 provides matrices
Xτσ ∈ R

|τ |×r, Yτσ ∈ R
r×|σ|, so that we can define theH-matrixVH by

BH =

{
XτσY

T
τσ if (τ, σ) ∈ Pfar,

A
−1|τ×σ otherwise.

13



On each admissible block(τ, σ) ∈ Pfar, we can use the blockwise estimate of Theorem 2.4 and get
for q ∈ (0, 1) ∥∥(A−1 −BH)|τ×σ

∥∥
2
≤ CapxNq

k.

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 5.1 concludes the proof,
since

∥∥A−1 −BH

∥∥
2

≤ Csp

(
∞∑

ℓ=0

max{
∥∥(A−1 −BH)|τ×σ

∥∥
2
: (τ, σ) ∈ P, level(τ) = ℓ}

)

≤ CapxCspNq
kdepth(TI).

Definingb = − ln(q)

C
1/(d+1)
dim

qd/(d+1)(2 + η)−d/(1+d) > 0, we obtainqk = e−br1/(d+1)

and hence

∥∥A−1 −BH

∥∥
2
≤ CapxCspNdepth(TI)e

−br1/(d+1)

,

which concludes the proof. �

6 Hierarchical LU -decomposition

In [Beb07] the existence of an (approximate)H-LU decomposition, i.e., a factorization of the form
A ≈ LHUH with lower and upper triangularH-matricesLH andUH, was proven for finite ele-
ment matricesA corresponding to the Dirichlet problem for elliptic operators withL∞-coefficients.
In [GKLB09] this result was extended to the case, where the block structure of theH-matrix is con-
structed by domain decomposition clustering methods, instead of the standard geometric bisection
clustering.

Algorithms for computing anH-LU decomposition have been proposed repeatedly in the liter-
ature, e.g., [Lin04, Beb05b] and numerical evidence for their usefulness put forward; we mention
here thatH-LU decomposition can be employed for black box preconditioning in iterative solvers,
[Beb05b, Gra05, GHK08, LBG06, GKLB08]. An existence result forH-LU factorization is then
an important step towards a mathematical understanding of the good performance of these schemes.

The main steps in the proof of [Beb07] are to approximate certain Schur complements ofA by
H-matrices and to show a recursion formula for the Schur complement. Using these two observa-
tions an approximation of the exactLU -factors for the Schur complements, and consequently for
the whole matrix, can be derived recursively.

Since the construction of the approximateLU -factors is completely algebraic, once we know
that the Schur complements have anH-matrix approximation of arbitrary accuracy, we will show
that we can provide such an approximation and only sketch the remaining steps. Details can be
found in [Beb07, GKLB09].

Our main result, Theorem 2.7, shows the existence of anH-matrix approximation to the
inverse FEM stiffness matrix with arbitrary accuracy, whereas previous results achieve accuracy
up to the finite element error. In fact, both [Beb07, GKLB09] assume, in order to derive anH-LU
decomposition, that approximations to the inverse with arbitrary accuracy exist. Thus, due to our
main result this assumption is fulfilled for inverse finite element matrices for elliptic operators with
various boundary conditions.

Since we are in the setting of the Lax-Milgram Lemma, we get that the, in general, non
symmetric matrixA is positive definite in the sense thatx

T
Ax > 0 for all x 6= 0. Therefore,A has

anLU -decompositionA = LU, whereL is a lower triangular matrix andU is an upper triangular
matrix, independently of the numbering of the degrees of freedom, i.e., every other numbering
of the basis functions permits anLU -decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]). By
classical linear algebra (see, e.g., [HJ13, Cor. 3.5.6]), this implies that for anyn ≤ N and index set
ρ := {1, . . . , n}, the matrixA|ρ×ρ is invertible.

We start with the approximation of appropriate Schur complements.
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6.1 Schur complements

One way to approximate the Schur complement for a finite element matrix is to follow the lines of
[Beb07, GKLB09] by usingH-arithmetics and the sparsity of the finite element matrix. We present
a different way of deriving such a result, which is more in line with our procedure in Section 3. It
relies on interpreting Schur complements as FEM stiffness matrices from constrained spaces.

Lemma 6.1 Let (τ, σ) be an admissible cluster pair andρ := {i ∈ I : i < min(τ ∪ σ)}. Define
the Schur complementS(τ, σ) = A|τ×σ − A|τ×ρ(A|ρ×ρ)

−1
A|ρ×σ. Then, there exists a rank-r

matrixSH(τ, σ) such that

‖S(τ, σ)− SH(τ, σ)‖2 ≤ Csch
−1e−br1/(d+1) ‖A‖2 ,

where the constantCsc > 0 depends only on the boundary value problem(3), Ω, p, d, and the
γ-shape regularity ofTh.

Proof: We defineωρ = interior
(⋃

i∈ρ suppψi

)
⊂ Ω and letBRτ

, BRσ
be bounding boxes for

the clustersτ , σ with (7). Our starting point is the observation that the Schur complement matrix
S(τ, σ) can be understood in terms of an orthogonalization with respect to the degrees of freedom
in ρ. That is, foru ∈ R

|τ |,w ∈ R
|σ| a direct calculation shows

u
T
S(τ, σ)w = a(ũ, w), (37)

with w =
∑|σ|

j=1 wjψjσ , where the indexjσ denotes thej-th basis function corresponding to the

clusterσ, and the functioñu ∈ Sp,1
0 (Th,ΓD) is defined bỹu =

∑|τ |
j=1 ujψjτ + uρ with suppuρ ⊂

ωρ such that
a(ũ, w) = 0 ∀w ∈ Sp,1

0 (Th,ΓD) with suppw ⊂ ωρ. (38)

The key to approximate the Schur complementS(τ, σ) is to approximate the functioñu. We will
provide such an approximation by applying the techniques from the previous chapters with the use
of the orthogonality (38).

Sincesupp ũ ⊂ BRτ
∪ ωρ, we get forw with suppw ⊂ BRσ

that

a(ũ, w) = a(ũ|suppw, w) = a(ũ|BRσ∩ωρ
, w).

Therefore, we only need to approximateũ on the intersectionBRσ
∩ωρ. This support property and

the orthogonality (38) imply that̃u ∈ Hh(B(1+δ)Rσ
, ωρ).

Therefore, Lemma 3.4 can be applied toũ. As a consequence, Lemma 3.6 provides a low
dimensional spaceVk, where the choiceκ = 1

η+1 bounds the dimension ofVk by dimVk ≤
Cdim(2 + η)dq−dkd+1. Moreover, the best approximatioñv = ΠVk

ũ ∈ Vk to ũ in the spaceVk
satisfies

|||ũ− ṽ|||h,(1+δ)Rσ
≤ qk |||ũ|||h,(1+δ)Rσ

.

This implies

|a(ũ, w)− a(ṽ, w)| . ‖ũ− ṽ‖H1(B(1+δ)Rσ∩ωρ)
‖w‖H1(B(1+δ)Rσ∩Ω)

.
Rσ

h
|||ũ− ṽ|||h,(1+δ)Rσ

‖w‖H1(Ω) . h−1qk ‖ũ‖H1(Ω) ‖w‖H1(Ω) .

Sincesupp(ũ− u) = supp(uρ) ⊂ ωρ with u =
∑|τ |

j=1 ujψjτ , the coercivity (5) and orthogonality
(38) lead to

‖ũ− u‖2H1(Ω) . a(ũ− u, ũ− u) = a(−u, ũ− u) . ‖u‖H1(Ω) ‖ũ− u‖H1(Ω) .

Consequently, we get with an inverse estimate and (36) that

|a(ũ, w)− a(ṽ, w)| . h−1qk
(
‖ũ− u‖H1(Ω) + ‖u‖H1(Ω)

)
‖w‖H1(Ω)

. h−1qk ‖u‖H1(Ω) ‖w‖H1(Ω) . hd−3qk ‖u‖2 ‖w‖2 .
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The linear mappingE : u 7→ ṽ with dim ranE ≤ Cdim(2+η)
dq−dkd+1 has a matrix representation

u 7→ Bu, where the rank ofB is bounded byCdim(2 + η)dq−dkd+1. Therefore, we get that
a(Eu,w) = u

T
B

T
A|τ×σw. The definitionSH(τ, σ) := B

T
A|τ×σ leads to a matrixSH(τ, σ) of

rankr ≤ Cdim(2 + η)dq−dkd+1 such that

‖S(τ, σ)− SH(τ, σ)‖2 = sup
u∈R|τ|,w∈R|σ|

∣∣uT (S(τ, σ)− SH(τ, σ))w
∣∣

‖u‖2 ‖w‖2
≤ Chd−3e−br1/(d+1)

,

and the estimate 1
‖A‖2

. h2−d from [EG06, Theorem 2] finishes the proof. �

We refer to the next subsection for the existence of the inverseS(τ, τ)−1 of the Schur comple-
mentS(τ, τ). We proceed to approximate it by blockwise rank-rmatrices. With the representation
of the Schur complement from (37), we get that for a given right-hand sidef ∈ L2(Ω), solving
S(τ, τ)u = f with f ∈ R

|τ | defined byfi = 〈f, ψiτ 〉, is equivalent to solvinga(ũ, w) = 〈f, w〉 for
all w ∈ Sp,1

0 (Th,ΓD) with suppw ⊂ ωτ . Let τ1 × σ1 ⊂ τ × τ be anη-admissible subblock. For
f ∈ L2(Ω) with supp f ⊂ BRσ1

, we get the orthogonality

a(ũ, w) = 0 ∀w ∈ Sp,1
0 (Th,ΓD), suppw ⊂ BRτ1

∩ ωτ .

Therefore, we havẽu ∈ Hh(BRτ1
, ωτ ) and our results from Section 3 can be applied to approximate

ũ onBRτ1
∩ωτ . As in Section 5, this approximation can be used to construct a rank-rfactorization

of the subblockS(τ, τ)−1|τ1×σ1
, which is stated in the following theorem.

Theorem 6.2 Let τ ⊂ I andρ := {i ∈ I : i < min(τ)} andτ1 × σ1 ⊂ τ × τ beη-admissible.
Define the Schur complementS(τ, τ) = A|τ×τ −A|τ×ρ(A|ρ×ρ)

−1
A|ρ×τ . Then, there exist rank-r

matricesXτ1σ1
∈ R

|τ1|×r, Yτ1σ1
∈ R

|σ1|×r such that

∥∥S(τ, τ)−1|τ1×σ1
−Xτ1σ1

Y
T
τ1σ1

∥∥
2
≤ CapxNe

−br1/(d+1)

. (39)

The constantsCapx, b > 0 depend only on the boundary value problem(3),Ω, d, p, and theγ-shape
regularity ofTh.

6.2 Existence ofH-LU decomposition

In this subsection, we will use the approximation of the Schur complement from the previous sec-
tion to prove the existence of an (approximate)H-LU decomposition. We start with a hierarchical
relation of the Schur complementsS(τ, τ).

The Schur complementsS(τ, τ) for a blockτ ∈ TI can be derived from the Schur complements
of its sons by

S(τ, τ) =

(
S(τ1, τ1) S(τ1, τ2)
S(τ2, τ1) S(τ2, τ2) + S(τ2, τ1)S(τ1, τ1)

−1
S(τ1, τ2)

)
,

whereτ1, τ2 are the sons ofτ . A proof of this relation can be found in [Beb07, Lemma 3.1]. One
should note that the proof does not use any properties of the matrixA other than invertibility and
existence of anLU -decomposition. Moreover, we have by definition ofS(τ, τ) thatS(I, I) = A.

If τ is a leaf, we get theLU -decomposition ofS(τ, τ) by the classicalLU -decomposition,
which exists sinceA has anLU -decomposition. Ifτ is not a leaf, we use the hierarchical relation
of the Schur complements to define anLU -decomposition of the Schur complementS(τ, τ) by

L(τ) :=

(
L(τ1) 0

S(τ2, τ1)U(τ1)
−1

L(τ2)

)
, U(τ) :=

(
U(τ1) L(τ1)

−1
S(τ1, τ2)

0 U(τ2)

)
, (40)

with S(τ1, τ1) = L(τ1)U(τ1), S(τ2, τ2) = L(τ2)U(τ2) and indeed getS(τ, τ) = L(τ)U(τ).
Moreover, the uniqueness of theLU -decomposition ofA implies that due toLU = A = S(I, I) =
L(I)U(I), we haveL = L(I) andU = U(I).
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The existence of the inversesL(τ1)−1 andU(τ1)
−1 follows by induction over the levels, since

on a leaf the existence is clear and the matricesL(τ), U(τ) are block triangular matrices. Conse-
quently, the inverse ofS(τ, τ) exists.

Moreover, the restriction of the lower triangular partS(τ2, τ1)U(τ1)
−1 of the matrixL(τ) to a

subblockτ ′2 × τ ′1 with τ ′i a son ofτi satisfies
(
S(τ2, τ1)U(τ1)

−1
)
|τ ′

2×τ ′
1
= S(τ ′2, τ

′
1)U(τ ′1)

−1,

and the upper triangular part ofU(τ) satisfies a similar relation.

The following Lemma shows that the spectral norm of the inversesL(τ)−1, U(τ)−1 can be
bounded by the norm of the inversesL(I)−1, U(I)−1.

Lemma 6.3 For τ ∈ TI , letL(τ), U(τ) be given by(40). Then,

max
τ∈TI

∥∥L(τ)−1
∥∥
2

=
∥∥L(I)−1

∥∥
2
,

max
τ∈TI

∥∥U(τ)−1
∥∥
2

=
∥∥U(I)−1

∥∥
2
.

Proof: We only show the result forL(τ). With the block structure of (40) we get the inverse

L(τ)−1 =

(
L(τ1)

−1 0
−L(τ2)

−1
S(τ2, τ1)U(τ1)

−1
L(τ1)

−1
L(τ2)

−1

)
.

So, we get by choosingx such thatxi = 0 for i ∈ τ1 that
∥∥L(τ)−1

∥∥
2
= sup

x∈R|τ|,‖x‖2=1

∥∥L(τ)−1
x
∥∥
2
≥ sup

x∈R|τ2|,‖x‖2=1

∥∥L(τ2)−1
x
∥∥
2
=
∥∥L(τ2)−1

∥∥
2
.

The same argument for
(
L(τ)−1

)T
leads to

∥∥L(τ)−1
∥∥
2
=
∥∥∥
(
L(τ)−1

)T∥∥∥
2
≥
∥∥L(τ1)−1

∥∥
2
.

Thus, we have
∥∥L(τ)−1

∥∥
2
≥ maxi=1,2

∥∥L(τ1)−1
∥∥
2

and as a consequencemaxτ∈TI

∥∥L(τ)−1
∥∥
2
=∥∥L(I)−1

∥∥
2
. �

We can now formulate the existence result for anH-LU decomposition.

Theorem 6.4 Let A = LU with L,U being lower and upper triangular matrices. There exist
lower and upper triangular blockwise rank-rmatricesLH,UH such that

‖A− LHUH‖2 ≤
(
CLUh

−1depth(TI)e
−br1/(d+1)

(41)

+C2
LUh

−2depth(TI)
2e−2br1/(d+1)

)
‖A‖2 ,

whereCLU = CspCapx(κ2(U)+κ2(L)), with the constantCapx from Theorem 2.4 and the spectral
condition numbersκ2(U), κ2(L).

Proof: With Lemma 6.1, we get a low rank approximation of an admissible subblockτ ′ × σ′ of the
lower triangular part ofL(τ) by
∥∥S(τ, σ)U(σ)−1|τ ′×σ′−SH(τ ′, σ′)U(σ′)−1

∥∥
2

=
∥∥S(τ ′, σ′)U(σ′)−1 − SH(τ ′, σ′)U(σ′)−1

∥∥
2

≤ Capxh
−1e−br1/(d+1) ∥∥U(σ′)−1

∥∥
2
‖A‖2 .

SinceSH(τ ′, σ′)U(σ′)−1 is a rank-rmatrix, Lemma 5.1 immediately provides anH-matrix ap-
proximationLH of theLU -factorL(I) = L. Therefore, with Lemma 6.3 we get

‖L− LH‖2 ≤ CapxCsph
−1depth(TI)e

−br1/(d+1) ∥∥U−1
∥∥
2
‖A‖2
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and in the same way anH-matrix approximationUH of U(I) = U with

‖U−UH‖2 ≤ CapxCsph
−1depth(TI)e

−br1/(d+1) ∥∥L−1
∥∥
2
‖A‖2 .

SinceA = LU, the triangle inequality finally leads to

‖A− LHUH‖2 ≤ ‖L− LH‖2 ‖U‖2 + ‖U−UH‖2 ‖L‖2 + ‖L− LH‖2 ‖U−UH‖2
. (κ2(U) + κ2(L)) depth(TI)h

−1e−br1/(d+1) ‖A‖2

+κ2(U)κ2(L)depth(TI)
2h−2e−2br1/(d+1) ‖A‖22

‖L‖2 ‖U‖2
,

and the estimate‖A‖2 ≤ ‖L‖2 ‖U‖2 finishes the proof. �

In the symmetric case, we may use the weaker admissibility condition (11) instead of (7) and
obtain a result analogously to that of Theorem 6.4 for the Cholesky decomposition.

Corollary 6.5 Letb = 0 in (1) so that the resulting Galerkin matrixA is symmetric and positive
definite. LetA = CC

T with C being a lower triangular matrix with positive diagonal entries
Cjj > 0. There exists a lower triangular blockwise rank-rmatrixCH such that

∥∥∥A−CHCH
T
∥∥∥
2

≤
(
CChh

−1depth(TI)e
−br1/(d+1)

(42)

+C2
Chh

−2depth(TI)
2e−2br1/(d+1)

)
‖A‖2 ,

whereCCh = 2CspCapx

√
κ2(A), with the constantCapx from Theorem 2.4 and the spectral con-

dition numberκ2(A).

Proof: SinceA is symmetric and positive definite, the Schur complementsS(τ, τ) are symmetric
and positive definite as well and therefore we getU(τ) = C(τ)T in (40). Moreover, we have
‖A‖2 = ‖C‖22 andκ2(C) =

∥∥C−1
∥∥
2
‖C‖2 =

√
κ2(A). �

7 Numerical Examples

In this section, we present some numerical examples in two and three dimensions to confirm our
theoretical estimates derived in the previous sections. Since numerical examples for the Dirichlet
case have been studied before, e.g. in [Gra01, BH03], we will focus on mixed Dirichlet-Neumann
and pure Neumann problems in two and three dimensions.

With the choiceη = 2 for the admissibility parameter in (7), the clustering is done by the
standard geometric clustering algorithm, i.e., by splitting bounding boxes in half until they are
admissible or smaller than the constantnleaf, which we choose asnleaf = 25 for our computations.
An approximation to the inverse Galerkin matrix is computed by using the bestapproximation via
singular value decomposition. Throughout, we use the C-library HLiB [BG99] developed at the
Max-Planck-Institute for Mathematics in the Sciences.

7.1 2D-Diffusion

As a model geometry, we consider the unit squareΩ = (0, 1)2. The boundaryΓ = ∂Ω is divided
into the Neumann partΓD := {x ∈ Γ : x1 = 0 ∨ x2 = 0} and the Dirichlet partΓN = Γ\ΓD.
We consider the bilinear forma(·, ·) : H1

0 (Ω,ΓD)×H1
0 (Ω,ΓD) → R corresponding to the mixed

Dirichlet-Neumann Poisson problem

a(u, v) := 〈∇u,∇v〉L2(Ω) (43)

18



and use a lowest order Galerkin discretization inS1,1
0 (Th,ΓD).

As a second example, we study pure Neumann boundary conditions, i.e.Γ = ΓN , and use the
bilinear formaN (·, ·) : H1(Ω) × H1(Ω) → R corresponding to the stabilized Neumann Poisson
problem

aN (u, v) := 〈∇u,∇v〉+ 〈u, 1〉 〈v, 1〉 (44)

and a lowest order Galerkin discretization inS1,1(Th).

In Figure 1, we compare the decrease of the upper bound‖I−ABH‖2 of the relative error with
the increase in the block-rank for a fixed numberN = 262.144 of degrees of freedom, where the
largest block ofBH has a size of 32.768.
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Figure 1:Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 2D.

As one can see, we observe exponential convergence in the block rank, where the convergence
rate isexp(−br), which is even faster than the rate ofexp(−br1/3) guaranteed by Theorem 2.7.

7.2 3D-Diffusion

For our three dimensional example, we consider the unit cubeΩ = (0, 1)3 with the Dirichlet
boundaryΓD := {x ∈ Γ : ∃i ∈ {1, 2, 3} : xi = 0} and the Neumann partΓN = Γ\ΓD.

Again, we consider the bilinear forms (43) and (44) corresponding to the weak formulations of
the Dirichlet-Neumann Poisson problem and the stabilized Neumann problem.

In Figure 2, we compare the decrease of‖I−ABH‖2 with the increase in the block-rank for
a fixed numberN = 32.768 of degrees of freedom, where the largest block ofBH has a size of
4.096.

Comparing the results with our theoretical bound from Theorem 2.7, we empirically observe
a rate ofe−br1/2 instead ofe−br1/4 . Moreover, whether we study mixed boundary conditions or
pure Neumann boundary conditions does not make any difference, as both model problems lead to
similar computational results.

7.3 Convection-Diffusion

Finally, we study a convection-diffusion problem on the L-shaped domainΩ = (0, 1) × (0, 12 ) ∪
(0, 12 ) × [ 12 , 1). The boundaryΓ = ∂Ω is divided into the Neumann partΓN := {x ∈ Γ : x2 =

0 ∨ x1 = 1} and the Dirichlet partΓD = Γ\ΓN .
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Figure 2:Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 3D

We consider the bilinear forma(·, ·) : H1
0 (Ω,ΓD) × H1

0 (Ω,ΓD) → R corresponding to the
mixed Dirichlet-Neumann Poisson problem

a(u, v) := c 〈∇u,∇v〉L2(Ω) + 〈b · ∇u, v〉L2(Ω)

with c = 10−2 andb(x1, x2) = (−x2, x1)T and use a lowest order Galerkin discretization in
S1,1
0 (Th,ΓD).

In Figure 3, we observe exponential convergence of the upper bound‖I−ABH‖2 of the rela-
tive error with respect to the increase in the block-rank for a fixed numberN = 196.352 of degrees
of freedom, where the largest block ofBH has a size of 24.544.
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Figure 3:2D Convection-Diffusion: Mixed boundary value problem (left), pure Neumann boundary value problem (right).
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che Universiẗat München, 2006.

22



[SY12] Phillip G. Schmitz and Lexing Ying,A fast direct solver for elliptic problems on gen-
eral meshes in 2D, J. Comput. Phys.231(2012), no. 4, 1314–1338. MR 2876456

[SZ90] L. R. Scott and S. Zhang,Finite element interpolation of nonsmooth functions satisfy-
ing boundary conditions, Math. Comp.54 (1990), no. 190, 483–493.

[XCGL09] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li,Superfast multi-
frontal method for large structured linear systems of equations, SIAM J. Matrix Anal.
Appl. 31 (2009), no. 3, 1382–1411. MR 2587783 (2011c:65072)

[Xia13] Jianlin Xia,Efficient structured multifrontal factorization for general large sparse ma-
trices, SIAM J. Sci. Comput.35 (2013), no. 2, A832–A860. MR 3035488

23


	titelseite20-13
	FMP - Hmatrix InverseFEM-1

