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Abstract

We study the question of approximability for the inverse of the FEM stiffness matrix for (scalar)
second order elliptic boundary value problems by blockwise low rank matrices such as those given
by the#-matrix format introduced in [Hac99]. We show that exponential convergence in the local
block rankr can be achieved. We also show that exponentially accuid@telecompositions in the
‘H-matrix format are possible for the stiffness matrices arising in the FEM. Unlike prior works,
our analysis avoids any coupling of the block ran&nd the mesh width and also covers mixed
Dirichlet-Neumann-Robin boundary conditions.

1 Introduction

The format of#{-matrices was introduced in [Hac99] as blockwise low-rank matrices that permit
storage, application, and even a full (approximate) arithmetic with log-linear complexity, [Gra01,
GHO03, Hac09]. This data-sparse format is well suited to represent at high accuracy matrices arising
as discretizations of many integral operators, for example, those appearing in boundary integral
equation methods. Also the sparse matrices that are obtained when discretizing differential operator
by means of the finite element method (FEM) are amenable to a treatménintgtrices; in fact,

they feature a lossless representation. SinceHhmatrix format comes with an arithmetic that
provides algorithms to invert matrices as well as to comgufefactorizations, approximations of

the inverses of FEM matrices or théit/-factorizations are available computationally. Immediately,

the question of accuracy and/or complexity comes into sight. On the one hand, the complexity of the
‘H-matrix inversion can be log-linear if thHE-matrix structure including the block ranks is fixed,
[Gra01, GHO3, Hac09]. Then, however, the accuracy of the resulting approximate inverse is not
completely clear. On the other hand, the accuracy of the inverse can be controlled by means of
an adaptive arithmetic (going back at least to [Gra01]); the computational cost at which this error
control comes, is problem-dependent and not completely clear. Therefore, a fundamental question is
how well the inverse can be approximated in a selegtedatrix format, irrespective of algorithmic
considerations. This question is answered in the present paper for FEM matrices arising from the
discretization of second order elliptic boundary value problems.

It was first observed numerically in [Gra01] that the inverse of the finite element (FEM) stiff-
ness matrix corresponding to the Dirichlet problem for elliptic operators with bounded coefficients
can be approximated in the format #f-matrices with an error that decays exponentially in the
block rank employed . Using properties of the continuous Green’s function for the Dirichlet prob-
lem, [BHO3] proves this exponential decay in the block rank, at least up to the discretization error.
The work [Bor10a] improves on the result [BHO3] in several ways, in particular, by proving a cor-
responding approximation result in the framework#¢f-matrices; we do not go into the details
of #2-matrices here and merely mention that-matrices are a refinement of the concep#of
matrices with better complexity properties, [Gie01, HKS00, HBG&;1Bb].

Whereas the analysis of [BHO30BLOa] is based on the solution operator on the continuous
level (i.e., by studying the Green'’s function), the approach taken in the present article is to work
on the discrete level. This seemingly technical difference has several important ramifications: First,



the exponential approximability in the block rank shown hieraot limited by the discretization

error as in [BHO3, Br10a]. Second, in contrast to [BHO030B.0a], where the block rankand the

mesh widthi are coupled by ~ |log k|, our estimates are explicit in botrandh. Third, a unified
treatment of a variety of boundary conditions is possible and indeed worked out by us. Fourth, our
approach paves the way for a similar approximability result for discretizations of boundary integral
operators, [FMP13]. Additionally, we mention that we also allow here the case of higher order FEM
discretizations.

The last theoretical part of this paper (Section 6) shows that/theatrix format admit§<{-LU-
decompositions oH-Cholesky factorizations with exponential accuracy in the block rank. This is
achieved, following [Beb07, CDGS10], by exploiting that the off-diagonal blocks of certain Schur
complements are low-rank. Such an approach is closely related to the concepts of hierarchically
semiseparable matrices (see, for example, [Xial3, XCGL09, LGWX12] and references therein) and
recursive skeletonization (see [HG12, GGMRO09]) and their arithmetic. In fact, several multilevel
“direct” solvers for PDE discretizations have been proposed in the recent past, [HY13, GM13,
SY12, Mar09]. These solvers take the form of (approximate) matrix factorizations. A key ingredient
to their efficiency is that certain Schur complement blocks are compressible since they are low-rank.
Thus, our analysis in Section 6 could also be of value for the understanding of these algorithms.
We close by stressing that our analysis in Section 6{ef.U-decompositions makes very few
assumptions on the actual ordering of the unknowns and does not explore beneficial features of
special orderings. It is well-known in the context of classical direct solvers that the ordering of
the unknowns has a tremendous impact on the fill-in in factorizations. One of the most successful
techniques for discretizations of PDEs are multilevel nested dissection strategies, which permit to
identify large matrix blocks that will not be filled during the factorization. An in-depth complexity
analysis for theH-matrix arithmetic for such ordering strategies can be found in [GKLB09]. The
recent works [HY13, GM13] and, in a slightly different context, [BL0O4], owe at least parts of their
efficiency to the use of nested dissection techniques.

2 Main results

LetQ c R%, d € {2,3}, be a bounded polygonal (far= 2) or polyhedral (ford = 3) Lipschitz
domain with boundary' := 92. We consider differential operators of the form

Lu := —div(CVu) + b - Vu + Su, (1)
whereb € L>*(;R?), 3 € L>=(Q), andC € L>(Q; R?*4) is pointwise symmetric with
allyllz < (C@)y, )y < eallyl; ¥y € RY, )

with certain constants;, ¢co > 0.
For f € L?(Q2), we consider the mixed boundary value problem

Lu=f inQ, (3a)

u=0 onlp, (3b)
CVu-n=0 only, (3¢c)
CVu-n+au=0 onlg, (3d)

wheren denotes the outer normal vector to the surfBge € L>*(I'z),a > 0andl' = Tp U
T'ny U TI'g, with the pairwise disjoint and relatively open subsEfs, 'y, I'z. With the trace
operatory" we defineH3(Q,T'p) := {u € HY(Q) : 4"u = 0 on I'p}. The bilinear form
a: H}(Q,Tp) x HY(Q,Tp) — R corresponding to (3) is given by

a(u,v) :== (CVU, V) 12 q) + (b Vu+ Bu,v) 12y + (@, 0) p2r - (4)
We additionally assume that the coefficientdC, b, 8 are such that the the coercivity

HU”?Jl(Q) < Ca(u, u) )

2



of the bilinear forma(-, -) holds. Then, the Lax-Milgram Lemma implies the unique solvability of
the weak formulation of our model problem.

For the discretization, we assume th& is triangulated by aquasiuniform mesh
Tn = {Ti,...,Tn} of mesh widthh := maxr,c7, diam(7}), and the Dirichletl'p, Neu-
mannl’y, and Robin'z -parts of the boundary are resolved by the mgshrhe elementg’; € 75,
are triangles (d= 2) or tetrahedra (¢ 3), and we assume thdj, is regular in the sense of Ciarlet.
The nodes are denoted by € N, fori = 1,..., N. Moreover, the mesH;, is assumed to be
v-shape regular in the sense lof~ diam(7;) < ~ \Tj|1/d for all T; € 7. In the following,
the notation< abbreviates< up to a constan€ > 0 which depends only of2, the dimension
d, andv-shape regularity of,. Moreover, we use- to abbreviate that both estimatgsand> hold.

We consider the Galerkin discretization of the bilinear farfn -) by continuous, piecewise
polynomials of fixed degreg > 1in S (7,,T'p) := SP'(T) N HY(Q,Tp) with $P1(T;) =
{u e CQ) : ulr, € Py, VI; € Tp}. We choose a basis &' (75, T p), which is denoted by
Bn = {¢; : j=1,...,N}. Given that our results are formulated for matrices, assumptions on
the basis3;, need to be imposed. For the isomorphigm RY — Sg’l(Th, I'p),x— Zj.vzl x5,
we require
W2 1y S 1T%l 2y S hY2 Ixlly,  Vx €R™ (6)

Remark 2.1 Standard bases fgr = 1 are the classical hat functions satisfyigg(z,;) = J,; and
for p > 2 we refer to, e.g., [Sch98, KS99, DKBS].

The Galerkin discretization of (4) results in a positive definite marix RY >N with
A = (CVYR, V) o) + (b Vb + Bk, ¥5) 2 ) + (ks ) 12 pyyy s Yk Y5 € Bie

Our goal is to derive aft{-matrix approximatiorB4, of the inverse matriB = A~!. An H-
matrix By is a blockwise low rank matrix based on the concept of “admissibility”, which we now
introduce:

Definition 2.2 (bounding boxes andy-admissibility) A clusterr is a subset of the index sét=
{1,...,N}. Foraclusterr C Z, we say thaBrz_ C R? is abounding boxf:
(i) Bg, is a hyper cube with side leng#,,
(if) suppv; C Bg, forall j € 7.
Forn > 0, a pair of clustergr, o) with 7, o C 7 is n-admissible, if there exist boxé¥; , Br_
satisfying (i)—(ii) such that
max{diamBpg,,diamBpg_} < n dist(Bg., Br, ). @)

Definition 2.3 (blockwise rank-r matrices) Let P be a partition ofZ x Z andn > 0. A matrix
By € RV*N is said to be alockwise rank-imatrix, if for everyp-admissible cluster paifr, o) €
P, the blockBy|, . is a rank-rmatrix, i.e., it has the fornBy|,x, = X,,YZ with X,, €
RIT*" andY,, € RI?I*", Here and below,s| denotes the cardinality of a finite set

The following theorems are the main results of this paper. Theorem 2.4 shows that admissible
blocks can be approximated by ranknatrices:

Theorem 2.4 Fixn > 0, ¢ € (0,1). Let the cluster pail(r, o) ben-admissible. Then, fok € N
there are matriceX,, € RI"*", Y, € RI7I*" of rankr < Cyim (2 4 17)%q~ k% such that

||A_1‘T><O' - XTUYI

olly € CapxNg*. (8)

The constantg’,,x, Caim > 0 depend only on the boundary value problé, 2, d, p, and the
~-shape regularity off,.



The approximations for the individual blocks can be combiteedauge the approximability of
A~ by blockwise rank-imatrices. Particularly satisfactory estimates are obtained if the blockwise
rank-r matrices have additional structure. To that end, we introduce the following definitions.

Definition 2.5 (cluster tree) A cluster treewith leaf sizen..s € N is a binary treeTz with root
7 such that for each cluster € Tz the following dichotomy holds: eitheris a leaf of the tree
and|7| < njeat, OF there exist so called sons, 7/ € Tz, which are disjoint subsets efwith 7 =
7/UTr”. Thelevel functionlevel : Tz — Ny is inductively defined bigvel(Z) = 0 andlevel(7’) :=
level(7) + 1 for 7/ a son ofr. Thedepthof a cluster tree islepth(Tz) := max ¢, level(7).

Definition 2.6 (far field, near field, and sparsity constant) A partition P of Z x 7 is said to be
based on the cluster tréBz, if P C T¢ x Tz. For such a partitionP and fixedn > 0, we define
thefar field and thenear fieldas

Pey :={(r,0) € P : (7,0) isn-admissiblé, P,c., := P\ P

Thesparsity constant’sy,, introduced in [Gra01], of such a partition is defined by
Csop:=max<{max|[{c €Tz : T X0 € P }|, max {7 €Tz : T X0 € Ppar}| ¢ -
T€Tr oeTr

The following Theorem 2.7 shows that the matAx ' can be approximated by blockwise
rank-rmatrices at an exponential rate in the block rank

Theorem 2.7 Fix n > 0. Let a partitionP of Z x Z be based on a cluster tré&;. Then, there is a
blockwise rank-mmatrix B4 such that

1/(d+1)

|A™" = By||, < CapxCepNdepth(Tz)e ™" 9)
The constanté’,,x, b > 0 depend only on the boundary value problgh 2, d, p, and they-shape
regularity of 7y,.

Remark 2.8 Typical clustering strategies such as the “geometric clustering” described in [Hac09]
and applied to quasiuniform meshes wiftiV') elements lead to fairly balanced cluster tréés

of depthO(log V) and feature a sparsity constaat,, that is bounded uniformly idv. We refer

to [Hac09] for the fact that the memory requirement to stBrg is O((r + Niear) N log N).

Remark 2.9 With the estimat%A}—IH < N~! from [EG06, Theorem 2], we get a bound for the
2
relative error
|A™" — B,

A=,

_ppl/(dt)

S Capxcspdepth(TI)e (10)

Let us conclude this section with an observation concerning the admissibility condition (7). If
the operator. is symmetric, i.eb = 0, then the admissibility condition (7) can be replaced by the
weaker admissibility condition

min{diamBpg, ,diamBpg_} < n dist(Bg,, Bg, )- (11)

This follows from the fact that Proposition 3.1 only needs an admissibility criterion of the form
diamBpg_ < ndist(Bg., Bg, ). Due to the symmetry of., deriving a block approximation for
the blockT x o is equivalent to deriving an approximation for the block< 7. Therefore, we
can interchange roles of the boxBs_ and Bg_, and as a consequence the weaker admissibility
condition (11) is sufficient. We summarize this observation in the following corollary.

Corollary 2.10 In the symmetric cask = 0, the results from Theorem 2.4 and Theorem 2.7 hold
verbatim with the weaker admissibility criterighl) instead of(7).



3 Low-dimensional approximation of the Galerkin solution on
admissible blocks

In terms of functions and function spaces, the question of approximating the matrixAtddk,

by a low-rank factorizatioX ,, YZ,_ can be rephrased as one of how well one can approximate lo-
cally the solution of certain variational problems. More precisely, we consider, foifdatpported

by Br, N, the problem to find;, € Sg’l(Th,FD) such that

a(én. ¥n) = (f.¥n)r2(0),  Y¥n € S8 (Th.Tp). (12)

We remark in passing that existence and uniqueness, dbllow from coercivity ofa(-,-). The
question of approximating the matrix block!|, ., by a low-rank factorization is intimately
linked to the question of approximatidg |z, o from low-dimensional spaces. The latter problem
is settled in the affirmative in the following proposition fpradmissible cluster pairs-, o):

Proposition 3.1 Let (r,0) be a cluster pair with bounding boxe®r_, Bgr, . Assume
ndist(Bg,,Br,) > diam(Bg,) for somen > 0. Fix ¢ € (0,1). LetIIX" : L2(Q) —
SPY(T,,Tp) be the L?(Q)-orthogonal projection. Then, for eadh ¢ N there exists a space
Vi € SPN(Th,Tp) with dim Vi, < Caim (2 + 1)%q k%! such that for arbitraryf € L?(Q)
with supp f C Br, N, the solutiong,, of (12) satisfies

. . 2 .
min 6 — vllz2(Br, n0) < Chox@” Y fllz2) < Cooxd®[| fllL2(Br, ne)- (13)

The constanCh.x > 0 depends only on the boundary value problg@nand 2, while Cqi,, > 0
additionally depends op, d, and they-shape regularity off;,.

The proof of Proposition 3.1 will be given at the end of this section. The basic steps are as
follows: First, one observes thatpp f C Bg, N 2 together with the admissibility condition
dist(Bg,, Br,) > n~'diam(Bg.) > 0 imply the orthogonality condition

a(@n:n) = (Fn) 25 00y = 05 Vou € S5 (Th, Tp) With supp ¢y, C Br, N9 (14)

Second, this observation will allow us to prove a Caccioppoli-type estimate (Lemma 3.4) in which
stronger norms o, are estimated by weaker norms @f on slightly enlarged regions. Third,

we proceed as in [BHO3,@10a] by iterating an approximation result (Lemma 3.5) derived from
the Scott-Zhang interpolation of the Galerkin solutign This iteration argument accounts for the
exponential convergence (Lemma 3.6).

3.1 The spaceH,(D,w) and a Caccioppoli type estimate

It will be convenient to introduce, fgr C Z, the set

wp = interior (U supp wj) - Q; (15)

JjEp

we will implicitly assume henceforth that such sets are unions of elementsDLet R? be a
bounded open set andC 2 be of the form given in (15). The orthogonality property that we have
identified in (14) is captured by the following spakg (D, w):

Hpy(D,w) = {ue H (DNw):3uec S (Th,Tp) S-t-ulprw = U|prw, Supp C @,
a(u, ) =0, Vo, € Sg’l(Th,FD)With supp ¢y, C D Nw}. (16)

For the proof of Proposition 3.1 and subsequently Theorems 2.4 and 2.7, we will only need the
special cases = (2; the general cas#;,(D,w) with w # Q will be required in our analysis of
LU-decompositions in Section 6.2.



Clearly, the finite dimensional spaéé, (D, w) is a closed subspace &f!(D N w), and we
have ¢, € H,(Bg., ) for the solutiong,, of (12) with supp f C Bgr, N Q and bounding
boxesBr_, Br, that satisfy then-admissibility criterion (7). Since multiplications of elements
of H, (D, w) with cut-off function and trivial extensions @ appear repeatedly in the sequel, we
note the following very simple lemma:

Lemma 3.2 Letw be a union of element&) C R? be bounded and open, ands W (R?) with
suppn C D. Foru € Hp(D,w) define the functiomu pointwise orf2 by (nu)(x) := n(z)u(zx)
forx € DNwand(nu)(z) =0forxz ¢ DNw. Then

() nue Hg(2;Tp)
(i) supp(nu) C DNw
(iii) If n € SOY(Ty), thenpu € SEY (T, T'p).

Proof: We only illustrate (i). Givenu € H,(D,w) there exists by definition a functioa <
Sg’l(Th, I'p) with suppa C @. By the support properties of and, the functionnu coincides
with nu. As the product of a#/! (2)-function and a Lipschitz continuous function, the functigh
isin H1(Q). a

A main tool in our proofs is a Scott-Zhang projectidp : H} (;Tp) — 55’1(771; I'p) of the
form introduced in [SZ90]. It can be selected to have the following additional mapping property for
any chosen uniow of elements:

suppu Cw = suppJpu C w. (17)

Bywr :=U{T' €T, : TNT # 0}, we denote the element patchfwhich containg” and all
elementd” € T, that have a common node with Then,J;, has the following local approximation
property for7;-piecewiseH ‘-functionsu € Hp,(Th,w) := {u € L*(w) : ulp € HY(T)VT €
Tn}
= Jnull3m oy < CR2™ " fulfeqy, 0Sm <1, m<L<p+1.  (18)
T'Cwr

The constan€ > 0 depends only on-shape regularity of},, the dimensiorl, and the polynomial
degreep. In particular, it is independent of the choice of thewén (17).

In the following, we will construct approximations on nested boxes and therefore introduce the
notion of concentric boxes.

Definition 3.3 (concentric boxes) Two boxesBr, By of side lengthR, R’ are said to be concen-
tric, if they have the same barycenter aBg can be obtained by a stretching Bfz: by the factor
R/ R’ taking their common barycenter as the origin.

For a boxBp with side lengthR < 2 diam(£2), we introduce the norm

h\* 1
2 2 2
Il = () IV + 5 Tl

which is, for fixedh, equivalent to theZ'-norm. The following lemma states a Caccioppoli-type
estimate for functions ift},(B(14s)r,w), WhereB(, 5)r and B are concentric boxes.

Lemma 3.4 Lets € (0,1), 2 < ¢ and letw C Q be of the forn(15). Let Bg, B(145r be two
concentric boxes. Let ¢ ’H,h(B(H(;)R, w). Then, there exists a constafity > 0 which depends
only on the boundary value problefd), €2, d, p, and they-shape regularity off;,, such that

1/2 1446
||Vu||L2(Bme) < ||VUHL2(Bme) + (o, U>L/2(BRQ(FRQE)) < CregT ”|U|”h,(1+5)R- (19)



Proof: Letn € SY1(T;,) be a piecewise affine cut-off function wittuppn C B(iys/2r N Q,
n=1lonBrNw,0< <1, anden||L°°(B(1+5)RmQ) < 5 HD2TIHL°°(B(1+5)RNQ) < 57 By
Lemma 3.2 we have*u € SP™*!(7;,Tp) ¢ H} (9T p) and

supp(n*u) C B(ys/2)r Nw. (20)

Recall thath is the maximal element diameter atll < JR. Hence, for the Scott-Zhang operator
Jn, we havesupp Jj, (n*u) C B144)r; in view of (17) we furthermore haweipp J;, (n*u) C @ so
that

supp Jp(n?u) C B with B := B(1+5)R Nw. (21)

With the coercivity of the bilinear form(-,-) and 5= < 55z, sinced < 1 andR < 2diam(),
we have

HVU”iz(Bme) + {aw, u) 2 Brroar,) < ||V(77U)||2L2(B) + (o, nu) 2 (B, (22a)
S a(nu, nu)
= / CVu - V(n*u) + u*CVn - Vi dx + (b-Vu+ ﬂu,n2u>L2(B) +
B

1 2
(b- (VW)UWWLz(B) + <04U7772U>L2(§mpn) + 2R2 HUHL2(B)

< / CVu - V(n*u)dz + (b - Vu + Bu, 772U>L2(B) +
B

2 2
<au,77 u>L2(§ﬂFR) + 52 R2 Hu”L2(3)
1
= a(“ﬂf“) + 52 R2 Hu”iz(B) . (22b)

Recall from (21) thatupp J5,(n*u) C B. The orthogonality relation (16) in the definition of the
spacet, (B, w) therefore implies

G(UWQU) = a(Uﬂ?QU - Jh(772u))
”CHLOO(B) ||VU||L2(B) ||V(772u - Jh(n2u))||L2(B)

IN

=+ <||bHL<>°(B) ||VU||L2(B) + ”ﬂ“LOO(B) H77U||L2(B)) ||772U - Jh(’l2u)||L2(B)

+ ‘(au, n*u — Jh(n2“)>L2(§mrn)‘ . (23)
The approximation property (18), the requirement (17), and the support properties lefid to
2 2
IV Pu = Tn P u) |2y S B D D7 0P )| oy - (24)
TETh
TCB

Since, for eacH” ¢ B we haveu|r € P,, we getDPTlu|r = 0 andn € S™1(T,) implies
Din|r = 0 for j > 2. With the Leibniz product rule, the right-hand side of (24) can therefore be
estimated by

|| D7 [D*n* D"~ w4 gD | Loy S ||V - VD a4V DPul| oy

A

u HL2(T)

N

B 1
B |VnDP~ u + nDpu||L2(T) S SR D" ()l L2y

where the suppressed constant dependsporThe inverse inequality|D”(nu)l|pz(ry <
h=PHH|V (gu) | 121y S€€ €.9. [DFGO1], leads to

2

2 h
19620~ Py S sapah® 3 10700 ey S g2 IV ) s
TeTh
TCB
h? 9 h?
5 SARA HUHL2 (B) + 55 52R2 ”nquL? : (25)

7



The same line of reasoning leads to

h? h2
7w = Jn(rPu)| 12 ) S 5o ullzze) + 57 IMVull p2s) - (26)
In order to derive an estimate for the boundary term in (23), we need a second smooth cut-off
function?) with supp 7 C By g @and7) = 1 onsupp(J,(n°u) — n°u) and |Vl e (B4 s n) S
ﬁ. By Lemma}.z we can define the functign € H'(Q) with the support propertyupp fju C
B(11+5r Nw = B and therefore

- - 1

Il ) < lullpagmy + IVOlizas) S 5plullcam) + [Vullzs)- (27)
Then, we get
‘<0zu, 772u - Jh(nzu)>L2(§mFR)‘ = ‘<O‘ﬁu7 772u - Jh(nzu)>L2(§mFR)‘

IN

Ha”Loo(Eer) ”ﬁu”L2(§r‘|FR) H772U*Jh(772u)||L2(§nFR) ’
The multiplicative trace inequality fdr and the estimate (27) gives

1/2 /2 <

1 1/2 1/2
o liulig < \/5—||UHL2(B)+HU||/ vl 1

||77U||L2(F S ||77U|| L2(B)"
The multiplicative trace inequality fdR and the estimates (25) — (26) imply

I = Jn(Pw)ll 2y S In*u = Jn(m*u) | 2g) + ln*e = Ja(n U)||1/29)||V(n u— Ju(n? U))lle @)

h b y: v
< (o + g Vulio ) + (m”“242<3>+@llwlliéim)( 25 + TRHWH;/QZ;B))

h3/2 h3/2 h3/2
S 5R)2 ||u||L2(B) + WHVUHLQ(B) + (6R)3/2 Hu” B)HVUHLZ(B

;_/\

3/2 13/2
< ((SR)2 ||u||L2(B) + SR ||quL2(B)

Therefore,

h3 /2 h3/2
~ 1 2 1/2
H’l’]U;HLQ (1) H?’]ZU — Jh(?’]Q’U/)HLz o) S (\/E”’U/H[ﬂ(B) + ||U|| / ||Vu||L/2(B)> ((5R)2 ||u||L (B R ||VU||L2(B))

h3/2 h3/2 1/2 R3/2 /2
< (6R)5/2H ||L2(B (6R)3/2||UHL2(B ||Vu||L2 (5R)2Hu||L2(B)HquL2(B) R Hu||L2(B)||quL2(B)

Young'’s inequality andi/ (6 R) < 1/4 allow us to conclude (rather generously)
‘<OZU»7I2U - Jh(ﬂzu»p@mpR)‘ SJ Hﬁu”LQ(F) ||772u - Jh(n2u)||L2(F)
h? ) 1 5 1+6
S eIVl sl = (120 Tl
Inserting the estimates (25), (26), (28) into (23) and with Young's inequality, we get with (22b) that

1
HV(UU)”%“(B) +{anu,mu) p2Barg) S a(u, n*u) + 2 R2 HU||2L2(B)

h h
IVull p2p) ((SQRQ [ull g2y + SR ||77VU||L2(B)>

A

h? h?
+ (||Vu||L2(B) + ||77UHL2(B)) <52R2 ||UHL2(B) + SR ||77VUL2(B)>
h? 5 1 )
TR IVullL2 sy + SR l[ull 2 p)

h? 1
C(€)W IVull2 s + C(E)W lull32 ) + € InVullZs s -

IN
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Moving the terme ||TIVUH22(B) to the left-hand side and inserting this estimate in (22a), we con-
clude the proof. O

3.2 Low-dimensional approximation in# (D, w)

In this subsection, we will derive a low dimensional approximation of the Galerkin solution by
Scott-Zhang interpolation on a coarser grid.

We need to be able to extend functions defined®n, 25y N w to R?. To this end, we use
an extension operatdf : H'(Q2) — H'(R?), see e.g. [Ada75, Theorem 4.32], which satisfies
Eu = uon§) and theH ' -stability estimate

[Eull g1 mey < Cllull grqy -

For a functionu € H,(B(1426)r,w) and a cut-off functiom € C§°(B(1425)r) With suppn C
B(1+s)r, 1 = 1 0n B Nw we can define the functiopu € H* () with the aid of Lemma 3.2. We

note the support propertyipp(nu) C B(1425)r Nw, due tosuppu C @. Therefore, the extension
of nu to Q by zero is inH*(2). Therefore, we have

HE(UU)HHl(Rd) <C ||77U||H1(w) . (29)

Moreover, lefil;, g : (H'(BrNw), [I-I,.z) = (Ha(Br,w), Il ) be the orthogonal projection,
which is well-defined sincé{;,(Br,w) C H'(Br Nw) is a closed subspace.

Lemma 3.5 Letd € (0,1), Br, B(14s)r, @ndB(14245)r cONcentric boxes, C © of the form(15)
andu € Hp(B1126)R,w)- Assume% < g. LetCx be an (infinite)y-shape regular triangulation
of R? and assuméL < 2 for the corresponding mesh widf. Lety € C§°(B1 425 r) be a cut-off
function satisfyinguppn C B(145)r, 7 = 10nBgNw, and||Vn||Lm(B(1+mR) < 55 Moreover,
let Jy : HY(R?) — SP1(Kg) be the Scott-Zhang projection add : H'(Q) — H!(R<) be an
H'-stable extension operator. Then, there exists a constag > 0, which depends only on the
boundary value probler8), 2, d, p, v, and £ such that

(I) (u — H;L7RJHE(77U)) |Bme € Hh(BR, w)
(@)l —n g Eu)lly, g < Capp 522 (5 + ) lully, (15055
d
(i) dim W < Copy (521 ), whereW = Iy, T EHA(B(1+2)m, ).

Proof: The statement (iii) follows from the fact thalim Jy (EHn (B 25 r, W) Boisr S

(1 +206)R/H)*. Foru € Hp(B(i426)r,w), We haveu|p,n. € Hn(Br,w) as well and hence
I, r (4 Brnw) = U|BRNw, Which gives (i). It remains to prove (ii): The assumptigng g implies
U{K € Ku : wx N Bgr # 0} € Bu4s)r- The locality and the approximation properties (18) of
Jy yield

1
T I1E(nu) — JHE(”“)HL?(BR) +[[V(E(u) — JHE(WU))HL?(BR) S ||VE(77U)HL2(B(1+5)R) :

We apply Lemma 3.4 wittk = (1 + §)R andd = 2. Note that(1 + 0)R = (1 + 20)R, and



% < % follows from4h < §R = JR. Hence, we obtain with (29)
llw = T, r T E(pu)lly. 5 = ITn,r (Bqu) = T E(pu)) ;. < 1B () = Ju E(pu)lly 5

h\? 1
— () 1900 = T B0 iy + 2 1E00) = I B0 g

< h2 2 H2 2 < h2 H2 2
~ Rp2 ||VE(77U)HL2(B(1+5)R) + R ||VE(77U)HL2(B(1+5)R) ~\ R + RZ ||77U||H1(Q)

h? o2 1 h? H2 9
ﬁ+ R2 ) 52R2 H ||L2(B(1+5)me)+ R2 ﬁ ||vu||L2(B(1+5)Rﬁw)

1425 (b H\\’
< (w5 (5 1))

which concludes the proof. O

A

)R

By iterating this approximation result on suitable concentric boxes, we can derive a low-
dimensional subspace in the spaég and the bestapproximation in this space converges expo-
nentially, which is stated in the following lemma.

Lemma 3.6 LetC,,, be the constant of Lemma 3.5. lgek;, R € (0,1), k € Nandw C Q of the
form (15). Assume
h Kq

S QA S
R ~ 8kmax{l, Capp}

Then, there exists a subspdcdeof sg’l (Tr, Tp)| Brrw With dimension

(30)

1+ r 1\
dim Vi, < Cdim ( e ) S
q

such that for every, € Hy (B 4x)r,w)

1r)1611n lu =l 5 < q" leells, 140y - (31)

The constanty;,, > 0 depends only on the boundary value probl&y €2, d, and they-shape
regularity of 7;,.
Proof: We iterate the approximation result of Lemma 3.5 on bags s,)r, With §; := = phd J for

j=0,...,k We note that: = 6y > d; > --- > & = 0. We choose = m.
ax apps

If h > H, then we select;, = H;(Bgr,w). Due to the choice off we havedim V, < (%)d <
—1 d
B($)" 2 Cam (1222 ) R0,
If h < H, we apply Lemma 3.5 witl? = (1 + §;)R and¢; = m < 3. Note that

0j-1=0;+ ¢ gives(1 +6;-1)R = (1 + 20;)R. The assumptiod} < gy = % is fulfilled
due to our ch0|ce off. Forj = 1, Lemma 3.5 provides an approximatien in a subspacél/; of

d
Hh(B(1+51)R,OJ) with dim W7 < C (M_TK)R) such that

Sl

H 1+ 2(51
|||u—w1|”h,(1+51)3 < 2Capp(1+51) 3 |||U|”h (1460)R

kH ~
= 4Cappf(1 +260) llully (1 myr < @lully 4y -
Sinceu — w1 € Hn(B144,)r,w), We can use Lemma 3.5 again and get an approximatioaf

u—wy inasubspac®s of Hy (B(145,)r, w) With dim W, < C ((H“ ) . Arguing as forj = 1,
we get

lw— w1 —wall, 45,8 < allu—willy 116y < < @ Jull, (4R R

10



Continuing this procesk — 2 times leads to an approximation:= Z?Zl w; in the spacéd/, :=

d 1N\ d
325, W of dimensiondim Vi, < Ck (522 )7 = Gy (L22) 1, 0

Now we are able to prove the main result of this section.

Proof of Proposition 3.1: Choosex = ﬁ By assumption, we haveist(Bg_,Br,) >
n~!diam Br. = v/dn~'R,. In particular, this implies
1

dist(B(11x)r., Br,) > dist(Br,, Br,) — kR.Vd > VdR.(n™" — r) = ﬁRTm >0

The Galerkin solutiony, satisfieson|p, s xna € Hu(Buis)r,2). The coercivity (5) of the
bilinear forma(-, -) implies

2 _ _ L? L?
lonlin < alonon) = (Fron) = (0 F.0n) < |17, onlior-
Furthermore, withZ- < 1, we get
Ionl S (14 5 ) Wnlmey = (145 ) [0 s
hllh,(14k)R, ~ R, hllH1(Q) ~ R, L2() ’

and we have a bound on the right-hand side of (31). We are now in the position to define the space
V4, for which we distinguish two cases.

Case 1:The condition (30) is satisfied witR = R.. With the spacé/,, provided by Lemma 3.6

we get

. . k L2
min 60— 0llpap, ) < Reminlon vl g, £ R+ 00 [150|

A

diam()g"* HHL2 f‘

£2(Q)’

and the dimension dfj, is bounded bylim V;, < C'((2 + n)qfl)d kAt

Case 2:The condition (30) is not satisfied. The% > and we selecV), :=

{U|BRTm v €SP (Th, FD)}. Then the minimum in (13) is obviously zero. By choicexpthe
dimension ofV, is bounded by
d d
dlka S (R;LT) SJ (MCM) < ((1 +n)q_1)dkd+1,

~

Kq
which concludes the proof of the non trivial statement in (13). The other estimate follows directly
from the L2(92)-stability of theL?(Q2)-orthogonal projection. O

4 The Neumann Problem

Our techniques employed in the previous chapter can be used to treat problems with purely Neu-
mann boundary conditions as well. Our model problem in this case reads in the strong form as

Lu = —div(CVu) = f in{,
CVu-n = 0 onT.

With these boundary conditions we observe that the operatoas a kernel of dimension one,
since it vanishes on constant functions. In order to get a uniquely solvable problem, we study the
stabilized bilinear formuy : H(Q2) x H(Q) — R given by

an(u,v) == (CVu, Vu) + (u, 1) (v, 1) .

11



One way to formulate the finite element method for the Neumaohl®m is to use the discrete
Galerkin formulation of findingp,, such that

an (bn,n) = (fibn), Vo, € SPN(Th) (32)

for right-hand sides” € L?(2) satisfying the solvability conditiorif, 1) = 0. Usingv = 1 as a
test function the solvability condition leads ¢¢,,, 1) = 0, so using this formulation we derive the
unigue solution with integral mean zero.

With a basisB;, := {¢; : j =1,..., N} of SP!(T;,), we get the symmetric, positive definite
stiffness matrixA?"' ¢ RV defined by

One should note that the numh&rof degrees of freedom is different from the number of degrees
of freedom in the mixed problem (12). In order to shorten notation, we will denote bath by
With this stabilization, we have the coercivity

[ull 3 0 < Can(u, u) (33)
of the bilinear forma(-, -).

For an admissible blockr, o) and corresponding bounding boxBs_, Br, andf € L*(Q)
with supp f C Br, we have the orthogonality relation

an(u,p) =0, Yy, € SPL(T;,) with supp tn C Br.. (34)

Since our Galerkin solution has mean zero, we can drop the stabilization term and get
<CVu7V1/;h>L2(BR y = 0. This orthogonality and the zero mean property are captured in the
following space

HY(D,w) = {ueHY(DNw): e S (Th) st.u|prw = | prw, Supp i C @,
an (u, ) =0, ¥ by, € SP*(T;,) with supp e, € D N}
N{ue  HY(Q) : (u, 1) 120y = 0}

For functionsu € H{l‘f(B(Hg(;)R, w) the interior regularity result of Lemma 3.4 holds as well, since
using the orthogonality (34) and the zero mean condition lead to no additional terms in comparison
to the orthogonality (14). Therefore, we can proceed just as in the previous chapter and derive a low
rank approximation of the Galerkin solution, which is stated in the following proposition.

Proposition 4.1 Let (r,0) be a cluster pair with bounding boxe®r , Bg, . Assume
ndist(Bg,,Br,) > diam(Bg, ) for somen > 0. Fix ¢ € (0,1). Let X" : L2(Q) —
SPY(T,,Tp) be the L2(Q)-orthogonal projection. Then, for eadh € N there exists a space
Vi C SPL(Ty) with dim Vi, < Cgim (2 + 7)%q~ k4! such that for arbitraryf € L2(Q) with
supp f C Bpr, N2, the solutionp,, of (12) satisfies

. . 2 .
min 6 — vllz2(Br, n0) < Chox@” T fllz2) < Cooxd®[| fllL2(Bp, ne)- (35)

The constant,,, > 0 depends only o€ and 2, while Cy;,,, > 0 additionally depends on p, d,
and they-shape regularity of;,.

Proof: Since the same Caccioppoli type estimate holds, we get the same approximation result as in
Lemma 3.5, and we can proceed as in the proof of Proposition 3.1. O

This approximation result can be transferred to the matrix level exactly in the same way as

in Section 5, where the mixed boundary value problem (3) is discussed, to derikenaatrix
approximant for the matrixA~) 1.

12



5 Proof of main results

We use the approximation af, from the low dimensional spaces given in Proposition 3.1 to
construct a blockwise low-rank approximation Af' and in turn arf{-matrix approximation of
A~ In fact, we will only use a FEM-isomorphism to transfer Proposition 3.1 to the matrix level,
which follows the lines of [Br10a, Theorem 2].

Proof of Theorem 2.4: If Cyi (2 + 1)%q k%! > min(|7|, |o|), we use the exact matrix block
X,o =AY« andY,, = I € RloIxlol,

If Caim (2 +n1)%q~ k4t < min(|7],]|o]), letA; : L2(2) — R be continuous linear functionals
on L?(Q) satisfying\;(v;) = 6;;. We defineR™ := {x ¢ RY : =z, =0V i ¢ 7} and the
mappings

Ay L2(Q) = R0 = (Ai(v))ier andJ, : R™ = STy, Tp), x = Y @51,
JET
Forx € R7, (6) leads to the stability estimate
W2 1y S 177l Ly S B2 M1 - (36)

Let V}, be the finite dimensional subspace from Proposition 3.1.
Because of (36) and the*-stability of 77 Az, the adjointA’ : RY — L2(Q)’ of Az satisfies
<b, AI’U>

h=2 || Tz Azv]| 12
IA7b] 2y = sup A2 < b, sup @
veL2(Q) ||UHL2(Q) veL2(Q) ||UHL2(Q)

Moreover, ifb = ((f,v;))icz, we have(A5b) () = b, = (f, i) = <HL2f, ¢L> Therefore,f

andAZb = HLQf have the same Galerkin approximation.

Let V, be the finite dimensional subspace from Proposition 3.1. We dEfjgeas an orthogonal
basis of the space, := {A,v : ve Vi}andY,, := A~YL _X.,.Then,therank oX,,, Y.,
is bounded bylim Vj, < Cgim (2 + n)%q~ k41,

The estimate (36) and the approximation result from Proposition 3.1 provide the error estimate

||A-r¢h - ATUHQ /S hid/2 ||\77'(AT¢}L - ATU)HL2(Q) < h‘id/2 ”d)h - U||L2(BRTOQ)

2
C'boxh_d/zqk ‘HL f‘ L2() 5 Cboxh_qu ||bH2 .

< Ch™ 2 |b],.

IN

SinceX,, X is the orthogonal projection fro™ ontoV,, we get that: := X, , X A, ¢y, is

g

the best approximation of.. ¢, in V. and arrive at
[A+6n = 2]y < [Ardn — Arvlly S CooxNg" bl -
If we defineY, , := AL, X,,, we getz: = X, Y7 b, sinceA, ¢, = A7, b. O
The following lemma gives an estimate for the global spectral norm by the local spectral norms,
which we will use in combination with Theorem 2.4 to derive our main result, Theorem 2.7.

Lemma 5.1 ([Gra01, Hac09, Lemma 6.5.8])Let M € RV <" and P be a partitioning ofZ x 7.
Then,

M|, < Cp <Z max{|[|M|;xs|5 : (7,0) € P,levelr) = E}) .
£=0

Now we are able to prove our main result, Theorem 2.7.
Proof of Theorem 2.7: For each admissible cluster pair, o), Theorem 2.4 provides matrices
X,, € RITI*7 y_ e R™*l7l so that we can define thé-matrix Vi, by

B _ XTO'YZ;J If (T’ U) € Pfara
7\ A, otherwise.

13



On each admissible blodk, o) € Py, we can use the blockwise estimate of Theorem 2.4 and get
forg € (0,1)

I(A™! = Ba)lrsol, < CapxNa™
On inadmissible blocks, the error is zero by definition. Therefore, Lemma 5.1 concludes the proof,
since

[A™' =By, < Cy (i max{||(A~" = By)|rxol|, : (T.0) € P,level(r) = 6})
=0
< CapxCopNg"deptt(T7).
Definingb = —%qd/(d“)@ + )~ %/0+d) > 0, we obtaing® = e=*"""“"" and hence
JA~" = By||, < CapxCispNdepth(Tz)e "
which concludes the proof. O

6 Hierarchical LU-decomposition

In [Beb07] the existence of an (approximat¢)LU decomposition, i.e., a factorization of the form

A =~ L3, Uy with lower and upper triangulak-matricesL; and Uy, was proven for finite ele-

ment matriceA corresponding to the Dirichlet problem for elliptic operators with-coefficients.

In [GKLBO09] this result was extended to the case, where the block structure #f-thatrix is con-
structed by domain decomposition clustering methods, instead of the standard geometric bisection
clustering.

Algorithms for computing afi- LU decomposition have been proposed repeatedly in the liter-
ature, e.g., [Lin04, Beb05b] and numerical evidence for their usefulness put forward; we mention
here that- LU decomposition can be employed for black box preconditioning in iterative solvers,
[Beb05b, Gra05, GHK08, LBG06, GKLBO08]. An existence result#+LU factorization is then
an important step towards a mathematical understanding of the good performance of these schemes.

The main steps in the proof of [Beb07] are to approximate certain Schur complementsyof
‘H-matrices and to show a recursion formula for the Schur complement. Using these two observa-
tions an approximation of the exatt-factors for the Schur complements, and consequently for
the whole matrix, can be derived recursively.

Since the construction of the approximdi&-factors is completely algebraic, once we know
that the Schur complements have®rmatrix approximation of arbitrary accuracy, we will show
that we can provide such an approximation and only sketch the remaining steps. Details can be
found in [Beb07, GKLBO09].

Our main result, Theorem 2.7, shows the existence ofH{amatrix approximation to the
inverse FEM stiffness matrix with arbitrary accuracy, whereas previous results achieve accuracy
up to the finite element error. In fact, both [Beb07, GKLB09] assume, in order to derie &b
decomposition, that approximations to the inverse with arbitrary accuracy exist. Thus, due to our
main result this assumption is fulfilled for inverse finite element matrices for elliptic operators with
various boundary conditions.

Since we are in the setting of the Lax-Milgram Lemma, we get that the, in general, non
symmetric matrixA is positive definite in the sense that Ax > 0 for all x # 0. Therefore A has
an LU-decompositiolA = LU, whereL is a lower triangular matrix antl is an upper triangular
matrix, independently of the numbering of the degrees of freedom, i.e., every other numbering
of the basis functions permits al/-decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]). By
classical linear algebra (see, e.g., [HJ13, Cor. 3.5.6]), this implies that for anyv and index set
p:={1,...,n}, the matrixA |, is invertible.

We start with the approximation of appropriate Schur complements.

14



6.1 Schur complements

One way to approximate the Schur complement for a finite element matrix is to follow the lines of
[Beb07, GKLBO9] by usingH-arithmetics and the sparsity of the finite element matrix. We present

a different way of deriving such a result, which is more in line with our procedure in Section 3. It
relies on interpreting Schur complements as FEM stiffness matrices from constrained spaces.

Lemma 6.1 Let (7, o) be an admissible cluster pair and:= {i € Z : i < min(r U o)}. Define
the Schur complemet(7,0) = Al|;xs — Alrx,(Al,xp) " 'Al,x». Then, there exists a rank-r
matrix Sy (7, o) such that

1/(d+1)

1S(7,0) — Sx(r, U)Hz < Cschileibr ||A||2 )

where the constanf’s. > 0 depends only on the boundary value probl&y €, p, d, and the
~v-shape regularity off},.

Proof: We definew, = interior (Uiep supp 11%) C Q and letBg_, Bg, be bounding boxes for

the clustersr, o with (7). Our starting point is the observation that the Schur complement matrix
S(r,0) can be understood in terms of an orthogonalization with respect to the degrees of freedom
in p. That is, foru € RI”l, w € RI“l a direct calculation shows

u’'s(r,0)w = a(t,w), (37)

with w = le":ll w;v;,, where the index, denotes thg-th basis function corresponding to the
clustera, and the functioni € S5 (75, T'p) is defined byii = Y17, w;v; +u, with suppu, ¢
w, such that
a(@w) =0 Yw e Y (Th,Tp) with suppw C . (38)
The key to approximate the Schur complem8fit, o) is to approximate the functioia. We will
provide such an approximation by applying the techniques from the previous chapters with the use

of the orthogonality (38).
Sincesuppu C Bgr, Uw,, we get forw with suppw C Bg, that

a(ﬁ,w) = a(msumﬁwvw) = a(mBRg ﬂwpaw)-
Therefore, we only need to approximaten the intersectio3r_ N w,. This support property and
the orthogonality (38) imply that € H,(B(14s)r, ,Wp)-

Therefore, Lemma 3.4 can be appliedi@oAs a consequence, Lemma 3.6 provides a low
dimensional spac#}, where the choice: = ﬁ bounds the dimension df; by dimV, <
Caim (2 + 1)%q~ 9K+, Moreover, the best approximatian= IIy, @ € V}, to @ in the spacé/},
satisfies

12 = oln, 110y m, < @" NTllnq15)m, -
This implies

la(w,w) —a(v,w)| < [u-— 5||H1(B(1+5)Raﬁwp) ||wHH1(B(1+5)RUﬁQ)
R

< TN =7
= -3

~

h.atoyr, 10l i) S h~lg* @l 2.y 10l g2 ) -

Sincesupp(u — u) = supp(u,) C w, With u = E'J;‘l u,;1;_, the coercivity (5) and orthogonality
(38) lead to

~ 2 ~ ~ ~ ~
lu— u”Hl(Q) Sa(t—uu—u)=a(-u,u—u) I ||U||H1(Q) Jw— U”Hl(g) :

Consequently, we get with an inverse estimate and (36) that

A

la(u, w) — a(v, w)| h~'q* (||ﬂ— ll iy + ||UHH1(Q)> lwll 1 @)

R Jull g g 10l oy 2472 ully Wl -

A

15



The linear mapping : u + v with dimran& < Cyim (2+1)%¢~?k4+! has a matrix representation
u — Bu, where the rank oB is bounded byCy;, (2 + 7)%q~9k?*!. Therefore, we get that
a(Eu,w) = uTBT A|,«,w. The definitionSy (7, o) := BT A|, . leads to a matri(r, o) of
rankr < Cgim(2 + 1)%q~ k4! such that

IS(r,0) — Sy (7, 0)|l, = sup ,
2 eRIT weRlel [[ully [[wll,
and the estimat(ﬁAlT < k2~ from [EG06, Theorem 2] finishes the proof. a

We refer to the next subsection for the existence of the in&fser) ! of the Schur comple-
mentS(r, 7). We proceed to approximate it by blockwise rankratrices. With the representation
of the Schur complement from (37), we get that for a given right-hand gideL?(12), solving
S(7,7)u = f with f € RI7I defined byf; = (f, ;. ), is equivalent to solving(u, w) = (f,w) for
allw e Sg’l(ﬁ,FD) with suppw C @;. Let7; x o1 C 7 x 7 be anp-admissible subblock. For
f € L?(Q) with supp f C Br,,, we get the orthogonality

a(i,w) =0 Yw e SP(T,,Tp),suppw C Bgr, Nwr.

Therefore, we have € 1, (Br,, ,w,) and our results from Section 3 can be applied to approximate
uonBgr, Nw;.Asin Section 5, this approximation can be used to construct a réattorization
of the subblockS(7, 7)., ., , Which is stated in the following theorem.

Theorem 6.2 Letr C Zandp := {i € 7 : i < min(7)} andr; x 01 C 7 x 7 ben-admissible.

Define the Schur complemesitr, 7) = A, x- — Alrx,(Al,x,) 1Al %~ Then, there exist rank-r
matricesX,, ,, € RIIx7 y_ € Rlo1x7 sych that

_ppl/ @+

HS(Tv T)_l ‘71 Xo1 T chleT

T101 HZ

< Capre (39)

The constanté’,,., b > 0 depend only on the boundary value probl@ 2, d, p, and they-shape
regularity of 7y,.

6.2 Existence of{-LU decomposition

In this subsection, we will use the approximation of the Schur complement from the previous sec-
tion to prove the existence of an (approximeke)LU decomposition. We start with a hierarchical
relation of the Schur complemerigr, 7).

The Schur complemeng(r, 7) for a blockr € Tz can be derived from the Schur complements
of its sons by

_ (S(m,m) S(1,72)
S(’T,’T) o <S<T2,T1) S(TQ,TQ) + S(7'27Tl)S(Tl,Tl)_ls<T1,T2)) ’

wherer;, 7o are the sons of. A proof of this relation can be found in [Beb07, Lemma 3.1]. One
should note that the proof does not use any properties of the nfatother than invertibility and
existence of ar.U-decomposition. Moreover, we have by definitiorSgf-, 7) thatS(Z,Z) = A.

If 7 is a leaf, we get thdeU-decomposition oS(7, 7) by the classicalLU-decomposition,
which exists sinceA has anLU-decomposition. Ifr is not a leaf, we use the hierarchical relation
of the Schur complements to define AlF-decomposition of the Schur complemd&tt-, ) by

_ L(m) 0 _ (U(m) L(n)"'S(m,7)
L(r) = (S(TQ,Tl)U(ﬁ)l L(72)>’ v "( 0 U(n) ) (40)

with S(71,71) = L(m1)U(71), S(72,72) = L(72)U(72) and indeed ge8(r,7) = L(7)U(7).

Moreover, the uniqueness of thé/-decomposition oA implies thatdue td&.U = A = S(Z,7) =
L(Z)U(Z), we haveL = L(Z) andU = U(Z).
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The existence of the inversgégr;)~! and U(r; )~ follows by induction over the levels, since
on a leaf the existence is clear and the matricés), U(r) are block triangular matrices. Conse-
quently, the inverse d(r, 7) exists.

Moreover, the restriction of the lower triangular p&ft, 7 )U(r;) ! of the matrixL(7) to a
subblockr} x 7{ with 7/ a son ofr; satisfies

(S(72, 7)U(11) ™) Iy = S(13, 1)U (1)),

and the upper triangular part &f(7) satisfies a similar relation.

The following Lemma shows that the spectral norm of the invelsgs !, U(7)~! can be
bounded by the norm of the inversbgZ) !, U(Z) .

Lemma 6.3 For 7 € Tz, letL(r), U(r) be given by40). Then,

max [L() 7, = L@,
max [[U(D) 7, = U@,

T€Tr

Proof: We only show the result fak(7). With the block structure of (40) we get the inverse

L(r)~! = L(r)™ 0
—L(72)7'S(72, ) U(71) " 'L(m) " L)"')
So, we get by choosing such thatk; = 0 for ¢ € 7, that

L e I T SNy RS
XGR‘T‘s‘le‘QZI xGR‘W‘,HIHz:l

The same argument fcéL(T)—l)T leads to
L@, = @@, = [T,
Thus, we havéi L(7) ~!||, > max;— 2 || L(m1) 7" ||, and as a consequeneex, ct, ||L(r) ||, =
HL(I)_luz' ]
We can now formulate the existence result fof&1.U decomposition.

Theorem 6.4 Let A = LU with L, U being lower and upper triangular matrices. There exist
lower and upper triangular blockwise rankmatricesLy,, Uy such that

e_brl/(d+1)

|A=LaUnl, < (Croh™'depth(Ts) (41)

+CEuh~2depth(Tz)%e 2" ) A,

whereCr,y = CspCapx (£2(U) + k2 (L)), with the constant’, .. from Theorem 2.4 and the spectral
condition numbers,(U), ko (L).

Proof: With Lemma 6.1, we get a low rank approximation of an admissible subblogks’ of the
lower triangular part oL(7) by

HS(T, o U(0) yrxor =Sy (1,0 U (') H2 HS(T', o \U(o") ™t = Su(r,0)U(c") H2

Capxh e U ) Y, IAl, -

IN

SinceSy (7', 0")U(o’)~! is a rank-rmatrix, Lemma 5.1 immediately provides &hmatrix ap-
proximationLy, of the LU-factorL(Z) = L. Therefore, with Lemma 6.3 we get

_ppl/(@+1)
)6 br

HL - L’H”Q < Capxcsphildeptlﬂ(’]rl ||U71H2 HA||2
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and in the same way aHi-matrix approximatiorl, of U(Z) = U with
_ _ppl/ (@) o
U = Uxlly < CapxCsph 'depth(Tr)e " HL 1H2 Al
SinceA = LU, the triangle inequality finally leads to

[A =Ly Unl, < [[L—=Lally [Ully + U = Uselly [IL] + [T = L[l [U = Ul

1/(d+1)

< (r2(U) + w2(L)) depth(T)h e ™" Al
IV L.\
+k2(U) ko (L)depthTz)2h~2e 207 —_
S : L] 0T,
and the estimat¢A ||, < ||L||, [|U||, finishes the proof. O

In the symmetric case, we may use the weaker admissibility condition (11) instead of (7) and
obtain a result analogously to that of Theorem 6.4 for the Cholesky decomposition.

Corollary 6.5 Letb = 0in (1) so that the resulting Galerkin matrix is symmetric and positive
definite. LetA = CCT with C being a lower triangular matrix with positive diagonal entries
C,; > 0. There exists a lower triangular blockwise ranknatrix C4; such that

_pp/(d4D)

HAfCHCHTHz < (CChh’ldepth(TI)e (42)

+C&,h2depth(Tz)%e 2 ™) A,

whereCcay, = 2Cs, Capx/ k2(A), with the constanC,,,« from Theorem 2.4 and the spectral con-
dition numberkz(A).

Proof: SinceA is symmetric and positive definite, the Schur complem8ifts ) are symmetric
and positive definite as well and therefore we §&tr) = C(7)7 in (40). Moreover, we have
1Al = [[Cl5 andrs2(C) = [|C7Y|, IC]l; = v/x2(A). O

7 Numerical Examples

In this section, we present some numerical examples in two and three dimensions to confirm our
theoretical estimates derived in the previous sections. Since numerical examples for the Dirichlet
case have been studied before, e.g. in [Gra01, BHO3], we will focus on mixed Dirichlet-Neumann
and pure Neumann problems in two and three dimensions.

With the choicen = 2 for the admissibility parameter in (7), the clustering is done by the
standard geometric clustering algorithm, i.e., by splitting bounding boxes in half until they are
admissible or smaller than the constants, which we choose asieos = 25 for our computations.

An approximation to the inverse Galerkin matrix is computed by using the bestapproximation via
singular value decomposition. Throughout, we use the C-library HLIiB [BG99] developed at the
Max-Planck-Institute for Mathematics in the Sciences.

7.1 2D-Diffusion

As a model geometry, we consider the unit square: (0,1)2. The boundary” = 95 is divided
into the Neumann paitp := {x € I' : x; = 0V x5 = 0} and the Dirichlet part' s = I'\'p.
We consider the bilinear forma(-,-) : H}(Q,T'p) x HL(Q,Tp) — R corresponding to the mixed
Dirichlet-Neumann Poisson problem

a(u,v) == (Vu, Vv) 1) (43)
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and use a lowest order Galerkin discretizatior&i&nl(ﬂ“ I'p).
As a second example, we study pure Neumann boundary conditiods .4, and use the
bilinear formax (-, -) : H'(Q) x H'(Q) — R corresponding to the stabilized Neumann Poisson

problem
an(u,v) := (Vu, Vu) + (u,1) (v, 1)

and a lowest order Galerkin discretizationdt*(73).

(44)

In Figure 1, we compare the decrease of the upper bpLirdAB, ||, of the relative error with
the increase in the block-rank for a fixed numbBér= 262.144 of degrees of freedom, where the
largest block 0By has a size of 32.768.

Error

0 ----exp(—1.27) ~. 1070 ----exp(—1.37) ~.
| ——|I - ABuy]|, —e— |1 — ABy|),
8 12 16 20 8 12 16 20
Block rank r Block rank r

Figure 1:Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 2D.

As one can see, we observe exponential convergence in the block rank, where the convergence
rate isexp(—br), which is even faster than the rateeadp(—br'/3) guaranteed by Theorem 2.7.

7.2 3D-Diffusion

For our three dimensional example, we consider the unit ube (0,1)® with the Dirichlet
boundanyl'p := {x € T' : Ji € {1,2,3} : x; = 0} and the Neumann paity: = I'\T'p.

Again, we consider the bilinear forms (43) and (44) corresponding to the weak formulations of
the Dirichlet-Neumann Poisson problem and the stabilized Neumann problem.

In Figure 2, we compare the decreasé|bf- ABy||, with the increase in the block-rank for
a fixed numberNV = 32.768 of degrees of freedom, where the largest bloclBBgf has a size of
4.096.

Comparing the results with our theoretical bound from Theorem 2.7, we empirically observe
a rate ofe="""* instead ofe—"""*. Moreover, whether we study mixed boundary conditions or
pure Neumann boundary conditions does not make any difference, as both model problems lead to
similar computational results.

7.3 Convection-Diffusion

1

Finally, we study a convection-diffusion problem on the L-shaped dofain (0,1) x (0, 5) U
(0,3) x [$,1). The boundany” = 9Q is divided into the Neumann pafty := {x € I : x, =

0 V x; = 1} and the Dirichlet parf'p = I'\T .
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Error

100 ----exp(—2.371?) ----exp(—2.5r1/2) \\\
—e— |l — ABy||, . —e—|[I — ABy||,
20 40 60 80100 150 200 20 40 60 80100 150 200
Block rank r Block rank r

Figure 2:Mixed boundary value problem (left), pure Neumann boundary value problem (right) in 3D

We consider the bilinear form(-,-) : H}(Q,T'p) x H}(Q,Tp) — R corresponding to the
mixed Dirichlet-Neumann Poisson problem

a(u,v) = c(Vu, V) 2y + (b VU, 0) 12

with ¢ = 1072 andb(xy,z2) = (—w2,71)7 and use a lowest order Galerkin discretization in
53’1(771/7 FD)'

In Figure 3, we observe exponential convergence of the upper ddundA B, ||, of the rela-
tive error with respect to the increase in the block-rank for a fixed nudvber196.352 of degrees
of freedom, where the largest blockBf; has a size of 24.544.

----exp(—1.087)

= —e—||I — ABy]|, s -10|

----exp(—1.17)
—e— |1 — ABull, :

10

16 20 16 20

12 12
Block rank r Block rank r

Figure 3:2D Convection-Diffusion: Mixed boundary value problem (left), pure Neumann boundary value problem (right).
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