ASC Report No. 08/2015

Existence of H-matrix approximants to
the inverse of BEM matrices: the
hyper-singular intergral operator

M. Faustmann, J.M. Melenk, D. Praetorius

Institute for Analysis and Scientific Computing —

Vienna University of Technology — TU Wien
www.asc.tuwien.ac.at  ISBN 978-3-902627-05-6




Most recent ASC Reports

07/2015  W. Auzinger, O. Koch, M.Quell
Splittingverfahren fiir die Gray-Scott-Gleichung
06/2015 M. Kaltenback, R. Pruckner
Functional Calculus for definitizable self-adjoint linear relations of Krein spaces
05/2015 H. de Snoo and H. Woracek
Restriction and factorization for isometric and symmetric operators in almost
Pontryagin spaces
04/2015 N. Zamponi and A. Jiingel
Analysis of degenerate cross-diffusion population models with volume filling
03/2015  C. Chainais-Hillairet, A. Jiingel, and P. Shpartko
A finite-volume scheme for a spinorial matrix drift-diffusion model for semicon-
ductors
02/2015 T. Horger, J.M. Melenk, B. Wohlmuth
On optimal L?- and surface flux convergence in FEM (extended version)

01/2015  W. Auzinger and W. Herfort

An Application of Grobner Bases to perturbed Polynomial Equations
42/2014  H. Woracek

Perturbation of chains of de Branges spaces

41/2014  T. Fiihrer, J.M. Melenk, D. Praetorius, A. Rieder
Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral
operator in 3D on locally refined meshes

40/2014 M. Mileti¢, D. Stiirzer and A. Arnold
An Euler-Bernoulli beam with nonlinear damping and a nonlinear spring at the

tip

Institute for Analysis and Scientific Computing
Vienna University of Technology

Wiedner Hauptstralle 8-10

1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at
WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196
ISBN  978-3-902627-05-6 AS C

TU WIEN

© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.




Existence ofH-matrix approximants to the inverse of BEM matrices: the
hyper-singular integral operator

Markus Faustmann, Jens Markus Melenk, Dirk Praetorius

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstr. 8-10, 1040 Wien, Austria
markus.faustmann@tuwien.ac.at, melenk@tuwien.ac.at, dirk.praetorius@tuwien.ac.at

Abstract

We consider discretizations of the hyper-singular integral operator on closed surfaces and show
that the inverses of the corresponding system matrices can be approximated by blockwise low-rank
matrices at an exponential rate in the block rank. We cover in particular the data-space format of
‘H-matrices. We show the approximability result for two types of discretizations. The first one is a
saddle point formulation, which incorporates the constraint of vanishing mean of the solution. The
second discretization is based on a stabilized hyper-singular operator, which leads to symmetric
positive definite matrices. In this latter setting, we also show that the hierarchical Cholesky factor-
ization can be approximated at an exponential rate in the block rank.

1 Introduction

Boundary element method (BEM) are obtained as the discretizations of boundary boundary integral
equations. These arise, for example, when elliptic partial differential equations are reformulated as in-
tegral equations on the bounddty= 02 of a domainQ) c R?. A particular strength of these methods

is that they can deal with unbounded exterior domains. Reformulating an equation posed in a vol-
ume as one on its boundary brings about a significant reduction in complexity. However, the boundary
integral operators are fully occupied, and this has sparked the development of various matrix compres-
sion techniques. One possibility, which we will not pursue here, are wavelet compression techniques,
[Rat98, Rat01, Sch98a, vPSS97, Tau03, TWO03], where sparsity of the system matrices results from the
choice of basis. In the present work, we will consider data-sparse matrix formats that are based on block-
wise low-rank matrices. These formats can be traced back to multipole expansions, [Rok85, GR97],
panel clustering, [NH88, HN89, HS93, Sau92], and were then further developed in the mosaic-skeleton
method, [Tyr00], the adaptive cross approximation (ACA) method, [Beb00], and the hybrid cross ap-
proximation (HCA), [BGO5]. A fairly general framework for these techniques is given by}he
matrices, introduced in [Hac99, GH03, Gra01, Hac09] andthenatrices, [HKS00, Br10a, Br10b].

Both #- and H2-matrices come with an (approximate) arithmetic and thus provide the possibility of
(approximately) inverting or factorizing a BEM matrix; also algebraic approaches to the design of pre-
conditioners for boundary element discretizations, both for positive and negative order operators, are
available with this framework. Empirically, it has already been observed in [Gra0l, Beb05b] that such
an approach works well in practice.

Mathematically, the fundamental question in connection with?hmatrix arithmetic is whether the
desired result, i.e., the inverse (or a factorization such asl@nor Cholesky factorization), can be
represented accurately in near optimal complexity in this format. This question is answered in the



affirmative in the present work for discretizations of the hyper-singutegial operator associated with

the Laplace operator. In previous work, we showed similar existence results for FEM discretizations
[FMP13b] and the discretization of the single layer operator, [FMP13a]. Compared to the symmetric
positive definite case of the single layer operator studied in [FMP13a], the hyper-singular operator on
closed surfaces has a one-dimensional kernel and is naturally treated as a (simple) saddle point problem.
We show in Theorem 2.6 (cf. also Remark 2.7) that the inverse of the discretization of this saddle point
formulation can be approximated by blockwise low-rank matrices at an exponential rate in the block
rank. A corresponding approximation result for the discretized version of the stabilized hyper-singular
operator follows then fairly easily in Corollary 5.1. The approximation result Theorem 2.6 also underlies
our proof that the hierarchical Cholesky factorization of the stabilized hyper-singular operator admits
an efficient representation in thé-matrix format (Theorem 6.1).

The approximability problem for the inverses of Galerkin BEM-matrices has previously only been
studied in [FMP13a] for the single layer operator. In a FEM context, works prior to [FMP13b] include
[BHO3, Beb05a, Beb05b], [Sch06], anddB.0a]. These works differ from [FMP13b, FMP13a] and

the present paper in an important technical aspect: while [FMP13b, FMP13a] and the present analy-
sis analyze the discretized operators and show exponential convergence in the block rank, the above
mentioned works study first low-rank approximations on the continuous level and transfer these to the
discrete level in a final projection step. Therefore, they achieve exponential convergence in the block
rank up to this projection error, which is related to the discretization error.

The paper is structured as follows. In the interest of readability, we have collected the main result
concerning the approximability of the inverse of the discretization of the saddle point formulation in
Section 2. The mathematical core is found in Section 3, where we study how well solutions of the
(discretized) hyper-singular integral equation can be approximated from low-dimensional spaces (The-
orem 3.1). In contrast to [FMP13a], which considered only lowest-order discretization, we consider
here arbitrary fixed-order discretizations. The approximation result of Section 3 can be translated to the
matrix level, which is done in Section 4. Section 5 shows how the results for the saddle point formu-
lation imply corresponding ones for the stabilized hyper-singular operator. Finally, Section 6 provides
the existence of an approximaté-Cholesky decomposition. We close with numerical examples in
Section 7.

We use standard integer order Sobolev spaces and the fractional order Sobolevispa¢Es and
its dual H—1/2(T") as defined in, e.g., [SS11]. The notatignabbreviates< up to a constant' > 0
that depends only on the domaih the spatial dimensiod, the polynomial degree, and the~-
shape regularity of,. It does not, however, depend on critical parameters such as the meshtsiee
dimension of the finite dimensional BEM space, or the block rank employed. Moreover, we tose
indicate that both estimate§and> hold.

2 Main Result

2.1 Notation and setting

Throughout this paper, we assume that- R?, d € {2, 3} is a bounded Lipschitz domain such that
I' := 09 is polygonal (ford = 2) or polyhedral (ford = 3). We assume thdt is connected.

We consider the hyper-singular integral operaiore L(H'/?(T"), H=/2(T")) given by

W) = — M (Kv) () = — /F (MG — y))o(y)ds,, €T,
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whereG(z) = —4log|z| for d = 2 andG(z) = ﬁﬁl‘ for d = 3 is the fundamental solution
associated with the Laplacian. Here, the double layer potekitial L(H'/?(I'), H'(Q)) is given by
Kuv(z) := fr(’y'lr]tyG(:c — y))v(y)dsy, where4", denotes the interior conormal derivative at the point
z € T', i.e., with the normal vectoi(z) atz € I" pointing intoQ2¢ and some sufficiently smooth function

u defined in2 one requires/,u = Vu(z) - n(z).

The hyper-singular integral operatdl’ is symmetric, positive semidefinite afi'/?(T"). Sincel is
connected}V has a one-dimensional kernel given by the constant functions. In order to deal with this
kernel, we can either use factor spaces, stabilize the operator, or study a saddle point formulation. In the
following, we will employ the latter by adding the side constraint of vanishing mean. In Section 5 we
will very briefly study the case of the stabilized operator, and our analysis of Cholesky factorizations in
Section 6 will be performed for the stabilized operator.

With the bilinear formb(v, ) := pr vds,, we get the saddle point formulation of the boundary
integral equation

W= f onl
with arbitrary f € H~1/2(T") as finding(¢, \) € H'/?(T") x R such that
(Wo,9) +b(w,\) = (f,4) Ve HVA(D), (2.1a)
b(¢p, ) =0 Yu € R. (2.1b)

By classical saddle-point theory, this problem has a unique sol(tioh) € H'/?(T") x R, since the
bilinear formb satisfies an inf-sup condition, and the bilinear fofi#i¢, 1) is coercive on the kernel
of b(-, A), which is just the one-dimensional space of constant functions (see, e.g., [SS11]).

For the discretization, we assume thats triangulated by a (globallyyjuasiuniformmesh7, =
{T1,..., Ty} of mesh widthh := maxr,c7; diam(7}). The elementd; € 7, are open line seg-
ments (d= 2) or triangles (d= 3). Additionally, we assume that the me$} is regular in the sense

of Ciarlet andy-shape regular in the sense that b= 2 the quotient of the diameters of neighbor-
ing elements is bounded byand ford = 3 we havediam(7T};) < v |Tj|'/2 for all T; € Ty, where

|T;| = area(T}) denotes the length/area of the elemént

We consider the Galerkin discretizationldf by continuous, piecewise polynomial functions of fixed
degreep > 1in SPY(T,) := {u € C(T) : ul|r € P,(T)VT € T}, whereP,(T) denotes the space of
polynomials of maximal degreeon the trianglel’. We choose a basis ¢#:!(7;,), which is denoted

by By, :={v; : 7 =1,...,N}. Given that our results are formulated for matrices, assumptions on the

basisB;, need to be imposed. For the isomorphigmRY — SP1(T;,), x Zé\le x4, we require
BV x]y < [0 aey S ROV2 [xll,  Vx € RY. (2.2)

Remark 2.1 The standard basis fpr= 1 consists of the classical hat functions satisfyifgz;) = d;;
and forp > 2 we refer to, e.g., [Sch98b, KS99, DKB8]. These bases satisfy assumption (2.2). =

The discrete variational problem is given by findifag,, A\,) € SP'(T,) x R such that

(Won, vn) +0(tn, ) = (f,n) Vaby, € SPH(Th), (2.3)
b(dp,p) = 0 VueR.

Since the bilinear fornh trivially satisfies a discrete inf-sup condition, the discrete problem is uniquely
solvable as well, and one has the stability bounds

108l gr1r2(ry + 1AL < CHfl =172y » (2.4)
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for a constant”’ > 0 which depends only oR. For f € L2(T") and theL?-projectionII-” : L%(T") —
SP:1(Ty,), one even has the following estimate

2
[onllnraqey + A < O[5 L < Ol (2.5)

With the basig3;, the left-hand side of (2.3) leads to the invertible block matrix
W B
where the matriW € RY*Y and the vectoB € RV *! are given by

2.2 Approximation of W' by blockwise low-rank matrices

Our goal is to approximate the inverse mawi ! by #-matrices, which are based on the concept that
certain 'admissible’ blocks can be approximated by low-rank factorizations. The following definition
specifies for which blocks such a factorization can be derived.

Definition 2.2 (bounding boxes and;-admissibility) A clusterr is a subset of the index s&t =
{1,...,N}. Foraclusterr C Z, we say that3z_ C R?is abounding boxf:

(i) Bg, is ahyper cube with side lengfh,
(i) suppv; C Bg, foralli € 7.

For an admissibility parametey > 0, a pair of clusters(r, o) with 7,0 C T is n-admissiblef there
exist bounding boxeBr_, By, satisfying (i)—(ii) such that

min{diam(Bg,),diam(Bg,)} < n dist(Bgr,, Br, ). (2.8)

Definition 2.3 (blockwise rank-r matrices) Let P be a partition ofZ x Z andn > 0. A matrixWy €
RM*N is said to be ablockwise rank-rmatrix, if for everyn-admissible cluster paifr, o) € P, the
block Wy, |, is a rank-rmatrix, i.e., it has the forfWy|,«, = X, YL with X,, € RI7*" and
Y., € RI?I*". Here and below,s| denotes the cardinality of a finite set

Definition 2.4 (cluster tree) A cluster treawith leaf sizen,..s € N is a binary tre€ll'z with rootZ such
that for each cluster € Tz the following dichotomy holds: eitheris a leaf of the tree anfr| < njeat,
or there exist sons’, 7" € Tz, which are disjoint subsets efwith = 7/ U 7”. Thelevel function
level : Tz — Ny is inductively defined blevel(Z) = 0 andlevel(7’) := level(7) + 1 for 7" a son ofr.
Thedepthof a cluster tree islepth(Tz) := max,cr, level(7).

Definition 2.5 (far field, near field, and sparsity constant) A partition P of Z x 7 is said to be based
on the cluster treél'z, if P C Tz x Tz. For such a partitionP and a fixed admissibility parameter
n > 0, we define théar field and thenear fieldas

Py :={(1,0) € P : (1,0) isn-admissibleé, P,ear := P\ Prar. (2.9)
Thesparsity constant’y, of such a partition was introduced in [Gra01] as
Csp = max {max HoeTr : 7x0€ Pey}|, max|{r €Ty : Tx0€ Pfar}|} ) (2.10)
TGTI O'GTI



The following theorem is the main result of this paper. It states that the inveasex YW~ can be
approximated by af{-matrix, where the approximation error in the spectral norm converges exponen-
tially in the block rank.

Theorem 2.6 Fix an admissibility parametey > 0. Let a partitionP of Z x Z be based on the cluster
treeTz. Then, there exists a blockwise rankaatrix V4 such that

_ _ —9) —ppl/(d+1)
HW 1|N><N _V’HH2 S Capxcspdepth(TI)N(Qd 1)/(2d 2)6 bt/ (d+1 ‘

The constant’,,, depends only of?, d, p, and they-shape regularity of the quasiuniform triangulation
Tr, while the constani > 0 additionally depends on.

Remark 2.7 (approximation of inverse of full system) The previous theorem provides an approxi-

mation V4, to the first NV x N-subblockV of the matrixWw~! = (;; 1;) SinceP € RVx1

, P P\ . , o ,
is a vector, the matrizv ¢ = <VH ) is a blockwise rank-rapproximation to the matriyy —!

PT 0
satisfying

1/(d+1)

Hwil - \A/—HHQ < CapxCspdepth(Tz) N (2d-1)/(2d=2) o =br

Remark 2.8 (relative errors) In order to derive a bound for the relative error, we need an estimate on

W5, sinceW < [[W]],. SinceW is symmetric it suffices to estimate the Rayleigh quotient.

i
2

The continuity of the hyper-singular integral operator as well as an inverse inequality, see Lemma 3.5
below, and (2.2) imply

<W <K><K>> S Mol + A (o, 1)

S ATl ey + AVl ey S 42

2

()

2

Usingh ~ N~1/(d=1) e get a bound for the relative error

P~ -4,

AT, ConCopN 4B depth(T7)e 7. (2.11)
2

3 Approximation of the potential

In order to approximate the inverse mat¥ ! by a blockwise low-rank matrix, we will analyze how
well the solution of (2.3) can be approximated from low dimensional spaces.



Solving the problem (2.3) is equivalent to solving the linear system

(e 0) ()= () =

with W, B from (2.7) andb € R defined byb; = (£, ;).

The solution vectox is linked to the Galerkin solutiog, from (2.3) viag, = Zj.vzl X;1;.

In this section, we will repeatedly use tfi&(I")-orthogonal projectiodl%” : L%(I') — S71(T;) onto
SP1(T;,), which, we recall, is defined by

(70,00 = (v,un) Vion € SP1(Ty). (3.2)

The following theorem is the main result of this section; it states that for an admissible (black
there exists a low dimensional approximation space such that the restricigp toI" of the Galerkin
solution¢y;, can be approximated well from it as soon as the right-handshikes support ilBz, NI

Theorem 3.1 Let (7, o) be a cluster pair with bounding boxésr_, Br_ (cf. Definition 2.2). Assume
ndist(Bg,, Br,) > diam(Bpg_) for some admissibility parameter > 0. Fix ¢ € (0,1). Then, for
eachk € N there exists a spadd’, C SP!(T;,) with dim W, < Cgim(2 + n)%g~ k4! such that for
arbitrary f € L?(T") withsupp f € Bg, N T, the solutiony,, of (2.3) satisfies

wlg%,{}k l6n — wll2(5, nr) < Cooxh™ ¢ T fll 2y < Choxh™¢"| fllre).  (3.3)
The constant€’yin,, Chox > 0 depend only 0182, d, p, and they-shape regularity of the quasiuniform
triangulation7y,.

The proof of Theorem 3.1 will be given at the end of this section. Its main ingredients can be summa-
rized as follows: First, the double-layer potential

u(z) = Ron(z) = / WGz — y)on(y)ds,, =R\,

generated by the solutiapy, of (2.3) is harmonic o2 as well as or2¢ := R? \ ) and satisfies the
jump conditions

houl = 78— u= ¢ € HYX(D),
[Oau] = A% — My =0e HV2(D). (3.4)

Here, &, 4" denote the exterior and interior trace operator afff, " the exterior and interior
conormal derivative, see, e.g., [SS11]. Hence, the potentialin a space of piecewise harmonic
functions, where the jump across the boundary is a continuous piecewise polynomial of pegree
and the jump of the normal derivative vanishes. These properties will characterize the Bpéatys

to be introduced below. The second observation is an orthogonality condition on admissible blocks
(7,0). For right-hand sideg with supp f C Bg, N T, equation (2.3), the admissibility condition, and

W = —"K imply

— (VMuy ) + A (Pn, 1) =0 Vaby, € SP(T,) with supp vy, C Br, NT. (3.5)



For a clustep C Z, we definel’, C I" as an open polygonal manifold given by

I', := interior (U supp @Dj) . (3.6)

JjEp

Let D be an opensetand~ := DNQ, Dt := DNQ". Afunctionv € H'(D\T) is called piecewise
harmonic, if

Vv -Vedr =0 Yo e CP(DY).
D\T

Definition 3.2 Let D C ]R{d_be open. The restrictions of the interior and exterior trace opera@@f’s
780 DNT are operatorsy"| par : HY(D~) — L2 (DNT) andy&Ypr : HY(D) — L2 (DNT)

loc loc

defined in the following way: For any (relative) compdctC D N T, one selects a cut-off function
n € C3°(D) withn = 1 onU. Sinceu € H'(D~) impliesnu € H'(Q), we havey™yu ¢ H'/*(T)
and thus its restriction td/ is a well-defined function i.2(U). It is easy to see that the values bn
do not depend on the choicepfThe operaton§™| pr is defined completely analogously.

In order to define the restriction of the normal derivative of a piecewise harmonic functioif ! (D \
), letn € C>®(RY) with suppn € D andn = 1 on a compact se/ ¢ D. Then, the exterior normal
derivatived,, (nv) is well defined as a functional i ~/2(T"), and we definé, v|;; as the functional

(000|175 0) = (O (v), ), Vo € HY2(T),suppp C U.

Again, this definition does not depend on the choicg@s long asy = 1 onU.

Definition 3.3 For a piecewise harmonic functiane H'(D \ T'), we define the jump of the normal
derivative[0,v]| pnr on D N T" as the functional

([Onv]|DArs ) = / Vv -Veodr Vo€ H&(D). 3.7)
DtuD—

We note that the valu€o,,v||pnr, ¢) depends only op|par in the sense thal{o,,v]||par, ¢) = 0
for all p € C§°(D) with ¢|pr = 0. Moreover, if[0,v]|pnr is a function inL?(D N T), then it is
unique. The definition (3.7) is consistent with (3.4) in the following sense: For a potéﬁﬁglwith
én € SPL(Ty), we have the jump conditio[r&?nl?gzshﬂmp =0.

With these observations, we can define the space

Hu(D) = {ve HY(D\T): vis piecewise harmonj¢d,v]|prr = 0,
o € SP1(T;,) s.t.[vov]|par = ?|pAr}-

The potentiak, = f(qsh indeed satisfies € #, (D) for any domainD; we will later takeD to be a
box Bg.

For a boxBp, with side lengthR, we introduce the following norm of/ ! (Bg \ T')

h\° 1
olini= () 1908 man + 72 Plman

which is, for fixedh, equivalent to theéZ! (Bg \ T')-norm.



A main tool in our proofs is the nodal interpolation operatpr C(I') — SP1(T3,). Sincep+ 1 > 42
(recall: d € {2,3}), the interpolation operatof;, has the following local approximation property
for continuous,7;,-piecewise HPt!-functionsu € C(T') N Hyt'(Th) == {u € C() : ulr €
HPFYT)YT € Ty, )

HU - IhuH?_[m(T) S ChZ(p+1im) ’u‘?{P+1(T) 9 0 S m S p + 1 (38)
The constant”' > 0 depends only ony-shape regularity of the quasiuniform triangulati@p, the

dimensiond, and the polynomial degree

In the following, we will approximate the Galerkin solution on certain nested boxes, which are concen-
tric according to the following definition.

Definition 3.4 Two (open) boxe8r, Br: are said to be concentric boxes with side lengthand R/,
if they have the same barycenter aBg can be obtained by a stretching 8 by the factorR/R’
taking their common barycenter as the origin.

The following lemma states two classical inverse inequalities for functior&”in(7;,), which will
repeatedly be used in this section. For a proof we refer to [GHS05, Theorem 3.2] and [SS11, Theorem
4.4.2].

Lemma 3.5 There is a constant’ > 0 depending only o2, d, p, and they-shape regularity of the
quasiuniform triangulatior¥;, such that for alls € [0, 1] the inverse inequality

HUHHs(F) <Ch'? HUHL2(F) Vo € SPH(Ty) (3.9)
holds. Furthermore, fo6 < m < ¢ the inverse estimate
1Vl geery < CH™ ol gmery > Yo € PP(T) (3.10)

holds for allT € T, where the constart’ > 0 depends only of2, p, ¢ and they-shape regularity of
the quasiuniform triangulatioff,.

The following lemma shows that for piecewise harmonic functions, the restriction of the normal deriva-
tive is a function inL? on a smaller box, and provides an estimate of ffenorm of the normal
derivative.

Lemma 3.6 Leté € (0,1), R € (0,2diam(£2)) be such that}% < g, and letu € R. Let Bg, B(145)r

be two concentric boxes of side lengfand (1 + §) R. Then, there exists a constarit> 0 depending
only on€, d,p, and thevy-shape regularity of the quasiuniform triangulatiofi, such that for all
NS Hh(B(l-HS)R) we have

_ 1
HaanL2(BRﬂF) S Ch 1/2 (’vU”LQ(B(1+5)R\F) + E H’U’LQ(B(LH;)R\F)) . (311)

Proof:

1. step:Letn € WH>(R?) satisfy0 < n < 1,n = 1 on B(i4+s/2)r» suppn C B(i45)r, and
an\'\Lw(B(w)R) 5. .(%R. In order. to shorten the.pro.of, we 'assumfétn. = ygx.tﬁ € SHL(T,) so |
that inverse inequalities are applicable. We mention in passing that this simplification could be avoided
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by using “super-approximation”, a technique that goes back to [NS74]gg., [Wah91, Assump-
tion 7.1]). Let us briefly indicate, how the assumptigne S'1(7;,) can be ensured: Start from a
smooth cut-off function; € C5°(R%) with the desired support properties. Then, the piecewise linear
interpolant/;; € S*(T;,) has the desired properties bnlt therefore suffices to construct a suitable
lifting. This is achieved with the lifting operator described in [Ste70, Chap. VI, Thm. 3] and afterwards
a multiplication by a suitable cut-off function again.

2. stepilLetz := K(ymtn[ ]). Then with the jump conditions

[0nz] =0, [2] = 2" nl]

and the fact that is piecewise harmonic, we get that the functienz is harmonic in the bo¥ 5 2) r-
Thus, the functionv := V(v — z) is harmonic inB, /2y as well. It therefore satisfies the interior
regularity (Caccioppoli) estimate

1
IVwllizaa gy smmn) S 57 192,50 (3.12)
a short proof of this Caccioppoli inequality can be found, for example, in [BHO3].

We will need a second smooth cut-off functignwith 0 < 7 < 1,7 = 1 on Bg, andsuppn C
Bats/ar and||Vﬁ||Loo(B(l+5/4)R) < ﬁ. The multiplicative trace inequality, see, e.g., [BS02], implies
together with (3.12) andR < 2diam(€2) due to the assumptions énR that

=012 ~ 12 ~ ~
1wl 2 seary S 1T0NZ2(8 500 F 170128 s 00 IV T 2085 0 0\D)

1
~ 12 ~
S ‘|77w||L2(B(1+5/4)R\F) + ||77w||L2(B(1+5/4)R\F) ((SR ||w||L2(B(1+5/4)R\F) + |vw||L2(B(1+5/4>R\F)>
1 2
S SR ”wHL2(B(1+5/2)R\F) :
Therefore and wittd,,z = 0, K( tnlv]) = —W (y*n[v]), we can estimate the normal derivative of
v by

1000l 2(Bpnry < llw-nllp2goary + 11002l 25,1

1 int
\/T—R ||wHL2(B(1+5/2>R\F) + HW Yo v HL2 (BrNI)

S
Since the hyper-singular integral operator is a continuous mappingffb(ifi) to L2(I") and the double
layer potential is continuous from '/2(I") to H'(Q) (see, e.g., [SS11, Remark 3.1.18.]), we get with
h < &R, the inverse inequality (3.9) (note that*n)[v] is a piecewise polynomial), and the trace
inequality

HanUHp(BRmr) S ﬁ|’w“L2(B(1+5/2)R\F)+H(fy(iJntn)[U]HHl(F)

1 —-1/2 in
JT? <HVUHL2(B(1+5/2)R\F) + HVZHL2(B(1+6/2)R\F)> + Y H SRAIG H}Hl/Q(F)

N

B2

A

1990 225,15ty I OFDE r1/2ry)

AN

A

hot? (HVUHLQ(B(Hé/z)R\F) + HTIUHHl(B(lJré)R\F))
h™ 1/2(

1
V0l ) + 57 10000 )



which finishes the proof. g

The previous lemma implies that for functions#), (B r), the normal derivative is a function in
L?(BrNT). Together with the orthogonality properties that we have identified in (3.5), this is captured
by the following affine spacel;, o(D, T, p):

Hh,U(D7 Fpa M) = Hh(D) N {1} € H' (D \ F) : SUPP[VOU”DOF C F7p7 (313)
(Onv|DArs ¥n) — 1 (tbn, 1) = 0V, € SP(T;,) with supp vy, € DN T}

Lemma 3.7 The space${,(D) andHy, o(D,T,, 1) are closed subspaces &' (D \ ).

Proof: Let (v/);en C Hp(D) be a sequence convergingdoe H'(D \ I'). With the definition of
the jump[y0v’/]| pr and the continuity of the trace operator fraf' (2) to L?(T"), we get that the
sequencéyov’]| par converges ik (D NT) to [yov]| par, and sinceS?!(7y,) is finite dimensional,

we get thafyov]| prr = 9| par With a functionv € SP-1(Ty,).
Moreover, forp € C5°(D*) we have

(Vu, Vo) 2y = jlig}o (Vv, Vo) 2 pyry = 0,

sov is piecewise harmonic oP \ I". By definition (3.7) and the same argument, we[ggt]| prr = 0,
and thereforeH; (D) is closed. The spact, (D, T, 1) is closed, since the intersection of closed
spaces is closed. O

A key ingredient of the proof of Theorem 3.1 is a Caccioppoli-type interior regularity estimate, which
is proved by use of the orthogonality property (3.5).

Lemma3.8 Letd € (0,1), R € (0,2diam(2)) such that% < g and letI’, C I' be of the form
(3.6). Let Br, B(145)r be two concentric boxes and lete R. Then, there exists a constafit > 0
depending only o, d, p, and thevy-shape regularity of the quasiuniform triangulatigp such that
forall v € Hy o(Bvsyrs Lps 1)

146 _
9ol maany < € (25 Bllyasan + (14 DR ). (314

Proof: Let n € H'(RY) be a cut-off function withsuppn C B4s/2yr» m = 1 0on Bg, and
HVnHLoo(B(M)R) < 55- Asin the proof of Lemma 3.6, we may additionally assume tféty = v§*'n
is a piecewise polynomial of degree 1 on each connected compon&nt @, ). Sinceh is the
maximal element diametes), < JR impliesT C B 4)p for all T € T, with TN suppn # 0.
Because is piecewise harmonic an@, v] \B(1+5)Rmp =0, we get

IV ey = [ VoV + o Vol da
B(1y5r\I'

— (Ouo, o)) + / o2 [Vl da. (3.15)
Bays)r\T

We first focus on the surface integral. With the nodal interpolation opetgtdrom (3.8) and the
orthogonality (3.5), we get

Onv. 1’ [rov]) = (Bnv, 1 [ov] — In(n°[vov])) + 1 (T (0P lov]), 1) - (3.16)

10



The approximation property (3.8) leads to

H772 [Yov] — Ih(UQ[VDUDHi2(F) N p2P+Y) Z ‘772[70““2{;&1(7*) . (3.17)
TeT

Since for eacl” € T, we havelyov]|r € P,, we getD¥[yov]|z = 0 for all multindicesk € N¢ with
k| == >>% ki = p+ 1 andn|r € P, implies Din|p = 0 for j € N¢ with |j| > 2. With the Leibniz
product rule, a direct calculation (see [FMP13b, Lemma 2] for details) leads to

2 1 1
}772 [’YO”HHpH(T) S W W[’YOUHZW(T) + W H’YOUH?qpfl(T) )
where the suppressed constant depends @he inverse inequalities (3.10) given in Lemma 3.5 imply

2 1 1
H772[’YOU] - Ih(n2[’YOU])HL2(F) S AP Z <(5R)2 |77[’YOU]|§{P(T) + W H’VOUH?T{Pl(T))
TeTh

h3 h4
S (GR)? HU[VOU]Hin/z(F) + GR) ”77['70”]||%2(B(1+5)Rmr) . (3.18)
With the trace inequality, we obtain

ext

i 2
Inbovlllzpeey = 19600 =20 )12y
S ||77UHL2(Q) + HV(UU)H%?(Q) + HUUH%?(QC) + HV(W)H%%QC)
2 2
< Plz2B s ) HIVO LB, w0 - (3.19)

In the same way, the multiplicative trace inequality implies

2 2
Hn[’YOU]HLQ(F) S SR HUUHLQ(B(H(;)R\F) + HnU”LQ(B(1+5>R\F) HUV'UHLQ(B(H(;)R\F) : (3.20)

We apply Lemma 3.6 withiR = (1 + 6/2)R andd = 525 such that(1 + 6)R = (1 + 6)R. Together
with (3.18) — (3.20), we get

[(Onv, n? [0v] = In(*[ov)) | < 10001l 25, 5 oy ey 17 100] = T (000D || oy

1 h
<C (HVUHLQ(B(H(;)R\F) + SR HUHLQ(B<1+§>R\F)> {(SR (HUHLQ(B(H(;)R\F) + Hv(nv)”LQ(B(Hé)R\F))

h3/? 1 1/2 1/2
+ (0R)? ((5R)1/2 HUHLQ(B<1+6>R\F) T HUUHLQ(B(HMR\F) HnVU”LQ(BuH)R\F)) }
2
<OVl Ol + v )2,
(6R)? L2(Ba1s)r\I) (6R)2 L2(Ba+syr\I) " 4 L2(B(145)r\D) 7

where, in the last step, we applied Young’s inequality as well as the assum@ie_ﬁ% andoR <
2diam(§2) multiple times. The last term in (3. 16) can be estimated with (3;8% 1, the previous
estimates (3.18) — (3.19), and the assumpgoﬁ 2,aswellasiR < 2diam(Q2) by

1 (TP [ov]), 1) S | (P hov], 1] + (1 (0 ov] = In(n* [v0v]), 1)
S lul \B(1+5)Rﬁf\1/2 <H77 Yov HL2(F)+H77 Yov] —Ih(nz[’mv])”m(r))
S il (U )RS (|02 bov]| gy + 02 000y )
S lul @+ DR (ol o,y ey + IVO0) s g mr))

11



Applying Young's inequality, we obtain
1
‘,u<Ih [Yov]) >‘ <C((1+0)R )d ! |M| + C((;R)Q [v ||L2(B(1+5)R\F 1 ||V(77U)||%2(B<1+6)R\F) :

Inserting the previous estimates in (3.16), Lemma 3.6, Young’s inequality, and the assu%p;(ic@
lead to

[(Onv, P [y0v])| < [(Onv. 0 [yov] — In(m*[yov])) | + |1 (I (*[ov]), 1)
h2 1

2
C 2 ||v HL2 B(1+5)R\F) C 5 2 HU||L2(B(1+§)R\F)
(6R) (OR)

IN

+C((L+ )R [l
1 2
+5 IV )22 (8, 5y -

Inserting this in (3.15) and subtracting the tetiV (nv)]|%2 from both sides finally leads
o L2(B(14+6)r\I)

h? 1
2 _
IV o228,y 0\ S OR? ”VUH%?(B(W)R\F) + OR? \|U”i2(3<l+m\r) +((1+0)R) ul?,

which finishes the proof. g

We considery-shape regular triangulatiod; of R? that conform ta. More precisely, we will assume
that everyE € £y satisfies eithe ¢ Q or E C Q¢ and that the restrictiony | andEx e are
~-shape regular, regular triangulations{fand 2¢ of mesh sizeH, respectively. On the piecewise
regular mesity;, we define the Scott-Zhang projectio; : H'(R\ T') — S;;j ={v : vlg €
Sbl(Eyla) and v]|ge € SH1(Ex|ae)} in a piecewise fashion by

Tint re)
Jgo={ Jiv forzes, (3.21)
Jiitv  otherwise

here, J‘nt Jext denote the Scott-Zhang projections for the gé@gn and&|q-. SinceJy is a piece-
wise Scott Zhang projection the approximation properties proved in [SZ90] apply and result in the
following estimates:

|U‘H[(w |f E C Q

v = ol Fpm gy < CHXE™ { <m<0<; (3.22)

|U|H[( QC) if £ C Qc
here,
wp=|J{F €éula : ENE'#0}, wi =|J{F €ulac : ENE #0}.

The constan€ > 0in (3.22) depends only on theshape regularity of the quasiuniform triangulation
&y and the dimension.

LetIly g, : (HY(Br\T), Il.7) = (Hno(Br,Lps 1), Il z) be the orthogonal projection, which
is well-defined sincé{ o(Bg, T, 1) C H'(Bg \T') is a closed subspace by Lemma 3.7.

12



Lemma 3.9 Leto € (0,1), R € (0,2diam(f2)) be such that% < g. Let Br, B(115)r» B(1+25)r b€

concentric boxes. Ldt, C I' be of the form(3.6)andx € R. LetEx be an (infinite)y-shape regular
5

triangulation of R? of mesh widthH that conforms td) as described above. Assun% < 7. Let
Jg : HY(RI\T) — 85;3 be the piecewise Scott-Zhang projection defing@i@1). Then, there exists
a constanC,,;, > 0 that depends only oft, d, p, and~, such that for € Hp, o(B(1425)r, L, 1)

(i) (v—Mprutuv)|Be € Hao(Br,T),0);

(i) Jlv - Hh,R,uJHU”M,R < Capp (% + %) (HT% W’U”|h,(1+25)R +((1+ 25)R)(d71)/2 \,u,\);

- . d
(ii)) dim W < Cypp ((H?)R) ,whereW := Ty, r . JuHno(Bt20)rs Lps 1)

Proof: For u € Hpo(Butas)r,[p, ), we haveu € Hpo(Br,Tp,p) as well and hence
Hh7R,H (U‘BR) = U|BR, which gives (I)
The assumptior% < g implies {E € €y : wr N Br # 0} € Buis)gr- The locality and the
approximation properties (3.22) df; yield

1

T lw = Jaull e pery + IV = Jru)ll 2oy S VUl mr -

We apply Lemma 3.8 wittk = (1 + §)R ands = 135. Note that(1 + 5) R = (1 + 20)R, and 2 <
follows from8h < §R = 4 R. Hence, we obtain

oolen

2 2 2
lw = Th el g = 1h, Ry (v = THu)ll, g < llw = Jully,

h\? 1
— () 19 ) epany + o= Tl

h? 9 H? 9
S Vo2 IVullz2 (B, 5 mr) + 72 IVullZ2 (B, 5 m\D)

h H\? /(14202 . d—11, 2

S (R + R) <52 lullh, (14288 + (1 4 20)R)* |4 > :
which concludes the proof (ii). The statement (iii) follows from the fact that
dim JgHpo(Batas)r, Lo i) S ((1+26)R/H)“. O

Lemma 3.10 Let C,,;, be the constant of Lemma 3.9. lggks € (0,1), R € (0,2diam(Q2)), k € N,
andI', C I be of the forn(3.6). Assume

h Kq
< . 3.23
R = 32kmax{Cjypp, 1} (3-23)

Then, there exists a finite dimensional subspﬁ\@eof Hn,0(B14x)Rrs Lps 1t) With dimension

dim W, < Cdim (1 r ) A

such that for every € Hy, 0(B(14x)r> Lp, 1) it holds

13



min [|[yov] = @]l L2 gyar,) (3.24)
weWy,

< CIOWR(I + "<V>h_1/2 Enlr\l H\U - @”’h,(1+ﬁ/2)R

weWy,

< Ciow R(L+ 024 (0l 1 + (L4 0)R)D2 ).

The constant§'y;,,, Clow > 0 depends only of2, d, p, and they-shape regularity of the quasiuniform
triangulation7j,.

Proof: Let B and Bys))r with §; := k(1 — #) forj = 0,...,k be concentric boxes. We note
thatk = 6 > 61 > --- > &, = 5. We choosel = W{appw whereC,,, is the constant

in Lemma 3.9. By the choice dff, we haveh < H. We apply Lemma 3.9 Wittt = (1+0;)R and

5 74k(1+5) . Note thatd;_; = &; + 57 gives (1 + 6;—1)R = (1 + 25,)R. Our choice ofH

|mpI|es L J . Hence, forj = 1, Lemma 3.9 provides a subspadg of Hy, o(B(1+s,)r, L' p, 1) With

mmwagccﬁgﬂ and aw; € W, such that

H <1+251

lo = willy 145 < QCapp(l TR 5 ol 1450y + (1 + §o) R)\=1/2 W)
1

kH ~ 01
= 8Capp 5 (1+201) (’”Umh,(unm + HTS(I + 8p) @/ \M\)
1

IN

@ (Bolly ey + (14 R)R)OD2 ]}
Sincev — w1 € Hpo(B(146,)r: 'y, 0), we can use Lemma 3.9 again (this time with- 0) and get an

d
approximationw; of v —wjy in a subspac®s of H, o(B(146,)r; ['p, 0) with dim W, < C (%) :
Arguing as forj = 1, we get

o = w1 = wally sy < 000 = wally sy < @ (Il rann + (0 + 0RO 0]).

Continuing this process — 2 times leads to an approximatian := Z?Zl w; in the spacd//Vk =

Z] . W; of dimensiondim W, < Ck ((”“)R) = Cgim ((1 + £71)g71)9k4*1 such that

o = @l (14n298 = 10 = Blly (11505 < ¢° (Hrvmh,W)R + (14 r)R)D/2 m!) (3.25)

The last step of the argument is to use the multiplicative trace inequality. With a suitable cut-off
function n supported byB( /g and [|[Vn/L~ < (kR)~! as well asy = 1 on Bg, we get for
z € Hl(B(l—l—fi/Q)R \ F)

H[’YOZ]H%%BRmF) < H[’YO(W)]H%?(F) S H773HL2(Rd\F)||772||H1(Rd\r)
1

2
S i lelta i ymm) T 10 E2 By ) VE 2By D)
1 2 —1 2 2
S 7RH'ZHL2(B(1+ sor) T h Hz||L2(B(l+n/2)R) T h||vz”L2(B(1+n/2)R\F)

S+ /2R h |2l

h,(1+x/2)R
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where the last step follows from the assumpt.}g;n < 1. Using this estimate fot = v — w together
with (3.25) gives

min | [yov] = [0@][| 250y < Clow(1 + £)RE2¢* [uyvmhmm + (1 +r)R)I2 ] .

weWy,

This concludes the proof. O

Remark 3.11 The proof of Lemma 3.10 shows that approximation resultd 2 can be achieved at
the expense of an additional factor'/2: With the cut-off function; that is used at the end of the proof
of Lemma 3.10, we can can bound foe H'(B(14,/2r \ T)

Ivo@ M vy S Izl @ary © (4 + 8/2) R el g, g

Hence, with the spac@k of Lemma 3.10 one gets

min [[po(n(® = @)l S Clon(1+ MR A" ol 1y + (1 R)R) 2 ]
weWy,

Now we are able to prove the main result of this section.

Proof of Theorem 3.1: Chooses = - BY assumption, we havéist(Br_, Br,) > n~'diamBp_ =
Vdn~'R.. In particular, this |mpI|es

1
dist(B(14 xR, » Br,) > dist(Bg,, Br,) — kR:Vd > VAR, (n™' — k) = VdR, < — 1+n> > 0.

Letgy, € SP1(Ty) solve (2.3). Recall from (2.5) that

2
énllgzuaqey + 101 S 07 7

L2(r)
The potentiaki = K¢, then satisfies: € Hn,o(B(i4x)R, >, A). Furthermore, the boundedness of

K : HY2(I) - Hp (R?) and - < 1 lead to

Kon < 21+ ) [Fo
H‘ on hRr(14K) < * > Ken HY(B2r,)

1 ! :
< (1 + RT> 1nll/2ry S (1 * RT> |

We are now in position to define the spdég, for which we distinguish two cases.
Case 1:The condition (3.23) is satisfied with = R,. With the spacéV; provided by Lemma 3.10
we setlWy, := {[yw] : W € Wy}. Then, Lemma 3.10 anfl, < 2diam(f2) as well asz < 1 lead to

L)

N

(14 k)R, b=/ k(m o), - \)\)
S (U+m)(R+ DA | g k||

wnelg/lk lén = wHLQ(BRTﬂF)

L2(r)’
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and the dimension dfV, is bounded by

1+ k71

d
dim Wy, < Cim < ) kT = Cgim (2 + 0) g 4T

Case 2: The condition (3.23) is not satisfied wittR = R,. Then, we selectW, :=
{w|py r:w e SP!(T;)} and the minimum in (3.3) is obviously zero. By the choicerofind

h Kq . . -
T > Fohmax]Cogy 1} the dimension ofVy is bounded by

d—1 d—1
dim Wy, < <1~2> < <32k ma};{fﬁ"p’ 1}> ~ (L +ma k)T S @+ )l kT
This concludes the proof. of the first inequality in (3.3). The second inequality in (3.3) follows from the
L?(T')-stability of the L2(T")-orthogonal projection. O

4 H-matrix approximation

In order to obtain af{-matrix approximatingV " (cf. (2.6)) we start with the construction of a low-
rank approximation of an admissible matrix block.

Theorem 4.1 Fix an admissibility parameten > 0 andgq € (0,1). Let the cluster pair(r, o) be
n-admissible. Then, for evedy € N, there are matriceX,, € RI"*" Y_, e Rl“I*" of rankr <
Caim (2 + )%~ k%! such that

HW_I ’TXO’ - XTUYZU S Capr(2d_1)/(2d_2)qk' (41)

I

The constants’,,«, Caim > 0 depend only o2, d, the~-shape regularity of the quasiuniform trian-
gulation7,, andp.

Proof: If Cyim (2 +1)%q~ k4! > min(|7|,|o]), we use the exact matrix blo&,, = W™!|,, and
Y., =1 € Rlolxlal,

If Caim (2 + )%k < min(|7|, |o|), we employ the approximation result of Theorem 3.1 in the
following way. Let); : L?(I") — R be continuous linear functionals @t (") satisfying\;(¢;) = 4;;,

as well as the stability estimaie\; (w)i| 2ry < [[w]l 22 (supp ) fOr w € L?(I"), where the suppressed
constant depends only on the shape-regularity of the quasiuniformypesior the existence of such
functionals, we refer to [SZ90]. We defifid := {x ¢ RY : x; =0V i ¢ 7} and the mappings

Ar i IA(T) = R7,0 = (Ai(v))ier and®, i RT — SPH(Th), x = Y ajiy.

jeT

The interpolation operatap. A, is, due to our assumptions on the functionglsstable inL* and for
a piecewise polynomial function € SP'(7;) we get®, (A, ¢) = @|r. with T, := Uie, supp s C
Bpg,.Forx € R7, (2.2) implies

ORI |x]ly < @7 (0)ll ey < CHO™2 [x]ly, VxR
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The adjointAy : RY — L*(I')’ ~ L*('),b — Y,.7 bA; of Az satisfies, because of (2.2) and the
L?-stability of ®7A 7,
(d—1)/2
. (b, Azw), h~ [PzAzw] L2 (p
[AZb]l 2y = sup ———= < |bll, sup

< B2 b,
weL2() ||wHL2 weL?(T) ||wHL2

Letb € RY. Defining f := A%b|,, we geth; = (f, ;) fori € o andsupp f C Bg, NT'. Theorem 3.1
provides a finite dimensional spa&¥, and an elemeny € W;, that is a good approximation to the
Galerkin solutionp, |, nr. Itis important to note that the spa@¥, is constructed independently of
the functionf; it depends only on the cluster pdir, o). The estimate (2.2), the approximation result

from Theorem 3.1, anHIHL2fHL2(F) < 1/l zey < IA7bll 20y S A7 E@D2 (|b]l, imply

IArdn — Aswlly S A= (Arn — Aw)l| 2y < B2 b — wl| 2 oy

p(@=1)/2-1/2

N

<h (2d—1)/2 kHbHQ

]

L2(T)
In order to translate this approximation result to the matrix level, let
W= {Aw : we W}

Let the columns oX;, be an orthogonal basis of the spage Then, the rank oX ., is bounded by
dim Wy, < Cim (2 + n)%q k. SinceX,.,XZ_ is the orthogonal projection frof" onto W, we
get thatz := XmX A,y is the best approximation df, ¢, in W and arrive at

1Ar6n = 2]l < [Ardn — Arwlly S h™CD2 g [[b]|y = NEED/CERGE b)), (4.2)

Note thatA, ¢, = W] .,b|,. If we defineY,, := w-YTL, X, wethus get = X, YL b|,.
The bound (4.2) expresses

[W oo = X YL ) blo ||, = [Ardy — 2|, S N@D/@d=2)gk ) (4.3)

The spacéV}, depends only on the cluster péit, o), and the estimate (4.3) is valid for ahy This
concludes the proof. O

The following lemma gives an estimate for the global spectral norm by the local spectral norms, which
we will use in combination with Theorem 4.1 to derive our main result, Theorem 2.6.

Lemma 4.2 ([Gra01], [Hac09, Lemma 6.5.8], [Br10b]) LetM € RY*N and P be a partitioning of
7 x Z.Then,

M|, < Cqp (Z max{||M|:xq||y : (1,0) € P,level(r) = €}> ,
/=0

where the sparsity constagt, is defined in(2.10)

Now we are able to prove our main result, Theorem 2.6.
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Proof of Theorem 2.6: Theorem 4.1 provides matricds., € RI"*" Y, € Rl?*" so we can define
theH-matrix Wy, by
W'H —_ { XfilYIa If (Ta U)- € Pfara
W™ |x» oOtherwise.

On each admissible blodk, o) € P, we can use the blockwise estimate of Theorem 4.1 and get
H (Wfl o W'H)"}'XUHZ S Capr(2d71)/(2d72)qk'

On inadmissible blocks, the error is zero by definition. Therefore, Lemma 4.2 leads to

HVV_1 - Wy, < Cy (Z max{||( W™ — Wy) |TXJH (1,0) € P,level(r) = K})
< CapXC'spN(2d 1)/(2d— 2)qkdepth(’lf‘z).
With r = Cyim(2 + 1)%q~%k9+1, the definitionb = — P;fgjl)q N2 + )~/ > 0 leads to
d1m
¢ = e "V "and hence

(d+1)

HW—l _ WHH2 < CapxcspN(Qd—1)/(2d—2)depth(TI)e—br1/ ’

which concludes the proof. O

5 Stabilized Galerkin discretization

In the previous section, we studied a saddle point formulation of the hyper-singular integral operator. It
is possible to reformulate the hyper-singular integral equation as a positive definite system by a rank-
one correction that does not alter the solution. In numerical computations, this reformulation is often
preferred, and we therefore study it. Furthermore, it will be the starting point fé¢ thmatrix Cholesky
factorization studied in Section 6 below.

Thesstabilized Galerkin matriWst € RV* js obtained from the matri¥v € RV*Y as follows:
W]k— <W¢k,¢j>+a<¢k,1> <1/J], 1) = Jk—i-oszBj, Vi, k=1,...,N. (5.1)

Here,a > 0 is a fixed stabilization parameter. The mafi&st is symmetric and positive definite. With
the notation from (2.7) the stabilized matW st can be written as

WS'=W + oBB”.

The interest in the stabilized matrW st arises from the fact that solving the linear system

w ()= e 0) ()= ()

is equivalent to solving the symmetric positive definite system
— (x\ . _ (W+aBB” B) (x\ (b
W)= D 0)-6) 62
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For more details about this stabilization, we refer to [Ste08, Ch. 6.6/12.2].

In order to see that the question of approximatiigs") ! in the 7-matrix format is closely related to
approximating®y—! in the H-matrix format, we partition

. (G P
W= (o )

and observe that the inver(sizTVSt)*1 can be computed explicitly:
(W) ™' =G+ (W) ' BP”.

Hence, the inverseWStf1 can be computed just from a rank one update fi@iri.e., a subblock of
W~L. We immediately get the following corollary to Theorem 2.6:

Corollary 5.1 There exists a blockwise rank-¢- 1) approximationWs} to (W=)~! with

_prl/(d+1)

(W™t — WS |3 < CapxCsp depth(T7) N 24=1/(2d=2),

6 H-Cholesky decomposition

In this section we are concerned with proving the existence of a hierarchical Cholesky-decomposition
of the formWst ~ CHC% whereCy, is a lower triangulaf{-matrix. The main results are summa-
rized in Theorem 6.1. It is shown by approximating off-diagonal block of certain Schur complements
by low-rank matrices. Therefore, the main contribution is done in Section 6.1, the remaining steps
follow the lines of [Beb07, GKLB09, FMP13b].

The advantage of studying the second system (5.2) is that the subMétrix W + oBB” is sym-

metric and positive definite and therefore has a Cholesky-decompaosition, which can be used to derive a
LU-decomposition for the whole matrix. Moreover, the existence of the Cholesky decomposition does
not depend on the numbering of the degrees of freedom, i.e., for every other numbering of the basis
functions there is a Cholesky decomposition as well (see, e.g., [HJ13, Cor. 3.5.6]). The existence of
the Cholesky decomposition implies the invertibility of the maW&*|,. , for anyn < N and index

setp :={1,...,n} (see, e.g., [HI13, Cor. 3.5.6]). For theCholesky decomposition of Theorem 6.1
below we assume that the unknowns are organized in a binary clustélztré&ais induces an ordering

of the unknowns by requiring that the unknowns of one of the sons be numbered first and those of
the other son later; the precise numbering for the leaves is immaterial for our purposes. This induced
ordering of the unknowns allows us to spealbtifick lower triangularmatrices, if the block partition

P is based on the cluster trég..

The following theorem states that the Cholesky fa€tdior the stabilized matrix can be approximated
by a block lower triangula#{-matrix and, as a consequence, there exists a hierardiicdactorization
of W.

Theorem 6.1 Let Ws' = CCT be the Cholesky decomposition. Let a partitidf Z x Z be based on
a cluster treel'z. Then for every: > 3, there exist block lower triangular, blockwise rankwnatrices
Cy, Ly and a block upper triangular, blockwise rankaratrix U such that

IC—Cull, _
[Tl

—pprl/(d+1)
e br

(i) Cehot N7 T depth(T7)
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|[W* — CyCy,
WSt

) _ppl/(d+1)

(il < 20 motN T-1depth(Tz)e +C3  NTTdepth(Tz)%e~ 2",

1w
i

1/(d+1)

(iii) 2 < 9C NTTdepth(Tz)e ™"

+C3 holNd Tdepth(T )26—2br1/(d+1),

where Cehol = CspCscn/ k2 (W5t), with the sparsity constant’y, of (2.10), the spectral condition
numbers, (W) := [[Wst||, HWSt_lHQ, and a constanCy. depending only of, d, p, they-shape

regularity of the quasiuniform triangulatioff;, the admissibility parametey and the stabilization
parametera.

6.1 Schur complements

For a cluster paifr, o) andp := {i € 7 : i < min(7 U o)}, we define the Schur complement
S(1,0) = W |5 — W | s (W5 ,)) W s (6.1)

As mentioned in [FMP13a] such a Schur complement can be approximated byHisirithmetic, but

leads to worse estimates with respect to the rank needed for the approximation than the procedure here.
Therefore, we revisit our approach from [FMP13a] that is based on interpreting Schur complements as
BEM matrices obtained from certain constrained spaces.

The main result in this section is Theorem 6.4 below. For its proof, we need a degenerate approxi-
mation of the kernel function(z,y) = G(z,y) of the single layer operatdr given by V¢ (z) :=

fF y)ds,. This classical result, stated here as a degenerate approximation by Chebyshev in-
terpolatlon |s formulated in the following lemma. A proof can be found in [FMP13a].

Lemma6.2 Let7; > 0 and fixy’ € (0,27). Then, for every hyper cubBy C R¢, d € {2,3} and
closedDx C R? with dist(By, Dx) > 5jdiam(By) the following is true: For every € N there exist
functionsg; ;, 25,7 = 1,...,r such that

Zglz 921

for a constant”' that depends solely on the choicedk (0, 27).

(1+1/m)
dist({z}, By )?-

Y vyre Dy, (6.2)

s (L+n)"

LOC(BY)

The following lemma gives a representation for the Schur complement by interpreting it as a BEM
matrix from a certain constrained space. A main message of the following lemma is that by slightly
modifying the Schur complemeB{r, o), we can use an orthogonality without the stabilization term.

Lemma 6.3 (Schur complement and orthogonality)Let (7, o) be an admissible cluster pais :=

{i € T :4 < min(7 U o)}, and the Schur complemeB{r, o) defined by(6.1). Let the function
¢ € SPL(T,) with ¢ = ¢ + ¢,, wherep € SP1(Ty,),supp¢ C I'; and ¢, € SP1(T,),supp ¢, C T,
with I';, I", of the form(3.6), satisfy the orthogonality

<W¢ ¢>L2(F —0 Vo e SP(T;) with suppe) C T, (6.3)
Then, there exists a matrRR of rank2, which is independent af and+, such that

Wo, ) +a(¢,1) (1, 1) = ¢" (S(r,0) + D).
(Wo.v)+a(s1)
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Proof: Given ¢, <;~5 is indeed uniquely defined: By definition 51‘ we get with the matriW from (2.7)

= (W6.0) 0 = WO+ 00),0) = (T Wiy + 6] Wiyep)

for zZ € SPY(T), suppzZ c T', and corresponding vecto,?a e Rl Due top C I, the matrixW,x
is symmetric and positive definite and therefore invertible. This leads to

¢ ¢TW’T><PW|p><p

Thus, we get for) with supp ¢ C T', and the vectoB from (2.7) that
(Wo,0) +a(3,1) (0,1) = & (Wl + BB |ro) % + &] (W + BB |,5) 9
= ¢T (WSt‘TXJ W|T><pw|p><pWSt|p><a) . (64)

With the Sherman-Morrison-Woodbury formula ([HJ13, Ch. 0.7.4]), the Schur compl&(ent) can
be written as

S(r, ‘7) = WSt‘TXU - WSt‘TXp(WSt‘poerSt’pxa
W o — (Wlrxp + aBBT |,) (Wi, + P) W™ 0, (6.5)

whereP is a rank one matrix given bf? = W|poaB]p (1+ aB]ZW\
comparing the matrices in (6.4) and (6.5), we observe that

B|,) BIYW| ;. Thus,

pxp pxp*

Wo, ) +a(é,1) (1) = ¢’ (S(r,0) + D),
(Wo.v)+a(o)

with a rank-2 matrixD. O

Now, we are able to prove the main result of this subsection, an approximation result for the Schur-
complemenS(r, o).

Theorem 6.4 Let (7, o) be ann-admissible cluster pair, sgt:= {i € Z : i < min(T U o)},
and let the Schur compleme8tr, o) be defined if6.1). Then for every > 3, there exists a rank-r
matrix S, (7, o) such that

1/(d+1)

IS(7,0) = Sy (1,0)]|ly < CLh¥3e b ,

where the constants,, b > 0 depend only of2, d, p, they-shape regularity of the quasiuniform trian-
gulation7;, andn. Furthermore, there exists a constaryy. depending additionally on the stabilization

parametera > 0 such that

IS(,0) — Sy (7,0)||y < Cse N/ (& Debr

1/(d+1) }

W,

Proof: Let Br,, Br, be bounding boxes for the clusterso satisfying (2.8) and’, C I' defined by
(3.6). Lemma 6.3 provides a representation for the Schur complement as

¢" (S(r,0) + D) v = (W5, ¢> +a<¢>, > o (6.6)
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with the following relation between the functions 5 and the vectorsy, ¢, respectively:yy =
Z“" 1 @bjxjo, where the indey, denotes thg-th basis function corresponding to the clusteand the

functlongb € SP1(Ty) is defined bw& =0+ ¢, With ¢ = Z'le ®;xj. andsupp ¢, C T, such that
SR _ ~ _ ~
<W¢,¢>L2(F) 0 Vi € SP(T,) with suppe C T, (6.7)

Our low-rank approximation of the Schur complement maBix, o) will have two ingredients:

first, based on the the techniques of Section 3 we exploit the orthogonality (6.7) to construct a low-
dimensional spacﬁ/k from which for anye, the corresponding functiop can be approximated well.
Second, we exploit that the functiahin (6.6) is supported by, and we will use Lemma 6.2.

Letd = ﬁ and Br,, B(14s)r, b€ concentric boxes. The symmetrylofleads to

<W$7¢>L2(F) o <$’ 1>L2(r) W Drz) = <¢’ 1/)>L2(F) e <$’ 1>L2(F) Wi Lo
B <$’ W1/}>L2(B(1+5)Raﬂl"p) * <(Z’ Ww>L2(F\B(1+5)RU) e <$’ 1>L2(F) WDy - (68)

First, we treat the first term on the right-hand side of (6.8). In view of the symmetry property
S(r,0) = S(o,7)T, we may assume for approximation purposes thain B, < diam Bp_, i.e
min{diam(Bp,),diam(Bg,)} = vdR,.Next, the choice of and the admissibility condition (2.8)
imply

dist(B(1126)r, » Br,) > dist(Br,, Br,) — VA6 R, > VdR,(n~* - §) > 0.
Therefore, we havé?\Bum)Rgmpp = @plB(25r, N, @Nd the orthogonality (6.7) holds on the box
B(1126)R, - Thus, by definition ofH}, o, we havef(gg € Hn,o(B+26)r,> L, 0)-

As a consequence Lemma 3.10 can be applied to the potéﬁﬁad/ith R := (1+ )R, andk :=

z}m = 1+6 Note that(1 + /4;)(1 +6) =1+25andl +x~! = 3 +7. Hence, we get a low dimensional
spacal; of dimensiondim Wy, < Cyim(3+1)%q~ 2k =: r, and the best approximatigh= Il qs

to gZ) from the spacéVk satisfies

1/(d+1)

~ = < RhV/2 ka ‘H < p1/2p-bir ‘ ‘
qu ¢‘ L2(Ba14s)r, o) ¢ (14+28)R ¢ ¢ HY2(T
where we defined; := Cll?((fll) q¥/(@+1) (3 + )=d/(1+d) > ( to obtaing” = e~""/“*" Therefore,
we get o
o— W > < 1 /2gmbart/ (D ( ‘ W 6.9
)<¢ % W L2(B(145)Rre"Tp) ¢ H/2(T H wHLQ(F (6.9)

The ellipticity of the hyper-singular integral operator on the sciega T, Supp(gg— ¢) = supp ¢, C
T',, and the orthogonality (6.7) lead to

< (Wé-a)o-9), = (We.d-0)
< W ollsray |86 gy S M0l |69

-,

H1/2
(6.10)

H/2(D H1/2(T) :
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Thus, with the triangle inequality, (6.10), the stabilityléT: H(I') — L?(I'), and the inverse estimate
(3.9), we can estimate (6.9) by

K%— 6. W)

< pl/2gmbrt/eD <H5_ <Z>‘

-+ ||<z>HH1/2<F>) Wl oy

—9 _ppl/(d+1)
S h%e ’ ”¢HL2(F) Hmer)~

For the second term in (6.8), we exploit the asymptotic smoothness of the Green’s fdrctionFirst,
we mention a standard device in connection with the hyper-singular integral operator, namely, it can be
represented in terms of the simple-layer operator (see, e.g., [Ste08, Sec. 6]):

<<Z, sz> = <cur1p<g, chrlr¢>, (6.11)

where for a scalar function defined onI’, a lifting operatorZ, and the outer normal vecter, the
surface curl is defined as

L2(B(148) R, p) H/2(T

curlpy = n x 4i(V L), for d = 3,
curlpy = n -4V Lv), VTv = (00, —01v)T for d = 2.
The representation (6.11) is necessary here, since the kernel of the hyper-singular integral operator is
not asymptotically smooth on non-smooth surfaes
Now, Lemma 6.2 can be applied witBy = Bg, andDx = I' \ B(144)r,, Where the choice of
implies

diSt(By, Dx) > diam(By). (6.12)

2v/d(1 + 1)
Therefore, we get an approximatioh (z,y) = >_;_; g1.i(x)g2.i(y) such that

1
.) — N <
1G(z,-) — G (, )HL‘X’(BRU) ~ dist({l’},BRg)d_Qe

—bort/d Ve el \ B(1+5)R0; (613)

here, the constart, > 0 depends only od andn. As a consequence of (6.12) and (6.13), the rank-r
operatori¥,. given by

57 Wrw ;:/ curl 5 xr / GT €,y curl w Y ds. ds
< >L2(F\B(1+5)Ra) \B(116)ry ro(x) B, Al (, y)curlpdp(y)dsyds,

satisfies withB := (I' \ B(144)r,) X (Bg, NT)

oy W, < lnd /meas(I' N B G -G, 1
‘<¢>(W 44 )¢>L2(F\B(1+§)Rﬂ) S chr F¢HL2(F) eas(I' N RU)H Loo(B) [eurlrd)|[ 2y
_ _ _ porl/d || 7
< RTR2SEARE D 2ehe ¢‘ HAT) 191 L2 (ry

—9 _popl/d
S h et ||¢HL2(F) ||¢||L2(F)’

where the last two inequalities follow from the inverse estimate Lemma 3.5, the stability estimate (6.10)

for the mappingp — ¢, the assumptiod < 3 as well asR, < ndiam(f2), and the choicé =

T+n
Here, the hidden constant additionally dependg.on !
Since the mapping

(6, ) (6, W) + (6. W)

L2(B(14+6)ry Tp) L2(T\B(145)Rs)
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defines a bounded bilinear form @i (I"), there exists a linear operatidr, : L*(I') — L2(I") such that

R P s W P S

2(B14+6)reMTp) L2(T\B(146)R,)

and the dimension of the rangeﬁr is bounded byr.
Therefore, we get

‘<W$7¢>L2(F) B <WT¢’¢>L2(F)

with b := min{by, b2 }. This leads to a matrig:(r, o) of rank2r + 1 such that

o _ppl/(d+1)
Sh e? H¢HL2(F) kuLQ(I‘) ’

HS(Tg 0') +D —§(T7 O')H = sup < Chd,gefbrl/(d-‘-l)’
2 peRI7 peRll R IPY IR P

[#7(S(r,0) + D — S, (r.0))¥

where we have used (2.2). Consequently we can find a nitfix o) := é:(T, o) — D of rank2r + 3
such that .

1S(7,0) = Sy(7,0)|, < Chi=3ebr
The estimatqlwlTHz < h~%+1 (with implied constant depending ey from [Ste08, Lemma 12.9] and
h ~ N~1/(@=1) finish the proof. O

6.2 Existence oft{-Cholesky decomposition

In this subsection, we will use the approximation of the Schur complement from the previous section
to prove the existence of an (approximat¢)Cholesky decomposition. We start with a hierarchical
relation of the Schur complemerfigr, 7).

The Schur complemeng&(r, 7) for a blockr € Tz can be derived from the Schur complements of its
sonsry, T by

. S(Tl,Tl) S(Tl,TQ)
S(r.7) = <S(7'2,7'1) S(19,m2) + S(TQ,Tl)S(Tl,Tl)_IS(Tl,TQ)) ’

A proof of this relation can be found in [Beb07, Lemma 3.1]. One should note that the proof does not
use any properties of the matiW** other than invertibility and existence of a Cholesky decomposition.
Moreover, we have by definition &(r, 7) thatS(Z,Z) = W*t,

If 7is a leaf, we get the Cholesky decompositiorS¢f, 7) by the classical Cholesky decomposition,
which exists sincdV*! has a Cholesky decompositionrifs not a leaf, we use the hierarchical relation
of the Schur complements to define a Cholesky decomposition of the Schur compSmentby

._ C(m) 0
Cr) = (sm,n)(cm)T)—l C(Tz)> ’ (6.14)

with S(7,71) = C(m1)C(m1)7, S(m2, ) = C(m2)C(m2)" and indeed ge$(r,7) = C(7)C(7)".

Moreover, the uniqueness of the Cholesky decompositidWef implies that due taCC”T = W*t =
S(Z,T) = C(Z)C(Z)", we haveC = C(T).
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The existence of the inver€&(; ) ~! follows from the representation (6.14) by induction over the levels,
since on a leaf the existence is clear and the matfit{es are block triangular matrices. Consequently,
the inverse oS (7, 7) exists.

Moreover, as shown in [GKLB09, Lemma 22] in the contexi.@f-factorizations instead of Cholesky
decompositions, the restriction of the lower triangular St 1) (C(m1)”)~! of the matrixC(7) to
a subblockr, x 7{ with 7/ a son ofr; satisfies

(S(72, 7)(C(r)") ™) |ryry = S(m5, 7)(C(r)T) 7 (6.15)

The following lemma shows that the spectral norm of the inv€tée) ~! can be bounded by the norm
of the inverseC(Z) L.

Lemma 6.5 For 7 € Tz, let C(7) be given by(6.14) Then,
max HC(T)_1H2 = HC(I)_1H2,

TeT1
Proof: With the block structure of (6.14), we get the inverse

C(T)_l _ ( C(Tl)_l 0 >
—C(2)7'S(12, 71)(C(m)")'C(m)™! C(r2)™')"
So, we get by choosing such thatk; = 0 for i € 7 that
lc@) = sup o fIC() x|, = sup o [[C(r) ], = [[Clm) -

x€RITl ||z ,=1 x€RIT2l ||z||,=1

The same argument fgiC()~!)” leads to
le@ ™, = | ™|, = llcE ™,

Thus, we have|C(7)!||, > max;—1 ||C(n:)7!||, and as a consequenaexx,cr, |C(7) ||, =
HC(I)AHQ' 0

We are now in position to prove Theorem 6.1

Proof of Theorem 6.1: Proof of (i): In the following, we show that every admissible subblack o

of C(Z), recursively defined by (6.14), has a rankpproximation. Since an admissible block of the
lower triangular part o£(Z) has to be a subblock of a mati&(7’) for somer’ € Tz, we get in view

of (6.15) thatC(Z)|,x» = S(7,0)(C(c)T)~1. Theorem 6.4 provides a rankapproximatiorS, (7, o)

to S(7, o). Therefore, we can estimate

|C@)lrxa—S:(7,0)(C(0)") |, = [[(S(r,0) = Si(7,0)) (C(0)) 7,
< CSCNQ/(d_l)e_bT1/<dH> H(C(U/)T)_l“Q HWStHQ'

Since S, (7,0)(C(a)T)~! is a rank-rmatrix for eachn-admissible cluster paifr, o), we immedi-
ately get ant{-matrix approximationCy, of the Cholesky factoC(Z) = C. With Lemma 4.2 and
Lemma 6.5, we get

||C . C'HHQ < CSCCSPNQ/(d—l)depth(TI)e—brl/(d+1) HC_1H2 HWst’

2 )
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and with||[W=t||, = || C||3, we conclude the proof of ().

Proof of (ii): SinceW*t = CCT, the triangle inequality leads to

|W** — CyCF,

IN

I©— Calla €, + &7 ~ CE, 1O, + 1€ — Gl &7 ~ T,
QCSCCspHQ(C)depth(Tz)N2/(d_1)€_b7’1/(d+1> HWStHQ
1/(d+1) HWStHg

iz

I

IN

+£2(C)2C2.C2 depth(Tz )2 N/ (A1) =2

sc~'sp

and the equalityso (W) = ko (C)?2 finishes the proof of (ii).
Proof of (iii): The approximatd.U-factorsLy, Uy can be constructed froidy by

_ Cxn 0 CHT 0 - CHCHT B
o (3 _h) (-8 D). e
wheref € RY solvesCy £ = B, and the error estimate follows from (ii). O

7 Numerical Examples

In this section, we present some numerical examples in dimemrsior3 to illustrate the theoretical
estimates derived in the previous sections. Further numerical examplest&imoatrix approximation

of inverse BEM matrices and black-box preconditioning with?&t.U decomposition can be found,
e.g., in[Gra0l, Beb05b, Gra05pBLOb, FMP13a], where the focus is, however, on the weakly-singular
integral operator.

With the choicen = 2 for the admissibility parameter in (2.8), the clustering is done by the standard
geometric clustering algorithm, i.e., by choosing axis-parallel bounding boxes of minimal volume and
splitting these bounding boxes in half across the largest face until they are admissible or contain less
degrees of freedom tharjeas, Which we choose asieas = 50 for our computations. An approximation

to the inverse Galerkin matrix is computed by using the C++-software package BEM++"[EBA

The H-matrices are assembled using ACA and the C++-library AHMED [Beb12].

Our numerical experiments are performed for the Galerkin discretization of the stabilized hyper-
singular integral operatdWs' as described in Section 5 with = 1. The geometry is the crankshaft
generated by NETGEN [Sch97] visualized in Figure 1. We employ a fixed triangulation of the
crankshaft consisting &f, 393 nodes and, 992 elements.

Figure 1:Crankshaft domain
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Example 7.1 The numerical calculations are performed for the polynomial degree 2, resulting

in N = 13,986 degrees of freedom. The largest blockWf;, has a size ol, 7462. In Figure 2, we
compare the decrease of the upper boﬁhc—# WStWHH2 of the relative error with the increase of

the block-rank. Figure 3 shows the storage requirement for the compitedtrix approximation in

MB. Storing the dense matrix would ne&d{92 MB. We observe exponential convergence in the block
rank, even with a convergence behaviap(—br'/?), which is faster than the rate ekp(—br'/4)
guaranteed by Theorem 2.6. Moreover, we also observe exponential convergence of the error compared

to the increase of required memory. .

10° 10°
107 107}

§ 10 § 107

S S

L w,
10’6 10
10’3 ----exp(—242r1/2) \\\ 1078 r ----exp(—lﬁrl/z) \‘s

——fr-wertwa, —— - wetwad
250 300 350 400 450 500 550 100 200 300 400 500
Block rank r Memory (MB)

Figure 2:Exponential convergence in block rank Figure 3:Exponential convergence in memory required

Example 7.2 We consider the cage= 3, which leads taV = 31, 466 degrees of freedom. The largest
block of W4 has a size 08,9332, Storing the dense matrix would ne&ds08 MB. We observe in

10° — : : : — 10°
107} 102t
2107 2107
L L
107 S 10 R
----exp(fl.’?rl/z) AR ----exp(70A8r1/2) AR
o Tl wewad, - e i S
10°E ‘ ‘ ‘ ‘ BN 107 ‘ ‘ ‘ e
450 500 550 600 650 700 750 700 900 1100, 1300 1500 1700
Block rank r Memory (MB)
Figure 4:Exponential convergence in block rank Figure 5:Exponential convergence in memory required
Figure 4 exponential convergence both in the block rank and in the memory. "
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