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FEM-BEM COUPLINGS WITHOUT STABILIZATION

MICHAEL FEISCHL, THOMAS FÜHRER, MICHAEL KARKULIK,
JENS M. MELENK, AND DIRK PRAETORIUS

We consider a nonlinear interface problem with the Laplacian, which can
equivalently be stated via various FEM-BEM coupling methods. We treat
the symmetric coupling [4, 8], the Johnson-Nédélec coupling [9, 16] as well as
the one-equation Bielak-MacCamy coupling [2]. Due to constant functions in
the kernel of these equations, these formulations are not elliptic and unique
solvability cannot be shown directly. Available results concerning solvability
of these methods include the following:

• For the symmetric coupling and certain nonlinear problems with
additional Dirichlet boundary, Gatica & Hsiao [6] proved unique
solvability.

• For the symmetric coupling and certain nonlinear problems, Cars-
tensen & Stephan [3] proved unique solvability for sufficiently fine
meshes, but without an additional interior Dirichlet boundary.

• For the Johnson-Nédélec coupling and the linear Laplace and Yukawa
transmission problem, Sayas [11] proved unique solvability on poly-
hedral boundaries, whereas the original work [9] relied on the Fred-
holm alternative and hence smooth coupling boundaries.

• For the Johnson-Nédélec coupling and a general class of linear prob-
lems, Steinbach [13] introduced a stabilization to prove ellipticity of
the stabilized coupling equations, cf. also [10]. His approach, how-
ever, requires pre- and postprocessing steps which involve the numer-
ical solution of an additional integral equation with the simple-layer
potential.

We present a framework based on implicit stabilization to prove well-
posedness of nonlinear FEM-BEM coupling formulations [1]. We build on
the works of Sayas [11] and Steinbach [13] and introduce stabilized cou-
pling equations which are uniquely solvable and have the same solution as
the (original) continuous resp. discrete coupling equations. With this the-
oretic auxiliary problem, we obtain unique solvability of the original (non-
stabilized) coupling equations. In particular, we have to implement and
solve the original coupling equations only, and we avoid the solution of any
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additional equation and corresponding pre- and postprocessing steps as well
as any assumption on the mesh-size. Our approach also applies to nonlinear
elasticity [5].

1. Model problem

Let Ω ⊆ R
d for d = 2, 3 be a connected, bounded Lipschitz domain with

polyhedral boundary Γ := ∂Ω. We refer to Ω as interior domain and to
the unbounded domain Ωext := R

d\Ω as exterior domain. For given data

f ∈ H1(Ω), u0 ∈ H1/2(Γ), φ0 ∈ H−1/2(Γ), our model problem then reads:

− div(A∇u) = f in Ω,(1a)

−∆uext = 0 in Ωext,(1b)

u− uext = u0 on Γ,(1c)

(A∇u−∇uext) · n = φ0 on Γ,(1d)

uext(x) = O(1/|x|) for |x| → ∞.(1e)

Here, n is the outer normal vector on Γ. Let 〈· , ·〉Ω denote the L2(Ω) scalar
product and let 〈· , ·〉Γ denote the L2(Γ) scalar product which is continu-

ously extended to the duality bracket between H−1/2(Γ) and H1/2(Γ). We
assume A : R

d → R
d to be strongly monotone (2a) as well as Lipschitz

continuous (2b) with constants cmon, clip > 0, i.e.

〈A∇u−A∇v , ∇u−∇v〉Ω ≥ cmon‖∇u−∇v‖2L2(Ω)(2a)

as well as

‖A∇u−A∇v‖2L2(Ω) ≤ clip‖∇u−∇v‖2L2(Ω) for all u, v ∈ H1(Ω).(2b)

In 2D, the compatibility condition

〈f , 1〉Ω + 〈φ0 , 1〉Γ = 0(3)

has to be imposed on the data to ensure the radiation condition (1e).
Throughout, K denotes the double-layer potential with adjoint K ′, V

denotes the simple-layer potential, and W the hypersingular integral opera-
tor. Moreover, we assume diam(Ω) < 1 to guarantee ellipticity 〈φ , V φ〉Γ ≥
‖φ‖H−1/2(Γ) of the simple-layer potential.

Under these assumptions, problem (1) allows for a unique solution (u, uext) ∈
H1(Ω)×H1

loc(Ω
ext) with finite energy ‖∇uext‖L2(Ωext) <∞, see e.g. [3].

2. Symmetric coupling

As shown in e.g. [3, 6], the nonlinear transmission problem (1) can equiva-
lently be stated via the symmetric coupling [4, 8], which reads in variational

formulation as follows: Find u = (u, φ) ∈ H := H1(Ω)×H−1/2(Γ) such that

b(u,v) = F (v) holds for all v ∈ H,(4)
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where the mapping b : H×H → R and the linear functional F : H → R are
defined for all u = (u, φ),v = (v, ψ) ∈ H via

b(u,v) := 〈A∇u , ∇v〉Ω + 〈(K ′ − 1
2)φ , v〉Γ + 〈Wu , v〉Γ

+ 〈ψ , (12 −K)u〉Γ + 〈ψ , V φ〉Γ,
(5a)

F (v) := 〈f , v〉Ω + 〈φ0 +Wu0 , v〉Γ + 〈ψ , (12 −K)u0〉Γ(5b)

By taking (u, φ) = (1, 0) = (v, ψ) in (5a), we see that b((1, 0), (1, 0)) = 0
and thus constant functions are in the kernel of the mapping u 7→ b(u,u).
Therefore, b(·, ·) is not elliptic and solvability of (4) cannot be shown directly
by applying well-known PDE theory, such as the Lax-Milgram lemma for
linear problems.

We stress that clearly (4) is uniquely solvable up to a constant in the
interior domain Ω. Early works, including [4, 8] as well as [6], use interior
Dirichlet boundaries to tackle this constant in Ω. The very first work which
circumvented this technical restriction was [3]. However, the latter work
requires the mesh-size to be sufficiently fine.

In the following, we introduce the concept of implicit stabilization and
show that the second equation of (4), i.e. b((u, φ), (0, ψ)) = F ((0, ψ)), al-
ready fixes the constant in the interior domain. Unfortunately, this informa-
tion is lost when trying to prove ellipticity of b(·, ·), but can be reconstructed
by adding appropriate stabilization terms to the mapping b(·, ·). This leads
to a modified (or stabilized) formulation that admits a unique solution.
Moreover, Lemma 2.3 states equivalence of this modified problem to (4) in
the sense that both problems have the same solution even in the discrete
formulation.

For the remainder, let Hh = Xh × Yh ⊆ H be a closed subspace of H. In
particular, Hh = H is a valid choice. We stress that H, associated with the
natural product norm

‖u‖2H = ‖u‖2H1(Ω) + ‖φ‖2
H−1/2(Γ)

for all u = (u, φ) ∈ H,

becomes a Hilbert space. The following theorem from [1] shows solvability
of the continuous formulation (4) as well as of its Galerkin discretization.

Theorem 2.1. The symmetric coupling (4) admits a unique solution u ∈ H.
Moreover, assume that

∃ξ ∈ Yh 〈ξ , 1〉Γ 6= 0.(6)

Then, the discretized equations

b(uh,vh) = F (vh) for all vh ∈ Hh(7)

also admit a unique solution uh ∈ Hh. There holds the Céa-type estimate

‖u− uh‖H ≤ C min
vh∈Hh

‖u− vh‖H,(8)

where the constant C > 0 depends only on A,Ω, and ξ ∈ Yh.



4 M. FEISCHL, T. FÜHRER, M. KARKULIK, J.M. MELENK, AND D. PRAETORIUS

Remark 2.2. (i) For a sequence (Yh)h>0 of closed subspaces of H−1/2(Γ)
with

∃ξ ∈
⋂

h>0

Yh 〈ξ , 1〉Γ 6= 0,(9)

the constant in (8) is independent of h > 0.
(ii) For an arbitrary sequence (Eh)h>0 of regular triangulations and Yh =
Pp(Eh) being the space of Eh-piecewise polynomials of degree p ≥ 0, ξ = 1 ∈
Yh satisfies (9).

Note that the following lemma from [1] holds for arbitrary ξ ∈ Yh. But
to prove solvability in Theorem 2.1 we have to impose the assumption (6),
which also appears in [11].

Lemma 2.3. For fixed ξ ∈ Yh, define

b̃(uh,vh) := b(uh,vh)+〈ξ , (12−K)uh+V φh〉Γ〈ξ , (
1
2−K)vh+V ψh〉Γ(10a)

as well as

F̃ (vh) := F (vh) + 〈ξ , (12 −K)u0〉〈ξ , (
1
2 −K)vh + V ψh〉Γ(10b)

for all uh = (uh, φh),vh = (vh, ψh) ∈ Hh. Then, a function uh ∈ Hh

solves (7) if and only if uh solves

b̃(uh,vh) = F̃ (vh) for all v ∈ Hh.(11)

�

The following lemma is used to prove Theorem 2.1 and essentially states

that the stabilization terms added to b(·, ·) to obtain b̃(·, ·) can be used to
define an equivalent norm on H.

Lemma 2.4. Let the linear functional L : H → R fulfill

L((1, 0)) 6= 0.(12)

Then, |||u|||2 := ‖∇u‖2L2(Ω)+〈φ , V φ〉Γ+|L(u)|2 for u = (u, φ) ∈ H defines an

equivalent norm ||| · ||| ≃ ‖·‖H on H. Moreover, L(v) := 〈ξ , (12−K)v+V ψ〉Γ
for v = (v, ψ) ∈ H satisfies (12) if ξ ∈ Yh fulfills (6). �

Sketch of proof of Theorem 2.1. We consider the operator B̃ : H → H∗ as-

sociated to the mapping b̃(·, ·). With Lemma 2.4, one can show that B̃
is strongly monotone and Lipschitz continuous. Therefore, standard argu-
ments [15] prove the assertions of Theorem 2.1 for (7) replaced by (11). The
equivalence of Lemma 2.3 then concludes the proof. �
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3. Johnson-Nédélec coupling

The nonlinear transmission problem (1) can also be reformulated by
means of the Johnson-Nédélec coupling [9, 16]. It reads as (4), where the
mapping b : H × H → R and the linear functional F : H → R are now
defined for all u = (u, φ),v = (v, ψ) ∈ H via

b(u,v) := 〈A∇u , ∇v〉Ω − 〈φ , v〉Γ + 〈ψ , (12 −K)u〉Γ + 〈ψ , V φ〉Γ,(13a)

F (v) := 〈f , v〉Ω + 〈φ0 , v〉Γ + 〈ψ , (12 −K)u0〉Γ(13b)

As in Section 2, we infer that constant functions lie in the kernel of the
mapping u 7→ b(u,u). Thus, solvability cannot be shown directly. Still,
Theorem 2.3 holds essentially true for the Johnson-Nédélec coupling [1].

Theorem 3.1. Assume that cmon > cK/4, where cmon > 0 denotes the
monotonicity constant (2a) of A and 0 < cK < 1 denotes the contraction
constant of the double-layer potential [12]. Then, the assertions of Theo-
rem 2.1 hold true for the Johnson-Nédélec coupling. �

Remark 3.2. (i) The very same results as for the Johnson-Nédélec coupling
also hold for the non-symmetric Bielak-MacCamy one-equation coupling [1].
(ii) In [10], it is proven that the assumption cmon > cK/4 is not only suffi-
cient but also necessary to prove ellipticity of the bilinear form associated
to the stabilized formulation of Steinbach [13]. Nevertheless, numerical ex-
periments in [1] indicate that the assumption cmon > cK/4 is not necessary
for existence and uniqueness of discrete solutions of the Johnson-Nédélec
coupling.

4. Extensions

The recent work [5] presents how to transfer the ideas of implicit stabiliza-
tion developed for nonlinear Laplace transmission problems [1] to nonlinear
elasticity transmission problems. As in [1], we treat the symmetric coupling
as well as the non-symmetric one-equation couplings of Johnson-Nédélec and
Bielak-MacCamy type. In contrast to Laplace problems, one faces the prob-
lem that the kernel of the Lamé operator contains the space of rigid body
motions R, with dim(R) = 3 in 2D and dim(R) = 6 in 3D. The stabilization
process then becomes more complicated, since not only constant functions
have to be fixed in the interior domain. However,under the assumption

∀r ∈ R\{0}∃ξ ∈ Yh ∩ L
2(Γ) 〈ξ , r〉Γ 6= 0(14)

on the discrete space Yh, which is the extension of (6) to elasticity problems,
similar results as in Sections 2–3 hold true for nonlinear elasticity problems.
It is shown in [5] that assumption (14) is satisfied for P0(Eh) ⊆ Yh and
regular triangulations Eh of the boundary into plane surface triangles

Unlike [7], we prove that interior Dirichlet boundaries can be avoided to
fix the rigid body motions in the interior domain. Moreover, the explicit
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stabilization as recently proposed in [14] is avoided by our analysis [5], i.e.
we have to implement and solve the original coupling equations only.
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