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A Numerical Study of Averaging Error
Indicators in p-FEM

Philipp Dorsek and J. Markus Melenk

Abstract We consider the averaging error indicator in the context of the
p-FEM. We explain how a proof of reliability and efficiency might look, and
why the error indicator will behave differently than for low order methods.
Using two model problems, one with nonsmooth, the other one with smooth
solution, we identify appropriate spaces for the averaged fluxes in order to
obtain reasonable reliability and efficiency bounds on the averaging error
indicator for p-FEM. In particular, averaging over two neighbouring elements
using global polynomials of the same polynomial degree as the finite element
solution leads to reliability and efficiency up to a factor of order O(p).

1.1 Introduction

The averaging error indicator, also called gradient recovery, superconvergent
patch recovery, or Zienkiewicz-Zhu error indicator, going back originally to
[17], is a widely used method for gauging errors in finite element methods
and steering adaptive mesh refinements. Its main advantage is that it is
very simple to compute, requiring only a local averaging of the numerical
fluxes. A mathematical analysis in the low order context was performed in
[16, 14, 3, 1, 6, 15, 11, 2]. In [7], the proof of reliability was reduced to the
existence of approximation operators with certain additional orthogonality
properties, and such approximation operators were then constructed for ar-
bitrary, but fixed polynomial degree. It is also stated in [7, p. 991] that the
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numerical behaviour observed in an hp-adaptive strategy “suggests that those
constants depend only moderately on p”, where the constants referred to are
the reliability and efficiency constants of the averaging error indicator.

It is therefore our aim in this paper to analyse whether the proof for relia-
bility and efficiency in [7] can be carried over to the p-FEM. A counting argu-
ment on the degrees of freedom shows quickly that the usual good efficiency
estimate (efficiency with constant 1 up to a term of higher order) cannot be
expected in the high order setting at least for algebraic rates of convergence,
as this would require too many degrees of freedom in the approximation space
for the averaged fluxes. Hence, we perform numerical computations for two
model problems, one with nonsmooth, the other with smooth solution. Our
results suggest that increasing the polynomial degree by one, as is commonly
done in the low order context, leads to reasonable results if the averaging is
performed over four quadrilateral elements. However, in this case, we observe
the p-gap, similarly as in the residual error indicator due to [8, 12], which
can be removed using equilibration techniques, see [9].

1.2 The averaging error indicator

Let 2 C R? d = 2,3, be a bounded polygonal domain, and f € H™1(£2),
where H71(£2) = (H}(£2))* are the usual Sobolev spaces. We denote the L2
norm by ||ullo := ([, u*dz) '/ and the H' seminorm by |ul :== (fQ|Vu|2dz)l/2,
where || is the Euclidean norm. Consider for simplicity the Poisson problem
with homogeneous Dirichlet boundary conditions,

—Au=f inf2, u=0 on J; (1.1)

the analysis of more general boundary conditions is also possible. Defining
V = H}(92), its weak formulation reads: find u € V such that

a(u,v) =£L(v) forallveV, (1.2)

with
a(w,v) := / Vw-Voudz and £(v):= [ fodz. (1.3)
0 Q
We approximate u from the conforming hp-finite element space Vy C V,
i.e., with a triangulation Tx of §2 into quadrilaterals and a vector (pn 7)reTy
of polynomial degrees, we consider

VN = {’UEV:’U|T€QPN’T}, (1.4)

where QF is the usual space of tensor product polynomials of degree k in
every component. Then, uy € Vi is defined through
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a(uN,UN) = f(’UN) for all vy € V. (15)

Let Xy C H(V-,2) := {7 € (L3(22))?: V-7 € L*(2)}, then the global error
indicator is defined by

NN = TNIQENHTN — Vun|o- (1.6)

Let oy € XN denote the uniquely determined argument where the above
infimum is attained. If Xy is finite-dimensional, it is clear that this quantity
can be calculated by solving a system of linear equations.

Proposition 1 (Reliability). Let In: V — Vi be a linear operator with
[Inv)y < Cnlv|y  forallveV. (1.7)

Assume that Vu € H(V-,$2). Then, the error indicator n defined in (1.6)
satisfies

fn(f +V-on)(v— INv)dz.

|lu—un|1 < (14 Cn)nn +  sup (1.8)
veV\{0} [v|a
Proof. As oy € X'y C H(V-, £2), the Galerkin orthogonality yields
- - 1
|u — UN|1 = sup M = sup a(u un, v Nv) (19)
veV\{0} vl veV\ {0} vl
+ V- -1 d
— swp Jo(f on)(v — Inv)dz
veV\{0} [v]1
Jolon = Vuy) - V(v — Iyv)dz
vl
f+V-on)(v—Iyv)dz
< sup fQ( I ) + (1 4+ Cn)llon — Vunl]lo-
veV\{0} [v|a

This proves the claimed estimate. 0O

Remark 1. The above result suggests to look for a linear operator Iny: V —
Vn such that, ideally, its norm in V is bounded independently of N and,
additionally, it has the orthogonality property

/ wy(w —Iyv)de =0 for allv eV and wy € Wy, (1.10)
Q

where Wy is a sufficiently large discrete space satisfying V - Xy C Wiy. In
this case, we observe

/ V-on(v—Inv)dz =0 forallveV (1.11)
o)
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and hence

lu —unls < Cnn + CVNf ILf — fwllo, (1.12)

inf
NEWN
i.e., reliability with a generic constant. Here, vy is defined by

lv = Invllo

YN = sup (1.13)

veV\{0} lvl1

and usually behaves like yn ~ h Np&1 on quasi-uniform meshes and poly-
nomial degree distributions, i.e., the last term in (1.12) is of higher order
compared to |u —uy|p if Wy is large enough.

Remark 2. If the polynomial degree is fixed and the mesh is refined, an oper-
ator Iy as required above is constructed in [7]. Their construction, however,
does not generalise directly to the p-version.

In order to obtain an operator Iy for the p-version, a first step would be to
let Iy be the L2-projection operator onto QPV, global polynomials of degree
PN, if we assume that Wy = QPN consists of global polynomials, as well. This
assumption makes sense in a pure p-version context on a reasonably coarse
mesh. If we ignore the issue of boundary conditions, e.g., by considering a
pure Neumann problem, [10, Theorem 2.4] yields that on a quasi-uniform
mesh with uniform polynomial degree,

| Ixv|1 < Clpy +1D)Y2 ol for all v € HY(£2); (1.14)

see also [13, Theorem 1.3] for a corresponding result for triangular and tetra-
hedral meshes. In this case, we obtain

/ wy(w —Iyv)de =0 forallv eV and wy € Wy (1.15)
Q

Choosing Xy = QE~n+Dxpn 5 Qpy*(Pn+1) e observe V - ¥y € Wiy, and
hence Proposition 1 yields

u—unli < Clox + 1)y + Cpy'inf |If = fllo (1.16)

f
NEWN
Proposition 2 (Efficiency). The error indicator n defined in (1.6) satisfies

v <|u—unl|i+ inf |7y — Vulo. (1.17)
TNEXN
Proof. We see that

lon —Vunllo £ inf [[7v—Vun|o < lu—unli+ inf |7x5 —Vaulo, (1.18)
TNEXN TNEXN

from which the claim follows. O
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Remark 8. In order to ensure efficiency of the error indicator, the gradient L2
projection error

vi=_inf flry = Vulo (1.19)
needs to be small. In the h-version context, [7] shows that {x is indeed of
higher order if local averaging over edge patches is done using polynomials
of degree py. It is unclear whether this is possible when averaging globally,
see [7, Remark 4.3].

For the p-version, we cannot hope that &y is of higher order: if uy is
approximated using polynomials of degree p, then, in order that £y is of
higher order, we need that Xy consists of polynomials of degree p'*t® for
some « > 0. But this is not possible if we simultaneously want to ensure
existence of an operator I as outlined in Remark 1, as in this case dim Xy
grows faster than dim Vy, which is incompatible with Iny: V — Vi being
orthogonal to Wy D V - X'x. However, the following argument lets us hope
for efficiency, at least if the convergence is only algebraic and we are prepared
to accept a p-gap. Let us restrict ourselves for ease of exposition to {2 being
a square and the right-hand side being smooth; general polygonal domains
can be treated in a similar fashion. Then, [4, Theorem 2.7 and 2.10] yield the
sharp convergence bounds

c(l+py) " <lu—unhi <C(L+pn)~" (1.20)

Similarly, as the gradient of a singularity function is again a singularity func-
tion, we obtain, assuming QPY¥ C Xy, from [4, Theorem 2.7] that

inf ||7n — Vullo < C(1 +pn)~2. (1.21)
TNEXN

Together with (1.17), this implies

v < C(1+pn)|lu—unli. (1.22)

1.3 Numerical examples

For our numerical computations, we consider the square domain §2 = (0, 7)?
and solve the homogeneous Dirichlet problem

—Au=f inf2, u=0 on 9L, (1.23)

with the two right-hand sides f =1 and f(z,y) = 2sin(z) sin(y). In the first
case, the solution is known in terms of a Fourier series, and it is in H37¢(42)
for all € > 0. As the singularities are in the corners of the domain and can
therefore be described using the corresponding singularity functions, the rate
of convergence is known to be p=%, see [5, Section 4.2], and this is confirmed



6 Philipp Dérsek and J. Markus Melenk

1 1
0.1
0.1
0.01
0.001 k
0.01 ",
0.0001
g 000 E 0
le-06
0.0001
1e-07
< le-08
le-05
le-09
le-06 le-10
10 2
polynomial degree polynomial degree
(a) Algebraic rate, two elements (b) Exponential rate, two elements

Fig. 1.1 Errors and error indicators, two elements

001

i
a8 0.0001 B,

o .

x A, a, A, a bl fe0s

- R e LN 106 g
le07 o

o teos

(a) Algebraic rate (b) Exponential rate

Fig. 1.2 Gradient L2 projection error £ relative to Galerkin error, two elements.

10 100

001

v . . i
v
vV
0.01 L 0.001
e =
S P
(a) Algebraic rate (b) Exponential rate

Fig. 1.3 Effectivity indices, two elements



1 A Numerical Study of Averaging Error Indicators in p-FEM 7

in Figures 1.1 and 1.4. In the second case, the solution u(z,y) = sin(x) sin(y)
is analytic, hence the convergence is exponential, and this is also confirmed
in Figures 1.1 and 1.4.

We consider two triangulations, one with two quadrilateral elements, 72 =
{(0,7/2) x (0,7), (7/2,7) x (0,7)}, and the second with four elements, 74 =
{(0,7/2) x (0,7/2), (7/2,7) x (0,7/2),(0,7/2) x (7/2,7), (7/2,7) x (7/2,7)}.

The finite element space is
VI ={veVivp cQPN for Te T}, (=24, (1.24)

and the approximation space for the averaged fluxes is chosen to be global
polynomials. More precisely, we set Xy := QINTLIN x QV-aN+1 with Q192
the space of tensor product polynomials of degree ¢; in the first and g2 in
the second component, i.e., we average the numerical flux over two or four
elements using Raviart-Thomas elements. Given py, we consider for gy the
values py — 1, pn, py + 1 and 2pn. A good choice for ¢ should ensure that
the effectivity indices do not decay too quickly in p, and that the gradient L2
projection error in (1.17) is at least not more important than the error.

0.001
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le-05

polynomial degree polynomial degree
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Fig. 1.4 Errors and error indicators, four elements

Our experiments show that the gradient L2 projection error éx of Vu
from Xy, see (1.19), is of higher order relative to the Galerkin error only
for exponentially decaying error, and even then only for ¢y = 2py. For two
elements, the choices gy = pny and gy = py + 1 at least lead to £x being
not larger than the Galerkin error. When averaging over four elements, even
that is only achieved using gy = 2py.

Let us now turn to the effectivity indices. For two elements, the most
reasonable choice is given by gy = py; it leads to a reliable and efficient error
indicator in the nonsmooth model problem with effectivity indices varying
between 0.2 and 0.4, and only to a moderate loss of reliability (of the order
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O(p)) in the smooth model problem. Setting ¢y = py + 1 is adequate in the
nonsmooth model problem, but the loss of reliability in the smooth model
problem is pronounced. For four elements, both choices gy = py and gy =
pn + 1 are reliable in both model problems, but lead to a loss of efficiency (of
the order O(p'3%) and O(p®8?), respectively). The choice gy = 2py, finally,
leads to a slight loss in reliability in the nonsmooth model problem (of the
order O(p°-3%)), and is reliable and efficient in the smooth problem.

1.4 Conclusions

In contrast to low order finite elements, the use of the averaging error indi-
cator in p-FEM leads to certain difficulties. The standard methods of proof



1 A Numerical Study of Averaging Error Indicators in p-FEM 9

cannot be used to obtain reliability and efficiency in the same sense as for
the low order case. As explained in Remark 3, the gradient L? projection
error present in the efficiency estimate cannot be made to be of higher order
relative to the Galerkin error.

Averaging the numerical fluxes over two neighbouring quadrilaterals using
Raviart-Thomas elements of degree ¢, reasonable results (reliability up to a
factor of the order O(p) and efficiency, i.e., a p-gap) in two model problems
are obtained if ¢ is set equal to the local approximation order. This choice is
practically the most relevant, as this corresponds to what is known to work in
h-FEM and can therefore be expected to be used in Ap-FEM. When averaging
over four elements, we observe the p-gap when setting g =porg=p+1.In
this case, however, the gradient L2 projection error in the efficiency estimate
even dominates the Galerkin error, which might be of concern theoretically.
Finally, averaging over four elements and setting ¢ = 2p leads to an efficient
estimator that is reliable up to O(p®3%).

Acknowledgements The first author gratefully acknowledges support by the ETH
Foundation.
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