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QUASI-OPTIMAL CONVERGENCE RATES FOR ADAPTIVE

BOUNDARY ELEMENT METHODS WITH DATA APPROXIMATION.

PART II: HYPER-SINGULAR INTEGRAL EQUATION

M. FEISCHL, T. FÜHRER, M. KARKULIK, J. M. MELENK, AND D. PRAETORIUS

Abstract. We analyze an adaptive boundary element method with fixed-order piece-
wise polynomials for the hyper-singular integral equation of the Laplace-Neumann prob-
lem in 2D and 3D which incorporates the approximation of the given Neumann data
into the overall adaptive scheme. The adaptivity is driven by some residual-error esti-
mator plus data oscillation terms. We prove convergence even with quasi-optimal rates.
Numerical experiments underline the theoretical results.

1. Introduction & Outline

Data approximation is an important subject in numerical algorithms, and reliable nu-
merical schemes have to properly account for it. The present work proves quasi-optimal
convergence rates for an adaptive boundary element method (ABEM) that includes data
errors. While an earlier work [FFK+13] was concerned with weakly-singular integral
equations, the present work considers the hyper-singular integral equation

Wg = (1/2−K ′)φ on Γ := ∂Ω (1)

for given boundary data φ and a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, with
polygonal resp. polyhedral boundary ∂Ω (see Section 2 for the precise statement of the
integral operators W and K ′ involved). In the spirit of, e.g., [Ste07, CKNS08], we prove
convergence and quasi-optimality of some standard adaptive algorithm of the type

solve −→ estimate −→ mark −→ refine (2)

which is steered by the weighted residual estimator from [CMPS04] plus data oscillation
terms. The proposed algorithm employs the L2-orthogonal projection to replace the
given data φ in the Galerkin scheme by some discrete data Πℓφ. The benefit of such an
approach is that the implementation of (2) has to deal with discrete integral operators
only. Since reliable quadrature for these (with polynomial ansatz and test functions)
is well-understood, see e.g. [SS11], such an approach is superior to the data dependent
integration of K ′φ, where possible singularities of φ as well as the singular kernel of the
boundary integral operator K ′ have to be treated simultaneously.

First convergence and quasi-optimality results for lowest-order ABEM have indepen-
dently been achieved by [FKMP13, Gan13]. While [FKMP13] is concerned with the
weakly-singular integral equation for the Laplacian on polygonal / polyhedral bound-
aries, the work [Gan13] treats general weakly-singular and hyper-singular integral equa-
tions on smooth boundaries. In either work, the heart of the matter are novel inverse
estimates for the integral operators involved. These have recently been generalized to
arbitrary polynomials on polygonal / polyhedral boundaries in [AFF+12]. Besides this,
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certain properties of the error estimator are required which have to be analyzed beyond
the particular lowest-order case. For the weakly-singular integral equation, this has been
done in [FFK+13], while the analysis for the hyper-singular integral equation is the topic
of the present work.

The contribution of this work may thus be summarized as follows: Unlike [Gan13],
we address the important question of data approximation in the adaptive algorithm
considered and prove convergence and quasi-optimality in this case. Owing to the method
of proof, the analysis of the error estimator in [Gan13] is restricted to lowest-order ABEM,
i.e., globally continuous and piecewise affine ansatz and test functions. Instead, the
analysis given here covers continuous piecewise polynomials of arbitrary, but fixed order.
Finally, the overall presentation aims to give a deeper insight into which basic properties

of the error estimator are really mandatory to prove optimal convergence for ABEM. A
further qualitative improvement over, e.g., [Ste07, CKNS08, FKMP13, Gan13] is that
our analysis avoids the use of a lower bound (so-called efficiency) and hence relaxes the
dependencies of optimal marking parameters.

Outline. The work and its main results are organized as follows: Section 2 fixes
the functional analytic framework of the (stabilized) hyper-singular integral equation (1)
and its Galerkin discretization by piecewise polynomials. In Section 3 we introduce
and analyze the weighted residual error estimator. Moreover, we analyze the overall
a posteriori error control in case of data approximation of φ by discontinuous piecewise
polynomials in terms of data oscillation terms (Theorem 7). Section 4 gives a precise
statement of the adaptive loop (2) and proves linear convergence of the overall error
estimator with respect to the iteration step ℓ (Corollary 10). In Section 5, we prove that
the adaptive algorithm leads asymptotically to optimal convergence rates (Theorem 11).
Conclusions are drawn in Section 6, and possible extensions of the analysis to indirect
integral formulations and screen problems are discussed. Numerical experiments in 2D
and 3D conclude the work in Section 7.

Throughout the work, the symbol . abbreviates ≤ up to a multiplicative constant,
and ≃ means that both estimates . and & hold.

2. Preliminaries

This section gives a brief overview of the functional analytic setting of the hyper-singular
integral equation. For more details, we refer to the monographs [HW08, McL00]; a
comprehensive discussion of the boundary element spaces employed in the present work
can be found in the monograph [SS11].

Throughout, we assume that Ω is a bounded Lipschitz domain in Rd, d = 2, 3, with
connected and polygonal / polyhedral boundary Γ = ∂Ω. With the fundamental solution
of the Laplacian

G(x, y) = − 1

2π
log |x− y| for d = 2 and G(x, y) =

1

4π

1

|x− y| for d = 3, (3)

the hypersingular integral equation (1) involves the hyper-singular integral operator W as
well as the adjoint of the double-layer integral operator K. These operators are formally
defined by

Wφ(x) := −∂ny

∫

Γ
∂nyG(x, y)φ(y) dΓ(y), (4)

Kφ(x) :=
∫

Γ
∂nyG(x, y)φ(y) dΓ(y), (5)

where nz denote the outer unit normal vector at z ∈ Γ and ∂nz is the normal derivative.
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2.1. Sobolev spaces. Let L2(Γ) and H1(Γ) denote the usual Lebesgue and Sobolev
spaces on Γ = ∂Ω. The norm on H1(Γ) reads

‖u‖2
H1(Γ) = ‖u‖2

L2(Γ) + ‖∇u‖2
L2(Γ), (6)

where ∇(·) denotes the arclength derivative or the surface gradient for d = 2, 3. Sobolev
spaces of fractional-order 0 < s < 1 are defined by interpolation

Hs(Γ) = [L2(Γ);H1(Γ)]s, (7)

where [·; ·]s denotes interpolation by the K-method. To abbreviate notation, let H0(Γ) :=
L2(Γ). The Sobolev spaces H−s(Γ) for 0 < s ≤ 1 are defined by duality

H−s(Γ) = Hs(Γ)∗, (8)

where duality is understood with respect to the extended L2(Γ)-scalar product 〈· , ·〉. We
note that H1/2(Γ) is equivalently characterized as the trace space of H1(Ω).

2.2. Hyper-singular integral operator. The hyper-singular integral operator W
from (4) is a well-defined linear and continuous operator

W : Hs(Γ)→ Hs−1(Γ) for all 0 ≤ s ≤ 1. (9)

Moreover, W is symmetric and positive semi-definite on H1/2(Γ), i.e.,

〈Wv , w〉 = 〈Ww , v〉 and 〈Wv , v〉 ≥ 0 for all v, w ∈ H1/2(Γ). (10)

Since Γ is connected, the kernel of W is one-dimensional and spanned by the constant
functions. The bilinear form

〈〈v , w〉〉W := 〈Wv , w〉 (11)

is a scalar product on H
1/2
⋆ (Γ) :=

{
v ∈ H1/2(Γ) : 〈1 , v〉 = 0

}
. Therefore,

〈〈v , w〉〉W +S := 〈Wv , w〉+ 〈1 , v〉〈1 , w〉 for v, w ∈ H1/2(Γ) (12)

defines a scalar product on H1/2(Γ). According to the Rellich compactness theorem, the
induced norm |||v|||2W +S = 〈〈v , v〉〉W +S is an equivalent norm on H1/2(Γ).

2.3. Neumann problem. The double-layer integral operator K from (5) is a well-
defined linear and continuous operator

K : Hs(Γ)→ Hs(Γ) for all 0 ≤ s ≤ 1. (13)

Moreover, its adjoint is a well-defined linear and continuous operator

K ′ : H−s(Γ)→ H−s(Γ) for all 0 ≤ s ≤ 1. (14)

For the particular right-hand side f = (1/2 − K ′)φ in (1), the hyper-singular integral
equation is an equivalent formulation of the Neumann problem

−∆P = 0 in Ω with Neumann boundary conditions ∂nP = φ on Γ (15)

in the following sense: The hyper-singular integral equation (1) admits a unique solution

u ∈ H1/2
⋆ (Γ). If uniqueness of the potential P from (15) is enforced by

∫
Γ P dΓ = 0, then

u = P |Γ, i.e., u is the trace of P on Γ.

We note that existence and uniqueness of the solution u ∈ H1/2
⋆ (Γ) of (1) follow from

the Lax-Milgram lemma: As 〈Wv , 1〉 = 0 and 〈(1/2−K ′)ψ , 1〉 = 0 for all v ∈ H1/2(Γ)
3



and ψ ∈ H−1/2(Γ), the hyper-singular integral equation is equivalently recast in the
variational formulation

〈〈u , v〉〉W +S = 〈(1/2−K ′)φ , v〉 for all v ∈ H1/2(Γ). (16)

According to the Lax-Milgram lemma, the latter equation admits a unique solution, and

|Γ| 〈u , 1〉 = 〈〈Wu , 1〉〉W +S = 〈(1/2−K ′)φ , 1〉 = 0 proves u ∈ H1/2
⋆ (Γ).

2.4. Admissible triangulations. For d = 2, we suppose that T⋆ is a partition of
Γ into finitely many compact affine line segments. For d = 3, we suppose that T⋆ is a
triangulation of Γ into finitely many compact and flat surface triangles which is regular
in the sense of Ciarlet, i.e., the intersection of two elements T, T ′ ∈ T⋆ with T 6= T ′ is
either empty, or a common node, or a common edge. In these cases, we say that T⋆

is an admissible triangulation of Γ. Throughout, we assume that all triangulations are
admissible.

Let | · | denote the surface measure, i.e., |T | = diam(T ) for an affine line segment and
d = 2. With an admissible triangulation T⋆, we associate its local mesh-width

h⋆ ∈ L∞(Γ), h⋆|T := h⋆(T ) := |T |1/(d−1) for all T ∈ T⋆. (17)

Throughout, quantities associated with a given triangulation T⋆ have the same index, e.g.,
h⋆ for the associated mesh-width function or G⋆ for the corresponding Galerkin solution
(see below).

For d = 2, we say that T⋆ is γ-shape regular if

diam(T )

diam(T ′)
≤ γ for all neighboring elements T, T ′ ∈ T⋆. (18a)

For d = 3, T⋆ is called γ-shape regular if

diam(T )

|T |1/2
≤ γ for all elements T ∈ T⋆. (18b)

2.5. Discrete spaces. Let Tref = [0, 1] for d = 2 and Tref = conv{(0, 0), (1, 0), (0, 1)}
for d = 3 denote the reference simplices in Rd−1. By assumption, each element T ∈ T⋆

is the image of Tref under an affine bijection γT : Tref → T . Let Pp(Tref) denote the
space of all polynomials of degree ≤ p on the reference element. We then define spaces
of T⋆-piecewise polynomials by

Pp(T⋆) :=
{
V⋆ : Γ→ R : ∀T ∈ T⋆ V⋆ ◦ γT ∈ Pp(Tref)

}
(19)

and

Sp+1(T⋆) := Pp+1(T⋆) ∩ C(Γ). (20)

We note that Pp(T⋆) ⊂ L2(Γ) ⊂ H−1/2(Γ) and Sp+1(T⋆) ⊂ H1(Γ) ⊂ H1/2(Γ) for all
p ∈ N0.

3. A posteriori error estimation

In this section, we recall the weighted residual error estimator from [CMPS04]. We give
a new proof for its reliability and derive the properties needed for the later convergence
and quasi-optimality analysis. Unlike [Gan13], where similar results have been derived
for the first time, our analysis covers arbitrary polynomials of fixed degree p ≥ 0 and is
essentially independent of the mesh-refinement strategy used. In addition, we incorporate
the approximation of the given right-hand side data by piecewise polynomials into the
overall a posteriori error estimation. The benefit is that the later implementation has to
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deal with discrete integral operators only so that the question of reliable quadrature is
much simplified.

3.1. Mesh-refinement. For admissible triangulations Tℓ, T⋆ of Γ, we write T⋆ ∈
refine(Tℓ) and say that T⋆ is an arbitrary refinement of Tℓ, if

T =
⋃ {

T ′ ∈ T⋆ : T ′ ⊆ T
}

for all T ∈ Tℓ (21a)

and

|T ′| ≤ |T |/2 for all T ∈ Tℓ\T⋆ and T ′ ∈ T⋆ with T ′ ⊆ T, (21b)

i.e., each element T ∈ Tℓ is the union of its successors, and refinement ensures that the
surface area is at least halved. Note that Tℓ\T⋆ denotes the set of refined elements, while
T⋆\Tℓ then consists of their successors. The assumptions posed imply that

⋃
(Tℓ\T⋆) =⋃

(T⋆\Tℓ) with the pointwise estimates h⋆ ≤ 2−1/(d−1) hℓ on
⋃

(Tℓ\T⋆) and h⋆ = hℓ on⋃
(Tℓ ∩ T⋆).

3.2. Auxiliary results. This subsection recalls and states some facts which are used
for the a posteriori error analysis. First, we shall need certain inverse estimates.

Lemma 1. Let T⋆ be an admissible triangulation of Γ. For all ψ ∈ L2(Γ) and v ∈ H1(Γ),
it holds

C−1
inv‖h1/2

⋆ (1/2−K ′)ψ‖L2(Γ) ≤ ‖ψ‖H−1/2(Γ) + ‖h1/2
⋆ ψ‖L2(Γ) (22)

as well as

C−1
inv‖h1/2

⋆ Wv‖L2(Γ) ≤ ‖v‖H1/2(Γ) + ‖h1/2
⋆ ∇v‖L2(Γ). (23)

In particular, for all Ψ⋆ ∈ Pp(T⋆) and V⋆ ∈ Sp+1(T⋆), it holds that

‖h1/2
⋆ Ψ⋆‖L2(Γ) + ‖h1/2

⋆ (1/2−K ′)Ψ⋆‖L2(Γ) ≤ Cinv‖Ψ⋆‖H−1/2(Γ) (24)

as well as

‖h1/2
⋆ ∇V⋆‖L2(Γ) + ‖h1/2

⋆ WV⋆‖L2(Γ) ≤ Cinv‖V⋆‖H1/2(Γ). (25)

The constant Cinv > 0 depends only on γ-shape regularity of T⋆, the boundary Γ, and the

polynomial degree p ≥ 0.

Proof. The estimates (22)–(23) are proven in [AFF+12, Theorem 1]. The estimates (24)–
(25) follow directly by employing the inverse estimates from [GHS05, Theorem 3.6] for

‖·‖H−1/2(Γ) & ‖h1/2
⋆ (·)‖L2(Γ) and for ‖·‖H1/2(Γ) & ‖h1/2

⋆ ∇(·)‖L2(Γ) from [CP07, Corollary 3.2]
for d = 2 and from [AFF+13b, Proposition 5] for d = 3. �

Second, we shall rely on the Scott-Zhang projection [SZ90] for quasi-interpolation in
H1/2(Γ). While the original work from [SZ90] is concerned with the integer-order Sobolev
space H1(Ω) on Lipschitz domains, the approach is generalized to fractional-order Sobolev

spaces Hs(Γ) and H̃s(Γ) for 0 ≤ s ≤ 1 on boundaries in [AFF+13b]. Since the precise
construction will matter below, we briefly sketch it: Fix a setN⋆ of Lagrange nodes for the
space Sp+1(T⋆). For each z ∈ N⋆, choose an arbitrary element Tz ∈ T⋆ with z ∈ Tz. Let
φz ∈ Sp+1(T⋆) denote the Lagrange basis function associated with z and φ⋆

z ∈ Pp+1(Tz)
be the L2-dual basis function, i.e.,

∫
Tz
φ⋆

zφz′ dx = δzz′ for all z′ ∈ N⋆ with Kronecker’s
delta δzz′. Then, the Scott-Zhang projection J⋆ defined by

J⋆v :=
∑

z∈N⋆

( ∫

Tz

φ⋆
z v dx

)
φz (26)

has the following properties.
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Lemma 2. J⋆ : L2(Γ)→ Sp+1(T⋆) is a well-defined linear projection, i.e., it holds

J⋆V⋆ = V⋆ for all V⋆ ∈ Sp+1(T⋆). (27)

In particular, it even holds

(J⋆v)(z) = v(z) for all z ∈ N⋆ and v ∈ L2(Γ) with v|Tz ∈ Pp+1(Tz), (28)

where Tz is the element chosen for z in (26). Moreover, J⋆ is stable in Hs(Γ) for all

0 ≤ s ≤ 1, i.e.,

‖J⋆v‖Hs(Γ) ≤ Csz ‖v‖Hs(Γ) for all v ∈ Hs(Γ) (29)

and has a local first-order approximation property

‖h−s
⋆ (1− J⋆)v‖L2(Γ) ≤ Csz ‖v‖Hs(Γ) for all v ∈ Hs(Γ). (30)

The constant Csz > 0 depends only on Γ, 0 ≤ s ≤ 1, the polynomial degree p ∈ N0, and

γ-shape regularity of T⋆.

Proof. Well-posedness and projection property (27)–(28) as well as L2-stability (i.e. (29)
for s = 0) follow by construction, see also [AFF+13b, Lemma 3]. For T ∈ T⋆, let

ω⋆(T ) :=
⋃ {

T ′ ∈ T⋆ : T ∩ T ′ 6= ∅
}

denote the patch of T . Following the original arguments from [SZ90], it is noted in [AFF+13b]
that

diam(T )−1 ‖(1− J⋆)v‖L2(T ) + ‖∇J⋆v‖L2(T ) . ‖∇v‖L2(ω⋆(T )) for all v ∈ H1(Γ) and T ∈ T⋆.

By γ-shape regularity, this implies the global estimate

‖h−1
⋆ (1− J⋆)v‖L2(Γ) + ‖∇J⋆v‖L2(Γ) . ‖∇v‖L2(Γ) ≤ ‖v‖H1(Γ) for all v ∈ H1(Γ).

Together with L2-stability (29) for s = 0, one thus obtains H1-stability (29) for s = 1 as
well as the approximation estimate (30) for s = 0 and s = 1. The general case 0 < s < 1
in (29)–(30) therefore follows by interpolation. �

Bootstrapping [CP06, Theorem 4.1] by use of idempotency of projections, we obtain
the following result, which will allow us to control the error incurred by approximation
the Neumann data.

Lemma 3. Suppose that π⋆ : L2(Γ)→ X⋆ is the L2-orthogonal projection onto a subspace

X⋆ ⊆ L2(Γ) with P0(T⋆) ⊆ X⋆. Then, it holds

‖(1− π⋆)ψ‖H−s(Γ) ≤ Capx‖hs(1− π⋆)ψ‖L2(Γ) for all ψ ∈ L2(Γ). (31)

The constant Capx > 0 depends only on Γ and 0 ≤ s ≤ 1. �

3.3. Weighted residual error estimator. For given f ∈ L2(Γ), let u ∈ H1/2(Γ)
and U⋆ ∈ Sp+1(T⋆) be the unique solutions of

〈〈u , v〉〉W +S = 〈f , v〉 for all v ∈ H1/2(Γ) (32)

and

〈〈U⋆ , V⋆〉〉W +S = 〈f , V⋆〉 for all V⋆ ∈ Sp+1(T⋆). (33)

We employ the weighted residual error estimator [CMPS04] with local contributions

η⋆(T ) := ‖h1/2
⋆ (f −WU⋆)‖L2(T ) (34a)
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and let

η⋆ := η⋆(T⋆) with η⋆(E⋆)
2 :=

∑

T ∈E⋆

η⋆(T )2 for all E⋆ ⊆ T⋆. (34b)

Note that η⋆(E⋆) = ‖h1/2
⋆ (f −WU⋆)‖L2(

⋃
E⋆). The following proposition collects the ba-

sic properties of η⋆. The discrete reliability (37) has first been proved in [Gan13]. For
technical reasons, the proof in [Gan13] relied on the use of newest vertex bisection and
is restricted to the lowest-order case p = 0, since it uses the norm localization techniques
from [Fae00, Fae02]. Our proof refines the arguments from [CMPS04], where reliabil-
ity (39) is proved, but our use of the Scott-Zhang projection from Lemma 2 leads to
formally weaker dependencies of the constants involved. As a further qualitative im-
provement over [Gan13], we note that our discrete reliability estimate (37) involves only
the refined elements Tℓ\T⋆, while the original result of [Gan13] is based on the refined
elements plus one additional layer of non-refined elements.

Proposition 4. Let T⋆ ∈ refine(Tℓ) and let Uℓ and U⋆ be the corresponding Galerkin

solutions from (33). Then, the weighted residual error estimator ηℓ from (34) satisfies

the following properties (i)–(iii).

(i) Stability on non-refined elements: There exists a constant Cstab > 0 such that

|η⋆(T⋆ ∩ Tℓ)− ηℓ(Tℓ ∩ T⋆)| ≤ Cstab ‖U⋆ − Uℓ‖H1/2(Γ). (35)

(ii) Reduction on refined elements: There exist constants 0 < qred < 1 and Cred > 0
such that

η2
⋆(T⋆ \ Tℓ) ≤ qred η

2
ℓ (Tℓ \ T⋆) + Cred‖U⋆ − Uℓ‖2

H1/2(Γ). (36)

(iii) Discrete reliability: There exists a constant Cdlr > 0 such that

‖U⋆ − Uℓ‖H1/2(Γ) ≤ Cdlrηℓ(Tℓ \ T⋆). (37)

The constants Cstab, Cred, Cdlr > 0 and 0 < qred < 1 depend only on Γ, γ-shape regularity

of Tℓ and T⋆, and the polynomial degree p ∈ N0.

Proof of stability (35). The reverse triangle inequality and h⋆ = hℓ on the non-refined
region

⋃
(T⋆ ∩ Tℓ) prove

|η⋆(T⋆ ∩ Tℓ)− ηℓ(T⋆ ∩ Tℓ)| ≤ ‖h1/2
⋆ (f −WU⋆)− h1/2

ℓ (f −WUℓ)‖L2(
⋃

(T⋆∩Tℓ))

≤ ‖h1/2
⋆ W (U⋆ − Uℓ)‖L2(Γ).

By use of the inverse estimate (25), we conclude the proof with Cstab = Cinv. �

Proof of reduction (36). Recall h⋆ ≤ qhℓ with q = 2−1/(d−1) < 1 in the refined region⋃
(T⋆\Tℓ) =

⋃
(Tℓ\T⋆). Together with the triangle inequality and the inverse estimate (25),

this yields

η⋆(T⋆\Tℓ) = ‖h1/2
⋆ (f −WU⋆)‖L2(

⋃
(T⋆\Tℓ))

≤ ‖h1/2
⋆ (f −WUℓ)‖L2(

⋃
(T⋆\Tℓ)) + ‖h1/2

⋆ W (U⋆ − Uℓ)‖L2(
⋃

(T⋆\Tℓ))

≤ q1/2‖h1/2
ℓ (f −WUℓ)‖L2(

⋃
(T⋆\Tℓ)) + Cinv ‖U⋆ − Uℓ‖H1/2(Γ)

= q1/2 ηℓ(Tℓ\T⋆) + Cinv ‖U⋆ − Uℓ‖H1/2(Γ).

The Young inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and δ > 0
concludes the proof of (36) with qred = (1+δ)q and Cred = (1+δ−1)C2

inv if δ > 0 is chosen
sufficiently small. �
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Proof of discrete reliability (37). We employ norm equivalence and the Galerkin orthog-
onality to see

‖U⋆ − Uℓ‖2
H1/2(Γ) ≃ |||U⋆ − Uℓ|||2W +S = 〈〈U⋆ − Uℓ , (1− Jℓ)(U⋆ − Uℓ)〉〉W +S

with Jℓ being the Scott-Zhang projection onto Sp+1(Tℓ) from Lemma 2. The Galerkin
orthogonality together with W1 = 0 implies |Γ| 〈U⋆ − Uℓ , 1〉 = 〈〈U⋆ − Uℓ , 1〉〉W +S = 0.
This yields

‖U⋆−Uℓ‖2
H1/2(Γ) ≃ 〈〈U⋆−Uℓ , (1− Jℓ)(U⋆−Uℓ)〉〉W +S = 〈f −WUℓ , (1− Jℓ)(U⋆−Uℓ)〉.

Since the results of Lemma 2 do not depend on the precise choice of the elements Tz ∈ Tℓ

associated with the Lagrangian nodes z ∈ Nℓ of Sp+1(Tℓ), we may suppose that Tz ∈
Tℓ ∩ T⋆ if z ∈ Nℓ ∩

⋃
(Tℓ ∩ T⋆). According to the projection property (28), this implies

(1− Jℓ)(U⋆ − Uℓ) = 0 in the non-refined region
⋃

(Tℓ ∩ T⋆).

The Cauchy-Schwarz inequality and the approximation property (30) thus yield

〈f −WUℓ , (1− Jℓ)(U⋆−Uℓ)〉 ≤ ‖h1/2
ℓ (f−WUℓ)‖L2(

⋃
(Tℓ\T⋆)‖h−1/2

ℓ (1− Jℓ)(U⋆−Uℓ)‖L2(Γ)

. ‖h1/2
ℓ (f−WUℓ)‖L2(

⋃
(Tℓ\T⋆)‖U⋆ − Uℓ‖H1/2(Γ)

= ηℓ(Tℓ\T⋆) ‖U⋆ − Uℓ‖H1/2(Γ).

Combining the last three estimates, we conclude the proof. �

The properties (i)–(iii) of Proposition 4 are called basic properties as they provide the
essential mathematical ingredients to prove linear convergence (Section 4) and quasi-
optimal convergence rates (Section 5) for adaptive algorithms. In fact, the following
properties (iv)–(vi) are derived from algebraic postprocessing of (i)–(iii).

Corollary 5. Let T⋆ ∈ refine(Tℓ) with corresponding Galerkin solutions Uℓ and U⋆

from (33). Then, the weighted residual error estimator ηℓ from (34) satisfies the following

properties (iv)–(vi):

(iv) Quasi-monotonicity: There exists a constant Cmon > 0 such that

η⋆ ≤ Cmon ηℓ. (38)

(v) Reliability: With the constant Cdlr from discrete reliability (37), we have

‖u− Uℓ‖H1/2(Γ) ≤ Cdlr ηℓ. (39)

(vi) Estimator reduction: the following implication is valid:

θ η2
ℓ ≤ ηℓ(Tℓ\T⋆)

2 =⇒ η2
⋆ ≤ qest η

2
ℓ + Cest ‖U⋆ − Uℓ‖2

H1/2(Γ). (40)

The constants Cest > 0 and 0 < qest < 1 depend only on 0 < θ ≤ 1 and Cstab, Cred, qred,

while Cmon depends only on Cdlr, Cstab, Cred.

Proof of quasi-monotonicity (38). Stability (35) together with the reduction (36) shows

η2
⋆ . η2

ℓ + ‖U⋆ − Uℓ‖2
H1/2(Γ).

With discrete reliability (37), this implies

η2
⋆ . (1 + Cdlr)η

2
ℓ

and concludes the proof of (iv). �

8



Proof of reliability (39). Since the stabilized hyper-singular integral operator is H1/2-
elliptic, each Galerkin solution U⋆ ∈ Sp+1(T⋆) satisfies the Céa-type quasi-optimality

‖u− U⋆‖H1/2(Γ) . min
V⋆∈Sp+1(T⋆)

‖u− V⋆‖H1/2(Γ).

For given ε > 0, standard density results imply

‖u− U⋆‖H1/2(Γ) ≤ ε

provided that the global mesh-width ‖h⋆‖L∞(Γ) ≪ 1 is sufficiently small. Consequently,
for given ε > 0 and Tℓ, there exists a refinement T⋆ of Tℓ with ‖u − U⋆‖H1/2(Γ) ≤ ε. The
triangle inequality and discrete reliability (37) thus yield

‖u− Uℓ‖H1/2(Γ) ≤ ε+ ‖U⋆ − Uℓ‖H1/2(Γ) ≤ ε+ Cdlr ηℓ.

The left-hand side as well as the right-hand side of the latter estimate are independent
of T⋆. Hence, passing to the limit ε→ 0 concludes the proof of (v). �

Proof of estimator reduction (40). Recall Young’s inequality (a + b)2 ≤ (1 + δ)a2 + (1 +
δ−1)b2 for all δ > 0 and a, b ∈ R. We exploit stability (35) and reduction (36) to see

η2
⋆ = η2

⋆(Tℓ ∩ T⋆) + η2
⋆(T⋆ \ Tℓ)

≤ (1 + δ)η2
ℓ (Tℓ ∩ T⋆) + qred η

2
ℓ (Tℓ \ T⋆) +

(
(1 + δ−1)C2

stab + Cred

)
‖U⋆ − Uℓ‖2

H1/2(Γ).

The assumption θη2
ℓ ≤ ηℓ(Tℓ \ T⋆)2 for Tℓ \ T⋆ then implies

(1 + δ)η2
ℓ (Tℓ ∩ T⋆) + qred η

2
ℓ (Tℓ \ T⋆) ≤ (1 + δ)η2

ℓ − (1 + δ − qred)η2
ℓ (Tℓ \ T⋆)

≤
(
1 + δ − θ(1 + δ − qred)

)
η2

ℓ .

For sufficiently small δ > 0, the combination of the last two estimates proves (40) with
qest = 1 + δ − θ(1 + δ − qred) < 1 and Cest = (1 + δ−1)C2

stab + Cred. �

3.4. Control of data approximation error. For an admissible triangulation T⋆,
we consider the L2-orthogonal projection Π⋆ onto Pp(T⋆), which is given for f ∈ L2(Γ)
elementwise as the unique solution of

∫

T
(1− Π⋆)f Ψ⋆ dx = 0 for all T ∈ T⋆ and all Ψ⋆ ∈ Pp(T⋆).

Let

osc⋆(T ) := ‖h1/2
⋆ (1−Π⋆)f‖L2(T ) (41a)

and let

osc⋆ := osc⋆(T⋆) with osc⋆(E⋆)
2 :=

∑

T ∈E⋆

osc⋆(T )2 for all E⋆ ⊆ T⋆. (41b)

In analogy to Proposition 4, the following proposition collects the basic properties of osc⋆.

Proposition 6. Let T⋆ ∈ refine(Tℓ). Then, the data oscillation oscℓ from (41) satisfies

the following properties (i)–(iii).

(i) Stability on non-refined elements: It holds

osc⋆(T⋆ ∩ Tℓ) = oscℓ(T⋆ ∩ Tℓ). (42)

(ii) Reduction on refined elements: There exist a constant 0 < qosc < 1 such that

osc2
⋆(T⋆ \ Tℓ) ≤ qosc osc2

ℓ(Tℓ \ T⋆). (43)
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(iii) Discrete reliability: There exists a constant Cosc > 0 such that

‖(Π⋆ − Πℓ)f‖H−1/2(Γ) ≤ Cosc oscℓ(Tℓ \ T⋆). (44)

The constant Cosc > 0 depends only on Γ, while 0 < qosc = 2−1/(d−1) < 1 is generic.

Proof. Note that Πℓ is the Tℓ-elementwise best approximation. First, this reveals the
identity Πℓf = Π⋆f in the non-refined region

⋃
(Tℓ ∩ T⋆) and hence proves (42). Recall

h⋆ ≤ q hℓ with q = 2−1/(d−1) in the refined region
⋃

(Tℓ\T⋆) =
⋃

(T⋆\Tℓ). This yields

osc⋆(T⋆\Tℓ) = ‖h1/2
⋆ (1−Π⋆)f‖L2(

⋃
(T⋆\Tℓ)) ≤ q1/2 ‖h1/2

ℓ (1− Πℓ)f‖L2(
⋃

(T⋆\Tℓ))

= q1/2 oscℓ(Tℓ\T⋆).

and proves (43). To see (44), note that orthogonal projections satisfy elementwise

Π⋆(1−Πℓ) = Π⋆ − Πℓ = (1− Πℓ)Π⋆.

With Lemma 3 and Πℓf = Π⋆f in
⋃

(Tℓ ∩ T⋆), we infer

‖(Π⋆ − Πℓ)f‖H−1/2(Γ) = ‖(1− Πℓ)Π⋆f‖H−1/2(Γ) . ‖h1/2
ℓ (1−Πℓ)Π⋆f‖L2(Γ)

= ‖h1/2
ℓ (Π⋆ −Πℓ)f‖L2(

⋃
(Tℓ\T⋆)) = ‖h1/2

ℓ Π⋆(1− Πℓ)f‖L2(
⋃

(Tℓ\T⋆))

≤ ‖h1/2
ℓ (1− Πℓ)f‖L2(

⋃
(Tℓ\T⋆)) = oscℓ(Tℓ\T⋆).

For the final estimate, we have used that hℓ ∈ P0(Tℓ) ⊆ P0(T⋆) and that Π⋆ is the
T⋆-piecewise L2-orthogonal projection. This proves (44) with Cosc = Capx. �

3.5. Overall a posteriori error estimator. For given Neumann data φ ∈ L2(Γ),
let g ∈ H1/2(Γ) and G⋆ ∈ Sp+1(T⋆) be the unique solutions of

〈〈g , v〉〉W +S = 〈(1/2−K ′)φ , v〉 for all v ∈ H1/2(Γ), (45)

〈〈G⋆ , V⋆〉〉W +S = 〈(1/2−K ′)Π⋆φ , V⋆〉 for all V⋆ ∈ Sp+1(T⋆). (46)

For the a posteriori error control, we define the local contributions

ρ⋆(T ) := ‖h1/2
⋆ ((1/2−K ′)Π⋆φ−WG⋆)‖L2(T ) + ‖h1/2

⋆ (1− Π⋆)φ‖L2(T ) (47a)

and let

ρ⋆ := ρ⋆(T⋆), where, for any E⋆ ⊆ T⋆, we set ρ⋆(E⋆)
2 :=

∑

T ∈E⋆

ρ⋆(T )2; (47b)

that is, we consider the sum of weighted residual error estimator plus data oscillation
terms. Compared to η⋆ from Section 3.3, the difference is that now the right-hand side
f changes in each step of the adaptive loop, i.e., f = (1/2 − K ′)Πℓφ. The following
proposition collects the properties of ρ⋆. As for the weighted residual error estimator
η⋆, an algebraic postprocessing of the basic properties (i)–(iii) reveals further properties
(iv)–(vi) of ρ⋆ required for the convergence and quasi-optimality analysis below.

Theorem 7. Let T⋆ ∈ refine(Tℓ) with corresponding Galerkin solutions Gℓ and G⋆

from (46). Then, the overall error estimator ρℓ from (47) satisfies the following properties

(i)–(iii):

(i) Stability on non-refined elements: There exists a constant Cstab > 0 such that

C−1
stab |ρ⋆(T⋆ ∩ Tℓ)− ρℓ(Tℓ ∩ T⋆)| ≤ ‖G⋆ −Gℓ‖H1/2(Γ) + ‖(Π⋆ −Πℓ)φ‖H−1/2(Γ). (48)
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(ii) Reduction on refined elements: There exist constants 0 < qred < 1 and Cred > 0
such that

ρ2
⋆(T⋆ \ Tℓ) ≤ qred ρ

2
ℓ(Tℓ \ T⋆) + Cred

(
‖G⋆ −Gℓ‖2

H1/2(Γ) + ‖(Π⋆ −Πℓ)φ‖2
H−1/2(Γ)

)
. (49)

(iii) Discrete reliability: There exists a constant Cdlr > 0 such that

‖G⋆ −Gℓ‖H1/2(Γ) + ‖(Π⋆ −Πℓ)φ‖H−1/2(Γ) ≤ Cdlrρℓ(Tℓ \ T⋆). (50)

The constants Cdlr, Cstab, Cred > 0 and 0 < qred < 1 depend only on Γ, γ-shape regularity

of Tℓ and T⋆, and the polynomial degree p ∈ N0. Moreover, these basic properties imply

the following properties (iv)–(vi).

(iv) Quasi-monotonicity: There exists a constant Cmon > 0 such that

ρ⋆ ≤ Cmon ρℓ (51)

(v) Reliability: With the constant Cdlr from discrete reliability (50), it holds

‖g −Gℓ‖H1/2(Γ) ≤ Cdlr ρℓ (52)

(vi) Estimator reduction: It holds the implication

θ ρ2
ℓ ≤ ρℓ(Tℓ\T⋆)

2 =⇒ ρ2
⋆ ≤ qest ρ

2
ℓ +Cest

(
‖G⋆−Gℓ‖2

H1/2(Γ)+‖(Π⋆−Πℓ)φ‖2
H−1/2(Γ)

)
. (53)

The constants Cest > 0 and 0 < qest ≤ 1 depend only on 0 < θ ≤ 1 and Cstab, Cred, qred,

while Cmon depends only on Cdlr, Cstab, Cred.

Proof. We first prove stability (48). Recall that h⋆ = hℓ on
⋃

(Tℓ ∩ T⋆). The reverse
triangle inequality and stability (42) of the data oscillation prove

|ρ⋆(T⋆ ∩ Tℓ)− ρℓ(T⋆ ∩ Tℓ)|
≤ ‖h1/2

⋆ ((1/2−K ′)Π⋆φ−WG⋆)− h1/2
ℓ ((1/2−K ′)Πℓφ−WGℓ)‖L2(

⋃
(T⋆∩Tℓ))

≤ ‖h1/2
⋆ (1/2−K ′)(Π⋆ − Πℓ)φ‖L2(Γ) + ‖h1/2

⋆ W (G⋆ −Gℓ)‖L2(Γ)

. ‖(Π⋆ − Πℓ)φ‖H−1/2(Γ) + ‖G⋆ −Gℓ‖H1/2(Γ),

where we have used the inverse estimates (24)–(25).
Second, we prove the discrete reliability (50). To that end, let Gℓ,⋆ ∈ Sp+1(T⋆) denote

the unique Galerkin solution of

〈〈Gℓ,⋆ , V⋆〉〉W +S = 〈(1/2−K ′)Πℓφ , V⋆〉 for all V⋆ ∈ Sp+1(T⋆).

Note that Gℓ,⋆ ∈ Sp+1(T⋆) and Gℓ ∈ Sp+1(Tℓ) are Galerkin solutions for the same right-
hand side f = (1/2 − K ′)Πℓφ. Therefore, the discrete reliability (37) of the weighted
residual error estimator yields

‖Gℓ,⋆ −Gℓ‖H1/2(Γ) . ‖h1/2
ℓ ((1/2−K ′)Πℓφ−WGℓ‖L2(

⋃
(Tℓ\T⋆)) ≤ ρℓ(Tℓ\T⋆). (54)

Moreover, the stability of the Galerkin formulations and the adjoint double-layer potential
yield

‖G⋆ −Gℓ,⋆‖H1/2(Γ) . ‖(1/2−K ′)Π⋆φ− (1/2−K ′)Πℓφ‖H−1/2(Γ) . ‖(Π⋆ − Πℓ)φ‖H−1/2(Γ).
(55)

Therefore, the discrete reliability (44) of the data oscillations gives

‖G⋆ −Gℓ,⋆‖H1/2(Γ) + ‖(Π⋆ − Πℓ)φ‖H−1/2(Γ) . oscℓ(Tℓ\T⋆) ≤ ρℓ(Tℓ\T⋆).

The combination of (54)–(55) proves (50).
11



The reduction property (49) is proved analogously. Arguing along the lines of Corol-
lary 5, one sees that the basic properties (i)–(iii) already imply the further properties
(iv)–(vi). Details are left to the reader. �

4. Linear convergence of adaptive BEM

We consider the following adaptive mesh-refining algorithm.

Algorithm 8. Input: initial mesh T0, adaptivity parameter 0 < θ ≤ 1, and ℓ = 0.

(i) Compute approximate data Πℓφ using the L2-orthogonal projection Πℓ : L2(Γ) →
Pp(Tℓ).

(ii) Compute the Galerkin solution Gℓ ∈ Sp+1(Tℓ) of (46).
(iii) Compute refinement indicators ρℓ(T ) from (47) for all T ∈ Tℓ.

(iv) Determine a set of marked elementsMℓ ⊆ Tℓ which satisfies the Dörfler marking

criterion

θρ2
ℓ ≤ ρℓ(Mℓ)

2. (56)

(v) Refine at least the marked elements to obtain Tℓ+1 ∈ refine(Tℓ), i.e., Mℓ ⊆
Tℓ\Tℓ+1.

(vi) Increment ℓ← ℓ+ 1 and goto (i).

Output: sequence of error estimators (ρℓ)ℓ∈N and sequence of Galerkin solutions (Gℓ)ℓ∈N.

For the mesh-refinement in step (v), we suppose that the assumptions of Section 3.1
hold true, i.e., marked elements are at least refined into two sons of (at most) half area.
Note that we do not impose any minimality condition on the set of marked elementsMℓ

in step (iv) so that, formally, Mℓ = Tℓ would also be a valid choice.

Theorem 9. Let T⋆ ∈ refine(Tℓ) with corresponding Galerkin solutions Gℓ ∈ Sp+1(Tℓ)
and G⋆ ∈ Sp+1(T⋆) of (46). Let gℓ, g⋆ ∈ H1/2(Γ) denote the unique solutions of

〈〈gℓ , v〉〉W +S = 〈(1/2−K ′)Πℓφ , v〉 for all v ∈ H1/2(Γ), (57)

〈〈g⋆ , v〉〉W +S = 〈(1/2−K ′)Π⋆φ , v〉 for all v ∈ H1/2(Γ). (58)

Suppose that the set of refined elements satisfies the Dörfler marking

θ ρ2
ℓ ≤ ρℓ(Tℓ\T⋆)

2 (59)

for some 0 < θ ≤ 1. Then, there exist constants α, β > 0, and 0 < κ < 1 such that the

quasi-errors

∆ℓ := |||gℓ −Gℓ|||2W +S + αρ2
ℓ + βosc2

ℓ and ∆⋆ := |||g⋆ −G⋆|||2W +S + αρ2
⋆ + βosc2

⋆ (60)

satisfy the contraction property

∆⋆ ≤ κ∆ℓ. (61)

Moreover, it holds

αρ2
ℓ ≤ ∆ℓ ≤ (C2

dlr + α + β) ρℓ. (62)

The constants α, β > 0, and 0 < κ < 1 depend only on Cdlr, Cest, qest as well as on Γ.

Indirectly, they hence also depend on 0 < θ ≤ 1, γ-shape regularity of Tℓ and T⋆, and the

polynomial degree p ∈ N0.
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Corollary 10. Suppose that all meshes Tℓ generated by Algorithm 8 are uniformly γ-

shape regular. Then, Algorithm 8 guarantees R-linear convergence of the error estimator

sequence

ρ2
ℓ+k ≤ C1 κ

k ρ2
ℓ for all k, ℓ ∈ N0. (63)

with C1 = α−1(C2
dlr +α+β) and the constants α, β > 0, and 0 < κ < 1 from Theorem 9.

Proof. Theorem 9 applies with T⋆ = Tℓ+1, since Mℓ ⊆ Tℓ\Tℓ+1 satisfies the Dörfler
marking (56). By induction, the contraction estimate (61) proves ∆ℓ+k ≤ κk ∆ℓ for
all k, ℓ ∈ N0. Together with the equivalence (62), this concludes the proof. �

Proof of Theorem 9. First, we recall the norm equivalence ||| · |||W +S ≃ ‖ · ‖H1/2(Γ), namely

C−1
2 ‖v‖H1/2(Γ) ≤ |||v|||W +S ≤ C2 ‖v‖H1/2(Γ) for all v ∈ H1/2(Γ), (64)

where C2 > 0 depends only on Γ.
• Second, recall stability of the continuous formulation in the sense that

‖g⋆ − gℓ‖H1/2(Γ) . ‖(1/2−K ′)(Π⋆ − Πℓ)φ‖H−1/2(Γ) . ‖(Π⋆ − Πℓ)φ‖H−1/2(Γ).

Together with the norm equivalence (64) and discrete reliability (44) of the data oscilla-
tion, this leads to

C−1
3 |||g⋆ − gℓ|||2W +S ≤ ‖(Π⋆ −Πℓ)φ‖2

H−1/2(Γ) ≤ C2
osc oscℓ(Tℓ\T⋆)

2, (65)

where C3 > 0 depends only on Γ.
• Third, the Galerkin orthogonality implies

〈〈g⋆ −G⋆ , V⋆〉〉W +S = 0 for all V⋆ ∈ Sp(T⋆).

This yields Pythagoras’ equality

|||g⋆ −Gℓ|||2W +S = |||g⋆ −G⋆|||2W +S + |||G⋆ −Gℓ|||2W +S.

The Young inequality (a+ b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2 for all a, b ∈ R and ε > 0 gives

|||g⋆ −Gℓ|||2W +S ≤ (1 + ε) |||gℓ −Gℓ|||2W +S + (1 + ε−1) |||g⋆ − gℓ|||2W +S.

Combining the last two observations with the stability estimate (65), we see

|||g⋆ −G⋆|||2W +S ≤ (1 + ε) |||gℓ −Gℓ|||2W +S − |||G⋆ −Gℓ|||2W +S

+ (1 + ε−1)C3C
2
osc oscℓ(Tℓ\T⋆)

2.
(66)

• Fourth, we define C4 = (1 + ε−1)C3C
2
osc + αCestC

2
osc and combine estimator reduc-

tion (53) with (66) to see

∆⋆ ≤ (1 + ε) |||gℓ −Gℓ|||2W +S − |||G⋆ −Gℓ|||2W +S + (1 + ε−1)C3C
2
osc oscℓ(Tℓ\T⋆)2

+ α qestρ
2
ℓ + αCest

(
‖G⋆ −Gℓ‖2

H1/2(Γ) + ‖(Π⋆ − Πℓ)φ‖2
H−1/2(Γ)

)
+ β osc2

⋆

≤ (1 + ε) |||gℓ −Gℓ|||2W +S + α qestρ
2
ℓ + C4 oscℓ(Tℓ\T⋆)

2 + β osc2
⋆

+ (αCestC
2
2 − 1) |||G⋆ −Gℓ|||2W +S.

(67)

With the choice α := C−1
estC

−2
2 , the last term vanishes.

• Fifth, note that h⋆ ≤ q hℓ with q = 2−1/(d−1) on
⋃

(Tℓ\T⋆), while h⋆ = hℓ on
⋃

(Tℓ ∩
T⋆). With the characteristic function χ⋃

(Tℓ\T⋆), this implies the pointwise estimate (1−
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q)hℓχ⋃
(Tℓ\T⋆) ≤ hℓ − h⋆ and hence the best approximation property of Π⋆ yields

(1− q) oscℓ(Tℓ\T⋆)
2 = (1− q) ‖h1/2

ℓ (1−Πℓ)‖2
L2(

⋃
(Tℓ\T⋆))

≤ ‖h1/2
ℓ (1− Πℓ)‖2

L2(Γ) − ‖h1/2
⋆ (1− Πℓ)‖2

L2(Γ)

≤ osc2
ℓ − osc2

⋆.

With the above choice of α and β := C4(1− q)−1, the estimate (67) becomes

∆⋆ ≤ (1 + ε) |||gℓ −Gℓ|||2W +S + α qestρ
2
ℓ + β osc2

ℓ . (68)

• Sixth, since gℓ and Gℓ are determined by the same right-hand side f = (1/2−K ′)Πℓφ,
the reliability estimate (39) of the weighted residual error estimator yields

C−1
dlr ‖gℓ −Gℓ‖H1/2(Γ) ≤ ‖h1/2

ℓ (1/2−K ′)Πℓφ−WGℓ‖L2(Γ) ≤ ρℓ.

Together with the norm equivalence ||| · |||W +S ≃ ‖ · ‖H1/2(Γ), this leads to

C5 |||gℓ −Gℓ|||2W +S ≤ ρ2
ℓ , (69)

where C5 > 0 depends only on Cdlr and Γ. Moreover, it holds osc2
ℓ ≤ ρ2

ℓ . For arbitrary
δ > 0, we obtain from (68)

∆⋆ ≤ (1 + ε− αδC5) |||gℓ −Gℓ|||2W +S + α (qest + 2δ) ρ2
ℓ + (β − αδ) osc2

ℓ ≤ κ∆ℓ

where

κ := max
{
1 + ε− αδC5 , qest + 2δ , (β − αδ)/β

}
.

The choice δ < (1− qest)/2 and ε < αδC5 yields 0 < κ < 1 and concludes the proof. �

5. Quasi-optimal convergence rates

In this section, we prove that the usual implementation of Algorithm 8 leads to quasi-
optimal convergence behavior in the following sense: Suppose that adaptive mesh-refinement
can provide a decay O(N−s) of the error estimator ρ⋆ with respect to the number N of
elements and some algebraic convergence rate s > 0, if the optimal meshes are chosen
(which do not have to be nested). Theorem 11 below then proves that the sequence of
estimators ρℓ generated by Algorithm 8 will also decay asymptotically with rate s.

5.1. Additional assumptions. While all the previous results hold without any
further assumptions on the mesh-refinement, the following assumptions are necessary for
the optimality result of Theorem 11, where we further specify step (iv)–(v) of Algorithm 8.

(A1) We suppose that the set of marked elementsMℓ which satisfies (56), has minimal
cardinality.

We note that the setMℓ might be non-unique in general and that its computation usually
relies on sorting the refinement indicators ρℓ(T ). For the mesh-refinement in step (v), we
suppose the following.

(A2) For d = 2, the bisection algorithm from [AFF+13a] is used. For d = 3, we use 2D
newest vertex bisection, see, e.g., [KPP13] and the references therein.

(A3) In either case, we suppose that Tℓ+1 = refine(Tℓ;Mℓ) is the coarsest admissible
refinement of Tℓ such that all marked elements T ∈Mℓ have been bisected.
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First, the choice of these mesh-refinement strategies guarantees that the meshes Tℓ gen-
erated by Algorithm 8 are uniformly γ-shape regular, where γ > 0 depends only on the
initial mesh T0.

Second, it has first been observed in [BDD04] for 2D newest vertex bisection that the
number #Tℓ of elements in Tℓ can be controlled by the number of marked elements, i.e.,

#Tℓ −#T0 ≤ Cmesh

ℓ−1∑

j=0

#Mj, (70)

where Cmesh > 0 depends only on T0. While [BDD04] required an additional assumption
on T0, this assumption has recently been removed in [KPP13], so that the initial trian-
gulation T0 is in fact an arbitrary admissible triangulation. For d = 2, the estimate (70)
is proved in [AFF+13a] for a bisection based refinement, where additional bisection of
non-marked elements are required to ensure uniform γ-shape regularity. In either case,
the proof of (70) naturally relies on assumption (A3)

Finally, for two admissible triangulations Tℓ and T⋆, let Tℓ ⊕ T⋆ ∈ refine(Tℓ) ∩
refine(T⋆) be the coarsest admissible refinement of both Tℓ and T⋆. Then, Tℓ ⊕ T⋆

is in fact the overlay, and it holds

#(Tℓ ⊕ T⋆) ≤ #Tℓ + #T⋆ −#T0, (71)

see [Ste07] for d = 3 and 2D newest vertex bisection and [AFF+13a] for d = 2.
Overall, we note that the estimates (70)–(71) are required for the arguments of the

proof and strongly tailored to the mesh-refinement strategy chosen in (A2).

5.2. Optimality result. To quantify the convergence rate of Algorithm 8, we intro-
duce for all s > 0 the quasi-norm

‖(g, φ)‖As := sup
N∈N0

inf
T⋆∈refine(T0)
#T⋆−#T0≤N

(N + 1)s ρ⋆.

Note that ‖(g, φ)‖As <∞ for some s > 0 implies that a convergence rate

ρ⋆ . (#T⋆ −#T0)−s

could be achieved if the optimal meshes T⋆ are chosen. The following theorem states that
each possible rate s > 0 will be recovered by Algorithm 8, i.e., the meshes generated are
asymptotically optimal.

Theorem 11. Let 0 < θ < θopt := (1 + C2
stabC

2
dlr)

−1. Then, the adaptively generated

meshes of Algorithm 8 satisfy

copt‖(g, φ)‖As ≤ sup
ℓ∈N0

(#Tℓ −#T0 + 1)s ρℓ ≤ Copt‖(g, φ)‖As. (72)

The constant copt > 0 depends only on d = 2, 3, whereas the constant Copt > 0 depends

on θ, Cmesh, Cdlr, Cred, Cstab, qred, as well as the polynomial degree p, s, and the γ-shape

regularity of T0.

We note that unlike the FEM literature, e.g., [CKNS08, Ste07] and the first results
on ABEM [FKMP13, Gan13], the upper bound θopt on optimal marking parameters is
independent of any lower bound for the error (so-called efficiency of the estimator). The
proof needs some preparations. The following result shows that Dörfler marking (56)
is not only sufficient (63), but even necessary to obtain linear convergence of the error
estimator.
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Lemma 12. For any 0 < θ < θopt, there exists 0 < κ0 < 1 such that all T⋆ ∈ refine(Tℓ)
satisfy the implication

ρ2
⋆ ≤ κ0ρ

2
ℓ =⇒ θρ2

ℓ ≤ ρℓ(Tℓ \ T⋆)2. (73)

The constant κ0 depends only on θ, Cstab, and Cdlr.

Proof. Recall Young’s inequality (a + b)2 ≤ (1 + δ)a2 + (1 + δ−1)b2 for all a, b ∈ R and
δ > 0. The stability (48) shows

ρ2
ℓ = ρℓ(Tℓ ∩ T⋆)2 + ρℓ(Tℓ \ T⋆)

2

≤ (1 + δ)ρ⋆(T⋆ ∩ Tℓ)
2 + ρℓ(Tℓ \ T⋆)

2

+ (1 + δ−1)C2
stab

(
‖G⋆ −Gℓ‖H1/2(Γ) + ‖(Π⋆ −Πℓ)φ‖H−1/2(Γ)

)2

The assumption ρ2
⋆ ≤ κ0ρ

2
ℓ together with discrete reliability (50) imply

ρ2
ℓ ≤ (1 + δ)κ0ρ

2
ℓ + (1 + (1 + δ−1)C2

stabC
2
dlr)ρℓ(Tℓ \ T⋆)2

and hence

θρ2
ℓ ≤ ρℓ(Tℓ \ T⋆)

2 for all 0 ≤ θ < θ(κ0) := sup
δ>0

1− (1 + δ)κ0

1 + (1 + δ−1)C2
stabC

2
dlr

.

For each θ < θopt, there exist δ, κ0 > 0 such that

θ <
1− (1 + δ)κ0

1 + (1 + δ−1)C2
stabC

2
dlr

< θopt

and hence θ < θ(κ0). This concludes the proof. �

The definition of the quasi-norm ‖ · ‖As allows to find optimal meshes, which compare
with the adaptively generated meshes. This is stated in the following lemma.

Lemma 13. Let 0 < κ < 1 and let s > 0 such that ‖(g, φ)‖As < ∞. For all admissible

meshes Tℓ, there exists a refinement T⋆ ∈ refine(Tℓ) with

ρ2
⋆ ≤ κρ2

ℓ and #T⋆ −#Tℓ + 1 ≤ C6‖(g, φ)‖1/s
As
ρ

−1/s
ℓ . (74)

The constant C6 > 0 depends only on Cmon, κ, and s > 0.

Proof. Arguing as in [Ste07, CKNS08], the definition of ‖·‖As provides for each sufficiently
small ε > 0 a mesh Tε ∈ refine(T0) which satisfies

#Tε −#T0 + 1 . ‖(g, φ)‖1/s
As
ε−1/s and ρε ≤ ε.

For ε := C−1
monκ

1/2ρℓ, define T⋆ := Tℓ ⊕ Tε and verify with (71)

#T⋆ −#Tℓ + 1 ≤ #Tε −#T0 + 1 . ‖(g, φ)‖1/s
As
ρ

−1/s
ℓ .

Since T⋆ ∈ refine(Tε) and by choice of ε, the quasi-monotonicity (51) shows

ρ2
⋆ ≤ C2

monρ
2
ε ≤ κρ2

ℓ .

This concludes the proof. �

Proof of Theorem 11. Choose κ > 0 sufficiently small such that the implication (73)
holds true. Given Tℓ, Lemma 13 provides a mesh T⋆ ∈ refine(Tℓ) with (74). Therefore,
Lemma 12 implies that Tℓ \ T⋆ satisfies the Dörfler marking (56). Since (A1) states that
Mℓ is a set of minimal cardinality which satisfies Dörfler marking, there holds

#Mℓ + 1 ≤ #(Tℓ \ T⋆) + 1 ≤ #T⋆ −#Tℓ + 1 . ‖(g, φ)‖1/s
As
ρ

−1/s
ℓ .
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This and the mesh-closure estimate (70) imply

#Tℓ −#T0 + 1 .
ℓ−1∑

j=0

(#Mj + 1) . ‖(g, φ)‖1/s
As

ℓ−1∑

j=0

ρ
−1/s
j .

The R-linear convergence of Corollary 10 together with the convergence of the geometric
series show

#Tℓ −#T0 + 1 . ‖(g, φ)‖1/s
As
ρ

−1/s
ℓ C

−1/s
1

ℓ−1∑

j=0

κ(ℓ−j)/s . ‖(g, φ)‖1/s
As
ρ

−1/s
ℓ .

This implies the upper bound in (72). The lower bound in (72) follows from elementary
arguments and the fact that each refined element is split into at most two sons for d = 2
and into at most four sons for d = 3. This concludes the proof. �

6. Conclusions and Remarks

6.1. Conclusions on convergence results. In contrast to the FEM, the right-hand
sides in BEM typically involve boundary integral operators, which cannot be evaluated
exactly in practice. Thus, the analysis of data error is mandatory. To compute the right-
hand side term (1/2−K ′)φ numerically in our model problem (1), we follow the earlier
work [AFLG+12] and replace the exact data φ by its L2-projection Φℓ onto discontinuous
piecewise polynomials. This approach thus decouples the problem of integrating the
singular kernel of the integral operator K ′ from integrating the possibly singular data φ
to compute K ′φ. On their own, both problems are well understood. Moreover, in 2D
(see [Mai01]) one can even find analytic formulas to compute the term K ′Φℓ exactly, while
there exist black-box quadrature algorithms to compute K ′Φℓ in 3D (see, e.g., [SS11]).

Based on the weighted residual error estimator from [CMS01], we introduced an overall
error estimator which controls both, the discretization error as well as the data approx-
imation error (Theorem 7). For the resulting adaptive algorithm, linear convergence
(Corollary 10) even with quasi-optimal rates (Theorem 11) is shown. Throughout, the
analysis applies to Galerkin BEM based on piecewise polynomials of arbitrary but fixed
maximal order p ≥ 1.

We note that linear convergence (Corollary 10) as well as the optimality result of
Theorem 11 also hold if data approximation is avoided, i.e., Π⋆ is taken as the identity
in (46) and hence osc⋆ = 0 throughout. Therefore, this work generalizes [Gan13] from
the lowest order case p = 0 to general p ≥ 0.

6.2. Extension to indirect BEM. Linear convergence (Corollary 10) as well as
the optimality result of Theorem 11 also hold for indirect BEM (32) with Galerkin dis-
cretization (33), where the analysis is even simpler. The necessary properties of the error
estimator are provided by Proposition 4 and Corollary 5.

Moreover, the analysis can easily be adapted to indirect BEM with data approximation,
where (33) becomes

〈〈U⋆ , V⋆〉〉W +S = 〈Π⋆f , V⋆〉 for all V⋆ ∈ Sp+1(T⋆).

Details follow by simplifying the proof of Theorem 7, while the proofs of linear convergence
and optimal convergence rates hold accordingly.

6.3. Extension to screen problems. For a connected and relatively open screen
Γ $ ∂Ω, let H̃1(Γ) denote the space of all H1(∂Ω)-functions which are supported on Γ.
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Figure 1. Z-shaped domain Ω with boundary Γ = ∂Ω and initial trian-
gulation of Γ into 9 boundary elements for the numerical experiment from
Section 7.1.

One defines

H̃s(Γ) = [L2(Γ); H̃1(Γ)]s and Hs(Γ) = [L2(Γ);H1(Γ)]s

by interpolation for 0 < s < 1 and the corresponding dual spaces

H̃−s(Γ) = Hs(Γ)′ and H−s(Γ) = H̃s(Γ)′

with respect to the extended L2(Γ)-scalar product 〈· , ·〉. Then, W : H̃s(Γ)→ Hs−1(Γ) is
a well-defined linear and continuous operator. Moreover, W is symmetric and elliptic on
H̃1/2(Γ). For given right-hand side f ∈ H−1/2(Γ), the hyper-singular integral equation
Wu = f thus fits into the setting of the Lax-Milgram lemma, and (unlike the case
Γ = ∂Ω) the stabilization can be omitted.

The analysis of the weighted residual error estimator in Proposition 4 holds verbatim.
On a technical side, one requires that the inverse estimates of Lemma 1 remain valid
which is, in fact, the case. We refer to the references [AFF+13b, AFF+12, GHS05] also
given above. Moreover, our analysis requires an appropriate Scott-Zhang projection in
H̃1/2(Γ) which is defined and analyzed in [AFF+13b], and Lemma 2 transfers to this case
as well. Overall, also linear convergence (Corollary 10) and optimality (Theorem 11)
remain valid.

7. Numerical Experiments

This section reports on some numerical experiments in 2D with first-order S1(T⋆) and
second-order S2(T⋆) boundary elements. All experiments are conducted in Matlab by
means of the library HILBERT [AEF+13].

7.1. Direct BEM for 2D Neumann problem. We consider the hyper-singular
integral equation (45) on the boundary of the Z-shaped domain sketched in Figure 1.
The Neumann data φ ∈ H−1/2(Γ) is given by the normal derivative of the potential

P (x, y) = r4/7 cos(4/7ϕ),

where (r, ϕ) denote the polar coordinates of (x, y) ∈ R2, i.e. (x, y) = r(cos(ϕ), sin(ϕ)). Up
to an additive constant, the exact solution g ∈ H1/2(Γ) is the trace P |Γ of the potential P .
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Figure 2. Hyper-singular integral equation from Section 7.1 on the Z-
shaped domain, sketched in Figure 1. Uniform mesh-refinement leads to a
suboptimal convergence O(N−4/7) for both p = 0 and p = 1, whereas the
adaptive strategy recovers the optimal convergence O(N−(3/2+p)).

We solve the perturbed discrete system (46) in each step of the adaptive algorithm from
Section 4. Moreover, Algorithm 8 is steered by the local error indicators ρℓ(T ) from (47).
We note that the energy norm |||g|||W +S of the exact solution is unknown. Therefore, we
employ [AFF+13b, Lemma 6] for s = 1/2 and estimate the energy error by

|||g −Gℓ|||W +S . ‖h1/2
ℓ ∇(g −Gℓ)‖L2(Γ) =: errℓ.

In Figure 2, we compare adaptive (θ = 0.25) vs. uniform (θ = 1) mesh-refinement for
p = 0, 1. Since the exact solution satisfies g ∈ H1/2(Γ) ∩ H1/2+4/7−ε(Γ), for all ε > 0,
theory predicts the convergence order |||g−Gℓ|||W +S = O(N−s

ℓ ) with s = 4/7 for uniform
mesh-refinement. This is confirmed by our numerical results from Figure 2 for both p = 0
and p = 1, whereas the adaptive strategies for p = 0, 1 recover the respective optimal
orders s = 3/2 + p.

7.2. 2D slit problem. Let Γ := (−1, 1)× {0} ⊆ R2. We consider the hyper-singular
integral equation

〈〈g , v〉〉W = 〈φ , v〉 for all v ∈ H̃1/2(Γ)

with right-hand side φ = 1 and exact solution g(x, 0) = 2
√

1− x2. Since Πℓφ = φ, the
discrete formulation reads

〈〈Gℓ , Vℓ〉〉W = 〈Πℓφ , Vℓ〉 = 〈φ , Vℓ〉 for all Vℓ ∈ Sp+1
0 (Tℓ),

where Sp+1
0 (Tℓ) = Sp+1(Tℓ) ∩ H̃1/2(Γ). Moreover, the oscillation term vanishes in (47).

Thus, the local error indicators, which are used to steer Algorithm 8, read

ρℓ(T ) = ‖h1/2
ℓ (WGℓ − φ)‖L2(T ) for all T ∈ Tℓ.
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Figure 3. Hyper-singular integral equation from Section 7.2 on the slit
Γ := (−1, 1)×{0}. Uniform mesh-refinement leads to a suboptimal conver-
gence O(N−1/2) for both p = 0 and p = 1, whereas the adaptive strategy
recovers the optimal convergence O(N−(3/2+p)).

The Galerkin orthogonality allows to compute the error in energy norm by

|||g −Gℓ|||2W = |||g|||2W − |||Gℓ|||2W = π − |||Gℓ|||2W =: err2
ℓ .

We stress that g ∈ H̃1/2(Γ) ∩ H1−ε(Γ), for all ε > 0, but g /∈ H1(Γ). Theory predicts
a convergence rate errℓ = O(N−s

ℓ ) with s = 1/2 for uniform mesh-refinement. This is
confirmed by the numerical experiments for both p = 0, 1, see Figure 3. In contrast to
that, the adaptive strategy from Algorithm 8 with θ = 0.25 regains the optimal order of
convergence s = 3/2 + p in either case p = 0, 1.

Acknowledgements: The authors MF, TF, and DP acknowledge support through the
Austrian Science Fund (FWF) under grant P21732 Adaptive Boundary Element Method.
MK acknowledges support by CONICYT project Anillo ACT1118 (ANANUM). MF,
JMM, and DP acknowledge the support of the FWF doctoral school Dissipation and

Dispersion in Nonlinear PDEs, funded under grant W1245.

References

[AEF+13] Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-Leite, Thomas Führer,
Petra Goldenits, Michael Karkulik, and Dirk Praetorius. HILBERT – a MATLAB imple-
mentation of adaptive 2D-BEM. Numer. Algorithms, in print, 2013.

[AFF+12] Markus Aurada, Michael Feischl, Thomas Führer, J. Markus Melenk, and Dirk Praetorius.
Inverse estimates for elliptic boundary integral operators and their application to the adap-
tive coupling of FEM and BEM. ASC Report, 07/2012, Institute for Analysis and Scientific

Computing, Vienna University of Technology, 2012.
[AFF+13a] Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik, and Dirk Praetorius.

Efficiency and optimality of some weighted-residual error estimator for adaptive 2D bound-
ary element methods. Comput. Methods Appl. Math., 13:305–332, 2013.

20



[AFF+13b] Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik, and Dirk Praetorius.
Energy norm based error estimators for adaptive BEM for hypersingular integral equations.
ASC Report, 22/2013, Institute for Analysis and Scientific Computing, Vienna University

of Technology, 2013.
[AFLG+12] M. Aurada, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius. Con-

vergence of adaptive BEM for some mixed boundary value problem. Appl. Numer. Math.,
62(4):226–245, 2012.

[BDD04] Peter Binev, Wolfgang Dahmen, and Ronald DeVore. Adaptive finite element methods with
convergence rates. Numer. Math., 97(2):219–268, 2004.

[CKNS08] J. Manuel Cascon, Christian Kreuzer, Ricardo H. Nochetto, and Kunibert G. Siebert. Quasi-
optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal.,
46(5):2524–2550, 2008.

[CMPS04] Carsten Carstensen, Matthias Maischak, Dirk Praetorius, and Ernst P. Stephan. Residual-
based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math.,
97(3):397–425, 2004.

[CMS01] Carsten Carstensen, Matthias Maischak, and Ernst P. Stephan. A posteriori error esti-
mate and h-adaptive algorithm on surfaces for Symm’s integral equation. Numer. Math.,
90(2):197–213, 2001.

[CP06] Carsten Carstensen and Dirk Praetorius. Averaging techniques for the effective numerical
solution of Symm’s integral equation of the first kind. SIAM J. Sci. Comput., 27(4):1226–
1260, 2006.

[CP07] Carsten Carstensen and Dirk Praetorius. Averaging techniques for the a posteriori BEM
error control for a hypersingular integral equation in two dimensions. SIAM J. Sci. Comput.,
29(2):782–810, 2007.

[Fae00] Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adap-
tive boundary element methods. I. The two-dimensional case. IMA J. Numer. Anal.,
20(2):203–234, 2000.

[Fae02] Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and application to adap-
tive boundary element methods. II. The three-dimensional case. Numer. Math., 92(3):467–
499, 2002.

[FFK+13] Michael Feischl, Thomas Führer, Michael Karkulik, Jens Markus Melenk, and Dirk Prae-
torius. Quasi-optimal convergence rates for adaptive boundary element methods with data
approximation, part I: Weakly-singular integral equation. Calcolo, accepted for publication,
2013.

[FKMP13] Michael Feischl, Michael Karkulik, J. Markus Melenk, and Dirk Praetorius. Quasi-optimal
convergence rate for an adaptive boundary element method. SIAM J. Numer. Anal.,
51:1327–1348, 2013.

[Gan13] Tsogtgerel Gantumur. Adaptive boundary element methods with convergence rates. Nu-

merische Mathematik, 124(3):471–516, 2013.
[GHS05] Ivan G. Graham, Wolfgang Hackbusch, and Stefan A. Sauter. Finite elements on degenerate

meshes: inverse-type inequalities and applications. IMA J. Numer. Anal., 25(2):379–407,
2005.

[HW08] George C. Hsiao and Wolfgang L. Wendland. Boundary integral equations, volume 164 of
Applied Mathematical Sciences. Springer-Verlag, Berlin, 2008.

[KPP13] Michael Karkulik, David Pavlicek, and Dirk Praetorius. On 2D newest vertex bisection:
Optimality of mesh-closure and H

1-stability of L2-projection. Constr. Approx., 38:213–234,
2013.

[Mai01] Matthias Maischak. The analytical computation of the Galerkin elements for the Laplace,
Lamé and Helmholtz equation in 2D-BEM. Preprint, Institute for Applied Mathematics,

University of Hanover, 2001.
[McL00] William McLean. Strongly elliptic systems and boundary integral equations. Cambridge Uni-

versity Press, Cambridge, 2000.
[SS11] Stefan A. Sauter and Christoph Schwab. Boundary element methods, volume 39 of Springer

Series in Computational Mathematics. Springer-Verlag, Berlin, 2011. Translated and ex-
panded from the 2004 German original.

[Ste07] Rob Stevenson. Optimality of a standard adaptive finite element method. Found. Comput.

Math., 7(2):245–269, 2007.

21



[SZ90] L. Ridgway Scott and Shangyou Zhang. Finite element interpolation of nonsmooth functions
satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

E-mail address: {Michael.Feischl,Thomas.Fuehrer,Melenk}@tuwien.ac.at

E-mail address: Dirk.Praetorius@tuwien.ac.at (corresponding author)

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña
Mackenna 4860, Santiago, Chile

E-mail address: mkarkulik@mat.puc.cl

22


	titelseite30-13
	abem_part2

