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NOVEL INVERSE ESTIMATES FOR

NON-LOCAL OPERATORS

MICHAEL FEISCHL, THOMAS FÜHRER, MICHAEL KARKULIK,
JENS MARKUS MELENK, AND DIRK PRAETORIUS

1. Inverse estimates

Inverse estimates are a means to bound expressions in stronger norms than
in the generic situation by exploiting additional structure. Two examples of
such structures are the following:

(a) In FEM, strong norms of piecewise polynomials can be bounded
in terms of weak norms. The key point is the ability to use norm
equivalence on finite dimensional spaces on a reference configuration.
Scaling arguments provide the correct powers of the local mesh size.

(b) In regularity theory for elliptic PDE, “interior regularity” of solu-
tions can be seen as an inverse estimate. By using the underlying
equation directly, strong norms of solutions can be controlled by
weaker norms at the expense of slightly enlarging the domain.

In the following, T denotes a (even locally refined) mesh on a subset Γ ⊆ ∂Ω
of the boundary ∂Ω of a polyhedral domain Ω ⊂ R

d. The local mesh size is
denoted by h ∈ P0(T ) where Pp(T ) is the space of piecewise polynomials
of degree at most p. An example for (a) is given, e.g., in [6, Theorem 3.6]:

Theorem 1.1 (Inverse estimate for piecewise constants). There exists a

constant C > 0, which depends only on an upper bound for the shape-

regularity constant of T and the polynomial degree p ≥ 0, such that

‖h1/2Ψ‖L2(Γ) ≤ C‖Ψ‖H−1/2(Γ) for all Ψ ∈ Pp(T ).

As an example for (b) serves [9, Lemma 5.7.1]:

Theorem 1.2 (Interior regularity/Caccioppoli inequality). There is C > 0
such that the following holds: If Br, Br+h are balls with radii r, r + h > 0
around a joint midpoint, and if u ∈ H1(Br+h) satisfies ∆u = 0 ∈ L2(Br+h)
for some r, h > 0, then u ∈ H2(Br) with

‖D2u‖L2(Br) ≤ Ch−1‖∇u‖L2(Br+h).
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In the following, we present a possibility how to obtain inverse estimates
involving boundary layer potentials by combining the two inverse estimates
above. As a prototype for such a layer potential serves the simple-layer
potential of the 3D-Laplacian, which is given by

V ψ(x) :=
1

4π

∫

Γ

ψ(y)

|x− y|
dsy.(1)

Hereafter, K and K ′ denote the double layer potential and its adjoint, and
W denotes the hypersingular integral operator. Our main result, which is
taken from [1, 8], is the following.

Theorem 1.3 (Inverse estimates for boundary integral operators). There is

C > 0 which depends only on Γ and an upper bound for the shape-regularity

constant of T , such that

‖h1/2∇ΓV ψ‖L2(Γ) ≤ C
[
‖ψ‖H−1/2(Γ) + ‖h1/2ψ‖L2(Γ)

]
,(2)

‖h1/2K ′ψ‖L2(Γ) ≤ C
[
‖ψ‖H−1/2(Γ) + ‖h1/2ψ‖L2(Γ)

]
,(3)

‖h1/2∇ΓKv‖L2(Γ) ≤ C
[
‖v‖H1/2(Γ) + ‖h1/2∇Γv‖L2(Γ)

]
,(4)

‖h1/2Wv‖L2(Γ) ≤ C
[
‖v‖H1/2(Γ) + ‖h1/2∇Γv‖L2(Γ)

]
,(5)

holds for all ψ ∈ L2(Γ) and v ∈ H1(Γ). Here, ∇Γ denotes the surface

gradient for d ≥ 3, and the arclength derivative for d = 2.

Some observations regarding this result are the following.

• We stress that a difficulty in proving Theorem 1.3 lies in the consid-
eration of locally refined meshes. If we consider a globally uniform

mesh T , we can use stability V : L2(Γ) → H1(Γ) to estimate, e.g.,

‖h1/2∇ΓV ψ‖L2(Γ) = h1/2‖∇ΓV ψ‖L2(Γ) . h1/2‖ψ‖L2(Γ)

= ‖h1/2ψ‖L2(Γ).

• As already mentioned, inverse estimates typically require a space
with some structure. Theorem 1.3 holds for ψ ∈ L2(Γ), which might
not be regarded as a space with a rich structure. However, if ψ =
Ψ ∈ Pp(T ), we can use Theorem 1.1 to estimate, e.g.,

‖h1/2∇ΓVΨ‖L2(Γ) . ‖Ψ‖H−1/2(Γ).(6)

By stability of V and its inverse, the last estimate is equivalent to

‖h1/2∇ΓVΨ‖L2(Γ) . ‖VΨ‖H1/2(Γ),(7)

which is indeed an inverse estimate.

An analogous result to Theorem 1.3 was proven independently in [5] for
lowest-order discretizations and C1,1 surfaces. In the next section, we present
the ideas for proving the bound for the simple layer potential V in Theo-
rem 1.3, and in the last section we comment on several applications.
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2. Inverse Estimate for V

The main difficulty in proving (2) is the fact that V is a non-local operator.
We restrict our considerations to local configurations, i.e. elements, via

‖h1/2∇ΓV ψ‖
2
L2(Γ)

=
∑

T∈T

‖h1/2∇ΓV ψ‖
2
L2(T ).

Even if we would restrict to ψ = Ψ ∈ P0(T ), it would be impossible to
bound the contributions of VΨ on T , as the local dimension of this space
is dominated by the whole mesh T – actually, V is non-local. On T , we
therefore split the potential u = V ψ in a part unearT with a bounded and

small dimension, and a rest ufarT via

V ψ = V (ψT ) + V (ψΓ\T ) = unearT + ufarT .

Here, ψω := ψχω, where χω is the characteristic function of the set ω. We
stress that the actual splitting that is used in the proofs of [1, 8] extends a
little to the neighborhood of T , but we stick to this simplification for ease
of presentation. We call unearT the nearfield and ufarT the farfield and write

‖h1/2∇ΓV ψ‖
2
L2(Γ)

.
∑

T∈T

‖h1/2∇Γu
near
T ‖2L2(T ) +

∑

T∈T

‖h1/2∇Γu
far
T ‖2L2(T ).(8)

Due to the locality of the nearfield and stability V : L2(Γ) → H1(Γ),

‖∇Γu
near
T ‖2L2(T ) ≤ ‖∇Γu

near
T ‖2L2(Γ)

. ‖ψT ‖
2
L2(Γ)

= ‖ψ‖2L2(T ),(9)

and a multiplication with the local mesh width h and a sum over all elements
bounds the nearfield terms in (8). It remains to bound the farfield terms
in (8), which is done by exploiting Theorem 1.2. We may do so, because

1. V is a potential in R
d, i.e., ∆V (ψΓ\T ) = 0 in Ω and in R

d \ Ω, and
it is smooth in both parts,

2. and the farfield term is smooth in a d-dimensional neighborhood of
T , as the density ψΓ\T vanishes on T .

Put differently, ufarT is a potential that is induced by a density on Γ \ T . A

standard trace inequality applied to ∇Γu
far
T involves the second derivative

of ufarT in a volume UT around T ,

‖∇Γu
far
T ‖2L2(T ) . h−1

T ‖∇ufarT ‖2L2(UT ) + ‖∇ufarT ‖L2(UT )‖D
2ufarT ‖L2(UT ).

Due to reasons 1. and 2., we can bound the second derivative by Theorem 1.2
and obtain

‖∇Γu
far
T ‖2L2(T ) . h−1

T ‖∇ufarT ‖2
L2(ŨT )

with a slightly enlarged volume ŨT . A sum over T bounds the farfield terms
in (8), which is then splitted into the difference ufarT = V ψ − unearT of the
whole potential and the nearfield,

∑

T∈T

‖h1/2∇Γu
far
T ‖2L2(T ) .

∑

T∈T

‖∇V ψ‖2
L2(ŨT )

+
∑

T∈T

‖∇unearT ‖2
L2(ŨT )
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We ensure that only a bounded number of ŨT overlap, such that the terms
on the right hand side can be estimated by stability of the potential V ψ and
the locality of the nearfield analogous to (9).

3. Applications

3.1. Convergence of adaptive BEM. For given data f , the (unknown)
solution φ of the weakly-singular integral equation

V φ = f(10)

can be approximated adaptively by a Galerkin method. To that end, we
employ the following adaptive algorithm.

Algorithm 3.1. Input: coarse mesh T0, approximation order p ∈ N0, param-
eter θ ∈ (0, 1), counter ℓ := 0.

(i) compute Galerkin solution Φℓ ∈ Pp(Tℓ) of (10).
(ii) for every T ∈ Tℓ, compute error indicator

ρℓ(T ) := ‖h
1/2
ℓ ∇Γ(V Φℓ − f)‖L2(T ).

(iii) choose a set Mℓ ⊆ Tℓ of minimal cardinality such that

θ
∑

T∈T

ρℓ(T )
2 ≤

∑

T∈Mℓ

ρℓ(T )
2.

(iv) refine at least the elements Mℓ in Tℓ and obtain Tℓ+1.
(v) increase counter ℓ := ℓ+ 1 and goto (i).

Output: sequence of solutions (Φℓ)ℓ∈N0
, sequence of estimators, (ρℓ)ℓ∈N0

.

We can employ the inverse estimate for V to show that the adaptive
Algorithm 3.1 converges, cf. [7]:

Theorem 3.2. The sequence of Galerkin solutions (Φℓ)ℓ∈N0
computed by

Algorithm 3.1 converges to φ, i.e.,

‖φ− Φℓ‖H−1/2(Γ) → 0.

Two important observations regarding algorithm 3.1 are the following:

• In [4], it is shown that the estimator ρℓ, employed in Algorithm 3.1,
is reliable, i.e.,

‖φ−Φℓ‖H−1/2(Γ) . ρℓ :=
(∑

T∈T

ρℓ(T )
2
)1/2

.(11)

• Arguments from [3] show that Algorithm 3.1 converges a priori, i.e.,

‖Φℓ+1 − Φℓ‖H−1/2(Γ) → 0.(12)

Using the contraction of the mesh size on refined elements, it is possible
to show that Algorithm 3.1 yields the so-called estimator reduction

ρℓ+1 ≤ κρℓ + Cred‖h
1/2
ℓ+1∇ΓV (Φℓ+1 − Φℓ)‖L2(Γ)(13)
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with some κ ∈ (0, 1) and Cred > 0. This means that ρℓ is a contraction up
to a perturbation term, which consists of the difference of two successive
Galerkin solutions, measured in a stronger norm compared to (12). We
use the inverse estimate (6) to bound the perturbation term by the weaker

H−1/2 norm and use the a priori convergence (12),

‖h
1/2
ℓ+1∇ΓV (Φℓ+1 − Φℓ)‖L2(Γ) . ‖Φℓ+1 − Φℓ‖H−1/2(Γ) → 0.(14)

Hence, we conclude from (13) and (14) that ρℓ is a contraction up to a zero
sequene. From basic calculus, we infer that ρℓ → 0. Due to reliability (11),
we conclude the statement of Theorem 3.2.

3.2. Convergence of adaptive FEM-BEM coupling. We adaptively
solve a Laplace transmission problem with given Dirichlet and Neumann
jumps u0 and φ0. We use the symmetric FEM-BEM coupling formulation
and seek u ∈ H1(Ω) and φ ∈ H−1/2(Γ) s.t.

〈∇u , ∇v〉Ω + 〈Wu+ (K ′ − 1/2)φ , v〉Γ = 〈f , v〉Ω + 〈φ0 +Wu0 , v〉Γ

〈ψ , V φ− (K − 1/2)u〉Γ = −〈ψ , (K − 1/2)u0〉Γ,

hold true for all v ∈ H1(Ω) and ψ ∈ H−1/2(Γ). We stress that the following
arguments also apply to other couplings, e.g. the Johnson-Nédélec or Bielak-
McCamy coupling. For a posteriori error estimation, we use a combination
ηℓ of the residual FEM error estimator and the weighted residual BEM
estimator ρℓ from Subsection 3.1, cf. [1]. Again, an adaptive algorithm of the
form of Algorithm 3.1 exhibits the estimator reduction for ηℓ, where strong
norms involving all 4 boundary integral operators appear in the perturbation
terms. This strong norms can be estimated by the inverse estimates from
Theorem 1.3, such that we obtain ηℓ → 0, cf. Subsection 3.1, which results
in convergence of the adaptive coupling due to the reliability of ηℓ, cf. [1].

3.3. Efficiency of weighted residual estimates in BEM. The inverse
estimate for V can be used to show the efficiency of the residual error esti-
mate ρℓ from Subsection 3.1 for d = 2. We recall that φ is the exact solution
of the weakly singular integral equation (10), and Φℓ ∈ P0(Tℓ) denotes a
lowest-order Galerkin solution. The estimate for V in Theorem 1.3 states
that

ρℓ = ‖h
1/2
ℓ ∇ΓV (φ− Φℓ)‖L2(Γ) . ‖φ−Φℓ‖H−1/2(Γ) + ‖h

1/2
ℓ (φ− Φℓ)‖L2(Γ).

By an explicite use of the singular behaviour of φ on polygonal boundaries,
we can bound the last term in the preceding estimate and obtain the follow-
ing, cf. [2].

Theorem 3.3 (Efficiency of ρℓ in 2D). If f ∈ Hs(Γ) for s > 2, then

ρℓ . ‖φ− Φℓ‖H−1/2(Γ) + hotℓ,
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where, for all ε > 0,

hot2ℓ =
∑

T∈T

hotℓ(T )
2 and hotℓ(T ) ≤ Chothℓ(T )

min(s,5/2)−1/2−ε.

The constant Chot depends only on Γ, an upper bound of the shape regularity

constant of Tℓ, s, and ε.

If we again restrict to globally uniform meshes, we see that the preceding
Theorem yields, for some ε > 0,

ρℓ . ‖φ−Φℓ‖H−1/2(Γ) +O(h
3/2+ε
ℓ ).

As the optimal rate of convergence for lowest order BEM is O(h3/2), we
obtain efficiency of ρℓ up to terms of higher order.
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