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Introduction

In this thesis we discuss and analyze the results on open boundary conditions
for the two-dimensional time-dependent Schrödinger equation. The aim of the
research presented here is to derive new mathematical models for the simulation
of novel electronic devices of nanoscale dimensions. Within these models it is
possible to study the electron flow through devices and their operations like the
switching behaviour between on- and off states. In practice, devices consist of an
“active region” (often having a complicated geometry) which is connected to leads
or contact regions. Compared to the domain of interest, these leads are so long
that they are usually modeled as infinitely long. For numerical purposes it is hence
necessary to reduce the computational domain of the simulation model to a small
region around the domain of interest – however, without changing the simulation
results. Hence we need to use artificial boundary conditions at the cut-offs of the
computational domain. These boundary conditions are called transparent, if the
solution on the restriced area with the new boundary conditions coincides with
the solution on the unbounded domain (i.e. the channel). The main focus of this
thesis is the discretization of such artificial boundary conditions in conjunction
with various finite difference schemes for the Schrödinger equation.

The thesis consists of the following four sections:

In §1 we present a short overview on existing transparent boundary conditions
for the Schrödinger equation and show some new two dimensional simulations. We
will compare numerical results obtained with different types of artificial boundary
conditions. The results of this first chapter will be published in Mathematics and
Computers in Simulation (2007), Proceedings of Mathmod 2006, Vienna, Aus-
tria and in the Proceedings in Applied Mathematics and Mechanics (2008).

In the second chapter we derive a new discretization scheme of the two dimen-
sional Schrödinger equation. We prove the ℓ2-norm preservation of the highly
accurate scheme and analyze the obtained transparent boundary conditions in de-
tail. In several examples we present numerical tests concerning the error due to
the scheme and to the boundary conditions. These results will appear in a joint
work with Prof. Dr. Anton Arnold in Kinetic and related models 1 (2008).

§3 deals with some physical extensions of the model and of the artificial bound-
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Introduction

ary conditions. We relax the strong assumptions on external potentials that
were needed for the analysis presented in §1 and §2. Additionally, we include
a self-consistent potentials derived through a nonlinear coupling between the
Schrödinger and the Poisson equation. With this model it is possible to simu-
late semiconductor devices like the double gate metal oxide semiconductor field-
effect transistor. Furthermore, we reduce the numerical effort for the calculation of
the solution by introducing a highly efficient algorithm based on “subband decom-
positions”. This amounts to projecting the solution onto the (local) Schrödinger
eigenfunctions in the orthogonal direction to the device channel. The work pre-
sented in §3 has been developed under supervision of Prof. Dr. Naoufel Ben Ab-
dallah of the Laboratoire MIP - Mathématiques pour l’Industrie et la Physique in
Toulouse, France and will be submitted in 2008.

Finally we present results for the Schrödinger equation on circular domains
in §4. Therefore we consider the 2D Schrödinger equation in polar coordinates
and derive new transparent boundary condition for the discretized Schrödinger
equation. After a stability analysis we give some numerical examples. These
results will be submitted in a joint work with Prof. Dr. Anton Arnold, Dr.
Matthias Ehrhard, and Prof. Dr. Ivan Sofronov in 2007.
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1 Transparent boundary conditions

for quantum-waveguide

simulations

In this first chapter we give an introduction to open boundary problems for the
time-dependent Schrödinger equation. We will show some numerical results ob-
tained with different numerical methods for simulating open quantum systems.

1.1 Introduction

Quantum waveguides are novel electronic switches of nanoscale dimensions. They
are made of several different semiconductor materials such that the electron flow
is confined to small channels or waveguides. Due to their sandwiched structure
the relevant geometry for the electron current is roughly two dimensional. Using
external electrostatic potentials the “allowed region” for the electrons, and hence
the geometry can be modified. This allows to control the current flow through
such an electronic device. It makes it a switch, which resembles a transistor, but
on a nanoscale.

Being quantum particles, the electron transport through a quantum waveguide
can be modeled in good approximation by a two dimensional, time-dependent
Schrödinger equation

i~
∂

∂t
ψ(x, y, t) =

(
− ~2

2m∗
∆ + V (x, y, t)

)
ψ(x, y, t), (x, y) ∈ Ω(t), t > 0,

ψ(x, y, 0) = ψI(x, y), (x, y) ∈ Ω(0),

ψ(x, y, t) = 0, (x, y) ∈ ∂Ω(t) (1.1)

on a time-dependent geometry Ω(t) ⊂ R2 with ψI ∈ L2(Ω(0)) and homogeneous
Dirichlet boundary conditions. ~ and m∗ denote the Planck constant and effective
mass, respectively; ∆ the 2D Laplacian. The external potential satisfies V (., t) ∈
L∞(Ω(t)) and V (x, y, .) is piecewise continuous. The spatial domain consists of
(very long) leads and the active switching region, which sometimes has the shape
of a stub. Here, we shall only consider domains Ω(t) that are piecewise constant
in t and monotonously growing in time. At the jump discontinuities of the domain
we shall extend the solution ψ by zero, as a new initialization.
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1.1 Introduction

In typical applications, electrons are continuously fed into the leads. Depending
on the size and shape of the stub, the electron current is either reflected (off-state
of the device) or it can flow through the device (on-state). Since the applied
external potential can modify the stub size, it hence allows to switch the device.
Important device data for practitioners are the ratio between the on- and the
(residual) off-current as well as the switching time between these two stationary
states. These data can be obtained from numerical simulations of the described
Schrödinger equation model. The leads are very long compared to the typical size
of the active region and they usually only carry (linear combinations of) plane
wave solutions. For the efficiency of numerical simulations it is therefore desirable
to restrict the simulation model to a small region close to the stub (see Figure
1.5). Hence, the leads should to be cut off by using artificial boundary conditions.
This is possible without changing the solution of the Schrödinger equation by in-
troducing transparent boundary conditions (TBCs), which are non-local in time
(convolution type) and in space.

To illustrate the idea we first consider the time-dependent Schrödinger equation
(1.1) in one dimension x ∈ Ω(t) ⊂ R with a potential that satisfies V (x, t) = Vl

for x ≤ xl and V (x, t) = Vr for x ≥ xr and all t ≥ 0. The analytic TBC for this
one dimensional equation reads

ψx(xr, t) = −
√

~

2πm∗
e−i π

4 e−i Vr
~

t d

dt

t∫

0

ψ(xr, τ)e
i Vrτ

~

√
τ − t

dτ, t > 0, (1.2)

for the right boundary x = xr (and analogously for the left boundary) and was
first derived in [Pa82], [BaPo91]. The numerical discretizations of this artifi-
cial boundary condition is delicate, as it may easily render the initial-boundary
value problem unstable. Discrete transparent boundary conditions (DTBCs) for
a Crank-Nicolson finite difference discretization of the Schrödinger equation were
first given in [Ar98] and [EhAr01] (cf. also [AABES07] for a recent review of the
various alternative approaches). Another strategy to simulate open quantum sys-
tems consists in the use of absorbing boundary conditions (ABCs). ABCs are local
approximations to the extact TBCs. These boundary conditions minimize the re-
flections at the artificial boundary, e.g. based on pseudodifferential approaches.
ABCs may be also derived by an enlargement of the computational domain and
applying penalty potentials, like it was done in [Bu97].

For the two dimensional geometry of quantum waveguides, TBCs were rigor-
ously derived in [BeMePi05]. A discrete analogue along with a fast evaluation
algorithm was given in [ArEhSo03]. The topic of this introducing chapter is to
discuss the algorithmic issues of implementing these DTBCs for the 2D Schrö-
dinger equation (§1.3.1), to compare them with ABCs (§1.3.2, §1.3.3) and to use
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1 Transparent boundary conditions for quantum-waveguide simulations

them for simulating a quantum waveguide with a resonating stub (§1.3.4). A more
detailed derivation and analysis of DTBCs for the fourth order “Numerov-scheme”
for the two dimensional Schrödinger equation will appear in §2 and in [ScAr07].

1.2 Finite difference scheme and discrete

transparent boundary conditions for the two

dimensional Schrödinger equation

In this section we shall briefly review the derivation of DTBCs for the two di-
mensional Schrödinger equation on a rectangular geometry in conjunction with
a finite difference discretization. Here, we are ultimately interested in solving
the Schrödinger equation on a geometry like in Figure 1.5 with both leads being
rectangular and infinitely long. When discussing TBCs we only need to consider
the geometry of the exterior domain, i.e. the domain to be eliminated by the
TBCs. The interior domain shall be kept in the simulation and can have an irreg-
ular geometry (e.g. T-shaped like in Figure 1.5). For a more realistic model one
should actually solve the nonlinear Schrödinger-Poisson equation in the interior
domain (cf. §3 or [BeMePi05]), but this still does not effect the shape of the TBCs.

Here, we choose Ωcomp = R × [0, Y ] ⊂ R2 as the domain of interest. Let ψn
j,k

be the numerical approximation of the solution ψ(xj , yk, tn) to the Schrödinger
equation (1.1) on the equidistant grid Ω∆x,∆y with the nodes xj = j∆x, j ∈ Z;
yk = k∆y, 0 ≤ k ≤ K and the time discretization tn = n∆t, n ∈ N0. DTBCs
shall be employed at x0 = 0 and xJ = J∆x = X, hence the computational domain
is chosen as the rectangle [0, X] × [0, Y ]. At y0 = 0 and yK = K∆y = Y we use
zero Dirichlet boundary conditions.

Following [ArEhSo03] we shall now briefly review the derivation of DTBCs for
the 2D Schrödinger equation. Using the five-point finite difference scheme in
space and the Crank-Nicolson scheme in time, the discrete Schrödinger equation
on Ω∆x,∆y reads

i~D+
t ψ

n
j,k = − ~2

2m∗

(
D2

x ψ
n+ 1

2
j,k +D2

y ψ
n+ 1

2
j,k

)
+ V

n+ 1
2

j,k ψ
n+ 1

2
j,k . (1.3)

Here,

D+
t ψ

n
j,k =

ψn+1
j,k − ψn

j,k

∆t
,

D2
x ψ

n
j,k =

ψn
j−1,k − 2ψn

j,k + ψn
j+1,k

∆x2
,

12



1.2 Finite difference scheme and DTBCs for the 2D Schrödinger equation

D2
y ψ

n
j,k =

ψn
j,k−1 − 2ψn

j,k + ψn
j,k+1

∆y2

denote the standard finite difference operators,

V
n+ 1

2
j := V

(
xj , tn+ 1

2

)
,

ψ
n+ 1

2
j,k :=

1

2

(
ψn+1

j,k + ψn
j,k

)

a time averaging.

Remark 1.1 The discretization scheme (1.3) is of second order both in time and
space. Since the discrete ℓ2-norm is preserved under the evolution, i.e.

D+
t ||ψ||22 := ∆x∆yD+

t

∑

j∈Z,0≤k≤K

|ψn
j,k|2 = 0

for all n ≥ 0 (cf. [ArEhSo03]), the scheme is unconditionally stable.

Like in the analytical case we assume that the potential is constant outside of
the computational domain: V n

j,k = V0 for j ≤ 1 and V n
j,k = VJ for j ≥ J − 1,

and for all 0 ≤ k ≤ K and n ≥ 0. This implies that the transversal solution
modes (i.e. orthogonal to the channel axis) are decoupled in the exterior domain.
Hence, we shall now Fourier transform equation (1.3) with respect to the discrete
sine-functions

ψ̂n
j,m :=

1

K

K−1∑

k=1

ψn
j,k sin

(
πkm

K

)
, m = 1, . . . , K − 1, 0 ≤ j ≤ J, n ≥ 0,

ψ̂n
j,0 = ψ̂n

j,K = 0, 0 ≤ j ≤ J, n ≥ 0.

It can be easily shown that

− 1

2∆y2

(
ψn

j,k−1 − 2ψn
j,k + ψn

j,k+1

)b
m

=
1

∆y2

(
1 − cos

(πm
K

))
ψ̂n

j,m

for 1 ≤ k,m ≤ K − 1, j ∈ Z \ [1, J − 1]. Since the potential V n
j,k is constant in

the exterior domain, the solution modes ψ̂n
j,m are independent of each other and

we obtain K − 1 one dimensional discrete Schrödinger equations

i~

∆t

(
ψ̂n+1

j,m − ψ̂n
j,m

)
= − ~2

2m∗∆x2

(
ψ̂

n+ 1
2

j+1,m − 2ψ̂
n+ 1

2
j,m + ψ̂

n+ 1
2

j−1,m

)
+ Ṽj,mψ̂

n+ 1
2

j,m

(1.4)

with the modified potential

Ṽj,m := Vj +
~2

m∗

(
1 − cos

(
πm
K

)

∆y2

)
, j ∈ Z \ [1, J − 1], m = 1, . . . , K − 1.
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1 Transparent boundary conditions for quantum-waveguide simulations

Next we assume that the discrete initial function ψ0
j,k is compactly supported

in the grid [1, J − 1] × [1, K − 1]. Performing the discrete Z-transformation,

Z {ψn} = Ψ(z) :=
∞∑

n=0

ψnz−n, z ∈ C, |z| > 1,

of (1.4) on the exterior domain, we derive K−1 second order difference equations

Ψj+1,m(z) +

(
iR

z − 1

z + 1
− 2 − wṼj,m

)
Ψj,m(z) + Ψj−1,m(z) = 0,

j ≤ 0 or j ≥ J, (1.5)

with R = −4∆x2m∗

~∆t
and w = 2∆x2m∗

~2 . For each fixed m, equation (1.5) has two
fundamental solutions of exponential form Ψj,m(z) = αm(z)j . Both for physical
reasons and since the discrete solution stays in ℓ2(Z × [1, K − 1]), each mode
Ψj,m(z) has to decay for |j| → ∞. This requirement selects a unique root αm(z)
(with |αm(z)| > 1 for j ≤ 0, e.g.) and the Z-transformed DTBCs hence read

Ψ1(z) = α0(z)Ψ0(z), ΨJ−1(z) = αJ(z)ΨJ (z). (1.6)

Theorem 1.1 (DTBCs for the 2D Schrödinger equation) Consider the
two dimensional time-dependent Schrödinger equation, discretized with the five-
point difference scheme in space and the Crank-Nicolson scheme in time. Then,
the sine-transformed DTBCs at x0 = 0 and xJ = J∆x read respectively

ψ̂n
1,m − s

(0)
0,mψ̂

n
0,m =

n−1∑

ν=1

s
(n−ν)
0,m ψ̂ν

0,m − ψ̂n−1
1,m , n ≥ 1, (1.7)

ψ̂n
J−1,m − s

(0)
J,mψ̂

n
J,m =

n−1∑

ν=1

s
(n−ν)
J,m ψ̂ν

J,m − ψ̂n−1
J−1,m, n ≥ 1, (1.8)

where the convolution coefficients s
(n)
j,m are given by (cf. [ArEhSo03]):

s
(n)
j,m =

[
1 − i

ρ

2
+
σj,m

2

]
δn,0 +

[
1 + i

ρ

2
+
σj,m

2

]
δn,1

+ αj,me
−inϕj,m

Pn(µj,m) − Pn−2(µj,m)

2n− 1
, ρ = −iR, σj,m = wṼj,m,

ξj,m =
√

(ρ2 + σ2
j,m)(ρ2 + (σj,m + 4)2), µj,m =

ρ2 + 4σj,m + σ2
j,m

ξj,m
,

ϕj,m = arctan

(
2ρ(σj,m + 2)

ρ2 − 4σj,m − σ2
j,m

)
, αj,m =

i

2

√
ξj,me

iϕj,m/2

for j = 0, J, m = 1, . . . , K − 1. Pn denotes the Legendre polynomials (P−1 ≡
P−2 ≡ 0) and δn,ν is the Kronecker symbol.
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1.2 Finite difference scheme and DTBCs for the 2D Schrödinger equation

Remark 1.2 The decay rate of the convolution coefficients coincides with the
decay O(t−3/2) of the convolution kernel in the analytical TBC (1.2).

Remark 1.3 The discrete Schrödinger equation (1.3) and the DTBCs (1.7), (1.8)
are solved iteratively in time. The convolution length in (1.7), (1.8) therefore
grows with every time step. This makes it impossible to simplify (or accelerate) the
numerical evaluation of these time convolutions by using a fast Fourier transform
(FFT). Hence, the evaluation of the convolution sum up to time level n requires
a memory of the order O(Kn) and numerical costs of the order O(Kn2). The
latter can easily surpass the costs of solving the PDE in the interior domain which
only grows linearly in n. As a remedy it is possible to approximate the convolution
coefficients by a sum of exponentials (say L terms) and to calculate the convolution
sum recursively, as shown in [ArEhSo03]. We write

s
(n)
j,m ≈ s̃

(n)
j,m =





s
(n)
j,m : n = 0, . . . , r − 1

∑L
l=1 bj,m,lq

−1
j,m,l : n = r, r + 1, . . .

(1.9)

for some parameters L, r ∈ N. Typical values to obtain good results are L = 10 or
20, r = 1, 2. Furthermore, the non-local part

C n(ψ̂j,m) :=
n−r∑

k=0

s̃
(n−k)
0,m ψ̂ k

jm

of the approximated DTBCs can be evaluated efficiently by the sum

C n(ψ̂j,m) =
L∑

l=1

cnl (ψ̂j,m) (1.10)

and the recursion

cnl (ψ̂j,m) = q−1
j,m,lc

n−1
l (ψ̂j,m) + bj,m,lq

−r
j,m,lψ̂

n−r
j,m , n = r + 1, r + 2, . . . ,

crl (ψ̂j,m) = 0.

This way, the numerical costs may be reduced to O(KLn) and the memory to
O(KL) with L << n , while still keeping high accuracy (cf. [ArEhSo03]). A nu-
merical example concerning the approximated DTBCs will be given in the following
section.

Remark 1.4 In (1.7), (1.8) the DTBCs are formulated in sine-transformed space.
Hence, these DTBCs are also non-local in space – more precisely in the tangential

15



1 Transparent boundary conditions for quantum-waveguide simulations

manifold of the artificial boundary. Due to the sine-modes in y-direction, this non-
locality can easily be dealt with using FFT (cf. §1.3.1). If the exterior potential
is not constant in the transversal direction (of the channel), the solution can still
be expanded in the eigenfunctions of the transversal Schrödinger operator (cf. §3
or [BeMePi05]). But then FFTs cannot be used for the evaluation of the DTBCs
(cf. §3).

Remark 1.5 The numerical costs of implementing the DTBCs (1.7), (1.8) agree
with the costs for “ad-hoc” discretizations of the analytical TBC (1.2) (or its 2D-
analogue) that were proposed in the literature. But (1.7), (1.8) have the advantage
not to introduce any numerical reflections or to destroy the unconditional stability
of the underlying PDE scheme.

Remark 1.6 The Crank-Nicolson finite difference scheme (1.3) is of the order
O(∆x2+ ∆y2 +∆t2). With a higher order scheme (compact finite differences) one
can again derive modified DTBCs and obtain an order of convergence of O(∆x4 +
∆y4 + ∆t2) (cf. §2 or [ScAr07]).

1.3 Numerical results

In this section we discuss the practical implementation of DTBCs and ABCs and
compare the results obtained with DTBCs, approximated DTBCs and ABCs for
travelling Gaussian waves. Furthermore, we present some numerical results when
using DTBCs for simulating quantum waveguides.

1.3.1 Implementation of DTBCs

In (1.7), (1.8) the DTBCs are written in sine-transformed space. A direct imple-
mentation in position space would necessitate tremendous numerical costs, hence
they are implemented in y-Fourier space. The discrete convolution

Ĉ
(n−1)
J,m :=

1

K

n−1∑

ν=1

s
(n−ν)
J,m ψ̂ν

J,m, m = 1, . . . , K − 1 (1.11)

for the right boundary xJ = J∆x is calculated in Fourier space and inverse trans-
formed by

C
(n−1)
J,k = 2

K−1∑

m=1

sin

(
πmk

K

)( n−1∑

ν=0

s
(n−ν)
J,m ψ̂ν

J,m

)
, k = 1, . . . , K − 1.

Since the convolution (1.11) only involves the solution at the boundary at past
time levels (i.e. for ν ≤ n−1), one can directly store the sine-transformed boundary

16



1.3 Numerical results

data ψ̂ν
J,m. Moreover, this part of the DTBCs only enters the inhomogeneity of

the linear system to be solved at each time level.
The part s

(0)
J,mψ̂

n
J,m of the left hand side of the DTBCs (1.8) has to be inverse

transformed to physical space and we get the couplings

(
s
(0)
J,mψ̂

n
J,m

)∨
J,k,l

= 2
K−1∑

m=1

sin

(
πmk

K

)
s
(0)
J,mψ̂

n
J,m

=
2

K

K−1∑

m=1

K−1∑

l=1

s
(0)
J,m sin

(
πmk

K

)
sin

(
πkl

K

)
ψn

J,l

for k, l = 1, . . . , K − 1. Hence, the 5-diagonal system of the discrete 2D Schrö-
dinger equation (1.3) obtains additional entries due to the DTBCs.

In order to model the electron influx from the left lead, we shall prescribe
an incoming plane wave ϕ(x, y, t) at the left boundary. Hence, inhomogeneous
DTBCs have to be used at x0 = 0:

ψ̂n
1,m − ϕ̂n

1,m − s
(0)
0,m

(
ψ̂n

0,m − ϕ̂n
0,m

)

=
n−1∑

ν=1

s
(n−ν)
0,m

(
ψ̂ν

0,m − ϕ̂ν
0,m

)
−
(
ψ̂n−1

1,m − ϕ̂n−1
1,m

)
, n ≥ 1, (1.12)

with the discrete, sine-transformed incoming wave ϕn
j,k, 0 ≤ k ≤ K, 0 ≤ j ≤ J .

These boundary conditions are implemented analogously to the DTBCs at xJ =
X.

1.3.2 Implementation of ABCs

It is also possible to simulate open quantum systems with ABCs, like it has been
done in [Bu97]. Since the Crank-Nicolson finite difference scheme is also used
for the discretization of the time-dependent Schrödinger equation in [Bu97] it is
easy to compare our results based on DTBCs with ones received using the ABCs
there. The ABCs in [Bu97] are based on the enlargement of the computational
domain Ωcomp = (X0, X) × (0, Y ) to ΩABC = (X0, Xd) × (0, Y ) with Xd > X.
A constant complex-valued penalty potential V (x, y) = W − iA is introduced for
(x, y) ∈ (X,Xd)×(0, Y ). A schematic view of the enlarged computational domain
ΩABC is presented in Figure 1.1.

For the derivation of ABCs we consider the one dimensional Schrödinger equa-
tion (1.1) on the enlarged computational domain (X0, Xd). At x = Xd we assume
zero Dirichlet boundary conditions, ABCs will be derived at x = X < Xd. In the
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1 Transparent boundary conditions for quantum-waveguide simulations

0

Y

1

y

X X X0 d

Γ Γ2

V(x,y)=W−iAV(x,y)=0 V(x,y)=

x

8

Figure 1.1: Enlarged computational domain ΩABC = (X0, Xd) × (0, Y ) for the
usage of ABCs. At Xd we assume zero Dirichlet boundary conditions.
X denotes the artificial boundary, where we introduce ABCs.

zones (X0, X) and (X,Xd) the solutions ψ(x) to the 1D stationary Schrödinger
equation read

ψ(x) = Beikx + Ce−ikx, x ≤ X,

ψ(x) = beik1x + ce−ik1x, X0 ≤ x ≤ X,

ψ(x) = 0, x ≥ Xd

with transmission coefficients 0 ≤ B, b ≤ 1, reflexion coefficients 0 ≤ C, c ≤ 1
and wave numbers

k2 =
2m∗E

~2
,

k2
1 = k2 +

2m∗

~2
(iA−W ) (1.13)

obtained by the continuous dispersion relation. E denotes the given energy. The
ABCs follow by the assumption that ψ(x) and the first derivative ψ′(x) are con-
tinuous at x = X and setting the reflection coefficient C = 0. For parameters
X = 0 and Xd = d we calculate

C =
b

2

[
1 − k1

k
−
(

1 +
k1

k

)
e2ik1d

]
,

and the condition C = 0 leads to the nonlinear coupled equations

α = k
sinh(βd) cosh(βd)

cos2(αd) cosh2(βd) + sin2(αd) sinh2(βd)
,

β = −k sin(αd) cos(αd)

cos2(αd) cosh2(βd) + sin2(αd) sinh2(βd)
(1.14)

for k1 = α + iβ. Numerically, the system (1.14) may be solved by an iterative
Newton method. From (1.13) follows by comparison of coefficients

A =
~2

m∗

αβ,
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1.3 Numerical results

W =
(k2 − α2 + β2)~2

2m∗

for V (x) = W − iA, x ∈ (0, d).

ABCs of this type only work well for travelling waves which pass the artificial
boundary x = X in an orthogonal angle. In this case the penalty potential is
calculated for the mono-energetic wave function.

1.3.3 Example 1: Travelling Gaussian waves

First we will show some rather mathematical examples of travelling Gaussian
waves on the two dimensional domain Ω = R × (0, 1). Therefore we choose the
y-periodic initial function

ψI(x, y) =
∑

ℓ∈Z

(−1)ℓe
−

α
2

[
(x− 3

4)
2
+(y− 1

4
+ℓ)

2

]
+ikxx+ikyy

, (x, y) ∈ Ω (1.15)

with given wavenumbers kx = ky = 100 and α = 240. Let the computational
domain be Ωcomp = (0, 1) × (0, 1). Exact DTBCs according to (1.7), (1.8) are
implemented at x = 0, x = 1. We consider the discretization parameters ∆x =
∆y = 1/120, ∆t = 2 · 10−5. In Figure 1.2(a) we show the absolute value of the
initial function (1.15). The evolution of this initial function according to the scaled
Schrödinger equation ((1.3) with ~ = m∗ = 1) is presented in Figure 1.2 (b), (c)
for some times tn. The Gaussian beam leaves the computational domain through
the artificial boundary x = 1 without being reflected back.

For the same discretization we calculate the solution to the Schrödinger equation
((1.3) again with ~ = m∗ = 1) with the initial data (1.15) along with approxi-
mated DTBCs (1.9) using the parameter r = 2. The results for the time step
tn = 240∆t are presented in Figure 1.3 for the value L = 5 (Fig. 1.3(a)) and the
value L = 10 (Fig. 1.3(b)). For L = 5 there are some unphysical reflections at the
artificial boundary which are significantly reduced for L = 10.

In a third calculation we again assume the initial function (1.15) and compute
the solution ψ to the Schrödinger equation ((1.3) with ~ = m∗ = 1) with DTBCs at
x = 0 and ABCs (c.f. §1.3.2) at x = 1. We use the same discretization parameters
as before and let Xd = 2. Hence, the computational domain is chosen twice big
as the domain of interest, which is used for the calculation with the DTBCs. The
absolute value of the solution ψ is plotted on the domain of interest (0, 1)× (0, 1)
in Figure 1.4 for some time steps tn. Since the wave function crosses the artificial
boundary in a non-orthogonal angle, there are some unphysical reflections at the
artificial boundary.
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Figure 1.2: Absolute value of the initial function (1.15) and the absolute value of
the solution to the Schrödinger equation at some time steps tn cal-
culated with exact DTBCs at x = 0 and x = 1. We choose the
discretization parameters ∆x = ∆y = 1/120 and ∆t = 2 · 10−5. On
the right hand side we plotted the same values as on the left hand side
but as contour plots.
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Figure 1.3: Absolute value the solution to the Schrödinger equation at the time
step tn = 240∆t calculated with exact DTBCs at x = 0 and approx-
imated DTBCs at x = 1 with (a): L = 5 and (b): L = 10 terms in
the sum of exponentials. On the right hand side we plotted the same
values as on the left hand side but as contour plots.
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Figure 1.4: Absolute value the solution to the Schrödinger equation at some time
steps calculated with DTBCs at x = 0 and ABCs at x = 1. The
enlarged computational domains equals Ωcomp = (0, Xd) × (0, Y ) =
(0, 2) × (0, 1). On the right hand side we plotted the same values as
on the left hand side but as contour plots. The solutions are plotted
on the domain of interest (0, 1) × (0, 1).
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Figure 1.5: T-shaped structure Ω with length X = 60nm, a channel width Y =
20nm, and a stub width w = 20nm. It is possible to switch the stub
length from 32nm to 40.5nm. Inhomogeneous DTBCs are implemented
at x = 0 and homogeneous DTBCs at x = X. The inflow is modeled
by the function ϕ given in equation (1.16).

1.3.4 Example 2: Simulation of quantum waveguides

Following the simulation of a GaAs-waveguide in [Bu97], we choose the T-shaped
geometry shown in Figure 1.5 to simulate a quantum waveguide transistor. In
x-direction the channel has a length of X = 60nm; the channel width Y and the
stub width w are 20nm. In order to control the current through the channel, the
stub length can be changed from L1 = 32nm to L2 = 40.5nm. Homogeneous
DTBCs (1.7) are implemented at x = X, and inhomogeneous DTBCs (1.12) at
x = 0. All other boundaries are considered as hard walls, i.e. we use homogeneous
Dirichlet boundary conditions for ψ. A (discrete) time harmonic incoming wave
function

ϕn
j,k = sin

(
πk

K

)
eikxj∆xe−

iEn∆t
~ , k = 0, . . . , K, n ∈ N0 (1.16)

is modeling the mono-energetic constant incoming current at x = 0. Here, ϕ
includes only the lowest transversal mode. But any linear combination of higher
modes would work equally well, which is a great advantage compared to other
artificial boundary conditions (e.g. [Bu97]). In our example the energy E of
the incoming wave equals 29.9meV and the effective electron mass has the value
m∗ = 0.067m0, which corresponds to GaAs. The value of kx can be derived from
the discrete dispersion relation

E =
~2

m∗

(
1 − cos (∆xkx)

∆x2

)
+

~2

m∗

(
1 − cos

(
π∆y
K

)

∆y2

)
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1 Transparent boundary conditions for quantum-waveguide simulations

of the Schrödinger equation with V0 = 0 for an incoming wave (1.16).

For the subsequent simulation we solve the Schrödinger equation (1.1) by the
difference equation (1.3) without external potential, i.e. V = 0. For realistic
simulations of MOSFET-channels, (1.1) should be coupled to the self-consistent
Coulomb potential inside the channel. Since we focus on DTBCs, we shall not
include this here. But a coupling to the Poisson equation inside the computational
domain does not change the derivation or discretization of our open boundary
conditions (cf. §3 for more details concerning the Schrödinger-Poisson system).
Since we are mostly interested in the switching and the large time behavior of this
waveguide, we choose the following (somewhat arbitrary) initial function

ψI(x, y) =





sin
(

yπ
Y

)
eikxx : 0 ≤ x < x1

1
2
sin
(

yπ
Y

)
eikxx

[
1 + cos

(
π x−x1

x2−x1

) ]
: x1 ≤ x < x2

0 : x ≥ x2

with x1 = 25nm and x2 = 38nm, which is consistent with the incoming wave.

Figure 1.6 shows the absolute value of the temporal evolution of the numerical
solution ψ. In this simulation the stub length is first fixed to L1 = 32nm. After
1.68ps the solution reaches (essentially) a steady state (off-state of the waveguide).
Phenomenologically speaking, in this case only 11

2
wave packets “fit” into the stub

(cf. Fig. 1.6(c)). Hence, they block the current flow through the waveguide. Then,
at t = 1.68ps the stub is enlarged at once to L2 = 40.5nm. After some transient
phase, the solution converges to a new steady state (on-state of the waveguide, cf.
Fig. 1.6(f)). Here, two wave packets “fit” into the stub, and the current can flow
almost unblocked through the device. At t = 3.60ps the current is already almost
constant in x and at its maximum level.
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Figure 1.6: Absolute value of the numerical solution ψ to the time-dependent
Schrödinger equation on the T-shaped structure of Figure 1.5. The
discretization parameters are chosen as ∆x = ∆y = 0.5nm, ∆t =
0.0002ps, V = 0meV, m∗ = 0.067m0, E = 29.9meV.
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dispositifs électroniques quantiques, Ph. D. thesis, Université des Sciences et
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2 Discrete transparent boundary

conditions for the Schrödinger

equation – a higher compact

order scheme

In this chapter we consider the two dimensional time-dependent Schrödinger equa-
tion with the new compact nine-point scheme in space and the Crank-Nicolson
difference scheme in time. For the resulting difference equation we derive discrete
transparent boundary conditions in order to get highly accurate solutions for open
boundary problems. Numerical experiments illustrate the perfect absorption of
outgoing waves independently of their impact angle at the boundary. Finally, we
apply inhomogeneous discrete transparent boundary conditions to the transient
simulation of quantum waveguides.

2.1 Introduction

The development of novel semiconductor devices (like diodes or transistors) is
usually supported by computer simulations to optimize the desired operating fea-
tures. Schrödinger models describe the purely ballistic transport of electrons and
holes, and they are employed e.g. for simulations of quantum waveguides and
nano-scale semiconductor heterostructures. The time-dependent two dimensional
Schrödinger equation describes the time evolution of the complex-valued wave
function ψ. It reads

i
∂

∂t
ψ(x, y, t) = −1

2
∆ψ(x, y, t) + V (x, y, t)ψ(x, y, t), (x, y) ∈ Ω ⊂ R

2, t > 0

ψ(x, y, 0) = ψI(x, y) ⊂ L2(Ω) (2.1)

with the real-valued given potential V (x, y, t).
As in [ArEhSo03], we assume that Ω is an infinitely long stripe, i.e. Ω =

R× (0, Y ), with ψ satisfying homogeneous Dirichlet boundary conditions at y = 0
and y = Y . For computational purposes it is necessary to reduce the simulations
to some finite subdomain, say Ωcomp := (0, X)× (0, Y ) ⊂ Ω by introducing (artifi-
cial) open boundary conditions at x = 0 and x = X. As it is common practice, we
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

assume supp ψI ⊂ Ωcomp, and that the potential is constant in the two exterior do-
mains R−×(0, Y ) and (X,∞)×(0, Y ). Note that an only time-dependent exterior

potential can be dealt with by the transformation ψ(x, t) = ϕ(x, t) exp

[
t∫

o

V (τ)dτ

]

(cf. §3).

Open boundary conditions are called transparent, if they yield identical solutions
both on the original large domain Ω and the reduced domain Ωcomp. In the 1D
case the transparent boundary condition (TBC) takes the form

∂

∂η
ψ = −

√
2e−iπ/4e−iVextt

√
∂t

(
eiVexttψ

)
, x = 0 or x = X, (2.2)

where η denotes the unit outward normal vector at each interface and Vext is the
constant exterior potential.

√
∂t is the fractional time derivative of order 1

2
with

the Fourier symbol
√
−iω, and it can be rewritten as a time-convolution of the

boundary data

(
√
∂tψ)(x, t) =

1√
π

d

dt

∫ t

0

ψ(x, τ)√
t− τ

dτ . (2.3)

When carrying out the t-derivative, one sees that the resulting kernel behaves like
O(t−3/2) for t→ ∞. The one dimensional TBC (2.2) has been derived by several
authors, e.g. in [Pa82], [BaPo91]. Its extension to rectangular geometries in 2D is
based on taking the partial Fourier series of ψ w.r.t. y:

ψ(x, y, t) =
∑

m∈N

ψ̂m(x, t) sin
(mπy

Y

)
.

Since V is constant in each of the two exterior domains, the time evolution of the
modes ψ̂m(x, t), m ∈ N is decoupled there. Hence, each mode satisfies at x = 0
and x = X a one dimensional TBC

∂

∂η
ψ̂m(x, t) = −

√
2e−iπ/4e−iVmt

√
∂t

(
eiVmtψ̂m(x, t)

)
, m ∈ N, (2.4)

with the potentials Vm := Vext + 1
2

(
mπ
Y

)2
.

The goal of this chapter is to derive and analyze a discrete analogue of (2.4)
in conjunction with a fourth order finite difference scheme of the Schrödinger
equation. Discretizations of TBCs are delicate even in the 1D case, as they may
lead to unphysical reflections at the boundaries (cf. [Ma89], [BaPo91], [Sc02]).
Here we shall follow the “philosophy” of [Ar98], [EhAr01], [ArEhSo03] and derive
discrete transparent boundary conditions (DTBCs), instead of discretizing the an-
alytic TBC (2.4). We shall now first review several popular discretization schemes

28



2.1 Introduction

for the Schrödinger equation as well as existing strategies for treating absorbing
boundary conditions (ABCs) for it. An ABC is a local approximation to the exact,
but nonlocal TBC (2.2).

A popular spatial discretization of the Schrödinger equation is based on the
second order finite difference scheme. Together with a Crank-Nicolson scheme
in time, this yields an unconditionally stable scheme (cf. §1 or [EhAr01]). In
many applications compact higher order finite difference schemes are used (e.g.
the fourth order Numerov scheme, cf. [KaMoSi05], [Mo04]). And this will be the
starting point for this chapter. Another approach is given in [BaShMa02], where
a time-splitting spectral approximation is developed for the Schrödinger equation.
This strategy is very efficient for smooth solutions, but it has no advantage for
heterostructures (with discontinuous potentials), since the potential is assumed to
be periodic in space and C∞(R) in [BaShMa02]. In [BoDe06] Borzi and Decker
combined a pseudospectral method for the space discretization with a leap-frog
time-propagation scheme, which is second order accurate in time and yields spec-
tral accuracy in space.

The simplest possibility to implement ABCs for Schrödinger-type equations is
to enlarge the computational domain and to add some complex-valued poten-
tial just outside the domain of interest in order to damp the solution there. This
approach was first presented in [KoKo86], [NeBa89] and is also often used in phys-
ical applications (e. g. [Bu97], [HePfSt07]). However, like seen in §1, it only works
well for one tunable wavenumber of the wave function ψ. Pseudodifferential tech-
niques, like in the seminal works of Engquist and Majda in [EnMa77], [EnMa79]
for the wave equation have been used by Shibata [Sh91] and Kuska [Ku92]. Since
their analytical approaches lead to non-local (in time) boundary conditions (cf.
(2.2)), they used approximations of the square root symbol by low order rational
functions. In [FeJi99] Fevens and Jiang derived ABCs for the Schrödinger equa-
tion which depend on the group velocity of the travelling wave package. Only
the parts with a positive velocity are admitted to pass the right boundary. But
the discretization of these ABCs leads to weakly ill-posed problems, as shown
in [AlRe02]. Furthermore, one has to know the (main) velocity of the solution
a-priori. So, these ABCs are not practical either. In [AlRe04] Alonso-Mallo and
Reguera calculated ABCs for the semidiscrete Schrödinger equation in space, the
fully discrete model is described in [AlRe03]. Both approaches are weakly unstable
and show increasing instabilities for higher order ABCs. In [AnBe01] Antoine and
Besse derived ABCs on a curved artificial boundary. Their well-posedness and
discretization is studied in [AnBeMo04]. A generalization of the 2D-result of An-
toine and Besse is formulated by Szeftel in [Sz04a] for both linear and non-linear
Schrödinger equations in R

d. Here, the author used also a pseudodifferential ap-
proach and obtained the boundary operator based on a reflection-of-singularities-
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

theory for the Schrödinger equation (cf. [Sz04b]). In order to get local ABCs both
in space and time, he adapted the approximation strategy from [EnMa79]. The
results are good for the linear case, but poor in the non-linear case. For a more
detailed review of ABCs and TBCs we refer to [AABES07].

Exact DTBCs were developed in [ArEhSo03] for the five-point finite difference
scheme (of second order) for (2.1), along with the Crank-Nicolson time discretiza-
tion. But the numerical tests of [ArEhSo03] were only for the 1D case. In §1 and in
[ArSc07] we presented some simulations concerning DTBCs for the 2D Schrödinger
equation which is discretized with the standard five-point Crank-Nicolson finite
difference scheme. Here we shall follow the same strategy for a fourth order spatial
discretization and present two dimensional simulation results.

This chapter is organized as follows: In §2.2 we derive the compact fourth order
scheme for the Schrödinger equation, and in §2.3 we construct the corresponding
DTBCs, which are of convolution form. Their highly oscillatory convolution coef-
ficients are analyzed and finally replaced by nicely decaying coefficients in §2.4. In
the last section we present some numerical simulations to illustrate the effective-
ness and accuracy of our DTBCs. Finally we give an application of inhomogeneous
DTBCs to a 2D waveguide simulation with a T-shaped quantum transistor.

2.2 A fourth order difference scheme for the

Schrödinger equation

In this section we consider the time-dependent Schrödinger equation on the whole
space R2. Let Ω∆x,∆y be an equidistant grid with the nodes xj = j∆x, yk = k∆y
for j, k ∈ Z. In time we use the discretization tn = n∆t, n ∈ N0, such that ψn

j,k ∼
ψ(xj , yk, tn) denotes an approximation of the solution ψ(x, y, t) of the Schrödinger
equation (2.1) on the space-time-grid. For the discretization of (2.1), we recall the
standard finite difference operators

D+
t ψ

n
j,k :=

ψn+1
j,k − ψn

j,k

∆t
,

D2
x ψ

n
j,k :=

ψn
j−1,k − 2ψn

j,k + ψn
j+1,k

∆x2
,

D2
y ψ

n
j,k :=

ψn
j,k−1 − 2ψn

j,k + ψn
j,k+1

∆y2
, (2.5)

and the abbreviations

ψ
n+ 1

2
j,k :=

1

2

(
ψn+1

j,k + ψn
j,k

)
,
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2.2 A fourth order difference scheme for the Schrödinger equation

V
n+ 1

2
j,k := V

(
xj , yk, tn+ 1

2

)
.

With these notations the second order finite difference Crank-Nicolson discretiza-
tion of the two dimensional Schrödinger equation reads

iD+
t ψ

n
j,k = −1

2
D2

x ψ
n+ 1

2
j,k − 1

2
D2

y ψ
n+ 1

2
j,k + V

n+ 1
2

j,k ψ
n+ 1

2
j,k , j, k ∈ Z, n ∈ N0. (2.6)

This scheme preserves in time the discrete L2-norm, which has been shown in
[EhAr01].

Higher order finite difference schemes for the Schrödinger equation have been
developed for example in [AvKoSi00], [KaMoSi05] and the references therein. Now
we briefly recall the derivation of compact, higher order schemes and prove their
discrete L2-conservation for the Schrödinger equation. Consider first the differen-
tial equation

ψ′′(x) = f(x, ψ), x ∈ R, ψ : R → C. (2.7)

The difference equation

D2
xψj =

1

12
(fj+1 + 10fj + fj−1), j ∈ Z (2.8)

yields a fourth order approximation of (2.7) (see [Co66]). In the physical literature
this scheme is often called Numerov’s method. Applying this scheme to the 1D
time-dependent Schrödinger equation leads to the discretization

D2
x ψ

n+ 1
2

j =
1

6

(
V

n+ 1
2

j−1 ψ
n+ 1

2
j−1 − iD+

t ψ
n
j−1 + 10V

n+ 1
2

j ψ
n+ 1

2
j

− 10iD+
t ψ

n
j + V

n+ 1
2

j+1 ψ
n+ 1

2
j+1 − iD+

t ψ
n
j+1

)
, j ∈ Z, n ∈ N0 (2.9)

as described in [Mo04].

Consider now the two dimensional Schrödinger equation. With the semidis-
cretization ψ(x, y, tn) ∼ ψn(x, y) in time, the usual Crank-Nicolson scheme reads

∆ψn+ 1
2 (x, y) = 2V n+ 1

2 (x, y)ψn+ 1
2 (x, y) − 2iD+

t ψ
n(x, y), n ∈ N0. (2.10)

In order to derive a higher order spatial discretization, the compact nine-point
scheme (cf. [St04], e.g.) is applied to equation (2.10). With the finite difference
operator

D̃2 := D2
x +D2

y +
∆x2 + ∆y2

12
D2

xD
2
y
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

and the identity operator I, this yields a new generalization of in the 1D case from
[Mo04]:

D̃2 ψ
n+ 1

2
j,k =

(
I +

∆x2

12
D2

x +
∆y2

12
D2

y

)[
2V

n+ 1
2

j,k ψ
n+ 1

2
j,k − 2iD+

t ψ
n
j,k

]
,

j, k ∈ Z, n ≥ 0. (2.11)

It approximates the solution of the Schrödinger equation (2.1) with the order
O (∆x4+ ∆y4 + ∆t2).

It is well known that the Schrödinger equation (in whole space or with homo-
geneous Dirichlet boundary conditions) preserves the L2(Ω)-norm in time. Like
the usual second order finite-difference Crank-Nicolson method, the fourth order
scheme (2.11) preserves the discrete L2-norm:

Definition 2.1 For f either in ℓ2(Z) or ℓ2(Z2), we put the positive definite, bounded
and self-adjoint operator

A := I +
∆x2

12
D2

x

or

A := I +
∆x2

12
D2

x +
∆y2

12
D2

y,

respectively.

To show that A is positive, we write A = 2
3
I + 1

12
S+

j + 1
12
S−

j + 1
12
S+

k + 1
12
S−

k with

the shift operators S
+/−
j/k . The shift operators have the B(ℓ2(Z2))-norm 1 and S+

j/k

is the adjoint operator to S−

j/k, 〈f, S+
j/kf〉 = 〈f, S−

j/kf〉, f ∈ ℓ2(Z2):

〈f, S+
j f〉 =

∑

j,k∈Z

f j,k(S
+
j f)j,k =

∑

j,k∈Z

f j,kfj+1,k

=
∑

j,k∈Z

f j−1,kfj,k =
∑

j,k∈Z

(S−
j f)

j,k
fj,k

= 〈f, S−
j f〉.

We estimate 〈f, Af〉 with the help of Re(z) ≥ −|z|, z ∈ C and the Cauchy-
Schwarz inequality:

〈f, Af〉 =
2

3
〈f, If〉 +

1

12

(
〈f, S+

j f〉 + 〈f, S−
j f〉 + 〈f, S+

k f〉 + 〈f, S−
k f〉

)

=
2

3
||f ||2ℓ2(Z2) +

1

12

(
〈f, S−

j f〉 + 〈f, S−
j f〉 + 〈f, S−

k f〉 + 〈f, S−
k f〉

)

32



2.3 DTBCs for the fourth order difference scheme

≥ 2

3
||f ||2ℓ2(Z2) −

1

6

∣∣〈f, S−
j f〉 + 〈f, S−

k f〉
∣∣

≥ 2

3
||f ||2ℓ2(Z2) −

1

6

(
||f ||ℓ2(Z2)||S−

j f ||ℓ2(Z2) + ||f ||ℓ2(Z2)||S−
k f ||ℓ2(Z2)

)

≥ 2

3
||f ||2ℓ2(Z2) −

1

6

(
||f ||2ℓ2(Z2) + ||f ||2ℓ2(Z2)

)

≥ 1

3
||f ||2ℓ2(Z2) ≥ 0.

Lemma 2.2 (preservation of ℓ2-norm) Let the grid function V n+ 1
2 be bounded

for all n ∈ N0. For the whole space problems of the 1D and 2D time-dependent
Schrödinger equation the schemes (2.9) and (2.11) then preserve the ℓ2-norm in
time.

Proof: To unify the proof for both cases we use the positive definite, bounded,
and self-adjoint operators A from Definition 2.1. Also, we set D̃2 := D2

x for the
1D case (i.e. d = 1). Hence, (2.9) and (2.11) both have the form

D̃2ψn+ 1
2 = A

[
2V n+ 1

2ψn+ 1
2 − 2iD+

t ψ
n
]
,

or

iD+
t ψ

n = V n+ 1
2ψn+ 1

2 − 1

2
A−1D̃2ψn+ 1

2 , (2.12)

since A is invertible.
It remains to show that the r.h.s. of (2.12) is self-adjoint on ℓ2(Zd), as this

implies the preservation of the ℓ2-norm. Defining the operator B := I − A yields
||B|| ≤ 2

3
. We apply the von Neumann series to achieve

∞∑

n=0

Bn = (I −B)−1 = A−1.

Since B commutes with D̃, also A−1 does. Hence, V n+ 1
2 − 1

2
A−1D̃2 is self-adjoint

and the assertion follows.

�

2.3 Discrete transparent boundary conditions for

the fourth order difference scheme

As in §2.1, we consider here the Schrödinger equation

i
∂

∂t
ψ(x, y, t) = −1

2
∆ψ(x, y, t) + V (x, y, t)ψ(x, y, t), (x, y) ∈ Ω, t > 0,
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

ψ(x, y, 0) = ψI(x, y), (x, y) ∈ Ω,

ψ(x, 0, t) = ψ(x, Y, t) = 0, x ∈ R, t > 0, (2.13)

on the infinite stripe Ω = R× (0, Y ) with some Y > 0. We assume that the initial
function ψI ∈ L2(Ω) has compact support

supp ψI(x, y) ⊂ (0, X) × (0, Y ) =: Ωcomp (2.14)

which will be our computational domain. The potential V (x, y, t) is assumed to
be an L∞(Ωcomp × R+) function in space and time, and constant on each of the
two exterior domains.

In this section we shall derive at x = 0 and x = X discrete transparent boundary
conditions for (2.13), discretized by scheme (2.11). With the equidistant grid
Ω∆x,∆y = (j∆x, k∆y) for j ∈ Z; k = 0, . . . , K ∈ N; tn = n∆t, n ∈ N0 and the
abbreviations

D :=
∆x2

∆y2
,

C :=
∆x2 + ∆y2

12∆y2
,

W :=
i∆x2

3∆t
,

αn
j,k := 2C −W +

∆x2

6
V

n+ 1
2

j,k ,

βn
j,k := −2 − 2D − 8αn

j,k + 20C

the discretization of (2.13) with scheme (2.11) reads explicitly:

(1 − αn
j+1,k)ψ

n+1
j+1,k + (1 − αn

j−1,k)ψ
n+1
j−1,k + (D − αn

j,k+1)ψ
n+1
j,k+1

+ (D − αn
j,k−1)ψ

n+1
j,k−1 + βn

j,k ψ
n+1
j,k

+C
[
ψn+1

j−1,k−1 + ψn+1
j−1,k+1 + ψn+1

j+1,k−1 + ψn+1
j+1,k+1

]

= (2W − 1 + αn
j+1,k)ψ

n
j+1,k + (2W − 1 + αn

j−1,k)ψ
n
j−1,k

+ (2W −D + αn
j,k+1)ψ

n
j,k+1 + (2W −D + αn

j,k−1)ψ
n
j,k−1

+ (16W − βn
j,k)ψ

n
j,k − C

[
ψn

j−1,k−1 + ψn
j−1,k+1 + ψn

j+1,k−1 + ψn
j+1,k+1

]
,

j ∈ Z; k = 1, . . . , K; n ∈ N0.

(2.15)
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2.3 DTBCs for the fourth order difference scheme

The idea of deriving DTBCs is to eliminate the exterior problem by using the
explicit solution on the outer domain ΩC

comp := Ω\Ωcomp. This is the reason for as-
suming a uniform grid on ΩC

comp. On Ωcomp, however, the grid can be non-uniform,
or even adaptive in time. Following the strategy of [ArEhSo03], this is done with
a Z-transformation in time and a discrete sine-transformation in y-direction. The
outer grid domain ΩC

∆x,∆y = (j∆x, k∆y) for j ≤ 0, j ≥ J, 0 ≤ k ≤ K, j, k ∈ Z is
divided into K − 1 stripes. Hence, we get K − 1 linearly independent modes,
because the potential is assumed to be constant on ΩC

∆x,∆y. The DTBCs in
[ArEhSo03] were obtained for the Schrödinger equation discretized with a second
order difference scheme. Recently in [Mo04] and [Mo06] the author adapted the
DTBCs from [ArEhSo03] for the 1D Schrödinger equation discretized with the
higher order scheme (2.9) – in [Mo04] for the time-dependent and in [Mo06] for
the steady-state case.

With the discrete sine-transform in y-direction on ΩC
∆x,∆y

ψ̂ n
j,m :=

2

K

K−1∑

k=1

ψn
j,k sin

(
πkm

K

)
, m = 1, . . . , K − 1, (2.16)

a new system for the modes ψ̂ n
j,m, m = 1, . . . , K − 1, j ≤ 0 and j ≥ J follows:

γm ψ̂ n+1
j+1,m + γm ψ̂ n+1

j−1,m + ρm ψ̂ n+1
j,m

= (2W − γm) ψ̂ n
j+1,m + (2W − γm) ψ̂ n

j−1,m + (κm − ρm) ψ̂ n
j,m,

(2.17)

with the abbreviations

γm := 1 + 2C
(
cos
(πm
K

)
− 1
)

+W − ∆x2

6
V,

κm := 4
(
cos
(πm
K

)
+ 4
)
W,

ρm := −2 − 2D + 4C + 8W − 4∆x2

3
V

+

(
2D − 4C + 2W − ∆x2

3
V

)
cos
(πm
K

)
, m = 1, . . . , K − 1.

(2.18)

While the potential may take different constant values on each semiinfinite, ex-
terior stripe, we skipped this dependence in the above constants to simplify the
notation. Next we Z-transform the system (2.17) using

Z
(
ψ̂ n

j,m

)
:= Φj,m(z) :=

∞∑

n=0

ψ̂ n
j,mz

−n with z ∈ C, |z| > 1.
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We shall discuss here the derivation of the DTBCs at the right boundary, i.e.
j = J ; the case j = 0 is completely analogous. We choose the initial function ψ0

j,k

such that ψ0
j,k = 0 for all j ≥ J − 1, j ≤ 1 and all k. Hence,

ψ̂ 0
J+1,m = ψ̂ 0

J−1,m = ψ̂ 0
J,m = 0, m = 1, . . . , K − 1.

The Z-transformed system (2.17) reads

Φj+1,m(z) +

[
ρm(z + 1) − κm

γm(z + 1) − 2W

]
Φj,m(z) + Φj−1,m(z) = 0,

j ≥ J, m = 1, . . . , K − 1. (2.19)

This is a this second order finite difference equation (in the j-variable). Its char-
acteristic equation

(νm(z))2 +

[
ρm(z + 1) − κm

γm(z + 1) − 2W

]
νm(z) + 1 = 0

has two solutions ν
(1)
m (z), ν

(2)
m (z). For each mode m = 1, . . . , K − 1 we shall only

consider the one solution satisfying |νm(z)| < 1. The corresponding, decaying
solution Φj,m(z) = (νm(z))j , j ≥ J of (2.19) then yields the Z-transformed DTBCs
at j = J for each mode:

ΦJ,m(z) = νm(z)ΦJ−1,m(z)

with

νJ,m(z) =
−ρJ,m(z + 1) + κm +

√
ζJ,mz2 − 2ξJ,mz + θJ,m

2γJ,m(z − ηJ,m)
. (2.20)

Here, we use the constants

ηJ,m :=
2W

γJ,m

− 1,

ζJ,m := (ρJ,m)2 − 4(γJ,m)2,

θJ,m := (κm − ρJ,m)2 − 4(γJ,mηJ,m)2,

ξJ,m := −(ρJ,m)2 − 4(γJ,m)2ηJ,m + ρJ,mκm (2.21)

for m = 1, . . . , K − 1, and analogously for j ≤ 0. With some work one can
calculate analytically the Z-inverse of (2.20): Z−1(νJ,m(z))(n) =: ℓ

(n)
J,m. We use the

auxiliary function

F (z, µJ,m) :=
z√

z2 − 2µJ,mz + 1
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with

µJ,m :=
ξJ,m√

ζJ,m

√
θJ,m

, m = 1, . . . , K − 1. (2.22)

Using the abbreviations

λJ,m :=

√
ζJ,m√
θJ,m

,

τJ,m :=
θJ,m

ηJ,m
− ζJ,mηJ,m − 2ξJ,m, m = 1, . . . , K − 1, (2.23)

we obtain by comparison of coefficients

1

z − ηJ,m

√
ζJ,mz2 − 2ξJ,mz + θJ,m

=
1√
ζJ,m

(
ζJ,m − θJ,m

zηJ,m
+

τJ,m

z − ηJ,m

)
F (z, µJ,m).

Now we can calculate the inverse Z-transformation (Z−1 [ν1,2(z)])n = ℓ
(n)
J,m of

νJ,m(z) = − ρJ,m

2γJ,m

z

z − ηJ,m
− ρJ,m − κm

2γJ,m

1

z − ηJ,m

+
1

2γJ,m

1√
ζJ,m

(
ζJ,m − θJ,m

zηJ,m

+
τJ,m

z − ηJ,m

)
F (z, µJ,m)

by

ℓ
(n)
J,m = − ρJ,m

2γJ,m
ηn

J,m − ρJ,m − κm

2γJ,m

(
ηn−1

J,m − 1

ηJ,m
δ0
n

)
+

√
θJ,m

2γJ,m

[
λ1−n

J,mPn(µJ,m)

− 1

ηJ,m

λ−n
J,mPn−1(µJ,m) +

τJ,m

ηJ,m

√
θJ,mζJ,m

n−1∑

k=0

(λJ,mηJ,m)nPk(µJ,m)
]
.

Theorem 2.3 (DTBCs for the 2D Schrödinger equation) The sine-trans-
formed DTBCs at j = 0 and j = J for the discretization scheme (2.15) read

ψ̂ n
1,m − ℓ

(0)
0,mψ̂

n
0,m =

n−1∑

k=1

ℓ
(n−k)
0,m ψ̂ k

0,m, n ≥ 1, (2.24)

ψ̂ n
J−1,m − ℓ

(0)
J,mψ̂

n
J,m =

n−1∑

k=1

ℓ
(n−k)
J,m ψ̂ k

J,m, n ≥ 1. (2.25)
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The coefficients ℓ
(n)
j,m for j = 0, J , m = 1, . . . , K − 1 and n ≥ 0 are given by

ℓ
(n)
j,m = − ρj,m

2γj,m
ηn

j,m +
κm − ρj,m

2γj,m

(
ηn−1

j,m − 1

ηj,m
δ0
n

)

+

√
θj,m

2γj,m

λ1−n
j,m

[
Pn(µj,m) − Pn−1(µj,m)

ηj,mλj,m

+
τj,m

ζj,mηj,m

n−1∑

k=0

(λj,mηj,m)n−kPk(µj,m)

]
(2.26)

with the Legendre polynomials Pn (P−1 ≡ 0), the Kronecker symbol δ 0
n , and the

abbreviations used in (2.18), (2.21), (2.22) and (2.23). For all j, m holds θj,m =
ζ̄j,m, thus one can verify |λj,m| = 1.

Remark 2.1 In (2.24), (2.25) the DTBCs are written in the sine-transformed
space. Since they are local in the y-Fourier space, this is the efficient way to im-
plement them. A direct implementation in position space would necessitate much
bigger numerical costs. Thus the discrete convolution

Ĉ
(n−1)
J,m :=

1

K

n−1∑

ν=1

ℓ
(n−ν)
J,m ψ̂ν

J,m, m = 1, . . . , K − 1

for the right boundary xJ = J∆x is calculated in Fourier space and inverse trans-
formed. The left hand sides of (2.24), (2.25) have to be transformed back also into
position space. Hence, we get a coupling between all boundary points (cf. §1).

2.4 Asymptotic behaviour of the convolution

coefficients

Just like for the one-dimensional case [EhAr01] and for the standard five-point
finite difference scheme for the two dimensional Schrödinger equation [ArEhSo03],
the convolution coefficients (2.26) are highly oscillatory as a function of n ∈ N0.

Figure 2.1(a) shows the real part of the convolution coefficients ℓ
(n)
J,m of the DTBCs

for the Schrödinger equation calculated on the domain Ωcomp = (0, 1)× (0, 1) with
the parameters ∆x = ∆y = 0.02, ∆t = 2 · 10−5, V = 0 as a function of the time
steps n = 0, . . . , 1000.

Lemma 2.4 For large n, the convolution coefficients ℓ
(n)
j,m given in (2.26) have the

asymptotic behaviour

ℓ
(n)
j,m ∼ σj,m e

iϑj,mn (2.27)
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Figure 2.1: Time dependence of the convolution coefficients. For both plots we
have taken ∆x = ∆y = 0.02, V = 0, and ∆t = 2 · 10−5. (a) shows the

real part of the convolution coefficients ℓ
(n)
J,m for the mode m = 25 as

a function of the time step n = 0, . . . , 1000. The real part of modified
convolution coefficients s

(n)
J,m := ℓ

(n)
J,m − ηJ,mℓ

(n−1)
J,m for n ≥ 2 is plotted

in (b).

as n→ ∞, with

σj,m := − ρj,m

2γj,m
+
κm − ρj,m

2γj,mηj,m
+

√
τj,m

2γj,m
√
ηj,m

, ϑj,m = arg(ηj,m)

for j = 0, J and m = 1, . . . , K − 1.

Proof: For all j = 0, J ; m = 1, . . . , K − 1 it holds |ηj,m| = |λj,m| = 1 and
µj,m ∈ R. One easily obtains

|ηj,m| =

∣∣∣∣∣
2W

1 + 2C
(
cos
(

πm
K

)
− 1
)
− ∆x2Vj

6
+W

− 1

∣∣∣∣∣ = 1,

because W ∈ C \ R and 1 + 2C
(
cos
(

πm
K

)
− 1
)
− ∆x2Vj

6
∈ R. Since ζj,m = θ̄j,m

for j = 0, J ; m = 1, . . . , K − 1, we obtain |λj,m| = 1. Additionally one can verify
(with Maple, e. g.) that |µj,m| < 1 for all j = 0, J ; m = 1, . . . , K−1. Hence, there
exists the representations

λj,m = eiϕj,m , ϕj,m ∈ R,

ηj,m = eiϑj,m , ϑj,m ∈ R,

µj,m = cos(ωj,m), 0 < ωj,m < π.
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

With the formula of Laplace (cf. [Sz75]) follows

Pn(cos(ωj,m)) =

√
2√

π sin(ωj,m)

cos
[ (
n+ 1

2

)
ωj,m − π

4

]

√
n

+ O(n−3/2), (2.28)

where the bound of the error term holds uniformly in the interval ǫ ≤ ωj,m ≤ π−ǫ
for all ǫ > 0. Hence we have

lim
n→∞

Pn(cos(ωj,m)) = 0

uniformly on ǫ ≤ ωj,m ≤ π − ǫ for any ǫ > 0, and (from (2.26))

ℓ
(n)
j,m = − ρj,m

2γj,m
eiϑj,mn +

κj,m − ρj,m

2γj,m
eiϑj,m(n−1)

+

√
θj,mτj,m

2γj,mζj,m
eiϑj,m(n−1)eiϕj,m

n−1∑

k=0

e−i(ϕj,m+ϑj,m)kPk(µj,m) + O
(

1√
n

)

for n large. For |2rµ− r2| < 1 it holds

∞∑

k=0

rkPk(µ) =
1√

1 − 2rµ+ r2

(cf. [Do51]). One can verify (again with Maple, e. g.) that

∣∣∣∣
2µj,m

ηj,mλj,m

− 1

(ηj,mλj,m)2

∣∣∣∣ < 1, j = 0, J ; m = 1, . . . , K − 1.

This yields

lim
n→∞

n−1∑

k=0

e−i(ϕj,m+ϑj,m)kPk(µj,m) =

√
ζj,mηj,m

τj,m
,

and finally

lim
n→∞

e−iϑj,mnℓ
(n)
j,m = − ρj,m

2γj,m

− ρj,m − κj,m

2γj,mηj,m

+

√
τj,m

2γj,m
√
ηj,m

.

�

Figure 2.2 shows plots of the asymptotic behaviour of the convolution coeffi-
cients. The free Schrödinger equation is discretized with J = K = 50, ∆x = ∆y =
0.02 and ∆t = 2 · 10−5. A solution ψ is calculated for n = 1, . . . , 250 time steps.
In Figure 2.2(a) we present the real part of ℓ

(n)
J,m and the absolute value |ℓ(n)

J,m| in
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Figure 2.2: Real part (a) and absolute value (b) of the convolution coefficients ℓ
(n)
J,m

and real part (c) and absolute value (d) of the error σJ,me
iϑn − ℓ

(n)
J,m

between the asymptotics (2.27) and the convolution coefficients for the
modes m = 1, . . . , K−1 as a function of the time steps n = 1, . . . , 250.
We consider the computational domain Ωcomp = (0, 1) × (0, 1) and
choose the discretization parameters J = K = 50, ∆x = ∆y = 0.02
and ∆t = 2 · 10−5.
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2 DTBCs for the Schrödinger equation – a higher compact order scheme

Figure 2.2(b) for all modes m = 1, . . . , K − 1. The errors Re(σJ,me
iϑn − ℓ

(n)
J,m) and

|σJ,me
iϑn − ℓ

(n)
J,m| between the convolution coefficients and the asymptotics (2.27)

– which are converging to zero – are shown in Figure 2.2(c) and Figure 2.2(d).

Lemma 2.4 shows, that the convolution coefficients ℓ
(n)
j,m are asymptotically an

oscillatory sequence. Moreover, this behaviour deviates from the O(t−3/2)-decay
of the continuous convolution kernel in (2.3). Hence, it may lead to numerical
cancellations in the calculation of the convolution sum (2.24), (2.25). As an alter-
native we shall derive coefficients that decay like O(n−3/2). For the left DTBCs
we therefore add equation (2.24) for n and n+1 with the corresponding weighting
factor 1 and −eiϑ1,m = −η1,m (the case j = J is analogous) and proceed like in
[EhAr01]. This gives the following reformulated DTBCs

ψ̂ n
1,m − s

(0)
0,mψ̂

n
0,m =

n−1∑

k=1

s
(n−k)
0,m ψ̂ k

0m + η1,mψ̂
n−1
1,m , (2.29)

ψ̂ n
J−1,m − s

(0)
J,mψ̂

n
J,m =

n−1∑

k=1

s
(n−k)
J,m ψ̂ k

Jm + ηJ−1,mψ̂
n−1
J−1,m (2.30)

for n ≥ 1 with the summed coefficients

s
(n)
j,m :=





ℓ
(n)
j,m − ηj,m ℓ

(n−1)
j,m , n ≥ 1,

ℓ
(0)
j,m, n = 0,

(2.31)

for m = 1, . . . , K − 1; j = 0 and j = J .

Lemma 2.5 For n ≥ 2, the summed coefficients (2.31) can be calculated by the
formula

s
(n)
j,m = −

√
θj,m

2γj,m
λ1−n

j,m

Pn(µj,m) − Pn−2(µj,m)

2n− 1

or by the recursion

s
(n+1)
j,m =

2n− 1

n+ 1

µj,m

λj,m
s
(n)
j,m − n− 2

n+ 1
(λj,m)−2s

(n−1)
j,m (2.32)

for j = 0, J and m = 1, . . . , K − 1. These new coefficients have the asymptotic
behaviour

s
(n)
j,m ∼ O(n−3/2). (2.33)
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Proof: Using (2.26), the summed coefficients read for n ≥ 2

s
(n)
j,m =

√
θj,m

2γj,m

λ1−n
j,m

[
Pn(µj,m) + Pn−2(µj,m) − 1

λj,mηj,m

Pn−1(µj,m)

− ηj,mλj,mPn−1(µj,m) +
τj,mλj,m

ζj,m
Pn−1(µj,m)

]
.

With the recursion for the Legendre polynomials,

n

2n− 1
Pn(µj,m) +

n− 1

2n− 1
Pn−2(µj,m) = µj,mPn−1(µj,m) (2.34)

for n ≥ 2 then follows

s
(n)
j,m = −

√
θj,m

2γj,m
λ1−n

j,m

Pn(µj,m) − Pn−2(µj,m)

2n− 1
. (2.35)

This representation of the convolution coefficients is analogous to the DTBCs for
the one dimensional Schrödinger equation [EhAr01] and for the five-point stencil
in the two dimensional case [ArEhSo03]. Hence, the recurrence formula of §3.3
in [EhAr01] applies also here, and it gives (2.32). For the same reason, also

the asymptotic behaviour s
(n)
j,m ∼ O(n−3/2) carries over from [EhAr01]. There,

it is derived by applying equation (2.28) to the Legendre recursion (2.34) for
Pn(µj,m) − Pn−2(µj,m).

�

Remark 2.2 The decay rate (2.33) of the summed convolution coefficients co-
incides with the decay O(t−3/2) of the convolution kernel in the analytical TBC
in (2.3) (cf. Figure 2.3). Figure 2.1(b) shows the absolute value of the summed
coefficients (2.31) corresponding to the ones presented in Figure 2.1(a). Figure

2.3 shows the algebraic decay rate of the real part of the new coefficients s
(n)
j,m.

Remark 2.3 Like the analytical TBC (2.2), the DTBCs (2.29), (2.30) are non-
local in time. For the calculation of the solution ψn

j,m of the discretized Schrödinger
equation (2.11), it is necessary to compute a convolution of the size n in the n-th
time step, which leads to a quadratically growing numerical effort. In [ArEhSo03]
the authors derived an approximation of the convolution coefficients by a sum of
exponentials. Since we have the same recursion formulas for the summed convolu-
tion coefficients (2.31) for the higher order difference scheme like the coefficients
in [ArEhSo03] for the second order scheme, we can use their results on the ap-
proximation of the convolution coefficients. It is shown there, that the convolution
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Figure 2.3: Algebraic decay rate of the new summed coefficients. The figure
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is plotted for ∆t = 2 · 10−5, ∆x = ∆y = 0.02 and V = 0 (black line)
and compared to log10(n

−3/2) (red line).

coefficients can be approximated very efficiently by the sum of exponentials. With
this approach, the numerical costs of the discrete convolutions in our DTBCs can
be reduced from O(KN2) to O(KLN), where K denotes the number of modes,
N the total number of time steps and L the number of exponential terms in the
approximation. Typical values to obtain good results are L = 10-20 (cf. §1).
This is a very important result for long-time simulations or even the calculation
of steady-states via a time-stepping approach.

2.5 Numerical tests

In this section we present some numerical results and applications of DTBCs in
two dimensions. First, we verify numerically the accuracy of the DTBCs for the
free Schrödinger equation. Then we apply DTBCs to the simulation of the electron
transport through a quantum waveguide.

2.5.1 Example 1: Travelling Gaussian wave functions

In the first example we study the time evolution of a Gaussian wave in a two
dimensional channel Ω = R × (0, 1). Since the analytical solution is known here,
this is a good example to test the DTBCs.
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To get homogeneous Dirichlet boundary conditions at the channel walls y = 0
and y = 1, we consider the y-periodic initial function

ψI(x, y) =
∑

ℓ∈Z

(−1)ℓe
−α

2

[
(x− 1

2)
2
+(y− 1

2
+ℓ)

2

]
−ikx(x− 1

2) (2.36)

on the domain Ω with some α > 0. Using the computational domain Ωcomp =
(0, 1)2 we consider DTBCs at x = 0 and x = 1. The wave will travel along the
channel in x-direction with the velocity given by the wavenumber kx > 0 and it
will cross the transparent boundary at x = 1 without any reflections. The solution
of the time-dependent Schrödinger equation with the initial function (2.36) can
be expressed analytically by

ψex(x, y, t) =
1

1 + iαt

∑

ℓ∈Z

(−1)ℓe
−1

2+2iαt

 
α

[
(x− 1

2)
2
+(y− 1

2
+ℓ)

2

]
−2ikx(x− 1

2)+ik2
xt

!

for t > 0 such that it is possible to compare the calculated solution ψ with the
exact solution ψex. Figure 2.4 shows the absolute value and Figure 2.5 the contour
plots of the absolute value of the calculated solution ψ(x, y, t) at some times tn. We
use the discretization parameters J = K = 120, ∆x = ∆y = 1/120, ∆t = 2 ·10−4,
α = 120 and the wavenumber kx = 50. The wave leaves Ωcomp without reflections.
For these discretization parameters we compare in Figure 2.6(a) the relative error

L1(t) =
||ψ(., ., t) − ψex(., ., t)||ℓ2(Ω∆x,∆y)

||ψI(., .)||ℓ2(Ω∆x,∆y)

(2.37)

of the standard five-point scheme with the nine-point scheme. As expected the
higher order scheme has a much smaller error. We remark that the wave packet
has essentially crossed the artificial boundary at T = 200∆t.

In order to satisfy the assumption that ψI is compactly supported in Ωcomp (cf.
§2.3) we used a small cut-off close to x = 0 and x = 1. This amounted to a relative
ℓ2-error on R × (0, 1) of O(10−8).

Next we compare the calculated solution ψ on (0, 1)×(0, 1) with a (more exact)
reference solution ψ2 calculated on (0, 2)× (0, 1) using DTBCs at x = 0 and x = 2
in order to distinguish between the error due to the difference scheme and to the
DTBCs. Figure 2.6(b) shows the relative error

L2(t) =
||ψ(., ., t) − ψ2(., ., t)||ℓ2(Ω∆x,∆y)

||ψI(., .)||ℓ2(Ω∆x,∆y)

(2.38)

as a logarithmic plot for the same discretization parameters as before. Both ψ
and ψ2 were calculated with the compact nine-point difference scheme. With
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Figure 2.4: Orthogonal incidence at the boundary: absolute value of the calculated
solution to the time-dependent Schrödinger equation with the initial
function (2.36) on the computational domain (0, 1)× (0, 1) with ∆x =
∆y = 1/120, ∆t = 2 · 10−4, and the wavenumber kx = 50. The
potential equals 0; DTBCs are implemented at x = 0 and x = 1.
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Figure 2.5: Orthogonal incidence at the boundary: absolute value of the calculated
solution to the time-dependent Schrödinger equation with the initial
function (2.36) on the computational domain (0, 1)×(0, 1) as a contour
plot for the same parameter set as used for Figure 2.4.
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Figure 2.6: Relative errors of a travelling wave solution with the initial value (2.36)
as a function of the time steps n = 0, . . . , 200. (a): relative error L1 of
the finite difference scheme for the standard five-point scheme (solid
line) and for the nine-point scheme (dashed line). (b): relative error
L2 of the DTBCs for the nine-point scheme. In all cases we used the
parameters ∆x = ∆y = 1/120, ∆t = 2 · 10−4, α = 120, kx = 50.

L2 ∈ O(10−9), the error due to the DTBC is much smaller than the error L1 of
the interior PDE-scheme.

The first example has shown a Gaussian wave travelling only in x-direction and
hitting the artificial boundary orthogonally. Now we modify this example and
consider the initial function

ψI(x, y) =
∑

ℓ∈Z

(−1)ℓe
−120

h
(x− 1

4)
2
+(y− 1

4
+ℓ)

2
i
−ikxx−ikyy

, kx, ky ∈ R (2.39)

on the same computational domain Ωcomp = (0, 1) × (0, 1) with kx = −ky = 100.
As shown in Figure 2.7 and in 2.8, the wave packet passes the boundary x = 1 in a
non-orthogonal angle (45◦ here) without any reflections. This example illustrates
the angular independence of our DTBCs. In contrast to this situation here, local
TBCs as introduced for wave-type equations in [EnMa77] and ABCs calculated
with the potential ansatz [Bu97] show a strong dependence on the impact angle
at the artificial boundary (cf. §1.3.2, §1.3.3).
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Figure 2.7: Non-orthogonal incidence at the boundary: absolute value of the cal-
culated discrete solution to the time-dependent Schrödinger equa-
tion with the initial function (2.39) on the computational domain
(0, 1)× (0, 1) with J = K = 120, ∆x = ∆y = 1/120, ∆t = 2 ·10−5 and
the wavenumber k = (100,−100). The potential equals 0; DTBCs are
implemented at x = 0 and x = 1.
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Figure 2.8: Non-orthogonal incidence at the boundary: absolute value of the cal-
culated solution to the time-dependent Schrödinger equation with the
initial function (2.39) as a contour plot for the same parameter set as
used for Figure 2.7.

50



2.5 Numerical tests

2.5.2 Example 2: Simulation of quantum waveguides

Next we turn to a physical application of DTBCs. Open boundary conditions are
a crucial ingredient for Schrödinger based simulations of the electron transport
through quantum semiconductor devices. Typical examples include the ballistic
transport along the channel of MOSFETs (cf. [JiLu02], [WaPo04]) or quantum
waveguides (cf. [Bu97] or §13.4 of [Ra02] for an analysis of T -shaped quantum
interference transistors). These are novel electronic switches of nano-scale dimen-
sions. They are made of several different layers of semiconductor materials such
that the electron flow is confined to small channels or waveguides. Due to their
sandwiched structure the relevant geometry for the electron current is essentially
two dimensional. Following the simulation of a GaAs-waveguide in [Bu97], we
choose the T-shaped quantum interference transistor shown in Figure 2.9. The
actual structure can be realized as an etched layer of GaAs between two layers
of doped AlGaAs. Applying an external potential at the gate (i.e. above the
shaded portion of the stub), the “allowed region” for the electrons, and hence
the geometry (in particular the stub length) can be modified (cf. [AiYaMi93],
[ASSHFLL96] for experimental realizations). This allows to control the current
flow through such an electronic device. This causes a switch, which resembles a
transistor on a nano-scale. With respect to small changes in the applied potential
and the geometry, such a device shows sharp peaks in conductance that are due
to the presence of bound states in the stub. It is expected that these novel devices
will operate at low power and high speed.

The electron flow in these devices is modeled by the 2D Schrödinger equation

i~
∂

∂t
ψ = − ~2

2m∗

∆ψ + V (x, y, t)ψ, (x, y) ∈ Ω, t > 0 (2.40)

with the Planck constant ~ and m∗, the effective mass of electrons in the semi-
conductor material of Ω. To model a constant inflow of electrons at the device
contacts, we use inhomogeneous TBCs. In the 1D analytical case they read (cf.
[Ar01])

∂η

(
eiVexttψ − ψInc

)
= −

√
2m∗

~
e−iπ/4

√
∂t

(
eiVexttψ − ψInc

)
,

x0 = 0 or x0 = X

with the constant external potential Vext and the incoming wave function
ψInc(x0, y, t). In 2D this TBC has to be applied to each Fourier mode ψ̂m(x, t),
analogously to the homogeneous case (2.4), cf. [BeMePi05].

In x-direction the channel shown in Figure 2.9 has a length of X = 60nm, the
channel width Y1 and the stub width w are both 20nm. In order to control the
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 y=Y2
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 y=Y3
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y

  x=X 

Figure 2.9: T-shaped structure Ω with the length X = 60nm, a channel width
Y1 = 20nm, and a stub width w = 20nm. It is possible to switch the
stub length from L1 = 32nm to L2 = 40.5nm. Inhomogeneous DTBCs
are implemented at x = 0 and x = X, the inflow is modeled by the
function ψInc given in equation (2.41).

current through the channel, the stublength can be changed from L1 = 32nm
to L2 = 40.5nm. DTBCs are implemented at x = 0 and x = X. All other
boundaries are considered as hard walls, i.e. we use Dirichlet boundary conditions
for ψ. Using Vext = 0, a time harmonic incoming function

ψInc(x = 0, y, t) := sin

(
yπ

Y1

)
e−

iEt
~ , y ∈ [0, Y1] (2.41)

is modelling the mono-energetic, constant-in-time incoming current at x = 0.
Here, ψInc includes only the lowest y-mode. But any linear combination of higher
modes would work equally well, which is a great advantage compared to other
artificial boundary conditions (e.g. [Bu97]). In our example the energy E of
the incoming wave equals 29.9meV and the effective electron mass has the value
m∗ = 0.067m0 (m0 being the electron mass in vacuum), which corresponds to
GaAs.

For the subsequent simulation we solve the Schrödinger equation (2.40) with-
out external potential, i.e. V = 0. For realistic simulations of MOSFET-channels
(2.40) should be coupled to the self-consistent Coulomb potential inside the chan-
nel. Since we focus on DTBCs, we shall not include this here. But a coupling to
the Poisson equation inside the computation domain does not change the deriva-
tion or discretization of our open boundary conditions (cf. §3).
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2.5 Numerical tests

In the following simulations we are mostly interested in the switching and the
large time behaviour of this waveguide. Therefore we first need to compute a
stationary state corresponding to a given incoming plane wave function ψInc. To
this end we choose the following (somewhat arbitrary) initial function

ψI(x, y) =





sin
(

yπ
Y1

)
eikxx : 0 ≤ x < x1

1
2
sin
(

yπ
Y1

)
eikxx

[
1 + cos

(
π x−x1

x2−x1

) ]
: x1 ≤ x < x2

0 : x ≥ x2

(2.42)

with x1 = 5nm and x2 = 15nm, which is consistent with the incoming wave.

In the analytical case the dispersion relation for (2.40) with a plane wave solution
in the first orthogonal mode (cf. (2.41)) in the channel R × (0, Y1) reads

ǫ(kx) =
~2k2

x

2m∗

+
~2π2

2m∗Y 2
1

, (2.43)

which needs to be modified for the discretized Schrödinger equation. For a
given inflow energy E, the value of kx appearing in (2.42) can be derived from
the discrete dispersion relation. To derive it, we first put the ansatz ψj,1 =

eikxj∆x sin
(

π∆y
Y1

)
, j ∈ Z into the spatial semi-discretization (by the compact nine-

point scheme) analogous to (2.11). With

D2
x

(
eikxj∆x sin

(
π∆y

Y1

))
=

2

∆x2
(cos(kx∆x) − 1) eikxj∆x sin

(
π∆y

Y1

)
,

D2
y

(
eikxj∆x sin

(
π∆y

Y1

))
=

2

∆y2

(
cos

(
π∆y

Y1

)
− 1

)
eikxj∆x sin

(
π∆y

Y1

)
,

we yield

Espace(kx) =
[
− ~2

m∗∆x2
(cos(kx∆x) − 1) − ~2

m∗∆y2

(
cos

(
π∆y

Y1

)
− 1

)

−~2(∆x2 + ∆y2)

6m∗∆x2∆y2
(cos(kx∆x) − 1)

(
cos

(
π∆y

Y1

)
− 1

)]

×
[
1 +

1

6
(cos(kx∆x) − 1) +

1

6

(
cos

(
π∆y

Y1

)
− 1

)]−1

. (2.44)

This is the dispersion relation modified due to the spatial discretization. For
the correction due to the Crank-Nicolson time discretization we use the discrete
equation

i~D+
t ψ

n
j,k = Etime(kx)ψ

n+ 1
2

j,k , j, k ∈ Z, n ∈ N0,
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which yields

ψn+1
j,k =

2i~ + Etime(kx)∆t

2i~ − Etime(kx)∆t
ψn

j,k. (2.45)

We inject incoming time-harmonic plane wave functions and therefore we set

e−
iE(kx)∆t

~ =
2i~ + Etime(kx)∆t

2i~ − Etime(kx)∆t
. (2.46)

Adding this correction of the discretization due to the Crank-Nicolson time semi-
discretization yields the dispersion relation

E(kx) =
~

i∆t
ln

(
2i~ − ∆tEspace(kx)

2i~ + ∆tEspace(kx)

)
(2.47)

for the discrete Schrödinger equation (analogous to (2.11)) with a time-harmonic
plane wave solution. Figure 2.10 shows these different dispersion relations as
functions of the wavenumber kx ∈ [−2nm−1, 2nm−1] for three different sets of dis-
cretization parameters. For the first numerical test presented in Figure 2.10(a)
we choose with ∆x = 1.8nm and ∆t = 0.5fs a coarse space discretization com-
pared to the time discretization. In Figure 2.10(b) we change the parameters to
∆x = 1.44nm and ∆t = 2fs, and for the calculations shown in Figure 2.10(c) we
choose both discretizations fine and set ∆x = 1.44nm and ∆t = 0.5fs. For each
set of parameters we calculated and plotted the continuous dispersion relation
(equation (2.43); plotted in black colour), the space semidiscrete (equation (2.44);
plotted in blue colour), the time semidiscrete (equation (2.47) with ǫ(kx) instead
of Espace; plotted in green), and the fully discrete dispersion relation (equation
(2.47); plotted in red) as a function of the wavenumber kx ∈ [−2nm−1, 2nm−1].
For the coarse space discretization the values of space corrected and therefore
also for the both space and time corrected energies differ clearly from the ones
obtained by the continuous relation and the time corrected relations. By contrast
with a fine space and a coarse time discretization the values of the time corrected
and the both time and space corrected energy distinguish from the values calcu-
lated with the continuous relation and the space corrected relations. Choosing
all discretization parameters ∆x, ∆t small yield better approximations for all dis-
persion relations. But also for the paramaters selected here, the continuous, the
time-discretization-corrected, the space-discretization-corrected and the discrete
dispersion relation are close to each other only for small values of kx. Otherwise
corrections due to E(kx) from (2.47) are necessary.
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Figure 2.10: Dispersion relations for the Schrödinger equation (2.40) for three sets
of parameters. (a) shows the relations for a discretization ∆x =
1.8nm and ∆t = 0.5fs, (b) for a discretization ∆x = 1.44nm and ∆t =
2fs, and for the calculations presented in (c) we use the discretization
∆x = 1.44nm and ∆t = 0.5fs. For each set of parameters we have
plotted the continuous (black), space corrected (blue), time corrected
(green) and the space and time corrected discrete dispersion relation
(red) as a function of the wavenumber kx ∈ [−2nm−1, 2nm−1].

Numerical tests have shown that the real and imaginary parts of the solution to
the Schrödinger equation (2.40) with constant inflow (2.41) are highly oscillatory
in time, such that a fine time discretization seems necessary. Figure 2.11(a) shows
the highly oscillatory evolution of the real part at one spatial grid point in the
T-shaped structure with constant inflow ψInc. For this plot we considered 50 000
time steps with ∆t = 0.2fs, V = 0, and ∆x = ∆y = 0.5nm (J = K = 120). After
10 000 time steps the stub length is switched from L1 = 32nm to L2 = 40.5nm.
In order to use a coarser time discretization (in spite of these oscillations), we
consider the simple transformation

ϕ(x, y, t) := e−iωtψ(x, y, t), (2.48)

with the dominant time frequency ω = −E
~
. ϕ then satisfies the modified Schrö-

dinger equation

i~ϕt = − ~2

2m∗

(ϕxx + ϕyy) + (V − ω~)ϕ, (2.49)
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Figure 2.11: Time evolution of the real part to the solution of the Schrödinger
equation in the T-shaped device at the one grid point (xJ−4, yK/2).
(a) shows Re(ψ(xJ−4, yK/2, tn)) for time steps n = 1, . . . , 50 000 with
V = 0. (b) shows the evolution of Re(ϕ(xJ−4, yK/2, tn)) under the
assumption V = −E. After 10 000 time steps the stub length is
switched from L1 = 32nm to L2 = 40.5nm.

with ϕI = ψI and an incoming plane wave

ϕInc(x = 0, y, t) = sin

(
yπ

Y1

)
. (2.50)

As expected, its solution is much “smoother” in time (cf. Figure 2.11(b)). Hence,
we expect that ϕ allows for a much more accurate numerical solution. To verify
this claim numerically, we discretize both versions of the Schrödinger equation on
the fixed time interval [0, 10ps]. ψ1 is obtained from (2.40) with the parameters
N = 12 500, ∆t = 0.8fs and V = 0. ψ2(tn) := eiωtnϕ(tn) is obtained from
discretizing (2.49) with the parameters N = 12 500, ∆t = 0.8fs, and V = −E.
As an even more accurate reference solution we use ψ3(tn) := eiωtnϕ(tn) with the
parameters N = 100 000, ∆t = 0.1fs, and V = −E. In Figure 2.12 we show the
evolution of the spatial-error-norms ||ψ1(., ., tn) − ψ3(., ., t8n)||2 and ||ψ2(., ., tn) −
ψ3(., ., t8n)||2 for the time steps n = 0, . . . , 12 500. At the time T = 2ps we switched
the stub length from L1 = 32nm to L2 = 40.5nm. As expected, the function ψ2

is more accurate than function ψ1 with respect to the function ψ3. Therefore, the
transformed equation (2.49) shall be used for the subsequent simulations.

Figure 2.13 shows some temporal snapshots of the solution to the modified
Schrödinger equation (2.49). And Figure 2.14 shows the corresponding longitudi-
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nal current density

j(x, t) =

Y3∫

0

Jx(x, y, t)dy, (2.51)

where the x-component of the current density is defined as

Jx(x, y, t) =
~

2m∗

Im

(
ψ(x, y, t)

∂

∂x
ψ̄(x, y, t)

)
.

In this simulation the stub length is first fixed to L1 = 32nm. After about 2ps
the solution reaches a steady state and the current inside the device is already
almost constant in x at the low value 0.03nm2/ps (“off-state” of the waveguide,
cf. 2.14(c)). Phenomenologically speaking, in this case only 11

2
wave packets “fit”

into the stub (cf. Figure 2.13(c)). Hence, they block the current flow through the
waveguide. Then, at t = 2ps the stub is enlarged at once to L2 = 40.5nm. After
some transient phase, the solution converges to another steady state (“on-state”
of the waveguide, cf. Figure 2.13(f), 2.14(f)). Here two wave packets “fit” into
the stub. Hence, the current can flow almost unblocked through the device, so
that the current is reaching an almost constant maximum level. Note that for a
two dimensional channel of width 20nm (same as for the T -shaped geometry), but
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(a) initial function (b) t = 0.08 ps

(c) t = 2 ps (d) t = 2.016 ps

(e) t = 2.048 ps (f) t = 6.08 ps

Figure 2.13: Absolute value of the solution ψ(x, y, t) of the time-dependent
Schrödinger equation (2.40) on the T-shaped structure from Figure
2.9. The discretization parameters are chosen as ∆x = ∆y = 0.25nm
(J = K = 242), ∆t = 0.8fs, V = −E = −29.9meV, m∗ = 0.067m0.
(c) shows the steady state corresponding to the short stub with
L1 = 32nm. (f) is the steady state for the long stub with L = 40.5nm.
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(a) t = 0 (b) t = 0.08 ps

(c) t = 2 ps (d) t = 2.016 ps

(e) t = 2.048 ps (f) t = 6.08 ps

Figure 2.14: Current density j(x, t) (in nm2/ps) in the T-shaped device for the
same example as in Figure 2.13. In (c) and (f) the current is (almost)
constant in x – a requirement for a steady state.
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2.6 Conclusion

without any barriers and stubs, and for the given energy inflow E = 29.9meV, the
constant current j(x, t) equals 0.4nm2/ps.

2.6 Conclusion

We have generalized the fourth order Numerov finite difference scheme to the
transient two dimensional Schrödinger equation and derived the corresponding
discrete transparent boundary conditions. Its numerical efficiency is demonstrated
in numerical tests on a rectangular geometry as well as for quantum waveguide
simulations.
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3 Transient quantum simulations

for the double gate MOSFET

In this section we will extend the DTBCs for the 2D time-dependent Schrödinger
equation to more arbitrary geometries and potentials. This gives a more accurate
physical model for quantum transport in nanostructures. For the modelling of bal-
listic quantum transport devices we furthermore obtain a self-consistent solution
between the Schrödinger and the Poisson equation. We propose a very efficient
subband decomposition algorithm and show numerical results for simulations of the
Schrödinger-Poisson system. With the new method proposed here it is possible
to simulate the double gate metal oxide semiconductor field-effect transistor (dou-
ble gate MOSFET or DGMOS), which is today’s dominant device in integrated
circuits.

3.1 Introduction

Today’s semiconductor devices like transistors and nanoscale split-gate devices
are rapidly shrinking in their size. In this context, modeling and numerical sim-
ulations play an important role in the development and design of new devices.
We focus on devices with ballistic electron transport, such as electron quantum
waveguide devices. Their functionality depends on the formation of a 2D elec-
tron gas and on wave interference effects (cf. [FeGo97], e.g.). Speaking of ballistic
transport means that electrons are assumed to not suffer any collision during their
transit through the device (e.g. high-purity materials and at low temperatures).
A schematic view of such a device, a DGMOS, is shown in Figure 3.1(a). At
the gates there is an applied external potential and the electron transport takes
place from source to drain. We consider the effective mass approximation, where
the mass m∗ is assumed to be constant in homogenized parts of the device. The
different materials (e.g. Si, SiO2) have different effective masses. We simplify
this model like it is presented in Figure 3.1(b), where only one effective mass is
introduced and external potentials VGate could be applied at the gates. But re-
garding different materials and therefore different effective masses won’t change
the derivation of the open boundary conditions and the model in principle. The
electron flow through the device is modeled by a superposition of incoming plane
waves.
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3.1 Introduction

SiO2

SiO2

Gate

Gate

DrainSiSource N N+ +

y

x

(a) Schematic view of a DGMOS. The electron trans-
port takes place from source to drain in x-direction
(red arrows). An external potential is applied at the
gates.

VGate

VGate

Ωx Ωyx

(b) Simplified model of a DGMOS

Figure 3.1: Schematic view and simplified model of a DGMOS.

A suitable way to simulate the electron transport through a quantum waveguide
in good approximation is given by the 3D time-dependent Schrödinger equation
coupled with the Poisson equation. The electrons in the device are in a mixed state
with given statistics, where each pure state Ψλx,y,z

is a solution of the Schrödinger
equation

i~
∂Ψλx,y,z

∂t
(x, y, z, t) = − ~2

2m∗

∆Ψλx,y,z
(x, y, z, t)

+V (x, y, z, t)Ψλx,y,z
(x, y, z, t), (x, y, z) ∈ R

3, t > 0.

(3.1)

The complex valued wave function Ψλx,y,z
depends on a continuous wavenumber

index λx,y,z ∈ Λ ⊆ R. The potential V = Ve + Vs splits into a given, external part
Ve and a self-consistent part Vs caused by electrostatic interaction of the electrons.
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3 Transient quantum simulations for the double gate MOSFET

The self-consistent potential solves the Poisson equation

−∆Vs(x, y, z, t) = n(x, y, z, t) :=

∫

Λ

|Ψλx,y,z
(x, y, z, t)|2dλx,y,z,

(x, y, z) ∈ R
3, t > 0. (3.2)

The nonlinear Schrödinger-Poisson system (3.1), (3.2) has been widely studied
analytically in whole space settings (e.g. [Ca89], [Ca97], [IlZwLa94]). For numer-
ical simulations we have to choose a bounded domain Ω ⊂ R3, in which we solve
the system (3.1), (3.2). Ω is the active region of the device. Our aim is to use
the highly efficient algorithm of the subband decomposition for solving the coupled
Schrödinger-Poisson system. Furthermore we want to derive discrete open bound-
ary conditions for the Schrödinger equation (3.1), which is nonlinearly coupled to
the Poisson equation (3.2) inside the active region, in case of a continuous particle
injection into the device. In the analytical case this has been studied in 1D in
[BePi02], [Pi02] and in the 2D, 3D case in [BeMePi05].

3.2 Overview of the analytical model

Let Ω = Ωx × Ωy × Ωz be a 3D box, as it is shown in Figure 3.2. The model
proposed here is not a fully 3D model with open boundary conditions. The z-
direction is assumed to be the infinite direction, where the wave functions are
defined as plane waves. Furthermore the direction x ∈ Ωx = (0, X) denotes the
transport direction, where we shall obtain open boundaries at x = 0 and x = X.
y ∈ Ωy = (0, Y ) is a confined direction with closed boundary conditions (e.g. zero
Dirichlet boundary conditions at y = 0 and y = Y ). Therefore we let the potential
V be independent of z ∈ Ωz = (−∞,∞). We assume that the system is invariant
w.r.t. the z-direction such that the wave function is a plane wave in this direction.
The full wave function Ψλx,y,z

can be separated as

Ψλx,y,z
(x, y, z, t) = ϑEz ,kz

(z, t)ψλx,y
(x, y, t), (x, y) ∈ Ωx × Ωy, z ∈ Ωz, t > 0,

with a complex-valued plane wave ϑEz ,kz
: R × R+ → C, the energy

Ez =
~2k2

z

2m∗

, kz ∈ R,

and Ψλx,y,z
has the energy E = Ez + Ex,y. This results from the translation

invariance of the 3D problem in z-direction. Ex,y denotes the energy of the 2D
wave function ψλx,y

: R
2 × R

+ → C and λx,y the real-valued wavenumbers . The
domain Ωx × Ωy is considered to be the active region of the device. Electrons
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3.2 Overview of the analytical model

z

x

y

Figure 3.2: Bounded domain Ω ⊂ R3.

are fed into the device by a superposition of plane waves ψinc
λx,y

(x, y, t). The wave
function ψλx,y

solves the 2D time-dependent Schrödinger equation

i~
∂ψλx,y

∂t
(x, y, t) = − ~2

2m∗

∆ψλx,y
(x, y, t) + V (x, y, t)ψλx,y

(x, y, t),

(x, y) ∈ Ωx × Ωy, t > 0,

ψλx,y
(x, 0, t) = ψλx,y

(x, Y, t) = 0, x ∈ Ωx, t > 0,

V (x, y, t) = Ve(x, y, t) + Vs(x, y, t), (x, y) ∈ Ωx × Ωy, t > 0 (3.3)

with open boundary conditions at x = 0, x = X. Inside the active region we sup-
pose a self-consistent potential. In the previous analysis in §1 and §2 we neglected
the self-consistent part of the potential and assumed the external potential to be
constant in the left and right leads of the waveguide, i.e. for x ≤ 0, x ≥ X. Here
we relax these assumptions and allow external potentials

Ve(x, y, t) =





Ṽe(x, y, t) : (x, y) ∈ Ωx × Ωy, t > 0,
V0(y) + V 1(t) : x ≤ 0, y ∈ Ωy, t > 0,
VX(y) + V 2(t) : x ≥ X, y ∈ Ωy, t > 0,
∞ : x ∈ Ωx, y ≤ 0 or y ≥ Y, t > 0

(3.4)

with Ve ∈ L∞(Ωx × Ωy × R+). The y-dependence of the potential in the exterior
domains allows much more realistic models. With this choice for Ve it is possible
to build waveguides of different shapes by applying external potentials. In former
models the walls of electronic devices were realized by zero Dirichlet boundary
conditions in the confined direction. Due to the DTBCs it was necessary that the
computational domain had to end in rectangular leads. The potential in the outer
domains was assumed to be constant, in particular on the lines x = 0 and x = X.
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3 Transient quantum simulations for the double gate MOSFET

x ΩyxΩ

x

y

Ψ inc
λ

V (y)e

x=Xx=0

y=Y

y=0

(a) model of the waveguide

y

V
e(y

)

(b) potential Ve(y)

Figure 3.3: More realistic model of a quantum waveguide. In (a) we plotted a
part of the channel R × (0, Y ). A potential Ve(y), which acts like
a confinement, is applied in y-direction. The grey-coloured domains
illustrate the external potential in this direction. Dark colour values
correspond to high values for the potential. A cross-section of an
example of such a potential is presented in (b).

Hence it was not possible to shape the full geometry of a device by y-dependent
external potentials with the methods presented in §1 and §2. An example of a more
realistic model of a quantum waveguide channel built by applying a y-dependent
potential is shown in Figure 3.3. With an external potential which is increasing
for y → 0 and y → Y we obtain a potential that acts like a barrier at the channel
walls y = 0 and y = Y . This is a more natural model since industrial devices are
also built by applied potentials. We will give also some numerical examples for
the choice of Ve in §3.4.1.

Remark 3.1 Without loss of generality we can drop the time-dependence V 1(t),
V 2(t) of the potential in (3.4) in the outer domains for the further calculations.
We introduce the transformation

ψ̃λx,y
(x, y, t) = e

− i
~

tR
0

V 1(τ)dτ
ψλx,y

(x, y, t) (3.5)

for the left outer domain x ≤ 0 (and analogously for x ≥ X). Then, ψ̃λx,y
fulfills

the modified Schrödinger equation

i~
∂ψ̃λx,y

∂t
(x, y, t) = − ~2

2m∗

∆ψ̃λx,y
(x, y, t) + V0(y)ψ̃λx,y

(x, y, t),

(x, y) ∈ Ωx × Ωy, t > 0 (3.6)

without any time-dependent potential.

Hence, we consider in the following analysis only given external potentials V0(y),
x ≤ 0, VX(y), x ≥ X depending on y ∈ Ωy in the outer domains. In the numer-
ical simulations we assume also time-dependent external potentials in the outer
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3.2 Overview of the analytical model

V(x,y,t)0V (y) XV (y)

y=Y

y=0
x=X

Ωy(x)

x=0

Figure 3.4: The computational domain Ωx×Ωy is divided into slices Ωy(x). Inside
Ωx ×Ωy the external potential is a function of the variables x, y, t; in
the leads x ≤ 0, x ≥ X it only depends on y.

domains. The following calculations are only made for the left outer domain, the
case of the right outer domain is completely analogous.

3.2.1 Subband decomposition of the analytical 2D Schrödinger

equation

The idea of the subband decomposition is to reduce the dimension of the 2D time-
dependent Schrödinger equations (3.3) and (3.6), firstly on the infinite channel
R × Ωy, to 1D by projecting the solution onto the Schrödinger eigenfunctions in
y-direction. This approach was presented in [Po05] for the stationary Schrödinger
equation. Therefore the domain Ωx × Ωy is divided into slices Ωy(x) along the
transport direction like shown in Figure 3.4. The potential located in the active
domain is supposed to be a function of x, y, t. Outside the active region, for
x ≤ 0 and x ≥ X, the external potential (and hence also the self-consistent)
depends only on the confined direction y. On each slice Ωy(x) we calculate the
eigenfunctions χm(x, y, t) as a solution of the 1D stationary Schrödinger equation
with Dirichlet boundary conditions:

− ~2

2m∗

∂2

∂y2
χm(x, y, t) + V (x, y, t)χm(x, y, t) = ǫm(x, t)χm(x, y, t),

(x, y) ∈ Ωy(x), t > 0, m ∈ N,

χm(x, 0, t) = χm(x, Y, t) = 0, t > 0, x ∈ R, m ∈ N.

We normalize the eigenmodes by

Y∫

0

χm(x, y, t)χq(x, y, t)dy = δm,q, ∀q, m ∈ N, x ∈ R, t > 0. (3.7)
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3 Transient quantum simulations for the double gate MOSFET

The wave function ψλx,y
(x, y, t) can be uniquely decomposed in terms of the eigen-

functions

ψλx,y
(x, y, t) =

∞∑

m=1

ϕλx,y,m(x, t)χm(x, y, t), (x, y) ∈ Ωy(x), t > 0 (3.8)

with

ϕλx,y,m(x, t) = 〈ψλx,y
(x, y, t), χm(x, y, t)〉 :=

Y∫

0

ψλx,y
(x, y, t)χm(x, y, t) dy.

Inserting representation (3.8) into equation (3.3), multiplying with χq(x, y, t), inte-
grating over Ωy and using the orthonormality (3.7) yields the coupled 1D equations

i~
∂

∂t
ϕλx,y,m(x, t) = − ~2

2m∗

∂2

∂x2
ϕλx,y,m(x, t) + ǫm(x, t)ϕλx,y,m(x, t)

−i~
∞∑

q=1

〈
∂

∂t
χq(x, y, t), χm(x, y, t)

〉
ϕλx,y,q(x, t)

− ~2

m∗

∞∑

q=1

〈
∂

∂x
χq(x, y, t), χm(x, y, t)

〉
∂

∂x
ϕλx,y,q(x, t)

− ~2

2m∗

∞∑

q=1

〈
∂2

∂x2
χq(x, y, t), χm(x, y, t)

〉
ϕλx,y,q(x, t),

x ∈ R, t > 0, m ∈ N. (3.9)

The subband decomposition algorithm follows by truncating the sums
∑∞

q=1 in

(3.9) to
∑M

q=1 for a fixed number M ∈ N and solving the coupled 1D equations
(3.9) for m = 1, . . . ,M instead of solving the 2D Schrödinger equation (3.3).
Additionally we will solve uncoupled 1D equations (cf. §3.3).

Remark 3.2 On the leads x ≤ 0, x ≥ X of the waveguide we calculate eigenfunc-
tions χm and eigenvalues ǫm which do not depend on the variables t, x. They are
different in both outer domains, since we assume different y-dependent potentials
there. The coupling terms vanish in (3.9) for x ≤ 0, x ≥ X.

3.2.2 Adding the self-consistent potential

The given external potentials V0(y), x ≤ 0, VX(y), x ≥ X cause self-consistent
potentials V0,s(y), VX,s(y), y ∈ Ωy in each outer domain which are constant in
time and can be obtained by solving the 1D Poisson equation

− ∂2

∂y2
V0,s(y) = n1D(y) − nD, y ∈ Ωy

∂

∂y
V0,s(0) =

∂

∂y
V0,s(Y ) = 0 (3.10)
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3.2 Overview of the analytical model

with a given constant doping profile nD for each outer domain. In this 1D case
the electron density n1D takes the form

n1D(y) =
∑

m

∞∫

−∞

∞∫

−∞

∣∣ψλx,y
(0, y, 0)

∣∣2 f(Em(kx, kz) − µ)
dkxdkz

2π
, (3.11)

where µ denotes the unknown chemical potential in the actual lead (here x ≤ 0)
of the waveguide at equilibrium. f is the given statistical distribution, e.g. the
Boltzmann distribution

fB(E) = e
− E

kBT , E ∈ R

or the Fermi-Dirac distribution

fFD(E) =
1

1 + e
E

kBT

, E ∈ R

with the Boltzmann’s constant kB and the temperature T . ψλx,y
(0, y, 0) corre-

sponds to the initial wave function at x = 0. Since we inject plane waves into the
waveguide, (3.11) can be simplified (with (3.8)) to

n1D(y) =
∑

m

|χm(0, y, 0)|2
∞∫

−∞

∞∫

−∞

f(Em(kx, kz) − µ)
dkxdkz

2π
. (3.12)

The energy Em(kx, kz) describes the energy ǫm(x) of the injected mode (at x = 0
for the left exterior domain) plus the energies given by the dispersion relations for
wavenumbers kx, kz:

Em(kx, kz) = ǫm(0) +
~

2k2
x

2m∗

+
~

2k2
z

2m∗

, m ∈ N, kx, kz ∈ R.

In case of Boltzmann statistics, i.e. f(E) = fB(E), the integral appearing in
(3.12) can be calculated analytically and we obtain

n1D(y) =
kBTm∗

~2

∑

m

|χm(0, y, 0)|2 e−
ǫm(0)−µ

kBT , y ∈ Ωy. (3.13)

The chemical potential µ will also appear in the Poisson equation in the active
domain Ωx × Ωy and has to be calculated such that

Y∫

0

(n1D(y) − nD) dy = 0. (3.14)

73



3 Transient quantum simulations for the double gate MOSFET

With this information the electron density n1D(y) can be computed and the Pois-
son equation (3.10) has a unique solution. The self-consistent potential Vs inside
the active region Ωx × Ωy satisfies the 2D Poisson equation

−∆Vs(x, y, t) = n2D(x, y, t) − nD, (x, y) ∈ Ωx × Ωy, t > 0,

∂

∂y
Vs(x, 0, t) =

∂

∂y
Vs(x, Y, t) = 0, x ∈ Ωx, t > 0,

Vs(0, y, t) = V0,s(y), Vs(X, y, t) = VX,s(y), y ∈ Ωy, t > 0 (3.15)

with the 2D electron density (cf. [Po02])

n2D(x, y, t) =
∑

m

∫

R2

|ψλx,y
(x, y, t)|2f

(
ǫm(0) +

~2k2
x

2m∗

+
~2k2

z

2m∗

− µ

)
dkxdkz

2π
,

where f denotes again the statistical distribution and nD the given constant doping
profile. The solutions ψλx,y

(x, y, t) of the 2D time-dependent Schrödinger equation
depend on the continuous wavenumber kx and have to be calculated for all kx ∈ R.
Since the incoming functions do not depend on kz the electron density can be
simplified in case of Boltzmann statistics to

n2D(x, y, t) =
∑

m

∞∫

−∞

∞∫

−∞

|ψλx,y
(x, y, t)|2e

„
ǫm(0)+

~
2k2

x
2m∗

+
~
2k2

z
2m∗

−µ

«
/(kBT )dkxdkz

2π

=

√
kBT

4~
√
π

∑

m

e
−

ǫm(0)−µ

kBT

∞∫

−∞

|ψλx,y
(x, y, t)|2e−

~
2k2

x
2m∗kBT dkx,

(x, y) ∈ Ωx × Ωy, t > 0 (3.16)

with µ given indirectly by the equality (3.14).

Remark 3.3 In practice ψλx,y
(x, y, t) and the integral (3.16) cannot be calculated

analytically for all real values of kx. But ψλx,y
(x, y, t) is bounded w.r.t. kx and

exp
(
− ~2k2

x

2m∗kBT

)
tends to zero very fast with kx → ∞, such that the integral over

R can be approximated well by a definite integral over [−c, c] with some c ∈ R+.

In the following section we will derive a discrete system corresponding to the
analytical model of the Schrödinger-Poisson system (3.3), (3.15) with suitable
boundary conditions and use the subband decomposition algorithm for the efficient
computation of the discrete solution. Numerical results on 2D domains Ωx × Ωy

will be presented in §3.4.
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3.3 Discretization of the Schrödinger-Poisson system

3.3 Discretization of the Schrödinger-Poisson

system

For the derivation of a discrete model of the Schrödinger-Poisson system on
the channel Ωx × Ωy with DTBCs in transport direction we first discretize the
Schrödinger equation (3.3), derive DTBCs which take the given potential (3.4) into
account and use the subband decomposition for solving the discrete Schrödinger
equation. Afterwards we extend the model by including the self-consistence of the
potential as a solution to the discretized Poisson equation.

3.3.1 Extended DTBCs for the discretized Schrödinger

equation

We discretize the Schrödinger equation (3.3) again with the Crank-Nicolson stan-
dard five-point finite difference scheme with the equidistant grid points xj =
j∆x, j ∈ Z, yk = k∆y, k = 0, . . . , K, tn = n∆t, n ∈ N with X = J∆x, Y = K∆y
like mentioned in §1.2 and obtain for ψn

j,k ∼ ψλx,y
(xj , yk, tn) the difference equa-

tions

i~

∆t

(
ψn+1

j,k − ψn
j,k

)
= − ~

2

2m∗∆x2

(
ψ

n+1/2
j−1,k − 2ψ

n+1/2
j,k + ψ

n+1/2
j+1,k

)

− ~2

2m∗∆y2

(
ψ

n+1/2
j,k−1 − 2ψ

n+1/2
j,k + ψ

n+1/2
j,k

)
+ V

n+1/2
j,k ψ

n+1/2
j,k

(3.17)

for j ∈ Z, k = 0, . . . , K, n ∈ N0 with the abbreviations

ψ
n+1/2
j,k =

1

2

(
ψn+1

j,k + ψn
j,k

)
,

V
n+1/2
j,k = V (xj , yk, tn+1/2),

and V (x, y, t) = Ve(x, y, t) from (3.4) with V 1(t) = V 2(t) = 0 (see Remark 3.1).

The potential reduces to V
n+1/2
j,k = Vk for all k = 0, . . . , K, n ≥ 1 in the outer

leads j ≤ 0, j ≥ J of the waveguide. For each interior grid point xj and each time
step n we solve the eigenvalue problems

− 1

2∆y2

(
χ

m,n+1/2
j,k−1 − 2χ

m,n+1/2
j,k + χ

m,n+1/2
j,k+1

)
+ V

n+1/2
j,k χ

m,n+1/2
j,k

= ǫ
m,n+1/2
j χ

m,n+1/2
j,k , 0 ≤ j ≤ J, 1 ≤ k,m ≤ K − 1, n ∈ N0,

χ
m,n+1/2
j,0 = χ

m,n+1/2
j,K = 0, 0 ≤ j ≤ J, 1 ≤ m ≤ K − 1, n ∈ N0,

(3.18)
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3 Transient quantum simulations for the double gate MOSFET

and normalize the eigenmodes:

∆y
K−1∑

k=1

∣∣∣χm,n+1/2
j,k

∣∣∣
2

= 1, 0 ≤ j ≤ J, 1 ≤ m ≤ K − 1, n ∈ N0.

Remark 3.4 To avoid numerical errors we need to be sure, that the eigenfunc-
tions have the same orientation. Therefore we define the discrete scalar product

〈gk, fk〉 := ∆y

K−1∑

k=1

gkfk

w.r.t. the discrete direction k for discrete functions f, g ∈ RK+1 with g0 = gK =

f0 = fK = 0. We calculate the sign of
〈
χ

m,1/2
j,k , χ

m,1/2
j+1,k

〉
for all modes m and

multiply χ
m,1/2
j+1,k for all k = 1, . . . , K − 1 with it for all j = 0, . . . , J . Hence it is

sure, that the eigenmodes χ
m,1/2
j,k at the line xj and the following eigenmodes χ

m,1/2
j+1,k

at the line xj+1 have the same sign. In all time steps we orientate the eigenmode

of the first line χ
m,n+3/2
0,k at the new time step n + 1 w.r.t. the eigenmode of the

first line χ
m,n+1/2
0,k at the old time step n and then adjust the eigenmodes of lines

j ≥ 1 w.r.t. χ
m,n+3/2
0,k .

Remark 3.5 In [Po05] the author points out that if the silicon layer of the DG-

MOS is larger than ∼ 10nm, then the first two modes χ
1,n+1/2
j,k , χ

2,n+1/2
j,k will have

very close energies ǫ
1,n+1/2
j , ǫ

2,n+1/2
j . Due to rounding errors it may be the case

that the energies are equal and hence the associated eigenspace is computed as
two dimensional, which is not correct. We calculate the eigenfunctions in each
line xj independently of the neighbour line xj+1. Computing an energy eigen-

value as a double eigenvalue leads to the regularity of span
{
χ

1,n+1/2
j,k , χ

2,n+1/2
j,k

}
in

x-direction, but the eigenfunctions may be not smooth in x. Let the eigenmodes
χ

1,n+1/2
j,k , χ

2,n+1/2
j,k be computed for the j-th line. The “wrong” eigenmodes computed

in the neighbour line j + 1 are notated by χ̂
1,n+1/2
j+1,k , χ̂

2,n+1/2
j+1,k . They are going to be

corrected by the orthogonalization due to the rotation


 χ

1,n+1/2
j+1,k

χ
2,n+1/2
j+1,k


 =

(
cos(ϑ) sin(ϑ)

− sin(ϑ) cos(ϑ)

)
 χ̂

1,n+1/2
j+1,k

χ̂
2,n+1/2
j+1,k


 ,

where the angle ϑ is computed by

tan(ϑ) = −
〈χ̂1,n+1/2

j,k , χ
2,n+1/2
j,k 〉

〈χ̂2,n+1/2
j,k , χ

2,n+1/2
j,k 〉

.
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3.3 Discretization of the Schrödinger-Poisson system

The value of ϑ follows from considering 〈χ1,n+1/2
j+1,k , χ

2,n+1/2
j,k 〉 = 0, which is a natural

condition for χ
1,n+1/2
j+1,k , χ

2,n+1/2
j+1,k , being close to χ

1,n+1/2
j,k , χ

1,n+1/2
j,k . For details and

numerical tests we refer to [Po05].

Performing the transformation

ϕn
j,m =

K−1∑

k=1

χ
m,n+1/2
j,k ψn

j,k, m = 1, . . . , K − 1, j = 0, . . . , J, n ∈ N0,

and accordingly

ψn
j,k =

K−1∑

m=1

χ
m,n+1/2
j,k ϕn

j,m, k = 1, . . . , K − 1, j = 0, . . . , J, n ∈ N0 (3.19)

yields by inserting (3.19) into (3.17) the coupled discrete 1D equations

i~

∆t

(
ϕn+1

j,m − ϕn
j,m

)
= − ~2

2m∗∆x2

(
ϕ

n+1/2
j−1,m − 2ϕ

n+1/2
j,m + ϕ

n+1/2
j+1,m

)

+ ǫ
n+1/2
j,m ϕ

n+1/2
j,m − i~

2

K−1∑

q=1

(
cn+1
j,m,qϕ

n+1
j,q + cnj,m,qϕ

n
j,q

)

− ~
2

4m∗

K−1∑

q=1

(
dn+1

j,m,qϕ
n+1
j,q + dn

j,m,qϕ
n
j,q

)

− ~2

2m∗

K−1∑

q=1

(
en+1

j,m,qD
0
xϕ

n+1
j,q + en

j,m,qD
0
xϕ

n
j,q

)
,

j = 1, . . . , J − 1, m = 1, . . . , K − 1, n ∈ N0, (3.20)

with the abbreviations

cnj,m,q = 〈D+
t χ

m,n+1/2
j,k , χ

q,n+1/2
j,k 〉,

dn
j,m,q = 〈D2

xχ
m,n+1/2
j,k , χ

q,n+1/2
j,k 〉,

en
j,m,q = 〈D+

x χ
m,n+1/2
j,k , χ

q,n+1/2
j,k 〉, (3.21)

for the coupling terms and the difference operators

D0
xϕ

n
j,m =

1

2∆x

(
ϕn

j+1,m − ϕn
j−1,m

)
,

D+
x ϕ

n
j,m =

1

∆x

(
ϕn

j+1,m − ϕn
j,m

)
,

D2
xϕ

n
j,m =

1

∆x2

(
ϕn

j+1,m − 2ϕn
j,m + ϕn

j−1,m

)
,

D+
t ϕ

n
j,m =

1

∆t

(
ϕn+1

j,m − ϕn
j,m

)
,

j = 1, . . . , J − 1, m = 1, . . . , K − 1, n ∈ N0. (3.22)
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3 Transient quantum simulations for the double gate MOSFET

In each time step we solve M < K coupled 1D equations according to (3.20) by
truncating the coupling sums at q = M . We set cnj,m,q = dn

j,m,q = en
j,m,q = 0 for

all q = M + 1, . . . , K − 1 and solve additionally the K −M − 1 uncoupled 1D
equations

i~

∆t

(
ϕn+1

j,m − ϕn
j,m

)
= − ~

2

2m∗∆x2

(
ϕ

n+1/2
j−1,m − 2ϕ

n+1/2
j,m + ϕ

n+1/2
j+1,m

)
+ ǫj,mϕ

n+1/2
j,m

(3.23)

for m = M + 1, . . . , K, j = 1, . . . , J − 1, n ∈ N0.

Since the eigenfunctions χ
m,n+1/2
j,k are constant in xj-direction and time inde-

pendent for j ≤ 0 and j ≥ J , we obtain cnj,m,q = dn
j,m,q = en

j,m,q = 0 for all j = 1, J ,

m, q = 1, . . . , K − 1, n ≥ 0 and the energy ǫ
n+1/2
j,m is constant for all n ≥ 0.

Hence, equation (3.20) reduces in transport direction at the boundaries to (3.23)
for j = 0, J , m = 1, . . . , K−1, n ∈ N0, which coincides with (1.4) by replacing the
potential with ǫj,m. Hence we can use the DTBCs obtained in §1 for this model.

3.3.2 Discretizing the Poisson equation

In the outer domains x ≤ 0 and x ≥ X we assume given external potentials
V0(y) and VX(y), which give rise to the constant-in-time self-consistent potentials
V0,s(y) and VX,s(y). For the left outer domain we compute V0,s(y) numerically by
solving the discretized Poisson equation (3.10) with the electron density (3.13)
and µ obtained from (3.14). For the discretization of the Laplacian we use the
standard second order difference operator.

In each time step we solve (3.18), therefore we need the self-consistent potential
in the interior domain at each time step. This is obtained by solving the Poisson
equation (3.15) again with the standard five-point discretization of the Laplacian.
In [Pi02] the author updates the potential by extrapolation:

V n+3/2
s = 2V n+1

∗ − V n+1/2
s , n ≥ 0 (3.24)

where V n+1
∗ is the solution to the Poisson equation (3.15) at time tn+1. V

n+1/2
s

denotes the self-consistent part of the potential in the time step n and the total
potential arises from the sum of the external and the self-consistent potential.

3.3.3 Implementation of the model

Finally we summarize the algorithm for the implementation of the model. The
following steps (1)-(7) have to be calculated only once before starting to solve the
time stepping algorithm for the Schrödinger-Poisson system:
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3.3 Discretization of the Schrödinger-Poisson system

(1) We choose a given external potential Ve(x, y, t) (cf. (3.4)) and an initial
potential V (x, y, 0).

(2) Next, we choose a given energy Ex,y of the incoming wave. For a the given
energy Ex,y the wavenumber kx of the injected plane wave

ϕn
j,m = eikxj∆xe−iEx,yn∆t/~, j ≤ 0, m = 1, . . . , K − 1, n ∈ N0

has to be calculated by inverting the discrete dispersion relation

Ex,y =
~2

m∗

(
1 − cos(∆xkx)

∆x2

)
+

~2

m∗

(
1 − cos

(
π∆y
Y

)

∆y2

)
.

We consider the discrete incoming function (ϕinc)n
0,m = e−iEx,yn∆t/~ at j = 0.

For different transversal modes ϕm one may take also different wavenumbers
kx and therefore different energies Ex,y.

(3) The discrete initial function has to be chosen. The initial function is a plane
wave ϕ0

j,m = eikxj∆x, j = 0, . . . , J , m = 1, . . . , K − 1, which fits to the in-
jected wave (ϕinc)n

0,m.

(4) In the r.h.s. of the 2D Poisson equation (3.15) appears the discretized 2D
electron density (n2D)n

j,k (cf. (3.16)) with kx ∈ [−c, c], c ∈ R
+. For the

scaled values ~ = m∗ = kB = T = 1 one computes e−~2k2
x/2m∗ ≤ 10−10

for kx ≥ 7. The choice of c depends on the absolute value of the injected
wave, e−~2c2/2m∗ |ψinc

λx,y
(x, y, t)|2 should be “small enough”. For a finite num-

ber of wavenumbers k
(ℓ)
x ∈ [−c, c], ℓ = −L, 1 − L, . . . , L we choose the

initial functions (ϕ0
j,m)(ℓ) = eik

(ℓ)
x j∆x, j = 0, . . . , J , ℓ = −L, 1 − L, . . . , L,

m = 1, . . . , K − 1 of the coupled 1D Schrödinger equations (3.20). The so-
lutions (ϕn

j,m)(ℓ), ℓ = −L, . . . , L to (3.20) with this initial data will be used
after the transformation (3.19) in each time step for the r.h.s. for the 2D

Poisson equation (3.15) for all k
(ℓ)
x , ℓ = −L, 1 − L, . . . , L.

(5) The chemical potential µ is computed according to (3.14).

(6) The convolution coefficients for the DTBCs can either be calculated exactly
(cf. Theorem 1.1, §1) or approximately (cf. Remark 1.3, §1). They are not
time-dependent and they do not depend on the wavenumbers.
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3 Transient quantum simulations for the double gate MOSFET

(7) For the determination of the self-consistent potential outside the computa-
tional domain we solve the 1D Poisson equation (3.10) with the standard
second order finite difference discretization for both y-dependent external
potentials on the leads j ≤ 0, j ≥ J . At y = 0 and y = Y zero Neumann
boundary conditions are assumed. The obtained solutions are vectors de-
noted by V0,k, VJ,k, k = 1, . . . , K − 1 of length K − 1 for each outer domain.
They will be needed as boundary conditions of the 2D Poisson equation in-
side the computational domain.

At the time step tn we have given ϕn
j,m, χ

m,n+1/2
j,k , V

n+1/2
j,k , cnj,m,q, d

n
j,m,q, e

n
j,m,q,

(n2D)n
j,k and the convolution sum

∑n
ν=1 s

(n+1−ν)
j,m ϕν

j,m for the DTBCs. For the time
stepping algorithm the following items are calculated iteratively as an update from
time step tn to tn+1:

(8) We calculate the 2D electron density (3.16) appearing in the r.h.s. of the 2D
Poisson equation (3.15) at time step tn+1. Therefore we solve for the finite

number of wavenumbers k
(ℓ)
x ∈ [−c, c], ℓ = −L, . . . , L the time-dependent

Schrödinger equation (3.20) with inhomogeneous DTBCs at x = 0 and DT-
BCs x = X.

(9) With n2D computed in step (8) we solve the 2D Poisson equation. At y = 0
and y = Y we use homogeneous Neumann boundary conditions and we use
the Dirichlet boundary conditions V0,k, VJ,k, k = 1, . . . , K−1 obtained from
step (7). This yields V n+1

∗ .

(10) The self-consistent part of the potential is computed by V
n+3/2
s = 2V n+1

∗ −
V

n+1/2
s (cf. (3.24)).

(11) We calculate the eigenfunctions χ
m,n+3/2
j,k and the energies ǫ

m,n+3/2
j for j =

0, . . . , J by solving the eigenvalue problems (3.18). It is necessary to take

care of the orientation χ
m,n+3/2
j,k w.r.t. the orientation of χ

m,n+1/2
j,k and of

χ
m,n+3/2
j+1,k w.r.t. χ

m,n+3/2
j,k . We observe also the orthogonality of χ

1,n+3/2
j,k ,

χ
2,n+3/2
j,k (cf. Remark 3.5). With the eigenfunctions we can compute the

coupling coefficients cn+1
j,m,q, d

n+1
j,m,q, e

n+1
j,m,q with (3.21), (3.22).
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3.4 Numerical results

(12) At the boundaries x = 0 and x = X the wave function ψλx,y
is transformed

according to (3.5).

(13) The coupled 1D equations (3.20) with the DTBCs from Theorem 1.1 (§1)
are solved via a direct method or iteratively. We cut the sums

∑K−1
q=1 to∑M

q=1.

(14) Additionally we solve K−M−1 uncoupled 1D Schrödinger equations (3.23).

(15) At the boundaries x = 0 and x = X the wave function ψλx,y
has to be

transformed back according to the inverse transformation of (3.5).

(16) We store the boundary data ϕn+1
j,m , j = 0, J for all modes m = 1, . . . , K − 1

for the computation of the convolution sum for the DTBCs.

(17) The wave function ψ which is the solution to the 2D Schrödinger equation
is obtained by the transformation (3.19).

3.4 Numerical results

In this section we will present numerical examples concerning the 2D time-depen-
dent Schrödinger-Poisson system including open boundary conditions in transport
direction. In a first example we will stress the advantages due to the y-dependence
of the external potential in the leads of the waveguide. Therefore we drop the self-
consistent potential in this example and solve only the Schrödinger equation on a
rectangular domain. In a second example we will present a solution to the coupled
Schrödinger-Poisson system.

3.4.1 Example 1: y-dependent potentials in the outer domains

Consider a rectangular computational domain Ω = (0, 1)2. We compute the solu-
tion ψ to the scaled 2D Schrödinger equation

i
∂

∂t
ψ(x, y, t) = −1

2
∆ψ(x, y, t) + V (x, y, t)ψ(x, y, t), (x, y) ∈ Ω, t > 0

(3.25)

by solving the coupled 1D equations (3.9) with the initial data

ϕI
m(x) = eikxx, x ∈ [0, 1/2], m = 1 (3.26)
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3 Transient quantum simulations for the double gate MOSFET

which is smoothly damped down to zero for x > 1/2. The given wavenumber kx

corresponds to an energy Ex,y = 200. We inject only on the first mode m = 1 and
the incoming function ϕinc

1 (x, t) = eikxxe−iEx,yt has the same energy as the initial
function. At x = 1 we implement homogeneous DTBCs, inhomogeneous DTBCs
are considered at x = 0. The potential is chosen rather arbitrarily as

V (x, y, t) =

{
Ṽ (x, y) : y ∈ (0, 1), x ≤ x1, t > 0

Ṽ (x, y) + V 2(x, t) : y ∈ (0, 1), x ≥ x1, t > 0,
(3.27)

with Ṽ (x, y) = 100−300 y(1−y)+150 e−α[(x−3/4)2+(y−1/2)2], α = 80, and some fixed
value 0 < x1 < 1. V 2(x, t) is a piecewise constant function in time, continuous
in x and bounded. Hence, V (x, y, t) is increasing for y → 0 and y → 1. We
use Dirichlet boundary conditions ψ(x, 0, t) = ψ(x, 1, t) = 0 at the channel walls
y = 0 and y = 1. These conditions are somehow “natural” since the potential
acts like a barrier at the walls. We use the discretization parameters J = K = 60,
∆t = 0.001 and choose M = 10 for the number of coupled modes. In Figure 3.5
we present the piecewise constant-in-time potential V for times t > 0. Figure 3.6
shows some temporal snapshots of |ψ|2 (cf. (3.19)), where ψ is the solution to
the scaled 2D Schrödinger equation (3.25) with the initial function (3.26) for the
corresponding coupled 1D system and the potential (3.27). The wave function
leaves the computational domain without being reflected back at the artificial
boundaries. The occupation density |ϕm(x, t)|2/∑M

m=1 |ϕm(x, t)|2 of the different
subbands is shown in Figure 3.7. At the initial time only the first band m = 1
is occupied. After several time steps there are also higher modes get occupied.
Since

Y∫

0

χm(x, y, t) dy = 0

holds for this choice of V (x, y, t) for even modes m, only the odd modes ϕm(x, t),
m = 1, 3, 5, . . . are occupied. With the choice M = 10 the subband decomposition
algorithm is about 80% faster than the usual algorithm for the 2D Schrödinger
equation proposed in §1.

3.4.2 Example 2: A solution to the Schrödinger-Poisson

system

We compute the solution ψ(x, y, t) =
∑K−1

m=1 ϕm(x, t)χm(x, y, t) to the scaled cou-
pled Schrödinger-Poisson system (we let all physical constants ~, m∗, kB, T equal
1) on the computational domain Ω = (0, 1)2 with the subband decomposition al-
gorithm. The given doping profile is chosen constant as nD = 100 and we assume
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3.4 Numerical results

(a) t < 20∆t (b) 20∆t ≤ t < 40∆t

(c) 40∆t ≤ t < 60∆t (d) 60∆t ≤ t < 80∆t

(e) t ≥ 80∆t

Figure 3.5: Example 1. Potential V (x, y, t) (cf. (3.27)), which is a piecewise con-
stant function in time.
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3 Transient quantum simulations for the double gate MOSFET

(a) t = 0 (b) t = 10∆t

(c) t = 20∆t (d) t = 40∆t

(e) t = 60∆t (f) t = 700∆t

Figure 3.6: Example 1. Squared absolute value of the solution ψ to the Schrödinger
equation (3.25) with the initial function (3.26) and the potential (3.27).
The discretization parameters are ∆x = ∆y = 1/60, ∆t = 0.001,
M = 10.
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3.4 Numerical results

Figure 3.7: Example 1. Occupation density |ϕm(x, t)|2/∑M
m=1 |ϕm(x, t)|2 of the

different bands at t = 700∆t.

an external potential

Ve(x, y, t) =





0 : (x, y) ∈ Ω, t ≤ t1

Ṽ (x, y) · sin
(

π(t−t1)
2(t2−t1)

)
: (x, y) ∈ Ω, t1 ≤ t < t2

Ṽ (x, y) : (x, y) ∈ Ω, t ≥ t2

(3.28)

with Ṽ (x, y) = 100y(1 − y)e−α[(x−1/2)2+(y−1/2)2], α = 30, t1 = 30∆t, t2 = 100∆t.
Some temporal snapshots of the external potential Ve(x, y, t) are shown in Fig-
ure 3.8. At t = 0 the external potential equals zero. For t ≥ 30∆t it is built by
a Gaussian beam which is increasing in time up to t = 100∆t. For t ≥ 100∆t
it stays constant in time. The maximum peak of the potential is 25. Again we
consider the initial function

ϕI
m(x) = eikxx, x ∈ [0, 0.8], m = 1

which is smoothly damped down to zero for x tending to 1 for the system (3.9)
of coupled 1D equations. In this example we calculate solutions ψ for different
choices of wavenumbers kx. The absolute value of an example for such an initial
function is plotted in Figure 3.9.

For the discretization parameters M = 10, ∆x = ∆y = 1/50, ∆t = 0.001 we
compute on the one hand the solution to the 2D time-dependent Schrödinger equa-
tion (3.25) without the self-consistent Poisson coupling and, on the other hand,
the solution to the coupled Schrödinger-Poisson system (cf. (3.25), (3.15)) for 500
time steps. An incoming function ϕinc

m (x, t) = eikxxe−iEx,yt, m = 1 is injected at
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Figure 3.8: Example 2. External potential Ve(x, y, t) (cf. (3.28)).

x = 0. Therefore, inhomogeneous DTBCs are implemented at x = 0. Homoge-
neous DTBCs are given at x = 1. At y = 0, y = 1 we assume homogeneous
Dirichlet boundary conditions.

For the Schrödinger-Poisson case, the evolution of the total potential (includ-
ing the self-consistent part), V (x, y, t) = Vs(x, y, t) + Ve(x, y, t), is presented in
Figure 3.10. Up to some time the self-consistent part is partially increasing, af-
terwards it is decreasing. The maximum peak of V (x, y, t) at t = 500∆t is about
∼ 20.

In Figure 3.11 we present results for the wavenumber kx = 0, which corre-
sponds to an energy Ex,y ∼ 5. We plot the absolute value of the solution to
the Schrödinger equation without the self-consistent coupling to the Poisson equa-
tion on the left side in Figures 3.11(a), 3.11(c) and 3.11(e). On the right side we
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Figure 3.9: Example 2. Absolute value of the initial function ϕI
1(x) for the coupled

Schrödinger-Poisson system.

show the results obtained with the Schrödinger-Poisson system in Figures 3.11(b),
3.11(d) and 3.11(f).

For the wavenumber kx = 8, which corresponds to an energy Ex,y ∼ 37, we
present the solutions of the same calculations in Figure 3.12.

In all examples the wave functions travel through the channel without any
unphysical reflections at the artificial boundaries x = 0 and x = 1. For kx = 0 the
potential V (x, y, t) is acting like a barrier in the case of solving the Schrödinger
equation and also in the case of solving the Schrödinger-Poisson system. For kx = 8
the energy of the travelling wave is higher and hence more electrons can travel
through the channel without being reflected back at the potential. One can clearly
obtain in the calculations for kx = 0 and kx = 8 that the particle density in the
region (0, 0.5)× (0, 1) is much bigger in the case of the solution to the Schrödinger
equation without coupling than in the case of the solution to the coupled system.
This results from the fact, that the potential V (x, y, t) = Ve(x, y, t) + Vs(x, y, t) is
smaller than the external part Ve(x, y, t).

3.5 Conclusion

We have combined DTBCs for the 2D time-dependent Schrödinger equation with
the physical model of the coupled Schrödinger-Poisson system. This is a highly
relevant model for simulations of semiconductor devices like the DGMOS. Fur-
thermore we have extended the DTBCs to y-dependent potentials in the outer
domains and introduced the efficient subband decomposition algorithm for the
solution of the coupled system.
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Figure 3.10: Example 2. Potential V (x, y, t) = Ve(x, y, t)+Vs(x, y, t) with Ve given
in (3.28) and the self-consistent potential Vs which is a solution to
the Poisson equation (3.15).
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Figure 3.11: Example 2. Absolute value of the solution to the scaled Schrödinger
equation without Poisson coupling ((a), (c), (e)) and of the solu-
tion to the scaled Schrödinger-Poisson system ((b), (d), (f)) for
the wavenumber kx = 0. We choose the discretization parameters
M = 10, ∆x = ∆y = 1/50, ∆t = 0.001.
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Figure 3.12: Example 2. Absolute value of the solution to the scaled Schrödinger
equation without Poisson coupling ((a), (c), (e)) and of the solu-
tion to the scaled Schrödinger-Poisson system ((b), (d), (f)) for
the wavenumber kx = 8. We choose the discretization parameters
M = 10, ∆x = ∆y = 1/50, ∆t = 0.001.
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4 Discrete transparent boundary

conditions for the two

dimensional Schrödinger equation

on circular domains

In this chapter we propose transparent boundary conditions for the time-depen-
dent Schrödinger equation on a circular computational domain. First we derive the
two dimensional discrete TBCs in conjunction with a conservative Crank-Nicolson-
type finite difference scheme. The presented discrete boundary-valued problem
is unconditionally stable and completely reflection-free at the boundary. Then,
since the discrete TBCs for the Schrödinger equation with a spatially dependent
potential include a convolution w.r.t. time with a weakly decaying kernel, we
construct approximate discrete TBCs with a kernel having the form of a finite
sum of exponentials, which can be efficiently evaluated by recursion. Finally,
we describe several numerical examples illustrating the accuracy, stability and
efficiency of the proposed method.

4.1 Introduction

Consider in the circular geometry with polar coordinates (r, θ) the following Cau-
chy problem for the scaled transient Schrödinger equation

iψt = −1

2

[1
r
(rψr)r +

1

r2
ψθθ

]
+ V (r, θ, t)ψ, r ≥ 0, 0 < θ ≤ 2π, t > 0,

ψ(r, θ, 0) = ψI(r, θ), r ≥ 0, 0 < θ ≤ 2π. (4.1)

We assume that the given periodical potential V is constant outside of the com-
putational domain [0, R] × [0, 2π]:

V (r, θ, t) = VR ≡ const for r ≥ R,

and that the sufficiently smooth periodical initial data has a compact support:

supp ψI ⊂ [0, R) × [0, 2π].
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4.1 Introduction

Equation (4.1) has different important applications including electromagnetic
wave propagation [Lev00], modeling of quantum devices [Ar95], integrated optics
(Fresnel equation) [ScDe95], plasma physics and (underwater) acoustics due to the
paraxial approximation to the wave equation in the frequency domain [ArEh98],
[Ta77], etc.

One quite important application of the Schrödinger equation especially in a
circular geometry arises in the context of optical fibers [Ke83], [Za01].

4.1.1 Analytic transparent boundary conditions for the 2D

Schrödinger equation on circular domains

Let us exemplify first analytic TBCs that can be derived for the Schrödinger
equation on a circular domain. In the following we briefly review the construction
of the analytic TBCs from [AnBeMo04] and extend them to the case of a nonzero
potential at infinity. We remark that a more concise derivation can be found in
[HaHu04], [JiGr06]. We consider sufficiently smooth bounded periodical solutions
to (4.1) on the exterior domain r > R and denote by Φ = Φ(r, θ, s) the Laplace
transform of ψ w.r.t. time. The transformation of (4.1) reads

1

r
(rΦr)r +

1

r2
Φθθ + 2i(s+ iVR)Φ = 0, r ≥ R, 0 < θ ≤ 2π.

Using a Fourier series w.r.t. the angle θ:

Φ(r, θ, s) =
∑

m∈Z

Φ(m)(r, s) eimθ, r ≥ R, (4.2)

we obtain that the Fourier coefficient Φ(m)(r, s) for each mode m ∈ Z satisfies the
ordinary differential equation

1

r
(rΦ(m)

r )r +
(
2is− 2VR − m2

r2

)
Φ(m) = 0, r ≥ R. (4.3)

This is the Bessel equation for functions of order m. Hence the solution to (4.3)
vanishing as r → ∞ is given in terms of the m-th order Hankel function of the
first kind H

(1)
m :

Φ(m)(r, s) = αm(s)H(1)
m (
√

2is− 2VR r), r ≥ R, (4.4)

where αm(s) is an arbitrary multiplier. The radial derivative of Φ(m) is computed
as

∂

∂r
Φ(m)(r, s) = αm(s)

√
2is− 2VRH

(1)′

m (
√

2is− 2VR r)

=
√

2is− 2VR
H

(1)′

m (
√

2is− 2VR r)

H
(1)
m (

√
2is− 2VRR)

Φ(m)(R, s),
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

where we have determined the value of the coefficient αm(s) from (4.4) by setting
r = R. Finally, the TBCs are obtained by computing the series (4.2), using the
inverse Laplace transform and setting r = R. We achieve

∂ψ

∂r
(R, θ, t) =

1

2πi

∑

m∈Z

γ+i∞∫

γ−i∞

√
2is− 2VR

H
(1)′

m (
√

2is− 2VRR)

H
(1)
m (

√
2is− 2VRR)

Φ(m)(R, s)est ds eimθ,

(4.5)

where γ is a vertical contour in the complex plane chosen such that all singularities
of the integrand are to the left of it.

The TBCs (4.5) are non-local both in time and in space. A strategy to derive
a spatially localized version of (4.5) by an asymptotic expansion of the Hankel
functions and their derivatives according to s can be found in [AnBeMo04].

Because of the nonlocality of the TBCs (4.5), their immediate numerical imple-
mentation requires to store the boundary data Φ(m)(R, .) of all the past history
and for all modes m ∈ Z. Moreover, the discretization of the TBCs (4.5), even in
one space dimension, is not trivial at all and has attracted lots of attention. For
the many proposed strategies of discretizations of the TBCs (4.5) in 1D (as well
as semi-discrete approaches), we refer the reader to [AlRe02], [AnBe03], [BaPo91],
[BrDi95], [Ma89], [Sc99], [ScDe95] and references therein. A numerically efficient
treatment of 2D TBCs (4.5) is recently proposed in [JiGr06].

We remark also that inadequate discretizations may introduce strong numerical
reflections at the boundary or render the discrete initial boundary value problem
only conditionally stable, see [EhAr01] for a detailed discussion.

4.1.2 The difference equations

We consider a Crank-Nicolson finite difference scheme, which is one of the com-
monly used discretization methods for the Schrödinger equation. Let us introduce
a polar and temporal grid r−1 < r0 < r1 < ... < rJ < ... with

r−1 = −r0; rJ−1/2 = R; rj+1/2 = (rj+1 + rj)/2;

∆rj+1/2 = rj+1 − rj; ∆rj = rj+1/2 − rj−1/2;

θk = k∆θ, k = 0, 1, ..., K; ∆θ = 2π/K;

tn = n∆t, n ∈ N0.
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4.2 DTBCs for circular domains

We denote

ψn
j,k = ψ(rj , θk, tn), ψ

n+1/2
j,k = (ψn+1

j,k + ψn
j,k)/2,

and V
n+1/2
j,k = V (rj, θk, tn+1/2). Then the Crank-Nicolson scheme reads

− 2i

∆t

(
ψn+1

j,k − ψn
j,k

)

=
1

rj

1

∆rj

[
rj+1/2(ψ

n+1/2
j+1,k − ψ

n+1/2
j,k )

∆rj+1/2

−
rj−1/2(ψ

n+1/2
j,k − ψ

n+1/2
j−1,k )

∆rj−1/2

]

+
1

r2
j

ψ
n+1/2
j,k+1 − 2ψ

n+1/2
j,k + ψ

n+1/2
j,k−1

∆θ2
− 2V

n+1/2
j,k ψ

n+1/2
j,k ,

j ∈ N0 k = 0, 1, ..., K − 1; n ∈ N0. (4.6)

Remark 4.1 (Treatment of singularity at the origin)We use a radial off-
set grid here such that the coefficient at ψn

−1,k is zero.

This chapter is organized as follows. In §4.2 we prove the discrete mass conser-
vation property of the Crank-Nicolson scheme and derive discrete TBCs (DTBCs)
directly for the chosen numerical scheme using the Z-transform. In the sequel we
prove concisely the stability of the recurrence formulas used to obtain the convo-
lution coefficients of the new DTBCs for a spatially dependent potential. In §4.3
we discuss the approximation of the convolution coefficients by a discrete sum of
exponentials and present an efficient recursion for evaluating these approximate
DTBCs. Finally, the numerical examples of §4.4 illustrate the accuracy, stability
and efficiency of the proposed method.

4.2 DTBCs for circular domains

First we generate discrete transparent boundary conditions using exact solutions
to the difference scheme (4.6) in the exterior domain r ≥ R.

In order to reduce the problem to the simpler 1D case, the discrete Fourier
method is used in θ-direction. Due to the periodic boundary conditions in angular
direction we have

ψn
j,0 = ψn

j,K , j, n ∈ N0,

and hence, we use the discrete Fourier transform of ψn
j,k in θ-direction:

ψ̂n
j,m :=

1

K

K−1∑

k=0

ψn
j,k exp

(
2πikm

K

)
, m = 0, . . . , K − 1, n ∈ N0. (4.7)
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

The scheme (4.6) in the exterior domain j ≥ J − 1 then transforms into:

− 2i

∆t

(
ψ̂n+1

j,m − ψ̂n
j,m

)
=

1

rj

1

∆rj



rj+1/2

(
ψ̂

n+1/2
j+1,m − ψ̂

n+1/2
j,m

)

∆rj+1/2

−
rj−1/2

(
ψ̂

n+1/2
j,m − ψ̂

n+1/2
j−1,m

)

∆rj−1/2


− 2Vj,mψ̂

n+1/2
j,m ,

Vj,m := VR +
2 sin2

(
πm
K

)

r2
j ∆θ

2
, 0 ≤ m ≤ K − 1, n ∈ N0.

The modes ψm, m = 0, . . . , K − 1 are independent of each other in the exterior
domain r ≥ R. Therefore we can continue our analysis for each azimuth mode
separately.

Thus, by omitting in the sequel the superscript m and the notation ˆ, we will
consider in the exterior domain the following discrete 1D Schrödinger equation
with spatially dependent potential:

− 2i∆rj∆rj+1/2

∆t

(
ψn+1

j − ψn
j

)

=
1

rj

[
rj+1/2

(
ψ

n+1/2
j+1 − ψ

n+1/2
j

)
− rj−1/2

∆rj+1/2

∆rj−1/2

(
ψ

n+1/2
j − ψ

n+1/2
j−1

)]

−2∆rj∆rj+1/2Vjψ
n+1/2
j , j ≥ J − 1 (4.8)

with

Vj = VR +
C

(j + 0.5)2
, C =

2 sin2
(

πm
K

)

∆r2∆θ2
.

4.2.1 Mass conservation property

There are two important advantages of this second order (in ∆r and ∆t) scheme
(4.8). It is unconditionally stable, and it preserves the discrete L2-norm in time:

Lemma 4.1 For the scheme (4.8) (considered on j ∈ N0) holds, that

‖ψn‖2
2 :=

∑

j∈N0

∆rj|ψn
j |2rj (4.9)

is a conserved quantity in time.
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4.2 DTBCs for circular domains

Proof: This conservation property can be seen by a discrete energy estimate.
First we multiply (4.8) by ψ̄n

j rj and its complex conjugate by ψn+1
j rj and regard

the whole domain:

− 2i

∆t
(ψn+1

j ψ̄n
j − |ψn

j |2)rj

= ψ̄n
j D

0(rjD
0ψn

j ) − 2Vjψ
n
j ψ̄

n
j rj, j = 0, 1, . . . , (4.10)

and

2i

∆t
(|ψn+1

j |2 − ψ̄n
j ψ

n+1
j )rj

= ψn+1
j D0(rjD

0ψ̄n
j ) − 2Vjψ̄

n
j ψ̄

n+1
j rj , j = 0, 1, . . . (4.11)

with the abbreviation of the centered difference quotient

D0 = D0
∆rj
2

, i.e. D0ψn
j =

ψn
j+1/2 − ψn

j−1/2

∆rj
.

Next we subtract (4.10) from (4.11):

2i

∆t
(|ψn+1

j |2 − |ψn
j |2)rj = ψn+1

j D0(rjD
0ψ̄n

j )

−ψ̄n
j D

0(rjD
0ψn

j ) − Vj(|ψn+1
j |2 − |ψn

j |2)rj, j = 0, 1, . . . ,

sum from j = 0 to ∞, and apply summation by parts:

2i

∆t

∞∑

j=0

(|ψn+1
j |2 − |ψn

j |2)rj

= −
∞∑

N0+ 1
2

(D0ψ̄n
j )(D0ψn+1

j )rj − (D0ψ̄n
− 1

2
)ψn+1

0 r− 1
2

+

∞∑

N0+
1
2

(D0ψn
j )(D0ψ̄n

j )rj − (ψn
− 1

2
)ψ̄n

0 r− 1
2

−
∞∑

j=0

Vj(|ψn+1
j |2 − |ψn

j |2)rj. (4.12)
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

The boundary terms in (4.12) vanish since r− 1
2

= 0 and we get

2i

∆t

∞∑

j=0

(|ψn+1
j |2 − |ψn

j |2)rj

= −
∞∑

N0+ 1
2

(|D0ψ̄n+1
j |2 −D0ψ̄n

j |2)rj −
∞∑

j=0

Vj(|ψn+1
j |2 − |ψn

j |2)rj .

By taking imaginary parts one obtains the desired result.

�

4.2.2 DTBCs for a single azimuth mode

Discrete transparent boundary conditions the 1D plane Schrödinger equation with
constant coefficients of the difference scheme in the exterior domain were intro-
duced by Arnold in [Ar95]. Here we derive DTBCs for spatially varying coefficients
for the equation (4.8).

We use the Z-transformation of the sequence {ψn
j }, n ∈ N0 (with j considered

fixed) which is defined as the Laurent series, see [Do67]:

Z{ψn
j } = Φj(z) :=

∞∑

n=0

ψn
j z

−n, z ∈ C, |z| > RΦj
,

and RΦj
denotes the convergence radius of the series. Now the transformed exte-

rior scheme (4.8) reads

−iρj
z − 1

z + 1
Φj(z)

=
1

rj

[
rj+1/2(Φj+1(z) − Φj(z)) − rj−1/2

∆rj+1/2

∆rj−1/2

(Φj(z) − Φj−1(z))
]

−2∆rj∆rj+1/2VjΦj(z), j ≥ J − 1,

with the mesh ratio ρj = 4∆rj∆rj+1/2/∆t and Vj = VR + C/(j + 0.5)2. Thus we
obtain a homogeneous second order difference equation with varying coefficients
of the form

ajΦj+1(z) + bj(z)Φj(z) + cjΦj−1(z) = 0, j ≥ J − 1, (4.13)

with the coefficients

aj =
rj+1/2

rj
,
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4.2 DTBCs for circular domains

bj(z) = − 1

rj

[
rj+1/2 + rj−1/2

∆rj+1/2

∆rj−1/2

]
+iρj

z − 1

z + 1
− 2∆rj∆rj+1/2Vj,

cj =
rj−1/2

rj

∆rj+1/2

∆rj−1/2

. (4.14)

Remark 4.2 (uniform offset grid) In the special case of a uniform radial off-
set grid rj = (j + 1

2
)∆r, j ≥ J − 1, we obtain

aj =
j + 1

j + 1
2

, cj =
j

j + 1
2

,

bj(z) = −2 + iρ
z − 1

z + 1
− 2∆r2VR − 4

sin2
(

πm
K

)

(j + 1/2)∆θ2
.

For the formulation of the Z-transformed DTBCs at j = J we regard the ratio
ℓ̂j(z) of the solutions at two adjacent points:

ℓ̂j(z) =
Φj(z)

Φj−1(z)
, j ≥ J. (4.15)

From (4.13) we obtain the equation

ℓ̂j(z)
(
aj ℓ̂j+1(z) + bj(z)

)
+ cj = 0, j ≥ J. (4.16)

Suppose that the coefficients ℓ̂j(z) are known. Setting j = J + 1 we get from
(4.15):

ℓ̂J+1(z) =
ΦJ+1(z)

ΦJ(z)
.

Calculating the inverse Z-transformation we obtain the discrete convolution

ψn
J+1 = ℓnJ+1 ∗ ψn

J ,

hence

ψn
J+1 − ℓ

(0)
J+1ψ

n
J =

n−1∑

p=1

ℓ
(n−p)
J+1 ψ

(p)
J

and finally

ψn
J+1 − s(0)ψn

J =
n−1∑

p=1

s(n−p)ψ
(p)
J − ψ

(n−1)
J+1 ,
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

with the summed convolution coefficients

s(0) := ℓ
(0)
J+1,

s(n) := ℓ
(n)
J+1 + ℓ

(n−1)
J+1 , n ≥ 1. (4.17)

Note that these summed coefficients are introduced due to the observed oscilla-
tory behaviour of the convolution coefficients ℓ

(n)
J+1 (cf. §2, [EhAr01]). Hence the

DTBCs for the single azimuth mode read

ψn
J+1 − s(0)ψn

J =
n−1∑

p=1

s(n−p)ψ
(p)
J − ψ

(n−1)
J+1 . (4.18)

4.2.3 Calculation of the convolution coefficients

In order to find a solution to (4.16) we use the method of series. Let us consider
the Laurent series for ℓ̂j(z):

ℓ̂j(z) = ℓ
(0)
j + ℓ

(1)
j z−1 + . . .+ ℓ

(n)
j z−n + . . . , |z| ≥ 1. (4.19)

With the auxiliary functions

αj(z) :=
bj(z)

aj

,

αj := lim
z→∞

αj(z),

βj :=
cj
aj
.

equation (4.16) reads

ℓ̂j(z)
(
ℓ̂j+1(z) + αj(z)

)
+ βj = 0, j ≥ J. (4.20)

Substituting (4.19) for (4.20) we get

(ℓ
(0)
j + ℓ

(1)
j z−1 + . . .+ ℓ

(n)
j z−n + . . .)

·
(
(ℓ

(0)
j+1 + ℓ

(1)
j+1z

−1 + . . .+ ℓ
(n)
j+1z

−n + . . .) + αj(z)
)

+ βj = 0. (4.21)

Coefficient ℓ
(0)
j . Taking |z| → ∞ we have the recurrence equation

ℓ
(0)
j (ℓ

(0)
j+1 + αj) + βj = 0. (4.22)
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for ℓ
(0)
j . We shall solve this equation by “iteration from infinity”, i.e. starting from

an index J∞, putting a boundary value ℓ
(0)
J∞

:= ℓ
(0)
∞ , and running the recursion from

J∞ to J :

ℓ
(0)
j =

−βj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J. (4.23)

Note that a very large index J corresponds to a very large radius rJ∞
; therefore

we can use the 1D plane case coefficient ℓ(0), see [ArEhSo03], as the starting value

ℓ
(0)
∞ .

Theorem 4.2 (stability of the recurrence relations) Let |αj| ≥ 2 > βj + 1.
Then:

(i) |ℓ(0)j | < βj < 1; and

(ii) the recurrence formula (4.23) is stable with respect to small perturbations.

Proof: The item (i) is proved by induction. Suppose |ℓ(0)j+1| < βj+1. Hence

|ℓ(0)j+1 + αj| − βj ≥ |αj| − |ℓ(0)j+1| − βj > 1 − |ℓ(0)j+1| > 0.

Therefore we obtain |ℓ(0)j | < 1. Furthermore we have

|ℓ(0)j | =
βj

|ℓ(0)j+1 + αj |
<

βj

2 − |ℓ(0)j+1|
< βj . (4.24)

To prove (ii) and establish the stability we suppose that we have a perturbation

ℓ
(0)
j+1 + δj+1 instead of ℓ

(0)
j+1 with |δj+1| < 1. Let us look at the evolution of δj by

comparing (4.23) with

ℓ
(0)
j + δj =

−βj

ℓ
(0)
j+1 + δj+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J.

Evidently we obtain

δj =
−βj

ℓ
(0)
j+1 + δj+1 + αj

− −βj

ℓ
(0)
j+1 + αj

= δj+1

−ℓ(0)j

ℓ
(0)
j+1 + δj+1 + αj

= δj+1

−ℓ(0)j

−βj/ℓ
(0)
j + δj+1

.
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

Therefore we get

|δj| = |δj+1|
|ℓ(0)j |

|βj/ℓ
(0)
j + δj+1|

< |δj+1|
|ℓ(0)j |2

βj − |ℓ(0)j ||δj+1|

< |δj+1|
|ℓ(0)j |2
βj

1

1 − |δj+1|
,

and hence

|δj|
|δj+1|

∼
|ℓ(0)j |2
βj

< βj < 1, (4.25)

for |δj+1| < 1. Thus the recursion (4.23) is stable with respect to small pertur-

bations (e.g. for truncation errors or for an “incorrect” initial guess ℓ
(0)
J∞

:= ℓ
(0)
∞ ).

�

Remark 4.3 The theorem condition |αj| ≥ 2 > βj + 1 is valid for the definitions
(4.14).

Remark 4.4 The estimate (4.25) permits to explain a fast convergence of the

recursion (4.23) to the correct value ℓ
(0)
J while taking an “incorrect” initial guess

ℓ
(0)
J∞

:= ℓ
(0)
∞ , see the numerical examples below. Indeed, due to (4.25) we can hope

for the exponential decay of |δj| with the factor |ℓ(0)j |2/βj ∼ |ℓ(0)j |. For instance the

value |ℓ(0)j | is estimated from the case of the “frozen” coefficients at J∞:

|ℓ(0)j | ∼ |ℓ(0)∞ |,

where |ℓ(0)∞ | < 1 is the root of the square equation

ℓ(0)∞ =
−βJ∞

ℓ
(0)
∞ + αJ∞

.

Coefficient ℓ
(1)
j . Now we consider the calculation of ℓ

(1)
j . We have from (4.14):

αj(z) := αj − γj(z
−1 − z−2 + z−3 − . . .), (4.26)

with γj := αj − ᾱj. From (4.21) and (4.26) we can write

(ℓ
(0)
j + ℓ

(1)
j z−1 + O(z−2))

·
(
(ℓ

(0)
j+1 + ℓ

(1)
j+1z

−1 + O(z−2)) + (αj − γjz
−1 + O(z−2))

)
+ βj = 0.

(4.27)
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4.2 DTBCs for circular domains

Annihilating leading terms subjected to (4.22) we collect terms with factor z−1

and obtain after multiplying by z and considering |z| → ∞:

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj + ℓ

(1)
j ℓ

(0)
j+1 + ℓ

(1)
j αj = 0.

Therefore the recursion is defined by

ℓ
(1)
j = −

ℓ
(0)
j ℓ

(1)
j+1 − ℓ

(0)
j γj

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J (4.28)

with a boundary value ℓ
(1)
J∞

:= ℓ
(1)
∞ .

Coefficient ℓ
(n)
j . The case of ℓ

(n)
j with n ≥ 2 is considered similarly by trun-

cating terms of O(z−n−1) in (4.27). We get the recursion formula

ℓ
(n)
j = −

n−1∑
k=0

ℓ
(k)
j ℓ

(n−k)
j+1 + γj(−1)n−kℓ

(k)
j

ℓ
(0)
j+1 + αj

, j = J∞ − 1, J∞ − 2, . . . , J

(4.29)

with a boundary value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken with ℓ

(n)
∞ ≡ ℓ(n) from the 1D

plane case. Notice that (4.28) is a particular case of (4.29) at n = 1 .

Theorem 4.3 Under conditions of Theorem 4.2 the recurrence formula (4.29) is
stable with respect to small perturbations.

Proof: Let us write (4.29) in the resolution form with respect to index n:

ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1 + αj

ℓ
(n)
j+1+ F

(
{ℓ(n1<n)

j }, {ℓ(n1<n)
j+1 }

)
,

j = J∞ − 1, J∞ − 2, . . . , J,

where the function F contains the remaining terms with indexes n1 < n. Suppose
that the coefficients {ℓ(n1)

j }, n1 = 0, 1, . . . , n − 1, j = J∞ − 1, J∞ − 2, . . . , J are
exact (or they are known with a good accuracy). Then the stability of (4.29) is
determined by the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1 + αj

.

From (4.24) we get

|ℓ(0)j |
|ℓ(0)j+1 + αj |

<
βj

|ℓ(0)j+1 + αj |
<

βj

2 − |ℓ(0)j+1|
< βj < 1.

�
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

Remark 4.5 The proof of Theorem 4.3 is made by induction w.r.t. n ∈ N at the
assumption that the previous coefficients for n1 < n are correct. In the practice,
while calculating the coefficients ℓ

(n)
j , we must fix some value J∞ and take an

“incorrect” boundary value ℓ
(n)
J∞

:= ℓ
(n)
∞ . This could give a numerical instability.

However, due to sufficiently fast convergence of ℓ
(0)
j to its correct value, say after

several first J0 steps of the recursion (4.23), we can start the recursion run of ℓ
(1)
j

a little bit later, i.e. with the delay j = J∞−J0. Similarly for ℓ
(1)
j the initial index

can be j = J∞− 2J0, etc. In our numerical tests the usual value J0 is 0 ≤ J0 ≤ 5.

4.2.4 Examples of the calculation of coefficients ℓ
(n)
j

We demonstrate the efficiency of the proposed algorithm on the following setup.
For the radius we consider R = 1 and we discretize the circular domain [0, R] ×
[0, 2π] with the uniform step sizes ∆r = 1/200 and ∆θ = 2π/200. For the time

step size we take ∆t = 0.0003 and calculate the convolution coefficients ℓ
(n)
j (cf.

(4.29)) for the Schrödinger equation with a potential V = 0 for the time steps
n = 0, . . . , 60. In a first set of calculations we run the algorithm with a choice
J∞ = 550 (which corresponds to r = 3.75) and a retarding shift J0 = 5. Here
we just discuss the graphs for the mode m = 1, all other modes behave similarly.
In Figure 4.1 we show the absolute values of the last 7 coefficients ℓ

(54)
j , . . . , ℓ

(60)
j

as a function of r ∈ [R, 3.75]. We observe a good convergence of the coefficients
while approaching the artificial boundary R = 1 from the exterior domain. An
estimation of the residual is done by a second set of calculations, where we obtain
convolution coefficients ℓ̃

(n)
j with J∞ = 1100. The difference |ℓ(n)

j − ℓ̃
(n)
j | for the

same discretization data is plotted for n = 54, . . . , 60 in Figure 4.2. With values
of the order O(10−14) near the artificial boundary R = 1 this error is about
the rounding error of Matlab. The influence of the retarding shift parameter J0

can be estimated by comparing Figure 4.1 with Figure 4.3. In the third run we
determine the convolution coefficients with the same discretization parameters as
in the first test (presented in Figure 4.1) but with a smaller choice J0 = 3. The
absolute values of these convolution coefficients are presented in Figure 4.3. The
oscillations in ℓ

(n)
j due to the instability near J∞ in this plot are more obvious

than in the coefficients computed with J0 = 5 shown in Figure 4.1. But also for
the choice J0 = 3 the coefficients converge while approaching r = R.

4.2.5 Two dimensional DTBCs for circular domains

In the Fourier transformed space, i.e. in terms of separate azimuthal modes, the
DTBCs read (this is equation (4.18) with recovered index m and the notation ˆ
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1 1.5 2 2.5
5.6
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x 10

−3 last 7 coeffisients in external domain,mode m = 1

radius r

 

 

n=54
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n=57

n=58

n=59

n=60

Figure 4.1: Absolute values of last 7 coefficients ℓ
(n)
j , n = 54, . . . , 60, J∞ =

550, J0 = 5;m = 1.

for the Fourier transformation):

ψ̂n
J+1,m − s(0)

m ψ̂n
J,m =

n−1∑

p=1

s(n−p)
m ψ̂p

J,m − ψ̂n−1
J+1,m, (4.30)

where m = 0, . . . , K − 1, n ≥ 1.
In order to obtain DTBCs in the physical space let us introduce K×K diagonal

matrices

s(p) = diag{s(p)
m }, m = 0, . . . , K − 1,

and also matrices F and F−1 of the direct and inverse Fourier transform, respec-
tively, acting by

ψ̂n
j = Fψ̄n

j

in accordance with (4.7). The vectors ψ̂n
j , ψ̄

n
j notate

ψ̂n
j = {ψ̂n

j,m}K−1
m=0, ψ̄n

j = {ψn
j,k}K−1

k=0 .

Then, multiplying (4.30) by F−1 we get the following 2D discrete TBCs:

ψ̄n
J+1 − F−1s(0)Fψ̄n

J = F−1

n−1∑

p=1

s(n−p)Fψ̄p
J − ψ̄n−1

J+1. (4.31)
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radius r

 

 

n=54

n=55

n=56

n=57

n=58

n=59

n=60

Figure 4.2: Absolute values of difference |ℓ(n)
j − ℓ̃(n)

j | of last 7 coefficients calculated
with J∞ = 550 and J∞ = 1100;m = 1.

In order to formulate DTBCs as in (4.15) it is necessary that the discrete initial
condition vanishes at the two adjacent (spatial) grid points appearing in (4.15).
Here, we chose to formulate the DTBCs (4.31) at the boundary of the computa-
tional interval and one grid point in the exterior domain. Hence we have assumed
that the initial condition satisfies ψ

(0)
J,k = ψ

(0)
J+1,k = 0, k = 0, . . . , K − 1.

The use of the formulas (4.31) for calculations permits us to avoid any boundary
reflections and it renders the fully discrete scheme unconditionally stable (just like
the underlying Crank-Nicolson scheme). Note that we need to evaluate for each
mode m just one convolution of (4.31) at each time step (at the endpoint of the
interval [0, tn]). Since the other points of this convolution are not needed, using
an FFT is not practical.

4.3 Approximation by sums of exponentials

An ad-hoc implementation of the discrete convolution

n−1∑

p=0

s(n−p)ψp
J

in (4.18) with convolution coefficients s(n) from (4.17) has still one disadvantage.
The boundary conditions are non-local both in time and space and therefore com-
putations are expensive. As a remedy, to get rid of the time non-locality, the
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Figure 4.3: Absolute values of last 7 coefficients, J∞ = 550, J0 = 3;m = 1.

authors in [ArEhSo03] proposed the sum of exponentials ansatz. They approxi-
mated the kernel (4.17) by a finite sum (say L terms) of exponentials that decay
with respect to time. This approach allows for a fast (approximate) evaluation of
the discrete convolution (4.18) since the convolution can now be evaluated with
a simple recurrence formula for L auxiliary terms and the numerical effort now
stays constant in time.

Let us note that such kind of trick has been proposed in [GrSt90] for the heat
equation and in [So93] for the continuous TBC in case of the 3D wave equation,
and developed in [AlGrHa00], [So98a], [So98b], [DKSW01], [Ha99] for various hy-
perbolic problems. In the sequel we will briefly review the ansatz proposed in
[ArEhSo03].

In order to derive a fast numerical method to calculate the discrete convolutions
in (4.30), we approximate the coefficients s(n) by the following sum of exponentials
ansatz:

s(n) ≈ s̃(n) :=





s(n), n = 0, 1, . . . , ν − 1
L∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . ,

(4.32)

where L, ν ∈ N are a fixed numbers. Evidently, the approximation properties of
s̃(n) depend on L, ν, and the corresponding set {bl, ql}. Thus, the choice of an (in
some sense) optimal such approximation is a difficult nonlinear problem. Below
we propose a deterministic method of finding {bl, ql} for fixed L and ν.

Remark 4.6 The “split” definition of {s̃(n)} in (4.32) is motivated by the fact
that the implementation of the DTBCs (4.30) involves a convolution sum with p
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ranging only from 1 to p = n − 1. Since the first coefficient s(0) does not appear
in this convolution, it makes no sense to include it in our sum of exponential
approximation, which aims at simplifying the evaluation of the convolution. Hence,
one may choose ν = 1 in (4.32). The “special form” of ℓ

(0)
∞ and ℓ

(1)
∞ given in

[ArEhSo03] suggests even to exclude s(1) from this approximation and to choose
ν = 2 in (4.32). We use this choice in our numerical implementation in Example 3
in §4.4.

Also, there is an additional motivation for choosing ν = 2: With the choice
ν = 0 (or ν = 1) we typically obtain (for each mode) two (or, resp., one) coefficient
pairs (bl, ql) of big magnitude. These “outlier” values reflect the different nature
of the first two coefficients. Including them into our discrete sum of exponentials
would then yield less accurate approximation results.

Let us fix L and consider the formal power series

g(x) := s(ν) + s(ν+1)x+ s(ν+2)x2 + . . . , |x| ≤ 1. (4.33)

If there exists the [L− 1|L] Padé approximation

g̃(x) :=
PL−1(x)

QL(x)

of (4.33), then its Taylor series

g̃(x) = s̃(ν) + s̃(ν+1)x+ s̃(ν+2)x2 + . . .

satisfies the conditions

s̃(n) = s(n), n = ν, ν + 1, . . . , 2L+ ν − 1, (4.34)

due to the definition of the Padé approximation rule.

Theorem 4.4 ([ArEhSo03]) Let QL(x) have L simple roots ql with |ql| > 1,
l = 1, . . . , L. Then

s̃(n) =

L∑

l=1

bl q
−n
l , n = ν, ν + 1, . . . ,

where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L.

Remark 4.7 We remark that the assumption in Theorem 4.4 on the roots of
QL(x) to be simple is not essential. For multiple roots one only has to reformulate
Theorem 4.4. All our practical calculations confirm that this assumption holds for
any desired L, although we cannot prove this.
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Evidently, the approximation to the convolution coefficients s(n) by the repre-
sentation (4.32) using a [L− 1|L] Padé approximant to (4.33) behaves as follows.
The first 2L coefficients are reproduced exactly, see (4.34). However, the asymp-
totics of s(n) and s̃(n) (as n → ∞) differ strongly - algebraic versus exponential

decay. A typical graph of |s(n)
m − s̃

(n)
m | versus n for L = 40 is shown in Figure 4.15

in §4.4.

4.3.1 Fast evaluation of the discrete convolution

Let us consider the approximation (4.32) of the discrete convolution kernel ap-
pearing in the DTBCs (4.30) (again with suppressed index m). With these “ex-
ponential” coefficients the approximated convolution

C̃
(n−1)
J :=

n−1∑

p=1

s̃(n−p)ψp
J+1, s̃(n) =

L∑

l=1

bl q
−n
l , |ql| > 1 (4.35)

of a discrete function ψp
J+1, p = 1, 2, . . ., with the kernel coefficients s̃(n), can

be calculated by recurrence formulas, and this will reduce the numerical effort
significantly.

A straightforward calculation (cf. [ArEhSo03]) yields, that the value C̃
(n−1)
J

from (4.35) for n ≥ 2 is represented by

C̃
(n−1)
J =

L∑

l=1

C̃
(n−1)
J,l ,

with

C̃
(0)
l ≡ 0,

C̃
(n−1)
J,l = q−1

l C̃
(n−2)
J,l + bl q

−1
l ψn−2

J+1, n = 2, 3, . . . . l = 1, . . . , L.

Finally we summarize the approach by the following algorithm for each azimuth
mode m = 0, ..., K − 1:

1. Calculate ℓ
(n)
J+1, n = 0, . . . , N − 1, with formulas (4.29) with a boundary

value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane case ℓ

(n)
∞ ≡ ℓ(n) from

[ArEhSo03], and use (4.17) to find s(n);

2. Calculate s̃(n) via Padé-algorithm;

3. The corresponding coefficients bl, ql are used for the efficient calculation of
the discrete convolutions.
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4 DTBCs for the two dimensional Schrödinger equation on circular domains

4.4 Numerical results

In the following section we present some numerical results concerning the DTBCs.

4.4.1 Example 1

We recall the Example 2 from [HaHu04], i.e. we consider (4.1) with the vanishing
potential V ≡ 0 and the angle-dependent initial data

ψI(r, θ) =
e
2ikxr cos θ+2ikyr sin θ− (r cos θ)2

2αx
−

(r sin θ)2

2αy

√
αxαy

, r ∈ R
+, 0 ≤ θ ≤ 2π. (4.36)

Then the exact solution to (4.1) for t > 0 is given by the Gaussian beam

ψ(r, θ, t) =
e
2ikx(r cos θ−kxt)+2iky(r sin θ−kyt)−

(r cos θ−2kxt)2

2(αx+it)
−

(r sin θ−2kyt)2

2(αy+it)

√
αx + it

√
αy + it

.

We set αx = αy = 0.04, let kx = 1, ky = −1 and calculate a solution ψ1 to
(4.6) with an equidistant discretization on the circular computational domain
Ω1 = [0, R] × [0, 2π] with R = 1 and J + 2 grid points in r- and K in θ-direction
for times 0 < t ≤ 0.25. In order to satisfy the assumption, that the initial data
is compactly supported in Ω1 (cf. §4.2) we have to use a small numerical cut-
off close to R, ψI(r, θ) = 0 for r ≥ R − ∆r for all angles θ, i.e. in discrete
notation ψI

j,k = 0 for j ≥ J, k = 0, . . . , K − 1. We remark that this assumption of
compactly supported data is not essential; strategies to overcome this restriction
can be found in [EhAr01]. Since we use an offset grid, DTBCs are implemented as
described before (cf. §4.2.5) at r = R−∆r/2, between R and R−∆r. A reference
solution ψ2 is calculated on the domain Ω2 = [0, 2R] × [0, 2π] with discrete TBCs
at r = 2R − ∆r/2. For the determination of the error due to the scheme we
compare the numerical solution ψ2 with the exact one ψ on Ω1 and obtain the
relative L2-error

LΩ1(ψ2, ψ, tn) =

(
∑

(rj ,θk)∈Ω1

rj |ψ2(rj , θk, tn) − ψ(rj, θk, tn)|2
) 1

2

max
tn





(
∑

(rj ,θk)∈Ω1

rj|ψ(rj, θk, tn)|2
) 1

2





, (4.37)

which coincides with the error measured with the norm defined in (4.9). Within
this test the error due to the cut-off of the initial function is also included. The
effects of the boundary should be negligible here, because ψ2 does not cross the
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4.4 Numerical results

boundary 2R essentially for the calculated time steps.

In order to distinguish between the error due to the difference scheme and the
error due to the DTBCs, we compare the numerical solution ψ1 with the numerical
reference solution ψ2 and calculate the relative error LΩ1(ψ2, ψ1, tn) due to the
boundary condition.

Discretization and Results. The solutions ψ1 and ψ2 are calculated for
three parameter sets. First we let J = K = 64, i.e. ∆r = 1/64, ∆θ = 2π/64
and ∆t = 1/64, then ∆r = ∆t = 1/128, ∆θ = 2π/128 and finally ∆r =
∆t = 1/256, ∆θ = 2π/256. These discretization parameters are taken from
[HaHu04]. The relative error of the initial function due to the cut-off is about
O(10−6), O(10−7), O(10−7), respectively. We present in Figure 4.4 the absolute
value of the initial function (4.36) and of the evolution of the numerical solution
ψ1 of (4.6) on the computational domain Ω1 until t = 0.25 for the last set of
discretization parameters and a potential V = 0. As expected the Gaussian beam
leaves the computational domain without any unphysical reflections. The same
results are shown in Figure 4.5 as contour plots. Figure 4.6(a) shows the relative
error LΩ1(ψ2, ψ, tn) between the numerical solution ψ2 and the exact solution re-
stricted on Ω1 for the three sets of parameters. The relative error LΩ1(ψ1, ψ2, tn)
due to the boundary condition is presented in Figure 4.6(b) also for all sets; with
a values around O(10−13) it amounts about the rounding error of Matlab.

Remark 4.8 The error due to the boundary may increase with finer discretiza-
tions. This depends on the iterative solver for linear systems of equations in
Matlab. For abrasive discretizations, the system matrix has a better condition and
the linear system of equations can be solved with higher accuracy.

Remark 4.9 It is not possible to compare our results directly with the results
retrieved in [HaHu04], because the not trivial aspect, how the TBCs have been
discretized, is not mentioned there. The difference between the exact and the
calculated solution in one point at the boundary presented in [HaHu04] was about
0.7 for ∆r = ∆t = 64, 0.2 for ∆r = ∆t = 128 and 0.1 for ∆r = ∆t = 256. This
error was not analysed more precisely.

4.4.2 Example 2

We recall the numerical example from [AnBeMo04] and consider (4.1) with the
vanishing potential V ≡ 0 and the initial data

ψI(r, θ) = e−ikxr cos θ−α
2

r2

, r ∈ R
+, 0 ≤ θ ≤ 2π (4.38)

with kx = 5, α = 2.
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4 DTBCs for the two dimensional Schrödinger equation on circular domains
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Figure 4.4: Example 1. Absolute value of the initial function ((4.36), with cut-
off) and the calculated solution ψ1 of the discretization scheme (4.6) on
the computational domain Ω1 with ∆r = ∆t = 1/256, ∆θ = 2π/256,
αx = αy = 0.04 and the wave numbers kx = −1, ky = 1. The potential
equals 0; DTBCs are implemented at r = 1 − ∆r/2.

The exact solution of (4.1) with this initial data is a Gaussian distribution

ψ(r, θ, t) =
1

1 + iαt
exp
(−αr2 + 2ikxr cos θ − k2

xit

2 + 2iαt

)

moving into θ = 180◦ direction. Again we calculate a solution ψ1 of (4.6) for the
initial data (4.38) with a cut-off close to the radius R = 2.5 (ψI

J,k = ψI
J+1,k = 0, k =

0, . . . , K − 1 on the discrete level) on a circular domain Ω1 = [0, R] × [0, 2π] with
an equidistant offset grid. Because of the offset grid the DTBCs are implemented
between R and R− ∆r. The solution ψ1 is compared with a numerical reference
solution ψ2 calculated on [0, 2R] × [0, 2π] as it has been described and done in
Example 1. Moreover we compare the numerical solution ψ2 with the exact one
ψ on Ω1.
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Figure 4.5: Example 1. Contour plot of the absolute value of the initial function
((4.36), with cut-off) and the calculated solution ψ1 of (4.6) on the
computational domain Ω1 for the same discretization parameters used
in the calculations for Figure 4.4.
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Figure 4.6: Example 1. (a): Relative error LΩ1(ψ2, ψ, tn) due to the scheme and
(b): relative error LΩ1(ψ1, ψ2, tn) due to the boundary conditions for
the time evolution of initial function (4.36) for the three parameter
sets with 64 (solid line), 128 (dashed line) and 256 grid points (dashed-
pointed line).
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4.4 Numerical results

Discretization and Results. The numerical solutions in [AnBeMo04] are cal-
culated with finite elements with 32768 and 57344 triangles and the time step size
∆t = 0.01. We calculate numerical solutions again for three sets of parameters,
first ∆r = R/64, ∆θ = 2π/64, then ∆r = R/128, ∆θ = 2π/128 (which corre-
sponds approximately to 32768 triangles) and finally ∆r = R/256, ∆θ = 2π/256
(57344 triangles). For all sets we let ∆t = 0.0025 and solve (4.6) with the initial
data (4.38) for kx = −5 until t = 0.5.

Figure 4.7 shows the absolute value of the initial function and of the evolution of
the numerical solution ψ1 of (4.6) on the disc Ω1 = [0, 2.5]× [0, 2π]. The Gaussian
wave is leaving the computational domain without being reflected back at the
artificial boundary R = 2.5. In Figure 4.8 we present the same results as contour
plots. The relative error LΩ1(ψ2, ψ, tn) due to the scheme and the relative error
LΩ1(ψ1, ψ2, tn) due to the DTBCs are plotted in Figure 4.9. We remark that the
error of the boundary is of order O(10−14) and again about the rounding error of
Matlab.

A further test concerns the long-time behaviour of the relative error due to the
DTBCs and is also taken from [AnBeMo04]. Therefore we calculate numerical
solutions ψ1, ψ2 of (4.6) for the initial data (4.38) for kx = 0 on the circular
domains Ω1 = [0, 2.5] × [0, 2π], Ω2 = [0, 5] × [0, 2π] until t = 4 with the same
spatial discretization parameters used above and the time step size ∆t = 0.01,
which coincides to the choice of ∆t from [AnBeMo04]. In Figure 4.10 we show
the relative error LΩ1(ψ1, ψ2, tn) due to the boundary conditions for this long-time
test. For these long-time calculations with this coarser time step size the error due
to the DTBCs stays bounded. We remark, that the relative error for the Gaussian
solution was between O(10−1) and O(10−4) in [AnBeMo04]. Also there the error
was not analyzed more precisely.

4.4.3 Example 3

To illustrate the sum of exponential ansatz we consider the numerical example
from [JiGr06] and the initial Gaussian wave function

ψI(r, θ) =
e

ir(kx cos θ+ky sin θ)− r2

4

“
cos2 θ

αx
+ sin2 θ

αy

”

√
αxαy

, r ∈ R
∗, 0 ≤ θ ≤ 2π. (4.39)

The exact solution of the Schrödinger equation with the initial data (4.39) is
known (cf. Example 1). For the numerical calculations we set αx = αy = 0.01 and
kx = 5, ky = −5. A solution ψ1 of (4.6) with the initial data (4.39) with a cut-off
at R−∆r, which causes a relative error of the order O(10−12), is calculated on the
circular domain Ω1 = [0, R] × [0, 2π] with the radius R = 1. The absolute value
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Figure 4.7: Example 2. Absolute value of the numerical solution ψ1 of (4.6) with
the initial function ((4.38), with cut-off) on the computational domain
Ω1 with ∆r = R/256, ∆θ = 2π/256, ∆t = 0.0025, α = 2 and the wave
number kx = −5. The potential equals 0; DTBCs are implemented at
R− ∆r/2.
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Figure 4.8: Example 2. Contour plot of the absolute value of the initial function
((4.38), with cut-off) and the calculated solution ψ1 of (4.6) on the
computational domain Ω1 for the same discretization parameters used
in the calculations for Figure 4.7.
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Figure 4.9: Example 2. (a): Relative error LΩ1(ψ2, ψ, tn) due to the scheme and
(b): relative error LΩ1(ψ1, ψ2, tn) due to the boundary conditions for
the time evolution of initial function (4.38) for the three parameter
sets with 64 (solid line), 128 (dashed line) and 256 grid points (dashed-
pointed line).
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Figure 4.10: Example 2. Relative error LΩ1(ψ1, ψ2, tn) due to the boundary con-
dition for the time evolution of initial function (4.38) with kx = 0,
α = 2 for the three parameter sets with 64 (solid line), 128 (dashed
line) and 256 grid points (dashed-pointed line). For all three sets we
let ∆t = 0.01.

of the initial function (4.39) and its contour plot is shown in Figure 4.11. For
the DTBCs we use the approximation (4.35). As a numerical reference solution
we take ψ2, which is obtained with the exact DTBCs (4.31) on the larger domain
[0, 2] × [0, 2π].

Discretization and Results. For the discretization parameters ∆t = 0.002,
∆r = 1/64, ∆θ = 2π/64 we evolve the solution up to t = 0.5, as it is done in
[JiGr06]. Hence, we calculate the solution for n = 250 time steps. In the sum
of exponentials we choose in three different calculations ν = 2, L = 10, 20, 40.
We obtain the first 2L + ν − 1 convolution coefficients exactly by the recursion
formula (4.29) with a boundary value ℓ

(n)
J∞,m := ℓ

(n)
∞,m taken from the 1D plane case

ℓ
(n)
∞,m ≡ ℓ

(n)
m from [ArEhSo03] for each mode m = 0, . . . , K − 1 and summarize

them according to (4.17). The sets {bl,m, ql,m}, l = 1, . . . , L needed for the cal-

culation of the approximated convolution coefficients s̃
(n)
m , n > 2L + ν − 1 for all

modes m are worked out by the Padé algorithm described in §4.3. We realized
these calculations by a Maple code, within which we try to find L roots ql,m of
the polynomial QL(x) as it is described in Theorem 4.4 again for each mode. Due
to a “nearly breakdown” by ill conditioned steps in the Lanczos algorithm (cf.
[BuVa97]) it is not necessarily possible to find L roots of QL,m fulfilling the con-
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Figure 4.11: Example 3. Normal and contour plot of the absolute value of the
initial function ψI (4.39) on the computational domain Ω1.

dition |ql,m| > 1, l = 1, . . . , L for all modes m = 0, . . . , K − 1. Consequently, the
Maple code automatically chooses smaller and smaller values (L − 1, L − 2, . . .)
to guarantee that all roots have an absolute value larger than 1. E.g., with the
initial choice L = 40 you will find values for L fulfilling the above condition that
vary from 18 to 32 for the different modes. The number of summands is hence
just an initial guess for the final number of summands in the sum of exponential.

In Figure 4.12 we present plots and the contour plots of the absolute value of the
solution ψ1 at time t = 0.5 calculated with the approximated DTBCs with different
values of L. For L = 10 there are some unphysical reflections (see Figure 4.12(a)),
for greater values of L these reflections become less (see Figure 4.12(b), 4.12(c)).

The error due to the approximated DTBCs is shown in Figure 4.13. For dif-
ferent initial choices of the number of coefficients L in the sum of exponentials
we present the error LΩ1(ψ1, ψ2, tn) (cf. (4.37)) there. Although the coefficients

s
(n)
m , s̃

(n)
m are of different type (algebraic vs. exponential decay) the error stays

bounded. In order to show that long time calculations with the approximated
DTBCs are stable we evolve the initial data (4.39) with αx = αy = 0.01 and
kx = ky = 0 for discretization parameters ∆t = 0.002, ∆r = 1/64, ∆θ = 2π/64
for different initial choices of the number of summands L up to t = 20. The norm
of the solution decays in time, as it is shown in Figure 4.14.

A typical plot of |s(n)
m − s̃(n)

m | versus the time steps n for the initial choice L = 40
for all modes is given in Figure 4.15. Obviously only the first 2L+ν−1 coefficients
(or even less if the root condition |ql| > 1 is not fulfilled) are exactly calculated,
then you can observe a deviation between the exact and the approximated convo-
lution coefficients.
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Figure 4.12: Example 3. Normal and contour plots of the absolute value of the
calculated solution ψ1 of (4.6) with the initial function (4.39) on the
computational domain Ω1. We use approximated DTBCs with (a):
L = 10, (b): L = 20, and (c): L = 40 summands in the sum of
exponentials.
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Figure 4.13: Example 3. Relative error LΩ1(ψ1, ψ2, tn) due to the approximated
discrete TBCs for the time evolution of initial function (4.39) for
different initial choices of the number L in the sum of exponentials,
10 (solid line), 20 (dashed line) and 40 grid points (dashed-pointed
line). The relative error due to the exact discrete TBCs for this
problem is plotted in the pointed line.

Let us finally remark that this approach for the 1D Schrödinger equation (in-
cluding the Maple code) is presented at http://www.dtbc.de.vu.
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Figure 4.14: Example 3. L2-norm of the long time evolution of the initial function
(4.39) with αx = αy = 0.01 and kx = ky = 0 again for different initial
choices of the number L in the sum of exponentials, 10 (solid line),
20 (dashed line) and 40 grid points (dashed-pointed line).
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Figure 4.15: Example 3. Difference |s(n)
m − s̃

(n)
m | as a function of time steps

n = 0, . . . , 250 (corresponding to 0 ≤ t ≤ 0.5) for the modes

m = 0, . . . , K − 1, where s̃
(n)
m is calculated with the sum of expo-

nentials ansatz with an initial choice of L = 40 summands. We
choose the same discretization parameters used in the calculations
for Figure 4.12.
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