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Deutsche Kurzfassung

Hoch oszillierende Phänomene treten in einer Vielzahl naturwissenschaftlicher
Modelle aus den verschiedensten Bereichen auf, wie z.B. in der Elektrodynamik,
in der Akustik, bei der Modellierung von Molekülen, beim Plasmatransport, bei
der Computertomografie oder in der Quantenmechanik. Diese Arbeit konzen-
triert sich auf die numerische Lösung von hoch oszillierenden Problemen, die
mittels Systemen linearer gewöhnlicher Differentialgleichungen (Dgl) beschrie-
ben werden können.

Es sei ε > 0 eine Konstante und V : R → R eine glatte Funktion. Auf dem
Intervall [a, b] ⊂ R betrachtet man das skalare Anfangswert-Problem (AWP)

ψ′′(x) +
1

ε2
V (x)ψ(x) = 0 , (ψ(a), ψ′(a))T = ψ0 ∈ C2 . (1)

Die (skalare) Dgl (1) wird auch (1D) stationäre Schrödingergleichung (Sgl) ge-
nannt. Bei geeigneter Wahl des Parameters ε, der Funktion V und der Anfangs-
bedingungen ist das AWP ein einfaches quantenmechanisches Modell für ein
eindimensionales Elektron im thermodynamischen Gleichgewicht (cf. [4]).

Ist V > 0 konstant, so ist ψ(x) = c1 sin(
√
V
ε x) + c2 cos(

√
V
ε x) eine allge-

meine Lösung von (1). Für ε ≪ 1 ist ψ also eine hoch oszillierende Funktion,
mit Schwingungsamplituden der Ordnung O(1). Dieser Charakter der Lösung
bleibt auch für nicht konstante V > 0 erhalten. Je kleiner ε wird, desto stärker
oszilliert ψ. Löst man das AWP (1) mit einem Standardverfahren, wie z.B. der
klassischen Runge-Kutta-Methode, so benötigt man sehr fein auflösende Gitter
(mit Ortsschrittweite h < ε), um verlässliche Resultate zu erzielen. Für ein ein-
zelnes AWP dieser Art ist dies mit Sicherheit ein praktikabler Zugang. In vielen
Anwendungen, wie z.B. bei der Modellierung von Halbleitern, ist man allerdings
darauf angewiesen, sehr viele solcher Systeme zu lösen (siehe z.B. [4]). Dies führt
zu einem immensen Rechenaufwand und folglich besteht Interesse an möglichst
effizienten Lösungsmethoden für (1) und verwandte Systeme.

Das AWP (1) ist äquivalent zu einem System erster Ordnung der Gestalt

u′(x) =
1

ε
L(x)u(x) + B(x)u(x) , u(a) = u0 ∈ Cd , (2)

mit einer reellen Diagonalmatrix L(x) und einer (evtl. komplexen) Matrix B(x)
(siehe § 2.2). Wie in [4, 54, 27] beschrieben, lässt sich das AWP (2) bzw. (1)
derart in ein System von Dgl erster Ordnung überführen, dass die dominan-
ten Oszillationen mit Amplituden der Ordnung O(1) eliminiert werden. Das
resultierende System aus [4] z.B. hat die Gestalt

z′(x) = εA(x)z(x) , z(a) = z0 ∈ Cd . (3)

Der Preis, den man für die positive Potenz von ε in (3) zu zahlen hat, sind hoch
oszillierende Einträge in der Systemmatrix A(x). Dennoch eignet sich das AWP
(3) wesentlich besser für die Numerik als das äquivalente System (1), da die
Amplituden der Schwingungen nun von der Ordnung O(ε) sind.

Im ersten Teil der Arbeit werden Ideen aus [4, 54] für die “analytische Vor-
bearbeitung” von (1) aufgegriffen und auf Systeme von linearen Dgl des Typs
(2) ausgedehnt. In § 3.3 wird gezeigt, dass es unter bestimmten Voraussetzungen
möglich ist, das AWP (2) auf die Gestalt (n ∈ N)

z′(x) = εnAn(x)z(x) , z(a) = z0 ∈ Cd (4)



x

zu transformieren. Hierbei sind die Oszillationen der Einträge von An(x) von
der gleichen Art wie in der Systemmatrix A(x) von (3).

Die Lösung der stationären Sgl (1) besitzt eine asymptotische Entwicklung.
Diese wird oft als WKB-Entwicklung1 bezeichnet. Da (1) in ein äquivalentes Sys-
tem der Gestalt (2) überführt werden kann, ist es naheliegend, auch hierfür ei-
ne solche Entwicklung der Lösung zu suchen. In § 3.5 wird gezeigt, dass eine
WKB-artige asymptotische Entwicklung der Lösung von (2) existiert. Die hier-
bei abgeleiteten expliziten Formeln lassen darüber hinaus den Zusammenhang
der WKB-Entwicklung mit dem Transformationsansatz erkennen. Es stellt sich
heraus, dass die dominanten Oszillationen im Wesentlichen dadurch eliminiert
werden, dass man die WKB-Lösung

”
heraus dividiert“.

Nachdem das Ausgangsproblem analytisch
”
aufbereitet“ ist, werden spezielle

Einschrittverfahren entwickelt, um das äquivalente AWP zu lösen. Hier werden
zunächst endlich viele Schritte der Picard-Iteration verwendet, die zur approxi-
mativen Lösung von AWP genutzt werden kann. Da allerdings die Matrix An(x)
von (4) stark oszillierende Einträge hat, benötigen man spezielle Quadraturfor-
meln, um die entstehenden hoch oszillierenden Integrale geeignet zu approxi-
mieren. Es wird kurz auf einige Methoden zur Berechung solcher Integrale ein-
gegangen und eine detaillierte Fehleranalyse des verwendeten Ansatzes durch-
geführt. Obwohl die benutzte Quadratur schon in der Literatur diskutiert wird
(siehe [60, 61]), sind die hergeleiteten Fehlerabschätzungen neu. Die genannten
Arbeiten behandeln hauptsächlich das asymptotischen Verhalten bezüglich des
kleinen Parameters ε, sodass Abschätzungen des Quadraturfehlers in Bezug auf
die Länge des Integrationsintervalls fehlen. Diese Lücke wird in § 5 geschlossen.

Die hergeleiteten Einschrittverfahren sind aufgrund der speziell gewählten
Diskretisierungstechniken asymptotisch korrekt. Das heißt im Grenzfall ε → 0
geht der Konvergenzfehler der numerischen Methoden gegen Null. Dabei kann
in manchen Fällen die asymptotische Ordnung des Fehlers O(ε2n+1) betragen.
Sowohl die Konvergenzfehler als auch die Quadraturfehler werden anhand von
numerischen Beispielen veranschaulicht. Zudem werden Diskretisierungen des
Transformationsansatzes und eine Schrittweitensteuerung diskutiert.

Im letzten Teil der Arbeit (§ 10) geht es um Ansätze für die Diskretisierung
von Einweg-Wellengleichungen (Ewgl), die im Zusammenhang mit der skala-
ren Helmholtz-Gleichung (Hgl) stehen. Unter bestimmten Voraussetzungen ist
eine Lösung der Ewgl eine Lösung der Hgl. Die Ewgl ist eine Evolutionsglei-
chung, deren

”
ortsabhängiger“ Teil die Wurzel eines Differentialoperators bein-

haltet. Dies führt zu Problemen bei der numerischen Behandlung. Es werden
einige dieser Probleme kurz skizziert und anschließend einen Funktionalkalkül
für selbstadjungierte Operatoren bewiesen, wie er in [71] entwickelt ist. Dieser
Ansatz scheint gut zur numerischen Berechnung von Funktionen selbstadjun-
gierter Operatoren geeignet zu sein. Die Grundlage dieses letzten Teils der Ar-
beit ist im Wesentlichen ein ausgearbeitetes Vorlesungsmanuskript des Autors.
Somit ist dieser Abschnitt hauptsächlich als Literaturarbeit einzustufen. Trotz-
dem finden sich auch eigene Resultate des Autors, wie etwa eine Variante des
Darstellungssatzes von Riesz oder Formeln für die Berechnung der Wurzel eines
selbstadjungierten Operators und eine (formale) Lösungsformel für die Ewgl.

1Benannt nach den Physikern Wentzel, Kramers und Brillouin.
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Chapter 1

Introduction

Highly oscillatory phenomena occur in a multiplicity of scientific models of very
different fields, e. g. in electrodynamics, acoustics, molecular modeling, plasma
transport, computer tomography, quantum mechanics. In this work we focus on
the numerical solution of problems, which can be described by systems of linear
ordinary differential equations. One famous representative of the class of equa-
tions we have in mind is the one–dimensional (scalar) stationary Schrödinger
equation (SE) (1.1).

Let ε > 0 be a real constant and let V : R → R be a smooth function. On
the interval [a, b] ⊂ R we consider the initial value problem (IVP)

ψ′′(x) +
1

ε2
V (x)ψ(x) = 0 , (ψ(a), ψ′(a))T = ψ0 ∈ C2 . (1.1)

For a suitable choice of the parameter ε, the function V , and the initial condition
ψ0 the IVP (1.1) is a simple quantum mechanical model for a single electron in
a stationary or scattering model (cf. [4]).

Is V > 0 constant, then ψ(x) = c1 sin(
√
V
ε x) + c2 cos(

√
V
ε x) is the general

solution of the ordinary differential equation (ODE) (1.1). Hence, for ε≪ 1 the
solution ψ is a highly oscillatory function with amplitude of order O(1) with
respect to ε. This character of the solution is preserved also for non constant
V ≥ V0 > 0, with V0 ∈ R+. The local wave length λ of the solution ψ is
approximately proportional to 2πε√

V
. The smaller ε gets, the more oscillates

ψ. For V < 0 the solution ψ shows a (very) different behavior compared to
the oscillatory part. In this regime we observe an (ε–dependent) exponential
growth and decay instead of oscillations. In quantum mechanical models this
phenomena is known as tunneling. Here, ψ is the solution of a stiff ODE. Hence
a numerical solver for an arbitrary function V must be able to deal with high
oscillations and (rapid) exponential growth and decay. The transition from one
(growth) behavior to another takes place in the neighborhoods of the zeros of
V . Due to this, these points are called turning point. An “optimal“ integrator
also has to be quite accurate in this parts. In this work we shall only focus on
the oscillatory regime. The connection to the stiff part, where the solution can
be computed with already existing methods, is dedicated to future work.

If one solves the IVP (1.1) with a standard solver, like the classical Runge–
Kutta method, then one has to use spatial grids which resolve the oscillations.
Otherwise the results are not reliable. In Figure 1.1 we see what can happen

1
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Figure 1.1: Exact solution (thin lines) of the IVP (1.1) for the function V (x) =
(x + 1

2 )
2 and the initial conditions ψ(0) = 1, ψ′(0) = 0 for ε = 10−1, 10−2.

Furthermore the numerical approximation of the IVP with the classical Runge–
Kutta method (dots) is plotted.

if one uses to few grid points. We plot the exact solution (thin lines) of the
IVP (1.1) for the function V (x) = (x + 1

2 )
2 and the initial conditions ψ(0) =

1, ψ′(0) = 0. Furthermore we see the numerical approximation of the IVP with
the classical Runge–Kutta method (dots). For ε = 10−1 there are enough points
to resolve the oscillations and the (interpolated) result matches quite well with
the exact solution. However this is not the case for ε = 10−2. Here we use the
same number of grid points as before. But this time there are to few abscissas
to resolve the oscillations, which results in a totally wrong numerical solution.

To solve just a single IVP of type (1.1), even if it is highly oscillatory, is not a
numerical challenge. One can of course use the standard solvers with a very fine
grid. But in some applications, e. g. the modeling of semiconductor devices (cf.
[4] for more details and references), one has to solve a large number of highly
oscillatory systems in parallel or iteratively. This yields a tremendous numerical
effort and hence one is interested in efficient solvers for (1.1) and related system.

It is well known that the solution of the stationary SE (1.1) has an asymptotic
expansion (as ε→ 0), which is often called1 WKB–expansion [32]. A basic idea
to derive numerical solvers for (1.1) in the oscillatory regime (i. e. V > 0), is
to use information of the asymptotic behavior of the solution as ε → 0. In [57]
the author suggests a finite element method (FEM), which uses elements built
upon the WKB–approximation of ψ. Let a = x1 < x2 < · · · < xN = b be the
grid used for the FEM and let h := max{xn+1−xn|n = 1, . . . , N−1}. Then the
(general, first order) WKB–approximation of ψ on the subinterval [xn, xn+1] is
given by (cn,1, cn,2 ∈ C)

ψWKB
n (x) :=

1
4
√
V (x)

(
cn,1e

i
εϕn(x) + cn,2e

− i
εϕn(x)

)
,

with ϕn(x) :=
∫ x
xn

√
V (s) ds. It holds for all x ∈ [xn, xn+1]:

ψWKB
n (x) = ψWKB

n (xn)wn(x) + ψWKB
n (xn+1)vn(x) .

1Named after the physicists Wentzel, Kramers and Brillouin.
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The functions wn, vn are defined as follows:

wn(x) := αn(x)
4

√
V (xn)

V (x)
, wn(x) := βn(x)

4

√
V (xn+1)

V (x)
,

αn(x) := − sin ϕn+1(x)
ε

sin ϕn(xn+1)
ε

, βn(x) :=
sin ϕn(x)

ε

sin ϕn(xn+1)
ε

.

“The functions αn and βn are the so–called WKB basis functions. They oscil-
late with a frequency close to that of the unknown wave function and actually
permit solving the problem on coarser grids. In the limit h → 0, these WKB
basis functions reduce to usual linear interpolation functions” [57]. Due to con-

struction of the WKB basis function we have to ensure, that ϕn(xn+1)
ε does not

get close to a multiple of π. This yields an (unnatural) artificial restriction for
the grid. Despite the fact that the method works, this is the motivation for us
to develop here a marching method for problem (1.1).

The IVP (1.1) can be transformed into an equivalent first order ODE system
of type

u′(x) =
1

ε
L(x)u(x) + B(x)u(x) , u(a) = u0 ∈ Cd , (1.2)

with a real diagonal matrix L(x) ∈ Rd×d and B(x) ∈ Cd×d (cf. § 2.2). For the
IVP (1.1) we have of course d = 2. As discussed in [4, 27, 39, 40, 54, 59] it is
possible, with a further transformation, to eliminate the dominant oscillations
with wave length ∼ 1

ε and amplitude of order O(1) with respect to ε. Therefore
one has to remove the negative powers of ε from the right–hand side of the ODE
(1.2). For example, the resulting system from [4] has the form

z′(x) = εA(x)z(x) , z(a) = z0 ∈ Cd . (1.3)

The price we have to pay for obtaining non negative power of ε on the right–hand
side of (1.3) (also in the other approaches from literature) are highly oscillatory
entries of the matrix valued function A. Nevertheless, the IVP (1.3) is much
better suited for numerical treatment than the equivalent systems (1.1) or (1.2).
The reason for this is that the solution z of (1.3) oscillates around the initial
condition z0 with amplitudes of order O(ε).

In the first part of this theses we shall seize the ideas from [4, 39, 40, 54] of
the analytic preprocessing of problem (1.1) or (1.2). The article [4] only deals
with the special case of the scalar IVP (1.1), but presents a transformation
which results in a positive power of ε on the right–hand side of (1.3). On the
other hand, in [39, 40, 54] the authors discuss a vector valued version of (1.1),
but the used transformation approach only removes the negative powers of ε and
yields a right–hand side that is O(1) with respect to ε. Thus the asymptotic
behavior with respect to ε is not as accurate as in [4]. In § 3.3 we shall prove
that it is possible (under certain assumptions) to transform the IVP (1.2) into

z′(x) = εnAn(x)z(x) , z(a) = z0 ∈ Cd , (1.4)

with some n ∈ N. Also An(x) has highly oscillatory entries, which are of the
same frequency as those in A(x) of (1.3). We shall prove that our transformation
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ansatz is an extension of the ansatz presented in [4, 54]. It combines and extends
the ideas of both articles. The transformation ansatz in [27] is called super–
adiabatic transformation. It is built on a similar strategy/philosophy as our
approach and yields comparable results. In § 3.3.2 we shall compare it to our
approach and point out the differences. The preprocessing discussed in [59]
seems to be similar to our lowest order transformation.

Since (1.1) is equivalent to a system of type (1.2), it is quite natural to
search also for an asymptotic expansion of the solution of (1.2). In § 3.5 we
shall show that a WKB–type asymptotic expansion of the solution u exists.
The derived, explicit formulas also reveal the connection between the WKB–
expansion and the transformation approach from § 3.3. Let UWKB be a WKB–
type approximation of a fundamental system of solutions of (1.2). It turns out,
that the dominant oscillations of the exact solution u from (1.2) are (essentially)
removed by multiplying u with the (pointwise) matrix inverse of UWKB.

Once the analytic preprocessing is finished, we shall start deriving specially
designed one–step methods to solve the equivalent IVP of type (1.4). At first
we make a finite number of Picard iterations, which yields an approximate (an-
alytic) solution of the IVP. This is also the basis for the methods in [4, 27, 54].
Afterwards we have to find a suitable discretization of the derived expression.
Since An from (1.4) is a matrix valued function with highly oscillatory entries,
we need special quadratures to approximate the occurring highly oscillatory
integrals of the form

I :=

∫ β

α

f(x)e−
i
εϕ(x) dx . (1.5)

Here f, ϕ are smooth, real valued functions with |ϕ′| ≥ δ > 0. In [27, 54]
integrals of type (1.5) are approximated by replacing f, ϕ by their Taylor ap-
proximations up to a certain order. Since this procedure does not take into
account the asymptotic nature of I as ε → 0, the method is not very efficient
compared to most quadratures discussed in § 5. A more sophisticated method
is used for the schemes in [4], the so called shifted asymptotic method. The
presented quadrature is based on the asymptotic method, which can be found
in [38, 37]. Essentially, it describes the asymptotic expansion of I as ε → 0.
We continue the work from [4] and derive an even improved version of the
shifted asymptotic method. Nevertheless, it is still slightly less efficient than
the method, we finally use for our one–step methods. Our quadrature, which
we shall call modified Filon–type method, can be extracted from [60, 61]. It uses
an interpolation approach for f , such that the benefit of the asymptotic method,
i. e. the asymptotically correctness of the quadrature as ε→ 0, is gained. Since
the focus of these articles is on the behavior of I (respectively the quadrature)
as ε → 0, there is no error analysis which takes the length of the integration
interval into account. This gap shall be closed in § 5.

The combination of analytic preprocessing (WKB–type transformation) and
sophisticated quadratures for highly oscillatory integrals yields a “zoo“ of one–
step methods, which are asymptotically correct as ε → 0. I. e., even on a fixed
spatial grid we obtain the right limit as ε→ 0. Here we can observe (for certain
methods) a convergence error of order O(ε2n+1). In the literature we find this
desirable feature for the methods discussed in [4]. The integrators constructed
in [39, 54, 27] only show uniform (spatial) error estimates with respect to ε, but
the error is O(1) as ε→ 0.
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This thesis is organized as follows. In chapter 2 we start with two examples,
which originate from quantum mechanical models of one dimensional semicon-
ductors. We further discuss a procedure to transform (a certain class of) sin-
gularly perturbed second order IVP to first order systems of type (1.2). It is
a slight modification of an approach from [54], which is also presented. The
goal of the following chapter § 3 is the derivation of the analytic preprocessing
of (1.2), see § 3.3. Beside this, in § 3.5 we also derive a WKB–type asymptotic
approximation for the solution of our model problem from § 3.2. Furthermore
we discuss the connection of the derived WKB–type transformation from § 3.3
with the approach from [4] and the super–adiabatic transformation from [27].

The basic idea for the numerical integration procedure of (1.2) is, at first,
to apply the WKB–type transformation and afterwards use the specially de-
signed integrators from § 6. Thus we discuss in chapter 4 a way to (numerically)
approximate the analytic WKB–transformation. We shall not discuss it in its
most general form. We rather fix one set of parameters, which are used for the
numerical experiments in § 7, and derive a discretization for an equidistant and
non–equidistant spatial grid. Additionally we give some remarks on the error
inflicted by the discretized transformation.

If the eigenvalues of L from (1.2) approach each other but do not cross
(avoided eigenvalue crossing), or if the norm of B gets very large compared to
those of 1

εL, then the one–step methods may yield poor results. In this situation
it is necessary to use a step size control strategy. One such algorithm shall be
derive in § 4.4. It is motivated by a similar approach from [27].

Chapter 5 is devoted to the approximation of highly oscillatory integrals of
type (1.5). We start with a brief review of some method in § 5.1. For more
methods and references we refer to the review article [35]. Afterwards, in § 5.2
we specify the quadrature we shall use for the one–step methods and derive
error estimates. Since the quadrature can be transformed such that is looks like
the Filon–type method from [38, 37], we shall call it modified Filon–type method.
Then in § 5.3 we review the shifted asymptotic method from [4] and derive an
improved version of it. The performance of the modified Filon–type method
and the shifted asymptotic methods are illustrated in § 5.4 by some numerical
experiments.

In chapter 6 we derive and discuss the one–step method for equations of type
(1.4). We shall give a detailed analysis of the local error and prove convergence
of the schemes as the (maximum) spatial step size tends to zero. The theo-
retical results are compared with numerical experiments in chapter 7. Chapter
8 contains a collection of technical results from the author, which are used in
different parts of the thesis.

The last chapter 10 has an exceptional position in the whole thesis. Here we
(briefly) discuss ideas to discretize (special) one way wave equations (OWWE).
This equations are connected with the (scalar) Helmholtz equation (HE). In
certain situations the solution of the OWWE is also a solutions of the HE.
Hence it is of interest to have numerical solvers for them. The OWWE is an
evolution equation, whose “spatially dependent part“ contains a square root of
a partial differential operator. This causes some problems for the numerical
treatment. We shall discuss some of the problems in § 10.2. In the following
section § 10.3 we introduce a functional calculus for self–adjoint operators. It is
a non standard approach from [71], which is based on the following idea. Let
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f be a Schwartz function (rapidly decreasing function) and let f̂ be its Fourier
transform. Then it holds for all a ∈ R:

f(a) = 1√
2π

∫

R

f̂(ξ)u(ξ) dx , u(ξ) := eiξa ,

The oscillatory part u of the integrand solves the IVP u′ = ia u, u(0) = 1.
Hence (formally) replacing a by a self–adjoint operator A and u by the unitary
group U , with

U ′ = iAU , U(0) = Id ,

yields a formula for f(A). The functional calculus may be well suited for the
numerical computation of functions of self–adjoint operator. We give a (more
or less) self–consistent proof. Therefore we collected and added a lot of results
from literature, which are only mentioned in [71]. For the proof we also derive
a version of Riesz’ representation theorem, which we were not able to find in
literature. The same holds for the main result from § 10.3.4. In § 10.4 we use the
results from the previous section § 10.3 to (formally) derive explicit formulas for
the square root of an self–adjoint operator and a solution of the OWWE. Fur-
thermore we deduce from our (formal) solution formula a well known transfor-
mation, which connects the solution of the HE with the solution of a Schrödinger
type equation.



Chapter 2

Highly oscillatory ODEs in
application

In this chapter we introduce and briefly discuss some examples of highly oscil-
latory problems. Here the focus lies on the application to quantum mechanics.
In § 2.1 we introduce the Kane–model and k · p–model (two simple multi–band
approaches for 1D semiconductors), along with their open boundary conditions
that are needed in quantum transport applications. These boundary value prob-
lems are then transformed into equivalent initial value problems. The strategy
of transforming the governing equation (2.10) for the two–band k ·p model from
§ 2.1.2 to a first order system is generalized in § 2.2.

There are of course much more applications and problems. For example
in [39, 40] the authors discuss integrators for singularly perturbed Schrödinger
equations, where the time dependent Hamiltonian is modeled a by a finite-
dimensional real symmetric matrix. This type of equations “arise as a compu-
tationally critical subproblem in mixed quantum-classical models of molecular
dynamics [...], in the quantum–classical Liouville equation [...], or in the equa-
tions known as Ehrenfest or QCMD (quantum–classical molecular dynamics)
model [...]” [40]. For more details we refer to the references cited in [39, 40].

In § 2.3 we derive a method to compute and store the Greens function for
linear second order boundary value problems in an efficient way.

2.1 Two–band Schrödinger models

“For several novel semiconductor devices (like resonant interband tunneling
diodes, see [55, 45]) single–band effective mass models become insufficient to
simulate the quantum transport through such a device. Hence, it is getting
ever more important to include realistic band structures in quantum transport
models. In this section we shall discuss two independent, stationary two–band
Schrödinger models (Kane–model and two–band k · p–model) that are used for
simulations of one dimensional semiconductor devices like a resonant tunnel
diode. We assume that the considered semiconductor structure occupies the
interval [a, b] and is connected to reservoirs at x = a and x = b. We also as-
sume that both reservoirs are homogeneous and extend to x = ±∞. So all
material (and energy) parameters are constant in each reservoir, which is hence

7
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populated only by traveling plane waves.

In analogy to [4] we shall discuss in this paper only the numerically challeng-
ing oscillatory regime of traveling waves. The evanescent regime with tunneling
is of course equally important for quantum transport, but the numerical treat-
ment of those smooth wave functions is simpler (and need different tools), and
will not be discussed here. However, WKB-based discretizations of the cou-
pled oscillatory–evanescent situation are currently under investigation, and will
be the topic of an upcoming work. In [46], transparent boundary conditions
(TBCs) for the Kane–model and two–band k · p–model were derived, as well as
discrete TBCs for finite difference schemes. However, such classical schemes are
numerically expensive in the oscillatory case. So it is the goal of this work to
develop a more efficient alternative.” [25]

2.1.1 The Two–Band Kane–Model

A simple multi–band approach is the two–band Kane-model (cf. [43, 46]). This
is an inter-band model, describing the coupled electron transport in the conduc-
tion and the valence bands. Here the vector valued “wave function” ψ(x) ∈ C2

is a solution of the ODE

Hψ = Eψ (2.1)

with

H =

(
V (x) −iεp(x) ddx

−iεp(x) ddx V (x)− Eg(x)

)
.

We denote by E > 0 the prescribed (constant-in-x) injection energy of the
electrons. Here, the potential V is the band edge of the conduction band, and
Eg > 0 is the (x-dependent) band gap between the conduction and the valence
band. The function p > 0 is related to the Kane-parameter. Furthermore, the
real parameter ε > 0 is a small constant, which is often (depending on the model)
proportional to the reduced Planck constant ~. Hence ε shall be assumed to be
very small. The dispersion relation of this Kane model is discussed in detail in
§3.1 of [46].

We want to model a finite semiconductor device on the bounded interval
[a, b]. In order to have unique solutions (if we prescribe initial conditions) we
assume:

Assumption 1. The functions V,Eg, and p are continuous on R and contin-
uously differentiable on [a, b]. Furthermore they are constant on the exterior
domains (−∞, a] and [b,∞).

Remark 2.1.1. To ensure unique solvability of the IVP we could establish
weaker assumptions, for example piecewise1 Lipschitz continuity. Since we shall
transform the derived IVP, such that it fits in a more general framework, we
need more regularity.

1Here, piecewise Lipschitz continuous means that there are finitely many (non trivial)
pairwise disjoint intervals I1, . . . , In such that [a, b] ⊂

⋃n
j=1 Ij and the functions are globally

Lipschitz continuous on each single interval I1, . . . , In.
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We rewrite the ODE (2.1) in the more convenient form

ψ′(x) =
i

ε

(
0 α(x)

β(x) 0

)
ψ(x) , (2.2)

with

α(x) :=
E − V (x) + Eg(x)

p(x)
and β(x) :=

E − V (x)

p(x)
.

We shall consider here a scattering model, subject to a given, incoming plane
wave. Hence, we shall need transparent boundary conditions (TBCs) at both
(artificial) boundary points a, b (as derived in §3.2 of [46]). It will be an in-
homogeneous TBC at the influx boundary of the quantum structure, and a
homogeneous TBC on the opposite side. Let us denote the system matrix of
(2.2) by A. Hence the eigenvalues of A(x) are given by

λ(x) = ± i

ε

√
α(x)β(x)

= ± i

εp(x)

√
(E − V (x) + Eg(x))(E − V (x)) =: ± i k(x) .

If the given injection energy is larger than the conduction band edge, i. e.E −
V (x) > 0 holds on the whole interval [a, b] (and thus on the whole real line),
the eigenvalues λ = ±ik are purely imaginary and hence we only have traveling
waves2. Let v±(x) be (real valued) eigenvectors corresponding to the eigenvalues
λ(x) = ±ik(x). Then the general solution ψ of (2.2) in the exterior domains
reads

ψa(x) = cae
ik(a)(x−a)v+(a) + dae

−ik(a)(x−a)v−(a) (2.3)

for x ≤ a and

ψb(x) = cbe
ik(b)(x−b)v+(b) + dbe

−ik(b)(x−b)v−(b) (2.4)

for x ≥ b with constants ca, cb, da, db ∈ R. From the right exterior domain [b,∞)
we now inject a left traveling electron wave with prescribed amplitude db 6= 0.
Since it has to pass the semiconductor structure (in general) a part of the wave
is reflected. Thus (we expect) cb 6= 0 holds too. Once (a part of) the electron
has passed the semiconductor and reached the constant regime (−∞, a], it will
not be reflected there. Hence there is no right traveling part of the wave at
(−∞, a], i. e.ca = 0. This yields

ψa(x) = dae
ik(a)(x−a) v−(a) .

We denote the solution in the interior domain [a, b] simply by ψ. Due to Assump-
tion 1 the (global) solution on the whole real line is continuously differentiable
in certain open neighborhoods of the boundary points a, b. Hence we get the
homogeneous boundary condition3

ψ(a) = ψa(a) ∈ span(v−(a)) ⇔
(
A(a) + ik(a) Id

)
ψ(a) = 0

⇔ ψ′(a) + ik(a)ψ(a) = 0 .

2One also gets purely imaginary eigenvalues if the energy is smaller than the valence band
edge, i. e. E − V (x) + Eg(x) < 0. This energy corresponds to holes in the valence band, and
the situation would be analogous to the case discussed here.

3span(v) denotes the vector space spanned by v.
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At the right boundary we combine the first derivative ψ′ with ψ to eliminate a
the reflection constant cb. From (2.4) we obtain the inhomogeneous right TBC

ψ′(b) − i k(b)ψ(b) = ik(b)
(
cbv+(b) − dbv−(b)

)

− ik(b)
(
cbv+(b) + dbv−(b)

)

= −2i k(b) db v−(b) .

Thus our BVP with TBC for a left traveling plane wave coming from the exterior
domain [b,∞) with prescribed ”amplitude“ db 6= 0 reads

ψ′(x)−A(x)ψ(x) = 0 , x ∈ [a, b] , (2.5)

ψ′(a) + ik(a) Idψ(a) = 0 (2.6)

ψ′(b)− ik(b) Idψ(b) = −2ik(b)dbv−(b) . (2.7)

In §3.3 of [46] existence and uniqueness of a solution ψ of (2.5)–(2.7) is discussed.
Thus we state without a proof

Lemma 2.1.2. The BVP (2.5)–(2.7) has a unique solution in
(
W 2,∞(a, b)

)2
.

Remark 2.1.3. Since the function ψ satisfies the ODE (2.5) even on the bound-
ary, we can use it to reformulate the boundary conditions (2.6), (2.7): It holds

(
A(a) + ik(a) Id

)
ψ(a) = 0 ,

(
A(b)− ik(b) Id

)
ψ(b) = −2ik(b)dbv−(b) .

We shall now reformulate the BVP (2.5)–(2.7) as an IVP, which is easier to
solve numerically (particularly for our highly oscillatory regime). To this end
we first solve (using the left boundary condition) the IVP

ψ′
−(x) = A(x)ψ−(x) , x ∈ [a, b] , (2.8)

ψ−(a) = v−(a) ∈ C2 .

Due to Assumption 1, any IVP of ODE (2.5) is uniquely solvable. Since ψ has to
fulfill (2.6) (which is equivalent to ψ(a) ∈ span(v−(a))), there exists a constant
c− ∈ R such that ψ(a) = c−v−(a). Hence we get ψ = c−ψ−. To determine
the unknown factor c− we use the remaining boundary condition (2.6). From
Remark 2.1.3 we get

c−
(
A(b)− ik(b) Id

)
ψ−(b) = −2ik(b)dbv−(b) .

The inner product of this equation with v−(b) yields

c− =
−2ik(b)db‖v−(b)‖2

v−(b)T
(
A(b)− ik(b) Id

)
ψ−(b)

=
−2ik(b)db‖v−(b)‖2

v−(b)T
(
ψ′
−(b)− ik(b)ψ−(b)

) .

Analogously we get for a right traveling plane wave in the left exterior domain
(−∞, a] with prescribed ”amplitude” ca 6= 0:

ψ′(x)−A(x)ψ(x) = 0

ψ′(a) + ik(a) Idψ(a) = 2ik(a)cav+(a)

ψ′(b)− ik(b) Idψ(b) = 0 .
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It holds ψ = c+ψ+, where ψ+ solves

ψ′
+(x) = A(x)ψ+(x) , ψ+(b) = v+(b) ∈ C2 .

and

c+ =
2ik(a)ca‖v+(a)‖2

v+(a)T
(
A(a) + ik(a) Id

)
ψ+(a)

=
2ik(a)ca‖v+(a)‖2

v+(a)T
(
ψ′
+(a) + ik(a)ψ+(a)

) .

Recall from (2.2) that the system matrix A(x) is proportional to 1
ε and off-

diagonal. We now aim to transform out the dominant oscillations in the IVP
(2.8). Therefore we have to diagonalize the matrix function A. A simple calcu-
lation yields

v+(x) =

( √
α(x)√
β(x)

)
and v−(x) =

(
−
√
α(x)√
β(x)

)
.

Thus we have A(x) = i
εQ(x)−1L(x)Q(x) with

Q(x)−1 =

( √
α(x) −

√
α(x)√

β(x)
√
β(x)

)
and L(x) =

(
εk(x) 0
0 −εk(x)

)
.

Note that the matrix valued functions Q and L are actually independent of ε.
Since it holds

Qv− =
1

2
√
αβ

( √
β

√
α

−√
β

√
α

)(
−√

α√
β

)
=

(
0
1

)
,

the ansatz u := Qψ− yields the IVP

u′(x) =
i

ε
L(x)u(x) + B(x)u(x) , x ∈ [a, b] , (2.9)

u(a) =

(
0
1

)
,

with B := Q′Q−1. The same transformation also works for the other case of a
right traveling plane wave with prescribed amplitude ca in (−∞, a]. We only
have to replace the initial condition by u(b) = (1, 0)T .

2.1.2 The two–band k · p–model

In this section we discuss a slightly more involved inter-band model for the
coupled quantum transport in the conduction and the valence bands (cf. [5, 45]).
A different inter-band k · p–model is analyzed in §4 of [46]. And for extended
multi–band k · p–models (including the intra-band coupling of heavy and light
holes within the valence band) we refer to [42], §6 of [45], and §5 of [46]. In
our two–band model, the “wave function” ψ = (ψ1, ψ2)

T ∈ C2 solves a 2 × 2
Schrödinger boundary value problem

H(x)ψ(x) = E ψ(x) , x ∈ (a, b) (2.10)

ψ′(a)−Ka(E)ψ(a) = 0 (2.11)

ψ′(b)−Kb(E)ψ(b) = r ∈ C2 , (2.12)
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with the Hamiltonian

H := − ε2
∂2

∂x2
+ ε P (x)

∂

∂x
+

(
V (x) 0
0 V (x) − Eg(x)

)

and

P (x) :=

(
0 ip(x)

ip(x) 0

)
.

The real parameter ε > 0 is a small constant, which is often (depending on the
model) proportional to the reduced Planck constant ~. By E we denote the
given injection energy of the particles. The potential V (x) is the band edge of
the conduction band, and Eg(x) > 0 is the energy gap between the conduction
and the (light hole) valence bands. Further, p(x) > 0 is the coupling coefficient
(related to the Kane-parameter) between the two bands. We remark that (2.10)-
(2.12) is a scattering problem with given E, and not an eigenvalue problem. As
for the Kane model in § 2.1.1 Assumption 1 should hold.

The matrices Ka, Kb ∈ C2×2 and the vector r in (2.11), (2.12) constitute the
TBCs for the two–band k · p–model. (2.12) models the injection of plane waves
at x = b. Their derivation follows the same strategy as for the Kane model in
§ 2.1.1. But for the more involved details we refer to [5].

The self-consistent potential V is the solution of the following Poisson prob-
lem:

V ′′(x) = n(x) , x ∈ (a, b) ,

V (a) = V1 > 0 ,

V (b) = 0 .

The charge density n is defined by

n(x) =

∫ ∞

0

f(E) |ψ(x,E)|2 dE ,

for a prescribed function f that models the semiconductor statistics. Well-
posedness of this nonlinear BVP is established in Th. 2.2 of [5].

If one is interested in a numerical approximation of n(x) or of the current
density

j(x) =

∫ ∞

0

f(E)
(
− Im〈ψ′, ψ〉+ 2pRe(ψ1ψ2)

)
(x,E) dE ,

one has to use an iterative scheme, like the Gummel method, to solve the non-
linear problem. In each step one has to calculate a suitable approximation for
the charge density n, and hence one has to solve (2.10) for a large number of
(discrete) energies. Since 0 < ε ≪ 1 is a small constant the wave function ψ is
highly oscillatory for E > ‖V ‖∞. In order to speed up the calculations it is very
useful to have a numerical scheme that produces an accurate approximation for
ψ, without having to resolve all oscillations of the wave function.

It is often more convenient to solve, instead of a BVP, an equivalent initial
value problem. As we will see in a moment, it is possible to determine the
solution ψ of the BVP (2.10)–(2.12) from just one matrix valued IVP-solution.
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Due to Assumption 1, the functions p, V and Eg are Lipschitz continuous on
[a, b]. Hence the IVP 4 for a matrix-valued wave function Φ(x) ∈ C2×2,

H(x)Φ(x) = EΦ(x) , x ∈ (a, b), (2.13)

Φ(a) = Id, (2.14)

Φ′(a) = Ka , (2.15)

has a unique solution. Further, it holds for every vector valued solution φ of

H(x)φ(x) = Eφ(x) , x ∈ (a, b), (2.16)

φ′(a)−Kaφ(a) = 0 ,

that φ(x) = Φ(x)φ(a). Since the solution ψ of the BVP (2.10)–(2.12) solves
(2.16), we can write ψ(x) = Φ(x)ψ(a). Hence we get from the remaining right
boundary condition (2.12)

(
Φ′(b)−KbΦ(b)

)
ψ(a) = r .

Since the BVP (2.10)–(2.12) is well-posed (cf. [45], Prop. 2.1), the above
equation has a unique solution which yields ψ(a) and consequently ψ.

As we have seen, the solution ψ of the BVP (2.10)–(2.12) is (uniquely)
determined by the solution Φ of the IVP (2.13)–(2.15). Thus in the sequel we
shall derive and discuss an efficient numerical method to solve the IVP for the
(vector valued) equation (2.16). Since each column of Φ is a solution of (2.13) we
further restrict ourself to vector valued solutions, in order to simplify notation.
All results derived below also hold for matrix valued solutions.

The ODE of the IVP (2.13) Equation (2.16) for φ ∈ C2 takes the form

ε2φ′′ − εP (x)φ′ +A(x)φ = 0 , (2.17)

with A(x) := diag(E − V (x), E − V (x) + Eg(x)). For E > ‖V ‖∞ the matrix
A(x) is positive definite for all x ∈ [a, b]. Now we want to rewrite (2.17) as a
first order IVP, with the same form as (2.9). To this end we set

v1 := A
1
2φ , v2 := εφ′ ,

which yields for v(x) = (v1(x), v2(x))
T ∈ C4:

v′ =
1

ε

(
0 A

1
2

−A 1
2 P

)
v +

(
A

1
2
′
A− 1

2 0
0 0

)
v , (2.18)

v(a) =

(
A

1
2 (a)
εKa

)
.

Let us denote by L̃ the first matrix of (2.18). Since P (x) is skew–symmetric
for all x ∈ [a, b], the same holds for L̃. Hence there exists a matrix function
Q : [a, b] → C4×4, such that for all x ∈ [a, b] it holds (cf. § 2.1.2)

L̃(x) = iQ∗(x)L(x)Q(x) ,

4Simply rewrite the IVP as a first order IVP to prove existence and uniqueness of Φ.
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with L(x) real and diagonal. Finally we set

u(x) := Q(x) v(x) ∈ C4 ,

which yields

u′ =
i

ε
Lu+Bu , u(a) = u0 , (2.19)

with

B(x) = Q′(x)Q∗(x) +Q(x)

(
A

1
2
′
(x)A− 1

2 (x) 0
0 0

)
Q∗(x) .

Of course, the above transformation procedure is not limited to the special case
(2.10). One can apply it to any ODE of type (2.17) with P (x) skew–symmetric
and A(x) positive definite (see § 2.2).

The matrix Q for the two–band k · p–model

For the two band k · p–model we can explicitly compute the transformation Q
and the eigenvalues of L̃ (cf. (2.18)). The matrix L̃ is given by

L̃ =




0 0
√
E1 0

0 0 0
√
E2

−√
E1 0 0 ip
0 −√

E2 ip 0


 ,

where we set E1 = E − V and E2 = E − V + Eg. We use Maple 14 to derive
the characteristic polynomial χ and get

χ(λ̃) = λ̃4 + (p2 + E1 + E2)λ̃
2 + E1E2 .

Hence the eigenvalues are

λ̃ = ± i√
2

√
p2 + E1 + E2 ±

√
(p2 + E1 + E2)2 − 4E1E2 .

Again with Maple 14 we compute a corresponding eigenvector vλ for the eigen-
value λ, which is

vλ̃ =

(
− i

√
E1pE2

λ̃2(λ̃2 + p2 + E1)
,

√
E2

λ̃
, − ipE2

λ̃(λ̃2 + p2 + E1)
, 1

)T
.

Since λ̃ is a root of χ we get

λ̃2(λ̃2 + p2 + E1) = −E2(λ̃
2 + E1) ,

which yields

vλ̃ =

(
ip
√
E1

λ̃2 + E1

,

√
E2

λ̃
,

ipλ̃

λ̃2 + E1

, 1

)T
.
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Let iλ1, . . . , iλ4 be the four pairwise different eigenvalues of L̃, e. g.

λ1 :=
1√
2

√
p2 + E1 + E2 +

√
(p2 + E1 + E2)2 − 4E1E2

λ2 :=
1√
2

√
p2 + E1 + E2 −

√
(p2 + E1 + E2)2 − 4E1E2

λ3 := − 1√
2

√
p2 + E1 + E2 +

√
(p2 + E1 + E2)2 − 4E1E2

λ4 := − 1√
2

√
p2 + E1 + E2 −

√
(p2 + E1 + E2)2 − 4E1E2

and let v1, . . . , v4 be the corresponding eigenvectors, i. e.vj = viλj . Then it holds

L̃ = i Q∗LQ ,

with L = diag(λ1, . . . , λ4) and

Q =

(
v1

‖v1‖
, . . . ,

v4
‖v4‖

)∗
.

2.2 Singularly perturbed second order ODE

Let ε0 > 0 and let [a, b] ⊂ R be a non–trivial bounded interval with x0 ∈ [a, b].
Further let Ω := [a, b] × (0, ε0) be the domain of the matrix valued functions
A,P : Ω → Cd×d and the vector valued function g : Ω → Cd. We assume that
P (x, ε) is skew symmetric and A(x, ε) is positive definite for all (x, ε) ∈ Ω.
Additionally we assume that A is uniformly coercive on its domain Ω, i. e. there
exists a constant cA > 0 such that it holds for all (x, ε) ∈ Ω:

v∗A(x, ε)v ≥ cAv
∗v for all v ∈ Cd .

The reformulated Kane– and two–band k · p–model from § 2.1.1 and § 2.1.2 re-
spectively are the motivation for our Model Problem 1 from § 3.2. As announced
in the end of § 2.1.2 the transformation procedure used for the two–band k · p–
model is not limited to that special case. In this section we extend the ansatz
to the larger class of singularly perturbed (vector valued) second order IVP of
the form

ε2ψ′′ − εPψ′ + Aψ = g , (2.20)

ψ(x0) = ψ0 ∈ Cd ,

ψ′(x0) = ψ1 ∈ Cd .

Here we assume that for fixed ε ∈ (0, ε0) the matrix and vector valued functions
P,A, f are smooth (with respect to x) and all their x–derivatives are uniformly
bounded with respect to ε. For the applications we have in mind (e. g. the two–
band k ·p model from § 2.1.2), ε is a very small positive constant. The following
transformation is constructed such that the 1

ε part of the resulting system ma-
trix is skew–symmetric. This term determines the dominant oscillations, of the
solution of the transformed and ’original’ problem (2.20) respectively, with fre-
quency ∼ ε and amplitudes of order O(1) as ε → 0. For the case P = 0 we
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present a modified version of a reformulation strategy, which is already discussed
in [54].

Since A(x, ε) is positive definite the Cholesky decomposition exists, cf. [67,
68]. I. e. there exists a unique upper triangular matrix5 L(x, ε) with positive
diagonal elements, such that

A(x, ε) = L(x, ε)∗ L(x, ε) .

The entries of L(x, ε) are constructed row by row as follows (cf. [67]):

• for i = j set

Lii =

(
Aii −

i−1∑

k=1

|Lki|2
) 1

2

• then successively compute for i < j

Lij =
1

Lii

(
Aij −

i−1∑

k=1

Lki Lkj

)
.

Due to construction of L(x, ε), we deduce that the matrix valued function L

has the same smoothness properties as A. Further L(x, ε) is regular for all
(x, ε) ∈ Ω. Hence we can make the ansatz:

ũ1 := Lψ , ũ1 := εψ′ , (2.21)

which yields

ũ′ =
1

ε

(
0 L

−L∗ P

)
ũ +

(
L′L−1 0

0 0

)
ũ +

1

ε

(
0
g

)
, (2.22)

ũ(x0) = ũ0 :=

(
Lψ0

εψ1

)
. (2.23)

Since P (x, ε) is skew symmetric, the same holds for the first matrix of (2.22),
which we denote by L̃. Hence there exists a unitary matrix Q(x, ε) and a real
diagonal matrix L(x, ε) such that

L̃(x, ε) = Q(x, ε)∗ iL(x, ε)Q(x, ε) .

If (for fixed ε) A is differentiable this also holds for the matrix valued function
L̃. Unfortunately this does not have to hold for the matrix valued function Q,
as the following example illustrates.

Example 2.2.1. Let x ∈ (−1, 1) and let M : (−1, 1) → R2×2 defined by

M(x) :=

(
x+ 2 x
x x+ 4

)
.

5Here we changed the classical notation for the Cholesky decomposition A = LL∗ in order
to simplify the notation of the transformed equation.
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The matrix valued function M is obviously differentiable, with even analytic
components. Furthermore M(x) is symmetric and hence diagonalizable with
eigenvalues

λ1(x) = x + 3 −
√
1 + x2 , λ2(x) = x + 3 +

√
1 + x2

and corresponding eigenvectors6

v1(x) =

( x
1−

√
1+x2

1

)
, v2(x) =

( x
1+

√
1+x2

1

)
.

To get a diagonalization of the matrix M(x) = Q(x)∗Λ(x)Q(x) with a unitary
transformation Q(x) we simply have to set

Q(x) :=

(
v1(x)

‖v1(x)‖
,

v2(x)

‖v2(x)‖

)∗
.

Unfortunately the first component of v1(x) has a pole at x = 0. With the rule
of de l’Hospital (cf. [23]) one gets

lim
xց0

v1,1(x) = −∞ , lim
xր0

v1,1(x) = ∞ .

Hence the first component of v1
‖v1‖ has a jump at x = 0 and is consequently not

continuous:

lim
xց0

v1,1(x)√
v1(x)2 + 1

= −1 , lim
xր0

v1,1(x)√
v1(x)2 + 1

= 1 .

In this example the problem for Q can be fixed by piecewise definition. With v1
also −v1 is an eigenvector with respect to the eigenvalue λ1. Hence we can set

Q(x) :=

(
sgn(v1(x))

v1(x)

‖v1(x)‖
,

v2(x)

‖v2(x)‖

)∗
.

This matrix valued function is continuously differentiable.

As we have seen in the above Example 2.2.1, where we start with analytic
components and get a discontinuous transformation Q, the smoothness of L̃
does not automatically guarantee smoothness of Q. Hence, in order to continue
with a further transformation we need

Assumption 2. The matrix valued function Q has the same smoothness prop-
erties as A.

Thus, now we can make the ansatz u := Q ũ and the IVP (2.22)–(2.23) trans-
forms into

u′ =
i

ε
Lu + Bu +

1

ε
f , u(x0) = Q(x0)ũ0 ,

with

B := Q′Q−1 + Q

(
L′L−1 0

0 0

)
Q−1 , and f := Q

(
0
g

)
.

The negative ε–order of the inhomogeneity is no drawback of the method. It
can be replaced in a constructive way (with an additional transformation), such
that the new inhomogeneity is of positive order with respect to ε. For the details
we refer to § 3.4.

6Computed with Maple 14.
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2.2.1 A special case discussed by Lorenz et al. [54]

In this section we consider the special of (2.20), where we set P = 0. Since A is
positive definite, there exists a unique positive definite square root of A. Hence
we can replace the first transformation (2.21) by

ũ1 := A
1
2Ψ , ũ1 := εΨ′ , (2.24)

which yields

ũ′ =
1

ε

(
0 A

1
2

−A 1
2 0

)
ũ +

(
(A

1
2 )′A− 1

2 0
0 0

)
ũ . (2.25)

To compute7 A
1
2 one can use a diagonalization of A. Since A is real and sym-

metric we can write A = U∗ΛU with U unitary and Λ diagonal, e. g.

Λ(x) = diag
(
λ1(x) Idµ1 , . . . , λσ(x) Idµσ

)
.

We denote the vector of geometrical multiplicities (µ1, . . . , µσ) by µ. Since it
holds

(
i 1
1 i

)(
0 1
−1 0

)(
−i 1
1 −i

)
=

(
2i 0
0 −2i

)

the matrix

Q(x) :=
1√
2

(
i 1
1 i

)
⊗ U(x) (2.26)

diagonalize the first matrix of (2.25), which we denote L̃. Further it holds

(
i 1
1 i

)(
1 0
0 0

)(
−i 1
1 −i

)
=

(
1 i
−i 1

)

and hence the variable transformation u = Qũ yields

u′ =
i

ε

(
Λ

1
2 0

0 −Λ
1
2

)
u + Bu +

1

ε
Q

(
0
g

)
,

with

B =

(
1 0
0 1

)
⊗ (U ′U∗) +

1

2

(
1 i
−i 1

)
⊗
(
U(A

1
2 )′A− 1

2U∗). (2.27)

An advantage of this approach is that one can use the diagonalization of A
to diagonalize the matrix L̃, i. e. L̃ = iQ∗LQ. The vector ν of geometrical
multiplicities for the eigenvalues of L is given by ν = (µ1, . . . , µσ, µ1, . . . , µσ)
and consequently s = 2σ.

Up to know (beside the adaption of notation) we followed the discussion
from [54]. In the article the authors consider the case where the multiplicities
of the eigenvalues are equal to one. Since we allow larger eigenspaces, we have

7It is also possible to compute A
1
2 without knowing the diagonalization of A. For example

the Matlab function sqrtm is based on an algorithm which uses the Schur form of A. See [11]
for more details.
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to invest some additional work to adapt the approach from the article to our
slightly more general setting. This is done in the following paragraph which
results in Remark 2.2.3.

The ν–diagonal part of B plays an important role for the WKB–type trans-
formation in § 3.3 (cf. Remark 3.3.2). It determines the 0th order of the trans-
formation with respect to ε. The following consideration shows that we can
choose the matrix valued function U , such that the ν–diagonal part of B is a
simple diagonal matrix. For a moment let us go back to the diagonalization of
A and let W be a unitary matrix, which commutes with Λ, i. e. diagµ(W ) =W .
Hence we can write

A = U∗ΛU = U∗W ∗ΛWU .

Thus we can also use WU instead of U to construct Q (see (2.26)). If we do so,
we have to deal with the matrix

(WU)′(WU)∗ = W ′W ∗ + WU ′U∗W ∗

to construct the matrix B. Since W commutes with Λ it holds

diagµ
(
(WU)′(WU)∗

)
= W ′W ∗ + W diagµ

(
U ′U∗)W ∗ .

Furthermore we observe that

0 = Id′ = (U∗)′U + U∗U ′ ⇔ U∗U ′ = −(U∗)′U = −(U∗U ′)∗

which means that U∗U ′ is skew symmetric. Hence diagµ
(
U ′U∗) is skew sym-

metric too.

Remark 2.2.2. Let M : I → Cd×d be a skew symmetric matrix and let W be
the unique solution of the IVP

W ′(x) = W (x)M(x) , W (x0) = Id .

Then W (x) is unitary for all x ∈ I.

Proof. It holds

(WW ∗)′ = W ′W ∗ + W (W ∗)′ = WMW ∗ + W (WM)∗

= WMW ∗ + WM∗W ∗ = WMW ∗ − WMW ∗ = 0 .

Hence WW ∗ is constant and due to the initial condition it is WW ∗ = Id.

Due to Remark 2.2.2 we can choose W to be the solution of the IVP

W ′ = −W diagµ(U
′U∗) , W (x0) = Id , (2.28)

which yields

diagµ
(
(WU)′(WU)∗

)
= 0 .

Remark 2.2.3. Thus, without restriction of generality, we can choose the ma-
trix valued function U such that

diagµ(U
′U∗) = 0 . (2.29)
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Now we come back to the matrix B. Due to (2.29) the µ–diagonal part of B is
determined by the second matrix of (2.27). It follows

U(A
1
2 )′A− 1

2U∗ = U(U∗Λ
1
2U)′U∗Λ− 1

2

= U(U∗)′ + (Λ
1
2 )′Λ− 1

2 + Λ
1
2U ′U∗Λ− 1

2

= −U ′U∗ + 1
2 Λ

′Λ−1 + Λ
1
2U ′U∗Λ− 1

2 (2.30)

and we get

diagν(B) =

(
1 0
0 1

)
⊗
(
1
4Λ

′ Λ−1
)
.

Hence the IVP for the quantity T from Remark 3.3.2 reads

T ′ =

(
1 0
0 1

)
⊗
(
1
4Λ

′Λ−1
)
T ,

T (x0) = Id ,

and has the unique solution

T (x) =

(
1 0
0 1

)
⊗
(
Λ

1
4 (x)Λ− 1

4 (x0)
)
. (2.31)

If all geometric multiplicities of the eigenvalues of A are equal to one, then
diagν(B) = diag(B). Since A is real, we can always choose U to be a real,
orthogonal matrix. As we have seen before U ′U∗ is skew symmetric and con-
sequently the diagonal of it must be zero. Thus, in this case we (even) do not
have to solve an IVP (cf. discussion above that lead to (2.28)) to get a correct
transformation U . Hence the accuracy of the 0th–order transformation is (only)
determined by the accuracy of the diagonalization of A.

2.3 Linear second order BVPs

As we have seen in § 2.1.2, we can construct the solution of the two–band k · p–
model, which is a BVP, from the solution of an appropriate IVP. This procedure
is not limited to this special example. In this section we present a method to
construct the solution of a special class of BVPs from corresponding IVPs. This
is an extension of the procedure described in [63], p. 111 ff. for the scalar case.

Let Ka
1 ,K

a
2 ,K

b
1,K

b
2 ∈ Cn×n and let A,P : [a, b] → Cn×n and f : [a, b] → Cn.

We consider the following vector valued Robin–, mixed or third type boundary
value problem (BVP):

yxx(x) + P (x) yx(x) +A(x) y(x) = f(x) , x ∈ (a, b) (2.32)

Ka
1 y(a) +Ka

2 yx(a) = ra ∈ Cn , (2.33)

Kb
1 y(b) +Kb

2 yx(b) = rb ∈ Cn . (2.34)

In this section we do not discuss solvability conditions for the BVP (2.32)–(2.34).
Thus we need

Assumption 3. The system (2.32)–(2.34) has a unique solution and we assume
that A,P, f and the boundary data are such that the subsequent BVPs and IVPs
in § 2.3.1 are uniquely solvable.
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In this case it is quite obvious that we can write

y(x) = yB(x) + yS(x) , x ∈ [a, b] ,

where yB, yS are the unique solutions of

yBxx(x) + P (x) yx(x) +A(x) yB(x) = 0 , x ∈ (a, b) (2.35)

Ka
1 y

B(a) +Ka
2 y

B
x (a) = ra ,

Kb
1 y

B(b) +Kb
2 y

B
x (b) = rb .

and

ySxx(x) + P (x) yx(x) +A(x) yS(x) = f(x) , x ∈ (a, b) (2.36)

Ka
1 y

S(a) +Ka
2 y

S
x (a) = 0 ,

Kb
1 y

S(b) +Kb
2 y

S
x (b) = 0 .

The solution of (2.36) can be constructed as follows. LetG : [a, b]×[a, b] → Cn×n

be continuous such that for every ξ ∈ (a, b) it holds (in the classical sense)

Gxx(x, ξ) + P (x)Gx(x, ξ) +A(x)G(x, ξ) = 0 , x ∈ (a, b)\{ξ} (2.37)

Ka
1 G(a, ξ) +Ka

2 Gx(a, ξ) = 0 (2.38)

Kb
1 G(b, ξ) +Kb

2 Gx(b, ξ) = 0 (2.39)

Gx(ξ, ξ−)−Gx(ξ, ξ+) = Id ∈ Cn×n . (2.40)

Then (if G exists) yS is pointwise given by

yS(x) :=

∫ b

a

G(x, ξ)f(ξ) dξ .

The map G is the Greens function of the BVP with homogeneous boundary
conditions.

Formal proof. Let A,P and f be continuous. Hence G(·, ξ) is a classical solution
of (2.37) on the intervals (a, ξ) and (ξ, b). This yields

d

dx
yS(x) =

d

dx

(∫ x

a

G(x, ξ)f(ξ) dξ +

∫ b

x

G(x, ξ)f(ξ) dξ

)

=
(
G(x, x−)−G(x, x+)

)
f(x) +

∫ b

a

Gx(x, ξ) f(ξ) dξ

Since G is continuous the first summand is zero which yields

d2

dx2
yS(x) =

d

dx

(∫ x

a

Gx(x, ξ)f(ξ) dξ +

∫ b

x

Gx(x, ξ)f(ξ) dξ

)

=
(
Gx(x, x−)−Gx(x, x+)

)
f(x) +

∫ b

a

Gxx(x, ξ) f(ξ) dξ .

Hence yS is two times continuously differentiable and we get

ySxx(x) + P (x)ySx (x) +A(x) yS(x)

=
(
Gx(x, x−)−Gx(x, x+)

)
f(x)

+

∫ b

a

(
Gxx(x, ξ) + P (x)Gx(x, ξ) +A(x)G(x, ξ)

)
f(ξ) dξ

= f(x) .
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Since

ySx (x) =

∫ b

a

Gx(x, ξ) f(ξ) dξ

we immediately see that yS fulfill the homogeneous boundary conditions (2.38)
and (2.39) .

Another possible decomposition of y is as follows: Let yS be the unique solution
of the IVP

ySxx(x) + P (x) ySx (x) +A(x) yS(x) = f(x) , x ∈ (a, b)

yS(a) = 0 ,

ySx (a) = 0

and let yB be the solution of

yBxx(x) + P (x) yBx (x) +A(x) yB(x) = 0 , x ∈ (a, b)

Ka
1 y

B(a) +Ka
2 y

B
x (a) = ra ,

Kb
1 y

B(b) +Kb
2 y

B
x (b) = rb −Kb

1 y
S(b)−Kb

2 y
S
x (b) .

Obviously y = yS+ yB solves the inhomogeneous differential equation (2.32) on
(a, b) and fulfills the boundary conditions (2.33), (2.34).

In the following sections § 2.3.1 and § 2.3.2 we show how to compute yB and
the Greens function G from the solutions of suitable IVPs.

2.3.1 Deriving yB from IVPs

Let us define the vectors p := yB(a) and q := yBx (a). Then the boundary
condition of (2.35) at x = a, i. e.

Ka
1p + Ka

2 q = ra ∈ Cn , (2.41)

can be rewritten as

Ma

(
p
q

)
:=

(
Ka

1 Ka
2

)( p
q

)
= ra , (2.42)

Let us forget for moment that p and q are connected with the solution y of the
BVP (2.35). Since Ma ∈ Cn×2n, it has a non trivial kernel. Let us assume that
the vectors

(
p1

q1

)
, . . . ,

(
pm

qm

)

are a basis of the kernel of Ma, which we can compute (e. g.) with Gauss
elimination. Furthermore let

(
p̃
q̃

)

be an inhomogeneous solution of (2.42), which can be computed together with
the basis of the kernel. Hence the general solution of (2.42) is given by

(
p
q

)
=

(
p̃
q̃

)
+

(
p1 . . . pm

q1 . . . qm

)
c ,
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with c ∈ Cm. Since (yB(a), yBx (a))
T is a solution of (2.41) there exists a unique

vector cB ∈ Cm such that
(
yB(a)
yBx (a)

)
=

(
p̃
q̃

)
+

(
p1 . . . pm

q1 . . . qm

)
cB .

A priori we do not know the data of yB at x = a, but we can compute the
vectors on the right–hand side. Let ỹ, y1, . . . , ym be the unique solutions of the
following initial value problems:

ỹxx(x) + P (x) ỹx(x) +A(x) ỹ(x) = 0 , x ∈ (a, b)

ỹ(a) = p̃ ,

ỹx(a) = q̃

and for j = 1, ...,m

yjxx(x) + P (x) yjx(x) +A(x) yj(x) = 0 , x ∈ (a, b)

yj(a) = pj ,

yjx(a) = qj .

We define

Y (x) :=
(
y1(x) . . . ym(x)

)
.

By Assumption 3 yB is the unique solution of (2.35) and hence

yB = ỹ + Y cB ,

with the not yet known vector cB. Since yB also has to fulfill the boundary
condition at x = b we get

Kb
1

(
ỹ(b) + Y (b) cBj

)
+ Kb

2

(
ỹx(b) + Yx(b) c

B
j

)
= rb .

This is a linear equation for cB which has a unique solution since yB is the
unique solution of (2.35).

2.3.2 Deriving the Greens function from IVPs

With the same ideas as in § 2.3.1 we shall construct the Greens function G,
which is the solution of the BVP (2.37)–(2.40). Therefor we have to solve a
suitable set of IVP. Let

(
p1a
q1a

)
, . . . ,

(
pma
a

qma
a

)
,

(
p1b
q1b

)
, . . . ,

(
pmb

b

qmb

b

)
∈ C2n

be corresponding kernel bases of the matrices
(
Ka

1 Ka
2

)
∈ Cn×2n and

(
Kb

1 Kb
2

)
Cn×2n .

Furthermore let ya,1, . . . , ya,ma and yb,1, . . . , yb,mb be the (corresponding) unique
solutions of the IVPs

ya,jxx (x) + P (x) ya,jx (x) +A(x) ya,j(x) = 0 , x ∈ (a, b)

ya,j(a) = pja ,

ya,jx (a) = qja
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and

yb,jxx (x) + P (x) yb,jx (x) +A(x) yb,j(x) = 0 , x ∈ (a, b)

yb,j(a) = pjb ,

yb,jx (a) = qjb .

We define for all x ∈ [a, b]

Y a(x) :=
(
ya,1(x) . . . ya,ma(x)

)
∈ Cn×ma ,

Y b(x) :=
(
yb,1(x) . . . yb,mb(x)

)
∈ Cn×mb .

Since G(·, ξ) solves the homogeneous boundary conditions at x = a we deduce
from the unique solvability that there exists a matrix8 Ca(ξ) ∈ Cma×n such
that

G(x, ξ)|[a,ξ) = Y a(x)Ca(ξ) .

Analog we get from the right boundary a matrix Cb(ξ) ∈ Cmb×n such that

G(x, ξ)|(ξ,b] = Y b(x)Cb(ξ) .

Since G is assumed to be continuous on [a, b]× [a, b] and fulfills the jump con-
dition (2.40) we get the following linear system

(
Y a(ξ) −Y b(ξ)
Y ax (ξ) −Y bx (ξ)

)(
Ca

Cb

)
=

(
0
Id

)
. (2.43)

Hence the matrix valued functions Y a, Y b contain the whole information one
needs to construct G.

Remark 2.3.1. In application it can be of interest to store the values of the
Greens function at certain grid points x1, . . . , xl. Since the Greens function has
two arguments and maps to Rn×n or Cn×n, one has to store l2n2 scalar complex
or real numbers. Of course, the storage cost may be (approximately) reduced by
a factor one half, if the Greens function is symmetric in its arguments, but it
stays quadratic in l.

On the other hand side, as we have seen above, we can construct the Greens
function from the matrix functions Y a, Y b. Hence the amount of storage we need
to construct the Greens function for l grid points is given by l(ma+mb)n scalar
complex or real numbers. This is only linear in the crucial variable l instead
of quadratic as for the storage of the whole matrix. Here we trade storage for
computational speed.

8Each column of G(·, x′) solves the vector valued IVP and hence is a linear combination
of the kernel bases vectors.



Chapter 3

Analytic preprocessing:
WKB–type transformations

The WKB method, named after the physicists Gregor Wentzel, Hendrik An-
thony Kramers [47], and Leon Brillouin, is an approach to determine the asymp-
totic behavior (as ε→ 0) of the scalar stationary Schrödinger equation

ψ′′(x) +
1

ε2
a(x)ψ(x) = 0 . (3.1)

For a(x) 6= 0 one gets the first–term approximation of the general solution ψ
from (3.1) (cf. [32] p.162f)

ψ(x) ∼ a(x)−
1
4

(
c1e

i
ε

∫ x
x0

√
a(s) ds

+ c2e
− i

ε

∫ x
x0

√
a(s) ds

)
. (3.2)

Thus, if a(x) > 0, the solution is oscillatory and the local wave length tends to
zero as ε → 0. Hence ψ gets more and more oscillatory. The high oscillations
are due to the O(ε−2) term in the ODE (3.1). Hence our aim is to find a
reformulation of the ODE, such that these (or equivalent terms) are eliminated
in the gained ODE. In the sequel we are only interested in the highly oscillatory
case, i. e. a(x) > 0.

Equation (3.1) can be transformed, such that it fits into the setting of § 3.2
(cf. § 2.2). Thus we expect to find an asymptotic expansion of our Model
Problem 1, which is the vector valued analogon (or at least very closely related)
to the classical WKB method. For vector valued systems of form (3.1) (replace
a(x) by a positive matrix A(x)), we shall find an expansion similar to (3.2)
(cf. Remark 3.5.8). This work is done in § 3.5. The transformation derived in
§ 3.3 could also be established with the WKB–type expansion from § 3.5 (see
Remark 3.5.12). This is the reason why we call it WKB–type transformation. It
transforms a linear first order ODE with a system matrix of O(ε−1) to a linear
first order ODE with a system matrix of O(εn) for some n ∈ N. The price we
have to pay for this are highly oscillatory entries in the gained system matrix.
Due to this we shall need specially designed quadratures to derive our efficient
marching methods in 6.

In § 3.4 we briefly describe an approach to transform an inhomogeneous ODE
to a more convenient form in the spirit of § 3.3. It is based on the WKB–type
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transformation. Since dealing with matrix equations needs a lot of notation, we
assign the first section § 3.1 to this topic. There we also prove some technical
results, which we shall use in the later upcoming discussions. Finally we give in
§ 3.6 a (very) brief introduction to asymptotic approximations, as done in [32].

3.1 Notation and technical results

We use this section to introduce our notations and shall prove some technical
results.

The natural numbers including zero are denoted by N0, i. e. N0 := N ∪ {0}.
By R+ we denote the strict positive real numbers, i. e. R+ = {x ∈ R|x > 0}.
Furthermore R+

0 = R+ ∪ {0} denotes the nonnegative real numbers. The real
and complex numbers excluded 0 are denoted by R∗ and C∗ respectively.

By ‖ · ‖ we denote the Euclidean norm on Cd and the subordinated matrix
norm on Cd×d respectively. Let I ⊂ R be a closed non empty bounded interval.
For continuous maps M : I → Cd or M : I → Cd×d we define

‖M‖∞ := sup
x∈I

‖M(x)‖ . (3.3)

The space Cj(I,Cd×d) of j-times continuously differentiable matrix valued
functions M : I → Cd×d is also denoted by Cj(I). Further we set

‖M‖Ck(I) := max
j=0,...,k

‖M (j)‖∞ .

Lemma 3.1.1. Let I ⊂ R and let M : I → Cd×d be regular for all x ∈ I. If M
is differentiable at x ∈ I, then M−1 is differentiable at x too and the following
holds:

(
M−1(x)

)′
M(x) = −M−1(x)M ′(x) (3.4)

Proof. It is detM(ξ) 6= 0 for all ξ ∈ I and hence (detM(ξ))−1 is differentiable
in x. By Cramer’s rule (cf. [7]) we get the differentiability of M−1 at x. Hence
we can apply the product rule on M−1M which yields

0 = Id′ =
(
M−1M)′(x) = M−1(x)′M(x) + M−1(x)M ′(x) .

Corollary 3.1.2. Let the matrix valued function M : I → Cd×d be regular for
all x ∈ I. If M ∈ Cr(I,Cd×d) the same holds for M−1. Furthermore

(
M−1)′ = −M−1M ′M−1 . (3.5)

Proof. From equation (3.4) we immediately get
(
M−1)′ = −M−1M ′M−1. Us-

ing this formula and Lemma 3.1.1 we inductively see that M−1 is n-times con-
tinuously differentiable.

For the upcoming computations it is important that the involved quantities
are bounded independent of the small parameter ε.

Definition 3.1.3. Let ε0 > 0 and r ∈ N. The function M : I × (0, ε0) → Cd×d

is called Cn–bounded independently of ε if and only if
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(i) ∀ ε ∈ (0, ε0) : M(·, ε) ∈ Cn(I),

(ii) ∃ c > 0 ∀ ε ∈ (0, ε0) ∀ j ∈ {0, . . . , n} : ‖M (j)(·, ε)‖∞ ≤ c.

Remark 3.1.4. The second condition of Definition 3.1.3 can also be written in
the shorter form

∃ c > 0 ∀ ε ∈ (0, ε0) : ‖M(·, ε)‖Cn(I) ≤ c .

Next we specify the notation for matrices. By Idd we denote the identity matrix
acting on Cd. For M ∈ Cm×n we denote by M∗ ∈ Cn×m its adjoint and by MT

its transposed matrix. The (i, j)–th component of M is labeled by Mij , unless
noted otherwise.

The Kronecker product (or tensor product) of A ∈ Cm×n and B ∈ Cp×q is
denoted by A⊗B and is defined as the block matrix

A⊗B :=




A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB


 ∈ Cmp×nq . (3.6)

For our applications the most important properties are the linearity in both
components of A⊗B and the multiplication rule

(A⊗B)(C ⊗D) = AC ⊗BD

for A,C ∈ Cm×n and B,D ∈ Cp×q. For more details and a proof of the above
mixed–product property we refer to [34].

The Hadamard product of A,B ∈ Cm×n is denoted by A⊙B and is defined
by the entry–wise multiplication, i. e.

A⊙B :=




A11B11 . . . A1nB1n

...
. . .

...
Am1Bm1 . . . AmnBmn


 ∈ Cm×n . (3.7)

We refer to [34] for more details. Obviously, the ones matrix 1
m×n defined by

1
m×n
ij = 1 , for 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.8)

is the neutral element of the ⊙–product on Cm×n. If n = m, we shortly write
1n instead of 1n×n. Furthermore we set

A⊙0 := 1
m×n

and inductively define the ⊙–powers of A by

A⊙n+1 = A⊙A⊙n .

Let d, s ∈ N, such that s ≤ d and let ν ∈ Ns with
∑s

j=1 νj = d. For

arbitrary matrices Mj ∈ Cνj×νj , j = 1, . . . , s, we denote by diag(M1, . . . ,Ms)
the following block diagonal matrix:

diag(M1, . . . ,Ms) :=




M1 0
. . .

0 Ms


 ∈ Cd×d .
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Conversely, for given M ∈ Cd×d we denote by diagν(M) the following block
diagonal matrix:

diagν(M) := diag(1ν1 , . . . ,1νs)⊙M . (3.9)

Furthermore we define

Mdiaν := diagν(M) , Moffν := M −Mdiaν . (3.10)

Example. Let ν = (2, 1, 3) and hence d = 6 and let

M =




35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11



.

Then

Mdiaν = diagν(M) = diag(12,11,13)⊙M

=




1 1
1 1

1
1 1 1
1 1 1
1 1 1




⊙




35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11




=




35 1 0 0 0 0
3 32 0 0 0 0
0 0 2 0 0 0
0 0 0 17 10 15
0 0 0 12 14 16
0 0 0 13 18 11




and consequently

Moffν = M −Mdiaν =




0 0 6 26 19 24
0 0 7 21 23 25
31 9 0 22 27 20
8 28 33 0 0 0
30 5 34 0 0 0
4 36 29 0 0 0



.

Sometimes it is simpler to estimate each coefficient of a matrix M instead of
the norm ‖ · ‖. Therefore we define for M ∈ Cd×d

‖M‖sup = sup
i,j∈{1,...,d}

|Mij | . (3.11)
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It is easy to check that ‖ · ‖sup is a norm on Cd×d. It holds for all A,B ∈ Cd×d

‖A⊙B‖sup ≤ ‖A‖sup ‖B‖sup . (3.12)

In the upcoming computations we have to deal with matrices that have a
special block structure. Since computations with block matrices are often very
similar to that of ordinary matrices we define

Definition 3.1.5. A matrix M ∈ Cd×d is called ν–block diagonal if and only
if

M = diagν(M) .

A segmentation of X = (Xij)1≤i,j≤s ∈ Cd×d into block matrices Xij ∈ Cνi×νj

for all i, j ∈ {1, . . . , s} is called ν–segmentation of X.

In the following Lemma 3.1.6 we prove that the (ordinary) matrix multiplication
carries over to ν–segmented matrices.

Lemma 3.1.6. Let the matrices A,B ∈ Cd×d and C := AB. Furthermore let
(Aij), (Bij), (Cij) be ν–segmentations of A, B, and C respectively. Then

Cij =

s∑

r=1

AirBrj

hold for all 1 ≤ i, j ≤ s.

Proof. In the proof we shall denote the matrix components by lower–case letters,
e. g. aij is the ijth entry of A. For 1 ≤ m ≤ s we define

Σ(m) :=

m−1∑

n=1

νi .

Let 1 ≤ i, j ≤ s and let 1 ≤ k ≤ νi, 1 ≤ l ≤ νj . Then for any matrix X ∈ Cd×d

with ν–segmentation (Xij) we get

(Xij)kl = xΣ(i)+k,Σ(j)+l ∈ C .

This yields

( s∑

n=1

AinBnj

)

kl

=

s∑

n=1

(
AinBnj

)
kl

=

s∑

n=1

νn∑

m=1

(
Ain
)
km

(
Bnj

)
ml

=
s∑

n=1

νn∑

m=1

aΣ(i)+k, σ(n)+m bΣ(n)+m,Σ(j)+l

=

d∑

r=1

aΣ(i)+k, r br,Σ(j)+l = cΣ(i)+k,Σ(j)+l

=
(
Cij
)
kl
.
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Lemma 3.1.7. Let A,B ∈ Cd×d. Then

diagν(AB) = diagν(A) diagν(B) + diagν(A
offνBoffν )

and

diagν(A
offνBoffν ) = diagν(AB

offν ) = diagν(A
offνB) .

Proof. Let A = (Aij)1≤i,j≤s, B = (Bij)1≤i,j≤s, (Cij)1≤i,j≤s be ν–segmentations
of A, B, and C := AB. By Lemma 3.1.6 it holds

Cii =
s∑

j=1

AisBsi = AiiBii +
∑

j 6=i
AisBsi .

This yields the first claim. Let X ∈ Cn×n and let (Xoffν

ij ) be a ν–segmentation of

Xoffν . Hence Xoffν

jj = 0 for j = 1, . . . , s and thus the second identity holds.

3.1.1 The Sylvester equation

Some crucial points in the upcoming computations are a solvability condition
and existence of regular solutions X ∈ Cd×d of the Sylvester equation (cf. [13])

AX − X B = C (3.13)

for given matrices A,B,C ∈ Cd×d. To be more precise we have to deal with the
two following special cases

AX − X A = C and AX − X B = 0 ,

where the matrices A,B are diagonalizable. As mentioned in [34] it is often very
useful to reformulate the equation by independent similarity transformations.
Let S, T ∈ Cd×d be regular. Then equation (3.13) is equivalent to

(SAS−1)SXT − SXT (T−1BT ) = SCT

which may be written as

A′X ′ − X ′B′ = C′ .

Hence we can assume without loss of generality that

A = diag(a1, . . . , ad) and B = diag(b1, . . . , bd) (3.14)

are diagonal matrices. From [34, Theorem 4.4.6] we deduce that

(3.13) has a unique solution if and only if σ(A) ∩ σ(B) = ∅, where
σ(A), σ(B) denotes the spectra of A and B respectively.

Thus for C = 0 a necessary condition for the existence of a regular solution
is that A and B must have at least one common eigenvalue. Additionally it
follows that A,B,C cannot be arbitrarily chosen. In literature usually the
unique solvability of (3.13) is discussed. But the existence of regular solutions
of the homogeneous Sylvester equation (3.13) is not covered by the consulted
literature. Hence we shall prove a necessary and sufficient condition for it in
Lemma 3.1.8.

In the proof of Lemma 3.1.8 we use the following notation: Let M ∈ Cd×d

be a quadratic matrix and let λ ∈ C be an eigenvalue of M . Then we denote
by µ(λ,M) the geometrical multiplicity of λ with respect to M .
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Lemma 3.1.8. Let the matrices A,B ∈ Cd×d be diagonal. Then the following
two statements are equivalent:

(i) The matrix equation AX −XB = 0 has a regular solution

(ii) There exists a permutation matrix1 P such that A = PBP ∗.

Proof. The implication (ii) ⇒ (i) is almost trivial since the permutation matrix
P is a regular solution of AX −XB = 0.

To prove (i) ⇒ (ii) it is enough to show that σ(A) = σ(B) and for all
λ ∈ σ(A) it is

µ(λ,A) = µ(λ,B) .

Since A,B are diagonal, the algebraic multiplicity coincides with geometrical
multiplicity of the eigenvalue λ.

We define for a given matrix M ∈ Cd×d the vector

~M := (m11, . . . ,md,1,m12, . . . ,md,2, . . . ,md1, . . . ,md,d)
T ∈ Cd

2

.

Hence the equation AX −XB = 0 is equivalent to (cf. [34])

[Idd⊗A − BT ⊗ Idd] ~X = 0 .

Thus the j–th column Xj of the regular solution X satisfies

(A− bj Idd)Xj = 0 .

Since X is regular, Xj 6= 0 holds and hence bj is an eigenvalue of A and conse-
quently σ(B) ⊂ σ(A).

Let λ ∈ σ(B) and assume µ := µ(λ,B) > µ(λ,A). Then there exist indices
j1, . . . , jµ such that

(A− λ Idd)Xjs = 0 , for s = 1, . . . , µ .

Since Xj1 , . . . , Xjµ are eigenvectors of A, they have to be linearly dependent,
which is a contradiction to the regularity of X . Hence it is µ(λ,B) ≤ µ(λ,A).

From the characteristic polynomial we get

d =
∑

λ∈σ(B)

µ(λ,B) ≤
∑

λ∈σ(B)

µ(λ,A) ≤
∑

λ∈σ(A)

µ(λ,A) = d .

Hence it has to be µ(λ,B) = µ(λ,A) and σ(B) = σ(A).

Lemma 3.1.9. Let A = diag(λ1 Idν1 , . . . , λs Idνs) ∈ Cd×d with pairwise distinct
λj and let ν = (ν1, . . . , νs)

T with
∑
j νj = d. The matrix equation

AX − XA = C (3.15)

1From [33]: A quadratic matrix P is a permutation matrix if exactly one entry in each
row and column is equal to 1, and all other entries are 0. P is regular and P−1 = P ∗.
In the context of linear equations with coefficient matrix A the coordinate transformation
A → PAP ∗ corresponds to a renumbering of the variables.
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has a solution if and only if diagν(C) = 0. In this case the general solution is
given by

X = D−
A ⊙ C + M ,

with arbitrary ν–block diagonal matrix M ∈ Cd×d. The matrix D−
A is defined by

(D−
A)ij :=

{
0 , Aii −Ajj = 0 ,

(Aii −Ajj)
−1, else .

Proof. Let X = (Xij)1≤i,j≤s, C = (Cij)1≤i,j≤s be ν–segmentations of X and
C. We compute for i, j ∈ {1, . . . , s}

Cij = (AX −XA)ij = λi Idνi Xij − Xijλj Idνj = (λi − λj)Xij .

Thus diagν(C) = diag(C11, . . . , Css) = 0 is a necessary condition for the solv-
ability of (3.15). Since λ1, . . . , λs are pairwise distinct we have for i 6= j

Xij =
1

λi − λj
Cij =

1

λi − λj
1
νi×νj ⊙ Cij

Hence, if diagν(C) = 0, then

Xp := D−
A ⊙ C

is a particular solution of (3.15) where D−
A is defined via the ν–segmentation

(D−
A)ij :=

{
(λi − λj)

−1, i 6= j
0 , else

}
1
νi×νj .

Analog to D−
A we define DA via

(DA)ij := (λi − λj)1
νi×νj .

Hence (3.15) is given by DA ⊙ X = C. Since this is an inhomogeneous linear
equation in X all solutions are given by

X = Xp + M

with DA ⊙M = 0, which is equivalent to M is ν–block diagonal.

Remark 3.1.10. Sylvester’s matrix equation (3.15) shows up in the proof of
Proposition 3.3.1. Due to its importance for the proof we shall collect some re-
sults associated with the quantities of Lemma 3.1.9. Let A ∈ Cd×d be a diagonal
matrix.

(i) From Lemma 3.1.9 we deduce (set C = 0)

[A,M ] = 0 ⇔ M is ν–block diagonal.

(ii) From the proof of Lemma 3.1.9: for arbitrary M ∈ Cd×d it holds

[A,M ] = DA ⊙M .

The matrix DA is defined by the ν–segmentation

(DA)ij := (λi − λj)1
νi×νj . (3.16)
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(iii) By definition of DA and D−
A it holds

DA ⊙D−
A = 1d − diag(1ν1 , . . . ,1νs) .

(iv) Let B = (Bij),M = (Mij) ∈ Cd×d be ν–segmentations of B,M . Further-
more let M be ν–block diagonal. Then (i 6= j)

(
D−
A ⊙ (BM)

)
ij

= (λi − λj)
−1

1
νi×νj ⊙ (BijMjj)

=
(
(λi − λj)

−1Bij
)
Mjj =

(
(D−

A)ij ⊙Bij
)
Mjj

and hence we get

D−
A ⊙ (BM) = (D−

A ⊙B)M .

3.1.2 The matrix Eε
Φ

A further notation concerned with the (entry–wise) matrix product ⊙ arises
from the similarity transformation used in § 3.3 (see (3.25)–(3.24)).

Let ν ∈ Ns with
∑s

j=1 νj = d and let Φ = diag(λ1 Idν1 , . . . , λs Idνs) ∈ Cd×d

with pairwise distinct eigenvalues λj . For ε > 0 we define the matrix EεΦ
componentwise by

(EεΦ)rs := e−
i
ε (Φrr−Φss) . (3.17)

It is easy to check that for any B ∈ Cd×d it holds

exp
(
− i

εΦ
)
B exp

(
i
εΦ
)

= EεΦ ⊙B . (3.18)

The matrix EεΦ can also be generated by the formula

EεΦ = exp⊙
(
− i

εDΦ

)
,

where DΦ is given by (3.16). Here ⊙ indicates to apply the exponential function
componentwise, in contrast to exp(− i

εΦ) where we use the matrix exponential
function.

The following properties of the oscillatory matrix EεΦ are used to derive the
finite difference methods in chapter 6.

(i) Let Φ(x) be a smooth x–dependent diagonal matrix. It holds

d

dx
EεΦ(x) = − i

ε DΦ′(x)⊙ EεΦ(x) .

(ii) Let A,B,Φ ∈ Cd×d be arbitrary quadratic matrices. Furthermore we
assume that Φ is diagonal. It follows with E := exp( iεΦ) and (3.18) that

(EεΦ ⊙ A)(EεΦ ⊙B) = E−1AEE−1BE = E−1ABE

= EεΦ ⊙ (AB) .

(iii) Let Φ be a real valued diagonal matrix. Hence exp
(
− i

εΦ) is unitary and
it holds for all B ∈ Cd×d

‖B‖ = ‖ exp
(
− i

εΦ
)
B exp

(
i
εΦ
)
‖ = ‖EεΦ ⊙B‖ . (3.19)
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(iv) Let λ1, . . . , λs ∈ C1(I,C) such hat λ1(x), . . . , λs(x) are pairwise distinct
for all x ∈ I. Furthermore let

Φ(x) :=

∫ x

x0

diag(λ1(ξ) Idν1 , . . . , λs(ξ) Idνs) dξ

and let M : I × (0, ε0) → Cd×d be C1–bounded independently of ε such
that diagνM(x, ε) = 0 for all x ∈ I × (0, ε0). It holds:

∫ x

x0

EεΦ(s)⊙M(s, ε) ds
(i)
= iε

∫ x

x0

(
EεΦ(s)

)′ ⊙
(
D−

Φ′(s)⊙M(s, ε)
)
ds

= iεEεΦ(s)⊙D−
Φ′(s)⊙M(s, ε)

∣∣x
s=x0

−iε
∫ x

x0

EεΦ(s)⊙
(
D−

Φ′(s)⊙M(s, ε)
)′
ds .

Hence there exists a constant c ≥ 0 such that for all ε > 0 and all x ∈ I
∥∥∥∥
∫ x

x0

EεΦ(s)⊙M(s, ε) ds

∥∥∥∥ ≤ c ε . (3.20)

3.2 Formulation of the problem

The IVPs (2.9) and (2.19) derived in § 2.1.1 and § 2.1.2 respectively have the
same structure. Since this are only two examples of a much larger class of prob-
lems which can be transformed to equations of similar form, we shall continue
our discussion for a more general problem (of the form (2.19)).

Model Problem 1. Let ε0 > 0 and let [a, b] ⊂ R be a bounded non–trivial inter-
val. We define Ω := [a, b]× (0, ε0). Further let ν1, . . . , νs ∈ N with

∑s
j=1 νj = d

and let l1, . . . , ls : Ω → R. We set

L(x, ε) = diag(l1 Idν1 , . . . , ls Idνs)(x, ε) ∈ Rd×d ⊂ Cd×d

where Idνj denotes the identity matrix of Cνj×νj . For x0 ∈ [a, b] and (fixed)
ε ∈ (0, ε0) we shall consider the initial value problem for u(x, ε) ∈ Cd:

u′(x, ε) =
i

ε
L(x, ε)u(x, ε) + B(x, ε)u(x, ε) , x ∈ [a, b] , (3.21)

u(x0, ε) = u0(ε) ∈ Cd , (3.22)

and make the following assumptions:

(A1) For every fixed ε ∈ (0, ε0) the matrix valued functions L : Ω → Rd×d and
B : Ω → Cd×d are smooth (in the spatial variable x) and B,L and all their
x–derivatives are uniformly bounded on [a, b] with respect to ε.

(A2) There exists a positive constant δ > 0, such that for all (x, ε) ∈ Ω and all
admissible indices i 6= j it holds

|li(x, ε)− lj(x, ε)| ≥ δ .

(A3) The map u0 : (0, ε0) → Cd is bounded.
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Remark 3.2.1. Assumptions (A2) exclude the case of crossing eigenvalues.
This case will be the content of future work.

Since L is diagonal and real valued, the solution u of the IVP (3.21)–(3.22)
is (highly) oscillatory. Its norm is bounded by a constant independently of ε.
In order to prove this we introduce a smoother, “adiabatic” variable η, which
coincides with the “η” from [40, 54, 27]. This can be interpreted as the lowest
order WKB–type transformation in the context of § 3.3.

Lemma 3.2.2. Let u be the unique solution of the IVP (3.21)–(3.22) and let

Eε(x) := exp

(
i

ε

∫ x

x0

L(s, ε) ds

)
∈ Cd×d .

Then the new quantity η(x) := E∗
ε (x)u(x) solves the IVP

η′ = (E∗
εBEε) η , η(x0, ε) = η0(ε) := u0(ε) .

There exists a constant c ≥ 0, such that it holds for all (x, ε) ∈ Ω:

‖u(x, ε)‖ = ‖η(x, ε)‖ ≤ c .

Proof. Since L(x, ε) is diagonal and real valued Eε(x) is unitary. Differentiation
of the ansatz η = E∗

εu yields the IVP. By Corollary 6.1.5 it holds

‖η(x, ε)‖ ≤ e|x−x0|‖E∗
εB(·,ε)Eε‖∞ ‖η0(ε)‖ .

Since Eε is unitary it follows

‖u(x, ε)‖ = ‖η(x, ε)‖ ≤ e|x−x0|‖B(·,ε)‖∞ ‖u0(ε)‖ .

Due to Assumption (A1) of our Model Problem 1 the matrix valued function
B(·, ε) is bounded independently of ε. By (A3) the same holds for u0(ε).

3.3 Reformulation of the initial value problem

If ε≪ 1, then the solution u of the Model Problem 1 (p. 34) is highly oscillatory
with (local) wavelength ∼ ε. Hence standard integrators need a very fine grid
(with step sizes h < ε) in order to produce reliable results. The goal of this
thesis is to derive a marching method which does not have this restriction, i. e.
which can use (in the best case) ε independent grids. The first step to achieve
this goal is an analytical preprocessing of the initial value problem (3.21)–(3.22),
which is discussed in the sequel.

Our transformation ansatz (3.25) is mainly inspired by [54] and [4]. In
the first article we find an analytic preprocessing for a vector valued second
order initial value problem (IVP), which is almost identical to our zeroth order
transformation (n = 0). The procedure discussed in the second article for the
special case of a scalar second order equation shows that more sophisticated
transformations (compared to [54]) are possible, which yield system matrices
of order O(ε). The combination of the results in both articles has been our
motivation to search for a generalization of the ansatz from [4] for the more
general setting in [54].



36 CHAPTER 3. WKB–TYPE TRANSFORMATIONS

A result comparable to our approach presented in this thesis can be found in
[27]. There a product ansatz for the transformation Tε (see (3.25)) is used which
is called super–adiabatic transformation (cf. § 3.3.2). Another ansatz, which
seems to have a similar structure as our transformation (3.25), is (independently
from this work) discussed in [17]. A major difference of our method compared
to the mentioned articles and books is the incorporation of the case of multiple
eigenvalues of L with constant multiplicity on the interval I.

The following transformation ansatz is designed to get rid of the ε−1-term
in (3.21). This is done such that the gained system matrix is of order O(εα)
for some α > 0. Let the assumptions of our Model Problem 1 from § 3.2 hold
and let Ω := I × (0, ε0). Furthermore let u be the (unique) solution of the IVP
(3.21)–(3.22), i. e.

u′(x) =
i

ε
L u + B u , u(x0) = u0 , (3.23)

with L,B : Ω → Cd×d and

L(x, ε) = diag
(
l1(x, ε) Idν1 , . . . , ls(x, ε) Idνs

)
∈ Rd×d .

The matrix valued functions L,B are Cm–bounded independently of ε. Let
the matrix valued functions T0, . . . , Tn : Ω → Cd×d be (at least) C1–bounded
independently of ε, such that

Tε(x) :=

n∑

j=0

εj Tj(x, ε) (3.24)

is regular for all (x, ε) ∈ Ω. In order to eliminate the dominant oscillations with
frequency ∼ 1

ε and amplitude O(1) as ε→ 0 we make the following transforma-
tion ansatz:

y(x) := E−1
ε (x)T−1

ε (x)u(x) , (3.25)

where we set

Eε(x) := exp

(
i

ε

∫ x

x0

L(s, ε) ds

)
. (3.26)

Since L(x, ε) is real for all (x, ε) ∈ Ω the matrix Eε(x) is unitary, i. e.

E−1
ε (x) = E∗

ε (x) = exp

(
− i

ε

∫ x

x0

L(s, ε) ds

)
.

The following Proposition 3.3.1 states that we can determine the matrix valued
functions T0, . . . , Tn such that the new variable y is the (unique) solution of an
IVP, whose system matrix is bounded by a constant times εn. The matrix T−1

ε

is implicitly defined by its inverse in order to point out the connection between
the WKB–type approximation of u as discussed in § 3.5 and the transformation
here.

Proposition 3.3.1 (WKB–type transformation). Let L,B : Ω → Cd×d be Cr–
bounded independently of ε and let r ≥ n ∈ N. Then there exists an ε0 ≥ ε1 > 0
and matrix valued functions T0, . . . , Tn : Ω̃ := I × (0, ε1) → Cd×d such that Tj
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is Cr−j+1–bounded independently of ε for j = 0, . . . , n. Furthermore the matrix
Tε(x) is regular for all (x, ε) ∈ Ω̃ and the new variable y satisfies the IVP (for
all 0 < ε < ε1)

y′ = εnE∗
εSnEε y , y(x0) = y0 . (3.27)

The function Sn : Ω̃ → Cd×d is Cr−n–bounded independently of ε.

Proof. The proof consists of three parts:

(i) formal derivation of conditional equations for T0, . . . , Tn

(ii) solving the conditional equations yields an explicit recurrence relation and
regularity for T0, . . . , Tn on Ω

(iii) restriction to (0, ε1) ⊂ (0, ε0) yields regularity of T−1
ε and justifies (i)

(i): Formal differentiation of the above ansatz (3.25) yields

y′ = E∗
ε

[
i
ε (T

−1
ε L − LT−1

ε ) + T−1
ε

′
+ T−1

ε B
]
(E∗

εT
−1
ε )−1y . (3.28)

Since T−1
ε is implicitly defined by its inverse it is not easy to derive condi-

tional equations for the matrices T0, . . . , Tn from the differential equation (3.28).
Hence we reformulate the right–hand side such that the terms between the
squared brackets only contains Tε. We can write

T−1
ε L− LT−1

ε = T−1
ε [L, Tε]T

−1
ε ,

which yields with Lemma 3.1.1 (and E∗
ε being unitary)

y′ = E∗
εT

−1
ε

(
i
ε [L, Tε] − T ′

ε + BTε
)
Eεy

and hence we get (Tε =
∑
εjTj)

y′ = E∗
εTε
(
i
ε [L, T0] + i[L, T1] + . . . + εn−1i[L, Tn]

+ BT0 + . . . + εn−1 BTn−1 + εnBTn
− T ′

0 − . . . − εn−1 T ′
n−1 − εn T ′

n

)
Eεy .

(3.29)

Now the idea is to choose T0, . . . , Tn such that the coefficients of ε−1, . . . , εn−1

in equation (3.29) vanish, which leads to the following system of equations

i[L, Tj] + BTj−1 − T ′
j−1 = 0 , j = 0, . . . , n (3.30)

where we set T−1 := 0. Provided there exists a solution of the above system,
we get

y′ = εn E∗
εSnEε y with Sn = T−1

ε (BTn − T ′
n) . (3.31)

(ii): Lemma 3.1.9 yields that (3.30) has a solution for j = 0, . . . , n if and only if

diagν(T
′
j−1 − BTj−1) = 0 , (3.32)

which is equivalent to

(
T diaν
j−1

)′
= diagν(B)T diaν

j−1 + diagν
(
BoffνT offν

j−1

)
. (3.33)
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Here we use notation (3.10) and Lemma 3.1.7 to expand diagν
(
BTj−1

)
. Let T

be the unique solution of the homogeneous linear IVP (on the interval I)

T ′ = diagν(B) T , T (x0) = Idd . (3.34)

Hence by variation of constants (3.33) is equivalent to

T diaν
j−1 (x)

= T (x)

(
T diaν
j−1 (x0) +

∫ x

x0

T (ξ)−1 diagν
(
BoffνT offν

j−1

)
(ξ) dξ

)
(3.35)

Again by Lemma 3.1.9 we see that (3.30) uniquely determines the matrix T offν

j ,

while T diaν
j is arbitrary. Hence for j = 0, . . . , n we find that the order equation

(3.30) and the solvability condition (3.32) are equivalent to the following system

T offν

j = iD−
L ⊙

(
BTj−1 − T ′

j−1

)
(3.36)

T diaν
j (x) = T (x)

(
T diaν
j (x0) +

∫ x

x0

T (ξ)−1 diagν
(
BoffνT offν

j

)
(ξ) dξ

)
.

Since T−1 = 0 fulfills the solvability condition (3.32) we derived an explicit
recurrence relation for the matrices T offν

j , T diaν
j . This yields the existence of

T0, . . . , Tn. Due to T−1 = 0 we also find

T0(x) = T diaν
0 (x) = T (x)T diaν

0 (x0) .

We additionally deduce from the above construction that T is Cr+1–bounded
independently of ε. Since we want T0, . . . , Tn to be bounded independently of ε
we have to choose bounded integration constants T diaν

0 (x0, ε), . . . , T
diaν
n (x0, ε).

Hence we deduce by induction from (3.36) for j = 0, . . . , n:

Tj = T diaν
j + T offν

j is Cr+1−j–bounded independently of ε .

It follows from the definition of Tε (cf. (3.24)) that Tε is Cr−n+1–bounded in-
dependently of ε.
(iii): Since Tε(x) has to be regular for ε ∈ (0, ε1), for some not yet deter-
mined ε1 > 0, we choose a regular initial condition T diaν

0 (x0, ε) such that
‖T diaν

0 (x0, ε)
−1‖ is bounded independently of ε. Hence T0(x, ε) is regular on

I and the norm of its inverse is bounded by a constant c0 > 0 independently
of ε. Since all Tj are at least Cr−n–bounded independently of ε there exists a
constant c > 0 such that it holds for all (x, ε) ∈ I × (0, ε1)

‖Tj(x, ε)T−1
0 (x, ε)‖ ≤ c ,

which yields for all y ∈ Cd (with the lower triangle inequality)

‖Tε(x)y‖ =

∥∥∥∥
(
Id + ε

n∑

j=1

εj−1Tj(x, ε)T
−1
0 (x, ε)

)
T0(x, ε)y

∥∥∥∥

≥
(
1− ε

1− ε
c

)
‖T0(x, ε)y‖ .

For 0 ≤ ε ≤ ε1 := min(ε0,
1−τ
1+c ) with τ ∈ (0, 1] the right–hand side is positive for

all y 6= 0 and hence Tε(x) is injective and consequently regular (cf. [19]). Since
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T0, . . . , Tn are continuously differentiable and Tε is regular on I for ε ∈ (0, ε1),
the above formal derivation of the system (3.30) is a posteriori justified.

It remains to show that Sn is Cr−n–bounded independently of ε. Since this
trivially holds for T ′

n, Tn, B we simply have to show that the same is true for
T−1
ε . From Corollary 3.1.2 we get T−1

ε ∈ Cr−n(I). Furthermore

‖T−1
ε ‖ = sup

y 6=0

‖y‖
‖Tεy‖

≤ sup
y 6=0

1− ε

1− (1 + c)ε

‖y‖
‖T0y‖

≤ ‖T−1
0 (x, ε)‖
τ

≤ c0
τ
.

Since Tε is Cr−n+1 bounded independently of ε, we inductively deduce with
equation (3.5) from Corollary 3.1.2 that ‖(T−1

ε )(j)‖, for j ∈ {0, . . . , r − n}, is
bounded independently of ε.

In the proof of Proposition 3.3.1 we derive an explicit recurrence relation for
the matrices Tj . For the numerical approximation we choose (except for j = 0)

all integration constants equal to zero (i. e. T diaν
j (x0) = 0). For this special case

we summarize the computation procedure in

Remark 3.3.2. Let T0 be the unique solution of the IVP

T ′
0 = diagν(B) T0 , T0(x0) = Id . (3.37)

Furthermore define the matrix valued functions T1, . . . , Tn : Ω̃ → Cd×d by the
explicit recurrence relation

T offν

j = iD−
L ⊙

(
BTj−1 − T ′

j−1

)
, (3.38)

T diaν
j (x) = T0(x)

∫ x

x0

T0(ξ)
−1 diagν(B

off νT off ν
j )(ξ) dξ . (3.39)

By Lemma 3.1.7, we can replace diagν(B
off νT off ν

j ) by diagν(B T
off ν
j ) in the

integrand of (3.39). Additionally let

Φ(x) =

∫ x

x0

L(ξ) dξ , Tε(x) =

n∑

j=0

εjTj(x) .

Then the ansatz (3.25) y = E∗
εT

−1
ε u yields

y′ = εn (E∗
εSnEε) y = εn (EεΦ ⊙ Sn) y (3.40)

y(x0) = T−1
ε (x0)u0

with EεΦ from § 3.1.2. The matrix valued function Sn is given by

Sn = T−1
ε

(
BTn − T ′

n

)
. (3.41)

It is not necessary to compute the ν–diagonal part of Tn with the above relation.
Here one is free to choose it, such that the whole problem gets simpler.

The IVP (3.21) can be reformulated such that the system matrix of the
equivalent IVP (3.27) is of order O(εn). We can express the unique solution y
of (3.27) by the limit of the Picard iteration (cf. Lemma 6.1.4). This shall be
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discussed in more detail in § 6.1. Let us briefly point out the idea. Integration
of the linear first order IVP (here A is a wild–card character for E∗

εSnEε)

y′ = εnA(x)y , y(x0) = y0 (3.42)

yields the integral equation

y(x) = y0 + εn
∫ x

x0

A(s)y(s) ds . (3.43)

Now we can replace2 y(s) in the integrand by the integral equation (3.43) and
hence

y(x) = y0 + εn
∫ x

x0

A(s)y0 + ε2n
∫ x

x0

∫ s

x0

A(r)y(r) dr .

We continue with this procedure and get an (infinite) sum of y independent,
multiple integrals. We shall call them iterated integrals and they shall be de-
noted by Ijx0

(cf. Remark 6.1.2). It holds

I0
x0

= Id and Ij+1
x0

(x) =

∫ x

x0

A(x) Ijx0
(s) ds for all j ∈ N.

Proposition 3.3.3. Let the assumptions of Proposition 3.3.1 hold. Then the
IVP (3.27) admits a solution y ∈ Cr−n+1(I,Cd) with the expansion

y(x) =

∞∑

j=0

εjnIjx0
(x) y0 , (3.44)

where the iterated integrals Ijx0
are given by Definition 6.1.1 with M = E∗

εSnEε.
Moreover we have for all x ∈ I

‖y(x)− y0‖ ≤ c εn , ‖y(j)(x)‖ ≤ c εn−j+1 ,

for j = 1, . . . , r − n+ 1 with a constant c independently of ε.

Proof. From Proposition 3.3.1 we get that Sn is Cr−n–bounded independently
of ε. Thus we deduce from ODE (3.27) that the solution y ∈ Cr−n+1(I,Cd).
Since Eε is unitary

‖(E∗
εSnEε)(x)‖ = ‖Sn(x)‖

(cf. § 3.1.2) and hence we can apply Lemma 6.1.4 which yields the series repre-
sentation of y. Therefor we use that Ix0 is linear in M , in order to write εjn in
front of the integrals.

In order to prove the first estimate we use the series representation (3.44).
It holds that

y(x)− y0 = εnI1
ξ

( ∞∑

j=0

εjnIjx0
(x) y0

)
= εn(I1

ξ y)(x) .

2We can also use the fundamental theorem of calculus and the IVP (3.42).
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By Lemma 6.1.3 we immediately get

‖y(x)− y0‖ ≤ εn|x− x0|‖Sn‖∞‖y‖∞ .

From Corollary 6.1.5 we deduce that ‖y‖∞ is finite and uniformly bounded in
ε. Due to ‖E′

ε‖ = O(1ε ) the other estimates inductively follow from the first one
in connection with ODE (3.27).

The estimates in Proposition 3.3.3 are a direct consequence of the series
representation of y and the ε–order of the system matrix of (3.27). Since the
series summands are highly oscillatory integrals, at least on the ν-off diagonal
blocks, it is possible to improve the first estimate of Proposition 3.3.3. This is
done by an additional (final) transformation. The following Corollary 3.3.4 is
an adaption of [4, Proposition 2.2].

Corollary 3.3.4 (Arnold, BenAbdallah, Negulescu [4]). Let the assumptions
of Proposition 3.3.3 hold and let R : I → Cd×d be the unique solution of the IVP

R′ = εn diagν(Sn)R , R(x0) = Id . (3.45)

If y is the unique solution of (3.27) then z := R−1y solves the IVP

z′ = εn
(
E∗
εSnEε

)
z , z(x0) = z0 , (3.46)

with Sn := R−1Soffν
n R. Furthermore z admits the improved estimates

‖z(x)− z0‖ ≤ c εn+1 , ‖z(j)(x)‖ ≤ c εn−j+1 ,

for j = 1, . . . , r − n+ 1 with an ε independent constant 0 < c <∞.

Proof. Since R(x0) = Id, it holds R = diagν(R), which yields [Eε, R] = 0.
Hence differentiation of the ansatz for z yields the IVP (3.46). Furthermore
from Sn ∈ Cr−n(I) we deduce R ∈ Cr−n+1(I). This yields z ∈ Cr−n+1(I). Let
εnM be the system matrix of (3.46), i. e.

M := E∗
εR

−1Soffν
n REε = EεΦ ⊙

(
R−1Soffν

n R
)
.

As in the proof of Proposition 3.3.3 we use the series representation to write
down the following identity:

z(x)− z0 = εn
∞∑

j=0

εjn
(
Ijx0

I1
x0
)(x)z0 .

It holds diagν(M) = 0 and hence we get from (3.20)

‖I1
x0
(x)‖ =

∥∥∥∥εn
∫ x

x0

EεΦ ⊙ (RSnR
−1)(ξ) dξ

∥∥∥∥ = O(εn+1) .

With Lemma 6.1.3 it follows

‖z(x)− z0‖ ≤ εneε
n‖M‖∞|x−x0|‖I1

x0
(x)‖ ≤ c εn+1 .

The other estimates directly follow from the differential equation for z.
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Figure 3.1: The left picture shows the real part of the first component of u (i. e.
Re(u1)) for the numerical problem from § 7.1 for five values of ε (10−1, . . . , 10−5).
In the middle, the absolute value of Re(η1 − η∗1) is plotted with semilogarith-
mic axis. The function Re(η∗1) is the black line in the upper part of the left
picture. The right picture shows a semilogarithmic plot of the absolute value
of Re(z1(x) − z1(x0)). The legend from the η plot in the middle is valid for all
three plots.

Remark 3.3.5. Since Sn is at least C0–bounded independently of ε we get from
(3.45) and the Gronwall Lemma 8.4.3, that R is C0–bounded independently of ε
too. Using once again the ODE, we further find that R is at least C1–bounded
independently of ε.

In Figure 3.1 we illustrate the effect of the discussed transformations for the
vector valued example from § 7.1, which is also used to illustrate the performance
of the one–step methods derived in § 6. For our WKB–type transformation
that finally yields the variable z we set n = 1. We plot the real part of the
first component of u (left) (cf. (3.23)) and the absolute values of Re(η1 − η∗1)
(middle) (cf. Lemma 3.2.2) and Re(z1(x)− z1(x0)) (right) (cf. Corollary 3.3.4).
For the last two quantities we choose a semilogarithmic representation. We
see that u is highly oscillatory. The variable η is oscillatory too (even with a
higher frequency than u), but the amplitude of η−η∗ decreases with decreasing
ε. Here η∗ is a smooth function, which is the solution of the adiabatic limit
equation as discussed in [54, §2.5]. As derived in the article, we see oscillations
of O(ε) around η∗. Since we choose n = 1 we expect, due to the estimates of
Corollary 3.3.4, that z oscillates around its initial condition with amplitudes of
O(ε2). And indeed this can be observed in the right picture of Figure 3.1.

3.3.1 Application to a scalar second order IVP discussed
by Arnold et al. [4]

In [4] the authors discuss an efficient numerical method for the integration of
the following linear scalar second order IVP (which is a special case of the IVPs
discussed in § 2.2):

ε2ϕ′′(x) + a(x)ϕ(x) = 0 , (3.47)

ϕ(x0) = ϕ0 ∈ C ,

εϕ′(x0) = ϕ1 ∈ C .
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They use a single transformation to get an equivalent first order system. The
gained system matrix splits into a diagonal matrix of order O(ε−1) and a re-
mainder of order O(ε). In order to remove the (diagonal) O(ε−1) term they use
a final transformation, where the variable is multiplied with a highly oscillatory
matrix. This matrix is defined as Eε from (3.26).

In order to see the connection between our approach and the method dis-
cussed in [4], we shall apply our WKB–type transformation to the IVP (3.47).
First we have to rewrite it as a first order system. To get a comparable result
we set n = 1 with respect to Remark 3.3.2. Since no first derivative is present
in (3.47), both approaches from § 2.2 (the ansatz with Cholesky decomposition
and the transformation from [54]) are equal. Additionally we do not have to
diagonalize the matrix valued function a(x), i. e. U = 1 which yields U ′ = 0.
Hence the new quantity

u(x) :=
1√
2

(
i 1
1 i

)(
a

1
2 (x)ϕ(x)
εϕ′(x)

)

solves the IVP

u′ =
i

ε

(
1 0
0 −1

)
a

1
2 u +

(
1 i
−i 1

)
(a

1
2 )′a−

1
2

2
u ,

u(x0) = u0 .

Thus we have

L(x) =

(
1 0
0 −1

)
a

1
2 (x) and B(x) =

(
1 i
−i 1

)
a′(x)

4a(x)
.

From (2.31) of § 2.2.1 we know that the quantity T = T0 is given by

T0(x) = T (x) =

(
1 0
0 1

)
a

1
4 (x)

a
1
4 (x0)

.

To simplify the computations we set

t0(x) :=
a

1
4 (x)

a
1
4 (x0)

. (3.48)

Furthermore

DL(x) =

(
0 1
−1 0

)
2a

1
2 (x) .

This yields (cf. Remark 3.3.2)

T offν
1 (x) = iD−

L (x) ⊙
(
B(x)T0(x)− T0(x)

′)

=

(
0 1
−1 0

)
i

2a
1
2 (x)

⊙
(

0 i
−i 0

)
a′(x)

4a(x)
t0(x)

= −t0(x)
(

0 1
1 0

)
a′(x)

8a
3
2 (x)

.

Since we do not consider T2 and higher order coefficients we are free to choose
arbitrary diagonal elements of T1. The following choice is made, such that the
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determinant of Tε is equal to t
2
0. This significantly simplifies the formula for the

inverse matrix T−1
ε . We set

T1(x) := −t0(x)t1(x)
(

−i 1
1 i

)
with t1(x) :=

a′(x)

8a
3
2 (x)

.

It follows

Tε = t0

(
1 + iεt1 −εt1
−εt1 1− iεt1

)
,

which yields (detTε = t20)

T−1
ε =

1

t0

(
1− iεt1 εt1
εt1 1 + iεt1

)
=

1

t0
Id +

εt1
t0

(
−i 1
1 i

)
.

Remark 3.3.6. Due to our special choice of the diagonal elements of T1, the
matrix Tε is always regular independently of ε. Hence the restriction in Propo-
sition 3.3.1 to a smaller ε–interval (0, ε1) can be neglected.

Now we can compute the matrix valued function S1 from Remark 3.3.2:

S1(x) = T−1
ε (x)

(
B(x)T1(x) − T ′

1(x)
)
.

In order to make the computations more traceable we start with the expression
in the brackets:

BT1 − T ′
1

= −t0
(

1 i
−i 1

)(
−i 1
1 i

)
(a′)2

32a
5
2

+

(
−i 1
1 i

)(
t0

a′

8a
3
2

)′

=

(
−i 1
1 i

)(
t′0

a′

8a
3
2

+ t0
a′′a

3
2 − 3

2 (a
′)2a

1
2

8a3

)
.

From Remark 3.3.2 or from the definition of t0 in (3.48) we deduce

t′0 =
1

4

a′

a
t0

which yields

BT1 − T ′
1 = t0

(
−i 1
1 i

)
4a′′a− 5(a′)2

32a
5
2

.

Let us denote the last scalar factor of the above equation by β, i. e.

β :=
4a′′a− 5(a′)2

32a
5
2

= −1

2
a−

1
4

(
a−

1
4

)′′
.

Since
(

−i 1
1 i

)(
−i 1
1 i

)
=

(
0 0
0 0

)
,

i. e. the matrix is nilpotent, we immediately compute

S1(x) = T−1
ε (x)

(
B(x)T1(x)− T ′

1(x)
)

= β(x)

(
−i 1
1 i

)
.
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Furthermore we get (see Remark 3.3.2)

Φ(x) =

∫ x

x0

a
1
2 (t) dt

(
1 0
0 −1

)
.

Hence the transformation (Eε(x) = exp( iεΦ(x)))

y(x) = E∗
ε (x)T

−1
ε (x)u(x)

yields the IVP

y′ = εE∗
ε (x)β(x)

(
−i 1
1 i

)
Eε(x) y ,

y(x0) = y0 .

Now we can compute the (last) transformation from Corollary 3.3.4. The vari-
able R solves the IVP

R′ = ε β(x)

(
−i 0
0 i

)
R , R(x0) = Id ,

and thus

R(x) = exp

(
ε

∫ x

x0

β(t) dt

(
−i 0
0 i

))
.

Hence, z = R−1y is the unique solution of

z′ = εR(x)−1E∗
ε (x)β(x)

(
0 1
1 0

)
Eε(x)R(x) z ,

z(x0) = z0 := y0 .

By construction it holds

Eε(x)R(x) = exp

(
i

ε

∫ x

x0

a
1
2 (t)− ε2β(t) dt

(
1 0
0 −1

))
.

We set φε(x) :=
∫ x
x0
a

1
2 (t)− ε2β(t) dt. This yields

z′(x) = ε β(x)

(
0 e−

2i
ε φ

ε(x)

e
2i
ε φ

ε(x) 0

)
z(x) , (3.49)

z(x0) = z0 .

The ODE (3.49) is exactly the reformulation of the problem which is discussed
in [4]. To find out how our approach is related to that discussed in the article,
let us have a look on our transformation that connects y and ϕ, ϕ′:

y = R−1E∗
ε T

−1
ε

1√
2

(
i 1
1 i

)(
a

1
2ϕ
εϕ′

)

= R−1E∗
ε

(
1

t0
Id +

εt1
t0

(
−i 1
1 i

))
1√
2

(
i 1
1 i

)(
a

1
2ϕ
εϕ′

)

= R−1E∗
ε

1√
2 t0

(
i 1
1 i

)(
Id +

εt1
2

(
−i 1
1 −i

)(
2 0
2i 0

))(
a

1
2ϕ
εϕ′

)

= R−1E∗
ε

1√
2 t0

(
i 1
1 i

)(
a

1
2ϕ

ε(ϕ′ + 2t1a
1
2ϕ)

)
.
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Since it holds

ϕ′ + 2t1a
1
2ϕ = ϕ′ +

a′

4a
ϕ =

(a
1
4ϕ)′

a1/4

we find

z(x) = exp

(
− i

ε
φε(x)

(
1 0
0 −1

))
a

1
4 (x0)√
2

(
i 1
1 i

)(
a

1
4ϕ

ε (a
1
4 ϕ)′

a1/2

)
.

Up to the constant factor a
1
4 (x0) this is exactly the transformation established

in [4]. Hence our WKB–type approach is a generalization of the transformation
discussed in the article to the vector valued case.

In order to reproduce the ansatz from [4] with our WKB–type transforma-
tion, we make a special choice of the diagonal values of T1. The result is a
transformation matrix T−1

ε , which has a simple structure, is easy to compute,
and regular for all ε ∈ C. However, in Proposition 3.3.1 (which holds for the
(general) vector valued case) ε is restricted to the interval (0, ε1) in order to
guarantee regularity of Tε. Hence, naturally the question arises, if it is also
possible in the (general) vector valued case to choose the diagonal, such that
the matrix Tε is regular independently of ε? We shall discuss this in sequel for

Tε = T0 + εT1 = (Id + εT1T
−1
0 )T0

where the diagonal of T1 is arbitrary. Motivated by the above discussion (for
the problem from [4]) we shall make the ansatz

(Id − εM)−1 =

n∑

j=0

εjMj ,

where M is a wild card for −T1T−1
0 with an arbitrary diagonal part. Multipli-

cation with (Id−εM) yields

Id =

( n∑

j=0

εjMj

)
(Id − εM)

= M0 +
n∑

j=1

εj(Mj −Mj−1M) + εn+1MnM . (3.50)

The limit ε → 0 yields M0 = Id. Since all the remaining coefficients of the ε
powers have to be zero, we inductively deduce

Mj = M j , j = 1, . . . , n and Mn+1 = 0 . (3.51)

This means M is nilpotent, which cause the Neumann series to terminate after
a finite number of summands. We record the essence of the above calculations
in the following

Lemma 3.3.7. Let M ∈ Cd×d be a quadratic matrix. It is equivalent

(i) For all ε ∈ C the matrix Id − εM is regular,
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(ii) M is nilpotent.

Proof. (ii)⇒(i): If M is nilpotent, then the matrix
∑d
j=0 ε

jM j is the inverse of
Id−εM , as shown above.
(i)⇒(ii): For ε 6= 0 we write

Id − εM = ε
(
1
ε Id −M) .

Since Id−εM is regular, 1
ε cannot be an eigenvalue of M . Hence 0 is the only

eigenvalue of M . Thus the characteristic polynomial of M is χM (λ) = λd. This
yields Md = 0, which means M is nilpotent.

Now one can argue that we only have ε ∈ (0, ε0) ⊂ R. But also in this situation
it is true that the inverse of the matrix (Id−εM) is a polynomial in ε, if and
only if M is nilpotent.

Proposition 3.3.8. Let ε0 > 0. For M ∈ Cd×d it is equivalent:

(i) For all ε ∈ (0, ε0) the matrix (Id−εM) has an inverse of the form

(Id−εM)−1 =

n∑

j=0

εjBj ,

with ε–independent matrices B0, . . . , Bn ∈ Cd×d and a fixed n ∈ N.

(ii) There exists a constant c ∈ C, such that for all ε ∈ (0, ε0) it holds

det(Id−εM) = c .

(iii) There exists a constant c ∈ C and d+1 pairwise distinct complex numbers
ζ1, . . . , ζd+1 ∈ C, such that

det(Id−ζjM) = c , j = 1, . . . , d+ 1 .

(iv) det(Id−εM) = 1 for all ε ∈ C.

(v) (Id−εM) is regular for all ε ∈ C.

(vi) M is nilpotent.

Proof. Obviously it holds (iv) ⇒ (ii) ⇒ (iii). To prove (iii) ⇒ (iv) we remark
that det(Id−εM) = p(ε) is a polynomial in ε of degree d. Hence the polynomial
p(ε) − c has degree d too, but d + 1 pairwise distinct roots. Thus (due to the
Fundamental Theorem of Algebra, cf. [64]) it has to be zero. Hence p(ε) = c
holds for all ε ∈ C. Since p(0) = det(Id) = 1 we get c = 1. By Lemma 3.3.7
and (3.50) (with the discussion that leads to (3.51)) we get (iv) ⇒ (v) ⇔ (vi)
⇔ (i). Finally we prove (v) ⇒ (iv). Since (Id−εM) is regular, the polynomial
p(ε) = det(Id−εM) has no roots in C. By the Fundamental Theorem of Algebra
it has to be constant.

Remark 3.3.9. Hence the matrix Tε is regular independently of ε, iff T1T
−1
0

is nilpotent. The cases in which the diagonal of T1 can be chosen such that this
holds are still not characterized. But for special situations Proposition 3.3.8 can
be an additional criteria for the determination of diag(T1).
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3.3.2 Comparison with the Super–Adiabatic Transforma-
tion by Hairer et al. [27]

In [27] the authors (briefly) discuss a transformation ansatz similar to (3.25) for
a special case of our setting, as we shall see in a moment. In the textbook the
authors start with the first order system (v(x) ∈ Cd)

v′(x) =
1

ε
A(x) v(x) ,

where A(x) ∈ Cd×d is skew–hermitian for all x ∈ [a, b]. Furthermore they
assume that A and its derivatives are bounded independently of ε. Since A(x)
is skew–hermitian, there exists a unitary matrix Q(x) and a real valued diagonal
matrix L(x), such that A(x) = iQ(x)∗L(x)Q(x). Additionally it is assumed that
A(x) has d distinct eigenvalues for all x ∈ [a, b]. Hence the transformation ansatz
u = Qv yields (provided that Q is differentiable)

u′(x) =
i

ε
L(x)u(x) + Q′(x)Q(x)∗u(x) .

This is a special case of (3.21) from § 3.2, with B := Q′Q∗. By Lemma 3.1.1 we
get that Q′Q∗ is skew–hermitian.

For all x ∈ [a, b] let Φ1(x), . . . ,Φn(x) ∈ Cd×d be real diagonal matrices and
X1(x), . . . , Xn(x) ∈ Cd×d skew–hermitian. They shall be determined in the
sequel (at least Φ1, X1 to point out the procedure) in order to reproduce the
transformation from [27]. We define the matrix valued function

T̂ε := exp(εnXn) exp(iε
n−1Φn) . . . exp(ε

1X1) exp(iε
0Φ1) .

Since each factor is a unitary matrix, so is T̂ε. The super–adiabatic transforma-
tion (SAT) ansatz now reads

ŷ = E∗
ε T̂

∗
ε u . (3.52)

Here the matrix valued function Eε is given by (3.26). We slightly changed the
notation with respect to [27]. The matrix Xj(x) in the textbook is equivalent to
−Xj(x) here. In [27] we find the following relations between Xj ,Φj that have
to be fulfilled for the SAT:

−i[L,Xj] + iΦ′
j = Wj−1 , j = 1, . . . , n . (3.53)

The matrix valued function W0 is equal to B = Q′Q∗. For j ≥ 1 the variables
Wj are not specified in the textbook. It is only mentioned that Wj can be built
up from the variables up to the index j − 1. Hence the linear system (3.53) can
recursively be solved. If {φj , Xj , j = 1, . . . , n} is a solution of the linear system,
then the system matrix of the gained equivalent IVP for ŷ is of order O(εn). In
the textbook this fact is briefly described by the relation ŷ′ = O(εn).

For n = 1 we shall derive the matrices Φ1 and X1 from the ansatz (3.52),
instead of using (3.53). This (hopefully) yields a better understanding how
(3.53) can be derived and additionally we get the IVP for the transformed
quantity ŷ. Afterwards we shall compare the ŷ–IVP and SAT variables to our
WKB–type approach.
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If one passes to n ≥ 2, the equation that determines X1,Φ1 (i. e. (3.53) for
j = 1) remains unchanged. Hence the results from the subsequent computations
are valid also for higher order SAT. The following discussion is an elaborated
version of the computations from the textbook. Let us denote the (unitary-)

matrix valued functions exp(iΦ1) and exp(εX1(x)) by T̂0 and T̂1 respectively.
Hence the ansatz (3.52) reads for n = 1:

ŷ(x) = Eε(x)
∗ T̂0(x)

∗ T̂1(x)
∗ u(x) . (3.54)

Furthermore we set

F1(x) :=

∞∑

j=1

εj−1X1(x)
j

j!
and F2(x) :=

∞∑

j=2

εj−2X1(x)
j

j!
.

For all x ∈ [a, b] the matrices F1(x), F2(x) are O(1) as ε → 0. Since Eε(x) and

T̂0(x) are diagonal matrices they commutate. Thus, differentiating equation
(3.54) yields (with Lemma 3.1.1)

ŷ′ = E∗
ε T̂

∗
0

(
− i

εLT̂
∗
1 − iΦ′

1T̂
∗
1 + (T̂ ∗

1 )
′ + T̂ ∗

1

(
i
εL + B

))
u

= E∗
ε T̂

∗
0 T̂

∗
1

(
− i

ε T̂1LT̂
∗
1 − iT̂1Φ

′
1T̂

∗
1 + T̂1(T̂

∗
1 )

′ + i
εL + B

)
T̂1T̂0Eε ŷ

= E∗
ε T̂

∗
0 T̂

∗
1

(
i
ε

[
L, T̂1] − iT̂1Φ

′
1 − T̂ ′

1 + BT̂1
)
T̂0Eε ŷ .

The matrix valued function between the brackets (in the last line) is denoted

by Ŝ1. Now we use the identities T̂1 = Id+εF1 and T̂1 = Id+εX1 + ε2F2 to
separate the lowest order terms with respect to ε of Ŝ1. We get

Ŝ1 = i
ε

[
L, Id+εX1 + ε2F2

]
− i
(
Id+εF1

)
Φ′

1

− εF ′
1 + B

(
Id+εF1

)

= i
[
L,X1

]
− iΦ′

1 + B

+ ε
(
BF1 − iF1Φ

′
1 − F ′

1 + i[L, F2]
)
.

Hence Ŝ1 is of order O(ε), if and only if

[
L,X1

]
= iB + Φ′

1 . (3.55)

By Lemma 3.1.9, there exists a solution of (3.55), if and only if diag(iB+Φ′
1) = 0

and thus Φ′
1 = −i diag(B). Furthermore we deduce that

X1 = D−
L ⊙

(
iB +Φ1

)
= iD−

L ⊙B

is a (partial) solution. Since B is skew–hermitian, X1 is skew–hermitian too.
We choose the integration constant for Φ1, such that Φ1(x0) = 0, which yields

T̂0(x) = exp

(∫ x

x0

diag
(
B(s)

)
ds

)
.

Hence T̂0 solves the IVP

T ′
0 = diagν(B) T0 , T0(x0) = Id .
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which coincides with (3.37) from Remark 3.3.2 (ν = (1, . . . , 1)T ∈ Cd). Thus

our quantity T0 from Remark 3.3.2 and T̂0 from the SAT are equal. Since B is
skew–hermitian, its diagonal has to be purely imaginary. Hence T̂0 is unitary
as assumed. We also find that T1 from Remark 3.3.2 and X1 are equal. But
the ODE system matrices for the variables y (WKB–type transformation) and
ŷ (SAT) differ. For ŷ we get the quite lengthy term

εE∗
ε T̂

∗
ε

(
BF1 − iF1Φ

′
1 − F ′

1 + i[L, F2]
)
T̂0Eε ,

while the system matrix for y reads (cf. Remark 3.3.2)

εE∗
εT

−1
ε

(
BT1 − T ′

1)Eε .

The structure of the equations that determine the variables Xj ,Φj of the SAT
(cf. (3.53)) and the equations determining the variables Tj of our WKB–type
approach (cf. (3.30) in the proof of Proposition 3.3.1) are very similar. From
this point of view the computational effort is the same. But for higher orders,
the right–hand side of (3.53) (i. e. Wj) gets more and more involved, while for
our approach it is of the same (simple) type for all stages (cf. Remark 3.3.2).

The advantage of the SAT compared to our transformation is that T̂ε is
unitary. Hence (as long as X1, . . . , Xn are skew hermitian) one does not have to
solve a linear system in order to compute the system matrix for ŷ. Furthermore,
errors on the ŷ level are not enhanced when transforming back to u. However,
this advantage is lost, if one extends the SAT to our more general setting from
§ 3.2. Here B(x) does not have to be skew hermitian. The generalization of the
SAT to this case is straight forward. One has to replace ∗ by −1 in the previous
discussion. Since we have not used that T̂0, T̂1 are unitary, the equations that
determine Φ1 and X1 remain unchanged. Thus, if B is not skew–hermitian, X1

is not skew–hermitian either and hence T̂1 is not unitary. Furthermore (for ε
small), the matrix inverse of our transformation matrix Tε(x) is given by a von
Neumann series. To be more precise it holds

Tε(x)
−1 =

(
T0(x)

(
Id+εT−1

0

n∑

j=1

εj−1Tj

))−1

=

( ∞∑

k=0

(−ε)k
(
T−1
0

n∑

j=1

εj−1Tj

)k)
T0(x)

−1 .

Hence errors of our WKB–type transformation variable y are only moderately
amplified when transforming back to u.

The exclusive usage of unitary matrices for the SAT has the (very little)
drawback that one has to compute the matrix exponential exp

(
εX1(x)

)
(which

is the variable T̂1(x) in our notation). If one simply truncates the series, the
result is not unitary. In this case one implicitly uses an ansatz similar to our
approach. Thus, one could have directly started with our transformation. Other
methods, like the Matlab function expm, have to solve a linear matrix equation
(cf. [30]). Thus also in this case the computational advantage of the SAT
(compared to our approach) is significantly reduced. Moreover one has to find
suitable approximations for F1(x) and F2(x). One can either use a truncation
of the series or the formulas

F1 =
1

ε

(
T̂1 − Id

)
, F2 =

1

ε2
(
T̂1 − Id−εX1

)
.
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The disadvantage of the formulas is that the error made while deriving T̂1 is
enhanced with a factor ε−2.

From the computational point of view our approach is much simpler for the
more general problem from § 3.2, yielding a comparable result to the SAT. Even
in the special case of skew–hermitian B (which is considered in [27]) there seems
to be no significant draw back of our ansatz compared to the SAT.

3.4 The inhomogeneous case

Let m ∈ Z and let Ω := I× (0, ε0), with ε0 > 0 and I ⊂ R a bounded open (non
trivial) interval. In this section we shall consider the inhomogeneous equation

u′ = i
εLu + Bu + εmf .

with the assumptions of Proposition 3.3.1 for the matrix valued functions L, B.
Additionally it has to hold

Assumption 4. The functions L : Ω → Cd×d and f : Ω → Cd are Cr−m–
bounded independently of ε.

Assumption 5. There exists a constant cl > 0 independently of ε, such that
for all (x, ε) ∈ Ω = I × (0, ε0) it holds

|lj(x, ε)| ≥ cl , for j = 1, . . . , s .

A consequence of Assumption 5 is

Lemma 3.4.1. The matrix valued function L is regular for all (x, ε) ∈ Ω.
Furthermore, L−1 is Cr

′

–bounded independently of ε, with r′ = max(r, r −m).

Proof. Since the eigenvalues of L are bounded away from zero, L is obviously
regular for all (x, ε) ∈ Ω and it holds ‖L−1‖ ≤ 1

cl
. From Corollary 3.1.2 we get

for every fixed ε ∈ (0, ε0), that L
−1(·, ε) ∈ Cr. Furthermore it holds

‖(L−1)′‖ = ‖ − L−1L′L−1‖ ≤ 1
c2
l

‖L′‖ .

Since L is Cr–bounded independently of ε, we get (L−1)′ is bounded inde-
pendently of ε. By induction (using (3.5)) it follows that (L−1)(j) is bounded
independently of ε for j = 1, . . . , r.

Now we can prove the main result of this section.

Proposition 3.4.2. Let the assumptions of Proposition 3.3.1 hold and let
T0, . . . , Tn, Sn be the matrix valued function from the Proposition. Additionally
let Assumption 4, 5 hold. Then there are vector valued functions gm+1, . . . , gn,
such that the new variable y defined by (cf. (3.25)–(3.24))

y := E∗
εT

−1
ε (u− g) with g :=

n∑

j=m+1

εjgj

solves the inhomogeneous ODE

y′ = εnE∗
εSnEε y + εnE∗

ε f̂ . (3.56)

The function f̂ is Cr−m–bounded independently of ε.
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Proof. Let Eε, Tε be given by Remark 3.3.2 in § 3.3. It holds
(
(E∗

εT
−1
ε )′ + E∗

εT
−1
ε ( iεL+B)

)
(E∗

εT
−1
ε )−1 = εnE∗

εSnEε

and the ansatz y = E∗
εT

−1
ε (u− g) yields

y′ = (E∗
εT

−1
ε )′(u − g) + (E∗

εT
−1
ε )

(
( iεL+B)u + εmf − g′

)

= εnE∗
εSnEε y + (E∗

εT
−1
ε )(εmf + ( iεL+B)g − g′) .

To increase the ε–order of the inhomogeneity we make the ansatz3

g(x) =

n∑

j=m+1

εjgj(x) ,

which yields with gn+1 := 0

εmf + ( iεL+B)g − g′ = εm
(
f + iLgm+1

)
+

n∑

j=m+1

εj
(
Bgj − g′j + iLgj+1

)
.

We set gm+1 = iL−1f and for j = m+ 2, . . . , n

gj = iL−1(Bgj−1 − g′j−1) .

This yields

y′ = εnE∗
εSnEε y + εnE∗

εT
−1
ε (g′n −Bgn) .

By Lemma 3.4.1 L−1 is Cr
′

bounded independently of ε. Hence gm+1 is Cr−m–
bounded independently of ε. This yields (by induction) that gj is Cr−j+1–
bounded independently of ε for j = 1, . . . , n. Hence the (non oscillatory) vector
valued function

f̂ := T−1
ε (g′n −Bgn)

of the inhomogeneity in ODE (3.56) is Cr−n–bounded independently of ε.

Remark 3.4.3. From the proof of Proposition 3.4.2 we get that the functions
gj are constructed as follows: We set gm+1 := iL−1f and for j = m+ 2, . . . , n

gj = iL−1(Bgj−1 − g′j−1) .

The function f̂ from (3.56) is given by f̂ = T−1
ε (g′n −Bgn).

3.5 WKB approximation

The WKB–Method or Phase Integral Method is a technique which became pop-
ular with the rise of the quantum mechanics. It was used by Wentzel, Kramers
and Brillouin in the 1920s to find approximate solutions of the Schrödinger
equation (cf. [32]). The basic idea is the assumption that the fast variation of

3For m ≥ n we have an empty sum and hence g = 0.
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the solution of a linear singular perturbed ODE4, like the stationary one dimen-
sional Schrödinger equation in the oscillatory regime, is of exponential nature.
For more than a century the WKB–Method is used in different fields of physics
like quantum or solid mechanics to approximate solutions of singular perturbed
linear ODE. Hence it is not surprising that one finds two different definitions of
it in literature. One definition (cf. [6, 48]) for the scalar problem

ε2ψ′′(x) + V (x)ψ(x) = 0 (3.57)

is given by an expansion of the form

ψ(x) ∼ exp

(
i
ε

∞∑

j=0

εjφj(x)

)
. (3.58)

The (formal) ansatz ψ = e
i
ε

∫
φdx leads to the Riccati equation

iεφ′ = φ2 − a .

Hence the above given expansion for ψ corresponds to an asymptotic approxi-
mation of the nonlinear first order ODE.

Another approach (cf. [32]) is to find a phase function φ and an asymptotic
expansion5 of ψ in the sense of § 3.6, i. e.

ψ(x) ∼
( ∞∑

j=0

εj cj(x)

)
exp

(
i
εφ(x)

)
. (3.59)

We call the second ansatz (3.59) WKB–Method and the first one (3.58) physi-
cal WKB–Method, due to the appearance of this ansatz in almost all physical
textbooks dealing with this topic.

In §2.2 we present a technique to transform the ODE (3.57) to a first order
system of the form

u′(x) =
i

ε
L(x)u(x) + B(x)u(x) .

Hence, also u has a WKB approximation and it is quite natural to ask if for more
general matrix valued functions L,B an asymptotic approximation of u exists.
There is of course a positive answer. In the sequel we shall derive a WKB–type
approximation for a fundamental system of solutions U of ODE (3.21) on the
bounded interval I = [a, b]. I. e. the (square) matrix valued function U solves

U ′(x) =
i

ε
L(x)U(x) + B(x)U(x) (3.60)

and is regular for all x ∈ I.
As in the previous sections, the matrix L is diagonal with

L = diag(l1 Idν1 , . . . , ls Idνs)

4At least the highest derivative is multiplied by a small parameter, which significantly
changes the behavior of the ODE if set to zero.

5To be more precise this means ψe−
i
ε
φ ∼

∑
j ε

jcj
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with pairwise distinct lj(x) for every x ∈ I. Furthermore the matrix functions
L,B are assumed to be smooth and we set ν = (ν1, . . . , νs)

T ∈ Ns. Since
two fundamental systems of solutions are equal up to the multiplication with a
regular constant matrix from the right–hand side we focus, without restriction
of generality, on a solution with U(x0) = Id for some x0 ∈ I.

Since the WKB–ansatz (3.59) can directly be generalized to the vector case
and structurally yields the same equations (for the second order ODE) to solve
as in the scalar case its our method of choice. The physical WKB–ansatz yields
more problems, since generally exp(A)′ 6= A′ exp(A) for a matrix valued function
A ∈ C1(I,Cν×ν). How it can be applied or modified for the vector case is
not yet clear, but it seems to be connected to the so called super–adiabatic
transformations briefly discussed in [27] and § 3.3.2.

The basic strategy to find an approximation for U is based on the variation
of constants principle. Assume we have given two matrix valued functions Uwkb

and Sε such that it holds for all x ∈ I:

U ′
wkb =

i

ε
LUwkb + BUwkb + Sε , Uwkb(x0) = U(x0) ,

for some x0 ∈ I. Hence Uwkb −U solves the same inhomogeneous IVP as Uwkb,
but with trivial initial data. Since U is a fundamental system of solutions of
the homogeneous equation, we get by variation of constants (cf. Lemma 8.4.1)

Uwkb(x)− U(x) = U(x)

∫ x

x0

U−1(ξ)Sε(ξ) dξ .

With Lemma 3.5.2 we deduce from the previous equation

‖Uwkb − U‖ ≤ c ‖Sε‖ , (3.61)

with a constant c independently of ε. If ‖Sε‖ ≪ 1, e. g. ‖Sε‖ = O(εα) with
α ≥ 1, then Uwkb is a good approximation for U .

Remark 3.5.1. Due to the estimate (3.61) we shall use the following strategy
to determine a suitable approximation Uwkb.

(i) make a suitable ansatz for Uwkb (motivated by (3.59))

(ii) insert it into the homogeneous ODE (3.60)

(iii) determine the free parameter from the ansatz function such that the re-
mainder Sε is getting small

In the next Lemma 3.5.2 we collect some properties of U in order to get an idea
what are natural assumptions for the desired WKB approximation Uwkb.

Lemma 3.5.2. Let U be a fundamental system of solutions of the IVP (3.21).
Then it holds:

(i) U is regular on I and U,U−1 are continuously differentiable.

(ii) ∃ c > 0 independently of ε, such that: ‖U‖, ‖U−1‖ ≤ c .
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Proof. (i) U is regular on I (cf. [2]) and hence we can apply Corollary 3.1.2.
(ii) To derive a bound of U we introduce a new quantity Y := E∗U with

E = exp

(
i
ε

∫ x

x0

L(ξ) dξ

)
.

Differentiation yields

Y ′ = − i
εLY + E∗( i

εL + B)EY

= E∗BE Y .

Integration of the differential equation yields

‖Y (x)‖ ≤ ‖Y0‖+
∣∣∣∣
∫ x

x0

‖E∗(ξ)‖‖B(ξ)‖‖E(ξ)‖ dξ
∣∣∣∣ .

Since L is real, E is unitary and hence ‖E∗‖ = ‖E‖ = 1. By a Gronwall
argument (cf. Lemma 8.4.3) we get

‖Y (x)‖ ≤ ‖Y0‖ e|
∫ x
x0

‖B(s)‖ ds|
.

The smooth matrix B is bounded independently of ε. Since I is a bounded
interval, there exists a constant c > 0 independently of ε, such that for all x ∈ I

‖U(x)‖ ≤ ‖Q−1(x)‖‖E(x)‖‖Y (x)‖ ≤ c .

To show the existence of an ε independent bound for ‖U(x)−1‖ we use the fact
that U−1 is differentiable. Equation (3.5) yields

(
U−1)′ = −U−1

(
i
εL+B

)
.

Hence a similar calculation as done for U yields a bound for U−1.

In the following Definition 3.5.3 we specify our WKB ansatz. Since we
want to approximate a fundamental system of solutions of ODE (3.60), we shall
demand similar properties for the ansatz function as listed in Lemma 3.5.2.

Definition 3.5.3. Let n ∈ N and let C0, . . . , Cn,Φ: I → Cd×d independently of
ε with Φ(x) ∈ Rd×d diagonal for all x ∈ I. Then the matrix function

W (x) :=

( n∑

j=0

εj Cj(x)

)
Eε(x) with (3.62)

Eε(x) := exp
(
i
εΦ(x)

)
(3.63)

is called a WKB ansatz function of degree n for the ODE (3.60), if and only if

(i) all quantities are continuously differentiable on I,

(ii) W is regular on I,

(iii) ∃ c > 0 ∃ ε0 > 0 ∀ ε ∈ (0, ε0) : ‖W−1‖ ≤ c.
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From Corollary 3.1.2 we know that W−1 is differentiable and hence we do
not have to claim it additionally. Due to (i) and since Φ is a real diagonal
matrix, we easily see that ‖W‖ is bounded independently of ε ∈ (0, ε0) for some
ε0 > 0. Since W is assumed to be regular, the same holds for

∑
εjCj . It is well

known that a sufficient condition for the sum being regular is that C0 is regular
and ε small. By the following Lemma 3.5.4 this is also necessary for a WKB
ansatz function.

Lemma 3.5.4. Let W be a WKB ansatz function of degree n. Then the fol-
lowing conditions are equivalent

(i) ∃ c > 0 ∃ ε0 > 0 ∀ ε ∈ (0, ε0) : ‖W−1‖ ≤ c.

(ii) C0(x) is regular for all x ∈ I.

Proof. (ii) ⇒ (i): Let C0 be regular on I and 0 6= v ∈ Cd. For any regular
matrix M ∈ Cd×d it holds

‖v‖ = ‖M−1Mv‖ ⇒ ‖Mv‖ ≥ 1

‖M−1‖‖v‖ , (3.64)

which yields

‖W (x)v‖ ≥
(

1

‖(C0(x))−1‖ − ε
n∑

j=1

εj−1‖Cj(x)‖
)
‖Eε(x)v‖ .

Since Φ is real, Eε is unitary and hence ‖Eε(x)v‖ = ‖v‖. Since all quantities
are continuous on the compact interval I, there are constants ε0, τ > 0, such
that the right–hand side is strictly positive for all ε ∈ (0, ε0), i. e.

‖W (x)v‖ ≥ τ‖v‖ .

Hence W (x) is injective and consequently regular. Furthermore we compute

‖W−1(x)‖ = sup
v 6=0

‖v‖
‖W (x)v‖ ≤ 1

τ
.

The boundedness of ‖W (x)‖ is clear due to the definition of W .
(i) ⇒ (ii) is proven by contradiction. Assume there exists an x ∈ I, such that

C0(x) is not regular and let v ∈ Cd. Since W (x) is regular, we can find for any
prescribed v a vector u, such that W (x)u = v. It follows with C0(x) = TJT−1

(Jordan normal form)

W (x)u = v ⇔ T−1v = Jw + εBw ,

with

B =

n∑

j=1

εj−1T−1CjT and w = T−1u .

Since C0(x) is assumed not to be regular, we can assume without restriction
that the last row of J is identically zero. Let ε ∈ (0, ε0) and choose v, such that
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T−1v = (0, . . . , 0, 1)T ∈ Cd. Since C0(x) does not depend on ε, the same holds
for the vector v. Hence we get

1 = ε

∣∣∣∣
d∑

j=0

Bdjwj

∣∣∣∣ ≤ ε ‖B‖∞‖w‖∞

≤ ε c ‖T ‖‖T−1‖
( N∑

j=0

εj−1
0 ‖Cj‖

)
‖T−1W−1v‖ ≤ c ε ‖W−1‖ .

Here we denote by ‖ · ‖∞ the ∞–norm on Cd, which is at once replaced by the
euclidean norm due to the equivalence of norms on Cd (cf. [68]). Since c is an
ε–independent constant, ‖W−1(x)‖ cannot be bounded as ε → 0, which is a
contradiction.

If L,B are sufficiently smooth, the following Lemma 3.5.5 guarantees the
existence of a WKB ansatz function, such that (3.60) is solved up to a remain-
der of order O(εn). But without prescribing initial conditions. Our strategy to
construct an approximation Uwkb for an IVP is as follows: From the construc-
tive proof of Lemma 3.5.5 we extract a special set of WKB ansatz functions
W0, . . . ,Wn of orders 0, . . . , n (cf. Corollary 3.5.7). Afterwards we prove in
Lemma 3.5.9 that there exists a unique linear combination W which approxi-
mates the IVP up to a remainder of O(εn). The function W is in general not a
WKB ansatz function.

Lemma 3.5.5. Let m ≥ n and L,B ∈ Cm(I,Cd×d). Then there exists an
ε0 > 0 and a WKB ansatz function W of degree n, such that

W ′ − i
εLW −BW = εn S Eε .

The matrix function S is given by

S = C′
n −BCn

and hence is independently of ε. Furthermore there exists a permutation matrix
P , such that it holds for all x ∈ I:

Φ′(x) = P ∗L(x)P . (3.65)

The matrix coefficient functions are smooth. To be more precise it holds for
j = 0, . . . , n : Cj ∈ Cm−j+1(I,Cd×d), which yield S ∈ Cm−n.

Proof. We formally compute:

W ′ − i
εLW −BW =

n∑

j=0

(
C′
j +

i
εCjΦ

′ − i
εLCj −BCj

)
εj Eε . (3.66)

Now the idea is to determine C0, . . . , Cn, such that the coefficient matrix in
front of the factor εj is zero up to εn−1. This yields for j ∈ {0, . . . , n}

i CjΦ
′ − i LCj + C′

j−1 − BCj−1 = 0 , (3.67)

where we set C−1 := 0. For j = 0 we get

C0Φ
′ − LC0 = 0 .
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Due to Lemma 3.5.4 C0 has to be regular, which yields with Lemma 3.1.8 that

Φ′(x) = P ∗L(x)P , (3.68)

with an arbitrary permutation matrix P which has to be constant; otherwise
we would get a discontinuous jump on the diagonal of Φ′.

Multiplying (3.67) from the right–hand side with P ∗ yields for j = 0, . . . , n

i[L, Ĉj ] + B Ĉj−1 − Ĉ′
j−1 = 0 , (3.69)

where we set Ĉj = CjP
∗. A comparison of equation (3.69) with (3.30) from

the proof of Lemma 3.3.1 yields that both systems of equations are equal, i. e.
Ĉj = Tj for j = 0, . . . , n. Hence for j = 0, . . . , n

Ĉoffν

j = iD−
L ⊙

(
BĈj−1 − Ĉ′

j−1

)
, (3.70)

Ĉdiaν
j (x) = T (x)

(
Ĉdiaν
j (x0) +

∫ x

x0

T (ξ)−1 diagν(B Ĉ
off
j )(ξ) dξ

)
,(3.71)

where T is the unique solution of the IVP

T ′ = diagν(B) T , T (x0) = Id .

Since Ĉ−1 = 0, we have Ĉ0(x) = T (x)Ĉdiaν
0 (x0) and hence (due to Lemma 3.5.4)

Cdiaν
0 (x0) has to be a regular matrix. Thus we have an explicit recurrence

relation for Ĉ0, . . . , Ĉn. And by construction it is T ∈ Cm+1(I) and hence

Ĉj ∈ Cm−j+1(I). Thus there exists an ε0 > 0, such that
∑
εjĈj is regular on

I for all ε ∈ (0, ε0). For the rest of the proof let ε ∈ (0, ε0). Since all quantities
are continuously differentiable, the formal derivation of (3.67) is justified.

Going back to equation (3.66) we get

W ′ − i
εLW − BW = εn

(
C′
n −BCn

)
Eε

and hence

S = C′
n −BCn .

The matrix function S is (obviously) ε–independent and S ∈ Cm−n, which
completes the proof.

In the above proof we derived an explicit recurrence relation for the matrix
functions C0, . . . , Cn. As we have seen the matrix valued functions C0, . . . , Cn,
as well as the permutation matrix P are not unique. In order to characterize
all WKB ansatz functions and derive an approximation for U we shall choose a
special set C0, . . . , Cm of matrix coefficient functions.

Definition 3.5.6. Since L was already assumed to be diagonal, we shall set
P = Id and let T be the unique solution of the IVP

T ′ = diagν(B) T , T (x0) = Id , (3.72)

and let

Φ(x) :=

∫ x

x0

L(ξ) dξ . (3.73)
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Furthermore we set C0 := T and define C1, . . . , Cn by the following recurrence

Coffν

j = iD−
L ⊙

(
BCj−1 − C′

j−1

)
(3.74)

Cdiaν
j (x) = T (x)

∫ x

x0

T (ξ)−1 diagν(B Coff
j )(ξ) dξ . (3.75)

With these definitions we get from the proof of Lemma 3.5.5

Corollary 3.5.7. Let Φ, T and C0, . . . , Cm be given by equations (3.72)–(3.75).
Then the special WKB ansatz functions

Wk(x) :=

k∑

j=0

εjCj(x) Eε(x) , k = 0, . . . ,m

satisfy

W
′
k − i

εLWk − BWk = εkSkEε , (3.76)

with

Sk = C′
k −BCk .

Remark 3.5.8. If (3.60) originates from a second order ODE as discussed in
§ 2.2.1, then T from Definition 3.5.6 is given by

T (x) = L(x)
1
4L(x0)

− 1
4 .

This factor corresponds to the non oscillatory “amplitude” in the first–term
WKB approximation (3.2).

As stated in the beginning of this section the basic idea to derive an approx-
imation Uwkb of U is to find an approximate solution for the ODE (3.60) with
suitable initial conditions. Since the ODE is linear we can use a linear combi-
nation of the special WKB ansatz functions to construct Uwkb. Lemma 3.5.9
is even a stronger result. Every approximate solution of ODE (3.60) (with re-
mainder of order O(εn

′

)) can be uniquely approximated by a linear combination
of W0, . . . ,Wm, up to a remainder of order O(εmin(m,n′)).

Lemma 3.5.9. Let the matrix valued functions L,B ∈ Cm(I,Cd×d) and let
x0 ∈ I, ε0 > 0 and n′ ∈ N. Further let V : I × (0, ε0) → Cd×d be continuously
differentiable in the first variable for every fixed ε ∈ (0, ε0) and let

V (x0, ε) =
n′∑

j=0

εjVj exp
(
i
εΦ0

)
+ O(εn+1) ,

with matrices V0, . . . , Vn′ ∈ Cd×d and Φ0 ∈ Rd×d diagonal. Furthermore we
assume that there exists a constant c′ > 0, such that for all (x, ε) ∈ I × (0, ε0)

‖V ′(x) − i
εL(x)V (x) − B(x)V (x)‖ ≤ c′ εn

′

.

Then there exists unique matrices X0, . . . , Xn and a constant c > 0 indepen-
dently of ε such that

‖V −W‖ ≤ c εn
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with n := min(m,n′) and

W (x) :=
n∑

k=0

εn−kWk(x)Xk exp
(
i
εΦ0

)
. (3.77)

Proof. We start with determining the matrices X0, . . . , Xn. The approximation
W has to coincide with V at x0 up to order O(εn) which leads to

n∑

j=0

εjVj =

n∑

k=0

εn−kWk(x0)Xk =

n∑

j=0

εj
( j∑

s=0

Cj−s(x0)Xn−s

)
.

Since this has to be true for all ε ∈ (0, ε0), we get the following linear system
where we write Cj instead of Cj(x0):




C0
...

. . .

Cn . . . C0







Xn

...
X0


 =




V0
...
Vn


 .

By definition C0(x0) = Id and hence there exists unique solutions X0, . . . , Xn.
Let RV be the remainder of ODE (3.60) with respect to V . Due to the assump-
tions it is ‖RV ‖ ≤ c′εn

′

. This yields

(W − V )′ − i
εL(W − V ) − B(W − V ) = εn

n∑

k=0

SkEεXk + RV

and we get with variation of constants

‖V −W‖ ≤ c εn
∥∥∥∥

n∑

k=0

SkEεXk

∥∥∥∥ + c′εn
′

.

To finish the proof we remark that n ≤ n′.

A direct consequence of Lemma 3.5.9 is that any WKB ansatz function can
uniquely be represented by a ”linear combination” of W0, . . . ,Wm. For our
fundamental system of solutions U we derive

Corollary 3.5.10. Let U be a fundamental system of solutions of (3.60) such
that U(x0) = Id. Then there exists unique matrices X0, . . . , Xm such that

‖U − Uwkb‖ ≤ c εm ,

with a constant c independently of ε and Uwkb given by (3.77).

Vice versa, there exists for any WKB ansatz function W a fundamental
system of solutions U such that the difference between W and U is of the same
order as the residuum of W with respect to the ODE (3.60).

Corollary 3.5.11. For any WKB ansatz function W of degree n ≤ m with

W ′ − i
εLW − BW = εrSEε ,

there exists a fundamental system of solutions U to (3.60), such that

‖U −W‖ ≤ c εn ,

with a constant c > 0 independently of ε.
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Proof. The fundamental system of solutions is determined by the following con-
dition:

U(x0) =
n∑

j=0

εjCj(x0) .

By Definition 3.5.3,W is regular on I which yields that U(x0) is regular too.

Finally we discuss the connection between the WKB approximation W and
the derived transformation Tε in § 3.3. In the proof of Lemma 3.5.5 we already
observed that the matrix functions Tj and Cj solve the same equations.

Remark 3.5.12. Let u be the unique solution of the IVP (3.23) and let the
matrix valued function W ∈ C1(I) be regular for all x ∈ I and satisfy

W ′ = i
εLW + BW + S̃

with a matrix valued function S. Then the new quantity

y := W−1 u

is the unique solution of the IVP

y′ = −(W−1S̃) y , y(x0) = W−1(x0)u0 . (3.78)

Is W a WKB ansatz function, then W−1 is bounded independently of ε and
hence the norm of the system matrix of ODE (3.78) is of order O(‖S̃‖).

Since the matrix valued functions T0, . . . , Tn from Remark 3.3.2 coincide
with C0, . . . , Cn from Definition 3.5.6, we get for the special choice W = Wn the
IVP (3.40) from § 3.3, i. e. we have

y′ = εnE∗
εSnEε y , y(x0) = y0 .

Thus in § 3.3 we constructed Wn = TεEε.

Proof. Differentiation yields with (W−1)′ = −W−1W ′W−1

y′ = −W−1W ′W−1u + W−1
(
i
εA+B

)
u

= −W−1
[
( iεA+B)W + S

]
W−1u + W−1

(
i
εA+B

)
u

= − (W−1S) y .

Since T0, . . . , Tn from Remark 3.5.12 coincide with C0, . . . , Cn it is TεEε = Wn

and hence we get from Lemma 3.5.5

−W
−1
n S̃ = −(TεEε)

−1εn(C′
n − BCn)Eε

= εnE∗
εT

−1
ε (BTn − T ′

n)Eε = εnE∗
εSnEε .
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3.6 Asymptotic expansions

In § 3.5 and in the numerical part about the oscillatory integrals we come close
to the field of asymptotic analysis. Due to this we follow the textbook of Holmes
[32] and use this section to give a brief introduction of the basic definitions and
give some simple examples to illustrate the concept.

To warm–up we start with the repetition of the order symbols. Therefor
we define the term neighborhood. In the sequel a neighborhood of x ∈ R

always denotes an open subset of R which contains x. Since we want to define
the order symbols also for ±∞, we have to define neighborhoods for them. A
neighborhood of ∞ is an open set U ⊂ R, such that U contains an interval
(a,∞) with some a ∈ R. Analogously we define neighborhoods of −∞.

In the sequel I ⊂ R denotes a non empty open interval and I its closure with
respect to the euclidean topology.

Definition 3.6.1 (Order Symbols). Let ε0 ∈ I and f, φ : I → C.

(i) We write f = O(φ) as ε→ ε0, if and only if

∃ c > 0 ∃U ⊂ R neighborhood of ε0 ∀ ε ∈ I ∩ U : |f(ε)| ≤ c |φ(ε)| .

(ii) We write f = o(φ) as ε→ ε0, if and only if

∀ c > 0 ∃ U ⊂ R neighborhood of ε0 ∀ ε ∈ I ∩ U : |f(ε)| ≤ c |φ(ε)| .

Since ε0 can be a boundary point of I the above definition includes the one–sided
convergence of ε to ε0.

The following Lemma 3.6.2 gives a sufficient criteria for f being of order
O(φ) or o(φ), which can be more useful then Definition 3.6.1.

Lemma 3.6.2. Let f, φ : I → C be functions, such that

λ := lim
ε→ε0

|f(ε)|
|φ(ε)| ∈ R ∪ {∞}

exists. It holds

(i) If λ <∞, then f = O(φ).

(ii) f = o(φ), if and only if λ = 0.

Proof. Let λ <∞. Hence it holds:

∀ c > 0 ∃ U ⊂ R neighborhood of ε0 ∀ε ∈ I ∩ U :
∣∣∣ |f(ε)||φ(ε)| − λ

∣∣∣ ≤ c .

From the inequality we deduce, with the lower triangle inequality, that

|f(ε)| ≤ (λ+ c) |φ(ε)| .

Hence the existence of the finite limit λ is a sufficient condition for f to be
of order O(φ) as ε → ε0. Is λ = 0 we additionally deduce from the above
calculation that f is of order o(φ) as ε→ ε0.
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Remark 3.6.3. In Chapter § 5 and § 6 we derive error estimates, e. g. of a
quadrature rules for highly oscillatory integrals in § 5.2 or the local error of one
step integrators in § 6.6, that depend on two small parameters ε and h. Hence
we shall give a precise definition of the order symbol O in the presence of two
variables. Here we restrict ourself to the special situations that appear in this
thesis.

Let B be a vector space with norm ‖ · ‖ and let α, β ∈ R. Furthermore let
ε∗, h∗ > 0 and let the function f : (0, ε∗)× (0, h∗) → B. Analogue to Definition
3.6.1 we write

f(ε, h) = O(εαhβ) as (ε, h) → 0 ,

if and only if there exists a constant c > 0, such that

∀ (ε, h) ∈ (0, ε∗)× (0, h∗) : ‖f(ε, h)‖ ≤ c εαhβ .

Since ε and h are small positive numbers, we skip the adjunct (ε, h) → 0 and
(often) only write f(ε, h) = O(εαhβ).

Our next goal is to characterize the behavior of a function as ε → ε0. The
suitable term for our applications is the so called asymptotic expansion, which
is defined in Definition 3.6.6. In order to give a precise definition of it, we shall
first define an asymptotic approximation (Definition 3.6.4) and an asymptotic
sequence (Definition 3.6.5).

Definition 3.6.4. Let f, φ : I → C. The function φ is an asymptotic approxi-
mation to f as ε → ε0, if and only if f − φ = o(φ) as ε → ε0. In this case we
write f ∼ φ.

The following example from [32] illustrates the meaning of asymptotic approxi-
mations. Let ε0 = 0 and f(ε) = sin(ε). From the power series of sin(ε) at ε = 0
we get

f(ε) = ε− 1
6ε

3 +O(ε5) .

It is easy to check that f ∼ φj holds for

φ1(ε) = ε , φ2(ε) = ε+ 1000ε2 , φ3(ε) = ε− 1
6ε

3 .

Hence we do not have a unique asymptotic approximation, since all of the above
given functions serve as an approximation of f as ε → 0. Obviously, φ3 is a
better approximation of f than φ2 for |ε| small. To take also the comparative
accuracy into account we proceed with

Definition 3.6.5. A sequence of functions {φj : I → C}j∈N is called an asymp-
totic sequence as ε → ε0, if and only if for all n ∈ N it holds that φn = o(φm)
as ε→ ε0 for all m < n.

A simple example of an asymptotic sequence is φj(ε) = (ε−ε0)γj , where {γj}j∈N

is a (real) strictly monotone increasing sequence. Since γn− γm > 0 for m < n,

φn(ε)

φm(ε)
= (ε− ε0)

(γn−γm) ε→ε0−→ 0

and hence φn = o(φm).
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Definition 3.6.6. We say that f : I → C has an asymptotic expansion to n
terms at ε0, if and only if there exists an asymptotic sequence {φj}j∈N as ε→ ε0
and (constant) complex coefficients {ak}k∈N, such that for all m ≤ n

f =

m∑

j=1

ajφj + o(φm) as ε→ ε0 . (3.79)

In this case we write f ∼∑n
j=1 ajφj .

We deduce from (3.79) and Lemma 3.6.2 that for all m ≤ n

f(ε)−∑m−1
j=1 ajφj(ε)

φm(ε)
− am

ε→ε0−→ 0 .

Hence am and consequently the asymptotic expansion is unique for a prescribed
asymptotic sequence.

One way to derive an asymptotic expansion for real–valued functions is to
use Taylor approximation. Let ε0 ∈ I and f : I → R be in Cn+1(I). Due to
Taylor’s theorem

f(ε) =

n∑

j=0

f(j)(ε0)
j! (ε− ε0)

j + Rn+1(ε) ,

with the remainder Rn+1(ε) being of order o((ε − ε0)
n). Since we have proven

that φj(ε) = (ε − ε0)
j is an asymptotic sequence, the Taylor polynomial is an

asymptotic expansion of f as ε → ε0. Hence, for our example we immediately
see that

f(ε) = sin(ε) ∼
n∑

j=0

ajφj(ε)

for all n ∈ N and aj =
(−1)j

(2j+1)! .

Nevertheless a function can have multiple asymptotic expansions. It is only
unique for a prescribed asymptotic sequence. For example take the Taylor
polynomial and add an exponentially small function to φj , e. g.

φ̃j(ε) = (ε− ε0)
n + cje

− 1
(ε−ε0)2 .

We know that for all j ∈ N e
− 1

(ε−ε0)2

(ε−ε0)j
ε→ε0−→ 0 and hence the set {φ̃j} is an

asymptotic sequence and

f ∼
n∑

j=0

f(j)(ε0)
j! φ̃j .

Since cj ∈ R can be arbitrary numbers the asymptotic series

∞∑

j=0

f(j)(ε0)
j! φ̃j
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Figure 3.2: The left plot shows the relative error of the asymptotic expansion
(3.81) (red diamond) compared to the power series (3.80) (blue cross) of f for
ε = 0.1 and ν = 0. The values are given as functions of the number of terms
used. In the the second figure the order of Jν is increased to ν = 14.

generally does not converge for ε > ε0, even if the function f can be represented
by its Taylor series. The reason why an asymptotic expansion does not neces-
sarily converge as n → ∞ lies in the fact that an asymptotic expansion only
makes a statement about the behavior as ε→ ε0.

Thus, for a problem whose solution has an asymptotic expansion the series
itself is (in general) not a reliable way to find an appropriate approximation
for a fixed ε > ε0. The derived expansion might be divergent and an increas-
ing number of terms could lead to increasing errors. Nevertheless it can be a
powerful tool to simplify a given problem, as done in § 3.3.

The following illustrative example about accuracy versus convergence of an
asymptotic expansion is an extended example from [32]. Let

Jν(z) =
∞∑

k=0

(−1)k

k!(ν + k)!

(
z

2

)ν+2k

(3.80)

be the Bessel function of first kind ν–th order. In [51] it is shown (for integer
ν) that f(ε) := Jν(

1
ε ) has an asymptotic expansion as ε→ 0 of the form

f ∼
√

2ε
π

[
α(ε) cos(1ε − π

4 − π
2 ν)− β(ε) sin(1ε − π

4 − π
2 ν)
]
, (3.81)

with

α =

n∑

k=0

(−1)k

(2k)!

(∏2k
l=1(4ν

2−(2l−1)2)

82k

)
ε2k + O(ε2n+2) ,

β =

n∑

k=0

(
(−1)k+1

(2k+1)!

∏2k+1
l=1 (4ν2−(2l−1)2)

82k+1

)
ε2k+1 + O(ε2n+3) .

It is not hard to check, at least for ν = 0, that the above given expansions
for α and β are divergent for all nonzero ε. Nevertheless, as we can see in the
right plot of Figure 3.6 for f(ε) = J0(

1
ε ), an asymptotic expansion can yield a

sufficient good approximation for a small number of terms taken into account,



66 CHAPTER 3. WKB–TYPE TRANSFORMATIONS

but it does not have to. The left plot shows the relative error of the asymptotic
expansion (3.81) (red diamond) compared to the power series (3.80) (blue cross)
of f(ε) for ε = 0.1 and ν = 0. The values are given as functions of the number
of terms used. In the plot on the right–hand side the order of Jν is increased to
ν = 14. As we expect from theory, the power series always yields very accurate
results for a large number of terms taken into account. However the asymptotic
expansions are divergent and hence the approximation errors starts to grow
monotonously for increasing number of terms.

Thus for the numerical treatment of a problem, e. g. solving an ODE, the
asymptotic structure of the desired solution can be a powerful tool. But it
should always be supported by additional techniques that guarantee that the
approximation error can be decreased below a certain bound. An example for
this procedure is discussed in § 5.2, where the approximation of highly oscillatory

integrals of the form
∫ b
a
f(x)e

i
εφ(x)dx is discussed.



Chapter 4

Computing the WKB–type
transformation of § 3.3

The ODE integrators (one–step methods) from § 6.4 are designed to (efficiently)
approximate the solution y or z of the IVP (6.2) or (6.16) respectively. For the
variable z the IVP reads

z′ = εn E∗
εSnEε z , z(x0) = z0 . (4.1)

In general, the problems we want to solve do not have this nice form. Usually
on starts (possibly after a further preprocessing, e. g. as described in § 2.2) with
the quantity u which solves

u′ =
i

ε
Lu + Bu , u(x0) = u0 . (4.2)

Thus, if we want to derive the solution of the IVP (4.2) (using the one–step
methods from § 6.4), we firstly have to compute the WKB–type transformation
(3.25)–(3.24) from § 3.3 (see also Proposition 3.3.1). In this chapter we discuss a
discretization approach for it. It is incorporated in the fully discretized schemes
used in § 7.2.

In § 3.3 the variable n denotes the polynomial degree of the transformation
matrix Tε(x) with respect to ε. It is also the exponent of ε in the transformed
IVP (4.1). Since in this chapter n is reserved to mark quantities at the (numer-
ical) grid points and subintervals, we use ϑ1 to denote the order of Tε instead.
This is a consistent notation with respect to § 6.6.1

As in [54] we shall only use values at the grid points to compute the variables.
Only for some quantities close to the boundary of the integration interval I (e. g.
Φ(x1)) we compute additional values, in order to guarantee a certain accuracy
with respect to h.

In § 4.1 we shall derive approximation strategies on equidistant grids for
ϑ1 = 1, 2. The diagram shown in Figure 4.1 sketches the variables we have to
compute (for ϑ1 = 2) and there interdependence. A variable at the beginning of
an arrow appears in the formula used to compute the variable the arrow points
to. For example (only) T0 shows up in the formula for T1 (beside the given
matrix valued functions L,B, which are not included in the diagram). From the
diagram we get the order in which the variables have to be approximated. We

67
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Figure 4.1: The diagram shows the interdependence of the variables, which show
up in the transformation (3.26), (3.24) from § 3.3. A variable at the beginning of
an arrow appears in the formula used to compute the variable the arrow points
to. For example we need T0 to compute T1.

start with the discretization of T0 (p.69f). Afterwards we discuss the strategy for
T1, S1 (and T2, S2) (p.70ff), followed by a section which deals with the remaining
variables Rε,Sϑ1 (p.73f). All the discretizations are designed for equidistant
grids. How they can be modified for non equidistant discretizations is discussed
in § 4.2. In § 4.3 we discuss the error which originates from the WKB–type
transformation or rather its numerical approximations. Furthermore we identify
the crucial part of the transformation, which shall be the matrix valued phase
function Φ =

∫
L dx. In § 4.4 we sketch an idea to construct a step size control

algorithm for the computation of the WKB–type transformation, which does
not use a local error estimator. It is based on ideas from [27, VIII.2]. We also
construct an algorithm based on the mentioned approach for the WKB–type
transformation from § 3.3.

4.1 Equidistant grid

In the sequel let h > 0 and x0 ∈ R. For j ∈ Z we define xj = x0 + jh.
Independent of T0, T1 and the related quantities (see Figure 4.1) we additionally
have to compute the (matrix valued) phase function Φ. We start our discussion
with its discretization.

Computation of Φ

We start with the approximation of the matrix valued function

Φ(x) =

∫ x

x0

L(ξ) dξ .

Therefor we use the well known Simpson rule (cf. [28, 29, 68]). In the sequel we
denote the numerical approximation of a quantity at the grid point xn by the
quantities name with subscript n, i. e. Φn is our approximation of Φ(xn).

(i) Set Φ0 = 0.

(ii) Compute L0 = L(x0), L 1
2
= L

(
x0+x1

2

)
, L1 = L(x1) and set

Φ1 =
h

6
(L0 + 4L 1

2
+ L1) .
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(iii) for n = 2 : N
compute Ln = L(xn) and

Φn = Φn−2 +
h

3

(
Ln−2 + 4Ln−1 + Ln

)
.

end

This yields a local quadrature error of O(h4). The Simpson rule can be obtained
by integrating the differential equation Φ′ = L with the classical Runge–Kutta
(RK)1 method (cf. [63, 68]). Its update routine from yn 7→ yn+1 for the (non-
linear) ODE y′(x) = f(x, y(x)) reads (with hn = xn+1 − xn):

k1 := f(xn, yn) ,

k2 := f(xn + 1
2hn, yn + 1

2hnk1) ,

k3 := f(xn + 1
2hn, yn + 1

2hnk2) ,

k4 := f(xn + hn, yn + hnk3) ,

yn+1 = yn + hn

6 (k1 + 2k2 + 2k3 + k4) .

Hence we shall use the RK method also for the upcoming IVP we have to solve.

Computation of T0

Since we implicitly use the classical RK method for Φ, there is no reason2 why
we should not use it to solve the IVP (3.37) for T0, i. e.

T ′
0 = diagν(B)T0 , T0(x0) = Id .

We only want to use values at the given grid. Since the RK method needs an
evaluation of the flow function (right–hand side of the ODE) at an intermediate
point, we cannot directly use the integration method. Instead we apply the
RK method with the step size 2h on the sub–grids x0, x2, x4, . . . and x1, x3, . . . .
Thus we solve (alternating) two (original) Runge–Kutta problems. Only for
the first step (i. e. for the computation of T0,1) we compute an additional value
for B 1

2
and apply the formula from the textbooks [63, 68]. For the remaining

computations we have to replace h by 2h.

(i) Set T0,0 = Id.

(ii) Compute B0 = B(x0), B 1
2
= B

(
x0+x1

2

)
, B1 = B(x1) and set

K1 = diagν(B0)T0,0 ,

K2 = diagν(B 1
2
)(T0,0 +

h
2K1) ,

K3 = diagν(B 1
2
)(T0,0 +

h
2K2) ,

K4 = diagν(B1)(T0,0 + hK3) ,

T0,1 = T0,0 +
h

6
(K1 + 2K2 + 2K3 +K4) .

1The abbreviation RK always denotes the classical Runge–Kutta scheme and do not mean
the whole class of integrators.

2If one is interested in the construction of a symmetric solver for u, one has to be more
careful and may use a symmetric solver for T0 too. Since this is not our aim an explicit
method is enough.
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(iii) for n = 2 : N
compute Bn = B(xn) and

K1 = diagν(Bn−2)T0,n−2 ,

K2 = diagν(Bn−1)(T0,n−2 + hK1) ,

K3 = diagν(Bn−1)(T0,n−2 + hK2) ,

K4 = diagν(Bn)(T0,n−2 + 2hK3) ,

T0,n = T0,n−2 +
h

3
(K1 + 2K2 + 2K3 +K4) .

end

As for Φ we get a local error of O(h4).

Computation of T1 and S1 and optional T2, S2

Next we compute the matrix valued functions T1, S1, and T2, S2 respectively.

(i) By (3.38) from Remark 3.3.2 it holds

T offν
1 = iD−

L ⊙ (BT0 − T ′
0) .

Since T ′
0 = diagν(B)T0, we do not have to approximate T ′

0. We replace it
by using the ODE. This yields

T offν
1,n = iD−

Ln
⊙ ((Bn − diagν(Bn))T0,n) = iD−

Ln
⊙ (BnT0,n) .

For the last equality we used diagν(D
−
L ) = 0 and diagν(T0) = T0. Since Bn

is already computed to derive T0,n, we can incorporate the computation

of T offν
1,n in the loop for T0. Obviously, the approximation error for T offν

1,n

is of the same order as for T0.

(ii) If ϑ1 = 1, i. e. we do not have to compute T2, we set T1 = T offν
1 and can

skip (iii). From Remark 3.3.2 we deduce

S1 = T−1
ε

(
BT1 − T ′

1

)
.

Now we could directly use the finite differences from § 8.1 to approximate
(T offν

1 )′(xn). In this case the accuracy of the finite difference approxima-
tion is limited (in the worst case) by the data error (of T0) divided by h.
Thus, if we want to guarantee the same spatial convergence behavior for
S1 as for T0 and T1, we have to proceed in a different way. However, if T0
is exactly given, e. g. for the problem in § 2.2.1, we can directly use the
finite differences, since in this case T1 is more or less exact.

To compute the (exact) derivative of T offν
1 we differentiate (3.38) with

respect to x. This yields3

(T offν
1 )′ =

(
iD−

L ⊙ (BT0)
)′

= i(D−
L )

′ ⊙ (BT0) + iD−
L ⊙ (B′T0 +BT ′

0)

= iD−
L ⊙

(
iDL′ ⊙ T offν

1 + (B′ +B diagν(B))T0
)
.

3By Lemma 3.1.9 (D−
L )ij = (Lii − Ljj)−1. Hence the first derivative with respect to x is

given by (D−
L )′ij = −(Lii − Ljj)

−2
ij (L′

ii − L′
jj), which yields (D−

L )′ = −(D−
L )⊙2 ⊙DL′ .
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Here we use ODE (3.37) to replace the derivative of T0 in the second line.
Since diagν DL′ = 0 we can also replace T offν

1 by T1 in the last line.

Let us denote numerically computed derivatives with respect to the spatial
variable x by †, i. e. f †(x) is a numerical approximation of f ′(x). If the
derivative is approximated at a grid point xn, we simply write f †

n instead
of f †(xn). With this notation we get from the previous calculation
(
T offν
1,n

)†
= iD−

Ln
⊙
(
(B†

n +Bn diagν(Bn))T0,n + iDL†
n
⊙ T1,n

)
.

Thus it remains to derive suitable approximations for L′ and B′. Since it
holds

T0,n = T0(xn) +O(h4) , T1,n = T1(xn) +O(h4) ,

we shall use the finite differences from Definition 8.1.5 of § 8.1, which yield
an approximation error of O(h4).

(iii) Otherwise, if ϑ1 = 2 and hence we have to compute T2, we firstly have
to determine the ν–diagonal part of T1. By (3.39) from Remark 3.3.2 it
holds

T diaν
1 (x) = T0(x)

∫ x

x0

T0(ξ)
−1 diagν(BT

offν
1 )(ξ) dξ .

As before the Simpson rule is our method of choice to approximate the
integral.

(a) In order to apply the Simpson rule on the interval [x0, x1] we have to
evaluate the integrand at x 1

2
= x0+

h
2 . Since B 1

2
is already computed

to approximate T0,1, it remains to derive a suitable approximation

for T offν
1 (x 1

2
) and T0(x 1

2
) respectively. Therefor we consider two ap-

proaches.

(1) We make one RK step to derive T0, 12 . Since B0 and B 1
2
are

already computed, it remains to determine B 1
4
= B

(
x0 + h

4

)
.

Then we compute

K1 = diagν(B0)T0,0 ,

K2 = diagν(B 1
4
)(T0,0 +

h
4K1) ,

K3 = diagν(B 1
4
)(T0,0 +

h
4K2) ,

K4 = diagν(B 1
2
)(T0,0 +

h
2K3) ,

T0, 12 = T0,0 +
h

12
(K1 + 2K2 + 2K3 +K4) .

(2) Another idea is to use the interpolation approach from § 8.3.
This is a bit less accurate, but it does not need an additional
function evaluation. Since we use an equidistant grid we deduce
from Lemma 8.3.1 (θl = θr =

1
2 )

T0, 12 := 1
4

[
2 Id + 1

2hn diagν(B0)
]
T0,0

+ 1
4

[
2 Id − 1

2hn diagν(B1)
]
T0,1 .

Here the approximation error of T0, 12 with respect to T0(x 1
2
) is

of order O(h4).
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(b) Now we set T diaν
1,0 = IT1,0 = 0 and

T offν

1, 12
= iD−

L 1
2

⊙ (B 1
2
T0, 12 ) .

Next we compute the first Simpson approximation

IT1,1 =
h

6
diagν

(
T−1
0,0B0T

offν
1,0 + 4T−1

0,12
B 1

2
T offν

1, 12
+ T−1

0,1B1T
offν
1,1

)
.

and set T diaν
1,1 = T0,1 IT1,1 .

(c) for n = 2 : N

IT1,n = IT1,n−2 +
h

3
diagν

(
T−1
0,n−2Bn−2T

offν
1,n−2

+ 4T−1
0,n−1Bn−1T

offν
1,n−1

+ T−1
0,nBnT

offν
1,n

)
,

T diaν
1,n = T0,n IT1,n .

end

The data we use for the Simpson rule have an error of O(h4). Thus
in each step we add an error term (with respect to the Simpson rule
with unperturbed data) of order O(h5). Summing up these defects
yields an accuracy of IT1,n of O(h4). Hence the perturbation of the
data is small enough, such that it does not influence the asymptotic
behavior of the Simpson rule.

(d) Once the ν–diagonal part of T1 is computed, we us Remark 3.3.2 to
derive T2. Since we do not compute T3, we can set the ν–diagonal
part of T2 equal to zero. This yields

T2,n = iD−
Ln

⊙
(
BnT1,n − T ′

1(xn)
)
.

Since the ν–diagonal part of D−
Ln

is zero, we do not have to compute
the derivative of the ν–diagonal elements of T1. This yields

T2,n = iD−
Ln

⊙
(
BnT1,n − (T offν

1 )′(xn)
)
.

We use the approximation procedure from (ii) to compute (T offν
1 )′.

This yields an approximation error for T2,n of O(h4).

Now we have all quantities to compute S2. By Remark 3.3.2 it holds

S2 = T−1
ε

(
BT2 − T ′

2

)
.

For simplicity we use the finite difference schemes from § 8.1 to determine
T ′
2. This yields (at most) a local error of O(ε0h3) for S2.
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Computation of R and Sϑ1

The last transformation step is to remove the ν–diagonal part of Sϑ1 . This is
done as in Corollary 3.3.4. Therefor we have to find the solution of

R′ = εϑ1 diagν(Sϑ1)R , R(x0) = Id

and set z := R−1y which yields

z′ = εϑ1
(
E∗
εSϑ1Eε

)
z , z(x0) = y(x0) = T−1

ε (x0)u(x0) ,

with Sϑ1 := R−1Soffν

ϑ1
R.

Notation. In the sequel we simply write S,S instead of Sϑ1 and Sϑ1 respec-
tively. Thus if we write Sj, we mean Sϑ1(xj) (or an appropriate approximation)
and not the matrix valued function Sϑ1=j.

Again we apply the Runge–Kutta method to derive an approximation for R.
Since the system matrix of the R–ODE is not oscillatory and of order O(εϑ1),
we expect the RK method to be very accurate for the first steps. Hence, this
time we do not compute an additional value S 1

2
for the first integration step.

Instead we use the interpolation approach from § 8.3 to approximate R1. In
detail this means:

(i) Since R(x0) = R0 = Id we immediately get S0 = S0 − diagν(S0).

(ii) Compute an approximation of R(x2) with the RK method, i. e.

K1 = εϑ1 diagν(S0)R0 ,

K2 = εϑ1 diagν(S1)(R0 + hK1) ,

K3 = εϑ1 diagν(S1)(R0 + hK2) ,

K4 = εϑ1 diagν(S2)(R0 + 2hK3) ,

R2 = R0 +
h

3
(K1 + 2K2 + 2K3 +K4)

and set S2 = R−1
2 (S2 − diagν(S2))R2.

(iii) With Lemma 8.3.1 (θl = θr =
1
2 , hn = 2h) we get

R1 = 1
4

[
2 Id + h εϑ1 diagν(S0)

]
R0

+ 1
4

[
2 Id − h εϑ1 diagν(S2)

]
R2 .

Than we set S1 = R−1
1 (S1 − diagν(S1))R1.

(iv) for n = 3 : N

K1 = εϑ1 diagν(Sn−2)Rn−2 ,

K2 = εϑ1 diagν(Sn−1)(Rn−2 + hK1) ,

K3 = εϑ1 diagν(Sn−1)(Rn−2 + hK2) ,

K4 = εϑ1 diagν(Sn)(Rn−2 + 2hK3) ,

Rn = Rn−2 +
h

3
(K1 + 2K2 + 2K3 +K4) ,

Sn = R−1
n (Sn − diagν(Sn))Rn

end
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The data we use to approximate Rn are perturbed. The error of Sn is of order
O(h4) for ϑ1 = 1 and (at least) O(h3) for ϑ1 = 2. Hence in each RK step we
get, beside the unavoidable defect from the RK method, an additionally defect
of order O(ε1h5) or O(ε2h4) respectively. Summing up these errors yields an
accuracy of Rn with respect to R(xn) of O(εh4) or O(ε2h3) respectively. Hence
the approximation error of Sn is dominated by the accuracy of Sn.

4.2 Non–equidistant grids

If we only want to use values at a given arbitrary grid (not necessary equidis-
tant), we cannot directly apply the Simpson or Runge–Kutta method as in
§ 4.1. But we also do not want to derive an entire new scheme to approximate
the transformation. We rather want to make slight modifications of the ideas
presented in § 4.1. To solve the (inhomogeneous) linear IVPs which show up to
compute the transformation, e. g.

Φ′ = L , Φ(x0) = 0 ,

T ′
0 = diagν(B)T0 , T0(x0) = Id ,

R′ = ε1 diagν(S1)R , R(x0) = Id ,

we still want to use the RK method. Unfortunately the needed intermediate
points are (in general) not at the grid. Hence we have to approximate them
using the available data at the given nodes. What is the accuracy we should
demand of this approximations?

To answer this question let us consider the IVP (on [a, b])

y′(x) = A(x)y(x) + f(x) , y(x0) = y0 . (4.3)

We assume that the matrix valued function A and the vector (or matrix) valued
function f are C(4)([a, b]). This yields y ∈ C(5)([a, b]). Furthermore let Y be
the unique fundamental system of solutions that solve

Y ′(x) = A(x)Y (x) , y(x0) = Id .

From literature (cf. [68]) we know that the convergence error of the RK method
is O(h4), where h is the maximum step size of the used prescribed spatial grid
a = xna < · · · < xnb

= b. In each step one has to evaluate A and f at the
intermediate point

xn+ 1
2

:=
xn+1 − xn

2
.

Now assume that we only have perturbed values An+ 1
2
, fn+ 1

2
at xn+ 1

2
, such that

(c independent of the grid)

‖An+ 1
2
−A(xn+ 1

2
)‖ ≤ c h4n , ‖fn+ 1

2
− f(xn+ 1

2
)‖ ≤ c h4n . (4.4)

As usual we set hn := xn+1 −xn. Applying the RK method with the perturbed
intermediate data An+ 1

2
and fn+ 1

2
yields a sequence {ŷn}. The update routine
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reads (cf. [68] p.438)

K1 = Anŷn + fn ,

K2 = An+ 1
2
(ŷn + 1

2hnK1) + fn+ 1
2
,

K3 = An+ 1
2
(ŷn + 1

2hnK2) + fn+ 1
2
,

K4 = An+1 (ŷn + hK3) + fn+1 ,

ŷn+1 = ŷn +
hn
6
(K1 + 2K2 + 2K3 +K4) .

This can be written in the form

ŷn+1 =
(
Id+hnKn

)
ŷn + hn Fn (4.5)

with suitable Kn and Fn. By assumption (4.4) and since the matrix valued
function A is uniformly bounded, there exists a constant cK ≥ 0, such that for
all n it holds ‖Kn‖ ≤ cK .

Now we construct an initial value problem, which is “well“ approximated
by {ŷn} and whose exact solution ŷ stays close to the desired solution y of the
IVP (4.3). Therefor we define the functions ∆A and ∆f piecewise on each
subinterval [xn, xn+1] by

∆A(x) :=
16(x− xn)

2(xn+1 − x)2

h4n
(An+ 1

2
−A(xn+ 1

2
)) ,

∆f(x) :=
16(x− xn)

2(xn+1 − x)2

h4n
(fn+ 1

2
− f(xn+ 1

2
)) .

It holds

∆A(xn) = ∆A(xn+1) = ∆A′(xn) = ∆A′(xn+1) = 0 ,

∆f(xn) = ∆f(xn+1) = ∆f ′(xn) = ∆f ′(xn+1) = 0 ,

and

∆A(xn+ 1
2
) = An+ 1

2
−A(xn+ 1

2
) ,

∆f(xn+ 1
2
) = fn+ 1

2
− f(xn+ 1

2
) .

Hence the functions

Â(x) := A(x) + ∆A(x) and f̂(x) := f(x) + ∆f(x)

are C1([a, b]) and coincide with A, f at the grid. Furthermore they coincide with
An+ 1

2
and fn+ 1

2
at the intermediate points. Thus, if one uses the RK scheme

to solve the IVP (on [a, b])

ŷ′(x) = Â(x)ŷ(x) + f̂(x) , ŷ(x0) = y0 , (4.6)

one gets the sequence {ŷn}. Now let us make one step with the RK method,
starting at xn with the exact solution ŷ(xn) and denote the result by ỹn+1.

Since Â and f̂ are only C1([a, b]) we cannot directly benefit from the convergence
results of the RK method. But for smooth data the RK scheme has convergence
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order O(h4). Hence the local error (and locally Â and f̂ are C(4)([xn, xn+1])) is
of order O(h5n), which yields

‖ŷ(xn+1)− ỹn+1‖ ≤ cn h
5
n .

The constant depends on the forth derivative of the functions Â and f̂ on the
interval [xn, xn+1]. By assumption (4.4) we get (and analog for f)

sup
x∈[xn,xn+1]

‖Â(4)(x)‖ = sup
x∈[xn,xn+1]

∥∥∥∥A(4)(x) +
16 · 4!
h4n

(
An+ 1

2
−A(xn+ 1

2
)
)∥∥∥∥

≤ sup
x∈[xn,xn+1]

‖A(4)(x)‖ + c̃ .

The constant c̃ is independent of A, f , n and the grid. Hence there exists
a constant c∗, such that for all admissible n it holds cn ≤ c∗. Thus we get
the same local error for the RK scheme as we would get for globally smooth
functions A, f . Furthermore, the sequence {ŷ(xn)} solves the inhomogeneous
difference equation (cf. (4.5))

ŷ(xn+1) = (Id+hnKn)ŷ(xn) + hnFn +Rn ,

with ‖Rn‖ ≤ ch5n. Hence ∆n := ŷ(xn)− ŷn is a solution of the inhomogeneous
difference equation

∆n+1 = (Id+hnKn)∆n +Rn , ∆0 = 0 ,

which yields

‖∆n+1‖ ≤ ‖1 + hnKn‖‖∆n‖ + ‖Rn‖ ≤ (1 + hncK)‖∆n‖ + ch5n .

By induction it follows:

‖∆n‖ ≤
n−1∏

j=0

(1 + hjcK) ‖∆0‖ +
n−1∑

j=0

n−1∏

l=j+1

(1 + hlcK) ch5j .

Since hn ≤ h and
∏n−1
l=j+1(1 + hlcK) ≤ ecK(xn−xj) it holds

‖∆n‖ ≤ cKh
4ecK(b−a)

n−1∑

j=0

hj ≤ cKh
4ecK(b−a)(b− a) .

Hence ‖ŷ(xn)− ŷn‖ ≤ c h4, with a grid and n independent constant c. Further-
more u := ŷ − y solves the inhomogeneous IVP

u′(x) = A(x)u(x) + ∆A(x)ŷ(x) + ∆f(x) , u(x0) = 0 .

Using Variation of constants

(ŷ − y)(x) = u(x) = Y (x)

∫ x

x0

Y (t)−1
(
∆Aŷ +∆f

)
(t) dt .

This yields

‖y − ŷ‖∞ ≤ ‖Y ‖∞‖Y −1‖∞|a− b|(‖∆A‖∞‖ŷ‖∞ + ‖∆f‖∞)

≤ c h4 ‖Y ‖∞‖Y −1‖∞|a− b|(1 + ‖ŷ‖) .
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Thus the difference of the exact solution y and the solution of the modified
problem is of order O(h4).

Now let us consider a sequence of grids {Xm}, which admits (4.4). Let hm
be the maximum step size of the grid Xm. For every single grid we construct
functions Âm, f̂m, which yields a solution ŷm of (4.6). Further we get a sequence
{ŷm,n}n of a corresponding solution of the RK method. If hm → 0 the functions

Âm, f̂m uniformly converge to A and f . Hence it is possible to derive an upper
bound for ‖ŷm‖∞, which is independent of the currently used grid (but of course
may depend on the family of grids). For this purpose one can use a Gronwall
argument (cf. Lemma 8.4.3). Thus we get

‖y − ŷm‖∞ ≤ c h4m ,

with c ≥ 0 independent of m. This yields

‖y(xn)− ŷm,n‖ ≤ ‖y(xn)− ŷm(xn)‖ + ‖ŷm(xn)− ŷm,n‖ = O(h4m) .

Remark 4.2.1. If we use perturbed (intermediate) data with an error of O(h4)
we preserve the asymptotic nature of the RK method.

The missing intermediate value shall be approximated by the finite difference
approach from § 8.1. In this case one has to solve a 4 × 4 linear system in
each step. An alternative approach is to use polynomial interpolation instead.
Here one can use Neville’s algorithm (cf. [68]). But using computer algebra
programs like Maple14 (or carrying out the tedious computations by hand) one
can a priori solve the linear system. Hence the approximation procedure via
the finite difference ansatz requires only the evaluation of four scalar algebraic
expressions, four scalar–matrix multiplications and three matrix summations.
This is much less effort compared to Neville’s algorithm4.

We want to approximate a given functions f at the point x∗ = 1
2 (xn+xn+2).

If xn < x∗ ≤ xn+1 we use the abscissas {xn−1, xn, xn+1, xn+2}. Otherwise
we take {xn, xn+1, xn+2, xn+3}. In both cases let η1, . . . , η4 be the relative
coordinates with respect to x∗, i. e.

xnj = x∗ + hnηj with hn = xn+2 − xn .

This yields the ansatz

f∗ =

4∑

j=1

vjf(x∗ + hnηj) .

By Lemma 8.1.2 and Remark 8.3 we get that

‖f(x∗)− f∗‖ ≤ c h4n ,

if and only if v solves the linear system



1 . . . 1
η11 . . . η14
...

...
η31 . . . η34







v1
...
v4


 =




1
0
0
0


 .

4One needs twelve scalar–matrix multiplications and six matrix summations
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The unique solution of this linear system of equations is given by

vi = − ηjηkηl
(ηi − ηj)(ηi − ηk)(ηi − ηl)

,

with i, j, k, l ∈ {1, 2, 3, 4} pairwise distinct.

Remark 4.2.2. The coefficient vi can also be obtained by evaluating the corre-
sponding Lagrange polynomial at x∗, i. e.

(x∗ − xj)(x∗ − xk)(x∗ − xl)

(xi − xj)(xi − xk)(xi − xl)
=

(−ηj)(−ηk)(−ηl)
(ηi − ηj)(ηi − ηk)(ηi − ηl)

= vi .

Hence the finite difference ansatz is (in this case) equivalent to polynomial in-
terpolation.

4.3 Crucial part of the transformation error

In this section we shall discuss the numerical approximation of the IVP (3.21)
from the introduction of § 3. For this purpose let us mark the numerically
derived quantities with ,̂ i. e. if f is a given analytical quantity its approximation
coming from the algorithm is denoted by f̂ .

Let ϑ1 ∈ N. In order to reformulate the IVP, such that it fits into the setting
of § 6.2, we use the WKB–type transformation (3.25) from § 3.3. Let us briefly
summarize the approximation procedure for Eε, Tε and R as discussed § 4.1.

(i) Fix a grid a = xna < xna+1 < · · · < xnb
= b and let

h := max
n∈{na,...,nb−1}

(xn − xn+1)

be the maximum step size.

(ii) If Φ is not analytically given, derive an approximation Φ̂ with an ordinary
quadrature, like Trapezoid or Simpson rule. This yields the local estimate

‖Φ(xn)− Φ̂n‖ ≤ c hγΦ .

(iii) Solve the IVP (3.37)

T ′
0 = diagν(B) T0 , T0(x0) = Id

on the fixed grid with an ordinary ODE solver. This yields a numerical
approximation T̂0 with the local error estimate

‖T0(xn)− T̂0,n‖ ≤ c hγ0 .

The exponent γ0 > 0 is prescribed by the integrator used to solve the IVP.
For some problems, e. g. the second order equations from § 2.2, the IVP
for T0 is analytically solvable and hence there is no approximation error.
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(iv) For j = 1, . . . , ϑ1 use Remark 3.3.2 to compute an approximation of Tj ,
i. e. one has to approximate

T̂ offν

j,n = iD−
L (xn)⊙

(
B(xn)T̂j,n − T̂ ′

j,n

)

T̂ diaν
j,n = T̂0,n

∫ xn

x0

diagν(BT
off ν
j )(ξ) dξ .

For the ν–diagonal part use a suitable quadrature with order γj . By
induction we see that the local error is always at most of order O(hγ0).
This yields

‖Tj(xn)− T̂j,n‖ ≤ c hγ0 + c hγj .

If T0 is exactly given, i. e. T̂0 = T0, it also holds T̂ offν
1,n = T offν

1,n . Hence
for ϑ1 = 1 there is no approximation error for Tε, since the diagonal part
T diaν
1,n has no influence of the asymptotic order and thus can be arbitrarily

chosen.

(v) Compute Ŝϑ1 with Remark 3.3.2.

(vi) Solve the IVP

R̃′ = εϑ1 diagν(Ŝϑ1) R̃ , R̃(x0) = Id

on the grid with an ordinary ODE solver.

(vii) Compute Ŝ = Ŝϑ1 from Corollary 3.3.4.

Even if the outstanding computations would be exact, we make some errors
in the transformation that leads to (3.46) (see Corollary 3.3.4). Let us collect
them. The quantities L,B of the original IVP for u (see § 3.2) are assumed to
be given. Of course, also they might be inaccurate, but this is not yet of interest
and hence we neglect this possibility here. Thus the first approximation occurs
while computing the WKB–type transformation from § 3.3 (combine (3.25) and
Corollary 3.3.4)

ũ(x) := T̂ε(x) Êε(x) R̂(x) z(x) ,

with

Ê∗
ε (x) = exp

(
− i

ε Φ̂(x)
)

and T̂ε =

ϑ1∑

j=0

εjT̂j .

Here Φ̂, T̂ε are suitable interpolation functions which coincide with the derived
numerical values at the grid. We assume

Φ̂(x) = Φ(x) + ∆Φ(x) , T̂ε(x) = Tε(x) + ∆Tε(x) ,

R̂ε(x) = Rε(x) + ∆Rε(x) , Êε(x) = Eε(x) + ∆Eε(x) .

Let z, u be the exact solutions of (3.46) and (3.23) respectively. It holds

‖ũ(x)− u(x)‖ ≤ ‖T̂ε(x)Êε(x)R̂(x) − Tε(x)Eε(x)R(x)‖ ‖z(x)‖ .
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In order to get an estimate for the first norm we rewrite the matrix by adding
certain ”zeros“. I. e.

T̂εÊεR̂ − TεEεR = T̂εÊεR̂ − T̂εÊεR + T̂εÊεR − TεEεR

=
(
T̂εÊε

)(
R̂−R

)
+
(
T̂εÊε − TεEε

)
R

=
(
T̂εÊε

)(
R̂−R

)

+
(
T̂εÊε − T̂εEε + T̂εEε − TεEε

)
R

=
(
T̂εÊε

)(
R̂−R

)

+ T̂ε
(
Êε − Eε

)
R +

(
T̂ε − Tε

)
EεR .

This yields

‖T̂εÊεR̂ − TεEεR‖ ≤ ‖T̂ε‖‖∆R‖ + ‖T̂ε‖‖R‖‖∆Eε‖ + ‖∆Tε‖‖R‖ .

Here we used that Eε is unitary and hence ‖Eε‖ = 1. Since Êε, Eε are diagonal,
the norm of ∆Eε is the maximum absolute value of its eigenvalues. Let ϕ, ϕ̂ ∈ R.
A straight forward calculation shows that

∣∣e i
εϕ − e

i
ε ϕ̂
∣∣2 = 2

(
1− cos(ϕ−ϕ̂ε )

)
= 4 sin2

(
ϕ−ϕ̂
2ε

)
.

This yields

‖(Êε − Eε)(x)‖ = 2 sup
j=1,...,d

∣∣∣∣ sin
(
∆Φjj(x)

2ε

)∣∣∣∣ .

From Lemma 3.3.1 and Remark 3.3.5 we deduce that Tε and Rε are at least
C0–bounded independently of ε. Hence there exists a constant c ≥ 0, such that

‖ũ(x) − u(x)‖ ≤ c
(
sup
j

∣∣ sin
(∆Φjj(x)

2ε

)∣∣ + ‖∆Rε‖ + ‖∆Tε‖
)
‖z(x)‖ .

By Proposition 6.2.2 we know that ‖z(x)‖ is bounded independently of ε. Thus
the crucial part of the numerical transformation is the approximation of the
phase function. Even if ∆Tε = 0 (e. g. for the second order ODE from § 2.2.1
with ϑ1 = 1) and ‖∆Rε‖ = O(εnhγ), the error is still of order O(ε−1‖∆φ‖).

Remark 4.3.1. The crucial part of the transformation error originates from the
approximation of the matrix valued phase function Φ. It is of order ε−1‖∆Φ‖.
This has two consequences:

(i) To compute Φ we should use a quadrature with a very high accuracy.

(ii) Step size restriction. Let γΦ be the order of the quadrature used to approx-
imate Φ, i. e.

‖Φ− Φ̂‖∞ ≤ c hγΦ .

If we want to construct a scheme with convergence order τ , i. e.

‖u− û‖∞ ≤ c hτ ,
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we have to compensate the factor ε−1 with powers of h. This means

hγΦ−τ

ε
≤ c ,

with a constant c independently of ε. Hence we get an ε dependent upper
bound for h, i. e.

h0 = (c ε)
1

γΦ−τ .

Furthermore we observe that γΦ ≥ τ + 2 has to hold, if we want to use
step sizes h ≥ ε.

If Φ is not exactly given, we should choose the grid dependent on Φ and ε, in
order to control the error of the primal quantity u.

4.4 Step size control

In this section we briefly discuss an approach to construct a step size controller
for the computation of the WKB–type transformation. It is based on ideas from
[27], which are adapted to our setting. With the strategy described in the sequel
we hope to achieve an approximation error for the quantity z (approximated
with the one–step methods (OSM) from § 6.4), which is at most as large as for
an equidistant grid with the same number of abscissas. If the quantity B (cf.
(4.7)) or its derivatives are very large (at some points in the interval), we expect
that our step size control approach is much more accurate than an equidistant
grids.

The transformation

z(x) = R−1(x)E∗
ε (x)T

−1
ε (x)u(x)

maps the solution u of

u′(x) =
i

ε
L u + B u , u(x0) = u0 , (4.7)

to the solution z of (3.46), i. e.

z′ = εn
(
E∗
εSnEε

)
z , z(x0) = z0 . (4.8)

As discussed in § 4.3, the crucial part of the transformation is the approximation
of matrix valued function Φ. Instead of Φ let us rather compute Φε :=

1
εΦ. This

yields

Eε(x) = exp(iΦε(x)) with Φ′
ε(x) =

1

ε
L(x) .

The OSM from § 6 used to compute z can yield poor results, if the eigenvalues
of L get close to each other, i. e. δ ≪ 1. Another problem can be that the
norm of the matrix B is getting large at a certain point (cf. § 7.3). Both events
cause a growth of the norm of Sϑ1 . Hence we should take also this into account.
Our approach is an adaption of ideas from [27, §VIII.2]. Let us make a space
transformation of the whole system, i. e.

φ(t) := Φε(ω(t)) , ζ(t) := z(ω(t)) ,
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with some differentiable strictly monotone function ω. Differentiation yields
(where ˙ denotes the derivative with respect to t)

φ̇(t) = ω̇(t)
1

ε
L(ω(t)) ,

ζ̇(t) = ω̇(t) εϑ1(E∗
εSϑ1Eε)(ω(t))ζ(t) .

In order to control the norm of the system matrix for ζ, i. e. the norm of Sϑ1 ,
we simply demand

ω̇(t) =
1

‖Sϑ1(ω(t))‖
.

Since the IVP for ζ still fits to our Model Problem 2, we assume that we can
use rather coarse grids to get a sufficient numerical solution. Hence the IVPs
for φ and ω shall define the used grid. Thus one approach could be

(i) Use a standard integrator like the embedded Runge–Kutta routine ode45
from Matlab to solve the nonlinear IVP

φ̇(t) = ω̇(t)
1

ε
L(ω(t)) , φ(x0) = 0 , (4.9)

ω̇(t) =
1

‖Sϑ1(ω(t))‖
, ω(0) = x0 , (4.10)

with a prescribed accuracy. Hence we use the step size controller of the
standard routine to generate our grid. But we have to save a lot of data
at every grid point.

(ii) Use the stored data to solve the IVP

ζ̇(t) = ω̇(t) εϑ1(E∗
εSϑ1Eε)(ω(t))ζ(t) , ζ(0) = z(x0) .

with the OSM derived in § 6.

This is of course a non optimized method, but easy to implement, provided Sϑ1

is explicitly known. And if the method works, one can combine the standard
ODE solver and the OSM, such that less data has to be stored in each step.

If the problem for u has conserved quantities, e. g. if it comes from a second
order system, it should be possible to construct a reversible controller as sug-
gested in [27]. For a first try one should think about the Crank-Nicolson like
scheme. It is symmetric, if the supporting abscissas and multiplicities for the
interpolation problems are symmetric with respect to the integration interval.

Since the IVP (4.10) for ω is independent of the used OSM, it is not necessary
to transform the z IVP (4.8), i. e. we do not have to introduce a new variable
ζ. Let x0 = ω0 < ω1 < · · · < ωN = b be approximate solutions of (4.10). Hence
we set xj = ωj and solve the IVP for z on this non equidistant grid. In the
following subsection we present one approach, which solves (4.10), such that
only one evaluation of Sϑ1 is needed per step. Once ω and Sϑ1 are known, one
can directly apply the OSM. The grid is only determined by ω. We do not take
the phase function Φ into account.
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Computation of w for ϑ1 = 1 and exact T0

In this subsection we develop a program to approximate w for ϑ1 = 1. We want
to test this approach for the second order problems from § 7.3. Thus we assume
that T0 is explicitly computable. We remark that one can extend this ansatz
also to the case where T0 is not (explicitly) known.

Since the IVP (4.10) is highly nonlinear, we shall use an explicit integrator to
speed up the calculations. Furthermore, this enables us to use only one function
evaluation (i. e. computation of L,B) per step. Our method of choice (for the
first try) is the following Adams–Bashforth (AB) scheme [63, 68], which is a
multistep integrator.

Definition 4.4.1. Let f : R × R → R and let tj = t0 + j∆t with ∆t > 0 and
j ∈ N. For given values y0, y1 we define the AB2 update routine for n ≥ 1 by

yn+1 = yn +
∆t

2
(3fn − fn−1) (4.11)

Here we use the notation fj = f(tj, yj). If y0, y1 are properly chosen, then the
sequence (yn) approximates the solution y of the IVP

y′(t) = f(t, y(t)) , y(t0) = y0 .

Remark 4.4.2. The multistep scheme AB2 (4.11) has a convergence order of
2 with respect to ∆t. This shall be enough to find an appropriate solution of
(4.10). To determine the first value y1 we simply use the explicit Euler scheme,
which yields an error of order O((∆t)2). If one wants to invest more in the
accuracy of y1, one may use the method of Heun (4.12) or the modified Euler
method (4.13). Since these methods have a convergence order of 2, the (local)
error of y1 is of order O((∆t)3).

The advantage of the multistep approach AB2 (4.11) compared to second order
Runge–Kutta methods like the method of Heun

k1 = f(tn, yn) ,

k2 = f(tn +∆t, yn +∆tk1) ,

yn+1 = yn + ∆t 12 (k1 + k2) , (4.12)

or the modified Euler method

k1 = f(tn, yn) ,

k2 = f(tn + 1
2∆t, y +

1
2∆tf(tn, yn)) ,

yn+1 = yn + ∆t k2 , (4.13)

(cf. [68] for both methods) is that we only have to evaluate the function f
at the grid points. Hence we only need one function evaluation per time step.
Especially for the IVP (4.10) we save a lot of computational effort, since the
evaluation of Sϑ1 is expensive.

To increase the accuracy one can extend the AB2 scheme to a predictor
corrector scheme. This is done by using the value yn+1 as a first guess (which
should be quite good) for an implicit scheme of Adams–Moulton type and just
make the first iteration to get a correction of yn+1 (cf. [63]). However, this
yields an additional evaluation of f .
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In the sequel we simply write S instead of Sϑ1 . Let us fix an increment
∆t > 0. Furthermore let ∆x > 0 be our initial spatial step size. We use it for
the finite difference approximation of T ′

1 at x0 = a. Hence it should be small
with respect to ∆t. The crucial variables we have to approximate are S, Rε, Tε.
They are needed for the OSM. In contrast, ω is just an auxiliary variable, which
is only used to determine the grid.

The function ‖S‖ (which determines the ODE for ω) can have very high,
sharp peaks (cf. Figure 7.13, 7.14 for the example of § 7.3). If the step size
gets very large, it can happen that the peaks (the crucial parts) of the function
‖S‖−1 are not resolved. In this case the determined variables may have large
approximation errors. Thus, in order to avoid insufficient (large) step sizes,
we fix a maximum step size hmax for the OSM–grid x0 < · · · < xN . For the
computation of S we need Rε. Since Rε is given by an IVP (cf. (3.45) of
Corollary 3.3.4), we make one RK step in each loop to determine Rε. Thus we
set x2n = ωn and x2n+1 = ωn+ωn−1

2 (the intermediate point for the RK method).
Hence the distance between ωn and ωn−1 has to be smaller than 2hmax. Also,
we establish a lower bound hmin in order to avoid that the computation stalls.
The (first try) program reads:

(i) Compute T0, T1, Tε at ξj = x0 + j∆x, j = 0, . . . , 4.

(ii) use the values of T1 at ξ0, . . . , ξ4 to approximate T ′
1 at x0.

(a) compute the relative coordinates (h = 1)

η0 := 0 , ηj := ξj − ξ0 , j = 1, . . . , 4

(b) solve the linear system (8.3) from Remark 8.1.3 with r = 1

(c) approximate T ′
1 with the Finite Differences from Definition 8.1.1

(iii) compute S at x0 = ξ0 (Remark 3.3.2)

(iv) set Rε,0 = Id and compute S0 (Corollary 3.3.4)

(v) Set ω0 := x0 = a and use the explicit Euler method to compute ω1, i. e.

ω1 = ω0 + min

(
2hmax,

∆t

‖S0‖

)
.

(vi) set x1 = 1
2 (ω1 − x0) and x2 = ω1

(vii) if ω1 − ω0 < ∆x set ∆x = 1
2 (ω1 − ω0) and restart

(viii) else continue and compute T0, T1, Tε at x1, x2

(ix) compute approximations of T ′
1 at x1, x2

(a) choose the four nearest neighbors y1, . . . , y4 of the abscissa x1 from
the set {ξ0, . . . , ξ4, x2}

(b) compute the relative coordinates (h = 1)

η0 := 0 , ηj := yj − ξ0 , j = 1, . . . , 4
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(c) solve the linear system (8.3) from Remark 8.1.3 with r = 1

(d) approximate T ′
1 at x1 with the Finite Difference from Definition 8.1.1

(e) exchange x1 and x2 and repeat the procedure to approximate T ′
1 at

the abscissa x2

(x) compute S at x1, x2

(xi) use one RK step to approximate Rε at x2

(xii) use interpolation to compute Rε at x1 (cf. Lemma 8.3.1)

(xiii) compute S1, S2 and set n = 1

(xiv) compute ω2 with the AB2 scheme (4.11), i. e.

inc = max

(
2hmin, min

(
2hmax,

∆t
2

(
3

‖Sn‖ − 1
‖Sn−1‖

)))
,

ωn+1 = ωn + inc .

(xv) while ωn < b

(a) set x2n+1 = ωn + 1
2 (ωn+1 − ωn) and x2(n+1) = ωn+1

(b) compute T0, T1, Tε at x2n+1, x2(n+1)

(c) use the values of T1 at x2(n−1), . . . , x2(n+1) to compute an approxi-
mation of T ′

1 at x2n+1, x2(n+1)

(d) compute S at x2n+1, x2(n+1)

(e) use one RK step to approximate Rε at x2(n+1)

(f) use interpolation to compute Rε at x2n+1 (cf. Lemma 8.3.1)

(g) compute S2n+1, S2(n+1) and set n = n+ 1

(h) compute ω2 with the AB2 scheme (4.11), i. e.

inc = max

(
2hmin, min

(
2hmax,

∆t
2

(
3

‖Sn‖ − 1
‖Sn−1‖

)))
,

ωn+1 = ωn + inc .

(xvi) set ωn+1 = b and repeat (a)-(g) of (xvi)

It turns out that in some cases the AB2 scheme yields negative increments. Due
to the maxmin restriction this does not make trouble, but creates unnatural
artifacts in the grid. They are very good visible in Figure 7.17. To get rid of
this problem we exchange the AB2 integrator by the simplest explicit one step
integrator, i. e. the Euler scheme. Thus simply replace the variable inc in (xiv)
and (xv)(h) by

inc = max
(
2hmin, min

(
2hmax,

∆t
‖Sn‖

))
.

The rest of the code remains unchanged. This reduces the accuracy for ω, but
since we are not interested in this variable it does not matter.
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Chapter 5

Approximation of highly
oscillatory integrals

The preprocessing as discussed in § 3.3 yields an IVP for the new variable z of
the form

z′ = εn E∗
εSnEε z , z(x0) = z0 . (5.1)

Thus (for ε ≪ 1) we have to deal with highly oscillatory entries of the system
matrix. The one–step method we shall derive in chapter 6 is specially designed
to numerically integrate (5.1). A key ingredient is a sophisticated quadrature for
highly oscillatory integrals, which originate from the highly oscillatory entries of
the system matrix. The advanced quadrature shall be discussed in this chapter.

In the sequel let J ⊂ R be a closed, bounded, non–trivial interval and let
the numbers α, β ∈ R, α < β, such that

[α, β] ⊂ J ⊂ R .

The subject of this chapter is the approximation of the integral

I[f ] :=

∫ β

α

f(x)e−
i
εϕ(x) dx , (5.2)

where 0 < ε ≪ 1, ϕ ∈ Cs([α, β]) strictly monotone and f a suitable smooth
function, such that I[f ] is well defined.

The first idea to approximate I[f ] might be to use the well understood
and discussed Newton–Cotes or Gauss–Christoffel quadratures (cf. [28]). But
it turns out, as illustrated by Iserles [36] for the Gauss quadrature, that this
approach yields sufficiently good results only for large values of ε. On the
contrary, if ε≪ 1 and hence the integrand is highly oscillatory, both approaches
yield inefficient quadratures, since the number of nodes in the interval have to
increase with decreasing ε in order to keep the error below a desired bound.

We shall use an interpolation approach to derive a quadrature rule for the
highly oscillatory integral (5.2). It is closely related to the classical polynomial
interpolation. This idea is very similar to a more general technique discussed
by S. Olver [61] in 2007, a so called ”Moment–free Filon–type method”.

87
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We start with a brief review of quadrature rules for highly oscillatory inte-
grals in §5.1. For more methods and references we refer to the review article
[35]. Afterwards, in §5.2 we derive the modified Filon–type method for (5.2).
Furthermore we prove an upper bound for the quadrature error. The estimates
we derive for the quadrature error explicitly depend on the length of the inte-
gration interval. This is not considered in [61]. Here the author focuses on the
asymptotic behavior with respect to the small parameter ε. In § 5.4 we shall
make some numerical experiments, which show even better error behaviors of
the quadrature than predicted in § 5.2. We compare our modified Filon–type
method to the shifted asymptotic method presented in [4], which we shall briefly
discuss in § 5.3. In this section we also derive a symmetric version of the shifted
asymptotic method, which we expect to yield better results than the original
quadrature.

5.1 Review of some quadrature rules

We start with a simple computation which leads to a fundamental property
of the integral I[f ] (see (5.2) for its definition). Let f, ϕ : J → R be smooth
functions and let ϕ be strictly monotone. Hence |ϕ′| is bounded from below
by a positive constant δ. We shall make one integration by parts. Ad hoc we
rephrase the integrand of I[f ]:

f(x) e−
i
εϕ(x) = iε

f(x)

ϕ′(x)

(
e−

i
εϕ(x)

)′
,

which yields

I[f ] = iε f(x)
ϕ′(x) e

− i
εϕ(x)

∣∣β
x=α

− iε

∫ β

α

( f(x)
ϕ′(x)

)′
e−

i
εϕ(x) dx .

Since all derivatives are well defined and smooth, a further integration by parts
in the above sense shows that the remaining integral is of order O(ε2). Thus
the expression

QA1 [f ] := iε f(x)
ϕ′(x) e

− i
εϕ(x)

∣∣β
x=α

approximates I[f ] with an error of order O(ε2). As long as all quantities are
smooth we can continue this procedure and obtain an approximation of I[f ].
By induction we get

Lemma 5.1.1 (Asymptotic method). Let s ∈ N, f ∈ Cs(J,C) and let the phase
function ϕ ∈ Cs+1(J,R) with |ϕ′(x)| ≥ δ > 0 for all x ∈ J . We inductively
define for j ∈ {1, . . . , s}

f0 := f , fj :=

(
fj−1

ϕ′

)′
,

and set

QAs [f ] := −
s−1∑

j=0

(−iε)j+1 fj(x)

ϕ′(x)
e−

i
εϕ(x)

∣∣∣∣
β

x=α

.
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Then it holds

I[f ] = QAs [f ] + (−iε)s I[fs] . (5.3)

The approximation QAs [f ] is the asymptotic method presented by Iserles and
Nørsett [37, 38]. Since ϕ is strictly monotone on J and since fs is a continuous
function, it holds:

I[fs] =

∫ β

α

fs(x) e
− i

εϕ(x) dx =

∫ ϕ(β)

ϕ(α)

fs(ϕ
−1(ξ))

ϕ′(ϕ−1(ξ)) e
− i

ε ξ dξ .

Due to the Riemann–Lebesgue Lemma [58] the last integral is of order o(1) as
ε→ 0. Hence we get for the quadrature error:

|I[f ]−QAs [f ]| = εs |I[fs]| = o(εs) .

Since an asymptotic expansion, like QAs [f ] for I[f ], does not have to converge
(cf. § 3.6) it is not ensured that for fixed ε and a given bound c > 0 there exists
an index S ∈ N, such that

∣∣I[f ]−QAS [f ]
∣∣ < c .

In [4] the authors establish the shifted asymptotic method, which is (as the
asymptotic method) only based on integration by parts. The presented approach
additionally yields a “spatial“ expansion of the integral, i. e. an expansion with
respect to the length of the integration interval. We shall derive a symmetric
version of the shifted asymptotic method in § 5.3 and thus refer to this section
for more details.

To overcome the shortcoming of the asymptotic method we generalize the
method with an ansatz based on the ideas of Filon (1928) [18].

Let ξ1, . . . , ξκ ∈ J with ξ1 < · · · < ξκ, such that there are indices jα, jβ with

ξjα = α and ξjβ = β .

The complex valued function f is approximated by a Hermite interpolation
polynomial1 p at the pairwise distinct nodes ξ1, . . . , ξκ with corresponding mul-
tiplicities m1, . . . ,mκ ∈ N, yielding a quadrature of the form

QFs [f ] := I[p] , (5.4)

where s is equal to min{mjα ,mjβ}. This is the Filon–type method by Iserles and
Nørsett [37]. The quadrature error of this approach depends on the accuracy
of the Hermite interpolation. Additionally it has the asymptotic property of
the asymptotic method, since p and f coincides up to the s-th derivative at the
boundary points of the integral. Unfortunately, the moments I[xj ] have to be
known, which generally are not exactly computable.

To remove also this disadvantage we follow an idea of Sheehan Olver [60]. In-
stead of approximating f by a linear combination of the monomials x0, x1, x2, . . .
we rather use a set of functions ψ0, ψ1, ψ2, . . . for which the oscillatory integrals
can be computed explicitly.

1cf. [68]: p is the unique polynomial of degree m = (
∑κ

j=1mj) − 1 which satisfies the

interpolation condition: f(k)(xj) = p(k)(xj) for j = 1, . . . , κ, 0 ≤ k ≤ mj − 1
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One possibility (cf. [60]) to construct these functions is a simplified ansatz
of Levin’s approach [52]. Let Ψ and ψ be functions, such that

Ψ′ − i
εϕ

′Ψ = ψ . (5.5)

Multiplication of (5.5) with the integrating factor e−
i
εϕ yields

d

dx

(
Ψ(x) e−

i
εϕ(x)

)
= ψ(x) e−

i
εϕ(x)

and hence we immediately find by simply integrating that

I[ψ] = Ψ(x) e−
i
εϕ(x)

∣∣β
x=α

. (5.6)

Thus for ψ we know how to compute I[ψ] and hence we can use this relation
to derive a set of functions which are exactly integrable. Let Ψ0, . . . ,Ψm−1 be
smooth functions and define for j = 0, . . . ,m− 1

ψj := Ψ′
j − i

εϕ
′Ψj .

Since I[·] is a linear map, we also know how to compute the integral of

p(x) :=

m−1∑

j=0

cj ψj(x) , (5.7)

with some c1, . . . , cm−1 ∈ C. Thus we can write

I[f ] = I[p] + I[f − p]

and hence p is a good candidate for an approximation of f . If we use for given
support abscissas x1, . . . , xκ and corresponding multiplicities m1, . . . ,mκ the
generalized Hermite interpolation approach

p(k)(xl) = f (k)(xl) , k = 0, . . . ,ml − 1, l = 1, . . . , κ ,

then we get the Levin–type method2 of [60]:

QL[f ] := I[p] =

m−1∑

j=0

cj I[ψj ] . (5.8)

For ψk = ϕ′ϕk, k ∈ N ∪ {0} it is possible to derive Ψk explicitly. This choice
yields3 the moment–free Filon–type method from [61]. We shall use this basis
for our quadrature, which is discussed in § 5.2.

What properties should p have in order to yield a good quadrature? First
of all it is clear that we get an error estimate which is proportional to the
approximation error f − p. Hence we should choose p, such that this is small.
Furthermore the integral I[f − p] has an asymptotic expansion and hence it is
also a good idea to take this into account. How to do this shows the following
Lemma 5.1.2, established by the author of this thesis.

2The functions ψk in the article corresponds to our function Ψk.
3Therefor we (formally) have to set r = 1 in Lemma 2.1 from [61]
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Lemma 5.1.2. Let the assumptions of Lemma 5.1.1 hold and let p ∈ Cs(J,C)
be given by (5.7), such that for k = 0, . . . , s− 1

p(k)(α) = f (k)(α) and p(k)(β) = f (k)(β) . (5.9)

We set η0 := f − p and inductively define for j = 1, . . . , s

ηj :=

(
ηj−1

ϕ′

)′
.

Then the quadrature (5.8) induced by p yields the error estimate

∣∣I[f ] − QL[f ]
∣∣ ≤ min

k=0,...,s
εk
∣∣I[ηk]

∣∣ . (5.10)

If p, f, ϕ′ are even in Cs+1(J,C), then it additionally holds

∣∣I[f ] − QL[f ]
∣∣ ≤ εs+1

(
max
x=α,β

∣∣ ηs(x)
ϕ′(x)

∣∣+ |I[ηs+1]|
)
.

Proof. From Lemma 5.1.1 we get for4 k = 0, . . . , s

I[f ] − QL[f ] = I[f − p] = QAk [f − p] + (−iε)kI[ηk] .

Due to definition it is η
(0)
0 (ζ) = · · · = η

(s−1)
0 (ζ) = 0, which yields with (5.17)

from Lemma 5.2.3 that η0(ζ) = · · · = ηs−1(ζ) = 0 for ζ = α, β. Hence we get
for all k ∈ {0, . . . , s}

QAk [f − p] = 0 .

This yields

∣∣I[f ] − QL[f ]
∣∣ ≤ εk

∣∣I[ηk]
∣∣ .

For p, f, ϕ′ ∈ Cs+1(J,C) we additionally get from Lemma 5.1.1:

I[f ] − QL[f ] = −(−iε)s+1 ηs(x)
ϕ′(x)e

i
εϕ(x)

∣∣b
x=a

+ (−iε)s+1I[ηs+1] .

Remark 5.1.3. The estimate (5.10) is not only a statement about the asymp-
totic accuracy of the quadrature rule. Since η0 = f −p, it also takes the approx-
imation error of p with respect to f into account.

5.2 The modified Filon–type method

The quadrature we shall use for our one–step method (see § 6) is based on
the Levin–type method presented in § 5.1. Hence we have to specify how the
functions Ψ0, . . . ,Ψm−1 and respectively ψ0, . . . , ψm−1 should look like. In [61]
Olver derives a basis for the more general problem of highly oscillatory integrals
with a single stationary point, i. e. ϕ(1)(x) > 0 for x ∈ [α, β]\{ζ} and

ϕ(j)(ζ) = 0 , 0 ≤ j ≤ r − 1 , ϕ(r)(ζ) > 0 ,

4QA
0 [f ] = 0 by definition, since it is an empty sum.
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with ζ ∈ (α, β). In our setting we have r = 1 and deduce from [61] that

ψk(x) := ϕ′(x)ϕk(x) , k ∈ N0 . (5.11)

The generalized moments I[ψk], and hence the functions Ψk, can exactly be
computed with repeated integrations by parts (see Lemma 5.2.2).

The Levin–type approach with the special set of functions from (5.11) was
suggested to the author by Claudia Negulescu in 2006. In 2008 we became
aware of the cited references [60, 61] due to a discussion with Markus Melenk.
The articles only contain quadrature error estimates in terms of the small pa-
rameter ε. Since we want to use the quadrature for our one–step method, we
are interested in estimates of the quadrature error with respect to the length of
the integration interval. Hence we shall establish new results, which can not be
derived from the articles. However, the quadrature coincides exactly with the
moment–free Filon–type method from [61] for our special choice of functions.

The following Proposition 5.2.1 is the main result of this section. Since we
want to apply Lemma 5.1.2 and benefit from the asymptotic structure of I[f ],
the boundary points α, β have to be support abscissas. Let Ω := J × (0, ε1).

Proposition 5.2.1. Let f : Ω → C and ϕ : Ω → R, such that f, ϕ′ are Cs–
bounded independently of ε and such that |ϕ′(x, ε)| ≥ δ > 0 for all (x, ε) ∈ Ω.
Furthermore let ξ1, . . . , ξκ ∈ J be support abscissas with corresponding multi-
plicities 1 ≤ m1, . . . ,mκ ≤ s+ 1, such that there are indices jα, jβ with

ξjα = α and ξjβ = β .

Then there exists a unique function

p(x, ε) := ϕ′(x, ε)
m−1∑

j=0

cj(ε)ϕ(x, ε)
j , (5.12)

with m :=
∑κ

j=1mj and c0(ε), . . . , cm−1(ε) ∈ C, such that

p(k)(ξj , ε) = f (k)(ξj , ε) for k = 0, . . . ,mj − 1 , j = 1, . . . , κ . (5.13)

If s ≥ m, then the quadrature

Q[f ] := I[p] = iε e−
i
εϕ(x,ε)

m−1∑

k=0

(m−1∑

l=k

cl(ε)
l!

k!
(−iε)l−k

)
ϕ(x, ε)k

∣∣∣∣
β

x=α

induced by p yields the error estimate

|I[f ]−Q[f ]| ≤ c |α− β|hmmin

(
1, γ

(
ε

h

)µ+1)
,

with

µ := min(mjα ,mjβ ) and h := max
(
|ξκ − α|, |ξ1 − β|

)
.

The constants γ, c ≥ 0 depend on δ, ‖ϕ‖Cm+1(J) and ‖f‖Cm(J), but not on ξ.
Furthermore the constants tend to infinity as δ → 0.
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Lemma 5.1.2

Levin–type
method

Lemma 5.2.2

computation
of I[ψk]

Lemma 5.2.3 Lemma 5.2.5

Hermite inter-
polation error

Lemma 5.2.8

minj
xj

j!

Lemma 5.2.4

equivalent int-
pol. condition

Cor. 5.2.6

uniform error
estimate

Lemma 5.2.7

equivalent inter-
polation problems

?

?

?

?

?

? ? ?

? ? ? ?

Proposition 5.2.1

Figure 5.1: The arrows indicate the direction of dependence. For example
Corollary 5.2.6 follows from Lemma 5.2.5.

Before we give a proof of Proposition 5.2.1 (see p.98) we derive some auxiliary
results that help us to keep it more readable. The relations of these lemma are
sketched in Figure 5.1.

We start with the derivation of an exact formula for I[ψk] which is the con-
tent of Lemma 5.2.2. Next we prove the technical Lemma 5.2.3. With this
we derive Lemma 5.2.4. The main idea of this result is that the interpolation
problem (5.13) is equivalent to a Hermite interpolation problem in the ordinary
polynomial sense. Lemma 5.2.5 gives an exact representation of the interpola-
tion error for the ordinary Hermite interpolation problem for polynomials. This
yields Corollary 5.2.6, which gives an uniform error estimate of the interpolation
error. Then we establish Lemma 5.2.7, which already proves half of Proposition
6.3.1. Lemma 5.1.1 is already discussed in § 5.1.
Lemma 5.2.2. Let ϕ ∈ C1(J,C) and k ∈ N and let ψk as in (5.11). It holds

I[ψk] = iε e−
i
εϕ(x)

k∑

l=0

k!
l! (−iε)k−lϕ(x)l

∣∣∣∣
β

x=α

. (5.14)

Proof. Due to (5.5), (5.6) we have to prove that Ψ′
K − i

εϕ
′Ψk = ψk, with

Ψk(x) := iε

k∑

l=0

k!
l! (−iε)k−lϕ(x)l .

It follows

Ψ′
K − i

εϕ
′Ψk

= −ϕ′
k∑

l=1

k!
(l−1)! (−iε)k−(l−1)ϕl−1 + ϕ′

k∑

l=0

k!
l! (−iε)k−lϕ(x)l

= ϕ′ ϕk .
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As we will see in the sequel, the interpolation problem (5.13) is closely related to
ordinary polynomial interpolation. In order to prove existence and uniqueness
of p and to derive an error bound let us rewrite the quadrature error. The
change of variable x = ϕ−1(ξ) yields

I[f − p] =

∫ ϕ(β)

ϕ(α)

f
(
ϕ−1(ξ)

)
− p
(
ϕ−1(ξ)

)

ϕ′(ϕ−1(ξ))
e−

i
ε ξ dξ

=

∫ ϕ(β)

ϕ(α)

(g − π)(ξ) e−
i
ε ξ dξ ,

with

g(ξ) :=
f(ϕ−1(ξ))

ϕ′(ϕ−1(ξ))
and π(ξ) :=

m−1∑

k=0

ck ξ
k . (5.15)

In the following Lemma 5.2.4 we prove that the interpolation conditions (5.13)
are equivalent5 to

π(k)(ξj) = g(k)(ξj) , k = 0, . . . ,mj − 1 , j = 1, . . . , κ , (5.16)

where we set ξj := ϕ−1(ζj) for j = 1, . . . , κ. Hence π is the unique Hermite
interpolation polynomial of degree m − 1 with respect to (5.16). Thus we get
existence, uniqueness and error bounds from the ordinary Hermite interpolation
theory.

To prove Lemma 5.2.4 we need

Lemma 5.2.3. Let η, φ ∈ Cs(J,C) such that |φ(x)| ≥ δ > 0 for all x ∈ J . We
set η0 := η and inductively define for j = 1, . . . , s

ηj :=

(
ηj−1

φ

)′
.

It holds for all k ∈ {0, . . . , s}

ηk =
1

φk
η(k) +

1

φ2k

k−1∑

j=0

γkj η
(j) . (5.17)

The functions γkj are multivariate polynomials in φ(0), . . . , φ(k) and independent
of η.

Proof. Obviously, equation (5.17) holds for k = 0. Assume that the claim holds
for k. We compute

ηk+1 =
1

φ
η′k − φ′

φ2
ηk

=
1

φ

η(k+1)φk − η(k)(φk)′

φ2k
+

1

φ

k−1∑

j=0

(
γkj η

(j)

φ2k

)′
− φ′

φ2
ηk

=
η(k+1)

φk+1
− (k + 1)φ′ η(k)

φk+2
+

k−1∑

j=0

(γkj η
(j))′φ− (2k + 1)φ′γkj η(j)

φ2k+2
.

5Here ”equivalent” means that both interpolation problems yield the same set of constants
c0, . . . , cm−1.
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Here we used two times (5.17) in order to write ηk in terms of η(0), . . . , η(k). By
assumption γkj is a multivariate polynomial in φ(0), . . . , φ(k). Hence the coeffi-
cients of η(j), η(j+1) in (γkj η

(j))′ are multivariate polynomials in φ(0), . . . , φ(k+1).
This completes the induction.

Lemma 5.2.4. Let the functions f ∈ Cs(J,C) and ϕ ∈ Cs+1(J,R), such that
|ϕ′(x)| ≥ δ > 0 for all x ∈ J . Further let p, π and g be given by (5.12), (5.15).

(i) Let ζ ∈ J . It is equivalent

(a) ∀ k ∈ {0, . . . , µ} : p(k)(ζ) = f (k)(ζ),

(b) ∀ k ∈ {0, . . . , µ} : π(k)
(
ϕ(ζ)

)
= g(k)(ϕ(ζ)).

(ii) It holds for all ξ ∈ [ϕ(α), ϕ(β)] and k = 0, . . . , s

g(k)(ξ) =
fk(ϕ

−1(ξ))

ϕ′(ϕ−1(ξ))
, π(k)(ξ) =

pk(ϕ
−1(ξ))

ϕ′(ϕ−1(ξ))
,

where we inductively define for j = 1, . . . , s

f0 := f , fj :=
( fj−1

ϕ′

)′
and p0 := p , pj :=

(pj−1

ϕ′

)′
.

Proof. Since ϕ′ is continuous and bounded away from zero, ϕ is strictly mono-
tone. Hence the inverse ϕ−1 is well defined on J and it holds ϕ−1 ∈ Cs+1(J,C).
Due to definition of g (see (5.15))

g(1)(ξ) =
d

dξ

(
f(ϕ−1(ξ))

ϕ′(ϕ−1(ξ))

)
=

d

dx

(
f(x)

ϕ′(x)

)∣∣∣∣
x=ϕ−1(ξ)

d

dξ
ϕ−1(ξ)

=
f1(ϕ

−1(ξ))

ϕ′(ϕ−1(ξ))
.

By induction we deduce

g(k)(ξ) =
fk(ϕ

−1(ξ))

ϕ′(ϕ−1(ξ))
for k = 0, . . . , s .

From (5.12), (5.15) we get

π(ξ) =
p(ϕ−1(ξ))

ϕ′(ϕ−1(ξ))

and analog to g we prove by induction

π(k)(ξ) =
pk(ϕ

−1(ξ))

ϕ′(ϕ−1(ξ))
for k = 0, . . . , s .

This yields (ii).
Let ζ ∈ J and set ξ := ϕ(ζ). Since ϕ′(ζ) 6= 0 we deduce form (ii) that (i)(b)

is equivalent to

pk(ζ) = fk(ζ) for k = 0, . . . , µ . (5.18)
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Since |ϕ′| ≥ δ > 0, we can use Lemma 5.2.3 and deduce for k = 0, . . . , µ that
pk(ζ) = fk(ζ) is equivalent to

p(k)(ζ)− f (k)(ζ) =
(
ϕ′(ζ)

)k k−1∑

j=0

γkj(ζ)
(
f (j)(ζ) − p(j)(ζ)

)
.

Hence we get by induction with respect to k that the above statement (5.18) is
equivalent to (i)(a).

Since our approximation relies on Hermite interpolation, we need an estimate
for the approximation error. The following Lemma 5.2.5 is a result from [44].

Lemma 5.2.5 (Error representation). Let J ′ = [ζ1, ζκ] ⊂ R and let the function
g ∈ Cs(J ′,C) and let ζ1 < · · · < ζκ be supporting abscissas in J ′ with multiplici-
ties m1, . . . ,mκ ∈ N and m :=

∑κ
j=1mj ≤ s. Further let π be the corresponding

unique Hermite interpolation polynomial of degree m− 1, i. e.

π(k)(ζj) = g(k)(ζj) , k = 0, . . . ,mj − 1 , j = 1, . . . , κ . (5.19)

Let 0 ≤ r ≤ m. Then there exist ζr1 , . . . , ζ
r
m−r ∈ J ′, such that for each x ∈ J ′

there exists a ζr = ζr(x) ∈ J ′ with

g(r)(x)− π(r)(x) =
g(m)(ζr)

(m− r)!

m−r∏

j=1

(x− ζrj ) . (5.20)

We immediately deduce from the previous Lemma 5.2.5

Corollary 5.2.6. Let the assumptions of Lemma 5.2.5 hold and let 0 ≤ r ≤ m.
Then for all x ∈ [α′, β′] ⊂ [ζ1, ζκ] the following uniform estimate holds:

|g(r)(x)− π(r)(x)| ≤ hm−r

(m− r)!
‖g(m)‖∞ .

Here h := max
(
|ζ1 − β′| , |ζκ − α′|

)
.

As in Proposition 5.2.1 let Ω := J×(0, ε0). The first part of the Proposition’s
proof is covered by

Lemma 5.2.7. Let f : Ω → C and ϕ : Ω → R, such that f, ϕ′ are Cs–bounded
independently of ε and such that |ϕ′(x, ε)| ≥ δ > 0 for all (x, ε) ∈ Ω. Further-
more let ξ1, . . . , ξκ ∈ J be support abscissas with corresponding multiplicities
1 ≤ m1, . . . ,mκ ≤ s+ 1. Then there exists one and only one function

p(x, ε) := ϕ′(x, ε)
m−1∑

j=0

cj(ε)ϕ(x, ε)
j ,

with m :=
∑κ

j=1mj and c0(ε), . . . , cm−1(ε) ∈ C, such that for all ε ∈ (0, ε0):

p(k)(ξj , ε) = f (k)(ξj , ε) for k = 0, . . . ,mj − 1 , j = 1, . . . , κ . (5.21)

Let [α, β] ⊂ [ξ1, ξκ]. If additionally s ≥ m, then there exists a constant c ≥ 0
independent of ε and the support abscissas, such that for all x ∈ [α, β]:

|p(k)(x, ε)− f (k)(x, ε)| ≤ c hm−k ,

with h := max
(
|ξκ−α|, |ξ1−β|

)
. The constant c ≥ 0 depends on δ, ‖ϕ‖Cm+1(J)

and ‖f‖Cm(J), but not on ξ. Furthermore it tends to infinity as δ → 0.
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Proof. Let ε ∈ (0, ε0) fix. For simplicity of notation we drop the second argu-
ment in all functions. I. e. whenever we write f , we mean f(·, ε).

Since ϕ′ is (uniformly) bounded away from zero, ϕ is strictly monotone.
Thus we can define g by (5.15). The points ζj := ϕ(ξj) for j = 1, . . . , κ are
pairwise distinct. Hence the Hermite interpolation problem

π(k)(ζj) = g(k)(ζj) for k = 0, . . . ,mj − 1 , j = 1, . . . , κ , (5.22)

has a unique solution π(x) =
∑m−1

j=0 cjx
j [68]. From Lemma 5.2.4 we deduce

that the (polynomial) interpolation problem (5.22) is equivalent to (5.21). This
yields existence and uniqueness of p.

Let x ∈ [α, β], ζ := ϕ(x) and let fk, pk as in Lemma 5.2.4. Further we define
the function η := f − p. Then

ηk(x) := fk(x)− pk(x) = ϕ′(x)
(
g(k)(ζ) − π(k)(ζ)

)
.

This yields with Corollary 5.2.66 and the mean value theorem

|ηk(x)| ≤ ‖ϕ′‖∞
∣∣∣g(k)(ζ)− π(k)(ζ)

∣∣∣

≤ ‖ϕ′‖∞
max

(
|ϕ(ξκ)− ϕ(α)|, |ϕ(ξ1)− ϕ(β)|

)m−k

(m− k)!
‖g(m)‖∞

≤ ‖ϕ′‖∞
‖ϕ′‖m−k

∞ max
(
|ξκ − α|, |ξ1 − β|

)m−k

(m− k)!

∥∥∥∥
fm
ϕ′

∥∥∥∥
∞
.

Since |ϕ′| ≥ δ, we deduce from Lemma 5.2.3 that there exists a constant ĉ ≥ 0
independent of δ, such that

∥∥∥∥
fm
ϕ′

∥∥∥∥
∞

≤ ĉ

δ2m+1
.

Hence we get a constant c ≥ 0, such that

|ηk(x)| ≤ ĉ

δ2m+1

‖ϕ′‖m−k+1
∞ hm−k

(m− k)!
≤ c hm−k .

Furthermore we get from (5.17)

|η(k)(x)| ≤ |ηk(k)| +
∥∥∥∥
1

ϕk

∥∥∥∥
∞

k−1∑

j=0

|γkj | |η(j)(x)| .

For k = 0 this yields |η(0)(x)| ≤ chm and by induction we conclude that there
exists a constant c ≥ 0, such that

|f (k)(x)− p(k)(x)| = η(k)(x)| ≤ c hm−k

holds for k = 0, . . . ,m.

Now we come to the last result before proving Proposition 5.2.1.

6Since ϕ is strictly monotone, it follows either ϕ(ξ1) ≤ ϕ(α) < ϕ(β) ≤ ϕ(ξκ) or the reverse
relation ϕ(ξ1) ≥ ϕ(α) > ϕ(β) ≥ ϕ(ξκ).
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Lemma 5.2.8. Let n,m ∈ N0 with n < m. It holds for all x ∈ R+ :

min
j=n,...,m

xj

j!
=





xm

m! , x ≤ (m!
n! )

1
m−n

xn

n! , x ≥ (m!
n! )

1
m−n

.

The following proof is a revised version of our (more lengthy) previous one,
where we act on a suggestion by Anton Arnold.

Proof. For l ∈ N0 we set f(l) :=
∑l

k=1 ln k. Let x ∈ R+ and define for j ∈ N0:

g(j) := ln
(xj
j!

)
= j lnx −

j∑

k=1

ln k = j lnx − f(j) .

For j ∈ N it holds:

f(j − 1) + f(j + 1)

2
− f(j) =

ln j + ln(j + 1)

2
− ln j

=
ln(j + 1)− ln j

2
> 0 .

Thus 1
2f(j − 1) + 1

2f(j + 1) > f(j) = f(12 (j − 1) + 1
2 (j + 1)), which can be

interpreted as locally strict (midpoint) convexity of f . Since g is the sum of a
linear function (j lnx) and −f it holds

g(j − 1) + g(j + 1) < 2g(j) . (5.23)

This means g is (in a discrete sense) strictly concave. Let n < k < m. Due to
(5.23) it holds g(k) > g(k − 1) or g(k) > g(k + 1). In the first case it follows

g(k − 2)− g(k) < 2g(k − 1) ⇔ g(k − 2) < g(k − 1)−
(
g(k)− g(k − 1)

)
.

Hence g(k−2) < g(k−1) and by induction we get g(n) < g(n+1) < · · · < g(k).
Analog we derive from g(k) > g(k + 1) that g(k) > g(k + 1) > · · · > g(m).
Hence minj=n,...,m g(j) = min

(
g(n), g(m)

)
. It holds

g(m)− g(n) = (m− n) lnx −
(
lnm!− lnn!

)

= (m− n)

(
lnx − ln

(m!

n!

) 1
m−n

)
.

Thus g(m) ≥ g(n), if and only if x ≥
(
m!
n!

) 1
m−n and consequently g(m) ≤ g(n)

for x ≤
(
m!
n!

) 1
m−n .

Proof of Proposition 5.2.1. By Lemma 5.2.7 we get existence and unique-
ness of p. From Lemma 5.2.2 we deduce with Remark 6.2.8:

Q[f ] = iε e−
i
εϕ(x)

m−1∑

k=0

(m−1∑

l=k

cl
l!(−iε)l−k

k!

)
ϕ(x)k

∣∣∣∣
β

x=α

=

m−1∑

k=0

ck iε e
− i

εϕ(x)
k∑

l=0

k!(−iε)k−l

l! ϕ(x)l
∣∣∣∣
β

x=α

=

m−1∑

k=0

ckI[ψk] = I[p] .
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Hence it is

I[f ] − Q[f ] = I[f ] − I[p] = I[f − p] .

Let µ := min(mjα ,mjβ ). Since it holds s ≥ m ≥ 2µ, we can set s = µ + 1 in
Lemma 5.1.2, which yields

|I[f ] − Q[f ]| ≤





minl=0,...,µ ε
l|I[ηl]| ,

εµ+1
(
maxx=α,β

∣∣ ηµ(x)
ϕ′(x)

∣∣+ |I[ηµ+1]|
)
.

(5.24)

The functions η0, . . . , ηµ+1 are inductively defined by setting η0 := η := f − p
and

ηk =

(
ηk−1

ϕ′

)′
, k = 1, . . . , µ+ 1 .

By Lemma 5.2.3

ηk =
1

(ϕ′)k
η(k) +

1

(ϕ′)2k

k−1∑

j=0

γkj η
(j) .

Thus, by Lemma 5.2.7, for each k = 0, . . . ,m exists a polynomial qk in h with
positive coefficients, such that for all x ∈ [α, β]

|ηk(x, ε)| ≤ qk(h)h
m−k .

Hence for h0 ≥ 0 exists a c ≥ 0, such that for all 0 ≤ h ≤ h0 and all x ∈ [α, β]

|ηk(x, ε)| ≤ ck h
m−k .

This yields with (5.24)

|I[f ] − Q[f ]| ≤ min
l=0,...,µ

εl|α− β| cl hm−l

and

|I[f ] − Q[f ]| ≤ εµ+1

(
cµ+1

δ
hm−(µ+1) + |α− β| cµ+1 h

m−(µ+1)

)

≤ cµ+1

(
1
δ + |α− β|

)
εµ+1 hm−(µ+1) .

Combing both estimates yield (with a new constant cµ+1 ≥ 0)

|I[f ] − Q[f ]| ≤ |α− β| min
l=0,...,µ+1

cl ε
lhm−l .

By Lemma 5.2.8 we can restrict the min to the lowest and highest index.

Remark 5.2.9. Let us summarize the basic idea of the quadrature from Propo-
sition 5.2.1. Since ϕ is continuously differentiable and strictly monotone, it
holds

∫ β

α

f(x) e−
i
εϕ(x) dx =

∫ ϕ(β)

ϕ(α)

f(ϕ−1(ξ)
ϕ′(ϕ−1(ξ)) e

− i
ε ξ dξ .
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Since the phase function of the right–hand side is linear, we can exactly compute
the moments. This enables us to replace

g(ξ) = f(ϕ−1(ξ)
ϕ′(ϕ−1(ξ))

by a Hermite interpolation polynomial. Hence we use the Filon–type method to
approximate the integral

∫ ϕ(β)

ϕ(α)

g(ξ) e−
i
ε ξ dξ .

Thus, we can interpret the quadrature as a modified Filon–type method.

5.3 The symmetric shifted asymptotic method

In [4] the authors establish a quadrature for highly oscillatory integrals, which
is called shifted asymptotic method (SAM). It is (as the asymptotic method)
only based on integration by parts. Let us briefly point out the underlying idea.
Therefor we make one integration by parts:

∫ β

α

f(x) e−
i
εϕ(x) dx = iε

∫ β

α

f(x)

ϕ′(x)

(
e−

i
εϕ(x) − e−

i
εϕ(a)

)′
dx (5.25)

= iε
f(β)

ϕ′(β)

(
e−

i
εϕ(β) − e−

i
εϕ(α)

)

− iε

∫ β

α

(
f

ϕ′

)′
(x)
(
e−

i
εϕ(x) − e−

i
εϕ(α)

)
dx .

Hence the integral in the last line (including the factor iε) is of order O(|α−β|2)
and

QSAM1

β [f ] := iε
f(β)

ϕ′(β)

(
e−

i
εϕ(β) − e−

i
εϕ(α)

)
(5.26)

is a quadrature of order O(|α−β|2). Further integration by parts leads to higher
orders in |α − β|. Thus the idea of the SAM is as follows: Use the asymptotic
method (as described in Lemma 5.1.1) up to order n and then use integration
by parts (as above) to approximate the remaining integral up to the desired
order m in |α− β|. This yields estimates of order O(εn|α− β|m).

In § 5.4 we shall (numerically) compare the SAM to our modified Filon–type
method (MFM). There we shall use a SAM version, which has a quadrature
error of at most O(|α−β|3). To derive it we have to make one more integration

by parts in the above sense. Let f0 := f
ϕ′ and f1 :=

f ′
0

ϕ′ . Then

∫ β

α

f ′
0(x)

(
e−

i
εϕ(x) − e−

i
εϕ(α)

)
dx

= iε

∫ β

α

f ′
0(x)

ϕ′(x)

(
e−

i
εϕ(x) − e−

i
εϕ(α) + i

ε (ϕ(x) − ϕ(α))e−
i
εϕ(α)

)′
dx

= iε f1(β)
(
e−

i
εϕ(β) − e−

i
εϕ(α) + i

ε (ϕ(β) − ϕ(α))e−
i
εϕ(α)

)
+ . . . .
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For simplicity of notation, in the sequel we use the abbreviation7 gα, gβ for g(α)
and g(β) respectively. This yields8

QSAM2

β [f ] := iε f0,β
(
e−

i
εϕβ − e−

i
εϕα
)

− (iε)2 f1,β
(
e−

i
εϕβ − e−

i
εϕα + i

ε (ϕβ − ϕα)e
− i

εϕα
)
.

We arbitrarily choose the (added) constants, such that we (only) have to eval-
uate f0, f1 at x = β. But we also could have used other constants, such that
we have to evaluate the functions at x = α. Thus let us repeat the previous
calculations, but replace α by β in the added constant terms. This yields

∫ β

α

f(x) e−
i
εϕ(x) dx = − iεf0(α)

(
e−

i
εϕ(α) − e−

i
εϕ(β)

)
(5.27)

− iε

∫ β

α

f ′
0(x)

(
e−

i
εϕ(x) − e−

i
εϕ(β)

)
dx .

One more integration by parts of the remaining integral yields

∫ β

α

f ′
0(x)

(
e−

i
εϕ(x) − e−

i
εϕ(β)

)
dx

= iε

∫ β

α

f ′
0(x)

ϕ′(x)

(
e−

i
εϕ(x) − e−

i
εϕ(β) + i

ε (ϕ(x) − ϕ(β))e−
i
εϕ(β)

)′
dx

= −iε f1(α)
(
e−

i
εϕ(α) − e−

i
εϕ(β) + i

ε (ϕ(α) − ϕ(β))e−
i
εϕ(β)

)
+ . . . .

Hence we define

QSAM1
α [f ] := iεf0,α

(
e−

i
εϕβ − e−

i
εϕα
)

(5.28)

and

QSAM2
α [f ] := iε f0,α

(
e−

i
εϕβ − e−

i
εϕα
)

− (iε)2 f1,α
(
e−

i
εϕβ − e−

i
εϕα + i

ε (ϕβ − ϕα)e
− i

εϕβ
)
.

In general, both quadratures (QSAM
α , QSAM

β ) are equal. Hence, we expect that a

symmetric9 version of the SAM, which we shall call symmetric shifted asymptotic
method (SSAM), yields a smaller approximation error than the SAM from [4].
For the lowest order we take the mean of (5.26) and (5.28) and define

QSSAM1

α,β [f ] :=
iε

2

(
f0,α + f0,β

) (
e−

i
εϕβ − e−

i
εϕα
)
.

Taylor expansion shows that this quadrature is of order O(ε−1|α − β|3), while
the non symmetric versions (5.26), (5.28) from [4] are of order O(|α− β|2).

To derive a symmetric quadrature based on two integration by parts, we
could take the mean of QSAM2

α [f ] and QSAM2
α [f ]. This scheme is denoted by

7Here g is of course a wild card the functions f0, f1, ϕ.
8The index 2 is the number of integrations by parts used to derive the quadrature.
9Interchanging the integration boundaries of an integral is equal to multiplying it by −1.

Hence, here symmetry of the quadrature means that if we interchange α and β, than we get
the negative quadrature.
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mean shifted asymptotic method (MSAM). In § 5.4 we shall see that this yields
only a slight improvement of the constant compared to the original quadrature.
Instead we take the mean value of (5.25) and (5.27) and thus

∫ β

α

f(x) e−
i
εϕ(x) dx =

iε

2
(f0(β) + f0(α))

(
e−

i
εϕ(β) − e−

i
εϕ(α)

)

− iε

∫ β

α

f ′
0(x)

(
e−

i
εϕ(x) − 1

2

(
e−

i
εϕ(β) + e−

i
εϕ(α)

))
dx .

We proceed with integration by parts:

∫ β

α

f ′
0(x)

(
e−

i
εϕ(x) − 1

2

(
e−

i
εϕ(β) + e−

i
εϕ(α)

))
dx

= iε

∫ β

α

f ′
0(x)

ϕ′(x)

(
e−

i
εϕ(x) − 1

2

(
e−

i
εϕ(β) + e−

i
εϕ(α)

))′
dx

− 1
2

(
e−

i
εϕ(β) + e−

i
εϕ(α)

) ∫ β

α

f ′
0(x)

ϕ′(x)

(
ϕ(x) − ϕ(β) + ϕ(α)

2

)′
dx

=
iε

2

(
f1(β) + f1(α)

) (
e−

i
εϕ(β) − e−

i
εϕ(α)

)
+ . . .

− 1
2

(
e−

i
εϕ(β) + e−

i
εϕ(α)

) (
f1(β) + f1(α)

) (
ϕ(β) − ϕ(α)

)
+ . . . .

Thus we can define the (with respect to α, β) symmetric quadrature

QSAM2

α,β [f ] :=
iε

2
(f0,β + f0,α)

(
e−

i
εϕβ − e−

i
εϕα
)

(5.29)

− (iε)2

2
(f1,β + f1,α)

(
e−

i
εϕβ − e−

i
εϕα
)

− (iε)2

2
(f1,β + f1,α)

i
ε (ϕβ − ϕα)

e−
i
εϕβ + e−

i
εϕα

2
.

We shall call this quadrature revised shifted asymptotic method (RSAM). It has
a bit better approximation properties than the MSAM and hence the SAM, but
is still of third order as h→ 0.

Now let us compare the quadrature error of QSAM2
α , QSAM2

β and QSAM2

α,β . For
this purpose we shall use Taylor expansion of the approximation error for all
three methods. Let

I(h) :=

∫ α+h

α

f(x)e−
i
εϕ(x) dx . (5.30)

With Maple14 we derive (with β = α+ h)

I(h) − QSAM2
α [f ] =

1

6
c e−

i
εϕ(α) h3 + O(h4) ,

I(h) − QSAM2

β [f ] =
1

6
c e−

i
εϕ(α) h3 + O(h4) ,

I(h) − QSAM2

α,β [f ] = − 1

12
c e−

i
εϕ(α) h3 + O(h4) .

The constant c depends on f, ϕ and their derivatives. Furthermore it is equal in
all three equations. Hence we can combine the three methods to a quadrature
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which is symmetric (with respect to α, β) and of higher order with respect to
the interval length h. The SSAM (with two integration by parts) is defined by

QSSAM2

α,β [f ] :=
1

6

(
QSAM2
α [f ] + 4QSAM2

α,β [f ] + QSAM2

β [f ]
)

=
iε

2
(f0,β + f0,α)

(
e−

i
εϕβ − e−

i
εϕα
)

− (iε)2

2
(f1,β + f1,α)

(
e−

i
εϕβ − e−

i
εϕα
)

+
iε

6
(ϕβ − ϕα) (f1,β + f1,α)

(
e−

i
εϕβ + e−

i
εϕα
)

+
iε

6
(ϕβ − ϕα)

(
f1,αe

− i
εϕβ + f1,βe

− i
εϕα
)
.

The structure in the first line reminds us to the Simpson rule. And in fact
Taylor expansion (with the aid of Maple 14 ) shows

I(h) − QSSAM2

α,β [f ] = O(ε−2h5) .

Thus our SSAM2 is of fifth order with respect to h, while the SAM2 is of third
order. However, both quadratures use the same set of data. Hence we expect
our SSAM to be much more efficient then the SAM from [4].

The SAM is a way to derive an asymptotic expansion of (5.30) with respect to
h (the interval length) of an arbitrary order (cf. [4]). In the previous discussion
we have restricted ourself to the special case, where we use only two times
integration by parts. Here we are able to (significantly) improve the asymptotic
order (with respect to h) of the SAM. However, a systematic way to construct
symmetric versions of the SAM of ”maximal” order (as our derived SSAM2) for
arbitrary numbers of integration by parts is not yet available.

5.4 Numerical experiments

In this section we shall illustrate the approximation accuracy of our modified
Filon–type method (MFM) from Proposition 5.2.1 and the quadratures dis-
cussed in § 5.3. Furthermore we shall test the classical trapezoidal rule on two
highly oscillatory examples. Mainly, we are interested in the convergence be-
havior of the quadrature error as the step size (interval length) tends to zero.
Thus, for the SAM from [4] we shall not apply the asymptotic method, which is
usually the first step and increases the asymptotic properties with respect to ε.
We want to test the spatial approximation abilities of the quadratures. Therefor
we shall also use different values of ε in order to visualize the dependency of the
quadrature errors on this small parameter.

Let f, ϕ : [a, b] → R, such that the assumptions of Proposition 5.2.1 hold on
the whole interval. For N ∈ N we set h = b−a

N and xn = a+ nh. Thus

I :=

∫ b

a

f(x) e−
i
εϕ(x) dx =

N−1∑

n=0

∫ xn+1

xn

f(x) e−
i
εϕ(x) dx =:

N−1∑

n=0

In .

Now each integral In is approximated with a quadrature Qn based on Proposi-
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tion 5.2.1. We set Q :=
∑N−1

n=0 Qn and get

|I −Q| ≤
N−1∑

n=0

∣∣In −Qn
∣∣ ≤

N−1∑

n=0

c hm+1 min

(
1, γ

(
ε

h

)µ+1)

= c |a− b|hm
(
1, γ

(
ε

h

)µ+1)
.

Hence the h–order of the composed quadrature Q is reduced by one with respect
to those of Proposition 5.2.1. Nevertheless, the asymptotic behavior with respect
to ε remains unchanged. Thus the composed version Q of the quadrature is
suitable for our purpose.

Now we specify the version of our MFM we shall use for the numerical
experiments. We choose the interpolation abscissas ξ1 = xn, ξ2 = xn+1 and
the corresponding multiplicities m1 = m2 = 1. This is the simplest admissible
setting. Thus m = 2, µ = 1, and (for the subinterval [xn, xn+1])

c1 =

f(xn)
ϕ′(xn)

− f(xn+1)
ϕ′(xn+1)

ϕ(xn)− ϕ(xn+1)
, c0 =

f(xn)

ϕ′(xn)
− c1 ϕ(xn) .

This yields

QMFM1
n = iε e−

i
εϕ(x)

(
c0 − iεc1 + c1 ϕ(x)

)∣∣xn+1

x=xn
.

Hence, from Proposition 5.2.1 we get the (theoretical) upper bound for the
(absolute) quadrature error of QMFM1:

|I −QMFM1| ≤ c |a− b|h2
(
1, γ

(
ε

h

)2)
. (5.31)

In Figure 5.2 we plot for ε = 10−1, . . . , 10−5 the absolute quadrature error of

the MFM1 (circles) for the integral I =
∫ 1

0
log(1 + x)e−

i
εx dx. The exact value

of the integral can be written down in terms of exponential integrals. They are
evaluated with the Matlab function mfun. Additionally we plot the theoretical
error bound (5.31) with fitted constants c = 0.02, γ = 0.7 (solid line). The color
code we use here to mark the different ε values shall be used in the sequel for
all plots.

We observe that the error estimate (5.31) from Proposition 5.2.1 (solid line)
is close to the numerical results in the constant regime (h > ε). Also the
predicted convergence error of order two with respect to the spatial step size
h is visible. However, the bound of Proposition 5.2.1 over estimates the error
when it starts to decrease monotonously (h < ε). In this regime, where the
second order nature with respect to h dominates, the numerical error seems to
decay when ε→ 0. Contrary, (5.31) predicts an ε–independent quadrature error
here. This phenomena is also observed in the following examples.

Before we start to compare our MFM1 with the SAM from [4] and the new
SSAM from § 5.3, we shall test the performance of the classical trapezoidal
rule (TR) for an highly oscillatory integral. In Figure 5.3 we plot the absolute
approximation error of the composed MFM1 (triangle) and the composed TR

(circle) for the integral I =
∫ 1

0
cosx e

i
ε (x+1)2dx. The exact value of the integral
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Figure 5.2: Error of the MFM (circles) and the estimate from Proposition 5.2.1

(solid line) with fitted constants (c = 0.02, γ = 0.7) for I =
∫ 1

0
log(1+x)e−
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εx dx.
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Figure 5.3: Absolute quadrature error for the TR (circles) and the MFM1 (tri-

angle) for I =
∫ 1

0 cosx e−
i
ε (x+1)2 dx. The black reference line has slope 1

2 .
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can be written down in terms of error functions. They are evaluated with the
Matlab function mfun.

For small values of h (h < ε) the TR (circle) shows its predicted second
order behavior with respect to h. Instead, for large values of h (i. e. h > ε)
we observe only a slight decay of the quadrature error, almost independently
of ε. The dashed black line in the upper part of the plot has slope 1

2 and it
seems to be a good upper bound, at least for this example. The point where the
(smooth) second order behavior kicks in is proportional to ε. There we see (for
fixed ε) a very steep descent with decreasing h. The height of this transition
seems to increase when ε→ 0. Furthermore the error curves show an O(ε−1h2)
behavior in the smooth regime, i. e. h < ε. However, the MFM1 has a much
better performance. We observe that the error is proportional to ε2 for h > ε.
Additionally for h < ε the quadrature error is monotonously decreasing with
second order in h. Furthermore we get from the plot that (for small h) the error
of the MFM1 is approximately ε2 times smaller than the quadrature error of
the TR, while using the same data. This is an amazing result, which shows how
powerful our sophisticated quadrature is.

It is also remarkable that the error curves for both quadratures seem to have
similar shape. At least the points where the oscillatory parts of the curves turns
into a smooth monotone increasing line lie almost at the same position (for both

quadratures). For the integral I =
∫ 1

0
log(x+1)e−

i
εxdx the similarity of the er-

ror curve shapes is even stronger. For this example, in Figure 5.4 we plot the
quadrature error of the TR (circle) for ε = 10−1, 10−2, 10−3 and h ∈ [10−3, 1].
We compute the results for all (1000) equidistant subdivisions of the interval
[0, 1], with subinterval length greater or equal to hmin = 10−3. Furthermore we
plot the quadrature error of the MFM1 (triangle) multiplied by the (approxi-
mate) factors 5.57 ·101, 8.61 ·103, 7.85 ·105 for ε = 10−1, 10−2, 10−3 respectively.
We choose the factors, such that the corresponding curves coincide at h = 10−3.
Here we numerically observe that the error of the TR is (approximately) cε−2

larger than that of the MFM1. The vertically shifted error curves of the MFM1

almost coincide with those of the TR. Differences of the curves are visible in the
plot only for large values of h. We also observe this interesting coincidence for

the integrals I =
∫ 1

0 cosxe−
i
εxdx and I =

∫ 1

0 x
3e−

i
εxdx, which we do not plot

here. For the example from Figure 5.3 the curves do not fit as good as in the

cases with linear phase. However, if we create in I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx a lin-

ear phase by the substitution y = (x+1)2 and afterwards apply the quadrature
rules, then we also get quite good (in shape) matching error curves.

Now let us consider the SAM10. In Figure 5.5 we plot the absolute quadrature
error of the SAM1 (solid line) and our SSAM1 (circle). Both quadratures use the
same set of data. We observe that the SAM1 is of first order as h→ 0, while our
SSAM1 shows a second order behavior. The error curves for both quadratures
are oscillating for h > ε and it seems to be, that the error of SSAM1 is bounded
from above by that of SAM1. However, the point where the oscillatory nature
turns into a smooth, monotonously decreasing line is (approximately) the same
for both quadratures and the graphs almost coincide at this position. Despite
the SAM1’s asymptotic behavior of O(εh) (which we deduce from the plot),
the SSAM1 is much more effective, even with its ε–independent convergence
behavior.

10See § 5.3 for the definition of the SAM, MSAM, RSAM, SSAM.
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Figure 5.4: Absolute quadrature error of the TR (circles) and the vertically

shifted error of the MFM1 (triangle) for I =
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Figure 5.5: Absolute quadrature error of the SAM1 from [4] with one integration

by parts (solid line) and SSAM1 from § 5.3 (circle) for I =
∫ 1

0 log(x+1) e−
i
εx dx.
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Figure 5.6: Absolute quadrature error of the SAM2 (+) and MSAM (solid line)

for I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx. The black dashed reference line has slope 3

2 .

In Figure 5.6 we plot the absolute quadrature error of the SAM2 (+) and

the MSAM (solid line) for I =
∫ 1

0 cosx e−
i
ε (x+1)2 dx. Both quadratures use the

same set of data. For h ≪ ε the error curves (almost) coincide. They show
an O(εh2) behavior in this part. As observed for the MFM1, SAM1, SSAM1

and TR, also the SAM2 and MSAM are oscillatory for h > ε. However, the
oscillations of the MSAM line are less distinct. Furthermore the MSAM shows
a smaller error compared to the SAM2. Except for a part where the oscillatory
behavior turns into a smooth monotone growth, the MSAM quadrature error
seems to decay (in the mean) with second order in h on the whole interval. For
the SAM2 instead we see a slower decay for h > ε. The thin black dashed line
has slope 3

2 which seems to be close to the decay rate. Since the MSAM shows
less oscillatory error curves (compared to the SAM2), we shall use it instead
of the SAM2 for further considerations. In all upcoming plots the error of the
SAM2 is always greater or equal than those of the MSAM.

Next we shall compare the MFM1 with the MSAM. Furthermore we shall
plot the quadrature error of the RSAM. In Figure 5.7 we plot the absolute

quadrature error of the three methods for I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx. The same

setting for I =
∫ 1

0 log(x+1) e−
i
εx dx is plotted in Figure 5.8. We start with the

discussion of Figure 5.7.

In the oscillatory part (h > ε) the error of the RSAM (circle) decays faster
than that of the MSAM (dashed line). Also in the smooth regime the error of
the RSAM has a smaller constant compared to the MSAM. For large h (i. e.
h > ε) the MFM1 yields the best performance. In this part the error is at
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Figure 5.7: Absolute quadrature error of the MSAM (dashed line), RSAM (cir-

cle) and MFM1 (solid line) for I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx.

most of order O(ε2), even for (fixed) h = 1. Here the RSAM decays a bit
faster than the already known O(εh2) behavior of the MSAM. Both methods
show the described h–dependent decay until they reach the curve of the MFM1.
Nevertheless, in the transition region all three curves almost coincide. The
three methods show an O(εh2) convergence behavior as h → 0. The error of
the RSAM and MFM1 almost coincide for (very) small h.

In Figure 5.8 we see that the error curves do not always coincide at the tran-
sition region. Here the MSAM error shows a different shape compared to that
of the RSAM and MFM1, which are almost identical. The other observations
from Figure 5.7 also hold here.

The RSAM andMSAM use the same data and hence yield comparable results
with slight advantages for the RSAM. However, we do not need first derivatives
of f for the MFM1, contrary to the MSAM and RSAM. Hence the MFM1 has
the least numerical effort (of the three methods), while yielding the smallest
approximation errors and the same asymptotic order when h→ 0.

In Figure 5.9 we plot the absolute quadrature error of the SAM2 (from [4])
and our improved symmetric version SSAM2 (derived in § 5.3) for the integral

I =
∫ 1

0 cosx e−
i
ε (x+1)2 dx. Both methods use the same set of data. We observe

the predicted forth order of our SSAM2 as h → 0. On the whole interval the
new method shows smaller approximation errors than the SAM2. Consequently,
due to the difference of two orders in the h–asymptotic, the error of the SSAM2

is significantly smaller for h < ε. Furthermore we plot the error of the MFM1

(dot). In the transition area the MFM1 and SSAM2 yield comparable results.
Nevertheless, for h > ε the MFM1 once again shows the best performance.
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Figure 5.8: Absolute quadrature error of the MSAM (dashed line), RSAM (cir-

cle) and MFM1 (solid line) for I =
∫ 1

0
log(x + 1) e−

i
εx dx.

In Figure 5.10 we have the same setting as for Figure 5.9, except for the

integral which is I =
∫ 1

0
log x e−

i
εx dx here. The previously described obser-

vations from Figure 5.9 also hold for this Figure. In both Figures we observe
oscillations of the SAM2 curves in the lower left corner. A reason for this may be
the machine precision of Matlab (which is approximately 10−16). Furthermore,
also the accuracy of the reference solution may be reached in this regime.

In Figure 5.7 and Figure 5.8 we observe that the RSAM and and MFM1

have a similar asymptotic behavior as h→ 0. Using Taylor expansion (which is
done with Maple 14) we (locally) get

QSAM
α,β,n − QMFM1

n = c e−
i
εϕ(xn) ε−1h5 + O(ε−2h6) .

Hence we expect that the difference QSAM
α,β − QMFM1 is of order O(ε−1h4). In

Figure 5.11 we plot its absolute value for the integral I =
∫ 1

0
cosx e−

i
ε (x+1)2dx.

For large values of ε (10−1, 10−2, 10−3) we observe the predicted forth order
behavior with respect to h. However, the ε−1 behavior is not present for small h.
Here the lines almost lie on each other. A reason for this may be that summing
up the local quadrature errors yields a highly oscillatory sum. As discussed in
[4, §3.3] this may yield a higher order in ε as locally predicted. The oscillations
in the lower left corner may be do to machine precision.

In the previous examples we always used 1000 abscissas to create the error
plots. The resulting curves show (for large h) an oscillatory behavior, which
is more or less good resolved. We can use such a high resolution, because
the approximation of one integral is quite fast. However, the solution of the
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Figure 5.9: Absolute quadrature error of the SAM2 (solid line), SSAM2 (+) and

MFM1 (dot) for I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

h

 

 

ε = 1.0e−01

ε = 1.0e−02

ε = 1.0e−03

ε = 1.0e−04

ε = 1.0e−05

Figure 5.10: Absolute quadrature error of the SAM2 (solid line), SSAM2 (+)

and MFM1 (dot) for I =
∫ 1

0 log x e−
i
εx dx.
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Figure 5.11: Absolute value of QMFM1 −QSAM2

α,β for I =
∫ 1

0
cosx e−

i
ε (x+1)2 dx.

numerical examples in chapter 7 is much more involved and hence much slower.
Hence, there we shall use only a few grid points (approx. 13) to create the error
plots (cf. Figure 7.2– 7.10). The MFM1 is used by the schemes to approximate
the occurring highly oscillatory integrals. To get an idea, how the error plots
look like with only a few abscissas, we shall once more plot the examples from
Figure 5.7 and Figure 5.8. Now we use only 17 grid points. As for the error plots
in § 7, the subinterval lengths are given by h = (b− a)2−n (here n = 0, . . . , 16),
which yields an equidistant distribution on the logarithmic axis. The results

are plotted in Figure 5.12 for I =
∫ 1

0
cos(x)e−

i
ε (x+1)2 dx and Figure 5.13 for

I =
∫ 1

0 log(x + 1)e−
i
εx dx. Hence we may identify effects in the error plots of

the numerical integrators derived in § 6, which probably originate from the used
quadrature.

In the end of this section we shall summarize the results. Let us start with
the methods, which only uses values of f and no derivatives. These are the
classical trapezoidal rule, the SAM1 from [4], our new SSAM1 derived in § 5.3
and the MFM1 discussed in § 5.2. The numerical effort of this four methods is
comparable. We have observed that the SAM1 is only of first order as h → 0,
while the other three methods are of second order with respect to h. Further-
more, the TR is not well suited for highly oscillatory problems as we have seen
in Figure 5.3. Comparing the error, especially for large h > ε non of the other
three methods is competitive to the MFM1. The asymptotic accuracy with
respect ε of the MFM1 is to dominant here. Shortly we can write (for the error)

MFM1 ≤ SSAM1 ≤ SAM1 .

Allowing also the use of the first derivatives yields the SAM2 from [4] and
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Figure 5.12: Absolute quadrature error of the SAM2 (dashed lines), MFM1

(solid lines), and RSAM (circles) for I =
∫ 1

0
cos(x)e−

i
ε (x+1)2 dx.
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Figure 5.13: Absolute quadrature error of the SAM2 (dashed lines), MFM1

(solid lines), and RSAM (circles) for I =
∫ 1

0 log(1 + x)e−
i
εx dx.
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Figure 5.14: Absolute quadrature error of the SSAM2 (dashed lines), and the

hybrid method HQ (solid lines) for I =
∫ 1

0
log(1 + x)e−

i
εx dx.

MSAM, RSAM and SSAM2 from § 5.3. While the first three methods are of
second order as h → 0, the SSAM2 shows its predicted fourth order behav-
ior. The SAM2, MSAM, and RSAM are less efficient for h > ε compared to
the MFM1, which is (surprisingly) the method with the least numerical effort.
Shortly we could summarize our experience in the following relations:

MFM1 ≤ RSAM ≤ MSAM ≤ SAM2 .

Since the SSAM2 is of fourth order with respect to h, it is a bit complicate
to directly compare it to our favorite method, the MFM1, which is of second
order and use a different set of date. But we could compare them, if the nu-
merical effort of the two methods would be similar. Hence we shall make one
”step“ of the asymptotic method and than use our MFM1. The resulting hybrid
quadrature (HQ) now use the same data as SSAM2 and SAM2. We plot the
absolute quadrature error of the HQ and SSAM2 in Figure 5.14 for the integral

I =
∫ 1

0
log(1 + x)e−

i
εx dx. We observe a third order accuracy with respect to ε

of the HQ. Hence the HQ is much more efficient for h > ε than the SSAM2. The
point, where the fourth order behavior of the SSAM2 beats the second order
accuracy of the HQ (i. e. where the two curves cross), rapidly decreases with ε.



Chapter 6

Efficient one–step methods

As motivated in chapter 3 by the two–band k · p–model, we are interested in an
efficient scheme to approximate the solution of the IVP (3.21)

u′ = i
εLu + Bu , u(x0) = u0 . (6.1)

The matrix valued functions L,B : I×(0, ε0) → Cd×d are Cr–bounded indepen-
dently of ε. Furthermore L(x, ε) is real and diagonal for all (x, ε) ∈ I × (0, ε0).
Here ”efficient” means that the numerical method do not have to resolve all
oscillations of the solution u in order to yield a good approximation. I.e. that
the used discretization grid is (in the best case) independently of ε.

By Proposition 3.3.1 (WKB–type transformation) and Corollary 3.3.4 we
know that (6.1) is equivalent to (r ≥ n)

z′ = εn E∗
εSnEε z , z(x0) = z0 . (6.2)

This ODE has a system matrix of order O(εn). Hence it is possible to get an
approximation error of at most the same order. Since EεΦ is a highly oscillatory
matrix function, a naive discretization of this problem will lead to a reduced (or
negative) error order with respect to ε.

The first discretization step consists of truncating a series representation
(limit of the Picard iteration) for the solution z of (6.2). This is discussed in
§ 6.1 for a general linear first order initial value problem. Here we derive a (semi
discretized) pre–version of our one–step method (cf. p.119f). In the following
section § 6.2 we focus on the special case (6.2) and attune the “pre–method”
from § 6.1 to it. The result shall be a raw version of our efficient one–step
method (see p.127f). Subsection § 6.2.1 is of interest for programming. Here we
reformulate the derived coefficients of the one–step method, such that it is more
convenient to implement them in the code. In § 6.3 we derive the quadrature for
the oscillatory integrals as well as upper bounds for the quadrature defect. These
are the missing ingredients, which makes the raw version of § 6.2 a completely
discretized one–step method. We merge the results of § 6.2 and § 6.3 in § 6.4 and
get an explicit description of our one–step method. It is summarized in the end
of the section on page 137ff.

In order to prove convergence of our one–step method we show two things.
First we prove in § 6.5 that the matrices and vectors, which determine the
method, are bounded independently of ε and the spatial step size. Further-
more the derived bound guarantees stability of the scheme. Secondly, in § 6.6,

115
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we derive an upper bound for the local error. It is of the form θ(ε, hn)h
τ+1
n ,

where θ(ε, hn) → 0 as ε→ 0. How to construct methods with maximum asymp-
totic order with respect to the small parameter ε is discussed in § 6.6.1. With the
results from § 6.5 and § 6.6 we shall prove convergence of the one–step method
in 6.7. For this purpose we use standard arguments.

6.1 Picard iteration: truncation error and iter-

ated integrals

Let I := [a, b] be a non–trivial compact interval and let A : I → Cd×d and
f : I → Cd be continuous. The goal of this section is the derivation of (“pre“)
one–step methods (OSM) for the linear initial value problem

y′(x) = ρA(x) y(x) + λf(x) , x ∈ I (6.3)

y(ξ) = yξ .

with ξ ∈ I and ρ, λ ≥ 0. It is given in (6.11).

We use the objects from the following Definition 6.1.1 to write down an exact
series representation of y (cf. Lemma 6.1.4).

Definition 6.1.1. Let ζ ∈ I and let M ∈ C(I,Cd×d). We define a linear map
Iζ : C(I,Cd×m) → C1(I,Cd×m) by

(IζU)(x) :=

∫ x

ζ

M(s)U(s) ds .

We denote the j–times application of Iζ to U by IjζU . As usual I0
ζ is the identity

operator. For constant U = Id we use the notation

(Ijζ Id)(x) = Ijζ (x) .

Remark 6.1.2 (Iterated integrals). We call (IjζU) the jth iterated integral.
Due to Definition 6.1.1 it holds for all r, s ∈ N0 and all x ∈ I:

(Irζ Isζ )(x) = Ir+sζ (x) .

We will frequently use the iterated integrals and therefore we need a priori
estimates.

Lemma 6.1.3. Let the assumption of Definition 6.1.1 hold. Then we get for
all j ∈ N ∪ {0} and for all x ∈ I:

‖(IjζU)(x)‖ ≤ ‖M‖j∞|x− ζ|j
j!

‖U‖∞ . (6.4)

Proof. By definition it is (I0
ζU)(x) = U(x). Hence estimate (6.4) holds for
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j = 0. We proceed by induction. Let (6.4) hold for j ∈ N ∪ {0}.

‖(Ij+1
ζ U)(x)‖ =

∥∥∥∥
∫ x

ζ

M(s)(IjζU)(s) ds

∥∥∥∥

≤ sgn(x− ζ)

∫ x

ζ

‖M(s)‖ ‖(IjζU)(s)‖ ds

≤ sgn(x− ζ)j+1‖M‖∞
∫ x

ζ

(s− ζ)j

j!
ds ‖M‖j∞ ‖U‖∞

=
‖M‖j+1

∞ |x− ζ|j+1

j + 1!
‖U‖∞ .

The unique solution y of the linear IVP (6.3) is given by the limit of the
Picard iteration. As we will see soon, the Picard limit y can be represented as
a von Neumann series.

Lemma 6.1.4 (Series Representation). In Definition 6.1.1 let M = A. Then
the unique solution y of the IVP (6.3) is given by

y(x) =

∞∑

j=0

ρj
(
Ijξ (yξ + λfξ)

)
(x) , (6.5)

with fξ(x) :=
∫ x
ξ f(s) ds. Here we interpret yξ as a constant function on the

interval I.

Proof. Let

yn(x) :=
n∑

j=0

ρj
(
Ijξ (yξ + λfξ)

)
(x) ,

y†n(x) := y′n(x) =

n∑

j=0

ρj
(
Ijξ (yξ + λfξ)

)′
(x) .

Due to Lemma 6.1.3 we get

∞∑

j=0

ρj‖Ijξ (yξ + λfξ)‖∞ ≤ eρ‖A‖∞|a−b|(‖yξ‖+ λ‖fξ‖∞) =: c < ∞

and

∞∑

j=0

ρj
∥∥(Ijξ (yξ + fξ)

)′∥∥
∞ ≤ ρ ‖A‖∞ c + λ‖fξ‖∞ < ∞ .

This yields uniform convergence of both sequences (cf. [23] ”Konvergenzkri-
terium von Weierstraß”), i. e. yn → y and y†n → y†. Hence y is continuously
differentiable with y′ = y† (cf. [49, XIII, §9]). It holds for n ∈ N

y†n(x) = ρA(x)yn−1(x) + λf(x) . (6.6)

Passing on both sides of (6.6) to the limit finishes the proof.
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From the series representation of y in Lemma 6.1.4 we directly deduce, with
the estimate from Lemma 6.1.3,

Corollary 6.1.5. Let y be the unique solution of the IVP (6.3). Than it holds
for all x ∈ I

‖y(x)‖ ≤ eρ|x−ξ|‖A‖∞ ‖yξ + λfξ‖ .

Hence y continuously depend on the data of the IVP. From the ODE it directly
follows that

‖y′(x)‖ ≤ ρ‖A(x)‖‖y(x)‖ + λ‖fξ(x)‖ .

For our highly oscillatory model problem 2 in § 6.2 this means, that z is C1–
bounded independently of ε, since the function A(x) = E∗

ε (x)S(x, ε)Eε(x) is at
least C0–bounded independently of ε.

Remark 6.1.6. Lemma 6.1.4 is a tool that helps us to derive our OSM in
§ 6.1. But it is also useful to get another point of view of the difficulties (highly
oscillatory behavior, exponential growth and decay of the solution) of the second
order IVP

ε2ψ′′ + A(x)ψ = 0 ,

ψ(ξ) = ψ0 ,

ψ′(ξ) = ψ1 .

We can rewrite it as a first order IVP by setting u1 = ψ, u2 = εψ′, which yields

u′(x) =
1

ε

(
0 Id

−A(x) 0

)
u , u(ξ) = u0 .

For the following consideration the structure of the system matrix is not relevant.
Hence we shall generalize the first order system as follows. Let z ∈ C\{0} and
let M be a continuous matrix valued function. By Lemma 6.1.4 the solution of
the IVP (on the interval I)

u′(x) =
1

z
M(x)u , u(ξ) = u0 ,

is given by

u(x, z) =

∞∑

j=0

(
Ijξ (x)u0

)
z−j .

Hence, for every fixed x ∈ I each component fj of the function f(z) := u(x, z) is
analytic in z. Further it is obvious that it has an essential singularity at z = 0.
Now the complex analysis yields an explanation for the difficulties u makes when
approaching z = 0. Due to the theorem of Casorati–Weierstraß (cf. [64]) we
know, that the image of any origin–neighborhood under fj is dense in C. Hence
the function fj shows a lot of different behaviors depending of the direction one
approaches z = 0. Consequently the nature of the IVP solution u sensitively
depends on the matrix M and on the parameter z = ε > 0. It can (e. g.) easily
switch from highly oscillatory to exponential growth depending on M .
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Now let a = xna < xna+1 < · · · < xnb
= b be a grid on [a, b] with na ≤ 0 ≤ nb

and x0 = ξ and let y be the unique solution of (6.3). From the above Lemma
6.1.4 we immediately get (with ξ = xn)

y(xn+1) =

∞∑

j=0

ρj
(
Ijxn

(y(xn) + λfxn)
)
(xn+1) . (6.7)

We can also integrate ’backwards’ in x which yields

y(xn) =

∞∑

k=0

ρk
(
Ikxn+1

(y(xn+1) + λfxn+1)
)
(xn) . (6.8)

A linear combination of both equations is the starting point for our numerical
method. Before we proceed with this we introduce some notation.

Notation.

Ijn := Ijxn
(xn+1) , Fjn :=

(
Ijxn

fxn

)
(xn+1) ,

Jkn := Ikxn+1
(xn) , Gkn := (Ikxn+1

fxn+1)(xn) .

With this notation equations (6.7) and (6.8) read

y(xn+1) =

∞∑

j=0

ρjIjn y(xn) + λ

∞∑

j=0

ρjFjn , (6.9)

y(xn) =

∞∑

k=0

ρkJkn y(xn+1) + λ

∞∑

k=0

ρkGkn . (6.10)

Assumption 6. Let σe, σi ∈ [0, 1] with σe + σi = 1.

Due to (6.9), (6.10) it holds

(
σe Id+σi

∞∑

k=0

ρkJkn

)
y(xn+1) =

(
σi Id+σe

∞∑

j=0

ρjIjn

)
y(xn)

+λσe

∞∑

j=0

ρjFjn − λσi

∞∑

k=0

ρkGkn .

Numerical Method 1. To get a numerical method we truncate the series at
both sides after the same number of summands. By Assumption 6 σe + σi = 1
and it holds J0n = I0n = Id. This yields the one–step method

(
Id+σi

τ∑

k=1

ρjJkn

)
yn+1 =

(
Id+σe

τ∑

j=1

ρjIjn

)
yn (6.11)

+λ

τ∑

k=0

ρk
(
σe F

k
n − σiG

k
n

)
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For the exact solution y of (6.3) it holds

(
Id+σi

τ∑

k=1

ρjJkn

)
y(xn+1) =

(
Id+σe

τ∑

j=1

ρjIjn

)
y(xn)

+λ
τ∑

k=0

ρk
(
σe F

k
n − σiG

k
n

)
+ errn,τtrunc

with

errn,τtrunc := σe

∞∑

j=τ+1

ρjIjn y(xn) + λσe

∞∑

j=τ+1

ρjFjn (6.12)

− σi

∞∑

k=τ+1

ρkJkn y(xn+1) − λσi

∞∑

k=τ+1

ρkGkn .

For σi = 0 we get an explicit and for σe = 0 a ’pure’ implicit scheme. Due to
J1n = −I1n we get for τ = 1 and σe = σi =

1
2 a Crank–Nicolson like Scheme.

Lemma 6.1.7. The local truncation error (6.12) of (6.11) can be written as

errn,τtrunc = ρτ+1
(
σe(Iτ+1

xn
y)(xn+1) − σi(Iτ+1

xn+1
y
)
(xn)) . (6.13)

Furthermore it holds

‖ errn,τtrunc ‖ ≤ ρτ+1‖A‖τ+1
∞ hτ+1

n

(τ + 1)!
‖y‖∞ . (6.14)

with hn = xn+1 − xn.

Proof. In (6.13) we simply replace y(x) by its series representation (6.5). We do
the calculation only for one term. The other one is analogously treated. With
Remark 6.1.2 we compute:

ρτ+1
(
Iτ+1
xn+1

y
)
(xn)

=

(
Iτ+1
xn+1

∞∑

k=0

ρk+τ+1
(
Ikxn+1

y(xn+1) + λ Ikxn+1
fxn+1

))
(xn)

=
∞∑

k=0

ρk+τ+1Ik+τ+1
xn+1

(xn) y(xn+1) + λ
∞∑

k=0

ρk+τ+1
(
Ik+τ+1
xn+1

fxn+1

)
(xn)

=

∞∑

k=τ+1

ρkJkn y(xn+1) + λ

∞∑

k=τ+1

ρkGkn .

The error estimate is a consequence of Assumption 6, Lemma 6.1.3 and (6.13).

It is well known that the Crank–Nicolson scheme has a local error of third
order (cf. [28]). In § 6.2 we will see that I0n has a highly oscillatory integrand.
Hence the trapezoid rule, which would give us the exact Crank–Nicolson scheme
from literature, should not be applied.

The explicit expression for the constant c in the following Lemma is needed
in the upcoming section, in order to determine the asymptotic error behavior.
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Lemma 6.1.8. Let A ∈ C1([a, b],Cd×d). For the local truncation error of the
Crank–Nicolson like scheme (i. e. τ = 1 and σe = σi =

1
2 ) it holds:

‖ errn,1trunc ‖ ≤ c ρ2h3n ,

with

c = λ
‖A‖2∞

4
‖f‖∞ +

|ρ|‖A‖3∞ + 2‖A‖∞‖A′‖∞
4

‖y‖∞ .

Proof. Due to Lemma 6.1.7 it is

2
ρ2 errn,1trunc =

(
(I2
xn
y)(xn+1) − (I2

xn+1
y)(xn)

)

=

∫ xn+1

xn

A(x)

∫ x

xn

A(s)y(s) ds −
∫ xn

xn+1

A(x)

∫ x

xn+1

A(s)y(s) ds .

Using the fundamental theorem of calculus we get:

2
ρ2 err

n,1
trunc

=

∫ xn+1

xn

A(xn)

(∫ x

xn

A(xn)y(xn) ds+

∫ x

xn+1

A(xn)y(xn) ds

)
dx +

∫ xn+1

xn

∫ x

xn

A′(s) ds

(∫ x

xn

A(xn)y(xn) ds+

∫ x

xn+1

A(xn)y(xn) ds

)
dx +

∫ xn+1

xn

A(x)

(∫ x

xn

∫ s

xn

(Ay)′(t) dt ds+

∫ x

xn+1

∫ s

xn

(Ay)′(t) dt ds

)
dx .

Since the first integral is zero we get

2
|ρ|2 ‖ err

n,1
trunc ‖

≤ ‖A′‖∞‖A‖∞‖y‖∞
∣∣∣∣
∫ xn+1

xn

∫ x

xn

ds

(∫ x

xn

ds+

∫ xn+1

x

ds

)
dx

∣∣∣∣ +

‖A‖∞‖(Ay)′‖∞
∣∣∣∣
∫ xn+1

xn

(∫ x

xn

∫ s

xn

dt ds+

∫ xn+1

x

∫ s

xn

dt ds

)
dx

∣∣∣∣

= ‖A‖∞
(
‖A′‖∞‖y‖∞ + ‖(Ay)′‖∞

)h3n
2
.

To finish the proof we remark that (Ay)′ = A′y + ρA2y + λAf .

6.2 The highly oscillatory case: raw version of

the method

While the setting in the previous section § 6.1 is quite general, we now focus
on the highly oscillatory problem as mentioned in the introduction. We use the
results from § 6.1 and a special strategy for the highly oscillatory integrals to
derive a numerical scheme. In this section we do not approximate the iterated
integrals. Instead we rewrite them in a favorable way, which is motivated by
the quadrature technique from § 5. This procedure results in Lemma 6.2.5 and
Lemma 6.2.6 and finally yields the Numerical Scheme 2 (cf. 127).



122 CHAPTER 6. EFFICIENT ONE–STEP METHODS

Now let us specify the oscillatory IVP. Let [a, b] ⊂ R be a non–empty
bounded interval and let Ω := [a, b] × (0, ε1) for some ε1 > 0. Further let the
matrix valued function Φ : Ω → Rd×d ⊂ Cd×d be, such that for all (x, ε) ∈ Ω:

Φ(x, ε) = diag(ϕ1(x, ε) Idν1 , . . . , ϕνq (x, ε) Idνq ) ∈ Rd×d ,

where Idνj denotes the identity matrix on Cνj . The number q ∈ N is assumed
to be constant on Ω. Since Φ(x, ε) ∈ Rd×d, it has to hold ν1 + · · ·+ νq = d. We
denote the vector of the geometric multiplicities of the eigenvalues by

ν := (ν1, . . . , νq)
T ∈ Nq .

Further we define on Ω the matrix valued function Eε by

Eε(x) := exp
(
i
εΦ(x, ε)

)
. (6.15)

The matrix Eε(x) is unitary for all (x, ε) ∈ Ω. Due to the definition of Eε we
call Φ the phase function.

Assumption 7. The eigenvalue functions ϕ1, . . . , ϕq are Cs+1–bounded inde-
pendently of ε. Further there exists a constant δ > 0, such that for all (x, ε) ∈ Ω
and k 6= j

|ϕ′
k(x, ε)− ϕ′

j(x, ε)| ≥ δ .

Now we can write down the initial value problem we are interested in.

Model Problem 2. Let S : Ω → Cd×d and f : Ω → Cd be Cs–bounded indepen-
dently of ε and let Assumption 7 hold. Furthermore let Eε be given by (6.15).
The IVP we want to approximate for fixed ε ∈ (0, ε1) and x ∈ [a, b] is given by

z′(x, ε) = ρE∗
ε (x)S(x, ε)Eε(x) z(x, ε) + λE∗

ε (x)f(x, ε) , (6.16)

z(x, ε) = z0 ∈ Cd ,

with x ∈ [a, b] and ρ, λ ≥ 0.

From Corollary 3.3.4 we know that it is always possible to remove the ν–
block diagonal part of S with a Cs–bounded linear transformation. Since the
ν–block diagonal entries of the system matrix are not highly oscillatory, one can
use a standard integrator, like Runge-Kutta methods, to solve this problem. The
integrator can use an ε independent grid. In some special cases the integration
can be done by hand (cf. p. 18 ff). Hence we assume that diagν(S) = 0.

Assumption 8. For all (x, ε) ∈ Ω it holds: diagν
(
S(x, ε)

)
= 0.

Due to Lemma 3.3.1 the IVP (6.1) can be reformulated, such that it fits in the
above setting. Hence we should keep in mind that ρ is a very small constant.

In § 6.3 we derive the quadratures for the highly oscillatory iterated integrals.
These quadratures are designed for phase functions which do not have stationary
points. Since this has to hold also for the inhomogeneity we make

Assumption 9. If f 6= 0, then we additionally assume

|ϕ′
j(x, ε)| ≥ δ

for all (x, ε) ∈ Ω and all j = 1, . . . , q.
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Remark 6.2.1. There are also quadratures for highly oscillatory integrals with
stationary points. If one wants to neglect Assumption 9 one can use for example
the method of Olver [61]. For simplicity we restrict ourself to the non–stationary
point case.

Before we continue with numerics let us have a look on the behavior of the
solution z as ε→ 0.

Proposition 6.2.2. Let ρ(ε), λ(ε) : (0, ε1) → R+ be bounded functions and let
zε = z(·, ε) be the unique solution of (6.16). There exists a constant c ≥ 0, such
that

‖zε − z0‖∞ ≤ c ε .

Here we interpret the initial condition z0 as a constant function.

Proof. This proof is based on the series representation of zε from Lemma 6.1.4.
Let ξ := x. It holds for all (x, ε) ∈ Ω

z(x, ε)− z0 =

∞∑

j=1

ρj
(
Ijξ (yξ + λfξ)

)
(x)

= ρ

(
I1
ξ

∞∑

j=0

ρjIjξ (yξ + λfξ)

)
(x) = ρ (I1

ξ zε)(x) .

Using integration by parts we get

(I1
ξ zε)(x) =

∫ x

ξ

(E∗
εSEε)(r) dr zε(x) −

∫ x

ξ

∫ t

ξ

(E∗
εSEε)(r) dr z

′
ε(t) dt .

Furthermore diagν(S) = 0 and hence we deduce from § 3.1.2 (especially (3.20)),
that there exists a constant c ≥ 0 such that

∥∥∥∥
∫ t

ξ

(E∗
εSEε)(r) dr

∥∥∥∥ ≤ cε ,

for all x ∈ I. With the triangle inequality we conclude

∥∥z(x, ε)− z0
∥∥ ≤ ρ c ε(‖z(x)‖ + |x− ξ| ‖z′‖∞) .

Since ρ, λ are bounded we get from Corollary 6.1.5 that z is C1–bounded inde-
pendently of ε, which finishes the proof.

Remark 6.2.3. The relevance of Proposition 6.2.2 for the upcoming construc-
tion of the numerical integrators is as follows. Since the exact solution zε of our
Model Problem 2 tends to a constant as ε→ 0, the numerical schemes we con-
struct shall have this behavior too. I. e. the convergence error of the integrators
are at most of O(εhτn), for some τ ∈ N. Hence in the limit ε→ 0 these schemes
yield the exact (constant) solution, even for a fixed spatial grid.

In § 6.1 we have derived a family of semi discretized one–step methods for
linear first order IVP. The only missing part is a suitable quadrature for the it-
erated integrals, which are highly oscillatory now. Due to the highly oscillatory
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integrands we cannot efficiently apply standard quadratures like Trapezoid or
Simpson rule (cf. [37]). In this section we do not directly discretize the oscilla-
tory integrals. In Lemma 6.2.5 we prove an exact representation for Ijξ , where
we set M = E∗

εSEε in its Definition 6.1.1. From the derived formula one can
get a quadrature by dropping the error terms. Before we continue with Lemma
6.2.5 we need

Definition 6.2.4. Let ξ ∈ [a, b].

(i) For F ∈ C0([a, b],Cd×d) we define

Iξ[F ](x) :=

∫ x

ξ

E∗
ε (s)F (s)Eε(s) ds . (6.17)

(ii) For g ∈ C0([a, b],Cd) we define

Ivξ [g](x) :=

∫ x

ξ

E∗
ε (s)g(s) ds . (6.18)

The following considerations are a motivation for Lemma 6.2.5. The first iter-
ated integral I1

ξ can be written as

I1
ξ (x) = Iξ[S](x) = Iξ[P1](x) + Iξ[S − P1](x) ,

with an arbitrary matrix function P1. The basic idea for the quadrature of
I1
ξ is to choose P1, such that the integral Iξ[P1] can exactly be integrated and

such that the remainder is small. As we will see in § 6.3 the function P1 can be
chosen, such that

Iξ[P1](x) = E∗
ε (s)P

⋄
1 (s)Eε(s)

∣∣x
s=ξ

, (6.19)

where the matrix function P ⋄
1 is Ck–bounded independently of ε and can explic-

itly be computed. We iteratively apply the above idea to the iterated integrals
and set

S1 := S , C1
ξ := E∗

ε (ξ)P
⋄
1 (ξ)Eε(ξ)

and denote the quadrature error by

Err1ξ(x) := Iξ[S1 − P1](x) .

Thus we have

I1
ξ (x) = Iξ[P1](x) + Err1ξ(x) , (6.20)

which yields with (6.19)

I2
ξ (x) =

∫ x

ξ

E∗
ε (t)S(t)Eε(t)I1

ξ (t) dt

= Iξ[SP
⋄
1 ](x) − Iξ[S](x)C

1
ξ +

(
I1
ξ Err

1
ξ

)
(x) .

We set

S2 := SP ⋄
1
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and choose a suitable P2 with

Iξ[P2](x) = E∗
ε (s)P

⋄
2 (s)Eε(s)

∣∣x
s=ξ

,

which yields

I2
ξ (x) = Iξ[P2](x) − Iξ[P1](x)C

1
ξ

+ err2ξ(x) − Err1ξ(x)C
1
ξ +

(
I1
ξ Err

1
ξ

)
(x) .

Obviously it is possible to continue with this procedure.

Lemma 6.2.5. Let P1, . . . , Pτ ∈ C0(Ω,Cd×d), such that for j = 1, . . . , τ

Iξ[Pj ](x) = E∗
ε (s)P

⋄
j (s)Eε(s)

∣∣x
s=ξ

,

where P ⋄
1 , . . . , P

⋄
τ are C0–bounded independently of ε. Further we set C0

ξ := Id,
P ⋄
0 := Id and inductively define for j = 1, . . . , τ :

Cjξ := −
j∑

l=1

P ⋄
l (ξ) Cj−lξ ,

Cjξ := E∗
ε (ξ)CjξEε(ξ) ,

Sj(x) := S(x)P ⋄
j−1(x) ,

Errjξ(x) := Iξ[Sj − Pj ](x) .

With this definitions it holds for j = 1, . . . , τ :

Ijξ (x) =

j∑

k=1

Iξ[Pk](x)C
j−k
ξ +

j∑

k=1

k∑

l=1

(
Ij−kξ Errlξ

)
(x)Ck−lξ . (6.21)

Proof. We prove (6.21) by induction. For j = 1 the right–hand side of (6.21)
reads

Iξ[P1](x)C
0
ξ +

(
I0
ξ Err

1
ξ

)
(x)C0

ξ ,

which is equal to I1
ξ (x) due to (6.20) and C0

ξ = Id. To simplify the following
computations we set

Σj(x) :=

j∑

k=1

k∑

l=1

(
Ij−kξ Errlξ

)
(x)Ck−lξ .
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Hence we get

Ij+1
ξ (x) =

∫ x

ξ

(
E∗
ε S Eε

)
(t) Ijξ (t) dt

=

j∑

k=1

∫ x

ξ

(
E∗
εSEε Iξ[Pk]

)
(t) dt Cj−kξ +

(
IξΣj

)
(x)

=

j∑

k=1

(
Iξ[Sk+1](x)− Iξ[S](x) (E

∗
εP

⋄
kEε)(ξ)

)
Cj−kξ +

(
IξΣj

)
(x)

=

j+1∑

k=2

Iξ[Sk](x)C
j+1−k
ξ + Iξ[S1](x)C

j
ξ +

(
IξΣj

)
(x)

=

j+1∑

k=1

Iξ[Pk](x)C
j+1−k
ξ +

j+1∑

k=1

Errkξ (x)C
j+1−k
ξ +

(
IξΣj

)
(x)

=

j+1∑

k=1

Iξ[Pk](x)C
j+1−k
ξ +

j+1∑

k=1

k∑

l=1

(
Ij+1−k
ξ Errlξ

)
(x)Ck−lξ .

With a similar ansatz we can rephrase Ijξfξ.

Lemma 6.2.6. Let the assumptions and definitions of Lemma 6.2.5 hold and
let u0, . . . , uτ ∈ C0(Ω,Cd), such that for j = 0, . . . , τ

Ivξ [uj](x) = E∗
ε (s)u

⋄
j (s)

∣∣x
s=ξ

,

where u⋄0, . . . , u
⋄
τ are C0–bounded independently of ε. We set for j = 0, . . . , τ

cjξ := E∗
ε (ξ)u

⋄
j (ξ) ,

sj(x) := S(x)u⋄j−1(x) , (j ≥ 1)

errjξ(x) := Ivξ [sj − uj](x)

and s0 := fξ. With this definitions it holds for j = 0, . . . , τ

(Ijξfξ)(x) = Ivξ [uj](x) −
j∑

k=1

Ikξ (x) cj−kξ (6.22)

+

j∑

k=0

(
Ij−kξ errkξ

)
(x) .

Here
∑0

k=1 is the empty sum and hence zero.

Proof. For j = 0 equation (6.22) holds by definition. To simplify the following
computation we set

Σk(x) :=

j∑

k=0

(
Ij−kξ errkξ

)
(x)
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and proceed by induction.

(Ij+1
ξ fξ)(x) =

(
Iξ
(
Ivξ [uj ] −

j∑

k=1

Ikξ cj−kξ + Σk

))
(x)

= Ivξ [Su
⋄
j ](x) −

j∑

k=0

Ik+1
ξ (x) cj−kξ +

(
IξΣj

)
(x)

= Ivξ [sj+1](x) −
j+1∑

k=1

Ikξ (x) cj+1−k
ξ +

(
IξΣj

)
(x)

= Ivξ [uj+1](x) −
j+1∑

k=1

Ikξ (x) cj+1−k
ξ +

j+1∑

k=0

(
Ij+1−k
ξ errkξ

)
(x) .

Now we combine the results of Lemma 6.2.5 and Lemma 6.2.6 with (6.11) from
§ 6.1 to write down a one–step method for our Model Problem 2.

Notation.

Qj
ξ(x) :=

j∑

k=1

Iξ[Pk](x)C
j−k
ξ , (6.23)

Ejξ (x) :=

j∑

k=1

k∑

l=1

(
Ij−kξ Errlξ

)
(x)Ck−lξ . (6.24)

From Lemma 6.2.5 we immediately get

Ijξ (x) = Qj
ξ(x) + Ejξ (x) .

Numerical Method 2. Let n ∈ {na, . . . , nb − 1} and let the assumptions and
definitions of Lemma 6.2.5 and Lemma 6.2.6 hold. Let z be the unique solution
of (6.16). We set

An :=

τ∑

j=1

ρj Qj
xn
(xn+1) (6.25)

Bn :=

τ∑

j=1

ρj Qj
xn+1

(xn) (6.26)

vn :=
τ∑

j=0

ρj Ivxn
[uk](xn+1) −

τ∑

j=1

ρj
j∑

k=1

Qk
xn
(xn+1) c

j−k
xn

(6.27)

wn :=

τ∑

j=0

ρj Ivxn+1
[uk](xn) −

τ∑

j=1

ρj
j∑

k=1

Qk
xn+1

(xn) c
j−k
xn+1

(6.28)

and

errξ(x) :=

τ∑

j=1

ρjEjξ (x)
(
z(ξ) − λ

τ−j∑

k=0

ρk ckξ

)
(6.29)

+λ

τ∑

j=0

ρj
j∑

k=0

(
Ij−kξ errkξ

)
(x) .
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Than the one step method (OSM) is given by

(
Id + σiBn

)
zn+1 + λσi w

n =
(
Id + σeAn

)
zn + λσe v

n , (6.30)

z0 = z(x0) .

For the exact solution z it holds

(
Id + σiBn

)
z(xn+1) + λσi wn =

(
Id + σeAn

)
z(xn) + λσe vn (6.31)

+ errn ,

with

errn := errn,τtrunc + errnint (6.32)

and

errnint := σe errxn(xn+1) − σi errxn+1(xn) . (6.33)

It remains to specify the functions P1, . . . , Pτ and u0, . . . , uτ , which is part of
§ 6.3. Let us summarize the properties that these functions are supposed to
have:

Remark 6.2.7. For the functions P1, . . . , Pτ and u0, . . . , uτ it holds

(i) there exists matrix valued functions P ⋄
1 , . . . , P

⋄
τ C

0–bounded independently
of ε, such that

Iξ[Pj ](x) = E∗
ε (s)P

⋄
j (s)Eε(s)

∣∣x
s=ξ

(ii) there exists vector valued functions u⋄0, . . . , u
⋄
τ C

0–bounded independently
of ε, such that

Ivξ [uj](x) = E∗
ε (s)u

⋄
j (s)

∣∣x
s=ξ

(iii) the error terms Err1ξ , . . . ,Err
τ
ξ and err0ξ, . . . , err

τ
ξ are “small” .

Since the error integrals Errjξ(x) are of the form

Iξ[S̃ − P̃ ](x) =

∫ x

ξ

(E∗
ε S̃ − P̃Eε)(s) ds =

∫ x

ξ

EεΦ(s)⊙ (S̃ − P̃ )(s) ds

and since they do not contain a matrix multiplication and all offν–diagonal
entries can be written as (cf. § 3.1.2)

I[f ] :=

∫ β

α

f(x) e−
i
εϕ(x) dx ,

we deduce that it is enough to find an appropriate approximation rule for the
above scalar valued integral. Then the derived quadrature can be applied one–
to–one to the integral matrix.
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6.2.1 Reprocessing of the raw version

We use this section to reprocess the quantities An, Bn, v
n, wn, such that it

is more convenient to implement the numerical scheme. The following Remark
6.2.8 helps us to do manipulations of multiple sums.

Remark 6.2.8. Let (G,+) be a commutative monoid and let θ, τ ∈ Z with
θ ≤ τ . Furthermore let {Ai,j ∈ G | j = θ, . . . , i , i = θ, . . . , τ}. Then

τ∑

i=θ

i∑

j=θ

Ai,j =
τ∑

j=θ

τ∑

i=j

Ai,j . (6.34)

Proof. On the left–hand side of (6.34) one sum up the row sums and on the
right–hand side one adds together the column sums of the following scheme:

Aτ,θ Aτ,θ+1 Aτ,θ+2 · · · Aτ,τ
...

...
... . .

.

Aθ+2,θ Aθ+2,θ+1 Aθ+2,θ+2

Aθ+1,θ Aθ+1,θ+1

Aθ,θ

.

To simplify the upcoming computations we us the following

Notation.

Qkn := Ixn [Pk](xn+1) , qkn := Ivxn
[uk](xn+1) .

Now let us start with the reprocessing.

Lemma 6.2.9. Let An, Bn be the matrices defined by (6.25) and (6.26). It
holds for all n ∈ {na, . . . , nb − 1}

An =

τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Clxn
, (6.35)

Bn = −
τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Clxn+1
. (6.36)

Proof. Let

X(ξ, x) :=

τ∑

j=1

ρj Qj
ξ(x) .

Due to definition of An, Bn we get

An = X(xn, xn+1) and Bn = X(xn+1, xn) .
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We further compute, using Remark 6.2.8,

X(ξ, x) =
τ∑

j=1

ρj
j∑

k=1

Iξ[Pk](x)C
j−k
ξ

=
τ∑

k=1

ρk
τ∑

j=k

ρj−kIξ[Pk](x)C
j−k
ξ

=
τ∑

k=1

ρk Iξ[Pk](x)
τ−k∑

j=0

ρjCjξ .

Replacing ξ by xn and x by xn+1 yields (6.35). To get (6.36) we set ξ = xn+1,
x = xn, and use Ixn+1 [Pk](xn) = −Ixn [Pk](xn+1).

Remark 6.2.10. Lemma 6.2.9 yields a representation of An, Bn which allows
to compute the quantities (each) with a single loop. The pseudo code reads:

Σ = 0; Γ = 0;
for k = τ : −1 : 1 do

Γ = Γ + ρτ−k Cτ−kxn
;

Σ = Σ + ρkQkn Γ;

end

An = Σ;

If we replace xn by xn+1 and replace the last equation by Bn = −Σ, then we get
the pseudo code for Bn.

Similar computations can be done for the vectors vn and wn.

Lemma 6.2.11. Let vn, wn be the vectors defined by (6.27) and (6.28). It
holds for all n ∈ {na, . . . , nb − 1}:

vn =

τ∑

j=0

ρj qkn −
τ∑

l=1

ρlQln

τ−l∑

k=0

ρkCkxn

τ−k−l∑

j=0

ρjcjxn
, (6.37)

wn = −
τ∑

j=0

ρj qkn +

τ∑

l=1

ρlQln

τ−l∑

k=0

ρkCkxn+1

τ−k−l∑

j=0

ρjcjxn+1
. (6.38)

Proof. Let us define

X(ξ, x) :=

τ∑

j=1

ρj
j∑

k=1

Qk
ξ (x) c

j−k
ξ

and

Qkξ (x) := Iξ[Pk](x) .

Inserting the definition (6.23) of Qk
ξ (x) yields

X(ξ, x) =

τ∑

j=1

ρj
j∑

k=1

( k∑

l=1

Qlξ(x)C
k−l
ξ

)
cj−kξ .
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We reformulate X by repeated application of Remark 6.2.8 and index shifting:

X(ξ, x) =

τ∑

l=1

ρlQlξ(x)

τ∑

k=l

ρk−lCk−lξ

τ∑

j=k

ρj−kcj−kξ

=
τ∑

l=1

ρlQlξ(x)
τ∑

k=l

ρk−lCk−lξ

τ−k∑

j=0

ρjcjξ

=

τ∑

l=1

ρlQlξ(x)

τ−l∑

k=0

ρkCkξ

τ−k−l∑

j=0

ρjcjξ .

To complete the proof we have to remark that

vn =

τ∑

j=0

ρj qkn − X(xn, xn+1) ,

wn = −
τ∑

j=0

ρj qkn − X(xn+1, xn) ,

and Qξ(x)
l = −Qx(ξ)l hold.

We use the recurrence relation from the following Lemma 6.2.12 to write
down a pseudo code for the computation of vn and wn.

Lemma 6.2.12. For l = 1, . . . , τ let

γlξ :=

τ−l∑

k=0

ρkCkxn+1

τ−k−l∑

j=0

ρjcjxn+1
.

It holds for l = 1, . . . , τ − 1

γlξ = γl+1
ξ + ρτ−l

τ−l∑

k=0

Ckξ c
τ−l−k
ξ .

Proof. Let l ∈ {1, . . . , τ − 1}. It holds

γlξ =

τ−l∑

k=0

ρkCkξ

τ−k−l∑

j=0

ρjcjξ

=

τ−l−1∑

k=0

ρkCkξ

τ−k−l∑

j=0

ρjcjξ + ρτ−lCτ−lξ ρ0c0ξ

=

τ−(l+1)∑

k=0

ρkCkξ

τ−k−(l+1)∑

j=0

ρjcjξ + ρτ−lCτ−lξ ρ0c0ξ

+

τ−l−1∑

k=0

ρkCkξ ρ
τ−k−lcτ−k−lξ

= γl+1
ξ + ρτ−l

τ−l∑

k=0

Ckξ c
τ−k−l
ξ .
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Remark 6.2.13. To compute vn and wn one can use the following pseudo

code based on Lemma 6.2.11 and Lemma 6.2.12:

Σ = 0; γ = 0;
for l = τ : −1 : 1

σ = 0;
for k = 0 : τ − l

σ = σ + Ckxn
cτ−l−kxn

;

end

γ = γ + ρτ−lσ;
Σ = Σ + ρl

(
qln − Qlnγ

)
;

end

vn = Σ;

To get the pseudo code for wn we have to replace xn by xn+1 and replace the
last equation in the outer loop by Σ = Σ − ρl

(
qln − Qlnγ

)
.

6.3 A quadrature for the highly oscillatory iter-
ated integrals

It remains to write down the quadratures for the matrix and vector valued
integrals

Iα[F ](β) =

∫ β

α

E∗
ε (x)F (x)Eε(x) dx =

∫ β

α

EεΦ(x) ⊙ F (x) dx ,

Ivα[g](β) =

∫ β

α

E∗
ε (x)g(x) dx

from § 6.2. Since diagν(E
ε
Φ) = diag(1ν1 , . . . ,1νq ) is independently of ε and Φ,

we can use standard Hermite interpolation to derive a quadrature rule for the
ν–diagonal elements of Iα[F ]. For the highly oscillatory ν–off diagonal elements
we use Proposition 5.2.1.

Proposition 6.3.1 (OSM quadrature). Let F,Φ: Ω → Cd×d be, such that F,Φ′

are Cs–bounded independently of ε and such that for all (x, ε) ∈ Ω it holds

(i) Φ(x, ε) = diag(ϕ1(x, ε) Idν1 , . . . , ϕq(x, ε) Idνq ) ∈ Rd×d,

(ii) ∀ k 6= l : |ϕ′
k(x, ε)− ϕ′

l(x, ε)| ≥ δ.

Further let ξ1, . . . , ξκ ∈ J be support abscissas with corresponding multiplicities
1 ≤ m1, . . . ,mκ ≤ s+ 1, such that there are indices jα, jβ with

ξjα = α and ξjβ = β .

We define (cf. § 3.1 for definition of DΦ)

M(x, ε) := DΦ(x, ε) + diag(1ν1 , . . . ,1νq )x .

There exists one and only one matrix valued function

P (x, ε) := M ′(x, ε) ⊙
m−1∑

j=0

Kj(ε)⊙M(x, ε)⊙j
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with m =
∑κ

j=1mj and K0(ε), . . . ,Km−1(ε) ∈ Cd×d, such that

P (k)(ξj , ε) = F (k)(ξj , ε) (6.39)

for k = 0, . . . ,mj − 1 and j = 1, . . . , κ. If s ≥ m, then there are constants
cd, c, γ ≥ 0 (independently of ε), such that the quadrature

Iα[P ](β)

:= iε EεΦ(x) ⊙
m−1∑

j=0

(m−1∑

l=j

Kl(ε)
l!
j! (−iε)l−j

)
⊙DΦ(x, ε)

⊙j
∣∣∣∣
β

x=α

+

m−1∑

j=0

diagν(Kj(ε))
xj+1

j + 1

∣∣∣∣
β

t=α

(6.40)

induced by P yields the error estimate

‖Iα[F ](β)− Iα[P ](β)‖ ≤ cd θ(ε, h) |α− β|hm . (6.41)

The term θ(ε, h) is given by

θ(ε, h) := max

(‖ diagν(F (m))‖∞
m!

, c min

(
1, γ

εµ+1

hµ+1

))
,

with

µ := min(mjα ,mjβ ) and h := max
(
|ξκ − α|, |ξ1 − β|

)
.

The constants c, γ ≥ 0 depend on δ, ‖ϕ‖Cm+1(J) and ‖f‖Cm(J), but not on
ξ. Furthermore they tend to infinity as δ → 0. cd only depend on the space
dimension d.

Proof. Let I[F ]kr :=
(
Iα[F ](β)

)
(k,r)

bet the (k, r)th matrix element of the inte-

gral matrix, i. e.

I[F ]kr =

∫ β

α

Fkl(x, ε)e
− i

ε (Φkk(x,ε)−Φrr(x,ε)) dx . (6.42)

By definition there exist k̃, r̃ ∈ {1, . . . , q}, such that ϕk̃ = Φkk and ϕr̃ = Φrr.

For a ν–off diagonal element it is k̃ 6= r̃ and hence ϕ := ϕk̃ − ϕr̃ 6= 0. Due to
assumption (ii) it is |ϕ′(x, ε)| ≥ δ > 0 for all (x, ε) ∈ Ω. If we set f := Fkr , then
f, ϕ fulfill the assumptions of Proposition 5.2.1. Hence we get a unique function
Pkr with

I[P ]kr := iε e−
i
ε (ϕ(x,ε))

m−1∑

j=0

(m−1∑

l=j

Kl(ε)kr
l!

j!
(−iε)l−j

)
ϕ(x, ε)j

∣∣∣∣
β

x=α

,

which is the krth element of (6.40). The estimate from Proposition 5.2.1 yields

|I[F ]kr − I[P ]kr| ≤ ckr |α− β|hmmin

(
1, γkr

(
ε

h

)µ+1)
,
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with µ := min(mjα ,mjβ ) and h := max
(
|ξκ − α|, |ξ1 − β|

)
. For the ν–diagonal

elements we set ckr = γkr = 0 and define c := supkr ckr and γ := supkr γkr.
Hence

|I[F ]kr − I[P ]kr | ≤ c |α− β|hmmin

(
1, γ

(
ε

h

)µ+1)
.

Since ‖ · ‖sup is a norm on Cd×d, there exists a constant ĉ ≥ 1, such that

1

ĉ
‖A‖ ≤ ‖A‖sup ≤ ĉ ‖A‖

holds for all A ∈ Cd×d. If I[F ]kr is a ν–diagonal element, then it is Φkk = Φll
(cf. (6.42)) and we obtain

I[F ]kr =

∫ β

α

Fkr(x, ε) dx .

The krth–component of the matrix P is the uniquely determined Hermite in-
terpolation polynomial corresponding to Fkr and (6.39) (cf. [68]). Since the
krth–component of (6.40) is nothing but

I[P ]kr :=

∫ β

α

Pkr(x, ε) dx ,

we deduce with Corollary 5.2.6

|I[F ]kr − I[P ]kr | ≤
∫ β

α

|Fkr(x, ε)− Pkr(x, ε)| dx

≤ |α− β|hm ‖F (m)
kr ‖∞
m!

≤ ĉ |α− β|hm ‖ diagν(F (m))‖∞
m!

.

Hence we get

‖Iα[F − P ](β)‖ ≤ ĉ ‖Iα[F − P ]‖sup

≤ ĉ2 |α− β|hm max

(‖ diagν(F (m))‖∞
m!

,
c

ĉ
min

(
1, γ

(
ε

h

)µ+1))
.

Remark 6.3.2. Let the assumptions of Corollary 6.3.1 hold. If diagν(F ) is
componentwise a polynomial of order m − 1, then we get an error estimate
which is of order O(εµ+1). To be more precise we have

‖Iα[F − P ](β)‖ ≤ c |α− β|hm min

(
1, γ

(
ε

h

)µ+1)
. (6.43)

Remark 6.3.3. Since diagν(F ) = diagν(F ) ⊙ EεΦ holds for all F ∈ Cd×d, we
can write

Iα[P ](β) = E∗
ε (x)P

⋄(x)Eε(x)
∣∣β
x=α

, (6.44)



6.3. A QUADRATURE FOR THE ITERATED INTEGRALS 135

with

P ⋄(x) := iε
m−1∑

k=0

(m−1∑

l=k

Kl(ε)
l!
k! (−iε)l−k

)
⊙DΦ(x, ε)

⊙k

+

m−1∑

l=0

diagν(Kl(ε))
xl+1

l+ 1
. (6.45)

The quadrature for the vector valued integral Ivα[g](β) is much easier to derive.
In each component we can directly apply Proposition 5.2.1.

Corollary 6.3.4. Let g : Ω → Cd and Φ: Ω → Cd×d, such that g,Φ′ are Cs–
bounded independently of ε and such that for all (x, ε) ∈ Ω it holds

(i) Φ(x, ε) = diag(ϕ1(x, ε) Idν1 , . . . , ϕq(x, ε) Idνq ) ∈ Rd×d

(ii) ∀ k = 1, . . . , q : |ϕ′
k(x, ε)| ≥ δ.

Further let ξ1, . . . , ξκ ∈ J be support abscissas with corresponding multiplicities
1 ≤ m1, . . . ,mκ ≤ s+1, such that ξ1 < · · · < ξκ and such that there are indices
jα, jβ with

ξjα = α and ξjβ = β .

Then there exists one and only one function

u(x, ε) := Φ′(x, ε)
m−1∑

j=0

Φ(x, ε)j cj(ε) , (6.46)

with m :=
∑κ

j=1mj and c0, . . . , cm−1 ∈ Cd, such that

u(k)(ξj) = g(k)(ξj) for k = 0, . . . ,mj − 1 , j = 1, . . . , κ . (6.47)

It holds

Ivα[u](β) = iε e−
i
εΦ(x,ε)

m−1∑

k=0

Φ(x, ε)k
(m−1∑

l=k

cl(ε)
l!

k!
(−iε)l−k

)∣∣∣∣
β

x=α

(6.48)

If s ≥ m, then the quadrature induced by u yields the error estimate

|Ivα[g − u](β)| ≤ c |α− β|hmmin

(
1, γ

(
ε

h

)µ+1)
, (6.49)

with

µ := min(mjα ,mjβ ) and h := max
(
|ξκ − α|, |ξ1 − β|

)
.

The constant c, γ > 0 depend on δ, ‖Φ‖Cm+1(J) and ‖g‖Cm(J), but not on ξ.
Furthermore they tend to infinity as δ → 0.

Remark 6.3.5. Let u be given by (6.46). From (6.48) we deduce that

Ivα[u](β) = E∗
ε (s)u

⋄(s)
∣∣β
s=α

(6.50)

with

u⋄(x) := iε

m−1∑

k=0

Φ(x, ε)k
(m−1∑

l=k

cl(ε)
l!

k!
(−iε)l−k

)
.



136 CHAPTER 6. EFFICIENT ONE–STEP METHODS

Remark 6.3.6. Let ǫ ∈ C and let u, g be the functions from the previous Corol-
lary 6.3.4. Due to the linearity of the integral and the interpolation problem
(6.47) it obviously holds

|Ivα[ǫg − ǫu](β)| ≤ |ǫ| c
δ2m+1 |α− β| min

k=0,µ

(
‖ϕ′‖m−k

∞

(m−k)! hm−k εk
)
.

6.4 The one–step method

This section contains the essence of the discretization steps from § 6.1, § 6.2, and
§ 6.3, which is our one–step method (OSM).

Let a = xna < xna+1 · · · < xn,b be a grid on [a, b], with na ≤ 0 ≤ nb and
let x0 = ξ. We use the quadrature rules from § 6.3 to approximate the highly
oscillatory integrals. For this purpose we have to define the support abscissas
ξn1 < · · · < ξnκ used for the quadrature. We only want to use elements of the
interval I = [a, b]. Hence we have to distinguish between subintervals [xn, xn+1]
in the “proper” interior of I and such subintervals which are “close” to the
boundary points a, b. To construct the support abscissas we use the following
rule.

Support abscissas. Let κ◦, κa, κb ∈ N and let

ι◦1 < . . . < ι◦κ◦ ∈ R ,

0 = ιa1 < . . . < ιaκa ,

ιb1 < . . . < ιbκb = 1 .

For n ∈ {na, . . . , nb − 1} we define hn := xn+1 − xn and set κ = κ◦, if

∀ j = 1, . . . , κ◦ : ξnj := xn + ι◦j hn ∈ I .

Else we set

♦ :=

{
a , xn ≤ a+b

2

b , xn >
a+b
2

, κ := κ♦

and define

ξnj := xn + ι♦j hn , j = 1, . . . , κ .

Remark 6.4.1. We implicitly assume that the support abscissas constructed
above are elements of the interval I. This can always be ensured by a refinement
of the grid, if necessary. In the sequel (in the majority of cases) we drop the
marks ◦, a, b and simply write

ξnj = xn + ιj hn , j = 1, . . . , κ .

But we should keep in mind that κ and also ι1, . . . , ικ depend on n. By definition
the distances between the support abscissas ξn1 , . . . , ξ

n
κ tends to zero as hn → 0.

As we have seen during the discussion of the oscillatory integrals in § 5.1, it is
exceedingly useful to incorporate the boundary points xn, xn+1 in the support
abscissas.
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Assumption 10. We assume that there exists jα, jβ ∈ {1, . . . , κ} with

ιjα = 0 , ιjβ = 1 .

That is ξnjα = xn and ξnjβ = xn+1.

The only missing ingredients to use Proposition 6.3.1 and Corollary 6.3.4 are
the multiplicities corresponding to the support abscissas ξn1 , . . . , ξ

n
κ .

Remark 6.4.2. Since we have a hierarchy of at maximum τ + 1 (iterated)
integrals, we fix τ + 1 sets of multiplicities and denote them by

mj,1 , . . . ,mj,κ , j = 0, . . . , τ .

Here again, we implicitly define different sets of multiplicities corresponding to
the three types of support abscissas. Furthermore we set for k = 0, . . . , τ :

µk := min
(
mk,jα , mk,jβ

)
and |mk| :=

τ∑

j=1

mk,j .

The multiplicities are integers and hence it holds µk ≥ 1 for k = 0, . . . , τ .

Now we have defined all quantities needed for the description of the OSM.

Remark 6.4.3. We shortly write (τ, κ, ι,m) for the set of parameters that de-
termine the OSM, i. e. τ and

κa

ιa1 , . . . , ιaκa

ma
0,1, . . . ,ma

0,κa

...
...

...
ma
τ,1, . . . ,ma

τ,κa

κ◦

ι◦1, . . . , ι◦κ◦

m◦
0,1, . . . ,m◦

0,κ◦

...
...

...
m◦
τ,1, . . . ,m◦

τ,κ◦

κb

ιb1, . . . , ιbκb

mb
0,1, . . . ,mb

0,κb

...
...

...
mb
τ,1, . . . ,mb

τ,κb

Numerical Method 3. The set of vectors zna, . . . , znb ∈ Cd is called a solution
of the OSM (τ, κ, ι,m), if and only if z0 = z(ξ) and for all n ∈ {na, . . . , nb− 1}

(
Id + σiBn

)
zn+1 + λσi w

n =
(
Id + σeAn

)
zn + λσe v

n . (6.51)

The matrices An, Bn and the vectors wn, vn are constructed as follows:

(i) Set S1 := S and C0
n,α = C0

n,β = C0
n,α = C0

n,β = Id.
For j = 1, . . . , τ do

(a) Compute the unique solution

Pj(x) = M ′(x, ε)⊙
|mj |−1∑

l=0

Kj,l(ε)⊙M(x, ε)⊙l

of the generalized Hermite interpolation problem

P
(k)
j (ξnl ) = S

(k)
j (ξnl ) , k = 0, . . . ,mj,l − 1, l = 1, . . . , κ .
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(b) Compute P ⋄
j by Remark 6.3.3, i. e.

P ⋄
j (x) = iε

|mj |−1∑

k=0

( |mj |−1∑

l=k

Kj,l(ε)
l!
k! (−iε)l−k

)
⊙DΦ(x, ε)

⊙k

+

|mj |−1∑

l=0

diagν(Kj,l(ε))
xl+1

l + 1
.

(c) Compute Qjn = Ixn [Pj ](xn+1) by (6.40), i. e. (cf. Remark 6.3.3)

Qjn = EεΦ(xn+1)⊙ P ⋄
j (xn+1) − EεΦ(xn)⊙ P ⋄

j (xn) .

(d) Set

Cjn,α := −
j∑

l=1

P ⋄
l (xn) Cj−ln,α , Cjn,α := E∗

ε (xn)Cjn,αEε(xn) ,

Cjn,β := −
j∑

l=1

P ⋄
l (xn+1) Cj−ln,β , Cjn,β := E∗

ε (xn+1)Cjn,βEε(xn+1) .

(e) Set Sj+1 = SP ⋄
j .

(f) Continue with (a).

end

(ii) Set s0 = fξ.
For j = 0, . . . , τ do

(a) Compute the unique solution

uj(x, ε) = Φ′(x, ε)

|mj |−1∑

l=0

Φ(x, ε)l cj,l(ε) ,

of the generalized Hermite interpolation problem

u
(k)
j (ξl) = s

(k)
j (ξl) for k = 0, . . . ,mj,l − 1 , l = 1, . . . , κ .

(b) Compute u⋄j by Remark 6.3.5, i. e.

u⋄j (x) = iε

|mj |−1∑

k=0

Φ(x, ε)k
( |mj |−1∑

l=k

cj,l(ε)
l!

k!
(−iε)l−k

)
.

(c) Compute qjn = Ivxn
[uj ](xn+1) by (6.50), i. e.

qjn = E∗
ε (xn+1)u

⋄
j (xn+1) − E∗

ε (xn)u
⋄
j (xn) .

(d) Set

cjn,α = E∗
ε (xn)u

⋄(xn) , cjn,β = E∗
ε (xn+1)u

⋄(xn+1) .
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(e) Set sj+1 = Su⋄j .

(f) Continue with (a).

end

(iii) Compute An, Bn by (6.35), (6.36), i. e.

An =

τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Cln,α , (6.52)

Bn = −
τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Cln,β . (6.53)

(iv) Compute vn, wn by (6.37), (6.38), i. e.

vn =

τ∑

j=0

ρj qkn −
τ∑

l=1

ρlQln

τ−l∑

k=0

ρkCkn,α

τ−k−l∑

j=0

ρjcjn,α ,

wn = −
τ∑

j=0

ρj qkn +

τ∑

l=1

ρlQln

τ−l∑

k=0

ρkCkn,β

τ−k−l∑

j=0

ρjcjn,β .

6.5 Boundedness of the coefficients

As we will see in the proof of Lemma 6.7.1, a sufficient criteria for existence and
uniqueness of a OSM solutions is that the matrices

Id + σiBn and Id + σeAn

are regular for all n ∈ {na, . . . , nb − 1}. This is the case, if

‖An‖ < 1 and ‖Bn‖ < 1

holds for all n ∈ {na, . . . , nb − 1} (cf. [68, p.188] ). In the sequel we derive
estimates for the norm of the matrices, which enables us to ensure the above
condition. Furthermore we need these estimates to prove convergence of the
numerical scheme.

For the following discussion we fix one n ∈ {na, . . . , nb− 1} and only discuss
the estimate for the matrix An. The argumentation for Bn is exactly the same.
From (6.52) we get

An =

τ∑

k=1

ρkQkn

τ−k∑

l=0

ρl Cln,α . (6.54)

To construct the matrices Qkn and Cln,α we use the Hermite interpolation based
quadratures from § 6.3. Here the essential quantities are the matrix valued
coefficients Kj,l(ε), l = 0, . . . , |mj |−1, j = 1, . . . , τ , which determine the matrix
valued functions P1, . . . , Pτ and P ⋄

1 , . . . , P
⋄
τ .

To prove convergence of the OSM one has to refine the discretization more
and more. Hence the distances between the supporting abscissas of the inter-
polation problems are getting smaller and smaller. As the following example
illustrates it is not self–evident that the coefficients of the interpolation polyno-
mial, which corresponds to Kj,l in our numerical scheme, stay bounded.
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Example 6.5.1. Let f(x) = |x| and let ξ1 = −h, ξ2 = 0, ξ3 = h. Hence the

polynomial p(x) = x2

h is the unique solution of the interpolation problem

p(ξj) = f(ξj) , j = 1, 2, 3 .

Obviously, the coefficient of the leading order tends to ∞ as h→ 0.

Is the function f sufficiently smooth, which is not the case in the previous
example, we can prove that the coefficients are bounded independently of the
support abscissas. This is the content of the following Lemma 6.5.2.

Lemma 6.5.2. Let m1, . . . ,mκ ∈ N with m =
∑κ

j=1mj and let the function
f : [α, β]× (0, ε0) → C be Cm–bounded independently of ε. For ξ ∈ [α, β]κ with
ξ1 < ξ2 < · · · < ξκ we further denote by

p(x, ε, ξ) :=

m−1∑

j=0

cj(ε, ξ)x
j

the unique Hermite interpolation polynomial of degree m− 1 with1

p(k)(ξj , ε, ξ) = f (k)(ξj , ε) , k = 0, . . . ,mj − 1 , j = 1, . . . , κ .

There exists a constant c > 0, independently of ε and ξ, such that

|cj(ε, ξ)| ≤ c , j = 0, . . . ,m− 1 .

Proof. Let us fix one vector ξ ∈ [α, β]κ with ξ1 < · · · < ξκ and one ε ∈ (0, ε0).
Furthermore we set J ′ := [ξ1, ξκ]. Due to Lemma 5.2.5 (set r = m − 1) there
exists a ζm−1

1 ∈ J ′ and a function ζm−1(x) : J ′ → J ′, such that for all x ∈ J ′ it
holds

(m− 1)! cm−1(ξ, ε) = f (m−1)(x, ε) − f (m)(ζm−1(x), ε) (x − ζm−1
1 ) .

We choose x = ζm−1
1 which yields

|cm−1(ξ, ε)| ≤ 1
(m−1)! sup

ε∈(0,ε0)

‖f (m)(·, ε)‖C([α,β]) =: c .

Since f is Cm–bounded independently of ε, the constant c is finite. Hence
cm−1(ξ, ε) is bounded.

We continue by induction. Let cm−1, . . . , cj+1 be bounded. We set r = j
and again Lemma 5.2.5 yields

j! cj(ξ, ε)

= f (j)(x, ε) −
m−1∑

l=j+1

cl(ξ, ε)
l!

(l−j)!x
l−j − f(m)(ζj(x),ε)

(m−j)!

m−j∏

l=1

(x− ζjl ) .

Since ζjl ∈ J ′ ⊂ [α, β] and due to the assumptions the right–hand side is bounded
independently of ε and ξ. Hence the same holds for cj(ξ, ε).

1Here, of course, we differentiate the functions p, f with respect to the spatial variable x.
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The matrix valued functions Pj from our Numerical Scheme 3 (p.137f) are
determined by a generalized Hermite interpolation problem. Hence we have to
extend the previous Lemma 6.5.2.

Lemma 6.5.3. Let m1, . . . ,mκ ∈ N with m =
∑κ

j=1mj and let the functions
f, ϕ′ : [α, β] × (0, ε0) → C be Cm–bounded independently of ε. Furthermore let
|ϕ′| > 0 . For ξ ∈ [α, β]κ with ξ1 < ξ2 < · · · < ξκ we denote by

p(x, ε, ξ) := ϕ′(x, ε)
m−1∑

j=0

cj(ε, ξ)ϕ(x, ε)
j

the unique function p with

p(k)(ξj , ε, ξ) = f (k)(ξj , ε) , k = 0, . . . ,mj − 1 , j = 1, . . . , κ .

There exists a constant c > 0, independently of ε and ξ, such that

|cj(ε, ξ)| ≤ c , j = 0, . . . ,m− 1 .

Proof. Since |ϕ′| > 0 for all (x, ε) ∈ [α, β] × (0, ε0), the function ϕ(·, ε) is
invertible for all ε ∈ (0, ε0). Let

g(x, ε) :=
f(ϕ−1(x, ε), ε)

ϕ′(ϕ−1(x, ε), ε)
and π(x, ε, ξ) :=

p(ϕ−1(x, ε), ε, ξ)

ϕ′(ϕ−1(x, ε), ε)
.

Due to Lemma 5.2.4 the polynomial π solves the Hermite interpolation problem

π(k)(ϕ(ξj , ε), ε, ξ) = g(k)(ϕ(ξj , ε), ε) , k = 0, . . . ,mj − 1 , j = 1, . . . , κ .

Furthermore the degree of π is m− 1. By assumptions g is Cm–bounded inde-
pendently of ε and hence we can apply Lemma 6.5.2 to π.

As we have seen above, it is important that the function we interpolate has a
certain regularity.

Assumption 11. The matrix valued functions S,Φ′ : [a, b] × (0, ε1) → Cd×d

from Model Problem 2 are Cs–bounded independently of ε. We assume that the
multiplicities are chosen, such that

s ≥ max
j=1,...,κ

|mj | .

Of course, the above inequality should hold for all three types of multiplicities.

Now we can estimate the quantities of the Numerical Scheme 3.

Proposition 6.5.4. Let Assumptions 6–11 hold. There exists a constant c > 0
independent of n, ε, and hn, such that

‖An‖, ‖Bn‖ ≤ c ρ hn , (6.55)

‖vn‖, ‖wn‖ ≤ c hn . (6.56)

Furthermore it holds ‖Cjn,α‖, ‖Cjn,β‖, ‖cjn,α‖, ‖c
j
n,β‖ ≤ c for all j = 0, . . . , τ .
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Proof. We give the proof only for An and2 C•
n,α. For the remaining correspond-

ing sets of quantities {Bn, C•
n,β}, {vn, c•n,α} and {wn, c•n,β} it is (completely)

analogue.
First we prove by induction that the matrices Kj,l(ε) are bounded inde-

pendently of ε and ζn1 , . . . , ζ
n
κ . In the following we (simply) write ζ instead of

ζn1 , . . . , ζ
n
κ .

The matrix function

P1(x, ε) = M ′(x, ε) ⊙
|m1|−1∑

l=0

K1,l(ε)⊙M(x, ε)⊙l

is componentwise defined by an interpolation problem, cf. Numerical Scheme
3 p. 137. By assumption the matrix valued function S1 = S is Cs–bounded
independently of ε. Hence we can apply Lemma 6.5.3 for each component of
P1(x, ε), which yields that each component of the matrices

K1,0(ε) , . . . , K1,|m1|−1(ε)

are bounded independently of the support abscissas ζ and ε. Hence there exists
a constant c > 0 independently of ε and ζ, such that

‖K1,l‖sup ≤ c , l = 0, . . . , |mj | − 1 .

Since all norms on Cd×d are equivalent the same holds for ‖ · ‖.
Now assume Kj,l(ε), . . . ,Kj,|mj |−1(ε) are bounded independently of the sup-

port abscissas ζ and ε. Since DΦ is Cs–bounded independently of ε, the same
holds for

P ⋄
j (x, ε) = iε

|mj|−1∑

j=0

( |mj|−1∑

l=j

Kj,l(ε)
l!
j! (−iε)l−j

)
⊙DΦ(x, ε)

⊙j

+

|mj |−1∑

l=0

diagν(Kj,l(ε))
xl+1

l+ 1
,

with (x, ε) ∈ [a, b]× (0, ε1). Thus the matrix valued function

Sj+1 = S P ⋄
j

is Cs–bounded independently of ε. Since all norms on Cd×d are equivalent
this holds in particular for ‖ · ‖sup. Hence we can apply Lemma 6.5.3 for each
component of Pj+1(x, ε). This yields that the Kj+1,0(ε), . . . ,Kj+1,|mj+1|−1(ε)
are componentwise bounded independently of the support abscissas ζ and ε.
Again by equality of norms we find a c > 0 independently of ε and ζ, such that

‖K1,l‖ ≤ c , l = 0, . . . , |mj | − 1 .

An immediate consequence of the previous calculation is that P ⋄
1 , . . . , P

⋄
τ are

Cs–bounded independently of ε. Inductively we deduce from the definition that

2Here C•
n,β is an abbreviation for C0

n,β , . . . , C
τ
n,β .
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C0
n,α, . . . , Cτn,α are bounded independently of ε and ζ. Since Eε(xn) is a unitary

matrix we get

‖C0
n,α‖ = ‖E∗

ε (xn)C0
n,αEε(xn)‖ ≤ ‖C0

n,α‖ .

Thus C0
n,α is bounded independently of ε and ζ. By definition we have

Qjα,n = Ixn [Pj ](xn+1) =

∫ xn+1

xn

E∗
ε (x)Pj(x, ε)Eε(x) dx .

If follows

‖Qjα,n‖ ≤ hn sup
x∈[xn,xn+1]

‖E∗
ε (x)Pj(x, ε)Eε(x)‖

≤ hn sup
x∈[xn,xn+1]

‖Pj(x, ε)‖ .

Since Kj,0(ε), . . . ,Kj,|mj|−1 are bounded independently of ε and ζ, the same
holds for Pj . Hence there exists a c > 0 independently of ε and ζ, such that

‖Qjα,n‖ ≤ c hn .

Finally we compute

‖An‖sup ≤
τ∑

j=1

‖Qjα,n‖ρj
τ−j∑

k=0

ρk‖Ckn,α‖ ≤ c ρ hn .

6.6 The local error

In this section we derive an estimate for the local error of the OSM (τ, κ, ι,m)
from § 6.4 on the interval [xn, xn+1]. For the whole section Assumptions 6–11
shall hold. Let us start with a recall of the local error. By (6.32)

errn = errn,τtrunc + errnint

with (cf. (6.33))

errnint = σe errxn(xn+1) − σi errxn+1(xn) . (6.57)

and (cf. (6.29))

errξ(x) =
τ∑

j=1

ρjEjξ (x)
(
z(ξ) − λ

τ−j∑

k=0

ρk ckξ

)

+λ

τ∑

j=0

ρj
j∑

k=0

(
Ij−kξ errkξ

)
(x) .

Furthermore we get from (6.24)

Ejξ (x) =

j∑

k=1

k∑

l=1

(
Ij−kξ Errlξ

)
(x)Ck−lξ .
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For the definition of Err•ξ , err
•
ξ , C

•
ξ and c•ξ we refer to Lemma 6.2.5 and Lemma

6.2.6. Since we already derived an estimate for the truncation error in Lemma
6.1.7, we focus the following discussion on errnint. For this purpose we continue
to estimate errξ(x). We should keep in mind that the variables ξ, x take the
values ξ = xn, x = xn+1 and vice versa.

Notation. In the sequel we use the notation

‖F‖∞,n := sup
x∈[xn,xn+1]

‖F (x)‖ .

The triangle inequality yields

‖ errξ(x)‖

≤
τ∑

j=1

ρj
( j∑

k=1

k∑

l=1

‖
(
Ij−kξ Errlξ

)
(x)‖ ‖Ck−lξ ‖

)(
‖z(ξ)‖ + λ

τ−j∑

k=0

ρk ‖ckξ‖
)

+λ

τ∑

j=0

ρj
j∑

k=0

‖
(
Ij−kξ errkξ

)
(x)‖ .

Due to Proposition 6.5.4 there exists a constant c independently of ε, n, hn, such
that ‖Cjξ‖, ‖c

j
ξ‖ < c for j = 0, . . . , τ . By Proposition 6.2.2 ‖z(ξ)‖ is bounded by

a constant, which is independently of ε an ξ.

Remark 6.6.1. In the sequel c ≥ 0 always denotes a constant, which is inde-
pendently of ε, hn, and n.

Hence there exists a c ≥ 0, such that (use Remark 6.2.8 to rearrange the sum)

‖ errξ(x)‖ ≤ c
τ∑

l=1

τ∑

j=l

j∑

k=l

ρj‖
(
Ij−kξ Errlξ

)
(x)‖ (6.58)

+λ

τ∑

k=0

τ∑

j=k

ρj‖
(
Ij−kξ errkξ

)
(x)‖ .

It turns out that the summand with l = k = j = 1 in the first line of the right–
hand side is a crucial term. This is the only terms which is just multiplied with
ρ. All other summands contain a factor of O(ρ2) (keep in mind that ρ is a small
parameter, e. g. ρ = εα, α > 0). Thus, we need a more sophisticated estimate
for it. Also the other summands with l = 1 have to be treated separately. From
Lemma 6.1.3 we get an estimate for the iterated integrals, which yields

‖ errξ(x)‖ ≤ c
τ∑

j=1

ρj‖Err1ξ(x)‖ + c
τ∑

j=2

j−1∑

k=1

ρj‖
(
Ij−1−k
ξ I1

ξ Err
1
ξ

)
(x)‖,

+ c

τ∑

l=2

τ∑

j=l

ρj
j∑

k=l

(|ξ − x| ‖S‖∞)j−k

(j − k)!
‖Errlξ ‖∞,n

+λ
τ∑

k=0

ρk
τ∑

j=k

ρj−k
(|ξ − x| ‖S‖∞)j−k

(j − k)!
‖ errkξ ‖∞,n .
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For 0 ≤ ρ < 1 it holds
∑τ

j=1 ρ
j ≤ ρ

1−ρ . Furthermore |ξ − x| = hn ≤ h holds for

all n. Let γ := h‖S‖∞. In the first line we substitute i = j − 1. Further we use

Remark 6.2.8 and the estimate
∑s

j=r
zj

j! ≤ ez (z ∈ R+
0 ), which yields

‖ errξ(x)‖ ≤ c ρ
1−ρ‖Err

1
ξ(x)‖ + c

τ−1∑

i=1

i∑

k=1

ρi+1 γi−k

(i− k)!
‖
(
I1
ξ Err

1
ξ

)
(x)‖,

+ c

τ∑

l=2

τ∑

k=l

ρk
τ∑

j=k

(ρ γ)j−k

(j − k)!
‖Errlξ ‖∞,n

+λ
τ∑

k=0

ρk
τ∑

j=k

(ρ γ)j−k

(j − k)!
‖ errkξ ‖∞,n

≤ c ρ
1−ρ‖Err

1
ξ(x)‖ + c

τ−1∑

k=1

ρk+1
τ−1∑

i=k

(ρ γ)i−k

(i− k)!
‖
(
I1
ξ Err

1
ξ

)
(x)‖,

+ c

τ∑

l=2

τ∑

k=l

ρkeρ γ‖Errlξ ‖∞,n + λ

τ∑

k=0

ρkeρ γ‖ errkξ ‖∞,n

≤ c
1−ρ ρ ‖Err

1
ξ(x)‖ + c eρ γ

1−ρ ρ
2 ‖
(
I1
ξ Err

1
ξ

)
(x)‖,

+ c eρ γ

1−ρ ρ
2

τ∑

l=2

ρl−2‖Errlξ ‖∞,n + λeρ γ
τ∑

k=0

ρk‖ errkξ ‖∞,n .

Hence there is a constant c ≥ 0, such that

‖ errξ(x)‖ ≤ c ρ ‖Err1ξ(x)‖ + c ρ2 ‖
(
I1
ξ Err

1
ξ

)
(x)‖, (6.59)

+ c ρ2
τ∑

l=2

‖Errlξ ‖∞,n + λc

τ∑

k=0

ρk‖ errkξ ‖∞,n .

Remark 6.6.2. To derive (6.59) from (6.58) we assumed 0 ≤ ρ < 1. This
is just for simplicity of the calculation. Since τ ∈ N is finite, the appearing
geometric sums are always finite and hence (6.59) holds for all ρ ∈ R+

0 .

Since we use Proposition 6.3.1 to determine the functions P1, . . . , Pτ of the OSM
(q. v. Lemma 6.2.5), the quadrature errors Errjξ can be estimated by (6.41).

There the error is estimated in terms of h := max
(
|ξκ − α|, |ξ1 − β|

)
, which is

related, but in general not equal to the local spatial step size hn. In order to
avoid confusion in the proofs of the following Lemma 6.6.4 and Lemma 6.6.5 we
denote the quantity h from Proposition 6.3.1 by ∆n.

Remark 6.6.3. The variable ξ takes the values {xn, xn+1} and x ∈ [xn, xn+1].
Comparing Proposition 6.3.1 with the quantities of this section we get

α = ξ , β = x or α = x , β = ξ .

Hence it is

∆n = max
(
|ξn1 − ξ|, |ξn1 − x|, |ξnκ − ξ|, |ξnκ − x|

)
. (6.60)

There exists a constant c > 0, which only depend on3 ι, such that

1
c hn ≤ ∆n ≤ c hn . (6.61)

3The set of parameters ι determines the support abscissa for the interpolation problems.
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Proof. We get an upper estimate for ∆n by replacing in (6.60) each ξ and x
with xn and xn+1. Hence we search for the maximum of eight absolute values.
Since some of the terms coincide, we have

∆n ≤ max
(
|ξn1 − xn|, |ξn1 − xn+1|, |ξnκ − xn|, |ξnκ − xn+1|

)
.

Due to the definition of the support abscissas (see p.136) and Assumption 10
we get

∆n ≤ max
(
|ι1 − ιjα |, |ι1 − ιjβ |, |ικ − ιjα |, |ικ − ιjβ |

)
hn .

On the other hand side we have

∆n ≥
{
ξnκ − ξ = ικ hn , ξ = xn ,
ξ − ξn1 = (1− ι1)hn , ξ = xn+1

.

By Assumption 10 ικ is strictly positive and ι1 is non–positive. Hence there
exists a constant c > 0 independently of the grid, such that

1
c hn ≤ ∆n ≤ c hn .

Now we are prepared to estimate ‖Errlξ ‖.

Lemma 6.6.4. There are constants c, γErr ≥ 0 independently of ε, hn, and n,
such that for all x ∈ [xn, xn+1] it holds:

‖Err1ξ(x)‖ ≤ c h|m1|+1
n min

(
1, γErr

(
ε

hn

)µ1+1)
,

‖(I1
ξ Err

1
ξ)(x)‖ ≤ c ε h|m1|+1

n ,

and

‖Errkξ (x)‖ ≤ c ε h|mk|+1
n , k = 2, . . . , τ .

The constants c, γErr depend on δ and tend to infinity as δ → 0.

Proof. By definition (cf. Lemma 6.2.5) we get

Err1ξ(x) = Iξ[S1 − P1](x) .

Since the ν–diagonal entries of the matrix function S1 = S from ODE (6.16)
vanish identically and since P1 is constructed as in Proposition 6.3.14, we get
from (6.43) of Remark 6.3.2 the error estimate

‖Err1xn
(xn+1)‖ ≤ c |xn+1 − xn|∆|m1|

n min

(
1 , γ1

(
ε

∆n

)µ1+1)
. (6.62)

Since the constants c, γ1 do not depend on ε and hn or n, the first estimate
of Lemma 6.6.4 follows with (6.61) of Remark 6.6.3. The constants c, γ1 ≥ 0
depend on δ and tends to ∞ as δ → 0.

4replace: α 7→ min(x, ξ), β 7→ max(x, ξ), F 7→ S1, ξj 7→ ζj and mj 7→ m0,j for j = 1, . . . , κ
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In order to estimate ‖I1
ξ Err

1
ξ(x)‖ let us make one integration by parts as

done in § 3.1.2. This is possible, because diagν(S − P1) = 0. By construction it
holds S(ξ)−P1(ξ) = 0. Also remember that E∗

εBEε = EεΦ⊙B for every matrix
B ∈ Cd×d. Hence

I1
ξ Err

1
ξ(x) = iε

∫ x

ξ

(
E∗
εSEε

)
(t)

∫ t

ξ

((
EεΦ
)′ ⊙D−

Φ ⊙ (S − P1)
)
(r) dr dt

= iε

∫ x

ξ

(
E∗
εSEε

)
(t)
((
EεΦ
)
⊙D−

Φ ⊙ (S − P1)
)
(t) dt

+ iε

∫ x

ξ

(
E∗
εSEε

)
(t)

∫ t

ξ

(
EεΦ ⊙ (D−

Φ )
′ ⊙ (S − P1)

)
(r) dr dt

+ iε

∫ x

ξ

(
E∗
εSEε

)
(t)

∫ t

ξ

(
EεΦ ⊙D−

Φ ⊙ (S − P1)
′)(r) dr dt

It holds E∗
εBEε(E

ε
Φ ⊙ A) = E∗

εBAEε for A,B ∈ Cd×d (cf. § 3.1.2). This yields
the estimate

‖I1
ξ Err

1
ξ(x)‖ ≤ ε|ξ − x|‖E∗

εS
(
D−

Φ ⊙ (S − P1)
)
Eε‖∞,n

+ ε|ξ − x|2‖E∗
εSEε‖∞,n

∥∥E∗
ε

(
(D−

Φ )
′ ⊙ (S − P1)

)
Eε
∥∥
∞,n

+ ε|ξ − x|2‖E∗
εSEε‖∞,n

∥∥E∗
ε

(
D−

Φ ⊙ (S − P1)
′)Eε

∥∥
∞,n

.

Let Jn := [xn, xn+1]. Since ‖ · ‖sup and ‖ · ‖ are equivalent norms, there exists
a constant ĉ > 0, such that 1

ĉ‖A‖ ≤ ‖A‖sup ≤ ĉ‖A‖ and hence

‖A⊙B‖∞,n = sup
x∈Jn

‖A(x)⊙B(x)‖ ≤ ĉ sup
x∈Jn

‖A(x)⊙B(x)‖sup

≤ ĉ sup
x∈Jn

‖A(x)‖sup‖B(x)‖sup

≤ ĉ2 sup
x∈Jn

‖A(x)‖ sup
y∈Jn

‖B(y)‖ = ĉ2‖A‖∞,n‖B‖∞,n .

The matrix Eε(x) is unitary and thus

‖I1
ξ Err

1
ξ(x)‖ ≤ ĉ2 ε |ξ − x| ‖S‖∞,n ‖D−

Φ‖∞,n ‖S − P1‖∞,n

+ ĉ2 ε |ξ − x|2 ‖S‖∞,n ‖(D−
Φ )

′‖∞,n ‖S − P1‖∞,n

+ ĉ2 ε |ξ − x|2 ‖S‖∞,n ‖D−
Φ‖∞,n ‖(S − P1)

′‖∞,n .

By Lemma 5.2.7 exists a constant c ≥ 0, such that

‖I1
ξ Err

1
ξ(x)‖ ≤ c ε hn ‖S‖∞,n ‖D−

Φ‖∞,n h
|m1|
n

+ c ε h2n ‖S‖∞,n ‖(D−
Φ )

′‖∞,n ‖S‖∞,n h
|m1|
n

+ cε |ξ − x|2 ‖S‖∞,n ‖D−
Φ‖∞,n h

|m1|−1
n .

This yields the second estimate.
Further we get from (i)(b) of Numerical Scheme 3 (diagν(S1) = 0)

P ⋄
1 (x) = iε

|m1|−1∑

k=0

( |m1|−1∑

l=1

K1,l(ε)
l!
k! (−iε)l−k

)
⊙DΦ(x, ε)

⊙k .
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Hence we can write P ⋄
1 = iε P̃ ⋄

1 , with P̃
⋄
1 Cs–bounded independently of ε and

the spatial grid. This yields

S2 = S P ⋄
1 = iε S P̃ ⋄

1 =: iεS̃2 ,

with S̃2 C
s–bounded independently of ε. Let

P̃2(x) = M ′(x, ε)⊙
|m2|−1∑

l=0

K̃2,l(ε)⊙M(x, ε)⊙l

be the unique solution of the generalized Hermite interpolation problem

P̃
(k)
2 (ξnl ) = S̃

(k)
2 (ξnl ) , k = 0, . . . ,m2,l − 1, l = 1, . . . , κ .

Since the interpolation problem is linear and uniquely solvable, we get

P2 = iε P̃2 , P ⋄
2 = iε P̃ ⋄

2 ,

and it holds

Err2ξ(x) = Iξ[S2 − P2](x) = iε Iξ[S̃2 − P̃2](x) .

Due to construction we can apply Proposition 6.3.15 for P̃2, which yields

‖Err2ξ(x)‖ = ε ‖Iξ[S̃2 − P̃2](x)‖ ≤ ε c θ |x− ξ|∆|m2|
n ,

with a constant c independent of ε,Φ, S̃2 and δ. The constant θ is given by

θ := max

(‖ diagν(S̃(|m2|)
2 )‖∞

|m2|!
, c2 min

(
1, γ2

(
ε

∆n

)µ2+1))
.

In general diagν(S̃2) 6= 0. Hence θ is of order O(1) with respect to ε and hn.
Again we use (6.61) of Remark 6.6.3, which yields

‖Err2ξ(x)‖ ≤ ε c h|m2|+1
n .

Furthermore we get from (i)(b) of Numerical Scheme 3

P̃ ⋄
2 (x) = iε

|mj |−1∑

k=0

( |m2|−1∑

l=k

K̃2,l(ε)
l!
k! (−iε)l−k

)
⊙DΦ(x, ε)

⊙k

+

|m2|−1∑

l=0

diagν(K̃2,l(ε))
xl+1

l+ 1
.

Hence it is P̃ ⋄
2 = O(1) with respect to ε and Cs–bounded independently of ε.

This yields

S3 = S P ⋄
2 = iε S P̃ ⋄

2 =: iεS̃3 ,

with S̃3 C
s–bounded independently of ε. Inductively continue this procedure

to derive the remaining estimates.

5replace: α 7→ min(x, ξ), β 7→ max(x, ξ), F 7→ S̃2, ξj 7→ ζj and mj 7→ m0,j for j = 1, . . . , κ
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A similar result holds for the vector valued integrals.

Lemma 6.6.5. There are positive constants c > 0 and γ̂0, . . . , γ̂τ > 0 indepen-
dently of ε and hn, such that for all x ∈ [xn, xn+1] it holds:

‖ errkξ (x)‖ ≤ c εk h|mk|+1
n min

(
1, γ̂k

(
ε

hn

)µk+1)
, k = 0, . . . , τ .

The constants depend on δ and tends to infinity as δ → 0.

Proof. By definition (cf. Lemma 6.2.6) we get for k = 0

err0ξ(x) = Ivξ [s0 − u0](x) .

Since u0 is constructed as in Corollary 6.3.46, we get

‖ err0ξ(x)‖ ≤ c hn∆
|m0|+1
n min

(
1, γ̂0

(
ε

∆n

)µ0+1)
.

Thus (6.61) of Remark 6.6.3 yields (with a new constant c ≥ 0)

‖ err0ξ(x)‖ ≤ c h|m0|+1
n min

(
1, γ̂0

(
ε

hn

)µ0+1)
.

Due to the used estimates the constants c, γ̂0 depend on δ and tends to infinity
as δ → 0. Furthermore we get from the OSM or Remark 6.3.5 that

u⋄0(x) = iε

|m0|−1∑

k=0

Φ(x, ε)k
( |m0|−1∑

l=k

c0,l(ε)
l!

k!
(−iε)l−k

)
.

This yields

s1 = S u⋄0 = iε S ũ⋄0 =: iεs̃1 ,

with s̃1 C
s–bounded independently of ε. Let

ũ1(x, ε) = Φ′(x, ε)

|m1|−1∑

l=0

Φ(x, ε)l c̃1,l(ε) ,

be the unique solution of the generalized Hermite interpolation problem

ũ
(k)
j (ξl) = s̃

(k)
j (ξl) for k = 0, . . . ,mj,l − 1 , l = 1, . . . , κ .

Since the interpolation problem is linear and uniquely solvable, we get

u1 = iε ũ1 , u⋄1 = iε ũ⋄1 ,

and it holds

err1ξ(x) = Ivξ [s1 − u1](x) = iε Ivξ [s̃1 − ũ1](x) .

6replace: α 7→ min(x, ξ), β 7→ max(x, ξ) g 7→ fξ, ξj 7→ ζj and mj 7→ m0,j for j = 1, . . . , κ
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Due to construction we can apply Corollary 6.3.47 for ũ1, which yields

‖ err1ξ(x)‖ ≤ ε ‖Iξ[s̃1 − ũ1](x)‖ ≤ ε c hn∆
|m1|
n min

(
1, γ̂1

(
ε

∆n

)µ1+1)
.

As before we use (6.61) of Remark 6.6.3 to estimate ∆n by hn. Further we get

u⋄1(x) = (iε)2
|m1|−1∑

k=0

Φ(x, ε)k
( |m1|−1∑

l=k

c̃1,l(ε)
l!

k!
(−iε)l−k

)
.

Hence we can write u⋄1 = (iε)2 ũ⋄1, with ũ
⋄
1 C

s–bounded independently of ε and
the spatial grid. The remaining estimates follow by induction.

Now we continue to estimate (6.59). By Lemma 6.6.4 and Lemma 6.6.5 we get

‖ errξ(x)‖ ≤ c ρ h|m1|+1
n min

(
1, γErr

(
ε

hn

)µ1+1)
(6.63)

+ c ρ2 ε

τ∑

l=1

h|ml|+1
n

+λc

τ∑

k=0

ρkεk h|mk|+1
n min

(
1, γ̂k

(
ε

hn

)µk+1)
.

From Lemma 6.1.7 we already know that the truncation error is O(ρτ+1hτ+1
n ).

Hence the quadratures we use should be at least of order τ + 1 with respect to
the spatial step size hn.

Assumption 12. The multiplicities mj,1, . . . ,mj,κ, are chosen, such that

|mj | =

κ∑

l=1

mj,l ≥ τ , j = 0, . . . , τ .

Let γ̂ := max(γErr, γ̂1). Then it holds (with a new constant c ≥ 0)

‖ errξ(x)‖ ≤ c ρ (1 + λε)h|m1|+1
n min

(
1, γ̂

(
ε

hn

)µ1+1)
(6.64)

+ c ρ2 ε hτ+1
n

+λ c h|m0|+1
n min

(
1, γ̂0

(
ε

hn

)µ0+1)
.

Hence we have proven

Proposition 6.6.6. Let Assumptions 6–12 hold. Then there are non–negative
constants c, γ1, γ0 ≥ 0, such that for all ε ∈ (0, ε1)

‖ errξ(x)‖ ≤ c θ(ε, hn)h
τ+1
n ,

with θ(ε, hn) given by

θ(ε, hn) = λ min

(
1, γ0

(
ε

hn

)µ0+1)
h|m0|−τ
n

+ ρmin

(
1, γ1

(
ε

hn

)µ1+1)
h|m1|−τ
n + ερ2 .

7replace: α 7→ min(x, ξ), β 7→ max(x, ξ) g 7→ s̃1, ξj 7→ ζj and mj 7→ m0,j for j = 1, . . . , κ
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Combing Proposition 6.6.6, Lemma 6.1.7 and (6.57) yields the main result of
this section.

Corollary 6.6.7 (Local Error). Let Assumptions 6–12 hold. There are con-
stants c, γ0, γ1 > 0 independently of ε and n, such that

‖ errn ‖ ≤ c
(
ρτ+1 + θ(ε, hn)

)
hτ+1
n ,

with θ(ε, hn) given by

θ(ε, hn) = λ min

(
1, γ0

(
ε

hn

)µ0+1)
h|m0|−τ
n

+ ρmin

(
1, γ1

(
ε

hn

)µ1+1)
h|m1|−τ
n + ερ2 .

The constants tend to infinity as δ → 0.

6.6.1 Schemes of maximum order

The estimate for the local error in Corollary 6.6.7 holds for the whole “zoo” of
one–step methods that fit to Assumption 6–12. In this section we shall have a
closer look on the local error in order to construct schemes with a high asymp-
totic order with respect to ε. Up to now we have not specified the parameters ρ
and λ. The form of ODE (6.16) is mainly motivated by Lemma 3.3.1 from § 3.3.
Hence (in the sequel) these constants are supposed to be non–negative powers
of ε.

Assumption 13. There are constants ϑ0, ϑ1 ≥ 0, such that

λ = εϑ0 and ρ = εϑ1 .

Let us review the estimate of Proposition 6.6.6. It says

‖ errξ(x)‖ ≤ c θ(ε, hn) h
τ+1
n ,

with

θ(ε, hn) = εϑ0 min

(
1, γ0

(
ε

hn

)µ0+1)
h|m0|−τ
n (6.65)

+ εϑ1 min

(
1, γ1

(
ε

hn

)µ1+1)
h|m1|−τ
n + ε2ϑ1+1 .

Here we have replaced ρ and λ with respect to Assumption 13. Since ε is
a small constant, we are interested in a maximal asymptotic order of θ with
minimal (numerical) effort. Since ϑ1 is prescribed by the initial value problem
the maximal achievable order is O(ε2ϑ1+1). In an optimal case the exponents
of ε coincide in all three terms of (6.65). Since we do not assume ϑ1, ϑ2 ∈ N, in
general equality can not hold. Instead we get the (desired) inequalities

ϑ0 + µ0 + 1 ≥ 2ϑ1 + 1 , (6.66)

ϑ1 + µ1 + 1 ≥ 2ϑ1 + 1 . (6.67)
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Since the choice of µ0, µ1 should not reduce the order with respect to the spatial
step size hn, we get the additional constraints

|m0| − τ − (µ0 + 1) ≥ 0 , (6.68)

|m1| − τ − (µ1 + 1) ≥ 0 . (6.69)

From (6.66) and (6.67) we immediately derive

µ1 ≥ ϑ1 , µ0 ≥ 2ϑ1 − ϑ0 , (6.70)

Due to definition (cf. Remark 6.4.2) it further holds

|m0| ≥ 2µ0 , |m1| ≥ 2µ1 . (6.71)

The values µ0, µ1 are defined as the minimum of the multiplicities at the bound-
ary of the integration interval (see Remark 6.4.2). Hence the numerical effort
grows with µ0 and µ1, since more and more derivatives have to be approxi-
mated in order to solve the Hermite interpolation problem. Also |m0| and |m1|
should be as small as possible, since they are the degree of the generalized Her-
mite interpolation polynomials. Hence we are interested in the smallest natural
numbers, such that the above derived constraints (6.68)–(6.71) hold.

Definition 6.6.8. For x ∈ R let ⌈x⌉ ∈ Z denote the unique integer (cf. [23]),
such that

⌈x⌉ − 1 < x ≤ ⌈x⌉ .

In some literature (and in Matlab) this map is also denoted as ceil(x). Further
we denote by ⌊x⌋ ∈ Z the unique integer, such that

⌊x⌋ ≤ x < ⌊x⌋+ 1 .

This map is also denoted as floor(x).

Now it is simple to write down the optimal values.

Definition 6.6.9. For given ϑ0, ϑ1 ≥ 0 we set

µ∗
0 := ⌈2ϑ1 − ϑ0⌉ and µ∗

1 := ⌈ϑ1⌉ .

Furthermore we define

m∗
0 := max

(
µ∗
0, τ + 1

)
+ µ∗

0 and m∗
1 := max

(
µ∗
1, τ + 1

)
+ µ∗

1 .

Remark 6.6.10. Obviously, µ∗
0, µ

∗
1 are the smallest integers which solve (6.70).

Combining (6.68), (6.69) and (6.71) yields (j = 0, 1)

|mj| ≥ max
(
2µ∗

j , τ + µ∗
j + 1

)
= max

(
µ∗
j , τ + 1

)
+ µ∗

j .

Hence m∗
0,m

∗
1 ∈ N are the optimal (minimal) integers.

With Definition 6.6.9 and the previous discussion we deduce from Proposition
6.6.6 and Lemma 6.1.7
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Corollary 6.6.11. Let (τ, κ, ι,m) be the set of parameters of our OSM, such
that

µ0 = µ∗
0 , |m0| = m∗

0 ,

µ1 = µ∗
1 , |m1| = m∗

1 ,

hold for all three types of support abscissas. Than there exists a constant c > 0
independently of ε and hn, such that

‖ errn ‖ ≤ c ε2ϑ1+1hτ+1
n + errn,τtrunc .

By Lemma 6.1.7 it holds

‖ errn,τtrunc ‖ ≤ c εϑ1(τ+1)hτ+1
n .

From the previous Corollary 6.6.11 we deduce that we get the maximal8 possible
order with respect to ε, if ϑ1 > 0 and

(τ + 1)ϑ1 ≥ 2ϑ1 + 1 ⇔ τ ≥ ϑ1 + 1

ϑ1
> 1 . (6.72)

Remark 6.6.12. Let (6.72) hold. Since τ is a natural number, it holds τ ≥ 2.

Now one can ask, what is the minimal effort in our setting to get a “maximal”
scheme with respect to ε? It is clear that we have to choose τ as small as
possible, since τ is also the number of interpolation problems we have to solve
in each step. Furthermore it is evident that we set (cf. Assumption 12 p.150)

|mj | = τ , j = 2, . . . , τ .

Remark 6.6.13. For ϑ1 ∈ [1,∞) we can choose τ = 2 in order to get a scheme
with ”maximal“ asymptotic order with respect to ε. In the case of ϑ1 ∈ (0, 1)
we have to set

τ = 1 +

⌈
1

ϑ1

⌉

to ensure an asymptotic behavior of order O(ε2ϑ1+1) as ε→ 0.

As we have seen the ”highest” asymptotic order with respect to ε can be achieved
for τ ≥ 2. For the first order schemes, i. e. τ = 1, the situation is a bit different.
In this case the ε–order of the truncation error for the scheme from Corollary
6.6.11 is smaller than the order of the quadrature error. We get

‖ errn ‖ ≤
(
ctrunc ε

2ϑ1 + cquadr ε
2ϑ1+1

)
h2n .

If we want to improve the asymptotic behavior of the first order scheme, we have
to decrease the truncation error. The iterated integrals are highly oscillatory and
from § 3.1.2 we get that they are of order O(ε). Hence we can use integration by
parts (as done to construct the asymptotic method in § 5.1) to gain an additional
ε in the truncation error estimate . Unfortunately integration by parts is a trade

8Here ”maximal” has to be understood in the context of the derived error estimates. Since
we do not know if they are sharp or not, we can not exclude the existence of one step methods
with better asymptotic order.
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off between ε and the local step size hn. This means that we get a vector χn,1

(cf. Lemma 6.6.14) which is of order O(εhn). Thus, if we want a first order
scheme, i. e. a scheme with a global convergence error of order O(ε2ϑ1+1hn), we
have to take this vector into account.

Also the case ϑ1 = 0 is special, since the previously derived estimates for the
truncation error only give an O(1) behavior with respect to ε. But also here it
is possible to modify the schemes in order to get truncation error estimates of
order O(ε). The following Lemma 6.6.14 holds for the whole “zoo” of OSM.

Lemma 6.6.14. There exists a constant c > 0 independently of ε and n, such
that it holds for all n ∈ {na, . . . , nb − 1}

∥∥ errn,τtrunc

∥∥ ≤ c ε(τ+1)ϑ1+1 hτn , (6.73)
∥∥ errn,τtrunc−ρτ+1χn,τ

∥∥ ≤ c ε(τ+1)ϑ1+1 hτ+1
n , (6.74)

with

χn,τ := σe iε ρ
τ+1

(
Iτ−1
xn

Ixn [S(D
−
Φ′ ⊙ S)]

)
(xn+1) z(xn)

− σe iε ρ
τ+1 Iτxn

(xn+1) G(xn+1) z(xn)

− σi iε ρ
τ+1

(
Iτ−1
xn+1

Ixn+1 [S(D
−
Φ′ ⊙ S)]

)
(xn) z(xn+1)

+ σi iε ρ
τ+1 Iτxn+1

(xn) G(xn) z(xn+1)

and G(x) := (EεΦ ⊙D−
Φ′ ⊙ S)(x).

Proof. By definition of the truncation error in (6.12) we obviously can write

errn,τtrunc = ρτ+1 vn,τ + errn,τ+1
trunc ,

with some vector vn,τ . In order to get an estimate for errn,τ+1
trunc we do the

following integration by parts:

(I1
ξ z)(x) =

∫ x

ξ

(EεΦ ⊙ S)(t)z(t) dt

=

∫ x

ξ

(EεΦ ⊙ S)(t) dt z(x)

−
∫ x

ξ

∫ t

ξ

(EεΦ ⊙ S)(r) dr z′(t) dt . (6.75)

Property (iv) of § 3.1.2 yields an ε independent constant ĉ ≥ 0, such that for all
ζ ∈ [ξ, x] it holds

∥∥∥∥
∫ ζ

ξ

(EεΦ ⊙ S)(t) dt

∥∥∥∥ ≤ ĉ ε .

Due to Corollary 6.1.5 the solution z of (6.16) is C1–bounded independently of
ε and hence we get from (6.75)

∥∥∥∥(I1
ξ z)(x)

∥∥∥∥ ≤ ĉ ε ‖z‖∞ + |x− ξ|ĉ ε ‖z′‖∞ ≤ c ε .
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This yields with Lemma 6.1.3 and Lemma 6.1.7

‖ errn,τ+1
trunc ‖ ≤ σe ρ

τ+2
∥∥Iτ+1

xn

(
I1
xn
z
)
(xn+1)

∥∥
+ σi ρ

τ+2
∥∥Iτ+1

xn+1

(
I1
xn+1

z
)
(xn)

∥∥

≤ c ε ρτ+2hτ+1
n . (6.76)

From (6.12) we get

vn,τ = σe Iτ+1
xn

(xn+1)z(xn) − σi Iτ+1
xn+1

(xn)z(xn+1)

+ σe λ(Iτ+1
xn

fxn)(xn+1) − σi λ(Iτ+1
xn+1

fxn+1)(xn) .

To derive an estimate for vn,τ we shall rephrase the matrix and vector valued
integrals from the above equation. In the following computation we use x, ξ as
wild cards for xn, xn+1 and vice verse. Further we use the symbol ⊛ to mark the
place of a functions free variable when assigned to an operator. By Definition
6.1.1 it holds (τ ≥ 1)

Iτ+1
ξ (x) =

(
Iτ−1
ξ

∫ ⊛

ξ

(EεΦS)(t)

∫ t

ξ

(EεΦS)(r) drdt

)
(x) .

Since diagν(S) = 0, we can use property (iv) of § 3.1.2 for the inner integral,
which yields

Iτ+1
ξ (x) =

(
Iτ−1
ξ

∫ ⊛

ξ

(EεΦ ⊙ S)(t) iε
(
EεΦ ⊙D−

Φ′ ⊙ S)(t) dt

)
(x)

−
(
Iτ−1
ξ

∫ ⊛

ξ

(EεΦ ⊙ S)(t) iε
(
EεΦ ⊙D−

Φ′ ⊙ S)(ξ) dt

)
(x)

−
(
Iτ−1
ξ

∫ ⊛

ξ

(EεΦ ⊙ S)(t)iε

∫ t

ξ

EεΦ(r) ⊙
(
D−

Φ′ ⊙ S
)′
(r) drdt

)
(x) .

With property (ii) of § 3.1.2 we can simplify the first integral. The second one
is just I1

ξ times a constant matrix. Since we want to construct a τ th–order

scheme9 with respect to the spatial step size, the remainder has to be of order
O(hτ+1

n ). Hence we can neglect the third integral. This yields

Iτ+1
ξ (x) = iε

(
Iτ−1
ξ Iξ[S(D

−
Φ′ ⊙ S)]

)
(x)

− iε Iτξ (x)
(
EεΦ ⊙D−

Φ′ ⊙ S)(ξ) + O(ε hτ+1
n ) . (6.77)

The vector valued integrals are similarly treated. By Definition 6.1.1 and with
the definition of fξ in Lemma 6.1.4 we get

(
I2
ξ fξ
)
(x) =

∫ x

ξ

(E ⊙ S)(t)

∫ t

ξ

(E ⊙ S)(r)

∫ r

ξ

f(u) du dr dt .

Integration by parts yields

(
I2
ξ fξ
)
(x) =

∫ x

ξ

(E ⊙ S)(t)

∫ t

ξ

(E ⊙ S)(r) dr

∫ t

ξ

f(u) du dt

−
∫ x

ξ

(E ⊙ S)(t)

∫ t

ξ

∫ r

ξ

(E ⊙ S)(u) du f(r) dr dt .

9Here the convergence order is meant.
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By property (iv) of § 3.1.2 we know that there exists a constant c > 0 indepen-
dently of ε, such that

∥∥∥∥
∫ r

ξ

(E ⊙ S)(u) du

∥∥∥∥ ≤ c ε , which yields
∥∥(I2

ξ fξ
)
(x)
∥∥ = O(εh2n) .

Since we can write

(Iτ+1
ξ fξ)(x) =

(
Iτ−1
ξ (I2

ξ fξ)
)
(x) ,

Lemma 6.1.3 yields the estimate

‖(Iτ+1
ξ fξ)(x)‖ ≤ c ε hτ+1

n . (6.78)

Combining (6.77) and (6.78) yield

vn = σe iε ρ
τ+1

(
Iτ−1
xn

Ixn [S(D
−
Φ′ ⊙ S)]

)
(xn+1) z(xn)

− σe iε ρ
τ+1 Iτxn

(xn+1) G(xn+1) z(xn)

− σi iε ρ
τ+1

(
Iτ−1
xn+1

Ixn+1 [S(D
−
Φ′ ⊙ S)]

)
(xn) z(xn+1)

+ σi iε ρ
τ+1 Iτxn+1

(xn) G(xn) z(xn+1)

+O(ερτ+1 hτ+1
n ) .

Again using Lemma 6.1.3 we deduce the estimate ‖vn,τ‖ ≤ cερτ+1hτn, which
yields the first estimate (6.73). Furthermore, by definition of χn,τ , it holds

vn,τ = χn,τ + O(ερτ+1 hτ+1
n ) .

This yields with (6.76)

errn,τtrunc−ρτ+1χn,τ = O(ερτ+1 hτ+1
n ) + errn,τ+1

trunc = O(ερτ+1 hτ+1
n ) ,

which is the second estimate (6.74).

The proof of Lemma 6.6.14 yields

Corollary 6.6.15.

errn,τtrunc = εϑ1(τ+1)
(
σe Iτ+1

xn
(xn+1)z(xn) − σi Iτ+1

xn+1
(xn)z(xn+1)

)

+O
(
εϑ1(τ+1)+1hτ+1

n

)
.

A first consequence of Lemma 6.6.14 is a refined error estimate for the schemes
of Corollary 6.6.11

Corollary 6.6.16. For the scheme from Corollary 6.6.11 it holds

‖ errn ‖ ≤ c

(
εϑ1(τ+1)min

(
c∗,

ε

hn

)
+ ε2ϑ1+1

)
hτ+1
n .

with non–negative constants c, c∗ ≥ 0 independently of ε.

Remark 6.6.17. Hence even for ϑ1 = 0 the schemes from Corollary 6.6.11 are
asymptotically correct with respect to ε. But with a reduced spatial order.
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Another consequence of Lemma 6.6.14 is that we have to incorporate the vec-
tor ρ2χn,1 in our first order scheme, if we want a local discretization error of
O(ε2ϑ1+1h2n). I. e. we take our first order scheme from Corollary 6.6.11 and add
an approximation of iερ2χn,1.

Remark 6.6.18. Since it holds I1
ξ (x) = −I1

x(ξ) and Iξ[F ](x) = −Ix[F ](ξ), we
get for τ = 1

χn,1 = iε Ixn [S(D
−
Φ′ ⊙ S)](xn+1)

(
σey(xn) + σiy(xn+1

)

− iε I1
xn
(xn+1)

(
σeG(xn+1) y(xn) + σiG(xn) y(xn+1)

)
.

The first iterated integral I1
xn
(xn+1) is already approximated by the Corollary

6.6.11 scheme and hence we only have to find a suitable quadrature for the
other integral that shows up in χn,1. Since χn,1 is multiplied by ε2ϑ1+1 we
only need a second order approximation with respect to hn. Thus a first order
approximation with respect to hn of the integrand is enough. Since the integral
is highly oscillatory we use the technique from § 6.3 to find a quadrature.

Corollary 6.6.19 (modified first order scheme). Let (1, κ, ι,m) be the set of
parameters of our OSM, such that

µ0 = µ∗
0 , |m0| = m∗

0 ,

µ1 = µ∗
1 , |m1| = m∗

1 ,

hold for all three types of support abscissas and let the matrices An, Bn and the
vectors wn, vn be given by our Numerical Scheme 3. Furthermore let (on each

subinterval [xn, xn+1]) the function P̂1 ∈ C0(Ω,Cd×d) be, such that

Iξ[P̂1](x) = E∗
ε (s)P̂

⋄
1 (s)Eε(s)

∣∣x
s=ξ

,

where P̂ ⋄
1 is C0–bounded independently of ε and such that

‖
(
S(D−

Φ′ ⊙ S)
)
(x)− P̂1(x)‖ = O(ε0h1n) .

Than the local error errn of the modified first order scheme
(
Id + σiB

⋆
n

)
zn+1 + λσi w

n =
(
Id + σeA

⋆
n

)
zn + λσe v

n ,

with

A⋆n := An + iερ2
(
Ixn [P̂1](xn+1) − Q1

nG(xn+1)
)
,

B⋆n := Bn − iερ2
(
Ixn [P̂1](xn+1) − Q1

nG(xn)
)
,

is of order O(ε2ϑ1+1h2n). See Numerical Scheme 3 (p.137ff) for the definition
of Q1

n and see Lemma 6.6.14 for the definition of G.

Remark 6.6.20. The simplest choice for P̂1 is a generalized “constant” Her-
mite interpolation polynomial, i. e.

P̂1(x) := DΦ′(x)⊙D−
Φ′(ζ)⊙

(
S(D−

Φ′ ⊙ S)
)
(ζ) ,

with ζ ∈ [xn, xn+1]. In this case it holds

Iξ[P̂1](x) = iεEεΦ(t)
∣∣x
t=ξ

⊙D−
Φ′(ζ)⊙

(
S(D−

Φ′ ⊙ S)
)
(ζ) .
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The first order scheme in Corollary 6.6.19 shows that it is possible to improve
the ε–order of the truncation error and hence the asymptotic order of the OSM.
This is, of course, not limited to this special case and can be done for every
τ ∈ N. Let us fix a OSM (from Corollary 6.6.11) we want to modify, which we
shall refer to as the underlying (one–step) method. In the sequel we discuss two
approaches of modifying the underlying method.

(i) As we have seen in Corollary 6.6.19, we can use a suitable quadrature for
the highly oscillatory integral

(
Iτ−1
ξ Iξ[S(D

−
Φ′ ⊙ S)]

)
(x) , (6.79)

(where ξ, x are wild cards for xn, xn+1 and vice versa) to reduce the trun-
cation error. With the idea of Lemma 6.2.5 combined with Corollary 6.3.4
one can construct such a quadrature. Let us define

Ŝ1 := S(D−
Φ′ ⊙ S) .

Since the integral (6.79) is multiplied by ρτ+1ε (cf. definition of χnτ in
Lemma 6.6.14), we only need an O(ε0hτ+1

n ) approximation. Hence it is

enough to approximate Ŝ1 up to O(hn). Thus let P̂1 be, such that

‖Ŝ1 − P̂1‖∞ ≤ c hn ,

with a constant c ≥ 0 independently of ε, hn and such that

Iξ[P̂1](x) =
(
E∗
ε P̂

⋄
1Eε

)
(t)
∣∣x
t=ξ

,

with P̂ ⋄
1 C

τ–bounded independently of ε. For example choose the function

P̂1 as in Remark 6.6.20. We further compute

(
Iτ−1
ξ Iξ[Ŝ1]

)
(x)

=
(
Iτ−1
ξ Iξ[P̂1]

)
(x)−

(
Iτ−1
ξ Iξ[P̂1 − Ŝ1]

)
(x)

=
(
Iτ−2
ξ Iξ[SP̂

⋄
1 ]
)
(x) − Iτ−1

ξ (x)EεΦ(ξ)⊙ P̂ ⋄
1 (ξ) + O(ε0hτ+1

n ) .

To approximate Iτ−1
ξ (x) one can use the quadrature of the underlying

OSM. Now we can repeat the previous steps to approximate the first
integral. The only difference to the first cycle is the approximation order
of P̂2. This has to be increased by one. Thus we can describe the whole
procedure with the following loop, where j = 1, . . . , τ .

(a) Choose the function P̂j such that

‖Ŝj − P̂j‖∞ ≤ c hjn ,

with a constant c ≥ 0 independently of ε and hn, and such that

Iξ[P̂j ](x) =
(
E∗
ε P̂

⋄
j Eε

)
(t)
∣∣x
t=ξ

,

with P̂ ⋄
j C

τ–bounded independently of ε.
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(b) It follows
(
Iτ−jξ Iξ[Ŝj ]

)
(x)

=
(
Iτ−jξ Iξ[P̂j ]

)
(x)−

(
Iτ−jξ Iξ[P̂j − Ŝj ]

)
(x)

=
(
Iτ−j−1
ξ Iξ[SP̂

⋄
j ]
)
(x) − Iτ−jξ (x)EεΦ(ξ)⊙ P̂ ⋄

j (ξ) + O(ε0hτ+1
n ) .

(c) Set Ŝj+1 := SP̂ ⋄
j and continue with (i).

We see that the numerical effort to approximate χn,τ growth with τ . If
one uses the quadrature form Corollary 6.3.4, one has to solve the same
number of interpolation problems as for the underlying scheme. But with
lower order of the generalize Hermite interpolation problem. Nevertheless
we only gain a little benefit from the data computed for the underlying
OSM.

(ii) Another ansatz to increase the order of the OSM with respect to ε is as
follows. Corollary 6.6.15 yields

errn,τtrunc = εϑ1(τ+1)
(
σe Iτ+1

xn
(xn+1)z(xn) − σi Iτ+1

xn+1
(xn)z(xn+1)

)

+O
(
εϑ1(τ+1)+1hτ+1

n

)
.

Thus we simply have to incorporate a suitable approximation of the right
hand side vector in our underlaying OSM. This can be done by solving one
additional generalized Hermite interpolation problem. In the sequel we use
the notation and quantities from the Numerical Scheme 3 (cf. p.137ff).
Let mτ+1,1, . . . ,mτ+1,κ be additional multiplicities (for all three types of
intervals), such that |mτ+1| ≥ τ . Than replace in Numerical Scheme 3 (i)
(the first loop) and (iii) τ by τ +1. I. e. we additionally have to make the
following computations:

(a) Compute the unique solution

Pτ+1(x) = M ′(x, ε) ⊙
|mτ+1|−1∑

l=0

Kτ+1,l(ε)⊙M(x, ε)⊙l

of the generalized Hermite interpolation problem

P
(k)
τ+1(ξ

n
l ) = S

(k)
τ+1(ξ

n
l ) , k = 0, . . . ,mτ+1,l − 1, l = 1, . . . , κ ,

with Sτ+1 = SP ⋄
j .

(b) compute P ⋄
τ+1 by Remark 6.3.3

(c) compute Qjn = Ixn [Pj ](xn+1) by (6.40), i. e. (cf. Remark 6.3.3)

Qjn = EεΦ(xn+1)⊙ P ⋄
j (xn+1) − EεΦ(xn)⊙ P ⋄

j (xn) .

(d) Set

A⋆n = An + ρτ+1
τ+1∑

k=1

QknC
τ+1−k
n,α

B⋆n = Bn − ρτ+1
τ+1∑

k=1

QknC
τ+1−k
n,β .
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Hence the modified scheme is a τ +1 scheme (provided f = 0) with a not
maximized spatial convergence order.

Remark 6.6.21. As we have seen it is possible to modify our OSM, such that
we gain the local error estimate

‖ errn ‖ ≤ c ε2ϑ1+1 hτ+1
n .

Hence even in the “critical” case ϑ1 = 0 the modified schemes yields the right
convergence behavior as ε → 0 (cf. Remark 6.2.3). Due to Lemma 6.6.14
this holds for all schemes of this section, but only the modified ones addition-
ally guarantee spatial convergence. For ϑ1 ≥ 1 there is no need to construct a
modified scheme, if τ ≥ 2.

6.7 Convergence

For this section let us fix one numerical method with parameter (τ, κ, ι,m). In
the sequel we refer to it as the OSM. Let a = xna < · · · < xnb

= b be a grid.
We define the global step size h as

h := max
na≤n≤nb−1

hn = max
na≤n≤nb−1

(xn+1 − xn) .

Furthermore, (in the sequel) we assume that the grids we consider are chosen,
such that x0 = x. Existence and uniqueness of a solution is guaranteed under
certain (weak) assumptions on the grid.

Lemma 6.7.1. Let Assumptions 6–12 hold. There is a constant h0 > 0 inde-
pendently of ε, such that for all grids a = xna < · · · < xnb

= b with 0 < h < h0
the OSM has a unique solution. Further exists a constant cs ≥ 0 independently
of ε and n, such that

‖An‖, ‖Bn‖ ≤ csρhn ≤ csρh < 1 .

Hence the matrices Id+σeAn and Id+σiBn are regular for n ∈ {na, . . . , nb−1}.

Proof. The OSM (6.51) reads

(Id + σiBn)z
n+1 + σi w

n = (Id + σeAn)z
n + σe v

n .

Assume that the matrices

Id + σiBn and Id + σeAn

are regular for all n ∈ {na, . . . , nb − 1}. Then we can split the coupled system
of equations into two subproblems.

(i) For na ≤ n ≤ 0 we write

zn = (Id + σiAn)
−1
(
(Id + σeBn)z

n+1 − σe v
n + σi w

n
)
,

(ii) and for 0 ≤ n ≤ nb − 1

zn+1 = (Id + σiBn)
−1
(
(Id + σeAn)z

n + σe v
n − σi w

n
)
.
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For both problems we have the initial condition z0 = z(x0) = z(ξ). Since (i)
and (ii) are explicit difference equations, they have unique solutions, which are
compatible at n = 0. Hence we get existence of a unique OSM solution.

A sufficient criteria for regularity of Id+σeAn and Id+σiBn is that

‖An‖ < 1 and ‖Bn‖ < 1

holds for all n ∈ {na, . . . , nb − 1} (cf. [68] p. 188). Due to Proposition 6.5.4
there exists a constant c independently of ε, hn, and n, such that for all indices
n ∈ {na, . . . , nb − 1}

‖An‖, ‖Bn‖ ≤ c ρ hn ≤ c ρ h .

Hence we set h0 = (cρ)−1.

Proposition 6.7.2. Let Assumptions 6–12 hold. Let z be the unique solution
of the IVP (6.16) and let a = xna < · · · < xnb

= b be a grid with 0 < h < h0.
Furthermore we denote the unique solution of the OSM from Lemma 6.7.1 by
zna , . . . , znb . Then there are constants ce, cs, γ0, γ1 ≥ 0 independently of ε, such
that for all n ∈ {na, . . . , nb − 1}

‖z(xn)− zn‖ ≤ ecsρ(xn−x0)

(
‖η0‖ + ce (xn − x0) θ(ε, h)h

τ

)
,

with

θ(ε, h) = λ min

(
1, γ0

(
ε

h

)µ0+1)
h|m0|−τ (6.80)

+ ρmin

(
1, γ1

(
ε

h

)µ1+1)
h|m1|−τ + ερ2 .

Proof. By assumptions and Lemma 6.7.1 there exists a unique solution of the
OSM and the matrices

Id+σeAn and Id+σiBn

are regular for n ∈ {na, . . . , nb − 1}. For n > 0 we reformulate the OSM
as an explicit scheme (as in the proof of Lemma 6.7.1), i. e. it holds for all
n ∈ {0, . . . , nb − 1}

zn+1 = (Id+σiBn)
−1
(
(Id+σeAn)z

n + σev
n − σiw

n
)
.

From (6.31) of Numerical Scheme 2 (cf. p.127f) we know that for all indices
n ∈ {0, . . . , nb − 1} it holds

z(xn+1) = (Id+σiBn)
−1
(
(Id+σeAn)z(xn) + σev

n − σiw
n + errn

)
.

Hence the quantity ηn := z(xn)−zn solves the inhomogeneous explicit difference
equation

ηn+1 = (Id+σiBn)
−1
(
(Id+σeAn)η

n + errn
)

=: Ân η
n + êrrn .
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This yields (by induction)

ηn =

n−1∏

j=0

Âj η
0 +

n−1∑

j=0

( n−1∏

k=j+1

Âk

)
êrr

j
. (6.81)

Furthermore, by Lemma 6.7.1 it holds ‖Aj‖, ‖Bj‖ ≤ csρhn ≤ csρh < 1. This
yields (σi ∈ [0, 1])

‖(Id+σiBj)−1‖ =

∥∥∥∥∥
∞∑

k=0

(−1)kσki B
k
j

∥∥∥∥∥ ≤
∞∑

k=0

(σicsρhj)
k

≤ 1

1− σicsρhj
≤ 1

1− σicsρh
.

Since σe = 1− σi, we get the following estimate for Âj :

‖Âj‖ ≤ ‖(Id+σiBj)−1‖ ‖(Id+σeAj)‖

≤ 1 + σecsρhj
1− σicsρhj

= 1 +
csρhj

1− σicsρhj
≤ 1 +

csρhj
1− σicsρh

.

By Corollary 6.6.7 exist ce, γ0, γ1 ≥ 0 independently of ε and n, such that

‖êrrj‖ ≤ ce θ(ε, hn)h
τ+1
n

1− σicsρh
.

The function θ is given by

θ(ε, hn) = λ min

(
1, γ0

(
ε

hn

)µ0+1)
h|m0|−τ
n

+ ρmin

(
1, γ1

(
ε

hn

)µ1+1)
h|m1|−τ
n + ερ2 .

Since hn ≤ h, it holds (all exponents are non–negative)

θ(ε, hn)h
τ
n = λ min

(
hµ0+1
n , γ0 ε

µ0+1
)
h|m0|−(µ0+1)
n

+ ρmin
(
hµ1+1
n , γ1 ε

µ1+1
)
h|m1|−(µ1+1)
n + ερ2 hτn

≤ λ min
(
hµ0+1, γ0 ε

µ0+1
)
h|m0|−(µ0+1)

+ ρmin
(
hµ1+1, γ1 ε

µ1+1
)
h|m1|−(µ1+1) + ερ2 hτ

= θ(ε, h)hτ . (6.82)

Furthermore we set ĉs := cs(1 − σicsρh)
−1 and ĉe := ce(1 − σicsρh)

−1. With
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the triangle inequality we derive from (6.81):

‖ηn‖ ≤
n−1∏

j=0

‖Âj‖ ‖η0‖ +

n−1∑

j=0

n−1∏

k=j+1

‖Âk‖ ‖êrrj‖

≤
n−1∏

j=0

(
1 + ĉsρhj

)
‖η0‖ +

n−1∑

j=0

n−1∏

k=j+1

(
1 + ĉsρhk

)
êrr

j

≤
n−1∏

j=0

eĉsρhj ‖η0‖ +

n−1∑

j=0

( n−1∏

k=j+1

eĉsρhk

)
ĉe θ(ε, hj)h

τ+1
j

= eĉsρ
∑n−1

j=0 hj ‖η0‖ + ĉe

n−1∑

j=0

hj
(
eĉsρ

∑n−1
k=j+1 hk

)
θ(ε, hj)h

τ
j

By (6.82) we can replace θ(ε, hj)h
τ
j by θ(ε, h)hτ . Since hj = xj+1 − xj it holds

n−1∑

k=j+1

hk = xn − xj+1 ≤ xn − x0 =

n∑

j=0

hj .

Thus eĉsρ
∑n−1

k=j+1 hk ≤ eĉsρ
∑n−1

j=0 hj = eĉsρ(xn−x0) and hence

‖ηn‖ ≤ eĉsρ(xn−x0)

(
‖η0‖ + ĉe θ(ε, h)h

τ
n−1∑

j=0

hj

)

≤ eĉsρ(xn−x0)

(
‖η0‖ + ĉe (xn − x0) θ(ε, h)h

τ

)
.

Due to definition of the grid we have x0 = x. For n < 0 we rephrase the problem
as an explicit scheme for zn and do the same computations as above.

A consequence of Proposition 6.7.2 is the pointwise convergence of the OSM.

Corollary 6.7.3. Let Assumptions 6–12 hold and let z be the unique solution
of the IVP (6.16). Additionally let ξ ∈ [a, b] and let {xr : r ∈ N} be a family of
grids, with

a = xrna(r)
< · · · < xrnb(r)

= b , hr := sup
nr
a≤n≤nr

b

(xrn+1 − xrn) < h0 .

Here h0 ≥ 0 is the constant from Lemma 6.7.1. Furthermore we assume that
limr→∞ hr = 0 and that for every r ∈ N there is a Nr ∈ {na(r), nb(r)}, such
that xNr = ξ.

For r ∈ N let zr,na(r), . . . , zr,nb(r) be the unique solution of the OSM from
Lemma 6.7.1 corresponding to the grid xr. We assume that there exists a c0 ≥ 0
independently of ε and r, such that

‖z(x)− z0‖ ≤ c0 h
τ
r .

Let

z(ξ, r) := zr,Nr .
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There are constants ĉe, ĉs, γ0, γ1 ≥ 0 independently of ε, such that for all r ∈ N

‖z(x)− z(x, r)‖ ≤ ĉs
(
c0 + ĉe θ(ε, hr)

)
hτr .

The function θ is given by (6.80). Hence the OSM converges as hr → 0.

Proof. By Proposition 6.7.2 it holds for all r ∈ N

‖z(ξ)− z(ξ, r)‖ ≤ ecsρ(ξ−x0)

(
‖z(x)− z(x0, r)‖ + ce (ξ − x0) θ(ε, hr)h

τ
r

)
.

The constants are independent of r. Thus

‖z(ξ)− z(ξ, r)‖ ≤ ecsρ(b−a)
(
c0 + ce (b− a) θ(ε, hr)

)
hτr .



Chapter 7

Numerical experiments for
the one–step method

In this chapter we present some numerical results for the efficient one–step
methods from § 6.4. The first section § 7.1 is dedicated for the introduction of
a reference example from [54]. In the article it is used to illustrate the perfor-
mance of certain integrators discussed there. The problems they are designed
for can be transformed, such that they fit into our setting from § 3.2. Hence the
subsequently described problem from § 7.1 is an ideal candidate to compare our
new efficient one–step methods with an existing method from literature. Numer-
ical results for an explicit and the Crank–Nicolson like setting of our one–step
method are discussed in § 7.2. They are compared with the adiabatic midpoint–
rule from [54], which is a symmetric two step integrator of order O(ε0h2).

The example discussed in § 7.3 is from [27]. It is used to illustrate the
problems of the super–adiabatic transformation of lowest order close to avoided
eigenvalue crossings of the matrix L from (3.21) (i. e. δ ≪ 1). The same
problems appear for our WKB–type transformation from § 3.3. In the textbook
it is mentioned that the problem was studied by Clarance Zener [75] in 1932.
An alternative formulation (which is closer to its origin in quantum mechanics)
of the example can be found in [73]. Hence we start § 7.3 with the derivation of
the example from [27] from the more general problem stated in [73]. Afterwards
we derive a formula for Tε from § 3.3 for n = 1. Furthermore we are able to
compute an explicit expression for ‖S1‖. This quantity is of interest, because
it is the crucial variable of the step size algorithm discussed in § 4.4. In § 7.4
we solve the Zener problem from § 7.3 with our step size control algorithm from
§ 4.4. Here we use the same setting as in [27], in order to generate comparable
results to the textbook ones.

165
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7.1 A vector valued reference example by Lorenz
et al. [54]

We use this section to introduce a reference example from [54]. Let δ > 0 be a
real parameter and let

A(x) =

(
x+ 3 δ
δ 2x+ 3

)2

.

A diagonalization A = U∗ΛU is given by (cf. [54])

Λ(x) =

(
3
2x+ 3 + 1

2

√
x2 + 4δ2 0

0 3
2x+ 3− 1

2

√
x2 + 4δ2

)2

,

U(x) =

(
cos ξ(x) sin ξ(x)

− sin ξ(x) cos ξ(x)

)
with ξ(x) = π

4 + 1
2 arctan(

x
2δ ) .

Then the initial value problem we shall solve is given by

ε2Ψ′′(x) + A(x)Ψ(x) = 0 ,

Ψ(x0) = Ψ0 ∈ C2 ,

Ψ′(x0) = Ψ1 ∈ C2 .

for some initial conditions and x ∈ I := [−1, 1]. (For the numerical examples
we use Ψ0 = (1, 0)T and Ψ1 = (0, 1)T .) Thus the equivalent first order IVP as
derived in § 2.2.1 reads

u′(x) =
i

ε

(
Λ

1
2 (x) 0

0 −Λ
1
2 (x)

)
u(x) + B(x)u(x) (7.1)

u(x0) = 1√
2

(
i 1
1 i

)
⊗ U(x0)

(
A

1
2Ψ0

εΨ1

)
, (7.2)

with

B =

(
1 0
0 1

)
⊗ (U ′U∗) +

1

2

(
1 i
−i 1

)
⊗
(
UA

1
2
′
A− 1

2U∗) .

A straight forward calculation shows

(
U ′U∗)(x) = ξ′(x)

(
0 1
−1 0

)
, with ξ′(x) =

δ

x2 + 4δ2
.

Using the identity (2.30) from § 2.2 we further compute:

(
UA

1
2
′
A− 1

2U∗)

= −ξ′
(

0 1
−1 0

)
+ ξ′

(
0 (λ1

λ2
)

1
2

−(λ2

λ1
)

1
2 0

)
+ (Λ

1
2 )′Λ− 1

2

=

[
ξ′
(

0 −λ
1
2
2

λ
1
2
1 0

)
+ ξ′

(
0 λ

1
2
1

−λ
1
2
2 0

)
+ (Λ

1
2 )′
]
Λ− 1

2

=

[
ξ′(λ

1
2
1 − λ

1
2
2 )

(
0 1
1 0

)
+ (Λ

1
2 )′
]
Λ− 1

2 .
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There exists a representation in terms of ξ and Λ. To derive this we need the
following identities, which hold since −π

2 < arctan x
2δ <

π
2 .

cos2 ξ(x) =
1

2

√
x2 + 4δ2 − x√
x2 + 4δ2

,

sin2 ξ(x) =
1

2

√
x2 + 4δ2 + x√
x2 + 4δ2

,

sin ξ(x) cos ξ(x) =
δ√

x2 + 4δ2
.

This yields

ξ′(x)(λ
1
2
1 (x) − λ

1
2
2 (x)) =

δ√
x2 + 4δ2

= sin ξ(x) cos ξ(x) .

Furthermore it holds

(λ
1
2
1 )

′(x) =
3
√
x2 + 4δ2 + x

2
√
x2 + 4δ2

= 1 + sin2 ξ(x) .

Analog we find (λ
1
2
2 )

′ = 1 + cos2 ξ, which yields

UA
1
2
′
A− 1

2U∗ =

(
1 + sin2 ξ sin ξ cos ξ
sin ξ cos ξ 1 + cos2 ξ

)
Λ− 1

2

=

(
1 + sin2 ξ 1

2 sin 2ξ
1
2 sin 2ξ 1 + cos2 ξ

)
Λ− 1

2 .

This is a nice compact formula which can easily be implemented in Matlab.
Furthermore we get with respect to the notation of § 3.3

L(x) =

(
1 0
0 −1

)
⊗
(

3
2x+ 3 + 1

2∆(x) 0
0 3

2x+ 3− 1
2∆(x)

)
,

where we set

∆(x) :=
√
x2 + 4δ2 .

Using the function ∆ we can also write

UA
1
2
′
A− 1

2U∗ =
1

2∆(x)

(
3∆(x) + x 2δ

2δ 3∆(x) − x

)
Λ− 1

2 (x) .

In our Matlab code we use this representation, since also Λ can be built up from
the function ∆.

7.2 Convergence behavior

In this section1 we illustrate the convergence behavior (stated in Proposition
6.7.2) of our numerical approximation to the solution z of the IVP (6.16). The

1The author published parts of this section in [25].
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results are derived with the methods from § 7.5. The procedure how to approx-
imate Tε, Rε, S,Φ is discussed in § 4. Anyhow, the numerical integration of the
phase Φ usually incurs an additional error for the original, oscillatory function
u from (3.23) or (6.1) (cf. § 4.3). This situation is the same also for scalar ODEs
(cf. Th. 3.1 in [4]).

We shall compare our one step method (OSM) to the Adiabatic Midpoint
Rule (AMPR) from [54]. This integrator is a space–symmetric two–step method,
which yields a convergence error of order O(ε0h2) for the function η defined in
Lemma 3.2.2. If we want to have the same error behavior for the original
function u, we also have to impose the step size restriction h ≤ √

ε, if we use
the Simpson rule to approximate the matrix valued phase Φ, see Remark 4.3.1.
Using a higher order quadrature rule for Φ would weaken this restriction on h.

Let us choose a family of equidistant grids. Let g ∈ N and define for n =
0, . . . , 2g =: Ng the grid points

xgn := a+ nhg with hg :=
b− a

Ng
.

For integers g1 < g2

hg1 =
b− a

2g1
=
b− a

2g2
2g2

2g1
= 2g2−g1 hg2

and hence it holds for all xg1n with n = 0, . . . , Ng1 :

xg1n = a+ n2g2−g1 hg2 = xg2m with m = n 2g2−g1 . (7.3)

Thus the grid corresponding to g1 is a (coarser) sub–grid of the g2–grid. Hence
no interpolation is needed when comparing solutions on two different grids. To
generate error plots we fix a finite number of indices, e. g. g = 2, . . . , 16, and use
the numerical solution on the finest grid as reference solution. To illustrate the
convergence behavior of the OSM (w.r.t. the step size h, and in dependence of
ε) we shall give the relative L1–error.

Let us denote the solutions corresponding to the grid g by zg and denote the
reference solution by z∗. By (7.3) we know that zgn ≈ z∗mn

, with

mn := n 2g
∗−g .

Hence the (discrete) relative L1–error is defined by

Err zg :=
hg
∑Ng

n=0

∣∣zgn − z∗mn

∣∣
Σ

with Σ := hg∗

Ng∗∑

j=0

∣∣z∗j
∣∣ . (7.4)

The quantity Σ is the discrete L1–norm of z∗. Since hg is reciprocal proportional
to Ng (which is approximately the number of summands in (7.4) if Ng ≫ 1),
we can also interpret Err zg as a scaled average error.

Figures 7.2–7.11 show the relative L1–error of our OSM for z (or η or u)
for the example discussed in § 7.1. It is already used in [54] to illustrate the
performance of the AMPR. In all Figures we plot the relative L1–error of the
AMPR (for η) as reference curve. We use an explicit scheme (ES) (i. e. σi = 0)
with τ = 2 and the Crank–Nicolson like scheme (CNS) (cf. § 7.5), as well as
different stages of discretization of S.
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In Figure 7.1 we plot the theoretical error prediction of Proposition 6.7.2,
with a fitted leading constant. Due to our experience with the quadratures (cf.
§ 5.4) we choose an ε–dependent constant c. This is of course not exactly the
formulation from the Proposition, but this behavior is reflected quite well in
Figure 7.2 (ES), 7.7 (CNS). Here we use almost exact values for the coefficients
appearing in the IVP (6.16). They are derived via interpolation from the ap-
proximation of S,L,Φ for the finest grid as described in § 4.1. The interpolation
is done with the Matlab function interp1 (with the method ’pchip’; piecewise
cubic interpolation). This is of course not necessary, but simpler to implement
then figuring out the right indices by hand. Furthermore, in Figure 7.2–7.5, we
also observe the error threshold at about 10−14, probably resulting from the
Matlab computations in double precision.

The graphs in Figure 7.12 are the relative L1–errors of the variable z, com-
puted with the Kane model of § 2.1.1. We used the following data: a = 0,
b = p(x) = 1, E = 2, V (x) = 10x(34 − x), Eg(x) = 1

2 sin
2(2πx) + 1

2 . As for
Figure 7.2, 7.7 we use almost exact data for S.

For the simulation of Figure 7.2 (ES) and 7.7 (CNS) the coefficients S,L,Φ
are approximated (as it will be done in practice) on the same grid that is used
for the solution of the IVP. We use the algorithm described in § 4.1. For small
values of ε one observes the influence of the approximation for rather large h.

In order to compare our results with the AMPR we transform z into η. The
resulting errors are plotted in Figure 7.4–7.5 (ES), 7.9–7.10 (CNS). Since we do
not use the exact transformation, the accuracy is reduced, but still significantly
better than those of the AMPR. For the full discretized schemes (Figure 7.5,
7.10) we lose the asymptotic correctness with respect to ε. We observe quite
good the fourth order convergence of the transformation. However, if T0 is
exactly given (as for the considered example), then the approximation of the
variable η with our OSM is (globally) asymptotically correct, as we can see
Figure 7.4, 7.9.

The error of the full discretized schemes for the original variable u is plotted
in Figure 7.6 (ES) and 7.11 (CNS).

The numerical experiments confirm the theoretical results. We observe the
O(ε0h2) convergence behavior for the AMPR as discussed in [54]. So, the error
of that scheme (for the variable η from Lemma 3.2.2) is uniform in ε, but it does
not decrease as ε→ 0. However, our OSM shows an even better error behavior
than predicted in Proposition 6.7.2. While for large step sizes h the graphs of
the z–error behave like O(ε3h0) (which coincides with the theoretical estimate),
they seem to turn to an O(ε2h2) behavior, if h gets small enough (see Fig. 7.3,
7.7, 7.12). This is a “better” convergence property than the predicted O(ε1h2)
behavior from Proposition 6.7.2. This behavior is also described in §3.3 of [4],
and it is due to cancellation effects in successive integration steps. We also
observed it in the numerical examples for the quadratures in § 5.4. The Figures
7.2–7.4, 7.7–7.9, 7.12 also illustrate the asymptotic correctness of our OSM as
ε→ 0, even for rather large values of h.

The two methods (OSM and AMPR) use the same set of data from the
original IVP (6.1) for u. Since the computation of the matrix valued functions
L,B can be computational expensive (e.g. one has to derive the eigenvalues
and eigenvectors for a large matrix in each step) compared to the computation
of Φ, Tε, Rε, Sε, our OSM is an improvement of the AMPR on the level of the
transformed quantities z and η.
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Figure 7.1: Plot of the functions 20min(5ε2h2, ε3) (solid lines) and 8h2 (dashed
lines) for different values of ε.

Both methods, the OSM and the AMPR are subject to the fact that (in
general) the transformation back to the original variable u introduces an error
of the order O(ε−1), as discussed in 4.3. This is due to the multiplication of
z (and η) with the highly oscillatory matrix Eε(x) = exp( iεΦ(x)). Since Φ is
approximated with the Simpson rule (which yields an error of O(h4) for Φ) we
get an transformation error of O(ε−1h4). This explains the step size restriction
mentioned in the beginning of this section. But if the matrix valued phase
function Φ is exactly known2, the error behavior of z, η carries over to u. In
this situation our OSM yields much better results for u than the AMPR – with
approximately the same numerical effort. One can observe the influence of the
transformation quite good for the ES in Figure 7.6 and for the CNS 7.11. The
AMPR is not affected by the “back” transformation, because its errors are larger
then the induced transformation error.

7.3 An example of avoided eigenvalue crossing

The effects of avoided eigenvalue crossings are (shortly) discussed in [27] by
an example which was studied by Clarence Zener in 1932 [75]. It is also dis-
cussed (with different focus) in [73]. Here the author considers the second order
differential equation (α ∈ R, δ > 0)

ε2ψ′′(x) + 2i ε αxψ′(x) + δ2ψ(x) = 0 . (7.5)

2E. g., piecewise linear functions V, Eg, p in the Kane model lead to an exactly integrable
phase.
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Figure 7.2: Relative L1–error of the (explicit) OSM for z (solid lines) and the
AMPR [54] for η (dashed lines) for different values of ε. “Exact“ evaluation of
S via interpolation is used.

We slightly changed the notation with respect to [73] in order to derive the
example discussed in [27]. A general solution (computed with Maple14 ) of
(7.5) can be expressed in terms of Kummer functions KummerM,KummerU
(Maple14 notation, see also confluent hypergeometric function) by

ψ(x) = c1 x e
− iαx2

ε KummerM
(
1 + iδ2

4εα ,
3
2 ,

iαx2

ε

)
(7.6)

+ c2 x e
− iαx2

ε KummerU
(
1 + iδ2

4εα ,
3
2 ,

iαx2

ε

)
.

Now we use the approach from § 2.2 to reformulate (7.5) as a first order system
of differential equations. I. e. we set

ṽ(x) :=

(
δψ(x)
εψ′(x)

)
,

which yields

ṽ′(x) =
1

ε

(
0 δ
−δ −2iαx

)
ṽ(x) .

The final transformation

v(x) = exp

(
iαx2

2ε

)(
0 1+i√

2
1−i√

2
0

)
ṽ(x)
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Figure 7.3: Relative L1–error of the (explicit) OSM for z (solid lines) and the
AMPR from [54] for η (dashed lines) for different values of ε. The function S
is for every value of h separately approximated as described in § 4.

yields

v′(x) = − i

ε

(
αx δ
δ −αx

)
v(x) =:

i

ε
A(x) v(x) ,

which is the example from [27, p.535f], if we set α = 1, what is assumed from
now on. From the textbook we get A(x) = Q∗(x)iL(x)Q(x), with

Q(x) :=

(
cos ξ(x) sin ξ(x)

− sin ξ(x) cos ξ(x)

)
and L(x) :=

(
−∆(x) 0

0 ∆(x)

)
,

where we set

ξ(x) :=
π

4
− 1

2
arctan

x

δ
and ∆(x) :=

√
x2 + δ2 .

This yields

Q′(x)Q∗(x) = ξ′(x)

(
− sin ξ(x) cos ξ(x)
− cos ξ(x) − sin ξ(x)

)(
cos ξ(x) − sin ξ(x)
sin ξ(x) cos ξ(x)

)

= −1

2

δ

x2 + δ2

(
0 1

−1 0

)
.

Hence the new variable

u(x) := Q(x)v(x)
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Figure 7.4: Relative L1–error of the (explicit) OSM (solid lines) and the AMPR
from [54] for η (dashed lines) for different values of ε. T0 is exactly computed
by (2.31).
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Figure 7.5: Relative L1–error of the (explicit) OSM (solid lines) and the AMPR
from [54] for η (dashed lines) for different values of ε.
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Figure 7.6: Relative L1–error of the (explicit) OSM (solid lines) and the AMPR
from [54] (dashed lines) for u for different values of ε.
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Figure 7.7: Relative L1–error of the (Crank–Nicolson type) OSM for z (solid
lines) and the AMPR [54] for η (dashed lines) for different values of ε. “Exact“
evaluation of S via interpolation is used.
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Figure 7.8: Relative L1–error of the (Crank–Nicolson type) OSM for z (solid
lines) and the AMPR [54] for η (dashed lines) for different values of ε. S is
approximated as described in § 4.

solves the ODE

u′(x) =
i

ε
L(x)u(x) + B(x)u(x) ,

with

B(x) := Q′(x)Q∗(x) = −1

2

δ

∆2(x)

(
0 1

−1 0

)
.

Let us proceed with the transformation from Remark 3.3.2 p.39 (with n = 1).
The matrix valued phase function Φ can explicitly be computed. A primitive of
∆ is (see [8] p.309)

φ(x) :=
1

2

(
x∆(x) + δ2 ln

(
x+∆(x)

))

and hence

Φ(x) =
(
φ(x) − φ(x0)

)( −1 0
0 1

)
.
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Figure 7.9: Relative L1–error of the (Crank–Nicolson type) OSM (solid lines)
and the AMPR [54] (dashed lines) for η for different values of ε. S is approxi-
mated as described in § 4, but with exact T0 (cf. (2.31)).

Since L has two distinct eigenvalues we have ν = (1, 1)T and it follows from
(3.37) that T0(x) = T (x) = Id. This yields (cf. (3.38))

T1(x) = iD−
L (x) ⊙B(x)

= − i

2∆(x)

(
0 1

−1 0

)
⊙
(
− δ

2∆2(x)

)(
0 1

−1 0

)

=
iδ

4∆3(x)

(
0 1
1 0

)
.

Thus the matrix valued function Tε is given by (cf. (3.24))

Tε(x) = T0(x) + εT1(x) =

(
1 0
0 1

)
+

iδε

4∆3(x)

(
0 1
1 0

)

and hence

Tε(x)
−1 =

1

1 + δ2ε2

16∆6(x)

((
1 0
0 1

)
− iδε

4∆3(x)

(
0 1
1 0

))

=
16∆6(x)

16∆6(x) + δ2ε2

(
1 − iδε

4∆3(x)

− iδε
4∆3(x) 1

)
.
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Figure 7.10: Relative L1–error of the (Crank–Nicolson type) OSM (solid lines)
and the AMPR [54] (dashed lines) for η for different values of ε. S is approxi-
mated as described in § 4.

Furthermore it holds

B(x)T1(x)− T ′
1(x) = − iδ2

8∆5(x)

(
1 0
0 −1

)
+

3iδx

4∆5(x)

(
0 1
1 0

)

=
iδ

8∆5(x)

(
−δ 6x
6x δ

)

and hence we get (cf. (3.41))

S1(x) = Tε(x)
−1
(
B(x)T1(x)− T ′

1(x)
)

=
16∆6(x)

16∆6(x) + δ2ε2

(
1 − iδε

4∆3(x)

− iδε
4∆3(x) 1

)
iδ

8∆5(x)

(
−δ 6x
6x δ

)

=
2iδ∆(x)

16∆6(x) + δ2ε2

(
−δ − 6iδεx

4∆3(x) 6x− iδ2ε
4∆3(x)

6x+ iδ2ε
4∆3(x) δ − 6iδεx

4∆3(x)

)
.

The step size control approach from § 4.4 uses the norm of S1 to determine the
grid. Hence we shall compute ‖S1‖. By definition (cf. Corollary 3.3.4) it holds

S1(x) = Rε(x)
−1
(
S1(x) − diagν(S1)

)
Rε(x) ,

where the matrix valued function Rε solves the IVP (cf. (3.45))

R′
ε(x) = diag(S1(x))Rε(x) , Rε(x0) = Id .
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Figure 7.11: Relative L1–error of the (Crank–Nicolson type) OSM (solid lines)
and the AMPR [54] (dashed lines) for u for different values of ε. S is approxi-
mated as described in § 4.
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Figure 7.12: Relative L1–error of the OSM for z related to the Kane model of
§ 2.1.1. “Exact” evaluation of S via interpolation is used.
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Furthermore the function diag(S1) can be written as

diag(S1) =

(
f(x) + ig(x) 0

0 f(x) − ig(x)

)

with real valued functions f, g. This yields

Rε(x) =

(
exp

( ∫ x
x0
f(s) + ig(s) ds

)
0

0 exp
( ∫ x

x0
f(s)− ig(s) ds

)
)

= e
∫

x
x0
f(s) ds

(
e
i
∫ x
x0
g(s) ds

0

0 e
−i

∫ x
x0
g(s) ds

)

Hence the diagonal matrix Rε factorizes into an unitary part and a strictly
positive real (exponentially increasing/decreasing) part. I. e. we can write Rε =
UR with U∗U = Id and R real. Furthermore R is nothing but the multiplication
with a certain scalar function r. This yields

‖S1(x)‖ = ‖U(x)∗R(x)−1
(
S1(x)− diagν(S1)

)
R(x)U(x)‖

= ‖r(x)−1
(
S1(x)− diagν(S1)

)
r(x)‖

= ‖S1(x)− diagν(S1)‖

=

∣∣∣∣
2iδ∆(x)

16∆6(x) + δ2ε2

∣∣∣∣

∥∥∥∥∥

(
0 6x− iδ2ε

4∆3(x)

6x+ iδ2ε
4∆3(x) 0

)∥∥∥∥∥ .

In order to compute the remaining “norm”–term let us have a look on the matrix

M :=

(
0 z
z 0

)
with z ∈ C .

It is well known (cf. [68, p.186f]) that ‖M‖2 is given by the largest eigenvalue
of M∗M . Since it holds

M∗M =

(
0 z
z 0

)(
0 z
z 0

)
=

(
|z|2 0
0 |z|2

)

we immediately get ‖M‖ = |z|. This yields

‖S1(x)‖ =
2δ∆(x)

16∆6(x) + δ2ε2

√
(6x)2 +

(
δ2ε

4∆3(x)

)2

.

For ε = 0.01 the function log10 ‖S1(x)‖ is plotted in Figure 7.13. In order to
get a better imagination of the surface shape we plotted some cross–sections of
Figure 7.13 in Figure 7.14. We use the same values of δ and ε for the step size
control algorithm (cf. Figure 7.15, 7.17).

7.4 Step size control

Let us test the two (Euler and AB2 based scheme) step size control algorithms
from § 4.4 on the avoided eigenvalue crossing example from § 7.3. We compute
the solution of (7.5) with α = 1 on the interval [−1, 1] for the values ε = 0.01
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Figure 7.13: The plot shows the function log10 ‖S1(x)‖ for ε = 0.01.
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Figure 7.14: Cross sections of figure 7.13 along lines with δ = const. in the δ–x
plane.
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and δ = 2−1, 2−3, 2−5, 2−7. We choose this setting, because it is used in [27] for
the same purpose. Hence the results are comparable to the textbook ones.

We choose the initial condition for ψ at x = 0, such that the exact solution is
given by (7.6), with c1 = 1, c2 = 0. Since there is no standard routine in Matlab
to compute the Kummer functions, which are parts of the general solution of
our problem (cf. (7.6)), we used Maple 14 to approximate initial conditions and
the solution ψ at x = 1.

In the following table we collect the data of the Euler (upper half) and AB2
(lower half) based algorithms.

δ ∆t #points error error (equidistant)
2−1 0.5 23 0.0002 0.0004
2−3 0.5 47 0.0024 0.0297 (Euler)
2−5 0.5 85 0.0014 0.2832
2−7 0.75 471 0.0046 3.5245
2−1 0.5 25 0.0003 0.0002
2−3 0.5 139 0.0012 0.0175 (AB2)
2−5 0.5 1093 0.0012 0.9445
2−7 0.1 7901 0.0010 6.6888

(7.7)

The third column contains the number of grid points the generated (non–
equidistant) grids have. In the fourth column we present the approximation
error of the OSM, where the generated non–equidistant grid is used. As refer-
ence problem we also solve the same problem on an equidistant grid with the
same number of grid points and the same parameter set as for the OSM. The
obtained errors are given in the last column.

In Figure 7.15 and Figure 7.17 we see the step sizes as function of x, generated
with the step size control algorithms from § 4.4. While in Figure 7.15 we see the
results of the algorithm based on the explicit Euler scheme to solve ω, we plot
in Figure 7.17 the AB2 based scheme. For both algorithms we use the same set
of parameters. In detail for δ = 2−1, 2−3, 2−5 we set ∆t = 0.5. For δ = 2−7

it turns out (for the Euler scheme) that ∆t = 0.5 is to large. Hence we reduce
it to ∆t = 0.075. For the AB2 based scheme we can use a coarser t–grid with
∆t = 0.1. In all cases we set ∆x = 0.1∆t.

If we compare the number of grid points (cf. (7.7)) the two algorithms
generate, we observe that the Euler scheme based algorithm is significantly
faster for small values of δ. Furthermore, in Figure 7.17 we observe that the
AB2 based scheme produces unnatural peaks in the step sizes. They are the
result of negative step sizes, which are adjusted by the max–min restriction of
the algorithm to admissible increments (minimal and maximal admissible step
size). Hence at this points we find step sizes equal to hmin = 10−6.

The generated grids are used to solve the problem (7.5) or rather the related
IVP for z (cf. § 3.3) with the OSM from § 7.5, for the the parameters τ = 1 and
σe = σi =

1
2 . I. e. we use the Crank–Nicolson like scheme. We compare the

numerical solution z of the OSM at x = 1 with the exact solution (approximation
from Maple 14). The maximum of the errors for z and ψ are listed in table (7.7)
(fourth column). For both algorithms they are between 0.2 · 10−3 and 5 · 10−3.
This are similar values as in [27], where the error (for the same problem, but
most likely different initial conditions) is between 0.5 · 10−3 and 2 · 10−3. We
also observe that the step sizes from the approach (briefly) discussed in [27]
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Figure 7.15: Step sizes of the non equidistant grids, derived with the Euler
scheme based algorithm from § 4.4 for ε = 0.01 and δ = 2−1, 2−3, 2−5, 2−5.

Figure 7.16: [Origin: [27] Figure 1.2 p. 538] Step sizes as function of t for
ε = 0.01 and δ = 2−1, 2−3, 2−5, 2−5 (increasing darkness). “In each case the
error at the end-point t = 1 was between 0.5 · 10−3 and 2 · 10−3.” [27] XIV.1.2
p.538.

(cf. Figure 7.16) are comparable (may be a bit smaller) to those derived with
the Euler based scheme. In contrast the relative errors for the equidistant grid
problems are competitive only for large values of δ (δ = 1

2 , cf. (7.7)). If δ gets
smaller, the errors increase and yield unusable results for δ = 2−7. In this case,
the relative difference to the exact value is at least 3.5.

We have seen that our ansatz yields comparable results with respect to
the approach from [27]. Since we did not spent much time on optimizing our
program (and ansatz) the author believes that there is still some space for
improvement.
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Figure 7.17: Step sizes of the non equidistant grids, derived with the AB2
scheme based algorithm from § 4.4 for ε = 0.01 and δ = 2−1, 2−3, 2−5, 2−5

7.5 Used schemes

For the numerical examples our OSM shall only use informations at the given
grid in order to avoid additional function evaluations of the ODE quantities.
Additionally the multiplicities at both boundary points of the considered local
subinterval [xn, xn+1] should be equal. Hence we set κ = 2 and end up with the
two supporting abscissas α := xn = ζ1 < ζ2 = xn+1 =: β.

Since we want to compare our OSM with the AMPR from [54], the desired
convergence order for the one–step method is two. This yields τ = 2 and hence
we set |m1| = |m2| = τ (cf. Assumption 12 p.150). By definition of |m1|, |m2|
(cf. Remark (6.4.2)) it follows mi,j = 1 for i, j = 1, 2, which yields µ1 = µ2 = 1.
Let h be the maximal step size of the used grid. Hence, by Proposition 6.7.2 we
expect that there are constants c, γ ≥ 0, such that

c ρ min

(
1, γ

(
ε

h

)2)
h2

is an upper bound of the convergence error (for our examples λ = 0).
It remains to compute the unique solution of the (generalized) interpolation

problems (see p.137, (i)(a)). Since m1 = m2 we have to derive only one formula.
Let3 P =M ′ ⊙ (K0 +K1 ⊙M). Then the interpolation conditions read:

M ′(α) ⊙
(
K0 + K1 ⊙M(α)

)
= F (α) , (7.8)

M ′(β) ⊙
(
K0 + K1 ⊙M(β)

)
= F (β) , (7.9)

By Assumption 7 (p.122) M(x, ε)′ij 6= 0 for all 1 ≤ i, j ≤ d and all (x, ε) ∈ Ω.
Thus, the unique solution of (7.8), (7.9) is

K1 =
(
F (x)⊙M ′(x)⊙−1

∣∣β
x=α

)
⊙
(
M(α)−M(β)

)
⊙−1

(7.10)

K0 = F (α) ⊙M ′(α)⊙−1 − C1 ⊙M(α) . (7.11)

3Here M(x, ε) = DΦ(x) + diag(1ν1 , . . . ,1νq )x, cf. Proposition 6.3.1
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We use our Matlab function fun Pd linear.m to compute K0,K1. The crucial
variables for the OSM are P ⋄

1 (α) and P ⋄
1 (β) (see p.137ff). These values are

returned by the function. The code reads4:

function [Pd1, Pd2] = fun_Pd_linear(L1, L2, Phi1, Phi2, ...

F1, F2, x1, x2, epsilon)

global eins I_nu

DPhi1 = kron(Phi1, eins’)-kron(Phi1, eins’)’;

DPhi2 = kron(Phi2, eins’)-kron(Phi2, eins’)’;

M1 = DPhi1 + I_nu*x1;

M2 = DPhi2 + I_nu*x2;

Mx1 = kron(L1, eins’)-kron(L1, eins’)’ + I_nu;

Mx2 = kron(L2, eins’)-kron(L2, eins’)’ + I_nu;

K1 = (F1./Mx1 - F2./Mx2)./(M1-M2);

K0 = F1./Mx1 - K1.*M1;

Pd1 = 1i*epsilon*( (K0-1i*epsilon*K1) + K1.*DPhi1) + ...

I_nu.*(x1*K0 + x1^2/2*K1);

Pd2 = 1i*epsilon*( (K0-1i*epsilon*K1) + K1.*DPhi2) + ...

I_nu.*(x2*K0 + x2^2/2*K1);

end

Now let us write down the program for the OSM. The complete Matlab Code
is written on page 185ff.

We do not replace τ by its specified value, because the program (as written
down below) is valid for all τ ∈ N. Assume we have a more sophisticated
function fun Pd.m, which solves an arbitrary generalized interpolation problem.
Then, replacing fun Pd linear.m by fun Pd.m yields a program which includes
all OSM from p.137ff with λ = 0.

Assume we have already computed the quantities5 Sn, Ln,Φn, Eε,n, and z
n.

(i) compute Sn+1, Ln+1, Φn+1, Eε,n+1 and set S1,n := Sn, S1,n+1 := Sn+1

and C0
n,α = C0

n,β = C0
n,α = C0

n,β = Id.

(ii) For j = 1, . . . , τ do

(a) compute P ⋄
j,n, P

⋄
j,n+1 with fun Pd linear.m (F1 = Sj,n, F2 = Sj,n+1)

(b) Qjn = EεΦ(xn+1)⊙ P ⋄
j (xn+1) − EεΦ(xn)⊙ P ⋄

j (xn)

4Here the variables at α and β are marked with 1 and 2 respectively.
5Here the lower index n denotes the exact quantity evaluated at the grid point xn.
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(c) compute

Cjn,α := −
j∑

l=1

P ⋄
l (xn) Cj−ln,α , Cjn,α := E∗

ε (xn)Cjn,αEε(xn) ,

Cjn,β := −
j∑

l=1

P ⋄
l (xn+1) Cj−ln,β , Cjn,β := E∗

ε (xn+1)Cjn,βEε(xn+1) .

(d) set Sj+1,n = SnP
⋄
j,n and Sj+1,n+1 = Sn+1P

⋄
j,n+1

end

(iii) update quantities for the next interval, i. e.

Sn = Sn+1 , Ln = Ln+1 , Φn = Φn+1 , Eε,n = Eε,n+1 .

(iv) compute An, Bn by (6.35), (6.36), i. e.

An =
τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Cln,α , Bn = −
τ∑

k=1

ρk Qkn

τ−k∑

l=0

ρl Cln,β

(v) solve

(
Id + σiBn

)
zn+1 =

(
Id + σeAn

)
zn .

If we set τ = 1 and σe = σi =
1
2 we get the Crank–Nicolson like scheme.

The Matlab code of the OSM

In this section we present the complete Matlab code for the OSM, which is used
to solve the numerical examples. We only erased some unimportant comments
(line 1-15) at the beginning of the file and rearranged some lines, such that the
program fits to the pages. The conversion of the program from a Matlab m-file
to LATEX is done with the “free” m–file highlight.m by Guillaume Flandin.

016 function z = fun_oss(x, Phi, L, S, nu, epsilon, rho, z0)

017

018 global Id eins I_nu

019

020 %-------------------------------------------------------

021 % Schemaparameter

022 %-------------------------------------------------------

023

024 tau = 1;

025

026 sigma = 1/2;

027 sigma_i = 1-sigma;

028 sigma_e = sigma;

029

030 % kappa^a = 2;
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031 % kappa^o = 2;

032 % kappa^b = 2;

033 %

034 % iota^a = [0 1];

035 % ioat^o = [0 1];

036 % iota^b = [0 1];

037 %

038 % m^a = [1 1; 1 1; 1 1];

039 % m^o = [1 1; 1 1; 1 1];

040 % m^b = [1 1; 1 1; 1 1];

041

042 %-------------------------------------------------------

043 % Technische Größen

044 %-------------------------------------------------------

045

046 N = max(size(x));

047 d = sum(nu);

048 Id = eye(d);

049 eins = ones(d,1);

050 O = zeros(d,d); % hier steht der Buchstabe O

051 % und nicht die Ziffer 0

052 I_nu = ones(nu(1),nu(1));

053 for j = 2:max(size(nu))

054 I_nu = blkdiag( I_nu, ones(nu(j),nu(j)) );

055 end

056

057 %-------------------------------------------------------

058 % Speicherreservierung

059 %-------------------------------------------------------

060

061 z = zeros(d,N);

062

063 Pdnm1 = zeros(d,d,tau);

064 Pdn = zeros(d,d,tau);

065

066 calCa = zeros(d,d,tau+1);

067 calCb = zeros(d,d,tau+1);

068

069 Ca = zeros(d,d,tau+1);

070 Cb = zeros(d,d,tau+1);

071

072 Qn = zeros(d,d,tau);

073

074 %-------------------------------------------------------

075 % Anfangswerte

076 %-------------------------------------------------------

077

078 calCa(:,:,1) = Id;

079 calCb(:,:,1) = Id;

080
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081 Ca(:,:,1) = Id;

082 Cb(:,:,1) = Id;

083

084 z(:,1) = z0;

085

086 xnm1 = x(1);

087 Phinm1 = Phi(:,1);

088 Lnm1 = L(:,1);

089 Snm1 = S(:,:,1);

090

091 Enm1 = diag(exp(1i/epsilon*Phinm1));

092

093 %-------------------------------------------------------

094 % Evolutionsschleife

095 %-------------------------------------------------------

096

097 for n=2:N

098 %---------------------------(i)-------------------------

099 xn = x(n);

100 Phin = Phi(:,n);

101 Ln = L(:,n);

102 Sn = S(:,:,n);

103

104 jSnm1 = Snm1;

105 jSn = Sn;

106 En = diag(exp(1i/epsilon*Phin));

107

108 %---------------------------(ii)------------------------

109 for j=1:tau

110

111 %---------------------------(a)-----------------

112 [Pdm, Pd] = fun_Pd_linear(Lnm1, Ln, Phinm1, Phin, ...

113 jSnm1, jSn,xnm1, xn, epsilon);

114 Pdnm1(:,:,j) = Pdm;

115 Pdn(:,:,j) = Pd;

116

117 %---------------------------(b)-----------------

118 Qn(:,:,j) = En’*Pd*En - Enm1’*Pdm*Enm1;

119

120 %---------------------------(c)-----------------

121 clCa = O; % hier steht der Buchstabe O

122 clCb = O; % und nicht die Ziffer 0

123

124 for l=1:j

125 clCa = clCa - Pdnm1(:,:,l)*calCa(:,:,j-l+1);

126 clCb = clCb - Pdn(:,:,l) *calCb(:,:,j-l+1);

127 end

128

129 calCa(:,:,j+1) = clCa;

130 calCb(:,:,j+1) = clCb;
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131

132 Ca(:,:,j+1) = Enm1’*clCa*Enm1;

133 Cb(:,:,j+1) = En’ *clCb*En;

134

135 %---------------------------(d)-----------------

136 jSnm1 = Snm1*Pdm;

137 jSn = Sn *Pd;

138

139 end

140 %---------------------------(iii)-----------------------

141

142 Phinm1 = Phin;

143 Snm1 = Sn;

144 Lnm1 = Ln;

145 Enm1 = En;

146 xnm1 = xn;

147

148 %---------------------------(iv)------------------------

149 An = O; % hier steht der Buchstabe

150 Bn = O; % O und nicht die Ziffer 0

151 Gmma = O;

152 Gmmb = O;

153

154 for k = tau:-1:1

155 Gmma = Gmma + rho^(tau-k)*Ca(:,:,tau-k+1);

156 Gmmb = Gmmb + rho^(tau-k)*Cb(:,:,tau-k+1);

157 An = An + rho^k*Qn(:,:,k)*Gmma;

158 Bn = Bn - rho^k*Qn(:,:,k)*Gmmb;

159 end

160

161 %---------------------------(iv)------------------------

162 z(:,n) = (Id+sigma_i*Bn)\((Id+sigma_e*An)*z(:,n-1));
163

164 end

165 end



Chapter 8

Miscellaneous

For the computation of the WKB–type transformation from § 3.3 (cf. § 4) we
need numerical approximations of derivatives. Furthermore (for non–equidistant
grids) we also have to approximate certain values at of grid points. In this
chapter we shall discuss our strategies for this problems.

We choose a finite difference approach to approximate derivatives. This is
discussed in § 8.1. Here we prove a quite general statement about the approx-
imation error of finite difference approximations and derive an inhomogeneous
linear system whose solution gives the “best” choice of weights for prescribed
abscissas. This approach can be used to derive approximations of derivatives
for non–equidistant spaced abscissas. In this case, one has to solve the linear
system. We also compute the formulas for equidistant finite differences for the
first derivative, which are of fourth order.

In § 8.2 we make some numerical experiments with the finite differences
discussed in § 8.1. Here we quite good observe a superposition of the theoretical
error bound and numerical noise which (most likely) originates from Matlabs
machine accuracy.

The section § 8.3 is dedicated to the approximation of non–grid values for
the numerical solution of a first order initial value problem. We use Hermite
interpolation of the numerical solution to determine an approximation between
to grid points. As long as the integrator used to compute the solution of the IVP
has an order of four or less, the interpolation approach shall (approximately)
be as accurate as the solutions at the grid points (cf. Lemma 8.3.1).

In the final section § 8.4 we collect some (frequently used) classical results
for ODEs from literature.

8.1 Finite differences

In this section we discuss the finite differences we use to approximate the first
derivative of a given function f . We start with a general setting where the
support abscissas are (in a certain framework) arbitrary. Afterwards we discuss
the special case of equidistant grids and write down the explicit formulas.

Definition 8.1.1. Let r, s ∈ N with r < s and let η1 < · · · < ηs ∈ R and

189
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v ∈ Rs. For h > 0, x ∈ R and f ∈ C(R) we define

FDr[η,v](f, x, h) :=
1

hr

s∑

l=1

vlf(x+ ηlh) .

Lemma 8.1.2. Let s ∈ N and let η1 < · · · < ηs ∈ R. Furthermore let x ∈ R

and let h0 > 0. We set

I := [min(x, x + η1h0),max(x, x+ ηsh0] .

Than there exists for every r = 1, . . . , s− 1 a unique vector vr ∈ Rs, such that
for all f ∈ Cs(I) there exists a constant c ≥ 0, such that for all (admissible)
0 < h ≤ h0 it holds

|f (r)(x)− FDr[η,vr](f, x, h))| ≤ c hs−r . (8.1)

The constant c depends on p and f . More precise one finds

c ≤ c̃(p) ‖f (s)‖L∞(I) .

Proof. Firstly it is clear that x + ηjh ∈ I for 0 < h ≤ h0 and j = 1, . . . , s.
The proof is based (as usual) on Taylor expansion. Since f ∈ Cs(I) it holds for
x, x+ δ ∈ I

f(x+ δ) =

s−1∑

k=0

f (k)(x)
δk

k!
+ R(x, δ, s) . (8.2)

The remainder can be written down in its Lagrangian form (cf. [23]):

R(x, δ, s) = f (s)(ξ(x, δ))
δs

s!
,

with some ξ(x, δ) ∈ [min(x, x + δ),max(x, x + δ)]. This yields

FDr[η,v](f, x, h) =
1

hr

s∑

l=1

vlf(x+ ηlh)

=
1

hr

s∑

l=1

vl

s−1∑

k=0

f (k)(x)
(ηlh)

k

k!
+ R(x, ηlh, s)

=
1

hr

s−1∑

k=0

f (k)(x)
hk

k!

s∑

l=1

vlη
k
l +

1

hr

s∑

l=1

vlR(x, ηlh, s) .

Since v does not depend on h, the sum of the remainder terms is of order
O(hs−r). Hence to fulfill (8.1) it is necessary and sufficient that v solves the
h–independent linear system:




η01 . . . η0s
...

...
ηs−1
1 . . . ηs−1

s







v1
...
vs


 = r!

(
δi,r
)
i=1,...,s−1

.

The transposed of the above matrix is known as Vandermonde matrix (cf. [33]).
Since η1 < · · · < ηs the linear system is uniquely solvable.
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Remark 8.1.3. From the proof of Lemma 8.1.2 we deduce that the unique
vector v(r) ∈ Rn from Lemma 8.1.2 is given as the unique solution of the linear
system




1 . . . 1
η11 . . . η1s
...

...
ηs−1
1 . . . ηs−1

s







v1
...
vs


 = r!

(
δi,r
)
i=0,...,s−1

. (8.3)

Let A be the matrix on the left hand side and let w be the unique solution of
ATw = b. Than (cf. [33]) p(x) :=

∑s−1
j=0 wjx

j solves the interpolation problem
p(ηj) = bj for j = 1, . . . , s. Hence finding the coefficient vector v for the fi-
nite difference scheme is (in some sense) an adjoint problem to the polynomial
interpolation problem. If w1, . . . , ws ∈ Rs are given such that ATwj = ej for
j = 1, . . . , s with ej = (δij) ∈ Rs (i. e. w1, . . . , ws are the coefficients of the
Lagrange interpolation polynomials corresponding to the support abscissas η),
than it holds

vj = eTj v = (ATwj)
T v = wTj Av = wTj r! er+1 .

This yields v = r!(w1,r+1, . . . , ws,r+1)
T .

Corollary 8.1.4. The FD schemes from Lemma 8.1.2 are exact on the space
of polynomials of degree less than s.

Proof. For polynomials of degree less than s the remainder of the Taylor ap-
proximation in (8.2) is zero. Hence the linear system (8.3) is equivalent to the
FD.

For certain numerical examples we use equidistant grids. Since we want to
approximate first derivatives with order O(h4), we set s = 5. We should stay as
close as possible to the point where the derivative is approximated. Hence there
shall be an index j0 such that ηj0 = 0. This yields the following five vectors:

η =




0
1
2
3
4



,




−1
0
1
2
3



,




−2
−1
0
1
2



,




−3
−2
−1
0
1



,




−4
−3
−2
−1
0



.

For each of them we have derived the corresponding coefficients v with Maple14.
This yields the finite difference schemes of Definition 8.1.5.

Definition 8.1.5. Let f be continuous on [a, b] and let xn be grid a point of the
equidistant grid a = xna < · · · < xnb

= b with na ≤ 0 ≤ nb and step size h, i. e.
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xj = x0 + jh for j = na, . . . , nb. For (in each case) properly chosen n we define

FD1
(0,4)[f ]n :=

1

12h

(
− 25fn + 48fn+1 − 36fn+2 + 16fn+3 − 3fn+4

)
,

FD1
(1,3)[f ]n :=

1

12h

(
− 3fn−1 − 10fn + 18fn+1 − 6fn+2 + fn+3

)
,

FD1
(2,2)[f ]n :=

1

12h

(
fn−2 − 8fn−1 + 8fn+1 − fn+2

)
,

FD1
(3,1)[f ]n :=

1

12h

(
− fn−3 + 6fn−2 − 18fn−1 + 10fn + 3fn+1

)
.

FD1
(4,0)[f ]n :=

1

12h

(
3fn−4 − 16fn−3 + 36fn−2 − 48fn−1 + 25fn

)
.

Here we use the notation fj for f(xj). The index tuple describes the numerical
stencil used for the scheme. More precise (r, s) means one uses the values at
the grid points xn−r, . . . , xn+s.

8.2 Numerical experiments for the finite differ-
ences from § 8.1

In this section we visualize the numerical behavior of the Finite Differences from
Lemma 8.1.2. The estimate (8.1) yields the convergence of the FD as h → 0.
But it is well known that this theoretically result breaks down for numerical
approximations on a computer, when the step size gets to small (cf. [29]). A
reason for this is the influence of the machine accuracy and the related round off
error. Hence the step size we use for the FD should not be to small or to large.
In order to get an idea of a “good” interval let us approximate some derivatives
and compare them with the exact solution. The result shall be a superposition
of the theoretical error from Lemma 8.1.2 and the effect of machine accuracy and
accuracy of solving the occurring linear system (8.3). The latter errors we call
numerical noise, which is plotted in Figure 8.1 (p.194) and Figure 8.1 (p.194)
for general FDs from Lemma 8.1.2, Remark 8.1.3, and the equidistant FDs from
Definition 8.1.5 respectively. The (theoretical) general FDs from Lemma 8.1.2
are exact on polynomials up to a degree of order s (see Corollary 8.1.4). Hence
an approximation of the first derivative of a polynomial of degree less than s
makes the numerical noise visible. Since we use second and fourth order FDs
we choose f(x) = x and approximate f ′(x) = 1 at x = 1.

Let f be a smooth function (for simplicity of notation on the whole real line)
and let x ∈ R be a point at which we want to approximate the rth derivative
of f . Further let ξ1 < · · · < ξn ∈ R (n > r) be our support abscissas and let
f1, . . . , fn be the corresponding values of f . Since the largest distance from x
to the ξj determines h, the abscissas should be chosen close to x. The program
to compute the general FDs is based on Remark 8.1.3:

(i) compute the relative coordinates, i. e. η̃ = (ξj − x)j=1,...,n

(ii) determine h = max(abs(η))

(iii) rescale η̃: η = η̃/h

(iv) compute the Vandermonde Matrix A corresponding to η, i. e. Aij = ηj−1
i
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(v) solve the linear system AT v = r!(δr+1,j)j=1,...,n

(vi) set FD = 1
hr

∑n
j=1 vjfj .

In matlab exists the routine vander to derive the Vandermonde Matrix A from
the vector η. But its definition differs from our. There the calculation rule is
Aij = vn−ji . Hence the linear system one has to solve reads Av = r!(δn−r,j).
The rescaling of η in (iii) yields moderate coefficients of A which are of order
O(1). Without rescaling the smallest (non zero) entries of A could be at machine
precision, which strongly reduces the accuracy of the linear system solution.

In order to compute the numerical noise we first fix a vector η for each
scheme. Than we derive for every value of h the corresponding abscissas ξ
and plug in the (needed) corresponding values in the program. The result is
compared with the exact solution f ′(1) = 1. We use the following general FDs:

scheme η

4th-order symmetric 1
2 (−2, −1, 0, 1, 2)

4th-order left 1
8 (−8, −5, −2, −1, 0)

4th-order right 1
8 (0, 1, 2, 5, 8)

2th-order symmetric (−1, 0, 1)
2th-order left 1

4 (−4, −3, 0)
2th-order right 1

3 (0, 1, 3)

In Figure 8.2 and 8.2 we plot the numerical noise for non–equidistant and
equidistant FD as described before. We observe that the approximation er-
ror of the FDs from Definition 8.1.5 is a bit smaller than those of the general
FDs. This is reasonable, since one additionally has to solve a linear problem,
compared to the equidistant schemes. However, in both Figures we observe a
O(h−1) behavior of the numerical noise.

In Figure 8.3 we plot the numerical error the equidistant FDs from Definition
8.1.5. We approximate the first derivative of f(x) =

√
x2 + δ2 at x = 1 with

δ = 10−7. This function appears in the § 7.3 and is denoted by ∆. The triangles
have a slope of 2 (upper triangle) and slope 4 (lower triangle). The (black)
dashed and solid lines are the approximate upper bounds of the numerical noise
for equidistant and non–equidistant FDs respectively, as drawn in Figure 8.1
and Figure 8.2.

Furthermore, in Figure 8.4 we plot the numerical error for FDs with equidis-
tant abscissas from Definition 8.1.5. We approximate the first derivative of
f(x) = 1/

√
x2 + δ2 at x = 1 with δ = 10−7. The triangles have a slope of 2

(upper triangle) and slope 4 (lower triangle). The (black) dashed and solid lines
are the approximate upper bounds of the numerical noise for equidistant and
non–equidistant FDs respectively, as drawn in figure 8.1 and Figure 8.2.

In both Figures we observe that the FDs with support abscissas at the right–
hand side yield (for large h) the “smoothest” results. This is reasonable, since
the function ∆ has a sharp “peak” at x = 0. Thus the other FDs use function
values beyond or close to the peak, which of course reduces the accuracy.

8.3 Intermediate values

Let y be the unique solution of the initial value problem (on [a, b] ⊂ R)

y′(x) = A(x)y(x) + f(x) , y(x0) = y0 ∈ Cd ,
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Figure 8.1: Numerical noise for some FDs with non–equidistant abscissas. The
first derivative of f(x) = x at x = 1 is approximated. The solid black line has
slope −1, which indicates an O(h−1) behavior of the approximation error.
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Figure 8.2: Numerical noise for the FDs with equidistant abscissas from Defini-
tion 8.1.5. The first derivative of f(x) = x at x = 1 is approximated.
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Figure 8.3: Numerical error the equidistant FDs from Definition 8.1.5. The
first derivative of f(x) =

√
x2 + δ2 at x = 1 with δ = 10−7 is approximated.

The triangles have a slope of 2 (upper triangle) and slope 4 (lower triangle).
The (black) dashed and solid lines are the approximate upper bounds of the
numerical noise for equidistant and non–equidistant FDs respectively, as drawn
in Figure 8.1 and Figure 8.2.
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Figure 8.4: Numerical error for FDs with equidistant abscissas from Definition
8.1.5. The first derivative of f(x) = 1/

√
x2 + δ2 at x = 1 with δ = 10−7

is approximated. The triangles have a slope of 2 (upper triangle) and slope
4 (lower triangle). The (black) dashed and solid lines are the approximate
upper bounds of the numerical noise for equidistant and non–equidistant FDs
respectively, as drawn in figure 8.1 and Figure 8.2.



8.3. INTERMEDIATE VALUES 197

with x0 ∈ [a, b]. Further let yn be a numerical approximation of y(xn), computed
with a numerical integrator on the grid a = xna < xna+1 · · · < nnb

= b. We
assume that the used method is of order O(hγn), i. e. there exists a constant
c > 0 independently of n and the grid, such that

|y(xn)− yn| ≤ c hγn with hn := xn+1 − xn .

If we want to compute values of y at a non grid abscissa x we use the following
interpolation approach.

Let x ∈ [xn, xn+1] and let p be the unique third order polynomial which
solves the Hermite interpolation problem

p(xn) = y(xn) , p(xn+1) = y(xn+1) ,

p′(xn) = y′(xn) , p′(xn+1) = y′(xn+1) .

It holds (cf. [29, p.311f])

p(x) = y(xn)Hn(x) + y(xn+1)Hn+1(x)

+ y′(xn)Ĥn(x) + y′(xn+1)Ĥn+1(x) .

The polynomials Hn, Hn+1, Ĥn+1, Ĥn+1 are given by

Hn(x) =

(
1− 2

x− xn
xn − xn+1

)(
x− xn+1

xn − xn+1

)2

, (8.4)

Hn+1(x) =

(
1− 2

x− xn+1

xn+1 − xn

)(
x− xn

xn+1 − xn

)2

, (8.5)

Ĥn(x) = (x− xn)

(
x− xn+1

xn − xn+1

)2

, (8.6)

Ĥn+1(x) = (x− xn+1)

(
x− xn

xn+1 − xn

)2

. (8.7)

Hence p(x) is a suitable approximation for y(x).

Lemma 8.3.1. Let A ∈ C3([a, b],Cn×n), f ∈ C3([a, b],Cd) and let the relative
coordinates θl, θr ∈ [0, 1], such that1

x = xn + θlhn and x = xn+1 − θrhn .

Further let y, yn, yn+1 be as described in the beginning of this section and let

y := θ2r
[
(1 + 2θl) Id + θlhnAn

]
yn + θ2rθlhn fn

+ θ2l
[
(1 + 2θr) Id − θrhnAn+1

]
yn+1 − θ2l θrhn fn+1 .

Here An, An+1, fn, fn+1 are short notations for A(xn), A(xn+1) and f(xn),
f(xn+1) respectively. It holds

|y(x)− y| ≤ ‖y(4)‖∞

256 h4n +
(
‖ Id ‖ + hn

4 ‖A‖∞
)
c hγn .

The constant c ≥ 0 is (only) determined by the numerical integrator used to
compute yn, yn+1.

1I. e.θr = 1− θl.
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Proof. Inserting the two representations of x in (8.4),. . . ,(8.7) yields

Hn(x) = (1 + 2θl)θ
2
r , Hn+1(x) = (1 + 2θr)θ

2
l ,

Ĥn(x) = θlhnθ
2
r , Ĥn+1(x) = −θrhnθ2l .

Hence we get,

p(x) = y(xn)(1 + 2θl)θ
2
r + y(xn+1)(1 + 2θr)θ

2
l

+ y′(xn)θlhnθ
2
r − y′(xn+1)θrhnθ

2
l .

The derivatives of y can be replaced, using the ODE, by Ay + f . This yields

p(x) := θ2r
[
(1 + 2θl) Id + θlhnA(xn)

]
y(xn) + θ2rθlhn f(xn)

+ θ2l
[
(1 + 2θr) Id − θrhnA(xn+1)

]
y(xn+1) − θ2l θrhn f(xn+1) .

Thus we get

‖p(x)− y‖ ≤
∥∥(θ2r(1 + 2θl) Id + θ2rθlhnAn

∥∥‖y(xn)− yn‖
+
∥∥(θ2l (1 + 2θr) Id + θ2l θrhnAn+1

∥∥‖y(xn+1)− yn+1‖
≤

(
(θ2r(1 + 2θl)‖ Id ‖ + θ2rθlhn‖An‖

)
c hγn

+
(
(θ2l (1 + 2θr)‖ Id ‖ + θ2l θrhn‖An+1‖

)
c hγn

=
(
θ2r(1 + 2θl) + θ2l (1 + 2θr)

)
‖ Id ‖ c hγn

+ θlθr(θr‖An‖+ θl‖An+1‖) c hγ+1
n .

Since θr = 1− θl and θl ∈ [0, 1], we get good estimates of the constants in front
of the norms. A straight forward calculation/discussion shows

sup
θ∈[0,1]

(1− θ)2(1 + 2θ) + θ2(1 + 2(1− θ)) = 1 ,

sup
θ∈[0,1]

θ(1 − θ) =
1

4
.

Hence these estimates yield (θl + θr = 1)

‖p(x)− y‖ ≤
(
‖ Id ‖ + hn

4 ‖A‖∞
)
c hγn .

Since A and f are C3, we have y ∈ C4([a, b],Cd). Thus by Lemma 5.2.5 or [29,
(6.51)] we know that there exists a ξ ∈ [xn, xn+1], such that

y(x)− p(x) = y(4)(ξ)
(x − xn)

2(x− xn+1)
2

4!
= y(4)(ξ)

θ2l θ
2
r

16 h4n .

This yields the error estimate

‖y(x)− y‖ ≤ ‖y(x)− p(x)‖ + ‖p(x)− y‖
≤ ‖y(4)‖∞

256 h4n +
(
‖ Id ‖ + hn

4 ‖A‖∞
)
c hγn .

Here we have used the estimate θrθl = θr(1 − θr) ≤ 1
4 .

Remark 8.3.2. The explicit error estimate in Lemma 8.3.1 shows that the
approximation error of yn, yn+1 with respect to y(xn), y(xn+1) is moderately
amplified. Thus the interpolation approach has some kind of robustness with
respect to the perturbed data. As long as γ ≤ 4, the data error will be the main
contribution, provided ‖y(4)‖∞ is not too large.
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8.4 Some classical results for linear ODEs

In this section we review the variation of constants approach and a Gronwall
estimate, which we use several times in the previous chapters.

Lemma 8.4.1 (Variation of constants). Let I ⊂ R be an open interval and
A ∈ C(I,Cν×ν), b ∈ C(I,Cν). The unique solution of the IVP

y′ = Ay + b , y(x0) = y0 ∈ Cν

is given by

y(x) = U(x, x0)y0 +

∫ x

x0

U(x, s)b(s) ds .

The evolution operator U ∈ C1(I × I, Cν×ν) fulfills for all x, s ∈ I

d

dx
U(x, s) = A(x)U(x, s) , U(s, s) = Id

and for all x, s ∈ I

U(x, s)U(s, x) = Id .

This lemma is [2, Theorem 11.13].

Remark 8.4.2. Let α := supx∈I ‖A(x)‖ < ∞. Then, by a simple Gronwall
argument (cf. Lemma 8.4.3), there exists a constant β only depending on α,
such that for all x, s ∈ I it holds ‖U(x, s)‖ < β. Hence ‖ d

dxU(x, s)‖ ≤ α + β.
Since U(x, s)U(s, x) = Id and U ∈ C1(I × I,Cd×d),

d

dx
U(s, x) = −U(s, x)

d

dx
U(x, s)U(s, x) ,

which yields for all x, s ∈ I

∥∥∥∥
d

ds
U(x, s)

∥∥∥∥ ≤ β(α)2(α+ β(α)) .

Lemma 8.4.3 (Gronwall). Let I ⊂ R be an interval, x0 ∈ I and let the func-
tions µ, σ, f ∈ C(I,R) be nonnegative. Additionally, let for all x ∈ I

f(x) ≤ µ(x) +

∣∣∣∣
∫ x

x0

σ(s)f(s) ds

∣∣∣∣ .

Then it holds for all x ∈ I:

f(x) ≤ µ(x) +

∣∣∣∣
∫ x

x0

µ(s)σ(s)e|
∫ x
s
σ(ξ) dξ| ds

∣∣∣∣ .

This is also from [2].
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Chapter 9

Conclusion and open
problems

The two–band Schrödinger models from chapter 2 have been our motivation
to discuss numerical integrators for the highly oscillatory model problem from
§ 3.2, i. e.

u′(x) =
1

ε
L(x)u(x) + B(x)u(x) , u(a) = u0 ∈ Cd . (9.1)

Here L,B : [a, b] → Cn×n are smooth, such that L(x) is real and diagonal for all
x ∈ [a, b]. We have introduced a new analytic preprocessing for the vector valued
initial value problem (9.1), which generalizes the ’reformulation’ approach from
[4]. The derived transformation removes the dominant high oscillations with
frequency ∼ 1

ε and amplitude of O(1) as ε → 0 of the solution u. Despite
the fact that (in general) high oscillations are still present in the transformed
variable z, the gained equivalent initial value problem

z′(x) = εnAn(x)z(x) , z(a) = z0 ∈ Cd (9.2)

is much better suited for numerical treatment than (9.1). Here the solution z
oscillates (also with frequency ∼ 1

ε ) around the initial condition z0, but with
amplitudes of O(εn) as ε→ 0, instead of O(1) as for u.

We have also shown that the transformation can be derived from an asymp-
totic expansion of the solution u from (9.1), which we established in § 3.5.
Our expansion can be interpreted as the vector valued analogon of the WKB–
method, which is well known for the scalar stationary Schrödinger equation
(9.3). The scalar case is incorporated in our model problem (9.1) for strictly
positive potentials V of the ODE (9.3).

In § 3.3.1 we have shown that our approach is a generalization of the ansatz
used in [4]. Furthermore, in § 3.3.2 we discussed the differences to the super
adiabatic transformations (SAT) introduced in [27]. Our new transformation
approach and the SAT yield very good results when staying away from avoided
eigenvalue crossing of the matrix L(x) from (9.1). Away from this points the
asymptotic expansions, upon which the methods are based, are quite accurate.
But close to an avoided crossing, a new smaller scale has to be introduced,
possibly combined with an adaptive choice of the step size for the numerical

201
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computations (cf. § 4.4 and [27, §XIV]). However, the limiting case of an eigen-
value crossing can be understood with the Landau–Zener formula [26].

Furthermore, the transformation of the (one dimensional) scalar stationary
Schrödinger equation

ψ′′(x) +
1

ε2
V (x)ψ(x) = 0 , (9.3)

to (9.1) (as discussed in § 2.2) and the asymptotic expansion of the related solu-
tion u from (9.1) break down, if we approach a turning point of the differential
equation (9.3). A turning point is a zero of the function V from (9.3). Also here
it is not yet clear how to modify the discussed transformation approach and the
asymptotic expansion of the solution, such that we can deal with this situation.
For a simple turning point (i. e. a simple zero of V ) there exists an asymptotic
expansion of the solution ψ from (9.3), which is based on Airy functions. It
seems to be a globally valid asymptotic approximation, i. e. it is asymptotically
correct in the oscillatory regime (V > 0), in the part where ψ exponentially
growths and decays (V < 0, also called evanescent region), and in the tran-
sition layer as ε → 0. An explicit formula for the expansion can be found in
[32, p.179]. Based on this one may derive a transformation approach for (9.3)
in the presence of a simple turning point. It is also worth to notice, that the
scalar second order equation for ψ can be transformed into a semi linear first
order differential equation, a so called Riccati equation. This can be done1 by
the ansatz ψ = e

1
ε

∫
ρ dx, which yields

ερ′ + ρ2 + V = 0 . (9.4)

If is ψ highly oscillatory, then the solution ρ of (9.4) has a large imaginary
part, while in the evanescent region the real part of ρ dominates. Beside this
difference, we expect both regions to be equal in this representation. I. e. we
expect that the function ρ shows a similar growth behavior for the evanescent
and oscillatory parts. Hence this may allow a uniform approximation of ψ via
ρ as ε→ 0.

In § 6 we have derived efficient marching methods for the initial value prob-
lem (9.2) and proved convergence of the methods. The derived schemes are
asymptotically correct as ε → 0. To be more precise, the approximation er-
ror is at most of order O(εn), even for a fixed spatial grid. Moreover we have
shown that, in the whole “zoo” of one–step methods, there are integrators with
an approximation error of maximal asymptotic order (with respect to ε) of
O(ε2n+1hm). Here h is the maximal step size of the grid. While n is a pre-
scribed value, coming from the initial value problem, m ∈ N is (more or less)
arbitrary. In applications ε is a very small constant and hence these integrators
can use very large grids compared to the local wavelength which is ∼ ε. In this
theses we have not considered conservative, reversible, or symplectic methods.
But since our approach is quite general, it should be possible to construct such
integrators with the discussed tools.

One essential ingredient for the construction of the efficient one–step meth-

1Since V is real valued, there exists a real valued fundamental system of solutions ψ1, ψ2

of (9.3). Hence ψ = ψ1 + iψ2 has no zeros and thus we can write ψ = e
1
ε

∫
ρ dx
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ods in § 6 is an advanced quadrature for highly oscillatory integrals of the form

I :=

∫ β

α

f(x)e−
i
εϕ(x) dx =

∫ ϕ(β)

ϕ(α)

f(ϕ−1(ξ))

ϕ′(ϕ−1(ξ))
e−

i
ε ξ dξ . (9.5)

We have chosen an approach from literature (cf. [60, 61]). For this ansatz we
have established an error analysis, which yields error estimates in terms of the
interval length |α− β|. As far as we know this has not yet been done. We have
also been able to improve the quadrature used in [4]. Our newly derived version
yields a much better asymptotic accuracy (with respect to the interval length)
than the original, but with the same numerical effort. However, the discussed
quadratures are not designed for integrals with stationary points, which appear if
we allow crossing eigenvalues of L in (9.1). To deal with this case other methods
have to be used, which are already available (cf. [35]). It is also important to
analyze this quadratures in the presence of “avoided stationary points“, which
show up when we approach an avoided eigenvalue crossing of L. One idea to
create a more robust quadrature, i. e. a quadrature which admits error estimates
which are valid for functions without and with (avoided) stationary points, is

to approximate the term f(ϕ−1)
ϕ′(ϕ−1) of the integrand in (9.5) by rational functions

instead of polynomials, as we have done for our method of choice.
The approximation procedures to discretize the WKB–type transformation

from § 3.3, as discussed in § 4, are derived in a straight forward way. Hence
we believe that there is some space for improvement. Also we have not yet
established a rigorous error analysis of the described methods. This is dedicated
to future work.
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Chapter 10

The one way wave equation

The final chapter of this thesis is not (directly) related to the previous work.
It is a collection of few results the author derived during the beginning of his
doctoral studies. The chapter heading is just a part of the topic we were dealing
with. We intended to derive (possible finite) difference schemes for a one way
wave equation (cf. (10.18)), which originates form a two dimensional Helmholtz
(–type) equation (cf. (10.14)-(10.18)). Unfortunately, it turns out that the
intended techniques and ideas do not work. Hence, this chapter mainly contains
results from literature. A large part are revised lecture notes of a short course
the author taught at the Wissenschaftskolleg Differential Equations1 Summer
Camp in 2007. Nevertheless, it turns out that the numerical methods discussed
in the previous chapters may be used to derive integrators for the one way wave
equation. Due to lack of time this is not discussed in this work. We shall only
state the basic ideas.

We shall continue to point out the basic idea of a one way wave equation.
Wave phenomena in electrodynamics or acoustics are often well described by
the Wave Equation (x ∈ Rd, t ∈ R)

∆xψ(x, t) − 1

c2(x, t)

∂2

∂t2
ψ(x, t) = 0 .

The quantity c is the local wave propagation velocity and ψ (e. g.) describes the
strength of the electric potential (electrodynamics) or the pressure (acoustics).

If c does not depend on time, the separation ansatz2 ψ(x, t) = eiωtψ̂(x) yields
the Helmholtz equation (HE)

∆xψ̂(x) +
ω2

c2(x)
ψ̂(x) = 0 . (10.1)

Let z = (x2, . . . , xd) ∈ Rd−1 and define

A(x1, z) := ∆z +
ω2

c2(x1, z)
.

If the waves, we are modeling, mainly propagate in x1–direction, it may be more
convenient to reformulate (10.1) as a first order evolution problem (with respect

1A PhD program of the Vienna University of Technology and the University of Vienna.
2Alternatively one can apply the Fourier–transformation in t.
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to x1). This can be (formally) done by using the ansatz (2.24) from § 2.2.1:

v1 := A
1
2ψ , v2 :=

∂

∂x1
ψ . (10.2)

Let us denote the partial derivate with respect to x1 by ′, i. e. ψ′ = ∂
∂x1

ψ. Then

v′ =

(
0 A

1
2

−A 1
2 0

)
v +

(
[∂x1 , A

1
2 ] 0

0 0

)
v . (10.3)

Since zero may be part of the spectrum of the operator A, the reformulation
(10.2) may work only in one direction. However, it is well defined as long as the
square root of A and its commutator with ∂x1 are well defined. Thus we should
regard (10.3) as a necessary condition for ψ to be a solution of the HE.

The first operator–matrix of (10.3) can be given a block diagonal structure
by setting

u =
1√
2

(
i 1
1 i

)
v .

This yields

u′ =

(
iA

1
2 0

0 −iA 1
2

)
u +

1

2

(
1 i

−i 1

)
⊗ [∂x1 , A

1
2 ]u . (10.4)

A similar ansatz is described in the final part of [69, §3].
If [∂x1 , A

1
2 ] is zero (e. g. c does not depend on x1), then (10.4) decouples in

the forward and backward one way wave equation (OWWE)

u′1 = iA
1
2 u1 and u′2 = −iA 1

2u2 . (10.5)

In this case it holds ∆x +
ω2

c2(x) = (∂x1 + iA
1
2 )(∂x1 − iA

1
2 ). Hence each solution

u1, u2 of (10.5) is also a solution of the HE (10.1). Thus it is of interest to
construct efficient integrators for equations of type (10.5). Furthermore, the
structure of (10.4) is similar to the problem (3.23) from § 3.3. Thus, if we have
efficient integrators for (10.5), it may be possible to adapt the approach for the
matrix valued problem from § 3.3 to (10.4) .

In order to get an idea at which state of model reduction the OWWE may
arise, in § 10.1 we (briefly) discuss its derivation for acoustic waves in an in-
viscid, compressible fluid. Here we start with physical conservation laws and
an equation of state. During the course of discussion we shall make certain
assumptions, which simplifies the problem and shall end up with the OWWE.

Most difficulties of dealing with the full OWWE (10.5) arise from the fact
that it contains a square root of a self–adjoint, indefinite differential operator.
In literature (cf. [21, 22, 15]) it is often treated as pseudo differential or Fourier
integral operator. In § 10.2 we give a (very brief) definition of pseudo differential
operators and briefly discuss some strategies to discretize the “fractional” dif-
ferential operator A

1
2 , which is sometimes called square root Helmholtz operator

(SRHO) (cf. [22, 20]).
An alternative (and from the authors point of view more natural) way to the

pseudo differential operator ansatz is the definition of A
1
2 by functional calculus.
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The drawback of the standard approach via C∗–algebras is that it is not well
suited for numerical treatment. In § 10.3 we establish an elegant method from
[71] for the computation of functions of self–adjoint operators. This ansatz
seems to be more useful for numerics. We try to give a self consistent prove. In
the last section § 10.4 we (most times formally) apply the method from § 10.3.5
for some problems arising from the OWWE; computing the square root of an
self–adjoint operator or a formal solution of the OWWE. We are also able to
deduce De Santo’s transformation [12], which is a crucial tool for constructing

the exact operator symbol (needed for the representation of A
1
2 as a pseudo

differential operator) of the SRHO as described in [21].

10.1 From physics to the one way wave equation

In the sequel we formally derive a OWWE for wave propagation in an inviscid,
compressible fluid. We sketch the way from the basic equations of fluid me-
chanics to a OWWE. This in done in several model reduction steps. The whole
procedure outlined below (strongly) follow the textbook [24].

The fluid is described via the density ρ, pressure P , entropy S, and particle
velocity v ∈ R3 and the governing equations:

• Euler’s Equation (momentum balance)

ρ
dv

dt
= −∇xP , (10.6)

• Equation of Continuity (mass conservation)

∂ρ

∂t
+ divx ρv = 0 , (10.7)

• Adiabatic Condition (no heat transfer)

∂S

∂t
+ v · ∇xS = 0 , (10.8)

• Equation of State

P = P (ρ, S) . (10.9)

As usual t denotes time and x ∈ R3 is the free spatial variable. Under the
assumption, that the quantities ρ, P , and S vary only very little around a steady
state (with respect to time, but may be spatial dependent) it is reasonable to
make the ansatz

P (x, t) = P0(x) + p(x, t) , ρ(x, t) = ρ0(x) + ρ(x, t) ,

S(x, t) = S0(x) + s(x, t) .

The velocity v is not treated in this fashion, because we do not assume a mean
flow of the particles. Now the system of equations (10.6)–(10.9) is linearized at
ρ0, P0, and S0. For this we insert the ansatz into the equations and omit all
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quadratic and higher terms. Afterwards we eliminate the entropy of the linear
equations for the first order terms, which finally leads to3

ρ0(x) divx

(
1

ρ0(x)
∇x p(x, t)

)
− 1

c2(x, t)

∂2p(x, t)

∂t2
= 0 . (10.10)

This is the ”time–dependent acoustic wave equation with density and sound
velocity stratification and no sources“ [24]. The quantity c is the sound velocity
and is given by

c2(x, t) =
∂P0

∂ρ0

∣∣∣∣
S

.

If c is independent of time t, we can apply the Fourier transformation (t → ω)
at (10.10), which yields the Helmholtz Equation (HE) in the following form

ρ0(x)∇x

(
1

ρ0(x)
∇x p̂(x,w)

)
+

w2

c2(x)
p̂(x,w) = 0 . (10.11)

By the ansatz ψ = p̂√
ρ0

the HE (10.11) is transformed to standard form

∆ψ(x,w) + V 2(x,w)ψ(x,w) = 0 . (10.12)

The quantity V (total acoustic wave number, cf. [24]) is given by

V (x,w) =
w2

c2(x)
+

1

2ρ0(x)
∆ρ0(x) − 3

4

(
1

ρ0(x)
|∇ρ0(x)|

)2

.

We assume cylindrical symmetry (further model reduction) and introduce cylin-
drical coordinates:

x(r, ϕ, z) =




r cosϕ
r sinϕ
z


 .

Thus the HE (10.12) reads

1

r

∂

∂r

(
r
∂

∂r

)
ψ +

1

r2
∂2ψ

∂ϕ
+
∂2ψ

∂z2
+ V 2ψ = 0 .

Due to cylindrical symmetry, i. e. ψ = ψ(r, z), the PDE simplifies to

1

r

∂ψ

∂r
+
∂2ψ

∂r2
+
∂2ψ

∂z2
+ V 2ψ = 0 . (10.13)

To remove the singularity at r = 0 in front of the first derivative with respect
to r, we make the ansatz (cf. [69, 41, 24])

ψ(r, z) = u(r, z)H
(1)
0 (κr) ,

where κ ∈ R is a positive constant and H
(1)
0 is the Hankel function of first kind

first order. It solves the Bessel differential equation (cf. [51])

y′′ +
1

z
y′ + y = 0 .

3For more (but not all) details we refer to [24] p.13ff.
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Thus we deduce from (10.13)

∂2u

∂r2
+

(
2

H
(1)
0 (κr)

∂H
(1)
0

∂r
(κr) +

1

r

)
∂u

∂r
+
∂2u

∂z2
+ κ2(V 2 − 1)u = 0 .

The next model reduction step is the far field approximation (cf. [69, 24]). Here
we assume that κr ≫ 1. From the asymptotic expansion of the Hankel function

H
(1)
0 we get [51, 69]

2

H
(1)
0

∂H
(1)
0

∂r
(κr) +

1

r
= 2iκ

(
1 + O(κ−2r−2)

)
.

In the far field, i. e. κr ≫ 1, we obtain 2

H
(1)
0

∂H
(1)
0

∂r (κr) + 1
r ∼ 2iκ and hence

∂2ũ

∂r2
+ 2iκ

∂ũ

∂r
+
∂2ũ

∂z2
+ κ2(V 2 − 1) ũ = 0 . (10.14)

If V does not depend on r (this is the last model reduction step) equation (10.14)
can be (formally) factorized. For this let

∂r :=
∂

∂r
and A :=

∂2

∂z
+ κ2V 2(z) . (10.15)

Provided
√
A exists, it holds

[∂r + iκ+ i
√
A][∂r + iκ− i

√
A] ũ

=
[
∂2r + 2iκ∂r − κ2 +A

]
ũ − iκ[∂r,

√
A]ũ . (10.16)

Since A commutes with ∂r, the same holds for
√
A. Hence the commutator

in (10.16) is zero, i. e. the right hand side of (10.16) coincides with the left
hand side operator of (10.14). Thus a solution ỹ of the one way wave equation
(OWWE)

∂ỹ

∂r
(r, z) = i(

√
A− κ)ỹ (10.17)

is also a solution of the far field approximation (10.14). The constant term −iκ
can easily be removed by the final transformation

y(r, z) = eiκrỹ(r, z) ,

which yields

∂y

∂r
(r, z) = i

√
A(z) y(r, z) . (10.18)

Up to now we only considered the PDE without specifying boundary conditions
(BC). Instead of discussing explicit examples we rather assume that the BC are,
such that A is self–adjoint on a suitable Hilbert space. In this case the operator√
A is defined via the functional calculus for self–adjoint unbounded operators.

In literature the operator
√
A is called the square root Helmholtz operator [21].
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It is usually interpreted as a pseudo differential or Fourier integral operators
(cf. § 10.2).

Since the solution y of (10.18) should be bounded for all r ≥ 0, we have to
specify the right branch of the complex square root. Assume y0 is an eigenvector

ofA to the eigenvalue λ. Since A is self–adjoint, λ is real. Further y(r) = ei
√
λry0

is a solution of the OWWE with initial condition y0. Hence we need
√
x = i

√
|x|

for x < 0.

10.2 Some remarks on
√
A and the OWWE

In Literature the square root Helmholtz operator (SRHO)

A :=

√
∂2

∂z
+ κ2V 2(z)

is considered as a pseudo differential operator (PDO) [21, 22, 15]. An introduc-
tion to the theory of pseudo differential operators can be found in [71]. They are
defined via the Fourier transformation. Here we shall give only a brief (formal)
definition for the one dimensional case. Let ΩB : R×R → C be a given function
of class C∞, which fulfills a growth condition of the form

|Dβ
xD

α
ξ ΩB(x, ξ)| ≤ Cβ,α(1 + |ξ|2)m−ρ|α|+δ|β|

2

for some ρ, δ ∈ [0, 1] and m ∈ R. Then a PDO B can be defined by

(Bu)(z) =
1√
2π

∫

R

ΩB(z, ζ) û(ζ) e
iζz dζ .

As usual we denote by û the Fourier transform of u (see (10.24) in § 10.3.2). The
function ΩB is called the symbol (or left symbol) of the operator B. For example
the symbol of B = ∂2z is ΩB = −|ζ|2. There are also other representations of
PDOs. Another important one is the Weyl representation [71]

(Bu)(z) =
1

2π

∫

R

∫

R

ΩWB

(
z + y

2
, ζ

)
u(y)ei(z−y)ζ dy dζ ,

which is often used for the analysis of PDO. The Weyl representation is used in
[22] for a discussion of the SRHO.

If we denote by F the Fourier transformation on L2(R), then we can write

(Bu)(z) = F−1ΩB(z, ·)Fu ,

or (with u = F−1g)

(FBF−1g)(z, ζ) = ΩB(z, ζ)g(ζ) .

Hence the Fourier transformation (in some sense) “diagonalizes” the operator
B. If ΩB does not depend on z, then ΩB2 = Ω2

B and hence Ω√
B =

√
ΩB.

In [20] one finds the outline of the exact symbol construction procedure for
the SRHO. It is based on the Greens function for the Helmholtz equation or
a fundamental solution of a related Schrödinger equation (SE) respectively. In
general both, the Greens function and the SE solution, are unknown which
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makes this construction approach not very useful for explicit computations.
Nevertheless it is successfully used in [21] to derive a uniform high–frequency
approximation of the operator symbol, using the WKB4 approximation of the
SE solution.

To numerically solve the OWWE we have to derive a (finite) discretization
of the SRHO. Since we theoretically know its symbol (cf. [20]), we can use the
ansatz from [56]. The approach to approximate a PDO, as presented in the
article, is based on the following (simple) idea: Let Ωτa(z, ζ) = eiaζ for some
a ∈ R. Then

(τau)(z) =
1√
2π

∫

R

û(ζ) ei(z+a)ζ dζ = u(z + a) .

Hence, to discretize the PDO B, one seeks a good approximation of the oper-
ator symbol ΩB by trigonometric polynomials. In general ΩB is not a periodic
function and thus there are two approximation steps to do. Firstly truncate the
operator symbol by multiplying it with a suitable cut–off function ηh(ζ) = η(hζ).
Here η ∈ C∞(R) is bounded from above an below by 0 ≤ η ≤ 1 and

η(ζ) =

{
1, |ζ| < 1

2π ,

0, |ζ| > 3
4π .

Hence for every fixed z ∈ R we have supp(ΩB(z, ·)ηh) ⊂ [− 3
4
π
h ,

3
4
π
h ] ⊂ [−π

h ,
π
h ].

Thus, the 2π
h periodic extension ΩhB(z, ·) of ΩB(z, ·)ηh can be expressed in a

Fourier series:

ΩhB(z, ζ) =
∑

j∈Z

cj,h(z) e
iζjh with cj,h(z) =

h

2π

∫ π
h

−π
h

ΩB(z, ζ) e
iζjh dζ .

This yields

(Bu)(z) =
1√
2π

∫

R

(∑

j∈Z

cj,h(z) e
iζjh

)
û(ζ) eiζz dζ

=
∑

j∈Z

cj,h(z)u(z + jh) .

Thus the operator B is approximated by a (in general non–finite) difference
operator. Hence the second approximation step is to truncate the Fourier series.
This yields a finite difference operator. Let us consider a simple example, related
to the SRHO, in order to point out possible difficulties of this approach. Let
ΩB(ζ) := 1− ζ2 be the symbol of B = 1 + ∂2z and let

ΩR(ζ) := χ[−1,1](ζ)
√

1− ζ2 .

Thus ΩR is the real part of
√
ΩB = Ω√

B. Since supp(ΩR) = [−1, 1] it holds for
all 0 < h < π

2

ΩhR(ζ) = η(hζ)ΩR(ζ) = ΩR(ζ) ,

4An asymptotic approximation technique for the Schrödinger equation, named after the
physicists Wentzel, Kramers and Brillouin. See § 3.5 for the basic concept of it.
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for all ζ ∈ [−π
h ,

π
h ]. Hence we can compute the Fourier coefficients cj,h of ΩhR

without specifying the truncation function η. We get (with Maple14 )

ΩhR(ζ) =
h

4
+

∑

j∈Z\{0}

BesselJ1(jh)

2j
eiζjh .

Here BesselJ1 denotes the Bessel function of first kind first order (cf. [51]). To
get a finite difference approximation we have to truncate the series. To this end
we define for N ∈ N

Ωh,NR (ζ) =
h

4
+

N∑

06=j=−N

BesselJ1(jh)

2j
eiζjh .

Thus, the corresponding PDO is

(Rh,Nu)(z) =
h

4
u(z) +

N∑

06=j=−N

BesselJ1(jh)

2j
u(z + jh) .

Since BesselJ1(x) → 0 as x→ 0 it follows for all continuous u

lim
h→0

(Rh,Nu)(z) = 0 .

Hence N and h have to be coupled in the right way in order to get the correct
limit as h → 0. This makes it even more difficult to use this approach, beside
computing the operator symbol.

An alternative procedure to derive an approximate solution to the OWWE
is to replace

√
A by a formal Taylor or Padé approximation (see [14] for further

references). This leads to so called (wide) angle parabolic equations, which are
(ordinary) partial differential equations. In the case of first order Taylor ap-
proximation one gets an equation of Schrödinger type. How the approximation
error can be quantified in not yet clear to the author.

Another strategy to discretize the OWWE may be based on a discretization
of A. This means one firstly approximate A by a suitable finite difference
Ah, which yields a second order system of ordinary differential equations for
the Helmholtz equation. Afterwards one determines a square root of the finite
difference operator, which is in general a non–local difference operator, i. e. it
has an unbounded numerical stencil. Since the factorization of the discrete
Helmholtz equation is analogue to the continuous case, we only have to replace√
A by

√
Ah in the OWWE. This yields a (probably infinite) system of ordinary

differential equations. Let us consider this approach for the partial differential
operator A = ∂2z + c2, with a fixed positive constant c. Furthermore let the
difference operator Ah := D2

h + c2 be a discretization of A with the central
second difference. The identity

u(z + h)− 2u(z) + u(z − h)

h2
=

1√
2π

∫

R

eiζh − 2 + e−iζh

h2
û(ζ)eiζz dζ

= − 1√
2π

∫

R

4 sin2(ζ h2 )

h2
û(ζ)eiζz dζ
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yields

(
√
Au)(z)− (

√
Ahu)(z)

=
1√
2π

∫

R

(√
c2 − ζ2 −

√
c2 − sin2(ζ h

2 )

(
h
2 )2

)
û(ζ) eiζz dζ

=:
1√
2π

∫

R

∆(h, ζ) û(ζ) eiζz dζ .

At the crucial points ζ0 = ±c it holds

lim
h→0

∆(h,±c)
c2h

= − c2

2
√
3
,

while

lim
h→0

∆(h, ζ)

ζ3h2
= − 1

24

ζ√
c2 − ζ2

holds for ζ ∈ R\{±c}. Hence if ±c 6∈ supp(û), then the difference is of or-
der O(h2). Otherwise the order reduces to O(h), especially for functions û
“strongly” located at ±c.

The problem of order reduction can be fixed by using the difference operator

Ãh := D2
h +

sin2(ch2 )

(h2 )
2

.

We get for all ζ ∈ R:

lim
h→0

∆̃(h, ζ)

h2
=

1

24
(c2 + ζ2)

√
c2 − ζ2 .

Hence δ(h, ζ) := ∆(h,ζ)

(1+ζ2)3/2h2 is a bounded function and for u ∈ H3(R) it holds

∥∥∥
√
Au−

√
Ãhu

∥∥∥
L2

= ‖F−1(1 + ζ2)
3
2h2δ(h, ζ)Fu‖L2

≤ h2‖δ(h, ζ)‖L∞‖(1 + ζ2)
3
2 û‖L2 ≤ c h2 ‖u‖H3 .

This uniform estimate is due to the fact that the symbol of the difference oper-
ator coincide with the symbol of the differential operator at the crucial points
ζ = ±c. Thus, this last procedure (choose a discretization of ∂2z and then
compute the square root) is also not a reliable method with respect to the ex-
pected convergence order, as we have seen in the very simple case of a constant
potential.

Due to the described problems of the different approaches we want to derive
an approximation of

√
A directly from the operator itself. Therefore we first have

to find a way to compute
√
A. In the application we have in mind (OWWE)

the operator A is self–adjoint. Hence
√
A is defined via functional calculus.

Thus, we shall discuss in § 10.3 a non standard approach (this means an ansatz
which does not use the theory of Banach algebras) for the functional calculus of
self–adjoint operators. It seems to be well suited for numerical considerations.
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10.3 Functions of self–adjoint operators

The following subsections are revised lecture notes of a short course the au-
thor taught at the Wissenschaftskolleg Differential Equations5 Summer Camp
in 2007.

The aim of this section is the proof of a spectral theorem for self–adjoint
operators on a separable Hilbert space. We reproduce an approach from [71],
especially § 10.3.5 is very close to the textbook. The underlying idea is as
follows. Let the continuous function f : R → R be in L1(R), such that its
Fourier transformation

f̂(t) =
1√
2π

∫

R

f(x) e−itx dx

is in L1(R) too. Then for any a ∈ R we can evaluate f at x = a by the formula

f(a) =
1√
2π

∫

R

f̂(t) eiat dt .

The oscillatory part of the integrand

u(t) := eiat

is the unique solution of the initial value problem

ut = ia u(t) , u(0) = 1 .

Now assume that A ∈ Rd×d is a real valued, self–adjoint matrix and let U(t) be
the unique solution of the IVP

Ut = iAU(t) , U(0) = Id . (10.19)

Here Id denotes the identity matrix on Rd×d. Since A is self–adjoint, there
exists an orthogonal matrix Q (cf. [19, 7]), such that

A = Q∗ΛQ .

The diagonal matrix Λ = diag(λ1, . . . , λd) contains the eigenvalues of A, which
are real. Hence it holds for all t ∈ R

U(t) = Q∗ exp(iΛt)Q = Q∗ diag(eiλ1t, . . . , eiλdt)Q .

Since λ1, . . . , λd are real, U(t) is unitary for all t ∈ R. Thus the integrals

1√
2π

∫

R

f̂(t) exp(iλjt) dt

are well defined for j = 1, . . . , d and it follows

1√
2π

∫
f̂(t)U(t) dt = Q∗ 1√

2π

∫
f̂(t) exp(iΛt) dtQ (10.20)

= Q∗ diag(f(λ1), . . . , f(λd))Q . (10.21)

5A PhD program of the Vienna University of Technology and the University of Vienna.
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The right–hand side of (10.21) is nothing but f(A) as discussed in [34] §6.2.
Hence the left hand side of (10.20) yields a way to compute f(A) without
diagonalizing the matrix A, provided one can solve (10.19). As a next step one
can generalize this ansatz to bounded, self–adjoint operators. It turns out that
the main property for the approach to work is that U(t) is a “continuous” family
of unitary operators. By Stone’s Theorem 10.3.7 any self–adjoint operator is
the generator of a C0 group of unitary operators. Thus it is not surprising that
one can extend the ideas to general self–adjoint operators.

In § 10.3.1 we give a short introduction into the theory of semigroups in order
to explain Stone’s Theorem 10.3.7, which is stated without a proof. Before we
can start to prove the spectral theorem in § 10.3.5 we need some technical results
about distributions which are collected in § 10.3.2. Furthermore we shall prove a
version of Riesz–representation theorem in § 10.3.3 and in § 10.3.4 we shall show
that the test–functions are dense in any Lp space (1 ≤ p < ∞) corresponding
to a Borel measure on an open subset of Rn. These two results are also crucial
parts of the proof of the spectral theorem.

10.3.1 Semigroups of Linear Operators

The main part of this section is based on [62].
Let A ∈ Rn×n be a quadratic matrix and for t ∈ R let T (t) := eAt. Then the

unique solution of the initial value problem u′ = Au, u(0) = u0 ∈ Rn is given
by u(t) = T (t)u0. The same argument holds, if A is a bounded operator on an
arbitrary Banach Space. On the other hand one can derive the operator A from
the family T (t) by the formula

lim
t↓0

T (t)− I

t
= A . (10.22)

The theory of semigroups investigates and generalize these concepts.
In the following let (X, ‖ · ‖) be a Banach space and denote by R+ (R+

0 ) the
positive real axis excluded (included) zero.

Definition 10.3.1. A set of bounded linear operators {T (t)}t∈R
+
0
on X is called

a strongly continuous semigroup of bounded linear operators (or simply C0

semigroup) if

(i) T (0) = I (the identity operator on X)

(ii) ∀ s, t ≥ 0: T (s+ t) = T (s)T (t) (semigroup property)

(iii) ∀ x ∈ X : limt↓0 T (t)x = x.

If (ii) is valid for all s, t ∈ R and (iii) could be replaced by limt→0 T (t)x = x,
then T (t) is called a C0 group.

Equation (10.22) motivates the following Definition 10.3.2 of a linear Opera-
tor. As the Example 10.3.6 (see p. 217) shows, this operator is in general not
bounded, even if we consider a C0 group of unitary operators.

Definition 10.3.2. Let T (t) be a C0 semigroup. The linear operator A defined
by

D(A) =

{
x ∈ X

∣∣∣ lim
t↓0

T (t)x−x
t exists

}
, Ax = lim

t↓0
T (t)x−x

t ,
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is called the infinitesimal generator of the semigroup T (t). D(A) is called the
domain of A.

In the case of a bounded operator A the norm of the semigroup T (t) is bounded
by e‖A‖t. A similar equation holds for a C0 semigroup.

Proposition 10.3.3. Let T (t) be a C0 semigroup. There exist real constants
w ≥ 0 and M ≥ 1, such that

‖T (t)‖ ≤ M ewt (10.23)

for all t ∈ R+
0 .

Proof. There exists an η > 0 such that ‖T (t)‖ is bounded for 0 ≤ t ≤ η. If
this claim is false, then there exists a sequence of positive tn → 0, such that
‖T (tn)‖ ≥ n. Thus, by the resonance theorem6, there exists an x ∈ X such that
‖T (tn)x‖ is unbounded in contradiction to property (iii) of Definition 10.3.1.
Hence, ‖T (t)‖ ≤ M for 0 ≤ t ≤ η. M ≥ 1 is true because T (0) is equal to I.
Define w := η−1 lnM ≥ 0. For t > 0 one computes

‖T (t)‖ = ‖T (nη + δ)‖ = ‖T (η)nT (δ)‖ ≤MMn =Mewnη ≤Mewt ,

with 0 ≤ δ ≤ η.

Corollary 10.3.4. For every fixed x ∈ X the assignment t → T (t)x is a
continuous map from R+

0 into X.

Proof. Let t ≥ s ≥ 0, t− s = δ.

‖T (t)x− T (s)x‖ = ‖T (t)(T (δ)x− x)‖ ≤ Mewt‖T (δ)x− x‖ δ→0−→ 0 .

Analogue for s ≥ t ≥ 0.

The next Proposition 10.3.5 contains the main properties of C0 semigroups.

Proposition 10.3.5. Let T (t) be a C0 semigroup on X and let A be its in-
finitesimal generator. Then it holds:

(i) For x ∈ X it holds

lim
h→0

1
h

∫ t+h

t

T (s)x ds = T (t)x .

(ii) For x ∈ X it holds
∫ t
0
T (s)x ds ∈ D(A) and

A

(∫ t

0

T (s)x ds

)
= T (t)x− x .

(iii) For x ∈ D(A) it holds T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax .

6see [74] p. 69: Let X Banach space, Y normed space and {Ta ∈ L(X, Y )|a ∈ A} be a
family of bounded linear operators. The set {‖Ta‖|a ∈ A} is bounded, if {‖Tax‖|a ∈ A} is
bounded for all x ∈ X.
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(iv) For x ∈ D(A)

T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)x dτ .

Proof. (i) follows from the continuity of t→ T (t)x, see Corollary 10.3.47.
(ii) Let h > 0, then

T (h)−I
h

∫ t

0

T (s)x ds = 1
h

∫ t

0

(T (s+ h)x− T (s)x) ds

= 1
h

∫ t+h

h

T (s)x ds− 1
h

∫ h

0

T (s)x ds .

If h ↓ 0, then the right–hand side tends to T (t)x− x. Thus, by definition of A,

the left-hand side tends to A
∫ t
0
T (s)x ds.

(iii) Let h > 0, then

T (h)−I
h T (t)x = T (t+h)−T (t)

h x = T (t)T (h)−I
h x

h→0−→ T (t)Ax .

Thus limh→0
T (h)−I

h T (t)x exists and we get AT (t)x = T (t)Ax. Especially it

holds T (t)x ∈ D(A). The middle term also converges to d+

dt T (t)x which proves
(iii) for the right derivative. To show the same equation for the left derivative
one calculates (t > 0)

T (t)x− T (t− h)x

h
− T (t)Ax

= T (t− h)

(
T (h)x− x

h
−Ax

)
+
(
T (t− h)Ax− T (t)Ax

)
.

The first term of the right–hand side tends to 0 as h → 0, since T (t − h) is
bounded (see Theorem 10.3.3), x ∈ D(A), and A is the infinitesimal generator
of the C0 semigroup (see Definition 10.3.2). By the strong continuity of T (t)
(property (iii) of Definition 10.3.1) also the second term tends to zero.
(iv) Integrate (iii).

Point (iii) states that T (t) maps X to D(A) and is (Frechet-) differentiable with
derivative A. This leads to an existence-result for the solution of the abstract
initial-value problem (t ≥ 0)

d

dt
u(t) = Au , u(0) = u0 ∈ X ,

if A is the infinitesimal generator of a C0 semigroup.

Example 10.3.6. One interesting example is the group of translations in X =
Lp(R), 1 ≤ p < +∞ see [9] p. 302. For u ∈ Lp(R) define T (t)u by

T (t)u(x) = u(x+ t) a.e. in R.

It follows Immediately that ‖T (t)u‖Lp(R) = ‖u‖Lp(R), i. e. T (t) is a bounded
operator for all t ∈ R. Moreover the properties (i) and (ii) from Definition

7‖ 1
h

∫ t+h

t
T (s)x ds−T (t)x‖ = ‖ 1

h

∫ t+h

t
(T (s)x−T (t)x) ds‖ ≤ sups∈[0,h] ‖T (t+s)x−T (t)x‖



218 CHAPTER 10. THE ONE WAY WAVE EQUATION

10.3.1 obviously are fulfilled. In order to show that T (t) is a C0 semigroup
it remains to prove the strong continuity. If φ is a continuous function with
compact support, i. e. φ ∈ Cc(R) we have8:

‖T (t)φ− φ‖Lp(R) ≤ (λ(supp φ))
1
p sup
x∈R

|φ(x+ t)− φ(x)| t→0−→ 0 .

Because Cc(R) is dense in Lp(R), see [66] p. 69, there exists for a given f ∈
Lp(R) a g ∈ Cc(R) such that ‖f − g‖Lp(R) ≤ ε

3 . It follows

‖T (t)f − f‖ ≤ ‖T (t)(f − g)‖︸ ︷︷ ︸
=‖f−g‖≤ ε

3

+ ‖f − g‖︸ ︷︷ ︸
≤ ε

3

+ ‖T (t)g − g‖︸ ︷︷ ︸
≤ ε

3 (t≪1)

.

The infinitesimal operator of the C0 group T (t) is given by (φ suitable)

Aφ(x) = lim
t→0

T (t)φ(x) − φ(x)

t
= lim

t→0

φ(x+ t)− φ(x)

t
=

d

dx
φ(x) .

For a more rigorous discussion see [9] p. 311.

The above example shows that unbounded operators can generate a group of
bounded or even isometric operators. A full characterization of the infinitesimal-
generator of a C0 group of unitary operators on a Hilbert-space is given by

Theorem 10.3.7. (Stone)
A is the infinitesimal generator of a C0 group of unitary operators on a Hilbert
space H if and only if iA is self–adjoint.

Proof. See e. g. [62] p.41.

Once again consider the translation group T (t) on the complex Hilbert–space
L2(R). We have seen that the infinitesimal–generator is given by d

dx . An easy

calculation shows, that the operator iA := i ddx is self–adjoint. Hence by Stones
Theorem T (t) is a C0 group of unitary operators.

Remark 10.3.8. Let X be a Hilbert space with the inner product (·, ·) and
let U(t) be a C0-group of unitary operators with infinitesimal generator iA.
Furthermore let v, w ∈ H, with v ∈ D(A). Since the sequence 1

h (U(h)− Id)v →
iAv in H, we get for h, t ∈ R:

1

h

[
(U(t+ h)v, w)− (U(t)v, w)

]

=
(
1
h (U(h)− Id)v, U(t)∗w)

h→0−→ (iAv, U(t)∗w) = (iAU(t)v, w) .

Hence the map t 7→ (U(t)v, w) is continuously differentiable for all t ∈ R and it
holds d

dt (U(t)v, w) = (iAU(t)v, w).

10.3.2 Distributions

We refer to [1, 10] for a more detailed discussion. Let Ω ⊂ Rn be an open set
and let D(Ω) be the set of test functions on Ω. I. e. f : Ω → R is an element of
D(Ω) if and only if f ∈ C∞(Ω) and supp(f) is compact.

8Here λ denotes the Lebesgue measure.
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Definition 10.3.9. A sequence (φn)n∈N of elements from D(Ω) converges to
φ ∈ D(Ω) if and only if the following conditions are satisfied:

(i) there exists a compact set K ⊂ Ω such that suppφn ⊂ K for all n ∈ N,

(ii) for all multi–indices α ∈ Nn0 , the sequence (Dα
xφn)n∈N converges to Dαφ

uniformly on K.

With D′(Ω) we denote the space of linear functionals on D(Ω) which are point-
wise continuous with respect to the convergence concept from Definition 10.3.9.
The elements of D′(Ω) are called distributions. The application of a distribution
T ∈ D′(Ω) on a test function φ ∈ D(Ω) is denoted by T (φ) =< T, φ >.

Definition 10.3.10. A sequence of distributions (Tn)n∈N converges to the dis-
tribution T , if for every φ ∈ D(Ω)

< Tn − T, φ >−→ 0 in C, when n→ ∞.

Let L be a continuous linear operator on D(Ω) and L∗ its adjoint with respect
to the L2-scalar product9.

Definition 10.3.11. Let T ∈ D′(Ω) and L as above. Then LT ∈ D′(Ω) is
pointwise defined by

(LT )(φ) = < LT, φ > := < T,L∗φ > .

That the extension of L is well defined is left to the reader. Some examples:

(i) Let α ∈ N and Dα =
(
∂
∂xj

)α
as above. The adjoint operator of Dα is

(−1)αDα, this means

DαT (φ) = < DαT, φ > = < T, (−1)αDαφ > .

(ii) Let Ω = Rn, ψ ∈ D(Ω) and let Lφ(x) :=
∫
Rn ψ(x − y)φ(y) dy be the

convolution with ψ. The adjoint operator of L is given by the formula
L∗φ(x) =

∫
Rn ψ(y − x)φ(y) dy. Denote R(ψ)(x) = ψ(−x), then

(ψ ∗ T )(φ) = < ψ ∗ T, φ > = < T,R(ψ) ∗ φ > .

Another important tool is the Fourier transformation. For a Schwartz function
ϕ ∈ S(Rn) (cf. [1, p.219f], [65]10) we define

ϕ̂(ξ) = 1

(2π)
n
2

∫

Rn

ϕ(x) e−iξ
T x dx . (10.24)

The Fourier transformation is an isomorphism of S(Rn) to S(Rn) and continuous
with respect to the convergence concept from Definition 10.3.13.

Since any function in f ∈ S(Rn) defines a distribution Tf by

< Tf , φ > :=

∫

Rn

f(x)φ(x) dx , (10.25)

it is natural to define the Fourier transformation of a distribution T by11

〈
T̂ , φ

〉
:=

〈
T, φ̂

〉
. (10.26)

Another important fact is, that the set of test functions12 is dense in D′(Rn).

9∀ φ, ψ ∈ D(Ω): (Lφ, ψ) =
∫
Ω(Lφ)ψdx =

∫
Ω φ(L

∗ψ)dx = (φ, L∗ψ).
10In both books the Schwartz functions are called ”Rapidly decreasing functions“.
11< Tf , φ̂ >=

∫
Rn fφ̂ dx = 1

(2π)
n
2

∫
Rn

∫
Rn f(x)φ(y)e−ixT y dydx =

∫
Rn f̂φ dy =< T

f̂
, φ >

12one identifies φ ∈ D(Rn) with the distribution Tφ
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The following Proposition 10.3.12 is from [53, p.147].

Proposition 10.3.12. Let T ∈ D′(Rn) and ϕ ∈ D(Rn). Then there exists a
function t ∈ C∞(Rn) such that for all φ ∈ D(Rn)

< ϕ ∗ T, φ > =

∫

Rn

t(y)φ(y) dy .

If further
∫
Rn ϕdy = 1, then ϕǫ ∗ T → T in D′(Rn) as ǫ → 0 and the function

ϕǫ is defined by ϕǫ(x) =
1
ǫnϕ(

x
ǫ ).

The proof shows that that t(y) = T (ϕ(y − ·)).
Of course the Schwartz functions are not the only objects which define a dis-

tribution by (10.25). By the same construction one can define distributions for
f ∈ L∞(Ω) for example. Also any Borel measure µ on Rn defines a distribution
(on Ω = Rn) via

µ(φ) :=

∫

Rn

φdµ .

The reverse is true for nonnegative distributions, cf. Corollary 10.3.16. This
means that for a nonnegative distribution T there exists a measure µ such that

T (φ) =

∫

Rn

φdµ .

holds for all φ ∈ D(Ω). Corollary 10.3.16 is related to the Riesz’ representation
theorem (cf. [16], VIII§2).

On the set of Schwartz functions S(Rn) on can establish a convergence con-
cept similar to those of the test function.

Definition 10.3.13. A sequence (φn)n∈N of elements from S(R) converges to
φ ∈ S(Rn) if and only if for all multi indices α, β ∈ Nn0

lim
j→∞

xαDβ
xφj(x) = 0 uniformly on R.

The dual space of the Schwartz functions (with respect to the convergence con-
cept from Definition 10.3.13) is denoted by S ′(Rn). Its elements are called
tempered distributions.

10.3.3 A variant of Riesz’ representation theorem

Let Ω ⊂ Rd be a non empty open set. By Cc(Ω) we denote the space of
continuous functions f : Ω → R which have compact support. In this section
we prove a variant of Riesz’ representation theorem for positive linear forms
I : V → R, with a suitable function space V ⊂ Cc(Ω). The main result is
Proposition 10.3.15.

Let us fix some notations and recall some definitions.

Notation. We denote by B(Ω) the Borel σ–algebra of Ω, i. e. the σ–algebra
generated by the open sets of Ω (cf. [16, p.310] ).

By K(Ω) we denote the set of all compact subsets of Ω. Further we denote
the characteristic function of a set A by χA. I. e. χA|A = 1 and χA|Ac = 0.
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A measure µ : B(Ω) → [0,∞] is called a Borel measure, if and only if µ is locally
finite. I. e. for every x ∈ Ω there exists an open neighborhood U ⊂ Ω, such that
µ(U) <∞.

Remark 10.3.14. Since Ω is locally compact, a measure µ is locally finite, if
and only if µ(K) < ∞ for all K ∈ K(Ω) (see [16, Folgerung 1.2 c), p.331]).
Hence any Borel measure on Ω has this property.

Let A ⊃ B(Ω) be a σ–algebra on Ω. A corresponding measure µ : A → [0,∞] is
called inner regular, if and only if for all A ∈ A

µ(A) = supµ(K)|K ⊂ A, K ∈ K(Ω) .

If additionally for all A ∈ A

µ(A) = inf{µ(U)|A ⊂ U, U ⊂ Ω open} ,

then µ is called a regular measure. An inner regular Borel measure is called a
Radon measure (see [16, p.310]).

Proposition 10.3.15. Let V be a subspace of Cc(Ω) such that D(Ω) ⊂ V .
Furthermore, let I : V → R be a nonnegative linear form, i. e. for all f ∈ V
with f ≥ 0 it holds I(f) ≥ 0. Then there exists a unique Radon measure µ on
Ω, such that

I(f) =

∫

Ω

f dµ (10.27)

holds for all f ∈ V .

In reference [16] different versions of Riesz’ representation theorem are given.
Most of the theorems are formulated for Ω to be a locally compact or complete
regular Hausdorff space. Hence from this point of view Proposition 10.3.15
is a special case of the results from the textbook, since we restrict ourself to
open subsets of Rn. Due to the general setting of Ω in [16], there exist no
test functions and hence all theorems treat linear forms I : V → K, with13

V = Cc(Ω), C0(Ω), C(Ω). Thus our restriction to a subspace V ⊂ Cc(Ω) which
contains the test functions is a refinement of the results from [16] for the special
choice of Ω.

A direct consequence of Proposition 10.3.15 is

Corollary 10.3.16. Let Ω ⊂ Rn be open. A nonnegative distribution14 T ∈
D′(Ω) is a Radon measure. I. e. there exists a unique Radon measure µ on Ω,
such that for all ϕ ∈ D(Ω)

T (ϕ) =

∫

Ω

ϕ dµ .

13Here C0(Ω) denotes the space of continuous functions f : Ω → K which vanish at the
boundary of Ω, i. e. ∀ f ∈ C0(Ω) ∀ ε > 0 ∃ K ⊂ Ω compact: |f |

∣∣
Ω\K

< ε.
14T positive ⇔ ∀ϕ ∈ D(Ω), ϕ ≥ 0 : < T,ϕ >≥ 0
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Example. Let λ ∈ R and let T = δλ ∈ D(R)′ be the Delta–distribution with pole
in λ. Obviously T is a nonnegative distribution. Hence, by Corollary 10.3.16
exists a unique measure µ, such that T (ϕ) =

∫
R
ϕ dµ for all ϕ ∈ D(R). As

discussed in Example 10.3.22 it holds for all A ∈ B(R):

µ(A) =

{
1 , λ ∈ A ,
0 , else .

As we have seen, nonnegative distributions can be identified with Radon mea-
sures. The same result holds for nonnegative tempered distributions.

Corollary 10.3.17. LetW = S(Rn) be the space of rapidly decreasing functions
(Schwartz functions) and let T : W → C be a nonnegative tempered distribution.
I. e. for all f ∈ W with f ≥ 0 it holds T (f) ≥ 0. Then there exists one and
only one Radon measure µ on R, such that

T (f) =

∫

Ω

f dµ (10.28)

holds for all f ∈ W . Furthermore the measure µ coincides with the Radon
measure from Corollary 10.3.16, if we set Ω = Rn.

Proof. We restrict T to the subspace V := D(Rn). By Proposition 10.3.15 exists
a unique Radon measure µ on Rn, such that T (ϕ) =

∫
Rn ϕ dµ holds for all test

functions ϕ ∈ V .

Let f ∈ S(Rn). By [65, Theorem 7.10, p.189] the test functions are dense
in S(Rn). Hence there exists a sequence {fn} in V such that fn → f in S(Rn).
Further the proof of [65, Theorem 7.10] shows, that we can use the sequence

fn(x) = f(x)ϕ

(
x

n

)
∈ S(Rn) ,

with ϕ ∈ D(Rn), such that 0 ≤ ϕ ≤ 1 and15 ϕ|B1(0) = 1. If we decompose
fn in its positive and negative part, i. e. fn = f+

n − f−
n , we find that f±

n are
monotonously increasing. By definition the tempered distribution T is continu-
ous, which yields

T (f) = lim
n→∞

T (fn) = lim
n→∞

∫

Rn

fn dµ .

Due to the Monotone convergence theorem of Levi (see [16] p.124) we can in-
terchange the limit and integration. I. e..

lim
n→∞

∫

Rn

fn dµ = lim
n→∞

∫

Rn

f+
n dµ− lim

n→∞

∫

Rn

f−
n dµ

=

∫

Rn

lim
n→∞

f+
n dµ−

∫

Rn

lim
n→∞

f−
n dµ .

Since limn→∞ f±
n → f± we are done.

15Here B1(0) denotes the unit ball in Rn.
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Proof of Proposition 10.3.15

In order to prove Proposition 10.3.15 we mimic the proof of Darstellungssatz von
Riesz [16, VIII§2, p.331ff]. The crucial property of the space D(Ω) is Lemma
10.3.19, i. e. that the characteristic functions of compact sets can be ”well“
approximated by test functions. In order to prove this we need Lemma 10.3.18
and hence shall start with it.

Let g : R → R be piecewise defined by

g(x) :=

{
e−

1
x2 , 0 < x
0 , x ≤ 0

.

From [23, p.229f] we know that g is arbitrarily often differentiable. Hence

g̃(x) := g(x) g(1− x) =

{
e−

1
x2 e

− 1
(1−x)2 , 0 < x < 1

0 , else

is in C∞(R), strictly positive in the interval (0, 1) and zero at R\(0, 1). Let

c(x) :=

∫ x

0

e−
1
s2 e

− 1
(1−s)2 ds . (10.29)

Obviously it holds c ∈ C∞([0, 1]), c(0) = 0 and c is strictly monotone increasing
on the interval [0, 1].

Lemma 10.3.18. The piecewise defined function16

cut1(x) :=





0 , x ≤ 0
c(x)
c(1) , 0 < x < 1

1 , 1 ≤ x

is in C∞(R), nonnegative and bounded from above by 1.

Proof. Since it is c > 0 for x > 0, the function cut1 is well defined. Obviously
it holds, that cut′1 coincides with g̃

c(1) on R\{0, 1}. Thus we have to show, that

cut1 is continuously differentiable at x = 0, 1.

(i) Let x < 1. Then it holds

cut1(x) − cut1(0)

x− 0
=

{
c(x)
xc(1) , 0 < x

0 , x ≤ 0
.

By L’Hôpital’s rule (cf. [23]) we deduce from the definition of c (10.29)

that limx→0
c(x)
x = 0. This yields the differentiability at x = 0.

(ii) Let x > 0. Then it holds

cut1(x)− cut1(1)

x− 1
=

{
0 , 1 ≤ x

c(x)
c(1)

−1

(x−1) , 0 < x < 1

Again we use L’Hôpital’s rule and find

lim
x→1

c(x)
c(1) − 1

(x− 1)
= 0 .

Hence cut1 is differentiable at x = 1.

16Thanks to Dominik Stürzer and Jan Sprenger.
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The next Lemma 10.3.19 is the essential property of the space of test functions
D(Ω). It states that characteristic functions of compact subsets of Ω can be
quite good approximated by test functions.

Lemma 10.3.19. Let Ω ⊂ Rn open and let K ⊂ Ω be compact and let U ⊂ Ω be
an open neighborhood17 of K. Then there exists a function ϕ ∈ C∞

c (Ω) = D(Ω),
such that ϕ|K = 1 and supp(ϕ) ⊂ U , i. e. ϕ|Ω\U = 0.

Proof. We mimic the proof of [16, 2.1 Lemma, p.327] .
Since U is open, there exists for every x ∈ K a radius rx > 0, such that the

open Ball

Brx(x) := {y ∈ Ω| ‖x− y‖ < rx}

with center at x and radius rx is a subset of U (cf. [31]). Hence the function
(cf. Lemma 10.3.18 for definition of cut1)

ϕx(y) := cut1

(
3

rx

(
2rx
3

− ‖y − x‖
))

has compact support supp(ϕx) = B 2
3 rx

(x) ⊂ U and it holds ϕx|B 1
3
rx

(x) = 1.

Since the map y 7→ ‖y − x‖ is C∞(Rn\{0}), we further deduce that ϕx ∈
C∞
c (Rn). Let Vx := B 1

3 rx
(x). Since K is compact, there are finitely many

x1, . . . , xm, such that K ⊂ ⋃m
j=1 Vxj . Hence the function ϕ̂ =

∑m
j=1 ϕxj is of

class C∞
c (Rn) and it holds ϕ̂

∣∣
K

≥ 1 and supp(ϕ̂) ⊂ U . The support of ϕ̂ is
compact and hence it holds ϕ̂ ∈ D(Ω). Thus we can set ϕ = cut1(ϕ̂).

Lemma 10.3.20. Let the assumptions of Proposition 10.3.15 hold. We define
for all compact subsets K ⊂ Ω

µ0(K) := inf{I(f)
∣∣ f ∈ V, f ≥ χK} . (10.30)

It holds:

(i) 0 ≤ µ0(K) ≤ µ0(L) <∞ for all K,L ∈ K(Ω) with K ⊂ L.

(ii) µ0(K ∪ L) ≤ µ0(K) + µ0(L) for all K,L ∈ K(Ω).

(iii) µ0(K ∪ L) = µ0(K) + µ0(L) for all K,L ∈ K(Ω) with if K ∩ L = ∅.

(iv) For every K ∈ K(Ω) and ε > 0 exists an open neighborhood U of K, such
that for all compact L ⊂ U it holds

µ0(L) ≤ µ0(K) + ε .

Proof. The following proof is a (free) translation of the proof of [16, 2.2 Lemma,
p.327f]. We only replace Cc by V or D(Ω) and add some calculations and
comments.

17We consider the topology induced by the euclidean norm on Rn.
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(i): By Lemma 10.3.19 there exists a function f ∈ D(Ω), such that f ≥ χL.
Obviously it holds χK ≤ χL, which yields

∅ 6= SL := {ϕ ∈ V | f ≥ χL} ⊂ {ϕ ∈ V | f ≥ χK} =: SK

Since I is nonnegative we get

0 ≤ µ0(K) = inf{I(f)
∣∣ f ∈ SK} ≤ inf{I(f)

∣∣ f ∈ SL} = µ0(K) .

(ii): Now let f, g ∈ V with f ≥ χK , g ≥ χL. Hence it is f + g ∈ V and it
holds f + g ≥ χK∪L. This yields

µ(K ∪ L) ≤ I(f + g) = I(f) + I(g) .

Passing to the infimum at the right–hand side yields (ii).
(iii): Due to (ii) we only have to show ”≥“. Let h ∈ D(Ω), such that

h ≥ χK∪L. The set U := Ω\L is an open neighborhood of K. By Lemma
10.3.19 there exists a function ϕ ∈ D(Ω), such that 0 ≤ ϕ ≤ 1, ϕ|K = 1,
ϕ|Ω\U=L = 0. Thus the functions f := hϕ and g := h(1 − ϕ) are of class
D(Ω) ⊂ V and it holds

f ≥ χK , g ≥ χL and f + g = h .

This yields

I(h) = I(f) + I(g) ≥ µ0(K) + µ0(L) .

Hence it holds µ0(K ∪ L) ≥ µ0(K) + µ0(L).
(iv): Let K ∈ K(Ω). By Lemma 10.3.19 there exists a function f ∈ D(Ω)

with f ≥ χK . Hence µ0(K) is well defined and there exists a sequence {fn} in
D(Ω) ⊂ V , such that µ0(K) = limn→∞ I(fn). Thus for every δ > 0 there exists a
function f ∈ V , such that I(f) ≤ µ0(K) + δ. The set U := {x ∈ Ω| f(x) > 1

δ+1}
is an open neighborhood of K. For every compact L ⊂ U it holds (1+δ)f ≥ χL,
which yields

µ0(L) ≤ (1 + δ)I(f) ≤ (1 + δ)(µ0(K) + δ) .

If we choose δ, such that δ(µ0(K) + δ + 1) < ε, we get (iv).

Lemma 10.3.21. Let the assumptions of Lemma 10.3.20 hold and let µ0 be
defined by (10.30). There exists one and only one continuation of µ0 to an
inner regular measure µ : B(Ω) → [0,∞]. Further it holds for all A ∈ B(Ω):

µ(A) = sup{µ0(K)| K ⊂ A, K ∈ K(Ω)} . (10.31)

Proof. Due to Lemma 10.3.20 we can apply [16, 2.3 Lemma, p.328]. This yields
the requirements for [16, 2.4 Fortsetzungssatz, p.329], which finishes the proof.

Example 10.3.22. Let V = D(R) and let I = δλ ∈ D(R)′ be the Delta-
distribution with pole in λ ∈ R. For K ∈ K(R) we get

µ0(K) = inf{f(λ)
∣∣ f ∈ V, f ≥ χK} =

{
1 , λ ∈ K ,
0 , else .
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Now let A ∈ B(R). We remark that the set {λ} is compact. Thus if λ ∈ A there
exists a K ∈ K(R) with λ ∈ K ⊂ A. Hence by Lemma 10.3.21 it holds

µ(A) = sup{µ0(K)| K ⊂ A, K ∈ K(Ω)} =

{
1 , λ ∈ A ,
0 , else .

Now we can prove Proposition 10.3.15.

Proof of Proposition 10.3.15

We mimic the proof of [16, 2.4 Fortsetzungssatz, p.332f].

Uniqueness of µ is one to one as in the proof of [16, 2.4 Fortsetzungssatz, p.
332f]. One only has to replace ”X” by ”Ω“, ”Cc(X)” by ”V ” and ”Lemma 2.1“
by ”Lemma 10.3.19“.

Existence: The measure µ is defined by (10.31) of Lemma 10.3.21. Hence
µ is an inner regular measure. Since Rn is locally compact (cf. [66, p.36]), the
same holds for Ω. As in [16, p.332] we find that µ is locally finite and hence a
Radon measure. It remains to prove (10.27).

(i) We prove: ∀ f ∈ V with f ≥ 0 it holds I(f) ≥
∫
Ω
f dµ.

To prove the claim we also have to verify the existence of the integral.
Since f is continuous, it is Borel measurable (cf. [16, 1.4 Korollar, p.86]).
Hence there exists a sequence of step functions {un}, such that un ր f
(cf. [16, 4.13 Satz, p.108]). Since the integral

∫
Ω
f dµ is defined by the

limit of the integrals of these step functions (and of any other sequence
with the same convergence property), we shall derive the claimed estimate
for these un. To be more precise we shall prove that I(f) ≥

∫
Ω
v dµ holds

for all nonnegative step functions with f ≥ v. The function v is given by

v =

n∑

j=1

aj χAj .

The numbers aj are positive and the sets A1, . . . , An ∈ B(Ω) are disjoint.
Due to v ≤ f it holds A1, . . . , An ⊂ supp(f). Since supp(f) is compact,
Lemma 10.3.20 yields

∀K ∈ K(Ω), K ⊂ supp(f) : 0 ≤ µ(K) ≤ µ(supp f) <∞ .

Thus by definition of µ (cf. (10.31)) µ(Aj) is finite for all j = 1, . . . , n.
Hence for prescribed 0 < ε < min(a1, . . . , an) there exist compact Kj ⊂
Aj , such that µ(Aj) − ε ≤ µ(Kj) (j = 1, . . . ,m). The disjoint compact
sets K1, . . . ,Kn have disjoint open neighborhoods U1, . . . , Un. Since f is
continuous the set Oj := {x ∈ Ω| f(x) > aj − ε} is open. Further it holds
Kj ⊂ Aj ⊂ Oj . Hence we can choose Uj such that Uj ⊂ Oj holds. By
Lemma 10.3.19 there exists a ϕj ∈ D(Ω) such that χKj ≤ ϕj ≤ χUj . This
yields

g :=

n∑

j=1

(aj − ε)ϕj ∈ D(Ω) ⊂ V , g ≤ f



10.3. FUNCTIONS OF SELF–ADJOINT OPERATORS 227

and hence

I(f) ≥ I(g) =

n∑

j=1

(aj − ε)I(ϕj) ≥
n∑

j=1

(aj − ε)µ(Kj)

≥
n∑

j=1

(aj − ε)(µ(Aj)− ε)

=

∫

Ω

v dµ − ε

n∑

j=1

(aj + µ(Aj)− ε) .

Since ε > 0 can be arbitrarily small it follows I(f) ≥
∫
Ω v dµ.

(ii) We prove: ∀ f ∈ V with f ≥ 0 it holds I(f) =
∫
Ω f dµ.

Without restriction of generality we can assume 0 ≤ f ≤ 1. From [16,
p.310f]18 we get that for every ε > 0 there exists a relative compact neigh-
borhood U of K := supp(f), such that µ(U) ≤ µ(K) + ε. By Lemma
10.3.19 there exists a function ϕ ∈ D(Ω) ⊂ V such that χK ≤ ϕ ≤ χU .
Since ϕ− f ∈ V is nonnegative, it follows from (i):

I(ϕ)− I(f) = I(ϕ− f) ≥
∫

Ω

(ϕ− f) dµ

=

∫

Ω

ϕ dµ −
∫

Ω

f dµ . (10.32)

Let g ∈ V , such that g ≥ χsupp(ϕ). Hence g − ϕ ≥ 0, which yields
I(g) ≥ I(ϕ). Since supp(ϕ) is compact, we get from (10.30):

µ(supp(ϕ)) ≥ I(g) ≥ I(ϕ) .

This yields with (10.32) and (i)

0 ≤ I(f) −
∫

Ω

f dµ ≤ I(ϕ) −
∫

Ω

ϕ dµ

≤ µ
(
supp(ϕ)

)
− µ(K) ≤ µ(U) − µ(K) ≤ ε .

Since ε > 0 is arbitrary, we have proven (ii).

(iii) Let f ∈ V . Since f is continuous and has compact support, it holds

c := inf
x∈Ω

f(x) > −∞ .

If c ≥ 0, then nothing is to do, since f ≥ 0 holds.

Let c < 0. As in (ii) there exists a relative compact neighborhood U of
K := supp(f) and by Lemma 10.3.19 we get a function ϕ ∈ D(Ω), such
that χK ≤ ϕ ≤ χU . Hence the function g := f − cϕ ∈ V is nonnegative.
Thus we get from (ii)

I(f) − c I(ϕ) = I(g) =

∫

Ω

g dµ =

∫

Ω

f dµ − c

∫

Ω

ϕ dµ .

Since ϕ ∈ V is nonnegative, it holds I(ϕ) =
∫
Ω ϕ dµ, which yields I(f) =∫

Ω
f dµ.

18Here the crucial part is 1.2 Folgerung g).
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10.3.4 D(Ω) is dense in Lp(Ω,B(Ω), µ)
In this section we proof the following result:

Proposition 10.3.23. Let Ω ⊂ Rn be open and let µ be a Borel measure on
B(Ω). Then D(Ω) is dense in Lp(Ω,B(Ω), µ) for 1 ≤ p <∞.

In the sequel we use the notation Lp(Ω) for Lp(Ω,B(Ω), µ).

Remark 10.3.24. Let Ω = R and let µ be the measure associated with the Delta-
distribution. Hence any function on R which is continuous on a neighborhood of
x = 0 is µ integrable and its Lp(Ω) norm is finite. One might get the impression
that Lp(Ω) is much larger than the standard Lp space where µ is the Lebesgue
measure. But Lp(Ω) consists of equivalence classes and hence Lp(Ω) ∼= R.

To prove Proposition 10.3.23 we need the following results.

Lemma 10.3.25. Let (X,A, µ) be a measure space. Then

Te := span{χA|A ∈ A, µ(A) <∞}

is dense in Lp(X,A, µ) for 1 ≤ p <∞. Te is the linear space of simple functions
which take only a finite number of different values and whose support has finite
measure, i. e. µ

(
{x ∈ X |f(x) 6= 0}

)
<∞.

A proof can be found in [16, Satz 2.28, p.240f] or in [66, Theorem 3.13, p.69].

Lemma 10.3.26. Let X be a locally compact Hausdorff space with countable
basis. Then any Borel measure on B(X) is regular and in particular a Radon
measure.

For a proof we refer to [16, 1.12 Korollar, p.316]. The next result, Lemma
10.3.27, is a special case of Lusin’s Theorem as stated in [66, Theorem 2.24,
p.55]. The theorem shows the close relation between Borel measurable and
continuous functions.

Lemma 10.3.27. Let X be a locally compact Hausdorff space with countable
basis and let µ be a Borel measure on B(X). Further let f ∈ Te. Then there
exists for every δ > 0 a function ϕ ∈ Cc(X), such that

µ
(
{x ∈ Ω|f(x) 6= ϕ(x)}

)
≤ δ and ‖ϕ‖∞ ≤ ‖f‖∞ .

Proof. By Lemma 10.3.26 µ, is a regular Borel measure on B(X) and hence the
assumptions for Lusin’s Theorem (see [66, Theorem 2.24, p.55]) are fulfilled.

Lemma 10.3.28. Let the assumptions of Proposition 10.3.23 hold. The space
Cc(Ω) is dense in Lp(Ω) for 1 ≤ p <∞.

Proof. Let f ∈ Lp(Ω) and let ε > 0. By Lemma 10.3.25 exists a h ∈ Te,
such that ‖f − h‖Lp ≤ ε

2 . Since Rn (with the Euclidean topology) is a locally
compact Hausdorff space with countable basis, the same holds for the topological
subspace Ω. Hence, by Lemma 10.3.27 there exists for every δ > 0 a g ∈ Cc(Ω),
such that

µ(A) ≤ δ with A := {x ∈ Ω|g(x) 6= h(x)} and ‖g‖∞ ≤ ‖h‖∞ .
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This yields

‖h− g‖pLp(Ω) =

∫

Ω

|h(x) − g(x)|p dx

=

∫

A

|h(x)− g(x)|p dx ≤ (2 ‖h‖∞)p δ .

For δ =
(

ε
4‖h‖∞

)p
we get

‖f − g‖Lp(Ω) ≤ ‖f − h‖Lp(Ω) + ‖h− g‖Lp(Ω) ≤ ε .

Since ε is arbitrary, Cc(Ω) is dense in Lp(Ω).

Proof of Proposition 10.3.23

The following discussion is an adaption of the proof of [1, Lemma 2.18, p.29ff].
Let J ∈ D(Rn) be a nonnegative test function, such that J(x) = 0 holds

for all x ∈ Rn with |x| ≥ 1 and let
∫
Rn J(x) dx = 1. For r > 0 we define the

nonnegative function Jr(x) := r−nJ(xr ). Obviously Jr ∈ D(Rn) and satisfies

(i) Jr(x) = 0 for all x ∈ Rn with |x| ≥ r.

(ii)
∫
Rn Jr(x) dx = 1.

Let ε > 0 and let f ∈ Lp(Ω). By Lemma 10.3.28 exists an h ∈ Cc(Ω), such that
‖f − h‖Lp(Ω) ≤ ε

2 . Since h has compact support in Ω, there exists an R > 0,
such that for all 0 < r ≤ R the function gr := Jr ∗ h ∈ Cc(Ω). Furthermore
gr ∈ C∞(Rn) [1]. Hence gr ∈ D(Ω). We compute (using

∫
Rn Jr(x) dx = 1)

|gr(x)− h(x)| =

∣∣∣∣
∫

Rn

Jr(x− y)
(
h(y)− h(x)

)
dy

∣∣∣∣

=

∣∣∣∣
∫

|x−y|<r
Jr(x − y)

(
h(y)− h(x)

)
dy

∣∣∣∣
≤ sup

|y−x|≤r
|h(y)− h(x)| .

Since h is continuous and has compact support, it is uniformly continuous on
the whole domain Ω. Hence for every δ > 0 exists an 0 < rδ < R, such that for
all x ∈ Ω

sup
|y−x|≤rδ

|h(y)− h(x)| ≤ δ

For 0 < r ≤ R let Kr := supp(gr) ∪ supp(h). Both functions have compact
support in Ω. Hence KR ⊂ Ω is compact and thus has finite measure (see
Lemma 10.3.20). Due to definition of gr, supp(gr) ⊂ supp(gR) for all 0 < r ≤ R.
Hence µ(Kr) ≤ µ(KR) <∞ for all 0 < r ≤ R. This yields

‖grδ − h‖pLp(Ω) ≤
∫

Krδ

|grδ(x)− h(x)|p dµ ≤ µ(KR) δ
p .

If µ(KR) = 0 we can choose an arbitrary δ. Otherwise set δ = ε
2

1

µ(KR)
1
p
and get

‖f − grδ‖Lp(Ω) ≤ ‖f − h‖Lp(Ω) + ‖h− grδ‖Lp(Ω) ≤ ε .

Since ε > 0 and f are arbitrary D(Ω), is dense in Lp(Ω).
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10.3.5 A spectral theorem

This part is very close to [71, p.75ff]. We only added some comments and
computations and slightly changed the notation. A further difference is the
order of argumentation. We start with Stone’s theorem (cf. Proposition 10.3.7)
and use it to directly derive the functional calculus for (unbounded) self–adjoint
operators. In contrast, in [71] the author first derives the functional calculus
for bounded self–adjoint operators, extend it to bounded normal operators and
finally derives with Neumann’s unitary trick the calculus for unbounded self–
adjoint operators. From this he derives Stone’s theorem. Nevertheless, the
following discussion is analogue to the first step from [71], which is the derivation
of the functional calculus of bounded self–adjoint operators.

Let A be a self–adjoint operator on a separable Hilbert space H . By Stone’s
theorem (cf. Proposition 10.3.7) iA is the infinitesimal generator of a unitary
C0 group U(t) on H which satisfies (t ∈ R)

d

dt
U(t) = iAU(t) , U(0) = I .

For a given v ∈ H the closed linear subspace Hv := span{U(t)v|t ∈ R} is called
the cyclic space generated by v. The vector v is called cyclic vector of a subspace
V , if and only if Hv = V .

Example. Let v be a normed eigenvector of A corresponding to the eigenvalue
λ. Hence v lies in the domain of A and by Proposition 10.3.5 the function
ψ(t) := U(t)v solves the IVP

ψt = iAψ = iU(t)Av = iλU(t)v = iλψ ,

ψ(0) = v .

Thus ψ(t) = eiλtv and Hv is the one dimensional subspace spanned by v. From
time to time we shall consider this setting during the course of argumentation.

Further we can write H = Hv ⊕ H⊥
v (cf. [31]). Here H⊥

v is the orthogonal
complement ofHv with respect to the Hilbert space structure ofH . Let w ∈ H⊥

v

and let (·, ·) be the scalar product on H . Then it holds for all u ∈ Hv and all
t ∈ R

(U(t)w, u) = (w,U(t)∗u) = (w,U(−t)u) .

Since u is an element of Hv, the same holds for the vector U(−t)u. This yields
(U(t)w, u) = 0. Hence U(t)w ∈ H⊥

v , which means that the orthogonal comple-
ment of Hv is invariant under U(t).

Lemma 10.3.29. H is the closure of an orthogonal direct sum of countable
many cyclic subspaces.

Proof. Let {wj}j∈N be a countable, dense subset of H . Set v1 = w1 and H1 =
Hv1 . IfH1 6= H , let P1 be an orthogonal projection ofH ontoH⊥

1 and j ∈ N the
lowest index with P1wj 6= 0. Set v2 = P1wj and define H2 = Hv2 . Continue.

Due to Lemma 10.3.29 we shall restrict our discussion to a cyclic subspace Hv

of H with cyclic vector v. Since Hv is closed, it is (as H) a separable Hilbert
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space. Hence we directly could have started with a Hilbert space, having a cyclic
vector and thus (to simplify notation) we write H instead of Hv. Furthermore,
we define for all t ∈ R

ζ(t) :=
1√
2π

(
U(t)v, v

)
. (10.33)

Example. For our eigenvector v we immediately get ζ(t) = 1√
2π
eiλt.

By the Cauchy–Schwarz inequality (cf. [31]) and since U(t) is an unitary C0

group, we immediately observe that ζ defined by (10.33) is in C(R) ∩ L∞(R).
Next we define a map W from the space of Schwartz functions S(R) to H via
(cf. [71, p.77])

Wf :=
1√
2π

∫

R

f̂(t)U(t)v dt . (10.34)

Since U(t)v is a function from R to H the expression Wf is defined by the
theory of Bochner integrals (cf. [1, p.178f]). It follows from Corollary 10.3.4
that t 7→ U(t)v is continuous on R. Since the Fourier transformation is a

continuous mapping from S(R) to S(R) (cf. [65]), f̂ ∈ S(R). Thus the integrand
f̃ : t 7→ f̂(t)U(t)v is a continuous map from R → H . Hence f̃ is measurable w.r.t
the Borel algebras on R andH . Thus the integral exists, if and only if t 7→ ‖f̃(t)‖
is Lebesgue integrable (cf. [1, p.179] ). Since U(t) is unitary ‖f̃(t)‖ = |f̂(t)|‖v‖,
which is integrable if and only if f̂ ∈ L1(R). In this case

‖Wf‖ ≤ ‖v‖√
2π

‖f̂‖L1(R) . (10.35)

Example. Let v be our eigenvector from the previous examples and let the
function f ∈ S(R). Then Wf = 1√

2π

∫
R
f̂(t)eiλtv dt = f(λ)v.

Let ϕ : R → H be a Bochner integrable function. From [1] we know that the
Bochner integral of f is defined (as the Lebesgue integral) by the limit of in-
tegrals of simple functions. I. e. there exists a sequence of simple functions
(n ∈ N)

ϕn =

mn∑

j=1

bj,n χAj,n

with19 λ(Aj,n) <∞, bj,n ∈ H for all j = 1, . . . ,mn and ϕn(t) → ϕ(t) a.e. on R

and

∫

R

ϕ(t) dt := lim
n→∞

∫

R

ϕn(t) dt = lim
n→∞

mn∑

j=1

bj,n λ(Aj,n) .

Since the sequence on the right–hand side converges with respect to the norm on
H , we can interchange integration with any linear continuous map. Especially

(∫

R

ϕ(t) dt, g

)
=

∫

R

(f(t), g) dt

19Here λ is a measure on R, which is in our case the Lebesgue measure.
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holds for all g ∈ H . Now let f, g ∈ S(R). Then it holds

(
Wf,Wg

)
= 1

2π

(∫

R

f̂(t)U(t)v dt,

∫

R

ĝ(s)U(s)v ds

)

= 1
2π

∫

R

∫

R

f̂(t) ĝ(s)
(
U(t)v, U(s)v

)
dt ds

= 1
2π

∫

R

∫

R

f̂(t) ĝ(s)
(
U(t− s)v, v

)
dt ds

= 1√
2π

∫

R

∫

R

f̂(t) ĝ(s) ζ(t− s) dt ds

= 1√
2π

∫

R

∫

R

f̂(t) ĝ(t− s) ζ(s) dt ds

= 1√
2π

∫

R

ζ(s)

(
1√
2π

∫

R

∫

R

f̂(t) g(x)ei(t−s)x dx dt

)
ds

= 1√
2π

∫

R

ζ(s)

(∫

R

f(x) g(x)e−isx dx

)
ds

=

∫

R

ζ(s) (̂f g)(s) ds

=
〈
Tζ , f̂ g

〉
. (10.36)

Since ζ ∈ L∞(R) it defines a (tempered) distribution Tζ by (10.25) (cf. [65]).

Hence its Fourier transform (in the distributional sense) T̂ζ is given by (10.26)
and is a tempered distribution too. For f ∈ S(R)

< T̂ζ , f > = < Tζ , f̂ > .

Example. It holds T̂ζ = δλ.

In the sequel we simply write T instead of T̂ζ. For f = g one gets from (10.36)

< T, |f |2 > = (Wf,Wf) ≥ 0 , for all f ∈ S(R).

With this property we can prove Lemma 10.3.30.

Lemma 10.3.30. There exists a unique Radon measure µ on R, such that

〈
T, φ

〉
=

∫

R

φdµ , for all φ ∈ S(R).

Proof. Let F (t, x, y) := 1√
4πt

e−
(x−y)2

4t and let f(t, x, y) :=
√
F (t, x, y). Hence

for all fixed t > 0 and x ∈ R we have f(t, x, ·) ∈ S(R) which yields

< T, F (t, x, ·) > = < T, |f(t, x, ·)|2 > = (Wf(t, x, ·),Wf(t, x, ·)) ≥ 0 .

Furthermore u(t, x) :=< T, F (t, x, ·) > is a solution of the heat equation (in the
tempered distributional sense)

(
∂

∂t
− ∂2

∂x2

)
u(t, x) = 0 ,

u(t = 0) = T .
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By [70, Proposition 5.1, p.217] u(t)
t→0−→ T . Thus, T is a nonnegative tempered

distribution. Hence, by Corollary 10.3.17 there exists a unique Radon measure
µ on R, such that

〈
T, φ

〉
=
∫
R
φdµ holds for all φ ∈ S(R).

Up to now we have shown

(
Wf,Wg

)
=

∫

R

fg dµ = (f, g)L2(R,µ) , ∀ f, g ∈ S(R) , (10.37)

HenceW : S(R) → H is an isometry with respect to the L2(R, µ) scalar product
(cf. [72, Lemma V.5.4, p.234]). Since D(R) ⊂ S(R), by Proposition 10.3.23 we
get that S(R) is dense in L2(R, µ). Hence there exists a unique, continuous

extension Ŵ : L2(R, µ) → H of W , with ‖Ŵ‖ = ‖W‖ (cf. [72, Satz II.1.5,
p.48]). In the sequel we shall denote the extension by W .

Lemma 10.3.31. The map W : L2(R, µ) → H defined by continuous extension
of (10.34) is unitary.

Example. In our example the measure µ is the measure corresponding to the
Delta distribution with pole in λ. As we have seen before Wf = f(λ)v holds
for all f ∈ S(R). For a moment let us denote this map by WS . By (10.37) the
L2(R, µ)-norm of any Schwartz function is finite. Hence there exists a natural
embedding ι : S(R) → L̃2(R, µ) into the space of all functions on R with finite
L2(R, µ)-norm. Further there exists a surjective map σ : L̃2(R, µ) → L2(R, µ),
namely the quotient map with respect to the equivalence relation induced by
‖ ·‖L2(R,µ). For our example σ ◦ ι is surjective and WS =W ◦σ ◦ ι, which means
that for any [f ] ∈ L2(R, µ) there exists a representative f ∈ S(R), such that
W [f ] =WSf = f(λ)v.

Proof of Lemma 10.3.31. Since S(R) is a dense subspace of L2(R, µ) (see Propo-
sition 10.3.23), property (10.37) holds on the whole space L2(R, µ). In particular
it follows that W is injective. Hence it remains to show that W is surjective
and thus bijective (cf. [72]).

Firstly we show: Im(W ) is closed. Let y ∈ Im(W ). Hence there exists a
sequence yn → y with yn ∈ ImW . Further we remark that {yn} is a Cauchy
sequence. Since W is injective, there exist unique xn ∈ L2 with Wxn = yn and

‖xn − xm‖ = ‖W (xn − xm)‖ = ‖yn − ym‖ .
Hence {xn} is a Cauchy sequence and thus converge to a unique x ∈ L2. This
yields (W is continuous)

Wx = lim
n→∞

Wxn = lim
n→∞

yn = y .

Hence y ∈ ImW and thus ImW = ImW .
Since ImW is closed, we get H = ImW ⊕ (ImW )⊥. Thus we have to show,

that ImW⊥ = 0.
Let w ∈ (ImW )⊥. Furthermore let s ∈ R and let f̂n(x) = nϕ(n(x− s)) with

ϕ(x) = 1√
π
e−x

2

. Hence f̂n and its inverse Fourier transform fn are in S(R).
Furthermore it holds for all g ∈ C(R) ∩ L∞(R):

∫

R

f̂n(t)g(t) dt =
1√
π

∫

R

ne−(n(t−s))2g(t) dt

=
1√
π

∫

R

e−y
2

g
(
y
n + s

)
dy .
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Since g is bounded, we can apply the dominated convergence theorem of Lebesgue
and pass to the limit n→ ∞. Hence (g is continuous)

lim
n→∞

∫

R

f̂n(t)g(t) dt = g(s) .

This yields

0 = (w,Wfn) =

(
w, 1√

2π

∫

R

f̂n(t)U(t)v dt

)

= 1√
2π

∫

R

f̂n(t)
(
w,U(t)v

)
dt

n→∞−→
(
w,U(s)v

)
.

Here we use that the map t 7→ (w,U(t)v) is bounded and continuous. Since
s ∈ R is arbitrary,

(w,U(t)v) = 0 for all t ∈ R.

Furthermore v is a cyclic vector of H , i. e. H = span{U(t)v|t ∈ R}. Thus there
exists a sequence wn ∈ span{U(t)v|t ∈ R}, such that wn → w in H . Since
any wn is a finite linear combination of vectors from {U(t)v|t ∈ R}, it follows
(w,wn) = 0 for all n ∈ N. Consequently

‖w‖2 = (w,w) = lim
n→∞

(w,wn) = 0 .

Here we use the continuity of the scalar product and the convergence with
respect to the norm. Thus w is zero and hence (ImW )⊥ = 0, which means
H = ImW .

As we have seen, W : L2(R, µ) → H is an unitary map. Let us compute its ad-
joint map. Therefore let u ∈ span{U(t)v|t ∈ R} ⊂ H , i. e. u =

∑n
j=1 cjU(tj)v

with cj ∈ C, and let g ∈ S(R) ⊂ L2(R, µ). Both subspaces are dense respec-
tively. Furthermore we define f(x) :=

∑n
j=1 cje

itjx. It holds

(Wg, u) =
1√
2π

∫

R

ĝ(t)
(
U(t)v, u

)
dt

=

n∑

j=1

∫

R

cj ĝ(t)
1√
2π

(
U(t)v, U(tj)v

)
dt

=

n∑

j=1

∫

R

cj ĝ(t) ζ(t − tj) dt

=

n∑

j=1

∫

R

cj ĝ(s+ tj) ζ(s) ds

=

∫

R

1√
2π

∫

R

g(x)

( n∑

j=1

cjeitjx
)
e−isx dx ζ(s) ds

=

∫

R

(̂gf)(s) ζ(s) ds .
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Since g ∈ S(R), also gf ∈ S(R) and hence the last integral is nothing but ζ̂ (in
the tempered distributional sense) applied to gf . Due to the construction of
the measure µ we get

(Wg, u)H =
〈
Tζ̂ , gf

〉
=

∫

R

gf dµ = (g, f)L2(R,µ) .

Hence f = W ∗u = W−1u. Since H = span{U(t)v|t ∈ R}, there are for every
u ∈ H a countable number of points tj ∈ R and coefficients cj ∈ C, such that
u =

∑
j∈N

cjU(tj)v. Hence W
∗u = W−1u =

∑
j∈N

cje
itjx.

Let fs(x) := eixsf(x). Hence for every f ∈ S(R) it holds

f̂(t− s) = 1√
2π

∫

R

f(x)e−i(t−s)x dx

= 1√
2π

∫

R

eisxf(x)e−itx dx = f̂s(t) .

Thus we get for all Schwartz functions f

U(s)Wf = 1√
2π

∫

R

f̂(t)U(t+ s)v dt

= 1√
2π

∫

R

f̂(y − s)U(y)v dy = Wfs ,

which yields

(
W−1U(t)Wf

)
(x) = ft(x) = eixtf(x) .

Since S(R) is dense in L2(R, dµ) we have proven

Proposition 10.3.32. Let A be a self–adjoint operator on a separable Hilbert
space H, having a cyclic vector v. Then there exists a Borel measure µ on R

and a unitary map W : L2(R, µ) −→ H, such that

(
W−1U(t)Wf

)
(x) = eitxf(x)

holds for all f ∈ L2(R, µ).

Corollary 10.3.33. Let f ∈ S(R). Then it holds

(W−1AWf)(x) = x f(x) .

Proof. The boundary terms of the integration by parts (see the computation

below) vanish since f̂ is a Schwartz function. Since we do not prove that in-
tegration by parts holds for the Bochner integral, the computations are only
formal. We get

(W−1AWf)(x) =

(
W−1 1√

2π

∫

R

f̂(t) AU(t)v dt

)
(x)

=

(
W−1 1√

2π

∫

R

f̂(t)

(
− i

d

dt
U(t)v

)
dt

)
(x)

=

(
W−1 1√

2π

∫

R

(
i
d

dt
f̂(t)

)
U(t)v dt

)
(x) .
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Let f †(x) := xf(x). Since it holds

d

dt
f̂(t) = −i 1√

2π

∫

R

xf(x)e−ixt dx = −if̂ †(t) ,

we get

(W−1AWf)(x) = (W−1Wf †)(x) = xf(x) .

By Corollary 10.3.33 we know, that A acts on S(R) ⊂ L2(R, µ) via W like
the multiplication with the identity function x 7→ x. Thus, by induction An

is nothing but the multiplication of f with the function x 7→ xn. Hence it is
reasonable to define

Definition 10.3.34. Let f ∈ S(R). Then f(A) : H → H is defined by

f(A) :=
1√
2π

∫

R

f̂(t)U(t) dt .

Since f̂ ∈ S(R) ⊂ L1(R) and U(t) is continuous and bounded, the integral is
well–defined.

The Definition 10.3.34 is not very precise, since we do not specify the domain of
the operator f(A). In general D(f(A)) 6= H . The following computation lead
to an alternative definition of f(A), which also allow a description of D(f(A)).
For f, g ∈ S(R) it holds

f(A)(Wg) = 1
2π

∫

R

f̂(s)U(s) ds

∫

R

ĝ(t)U(t)v dt

= 1
2π

∫

R

∫

R

f̂(s)ĝ(t)U(t+ s)v dt ds

= 1
2π

∫

R

∫

R

f̂(s)ĝ(r − s)U(r)v dr ds

= 1√
2π

∫

R

(̂fg)(r)U(r)v dr (10.38)

= W (fg) . (10.39)

Applying W−1 to (10.39) yields W−1f(A)Wg = fg. Hence, the map f(A)
acts on L2(R, µ) as the multiplication with f . This is well defined for all g ∈
L2(R, µ), such that fg ∈ L2(R, µ). Since this is a much weaker assumption than

f, g ∈ S(R) or f̂ ∈ L1(R) (as in Definition 10.3.34) we can interpret (10.39) as
a weak definition of f(A), which makes sense for all Borel measurable functions
(as long as g is sufficiently smooth).

Definition 10.3.35. Let f : R → R be Borel measurable and let

D
(
f(A)

)
:= {u =Wg ∈ H | g ∈ L2(R, µ), fg ∈ L2(R, µ)} ⊂ H .

Then we define f(A) : D(f(A)) → H by

f(A)u := W (fW−1u) = W (fg) ,

with g =W−1u ∈ L2(R, µ).
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Remark 10.3.36. Since U(ξ) is unitary, it holds ‖U(ξ)v‖ = ‖v‖ and hence

(10.38) holds iff f̂ g ∈ L1(R) (see comments on the Bochner integral on p.231).
In this case

f(A)u = 1√
2π

∫

R

(̂fg)(ξ)U(ξ)v dξ = W (fg) .

The property f̂ g ∈ L1(R) implies20 fg ∈ C0(R) and ‖fg‖L∞(R) ≤ ‖f̂ g‖L1(R) (cf.
[65, 7.5 Theorem, p.185]). This yields fg ∈ L∞(R, µ). Applying (·, v) to the
equation yields

C ∋ (f(A)u, v) =

∫

R

(̂fg)(ξ)ζ(ξ) dξ = < Tζ , f̂ g > .

Provided fg is in the domain of the tempered distribution Tζ̂, then

C ∋ (f(A)u, v) = < Tζ̂, fg > =

∫

R

fg dµ .

Hence fg ∈ L1(R, µ) ∩ L∞(R, µ).

Remark 10.3.37. If f ∈ L∞(R, µ), then fg ∈ L2(R, µ) for all g ∈ L2(R, µ).
Hence D(f(A)) = H and

‖f(A)u‖H = ‖W (fW−1u)‖ = ‖fW−1u‖L2(R,µ)

≤ ‖f‖L∞(R,µ)‖W−1u‖L2(R,µ) = ‖f‖L∞(R,µ)‖u‖H .
Thus f(A) is a bounded operator.

Let us shortly discuss some properties (and quantities) of the approach for a
simple example. Let A = −i∂x on H1

0 (R) ⊂ L2(R). The operator is self adjoint
and hence (by Stone’s theorem) it is the infinitesimal generator of an unitary
group U(t). From Example 10.3.6 on page 217 we know that (U(t)u)(x) =
u(x+ t). Hence

ζ(t) =
1√
2π

∫

R

(U(t)v)(x)v(x) dx =
1√
2π

∫

R

v(x+ t)v(x) dx .

Let v ∈ S(R) ⊂ H1
0 (R). Thus the Fourier transform of ζ is given by

ζ̂(s) =
1√
2π

∫

R

1√
2π

∫

R

v(x + t)v(x) dx e−its dt

=
1√
2π

∫

R

v(x)
1√
2π

∫

R

v(τ)e−i(τ−x)s dτ dx

=
1√
2π

∫

R

v(x)eixs dx v̂(s)

= v̂(s) v̂(s) =
∣∣v̂(s)

∣∣2

Hence the measure µ from Lemma 10.3.30 is a density measure with respect to
the Lebesgue measure, with density |v̂|2. Thus L2(R, µ) is a weighted L2 space.
Furthermore it holds for all w ∈ S(R) that

(U(t)v, w) =

∫

R

v(x+ t)w(x) dx =

∫

R

v(y)w(y − t) dy = (v ∗ w̌)(t) ,

20”Here C0(R) is the supremum–normed Banach space of all complex continuous functions
that vanish at infinity.“ [65, p.185]
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with w̌(x) = w(−x). Hence w̌ ∈ S(R) and [65, 7.8 Theorem, p.188] yields
(U(t)v, w) ∈ S(R).

For the map W : L2(R, µ) → Hv we get (f ∈ L1(R))

(Wf)(x) =
1√
2π

∫

R

f̂(t) (U(t)v)(x) dt =
1√
2π

∫

R

f̂(t) v(x + t) dt

=
1√
2π

∫

R

f(s) v̂(s) eisx ds = F−1(f v̂)(x) .

This is a nice explicit formula of the map W .

Remark 10.3.38. During the course of the above discussion we only needed
the group properties U(t)U(s) = U(t+s), U(−t) = U(t)−1 = U(t)∗ and that the
map t 7→ U(t)u is continuous and bounded for all u ∈ H, where H is a separable
Hilbert space, having a cyclic vector.

Now let A1, . . . , Ak be commutating self–adjoint operators on H and let
U1, . . . , Uk be the corresponding unitary groups. For t ∈ Rk we define U(t) =
U1(t1) . . . Uk(tk). Since A1, . . . , Ak commute, U satisfies U(t)U(s) = U(t+s) for
all t, s ∈ Rk. Furthermore U(−t) = U(t)−1 = U(t)∗ and the map t 7→ U(t)v is
continuous and bounded. Thus we can repeat the above construction and define
f(A) for the linear map A = (A1, . . . , Ak) : H

k → Hk

f(A) =
1

√
2π

k

∫

Rk

f̂(t)U(t) dt

for all f ∈ S(Rk). For example this ansatz can be used to construct a functional
calculus for normal operators. See [71, p.78f] for more details.

10.4 Application

In this section we shall (often formally) apply the derived functional calculus
for some examples, which are connected to the OWWE. We start with the
derivation of the square root of an self–adjoint operator in § 10.4.1. Next, in
§ 10.4.2, we formally derive a solution formula for the OWWE. In § 10.4.3 we
shall show, how the transformation from [12] can be obtained from the presented
ansatz. The mentioned transformation is a crucial tool for the exact symbol
contraction procedure of the SRHO as proposed in [21].

10.4.1 The square root of a self–adjoint operator

Let A be a self–adjoint operator on a separable Hilbert space H , having a cyclic
vector v. The aim of this subsection is to derive the square root of A. It turns
out, that it is easier to compute A− 1

2 instead of A
1
2 . Thus we shall derive a

formula for A− 1
2 and use A

1
2 = AA− 1

2 .
Our motivation is the OWWE from § 10.1. There one has to compute the

square root of the differential operator (10.15), which reads A = ∂2z + κ2V (t)2.
In the first part of the thesis we derived efficient numerical tools to derive the
solution of Ψzz + κ2(V 2 + ξ2)Ψ = f , for ξ ∈ R and V ≥ δ > 0. As we will see,

this equation appears in the construction of A− 1
2 .

We start this section with a technical result and we shall define the branch
of the complex square-root we use for our purpose (i. e. we define the “right”
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branch for the OWWE). Afterwards we compute the Fourier transform of the

map x 7→ x−
1
2 and finally derive the desired formula for A− 1

2 .

Lemma 10.4.1. Let f ∈ L1([0,∞),R) and let21 Cs := {z ∈ C| Im z < 0}.
Then f̂ : Cs → C, pointwise defined by

f̂(z) :=

∫ ∞

0

f(t)e−itz dt ,

is well–defined and complex differentiable on Cs. It holds for all z ∈ Cs

d

dz
f̂(z) = −i

∫ ∞

0

tf(t)e−itz dt .

Proof. Since f ∈ L1([0,∞),R), this also holds for |f |. For z ∈ Cs it further
holds for (almost every) t ∈ [0,∞):

|f(t)e−itz | ≤ |f(t)|e−t| Im z| ≤ |f(t)| .

Hence the function |f | is an integrable upper bound for g(t, z) := f(t)e−itz ,

which yields g(·, z) ∈ L1([0,∞),C). Thus f̂ is well defined.
Now let z = a− ib ∈ Cs, i. e. b < 0. Since for all (real) x ≥ 0 it holds x ≤ ex,

it follows xe−x ≤ 1, which yields

te−tb ≤ 1

b
.

Thus 1
b |f | is an integrable upper bound for the function t 7→ tg(t, z). Hence

f̂ †(z) := −i
∫ ∞

0

tf(t)e−itz dt

exists. Let h ∈ C with |h| < b = | Im z|. Hence it holds z + h ∈ Cs. Further we
get (e. g. with the rule of L’Hospital)

lim
h→0

1
h (e

−ith − 1) = −it .

Thus for every ε > 0 exists δ ≥ 0, such that for all |h| ≤ δ it holds:
∣∣ 1
h (e

−ith − 1) + it
∣∣ ≤ ε.

With the lower triangle inequality we conclude
∣∣ 1
h (e

−ith − 1)
∣∣ ≤ ε+ t .

Hence |f |(ε+ 1
b ) is and integrable upper bound for 1

h (e
−ith−1)g(t, z). Thus the

dominated convergence theorem of Lebesgue yields (|h| ≤ min(δ, Im z))

1
h

(
f̂(z + h)− f̂(z)

)
=

∫ ∞

0

f(t) 1h (e
−ith − 1)e−itz dt

h→0−→ f̂ †(z) .

Hence f̂ is complex differentiable with f̂ ′ = f̂ †.

21We name the most common half planes of C (upper, lower, left, right) after the cardinal
points. With the convention that the imaginary unit i is in the norther plane we have fixed
the compass rose. Thus the lower index s is an abbreviation for ”south“.
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Remark 10.4.2. In the proof of Lemma 10.4.1 we only use the dominated
convergence theorem of Lebesgue. Since the theorem holds for all measures µ on
[0,∞), the lemma holds for all f ∈ L1([0,∞), µ).

Corollary 10.4.3. Lemma 10.4.1 also holds for f ∈ L1([0,∞),C).

Proof. Just split f into real and imaginary part and apply Lemma 10.4.1 to the
gained real valued functions.

Now we define the branch of the complex square root we shall use. It has to be,
such that Im

√
z is nonnegative for all z ∈ C. Since zα (with α ∈ C and z ∈ C∗)

is defined by the formula

zα := eα log z , (10.40)

we have to specify the appropriate branch of the logarithm. To this end let
us restrict the exponential function to the strip D = {z ∈ C| 0 ≤ Im z < 2π}.
Hence exp |D is bijective and its inverse function reads22

log(z) := ln |z| + i arg(z) ,

with (z = a+ ib)

arg(z) :=





arctan
(
b
a

)
, a > 0, b ≥ 0 ,

π
2 , a = 0, b > 0 ,

arctan
(
b
a

)
+ π , a < 0 ,

arctan
(
b
a

)
+ 2π, a > 0, b < 0 ,

−π
2 , a = 0, b < 0 .

The function arg is continuous on C\R+
0 and jumps when crossing the positive

real line. It is also (one–sided) continuous when approaching R+ for the upper
half plane. Since exp is complex differentiable on Do = {z ∈ C| 0 < Im z < 2π}
(the interior of D) it is biholomorphic (cf. [64, p.221]) and hence log is complex
differentiable on exp(Do) = C\R+

0 . Hence all power functions given by (10.40)
are holomorphic on C\R+

0 too.
To apply the functional calculus of § 10.3.5 we have to compute the Fourier

transform of the function f : R∗ → C, f(x) = x−
1
2 . To this end we rewrite f in

the form (for x ∈ R∗)

f(x) = x−
1
2 = 1+sgn(x)

2 |x|− 1
2 − i 1−sgn(x)

2 |x|− 1
2

= 1−i
2 |x|− 1

2 + 1+i
2 sgn(x)|x|− 1

2 .

Since the Fourier transform is a linear map, we only need the Fourier transform
of x 7→ |x|− 1

2 and x 7→ sgn(x)|x|− 1
2 . The following table is from the textbook

[50, p.86] (ν 6∈ Z):

g(x)
∫
R
g(x) e−i2πξxdx

|x|ν −2 Γ(ν + 1) sin(ν π2 ) (2π|ξ|)−ν−1

sgn(x)|x|ν −2 Γ(ν + 1) cos(ν π2 ) (2π|ξ|)−ν−1 sgn(ξ) i

22As usual we denote by ln the real logarithm.
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Here sgn ξ is the real signum of ξ and Γ denotes the Gamma function. From
the previously given table one gets

∫

R

f(x) e−i2πξx dx = −(1−i)Γ(12 ) sin(−π
4 ) (2π|ξ|)

− 1
2

−(1+i)Γ(12 ) cos(−π
4 ) (2π|ξ|)

− 1
2 sgn(ξ) i

=
1

2
√
|ξ|
(
(1− i)− i(1 + i) sgn ξ

)

= (1− i)|ξ|− 1
2 H(ξ) ,

where H denotes the Heaviside function. We set ξ = t
2π which yields

f̂(t) =
1√
2π

(1− i)

∣∣∣∣
t

2π

∣∣∣∣
− 1

2

H
(
t
2π

)
= (1− i)|t|− 1

2 H(t) .

The function f̂ is the tempered distributional Fourier transform of f .
Let W : L2(R, µ) → H be the unitary map from Proposition 10.3.32 and let

U(t) be the group of unitary operators with infinitesimal generator A, i. e. U
solves

Ut = iAU , U(t = 0) = Id .

Furthermore let g ∈ S(R) with g = 0 in an open neighborhood of zero and let
u :=Wg ∈ H . For w ∈ H we define the function h : R → C by

h(t) := (U(t)v, w).

Since U(t) is unitary, the Cauchy–Schwarz inequality yields boundedness of h.
Furthermore, by Remark 10.3.8 the function h is also continuously differentiable.
Since g vanishes identically in an open neighborhood of zero and since f ∈
C∞(R∗,C), fg ∈ S(R). By Definition 10.3.35 it holds

(f(A)u,w) = (W (fg), w) = 1√
2π

∫

R

(̂fg)(t)
(
U(t)v, w) dt

= 1√
2π

∫

R

(̂fg)(t)h(t) dt .

We can interpret f as a tempered distribution. Thus, by [65, 7.19 Theorem,

p.195] it holds
√
2π(̂fg) = (f̂ ∗ ĝ). Since f̂ is a function,

(f(A)u,w) = 1√
2π

∫

R

(
1√
2π

∫

R

f̂(ξ)ĝ(t− ξ) dξ

)
h(t) dt .

Since g ∈ S(R), there exists a constant
√
2 ≤ c ∈ R, such that for all x ∈ R:

g(x) ≤ c(1 + x2)−1. Hence
∫

R

|f̂(ξ)||ĝ(t− ξ)| dξ ≤
∫

[−1,1]

|f̂(ξ)| c dξ +

∫

R\[−1,1]

c |ĝ(t− ξ)| dξ

≤ c22

∫ 1

0

ξ−
1
2 dξ + c2

∫

R

1

1 + (t− ξ)2
dξ

= 4c2 + c2
∫

R

1

1 + x2
dx = c2(4 + π) <∞ .
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Thus, if we assume h ∈ L1(R), then

∫

R

(∫

R

|f̂(ξ)||ĝ(t− ξ)||h(t)| dξ
)
dt

exists and we can apply Fubini’s theorem (cf. [16, 2.1 Satz von G. Fubini,
p.173f]) to interchange the order of integration. This yields

(f(A)u,w) = 1
2π

∫

R

f̂(ξ)

(
H(ξ)

∫

R

ĝ(t− ξ)h(t) dt

)
dξ .

Furthermore we assume that we can shift the Fourier transform from f to the
other factor, i. e.

(f(A)u,w) = 1
2π

∫

R

f(s) 1√
2π

∫

R

(
H(ξ)

∫

R

ĝ(t− ξ)h(t) dt

)
e−iξs dξ ds .

For s ∈ R we (formally) define

ψ(s) := 1√
2π

∫ ∞

0

∫

R

ĝ(t− ξ)U(t)v dt e−iξs dξ .

This yields (f(A)u,w) = 1
2π

∫
R
f(s)(ψ(s), w) ds. By Remark 10.3.8, h is contin-

uously differentiable with h′(t) = (iAU(t)v, w). Integration by parts yields

(iAψ(s), w) = 1√
2π

∫ ∞

0

∫

R

ĝ(t− ξ)(iAU(t)v, w) dt e−iξs dξ

= 1√
2π

∫ ∞

0

∫

R

ĝ(t− ξ)h′(t) dt e−iξs dξ

= − 1√
2π

∫ ∞

0

∫

R

∂ĝ(t− ξ)

∂t
h(t) dt e−iξs dξ .

Since ĝ ∈ S(R), the boundary terms are zero. Furthermore ∂ĝ(t−ξ)
∂t = −∂ĝ(t−ξ)

∂ξ ,
which yields with integration by parts:

(iAψ(s), w) = 1√
2π

∫ ∞

0

d

dξ

(∫

R

ĝ(t− ξ)h(t) dt

)
e−iξs dξ

= − 1√
2π

∫

R

ĝ(t)h(t) dt

− 1√
2π

∫ ∞

0

∫

R

ĝ(t− ξ)h(t) dt (−is) e−iξs dξ

= −
(

1√
2π

∫

R

ĝ(t)U(t)v dt, w

)

+

(
is 1√

2π

∫ ∞

0

∫

R

ĝ(t− ξ)U(t)v dt e−iξt dξ , w

)
.

By definition of W (cf. (10.34)) it holds u =Wg = 1√
2π

∫
R
ĝ(ξ)U(ξ)v dξ. Hence

(iAψ(s), w) = (−u+ is ψ(s), w) .
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Let S be the set of all w ∈ H for which the above computations hold. If we
assume that S is dense inH , then ψ(s) is the weak solution of the inhomogeneous
linear equation

(A− s Id)ψ(s) = i u .

As the following discussion shows it is possible to restrict the integral

(f(A)u,w) = 1
2π

∫

R

f(s)(ψ(s), w) ds

to the positive or negative real line (of course we also have to multiply it with
an appropriate constant factor). The following calculations are motivated by
[21], where a similar trick, as we shall use in moment, is used. We assume that
w ∈ H , such that h ∈ L1(R). Then Integration by parts yields for s ∈ Cs\{0}:

(ψ(s), w) = 1√
2π

∫ ∞

0

∫

R

ĝ(t− ξ)h(t) dt

(
i

s

∂

∂ξ
e−iξs

)
dξ

= 1√
2π

i

s
lim
ξ→∞

∫

R

ĝ(t− ξ)h(t) dt e−iξs

− 1√
2π

i

s

∫

R

ĝ(t)h(t) dt

+ 1√
2π

i

s

∫ ∞

0

∫

R

ĝ′(t− ξ)h(t) dt e−iξs dξ .

Since ĝ′ ∈ S(R) ⊂ L1(R) it holds

∫

R

(∫ ∞

0

|ĝ′(t− ξ)| dξ
)
|h(t)| dt =

∫

R

(∫ t

−∞
|ĝ′(y)| dy

)
|h(t)| dt

≤ ‖ĝ′‖L1(R) ‖h‖L1(R) .

Hence the integral on the left hand side exists and is finite. By Fubini’s theorem
it follows

∫ ∞

0

∫

R

|ĝ′(t− ξ)||h(t)| dt dξ =

∫

R

(∫ ∞

0

|ĝ′(t− ξ)| dξ
)
|h(t)| dt

≤ ‖ĝ′‖L1(R) ‖h‖L1(R) .

Thus there exists a constant 0 ≤ c <∞, such that for all s ∈ Cs\{0}

|(ψ(s), w)| ≤ c

s
.

Furthermore we get
∫
R
ĝ(t− ξ)h(t) dt ∈ L1(R). By Lemma 10.4.1

ϕ(s, w) := (ψ(s), w)

is holomorphic on the lower half plane Cs. Since also f(s) = s−
1
2 is holomorphic

on the lower half plane Cs, we get from Cauchy’s Integral theorem (our branch
of the square root is discontinuous at the positive real line)

∫ 0

−R
f(s)ϕ(s, w) ds +

∫ R

0

lim
ε→0+

f(s− iε)ϕ(s, w) ds +

∫

ΓR

f(s)ϕ(s, w) ds = 0 ,
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with R > 0 and ΓR = {Re−iϕ| 0 ≤ ϕ ≤ π}. Let us estimate the ΓR integral:

∣∣∣∣
∫

ΓR

f(s)ϕ(s, w) ds

∣∣∣∣ =

∣∣∣∣
∫ π

0

f(Re−iϕ)ϕ(Re−iϕ, w)(−iR)e−iϕ ds
∣∣∣∣

= R
1
2

∣∣∣∣
∫ π

0

ϕ(Re−iϕ, w)e−
i
2ϕ ds

∣∣∣∣

≤ R
1
2

∫ π

0

|ϕ(Re−iϕ, w)| ds

≤ πcR− 1
2 .

Hence (in the limit R → ∞)

∫ 0

−∞
f(s)ϕ(s, w) ds +

∫ ∞

0

lim
ε→0+

f(s− iε)ϕ(s, w) ds = 0 .

It holds for all s ∈ R+:

lim
ε→0+

f(s− iε) = −f(s) ,

which yields

∫ 0

−∞
f(s)ϕ(s, w) ds =

∫ ∞

0

f(s)ϕ(s, w) ds .

Finally we get

(A− 1
2 u,w) = 1

2π

∫

R

f(s)(ψ(s), w) ds = 1
2π

∫

R

f(s)ϕ(s, w) ds

= 1
2π 2

∫ 0

−∞
f(s)ϕ(s, w) ds

=

(
1
π

∫ 0

−∞
f(s)ψ(s) ds, w

)
.

Let S be the set of all w ∈ H , such that the discussion and calculations of this
section (up to this point) hold. If S ⊂ H is a dense subset, then it is reasonable
to write

A− 1
2u =

1

π

∫ 0

−∞

1√
s
ψ(s) ds (10.41)

=
1

π

∫ ∞

0

1√
s
ψ(s) ds . (10.42)

Let κ > 0. With the substitution s = −κ2ξ2 and Ψ(ξ) = −iψ(−κ2ξ2) equation
(10.41) simplifies to

A− 1
2 u =

2κ

π

∫ ∞

0

Ψ(ξ) dξ .

If we set s = κ2ξ2 and Ψ(ξ) = ψ(κ2ξ2), then we obtain the same integral from
equation (10.42).
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Remark 10.4.4. Assume, that

(A+ κ2ξ2 Id)Ψ(ξ) = u or (A− κ2ξ2 Id)Ψ(ξ) = i u

has a unique solution for all ξ ∈ R+
0 , and assume that S is dense in H. Then

A− 1
2u is given (in a weak sense) by

A− 1
2u =

2κ

π

∫ ∞

0

Ψ(ξ) dξ .

For A ∈ R+ we get Ψ(ξ) = u
A+κ2ξ2 and23

2κ

π

∫ ∞

0

Ψ(ξ) dξ =
u

κπ

∫

R

1
A
κ2 + ξ2

dξ =
u

A
1
2

.

Is A < 0 we have to use the other formula, which yields Ψ(ξ) = − iu
|A|+κ2ξ2 .

Carrying out the integration yields the right result.

The computations for scalar A ∈ R indicate that the derived equations may
hold for (strictly) positive or negative self–adjoint operators. However for A = 0
both possibilities do not work.

In the end let us consider a special case, which originates from the factorization
of the far–field equation as described in § 10.1. Let A = ∂2z+κ

2V (z) on L2((a, b))
with suitable boundary conditions, such that A is self–adjoint. Thus it formally
holds for f ∈ D(A− 1

2 ):

(
A− 1

2 f
)
(z) =

2κ

π

∫ ∞

0

Ψ(ξ, z) dξ , (10.43)

with

Ψzz(ξ, z) + κ2(ξ2 + V (z))Ψ(ξ, z) = f(z) (+BC) . (10.44)

The solution Ψ is oscillatory (with respect to z) and can be efficiently solved
with the schemes discussed in the first part of this thesis. It remains to derive
a suitable quadrature for the integral (10.43).

From the WKB analysis we can derive good approximations of Ψ for large
values of ξ. This can yield an ansatz for the desired (missing) quadrature of
(10.43).

In some cases also unbounded domains may be considered with this ap-
proach. For example, if the potential V is constant on the complement of a
compact set, then we can impose non reflecting or transparent boundary condi-
tions (TBC), to restrict the ODE (10.44) to a finite domain. Several approaches
of artificial boundary conditions for the time dependent Schrödinger equation
are discussed in the review article [3]. Even if the problems discussed in the
article are time dependent, we can learn how to construct TBC for our setting.

23[8, p.285]:
∫

1
a2 + x2 dx = 1

a
arctan x

a
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10.4.2 A formal solution of the OWWE

Let A be a self–adjoint operator on the separable Hilbert space X , having a
cyclic vector v. Our goal is to find a solution of the initial value problem

d

dx
u(x) = i

√
Au(x) , x ∈ R+ , (10.45)

u(x = 0) = u0 ∈ H .

Here we use the same branch of the complex square root as in § 10.4.1. If u0
is an eigenvector of A with respect to the eigenvalue a, we get u(x) = ei

√
axu0.

Thus we expect that

u(x) = ei
√
Axu0

is a solution of the IVP (10.45) for suitable u0 ∈ H . Hence let us define

f(x, y) := ei
√
y x .

Furthermore let U(t) be the C0 group of unitary operators with infinitesimal
generator iA, i. e. the function t 7→ U(t) solves the initial value problem

d

dt
U(t) = iAU(t) , t ∈ R ,

U(t = 0) = Id .

By Definition 10.3.35 we have

u(x) := f(x,A)u0 = 1√
2π

∫

R

γ(x, ξ)U(ξ)v dξ ,

with γ(x, ξ) := ̂(f(x, ·)g)(ξ). Here g := W−1u0 ∈ L2(R, µ), where W is the
unitary map from Proposition 10.3.32. The following Proposition is the main
result of this section.

Proposition 10.4.5. Let A be a self–adjoint operator on a separable Hilbert
space H, having a cyclic vector v and let µ be the unique Radon measure from
Proposition 10.3.32. Further let g ∈ L1(R) ∩ L2(R, µ), such that t 7→

√
tg(t) is

in L1(R) and let u0 :=Wg. Is w ∈ H, such that the map t 7→ (U(t)v, w) ∈ C is
in L1(R), then

d

dx

(
u(x), w

)
=

(
i
√
Au(x), w) , x ∈ R+ , (10.46)

lim
x→0

(u(x), w) = (u0, w) . (10.47)

Proof. Since g ∈ L1(R)

γ(x, ξ) =
1√
2π

∫

R

ei
√
tx g(t) e−iξt dξ

is well defined. Furthermore the function |g| is an integrable upper bound for
the integrand for all x ∈ R+. Thus, by the dominated convergence theorem

lim
x→0

γ(x, ξ) = ĝ(ξ) .
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Let w ∈ H , such that h(t) := 1√
2π

(U(t)v, w) is in L1(R). Then, for all x ∈ R+,

‖g‖L1(R)|h| is an integrable upper bound for ξ 7→ γ(x, ξ)h(ξ) and hence

lim
x→0

(u(x), w) = lim
x→0

1√
2π

∫

R

γ(x, ξ)h(ξ) dξ =
1√
2π

∫

R

ĝ(ξ)h(ξ) dξ

=

(
1√
2π

∫

R

ĝ(ξ)U(ξ)v dξ, w

)
= (Wg,w) = (u0, w) .

Hence we have proven (10.47).
Let ψ(x, ξ, t) := f(x, t)g(t)e−iξt. Since g ∈ L1(R) it holds ψ(x, ξ, ·) ∈ L1(R)

for all (x, ξ) ∈ R+× R. Furthermore ψ is differentiable with respect to x for all
(x, ξ, t) ∈ R+× R× R and it holds ψx(x, ξ, t) = i

√
tψ(x, ξ, t). Since

|ψx(x, ξ, t)| = |
√
t| |ψ(x, ξ, t)| ≤ |

√
t| |g(t)| ∈ L1(R) ,

t 7→ |
√
t||g(t)| is an integrable upper bound for ∂xψ(x, ξ, ·) for all (x, ξ) ∈ R+×R.

Thus, by [16, Satz 5.7, p.146] we can interchange integration an differentiation,
which yields

∂

∂x
γ(x, ξ) =

1√
2π

∫

R

i
√
tei

√
txg(t) e−iξt dt .

Now let ϕ(x, ξ) := γ(x, ξ)h(ξ). Since h ∈ L1(R) and |γ(x, ξ)| ≤ ‖g‖L1(R)

ϕ(x, ·) ∈ L1(R) for all x ∈ R+. Furthermore ∂xϕ(x, ξ) = h(ξ)∂xγ(x, ξ) exists
for all (x, ξ) ∈ R+× R. Additionally it holds

|∂xϕ(x, ξ)| = |h(ξ)||∂xγ(x, ξ)| ≤ |h(ξ)| ‖√·g(·)‖L1(R) .

Again we can apply [16, Satz 5.7, p.146] and hence

d

dx
(u(x), w) =

d

dx

1√
2π

∫

R

γ(x, ξ)h(ξ) dξ

=
1

2π

∫

R

∫

R

i
√
tei

√
txg(t) e−iξt dt h(ξ) dξ

=
i√
2π

∫

R

̂(
σf(x, ·)g

)
(ξ)h(ξ) dξ ,

where σ(t) =
√
t is the branch of the complex square root as defined in § 10.4.1.

By Definition 10.3.35 it holds W−1u(x) = f(x, ·)g. Hence
d

dx
(u(x), w) =

i√
2π

∫

R

̂(
σW−1u(x)

)
(ξ)h(ξ) dξ

=

(
i

1√
2π

∫

R

̂(
σW−1u(x)

)
(ξ)U(ξ)v dξ, w

)

=
(
iW (σW−1u(x)), w

)

=
(
i
√
Au(x), w) .

Remark 10.4.6. Let the assumption of Proposition 10.4.5 hold. If the subspace
span{w ∈ H |

(
U(·)v, w

)
∈ L1(R)} is dense in H, then u is a weak solution of

the initial value problem (10.45).
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In the end of this section we prove the following estimate: ‖u(x)‖ ≤ ‖u0‖.
Therefore we frequently use that W is an unitary map from L2(R, µ) → H .

‖u(x)‖ = ‖f(x,A)u0‖ = ‖W−1f(x,A)u0‖L2(R,µ)

= ‖f(x, ·)g‖L2(R,µ) ≤ ‖f(x, ·)‖L∞(R,µ)‖g‖L2(R,µ)

= ‖Wg‖ = ‖u0‖ .

This yields

Remark 10.4.7. The evolution operator generated by i
√
A is a semi group of

contractions.

The Fourier transform of ei
√
τx

To compute the Fourier transform of ei
√
τx, we define for b ∈ C and τ ∈ R:

e−b
√
τ := 1+sgn(τ)

2 e−b
√

|τ | + 1−sgn(τ)
2 e−ib

√
|τ | .

We use the same branch of the complex square root as in § 10.4.1. The following
table is from [50]:

f(τ)
∫
R
f(τ) e−i2πξτ dτ

e−a
√

|τ | a

2πξ
√

|ξ|

[ (
1
2 − S(ρ)

)
sin( a

2

8πξ ) + η
(
1
2 − C(ρ)

)
cos( a

2

8πξ )
]

sgn(τ) e−a
√

|τ | −ia
2πξ

√
|ξ|

[
η
(
1
2 − C(ρ)

)
sin( a

2

8πξ )−
(
1
2 − S(ρ)

)
cos( a

2

8πξ )
]
− i

πξ ,

with η := sgn(ξ), ρ := a

2π
√

|ξ|
, and

S(ρ) :=

∫ ρ

0

sin(π2u
2) du , C(ρ) :=

∫ ρ

0

cos(π2u
2) du .

One can extend the Fresnel functions S,C to the entire complex plane by

S(ζ) =

∫ 1

0

sin(π2 t
2ζ2)ζ dt , C(ζ) =

∫ 1

0

cos(π2 t
2ζ2)ζ dt .

This yields

S(iζ) = −iS(ζ) and C(iζ) = iC(ζ) .
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Hence

2

∫

R

e−b
√
τe−i2πξτ dτ

= b

2πξ
√

|ξ|

[ (
1
2 − S(ρ)

)
sin( b

2

8πξ ) + η
(
1
2 − C(ρ)

)
cos( b

2

8πξ )
]

+ −ib
2πξ

√
|ξ|

[
η
(
1
2 − C(ρ)

)
sin( b

2

8πξ )−
(
1
2 − S(ρ)

)
cos( b

2

8πξ )
]
− i

πξ

+ ib

2πξ
√

|ξ|

[ (
1
2 − S(iρ)

)
sin(−b

2

8πξ ) + η
(
1
2 − C(iρ)

)
cos(−b

2

8πξ )
]

− b

2πξ
√

|ξ|

[
η
(
1
2 − C(iρ)

)
sin(−b

2

8πξ )−
(
1
2 − S(iρ)

)
cos(−b

2

8πξ )
]
+ i

πξ

= (1−i)b
2πξ

√
|ξ|

1+sgn(ξ)
2 sin( b

2

8πξ ) +
(1+i)b

2πξ
√

|ξ|
1+sgn(ξ)

2 cos( b
2

8πξ )

= b

2πξ
√

|ξ|
H(ξ)

(
(1 − i) sin( b

2

8πξ ) + (1 + i) cos( b
2

8πξ )
)

= (1+i)b

2πξ
√

|ξ|
H(ξ) e−i

b2

8πξ .

It follows from the previous calculation (with t = 2πξ, −b = ix):

2√
2π

∫

R

ei
√
τx eitτ dτ = 1√

2π

(1+i)(−ix)

2π
t
2π

√∣∣ t
2π

∣∣ H( t
2π ) e

−i (−ix)2

8π
t
2π

= (1−i)x
t
√

|t|
H(t) ei

x2

4t .

Hence, if we use Definition 10.3.34, than the (formal) solution of the OWWE
(10.45) is given by

u(x) =
√

1
iπ

x
2

∫ ∞

0

1

t
3
2

ψ(t) ei
x2

4t dt , (10.48)

with

ψt = i Aψ , ψ(t = 0) = u0 . (10.49)

Despite that (10.48) is derived by formal calculations, the integral on the right
hand side is well defined for a certain class of scalar functions ψ.

Proposition 10.4.8. Let ψ ∈ L∞(R+), such that ψ is continuously differen-
tiable in the semi open interval [0, ε) for some ε ∈ R+. Then

u(x) :=
√

1
iπ

x
2

∫ ∞

0

1

t
3
2

ψ(t) ei
x2

4t dt , (10.50)

exists for all x ∈ R+. Furthermore it holds limx→0 u(x) = ψ(0).

Proof. For z ∈ C let

Φ(z) :=
2√
π

∫ z

0

e−ζ
2

dζ ,
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where we integrate in the complex plane along an arbitrary path which connects
0 and z. The entire function Φ is called error function (cf. [51, p.36]). For
| arg z| < π

2 we find the asymptotic representation (see [51, p.39])

1− Φ(z) ≈ e−z
2

√
πz

as |z| → ∞.

Let R ∈ R+ and let z := 1−i√
2
R = −

√
−iR. Hence

e−z
2

√
πz

= − eiR
2

√
π
√
−iR → 0 as R → ∞ ⇒ lim

R→∞
Φ(−

√
−iR) = 1 .

Furthermore it holds Φ(z) = −Φ(−z) and thus

1 = lim
R→∞

Φ(−
√
−iR) = lim

R→∞
−Φ(

√
−iR) .

Let γ(t) :=
√
−i
2

x

t
1
2
be a parametrization of the path from 0 to

√
−iR. Hence

−Φ(
√
−iR) = − 2√

π

∫ ( x
2R )2

∞

(
− 1

2

)√−i
2

x

t
3
2

ei
x2

4t dt

=
√

1
iπ

x
2

∫ ∞

( x
2R )2

1

t
3
2

ei
x2

4t dt ,

which yields

√
1
iπ

x
2

∫ ∞

0

1

t
3
2

ei
x2

4t dt = lim
R→∞

−Φ(
√
−iR) = 1 .

Therefore it holds

u(x) = ψ(0) +
√

1
iπ

x
2

∫ ∞

0

ψ(t)− ψ(0)

t
3
2

ei
x2

4t dt . (10.51)

Let g(t) := ψ(t)−ψ(0)
t
3
2

. Since ψ is continuously differentiable in an open neigh-

borhood of zero, it holds for t small enough:

g(t) =
1

t
3
2

(∫ t

0

ψ′(s) ds

)
.

It follows
√
tg(t) → ψ′(0) as t→ 0 and hence g has an integrable singularity at

t = 0. Since ψ is bounded, there exists a constant c > 0 and a t0 > 0, such that
|g(t)| < c t−

3
2 for almost all t > t0. Thus g ∈ L1(R+) and hence the integral

in (10.50) exists. Furthermore |g| is an integrable upper bound for the absolute
value of the integrand in (10.51) and hence limx→0 u(x) = ψ(0).

Remark 10.4.9. With Maple14 we also find that

∫ ∞

0

1

t
3
2

e−t ei
x
4t dt = 2

√
π
e−

√
−ix

√
−ix .

Hence we can use a linear combination of the functions 1, e−t to manipulate ψ
at t = 0.
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10.4.3 DeSanto’s Transformation

The key tool of constructing the PDO symbol of the SRHO from § 10.1, as
suggested in [21], is a integral transformation that John A. DeSanto established
in [12]. It connects the solution of the Helmholtz equation

∂2

∂x2
u(x, z) +

(
∂2

∂z2
+ κ2V (z)

)
u(x, z) = 0 , (10.52)

u(x = 0) = u0

and the parabolic equation for sound propagation

2iκ
∂

∂s
p(s, z) +

∂2

∂z2
p(s, z) + κ2

(
V (z)− 1

)
p(s, z) = 0 , (10.53)

p(s = 0) = u0

by the integral transformation

u(x, z) =
√

κ
2πi x

∫ ∞

0

1

s
3
2

p(s, z) eiκ
x2+s2

2s ds . (10.54)

In the sequel we shall briefly discuss the connection of this transformation ap-
proach with our results derived in the previous sections. Therefor let

A :=
∂2

∂z2
+ κ2V (z)

acting on a suitable Hilbert space H , having a cyclic vector v. We assume
that A, with the not specified boundary conditions for the Helmholtz equation
(10.52), is self–adjoint on H . Now the Helmholtz equation reads

∂2

∂x2
u(x) + Au(x) = 0 , u(x = 0) = u0 .

Formally we can factorize the differential operator:

( ∂
∂x

+ i
√
A
)( ∂

∂x
− i

√
A
)
u(x) = 0 .

Hence a solution u∗ of the one way wave equation

∂

∂x
u∗(x) = i

√
Au∗(x) , u∗(x = 0) = u0 ,

is also a solution of the Helmholtz equation. From (10.48) and (10.49) we get

u∗(x, z) =
√

1
iπ

x
2

∫ ∞

0

1

t
3
2

ψ(t, z) ei
x2

4t dt ,

with

ψt = i Aψ = i
( ∂2
∂z2

+ κ2V (z)
)
ψ , (10.55)

ψ(t = 0) = u0 .
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In (10.54) we substitute s = 2κt, which yields

u(x, z) =
√

κ
2πi x

∫ ∞

0

2k

(2kt)
3
2

p(2kt, z) eik
2t ei

x2

4t dt

=
√

1
πi

x
2

∫ ∞

0

1

t
3
2

ρ(t, z) ei
x2

4t dt ,

with ρ := p(2kt, z)eik
2t. Differentiating ρ with respect to t and using (10.53)

yields

∂

∂t
ρ = eiκ

2t 2κ
∂

∂s
p+ iκ2ρ

= i
∂2

∂z2
p(2κt, z)eiκ

2t + iκ2V ρ− iκ2ρ+ iκ2ρ

= i

(
∂2

∂z2
+ κ2V

)
ρ .

Additionally it holds ρ(t = 0) = u0. Hence ρ is a solution of the initial value
problem (10.55) and thus u = u∗. Therefore is the solution u of the Helmholtz
equation, constructed by the approach of deSanto, is also a solution of the one
way way equation solution. This connection is not mentioned in [12].

For our approach the operator A only has to be self–adjoint. Hence we can
interpret our ansatz as a generalization of transformation (10.54).

10.5 Summary and conclusions

We introduce the one way wave equation (OWWE) and present one example
which gives an idea on which level of model reduction the OWWE may appear.
Afterwards, in § 10.2, we discuss some difficulties occurring when discretizing
the square root Helmholtz operator (SRHO) (treated as pseudo differential op-
erator). Due to the stated problems we decide to consider the SRHO in the
framework of functional calculus of self–adjoint operators, i. e. we define it as
as function of a differential operator. In § 10.3 we present a non standard ap-
proach from [71] to derive a spectral theorem. It seems to be more suitable for
numerical computations, than the ansatz by Banach algebras. This part is a
revised lecture note from the author. During the course we prove a version of
Riesz’ representation theorem, which is a special case and a generalization of
the results from [16]. Our derived version is used for the proof of the spectral
theorem. Furthermore we prove, that the space of test functions D(Ω) is dense
in Lp(Ω, µ), where µ is a Radon measure on the open set Ω ⊂ Rn. Since also
this result is needed for the proof of the spectral theorem, and since we have
found it only for the case where µ is the Lebesgue measure, we decided to carry
out the computations.

With the functional calculus we (not completely rigorous) derive a formula
to compute the image of a vector mapped by the inverse square root of a self–
adjoint operator. It is based on the solution of a general (linear) Schrödinger
equation. In the final version the derived formula is quite simple (see Remark
10.4.4). One just has to integrate the solution of a linear system depending on
a parameter. For the special case that the operator is a linear second order
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differential operator, one may use the numerical methods presented in the first
part of this thesis to efficiently solve the linear equations, for large values of the
parameter.

Furthermore we formally prove a formula to compute the solution of the one
way wave equation. It turns out that the computational effort to compute the
solution of the one way wave equation at a certain point is comparable to just
applying the inverse square root operator to the initial condition. We are also
able to derive deSanto’s transformation from our theoretical approach. This
transformation is connects the solution of a Schrödinger type equation with the
solution of the Helmholtz equation. Due to our discussion, we find out that
deSanto’s solution is also a solution of the one way wave equation.
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[74] Kôsaku Yoshida. Functional analysis. Springer, Berlin, 1974.

[75] Clarence Zener. Non-adiabatic crossing of energy levels. Proc. R. Soc.
Lond. A, 137:696–702, 1932.



260



261

Curriculum vitae

Personal Data
Name Jens Geier
Date of birth 04.04.1979
Place of birth Höxter, Germany
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