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Kurzfassung

Die vorliegende Arbeit widmet sich der Analyse des Langzeitverhaltens von Lösungen
linearer kinetischer Gleichungen mit Defekten. Dabei stehen zwei Modelle im Mittel-
punkt: Die degenerierte Fokker–Planck Gleichung und die Goldstein–Taylor Gleichung
(ein Transport-Relaxationsmodell von BGK Typ), welche beide hypokoerzive Dynami-
ken vorweisen. Unser spezieller Fokus sind die “defekten Fälle” dieser Modelle. Die Ter-
minologie orientiert sich hierbei an endlichdimensionalen gewöhnlichen Differential-
gleichungen (GDG) mit ähnlichem Verhalten. Dort impliziert eine nicht diagonalisier-
bare lineare Systemmatrix, im Englischen als “defective matrix” bezeichnet, ein Ab-
klingverhalten, das einem exponentiellen Term multipliziert mit einem Polynom ent-
spricht. Um explizite Abschätzungen für das Langzeitverhalten von Lösungen der ge-
nannten Gleichungen zu erlangen, konstruieren wir neue Lyapunov Funktionale für
Entropiemethoden und kombinieren Resultate nicht-symmetrischer Spektraltheorie.

Die Arbeit ist in drei Kapitel gegliedert:

Im ersten Kapitel beweisen wir scharfes asymptotisches Langzeitverhalten mittels ei-
ner Familie von Entropien für defekte Fokker–Planck Gleichungen auf Rd mit hypokoer-
zivem Verhalten und zeigen, dass das Abklingverhalten dem einer defekten GDG ent-
spricht. Die Neuheit unserer Methodik liegt dabei in der Kombination von Spektraltheo-
rie und nicht-symmetrischer Hyperkontraktivität, eine explizite Glättungseigenschaft
des Fokker–Planck Propagators, die wir für degenerierte Diffusion beweisen.

Im zweiten Kapitel werden explizite Lypanunov Funktionale für lineare GDG konstru-
iert, die scharfe Abklingraten, inklusive den defekten Fällen, liefern. Zur Anwendung
dieser Methode betrachten wir drei Evolutionsgleichungen: Die lineare Konvektions-
Diffusionsgleichung, die Goldstein–Taylor Gleichung und die Fokker–Planck Gleichung.

Die Erweiterung der Gleichungen mit einem zusätzlichen Parameter, der Unsicher-
heiten in der praktischen Bestimmung von Gleichungskoeffizienten beschreibt, und ei-
ner linearen Sensitivitätsanalyse dieses Parameters führt zu defekten GDG. Die Anwen-
dung unserer Lyapunov Funktional Methode liefert scharfe Abschätzungen des Lang-
zeitverhaltens von charakteristischer defekter Form. Dabei ist es essenziell, dass durch
das Auftreten des Unsicherheitsparameters die Abschätzungen gleichmäßig im nicht-
defekten Limes sind.

Im dritten Kapitel wird ein Entropiefunktional konstruiert, um das Langzeitverhalten



der Goldstein–Taylor Gleichung am Torus mit ortsabhängigem Relaxationskoeffizienten
zu analysieren. Die Verwendung dieses Funktionals führt zu scharfen Abklingraten für
konstante Relaxation und gibt explizite Raten im Falle einer örtlich variierenden Rela-
xation. Um das Erweiterungspotential unserer Methode für verwandte Modelle zu de-
monstrieren, beweisen wir explizite Abklingraten für ein auf drei Geschwindigkeiten
erweitertes Goldstein–Taylor Model.



Abstract

This thesis is devoted to the analysis of the long-time behaviour of solutions to lin-
ear kinetic equations with defects. The two main models of interest are the degener-
ate Fokker–Planck equation and the Goldstein–Taylor system (a two velocity transport-
relaxation model of BGK-type), which both exhibit hypocoercive dynamics. The thesis
focuses on the defective cases that occur in these models, which, much like finite di-
mensional defective ODEs, imply a polynomial times exponential decay of solutions.
To obtain explicit estimates on the decay behaviour of solutions, we construct tools for
entropy methods and utilise spectral theory in a non-symmetric setting.

The thesis is divided into three parts:

In the first part, we establish sharp long-time asymptotic behaviour for a family of en-
tropies to defective Fokker–Planck equations on Rd that exhibit hypocoercive dynamics,
and we show that their decay rate is an exponential multiplied by a polynomial in time.
The novelty of our study lies in the combination of spectral theory and non-symmetric
hypercontractivity, a long-time smoothing property of the Fokker–Planck propagator
that we extend to include degenerate diffusion.

In the second part, we review the Lyapunov functional method for linear ODEs and
give an explicit construction of such functionals that yield sharp decay estimates, in-
cluding an extension to defective ODE systems. As an application, we consider three
evolution equations, namely the linear convection-diffusion equation, the Goldstein–
Taylor equation and the Fokker–Planck equation.

Adding an uncertain parameter to the equations and analysing their linear sensitivity
with respect to this parameter leads to defective ODE systems. By applying the Lya-
punov functional framework, we prove sharp long-time behaviour of the typical defec-
tive form. The appearance of the uncertain parameter in the three applications makes
it important to have decay estimates that are uniform in the non-defective limit.

Finally, in the last part, we construct an entropy functional to analyse the long-time
behaviour of the Goldstein–Taylor equation on the one-dimensional torus with space-
dependent relaxation. Utilising this functional yields sharp decay rates to equilibrium
for constant relaxation, and explicit decay rates, when the relaxation varies in space. To
demonstrate the potential of extending our entropy method to related models, we prove
exponential decay with an explicit rate for a three-velocity Goldstein–Taylor model.
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Introduction

To sum up, the aim of mathematical physics is not only to facilitate for the physicist the
numerical calculation of certain constants or the integration of certain differential equa-
tions. It is besides, it is above all, to reveal to him the hidden harmony of things in making
him see them in a new way.

— Henri Poincaré

Mathematical physics takes on the challenge of expressing real-world phenomena
through simple and exact mathematical language. In the field of kinetic theory, one
guiding principle is the second law of thermodynamics. It states that, in a closed sys-
tem, heat, i.e. microscopic kinetic energy, always flows from hotter to colder regions as
time passes. The mechanics of this process is happening on a microscopic level, where
kinetic energy is transferred from one particle to the other upon collision, as in a game
of billiard with billions of balls. Due to the immense number of particle collisions, the
path of an individual particle exceeds the capacities of direct computation. However,
if one takes a step back from the particle point of view and observes the macroscopic
properties of the system, an ordered structure reveals itself. The total of all local differ-
ences of kinetic energy in the system, called entropy, will decrease1 in each time step.
This happens until the whole system reaches a uniform temperature, the thermody-
namic equilibrium.

One method to analyse the behaviour of solutions to partial differential equations
(PDEs), which arise from a statistical consideration of particle models, is to follow the
second law of thermodynamics and use the monotonicity of an entropy that is associ-
ated to the equation. The objective of the so-called entropy method is to construct a
Lyapunov functional that decreases along the evolution of solutions to the PDE. Here,
we are specifically devoted to tools that capture the long-time behaviour of the system
as precisely and explicitly as possible.

The two main models of interest in the present thesis are the linear degenerate Fokker–
Planck equation and the Goldstein–Taylor equation (a two velocity BGK model2). Our

1For physicists it is customary to define entropy with the opposite sign. Hence, in the physical context
entropy is said to increase.

2Named after the physicists Bhatnagar, Gross and Krook, ’54.
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Introduction

focus lies on understanding the possible appearance of defects in the equations. This
terminology is analogous to defective eigenvalues, which may appear in the modal de-
composition of these equations. The defectiveness in these cases manifests itself in the
long time behaviour of the solutions to the equations: The sharp exponential conver-
gence to equilibrium is not purely exponential but rather has the form of an exponential
term slowed down by a polynomial factor. We will proceed with providing an overview
of the models and our specific settings.

Defective Fokker–Planck Equations

In its simplest form, the linear Fokker–Planck equation (FPE) for x ∈R is given as

∂t f (x, t ) = div(D∇ f (x, t )+C x f (x, t )), t ≥ 0, (1)

where D > 0 is the diffusion coefficient and C > 0 is the drift coefficient that corresponds
to a quadratic confinement potential. The solution f (x, t ) describes the probability
density function of a statistically average particle under the influence of two forces. A
deterministic force that pushes the particle in a certain direction (here, to the origin),
corresponding to the drift term, and a fluctuating force due to particle collisions corre-
sponding to the diffusion term.

The research on this fundamental equation has a long history, starting with the statis-
tical analysis of particle fluctuations as Brownian motion. A summarising survey of the
equation can be found in [6]. Higher dimensional versions of (1), as well as nonlinear
extensions of it, and its long time behaviour have been extensively investigated in the
last few decades. One elegant way to estimate the decay to equilibrium for the FPE is the
so-called Bakry-Émery method (see [3]). In the setting of the FPE for x ∈ Rd , however,
this methodology works only when diffusion is present in all directions.

Here, we are interested in sharp decay estimates for FPEs that exhibit defective be-
haviour. We focus on two generalisations of (1) where it arises:

◦ An extension of (1) to x ∈ Rd , where the drift coefficient becomes a constant-in-
space drift matrix C ∈ Rd×d with spectral gap3 µ > 0. We investigate the case,
whereC has defective eigenvalues in its spectral gap. Said differently,C is not di-
agonalisable on the appropriate eigenspace, and has a non-trivial Jordan normal
form. As an additional difficulty, we only assume the diffusion matrix to be posi-
tive semi-definite, which hence allows degenerate diffusions as in the example of
the linear kinetic Fokker–Planck equation.

◦ We are further interested in including uncertainty to (1) by imposing a drift co-
efficient C (z) > 0 that depends on an uncertain parameter z ∈ R. We raise the

3The smallest real part of all eigenvalues ofC.
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Introduction

question: How sensitive is the long-time behaviour of solutions to modelling un-
certainty in the drift coefficient? Analysing the solution dependence on z leads to
sensitivity equations that again exhibit a defective structure.

Defectiveness

The main challenge in the above mentioned defective cases lies in the deviation from
the purely exponential decay behaviour of solutions. We shall look at an explicit ex-
ample of this phenomenon: For a given symmetric positive definite diffusion matrix
D ∈ Rd×d and a drift matrix C ∈ Rd×d with spectral gap µ > 0, consider the following
Fokker–Planck equation:

∂t f (x, t ) = div(D∇ f (x, t )+Cx f (x, t )) =: L f (x, t ), x ∈Rd , t ≥ 0,

f (x,0) = f∞(x)+ f1(x),
(2)

where f∞ is the equilibrium of the equation, and f1 ∈V1, where V1 is a finite dimensional
L2-subspace, which includes the eigenfunctions of the FP operator L corresponding to
its spectral gap (cf. Fig. 1).

One can show that the evolution of the semigroup eLt on V1 is equivalent to the evo-

lution of the semigroup e−CT t (with respect to the coefficients of each element of V1

in a standard basis). Thus, since f (x, t )− f∞(x) = eLt f1(x), we see that in order to un-
derstand the long time behaviour of the solution, we only need to consider the ODE
ẋ =−CT x. From the above, we can conclude that ifC has an eigenvalue with real-part
µ that is defective of order4 n ∈N, then

‖ f (x, t )− f∞(x)‖L2 ≤C (1+ t n)e−µt . (3)

The exponential decay with rate µ is slowed down by the polynomial in time of order n
due to the non-trivial Jordan normal form ofC.

One difficulty that arises in the defective cases is that entropy methods commonly
rely on finding a time independent entropy functional E [·] and α > 0, such that any
solution f of the equation satisfies

d

d t
E [ f (·, t )] ≤−αE [ f (·, t )], t ≥ 0.

Gronwall’s Lemma then directly implies purely exponential decay in entropy with rate
α > 0. To recover decay of the form presented in (3), which is natural in the defective
setting, different, and more complicated techniques are required — such as allowing the
entropy functional to be explicitly dependent on time. For the d-dimensional defective
FPE, we shall take an alternative approach to the entropy methods: Combining spectral

4An eigenvalue is defective of order n if the difference between its algebraic multiplicity and its geometric
multiplicity is n. This corresponds to a Jordan block of size n +1.

3



Introduction

properties of the (in general non-symmetric) FP operator L in L2 together with a non-
symmetric hypercontractivity result, which asserts that solutions eventually belong to
the appropriate L2 space, to achieve our sharp decay estimates.

For arbitrary L2 initial data, our strategy is splitting the solution into two parts:

f (x, t ) = f1(x, t )+ f2(x, t ),

with a finite dimensional part, f1, corresponding to the discussion above with decay
(3), and an orthogonal remainder f2 that lies in an infinite dimensional subspace, which
converges to equilibrium significantly faster. See Fig. 1 for the correspondence of eigen-
values of L and the subspaces partition of L2.

-

-i

i

Figure 1: The black dots represent the spectrum of L. The grouping depicts the correspondence
of eigenvalues with the subspace partition L2 = ⊕∞

i=0 Vi . The solution part f1 corre-
sponds to V1 and f2 corresponds to V ⊥

1 .

To extend the decay estimates to include even more general initial data of only Lp -
integrability for 1 < p < 2, we prove, there is an explicit waiting time tp > 0 after which
the solution is L2-integrable. In the standard case of diffusion in all directions, this
property is called hypercontractivity. It states the equivalence between the L-associated
Log-Sobolev inequality constants and the explicit waiting time until the Lp initial data,
1 < p < 2, reaches L2 integrability. In our most general setting, there is no naturally asso-
ciated Log-Sobolev inequality if the diffusion is degenerate yet a smoothing property of
solutions is still present. Thus, if we start with initial datum in an appropriate Lp space,
with 1 < p < 2, we only need to wait tp time, before being able to use our decay estimate
for L2 datum, yielding sharp decay rates.

4
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A further technical challenge arises, if we include an uncertain parameter z ∈R in the
FPE (as well as the GT equation, which we will discuss shortly). Proving decay estimates
that are uniform in this parameter require particular care when there is a transition
from defective to non-defective regimes, which we shall call non-defective limits. The
reason is that the underlying geometric structure changes drastically in such a transi-
tion (as well as between different orders of defectiveness). To explain what we mean, we
consider the ODE system

ẏ =−Aεy with Aε :=
(
1 ε

0 1

)
, (4)

which is defective of order 1, if and only if ε 6= 0. For ε 6= 0 its corresponding Jordan
transformation matrix reads

Vε :=
(
1 0
0 1

ε

)
.

For fixed ε 6= 0, a standard calculation shows that

|y(t )|2 ≤ |Vε|2|V −1
ε |2|e−J t |2|y(0)|2 ≤ |Vε|2|V −1

ε |2c(1+ t )e−t |y(0)|2, (5)

where J is the Jordan normal form of Aε. For ε→ 0, the factor |Vε|2|V −1
ε |2 in (5) be-

comes unbounded of order ε−1 (even though the true decay of the solution improves to
e−t |y(0)|2 in the limit). This is due to the discontinuity of the Jordan transformation at
the transition from defectiveness to non-defectiveness.

We circumvent this problem by providing a time dependent Lyapunov functional frame-
work for finite dimensional ODEs. They are of form

|y |2P (t ) = y HP (t )y, y ∈Cd , (6)

where P (t ) ∈ Cd×d is an explicit positive definite matrix for all t ≥ 0. For the example
(4), this framework yields an explicit matrixPε(t ) such that

|y(t )|Pε(t ) = e−t |y(0)|Pε(0).

As the norm itself is time-dependent, we relate this estimate back to the Euclidean
norm, which leads to

|y(t )|2 ≤CPε
(1+ t )|y(0)|2,

with an explicit constant CPε
> 0. The advantage of the above is that the constant, which

appears in this estimate, can be chosen to be bounded in the non-defective limit ε→ 0.
An analogous problem to (4) appears for FPE of form (1) with uncertain parameter

z ∈R in the drift coefficient C (z) (and the GT equation discussed below with uncertainty
in the relaxation coefficient). Projected onto the first eigenfunction of the FP operator
L(z) (in analogy to the subspace V1 in the non-symmetric case above), the first order
sensitivity equations w.r.t. z reduce to an ODE where non-defective limits appear. Our
framework of time-dependent norms | · |P (z,t ) then provide sharp decay estimates for
the sensitivity equations which are uniform in the uncertain paramter.

5
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Goldstein–Taylor Model with Space-Dependent Relaxation

The Goldstein–Taylor (GT) system on the one-dimensional torus x ∈T1 is given by

∂t f+(x, t )+∂x f+(x, t ) = σ

2
( f−(x, t )− f+(x, t )),

∂t f−(x, t )−∂x f−(x, t ) =−σ
2

( f−(x, t )− f+(x, t )),
(7)

for time t ≥ 0, where f±(x, t ) represents the distribution of particles in the system that
travel with velocity ±1, respectively. The relaxation term that appears on the right-hand
side corresponds to “collisions” of particles in the system with relaxation rateσ> 0. The
GT model is a two velocity BGK model and as such encapsulates the core dynamics of
these type of models, which are of hypocoercive nature, a topic which will be further
discussed below.

For constant σ> 0, the GT model can be solved using straightforward methods (spa-
tial Fourier expansion) and can serve as a first toy model to construct tools for more
complex settings. Our aim is to understand the long time behaviour of the solution to
(7), when the relaxation coefficient includes uncertainty or varies in space. Here, we
focus on constructing entropy functionals that yield explicit decay estimates which can
be generalised to closely related models, e.g. multi-velocity GT models.

◦ One goal is to perform uncertainty quantification for the GT model with a first
order sensitivity analysis. As in the FP case above, the resulting sensitivity equa-
tions again exhibit a defective structure and can be treated via modified norms as
Lyapunov functionals.

◦ Furthermore, we develop an entropy functional for GT models with space-dependent
relaxation σ(x) > 0 that yields explicit decay estimates. The main feature of the
entropy and method we find is the possible extension to models of similar nature.
In comparison to sharp decay rates for the equation when σ is not constant, ob-
tained in [4], our rate is not optimal, yet the methodology used by authors in [4]
applies only to (7). We provide explicit decay estimates for an extension of the
GTE to a three velocity model to emphasise our methods potential for extensions
to similar settings.

Hypocoercivity

One main difficulty the above presented models have in common is the presence of
hypocoercive dynamics, a topic which received growing attention since Villani’s mono-
graph in 2009, see [7]. In contrast to coercive evolution equations, hypocoercive equa-
tion exhibit no global force driving solutions to equilibrium. It is rather an interplay of
two effects, one conservative and one degenerate dissipative, that results in exponential
decay. The abstract setting is the following.

6
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Let A be a coercive operator on a Hilbert space H with scalar product 〈·, ·〉H →C, i.e.

Re〈Ag , g 〉H ≥µ‖g‖2
H , g ∈H , (8)

with µ> 0. Then, solutions to the initial value problem

∂t f =−A f , f (0) = f0 ∈H ,

satisfy
∂t‖ f ‖2

H =−2Re〈A f , f 〉H ≤−2µ‖ f ‖2
H .

As an immediate consequence, we have that

‖ f (t )‖H ≤ e−µt‖ f0‖H , t ≥ 0.

For operators L that are coercive only on a subspace H̃ ⊂H , one cannot, in general,
deduce exponential decay of solutions. However, decay of form

‖ f (t )‖H ≤C e−µt‖ f0‖H ,

with C ≥ 1 is still possible if L has a hypocoercive form. That is

L = A+T, with T ∗ =−T, (9)

where A is symmetric and coercive on a subspace H̃ and T , typically a transport op-
erator for kinetic equations, “mixes” the coercive subspace with its orthogonal. In this
abstract forumlation, the necessary mixing properties are expressed in commutator re-
lations involving A and T .

The GT model (7) provides a good illustration of hypocoercive dynamics: The trans-
port terms, corresponding to the operator T in (9), represent a “horizontal force”, shift-
ing the particle mass to the left and right on the torus. It competes with relaxation,
corresponding to the operator A in (9), that acts as a “vertical force” on the mass densi-
ties, reducing the local mass difference between the two particle types. In combination,
every initial mass distribution gets “flattened out” over time to approach a uniform dis-
tribution along the torus, which is the unique global equilibrium. See Fig. 2a for plots
of the solution behaviour for σ= 1.

The strength of the relaxation term, measured by σ, directly influences the long-time
behaviour of the GT model: A constant relaxation rate of σ ∈ (0,2) translates into an
exponential convergence rate σ

2 . If σ= 2, the system is defective, resulting in a conver-
gence behaviour of order (1+ t )e−t . For relaxation rates σ > 2, a slowing down of the

exponential rate to σ
2 −

√
σ2

4 − 1
4 occurs.

The reason behind the slowing in the last case is that locally the mass is balanced
very quickly between the two species, giving the transport term little time to “spread it”
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(a) σ= 1

(b) σ= 10

Figure 2: The evolution according to the Goldstein–Taylor model with relaxation σ. Here, the
initial mass is distributed equally between the two species around x =π. Depicted are
the points in time t = 0,2,4 from left to right. The images are created from an implicit
Euler scheme simulation.

across the torus. For example, when one considers concentrated and balanced initial
particle masses, the high relaxation rate results in a large amount of mass frequently
changing direction. This prevents an effective shift of mass away from the initial region,
see Fig. 2b.

While there are general strategies to incorporate hypocoercivity into an entropy method
approach, see [5], explicit and precise decay estimates for many models still need to be
fine-tuned. In dealing with space-dependent relaxation for the GT model, we first de-
velop an entropy functional that captures the sharp decay for all cases of constant relax-
ation. This functional is pseudodifferential in x. Then, we use this functional to obtain
explicit results for space-dependent relaxation in a somewhat “perturbative” approach.

A similar hypocoercive interplay of “forces” can occur in the FP setting when the dif-
fusion is degenerate (and thus L is no longer coercive). To achieve such interplay, the
drift term of the equation must mix the non-diffusive directions with the diffusive ones,
causing the operator to always be non-symmetric. Using the above described method-
ology of solution splitting in this non-symmetric setting is the main technical challenge.

For the uncertainty quantification of both the FP and GT equations, hypocoercivity
arises on a modal level as hypocoercive ODEs. Let us consider linear ODEs ẏ =−Ay that

8
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are non-defective for simplicity5. The analogue to hypocoercive operators in this setting
are matrices A with spectral gap µA > 0, but whose symmetric part is only positive
semi-definite. Using the Euclidean norm as a Lyapunov functional, i.e.

d

d t
|y |22 =−y H (AH + A)︸ ︷︷ ︸

2Asymm

y ≤ 0

does not provide any decay rate due to the non-trivial kernel ofAsymm.
By considering an appropriate positive definite matrixP , one can geometrically trans-

form the variable space, and consequently the ODE. The transformed ODE has a new
system matrix, Ã, with a positive definite symmetric part that hasµA as its spectral gap:

Ã :=
p
PA

p
P

−1
, Ãsymm ≥µAI .

For a geometric interpretation of the transformation induced by P , see Fig. 3. Subse-
quently, an entropy method inP -norm yields sharp exponential decay. Indeed, denot-
ing ỹ :=p

P y , we have that

d

d t
|y |2P = d

d t
|ỹ |22 =−2ỹ HÃsymm ỹ ≤−2µA|ỹ |22 =−2µA|y |2P .

Figure 3: The dashed line shows the solution trajectory y(t ). At the marked point y(t∗),
the solution is tangential to the Euclidean level curve. This implies non-strict
decay in the Euclidean norm. The ellipse represents a level curve of the P -
norm. It modifies the geometry such that the solution is never tangential to
the level curves of | · |P .

5The more involved defective cases that require norms depending on time are discussed in Chapter 2.
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Structure & Authorship

The thesis is divided into three chapters.

Chapter 1 is devoted to linear Fokker–Planck equations on Rd of form (2) with degen-
erate diffusion and defective drift. We collect the necessary spectral information of the
in general non-symmetric FP operator to be able to split the solution into two orthog-
onal parts. In combination we prove sharp long-time behaviour of solutions in L2 and
subsequently extend the decay estimates to a family of the more general Lp -entropies,
1 < p ≤ 2 the associated p-Fisher information functionals.

The content of this chapter is a joint work with Anton Arnold and Amit Einav. The
results were published in [1].

In Chapter 2, we review the Lyapunov functional method for linear ODEs and give an
explicit construction of such functionals that yields sharp decay estimates, including
an extension to defective ODE systems. As an application, we consider three evolu-
tion equations, namely the linear convection-diffusion equation, the Goldstein–Taylor
equation and the Fokker–Planck equation with an added uncertain parameter. Analysing
its linear sensitivity leads to defective ODE systems. By applying the Lyapunov func-
tional framework, we prove sharp long time behaviour of the typical defective form.

The content of this chapter is a joint work with Anton Arnold and Shi Jin. The results
were published in [2].

In Chapter 3, we construct a spatial entropy functional to analyse the long time be-
haviour of the Goldstein–Taylor equation on the torus with space-dependent relaxation.
Utilising this functional yields sharp decay rates to equilibrium for constant relaxation,
and explicit decay rates, when the relaxation varies in space. We further prove explicit
decay for a three velocity BGK model.

The content of this chapter is a joint work with Anton Arnold, Amit Einav and Beatrice
Signorello.
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1 On The Rates of Decay to
Equilibrium in Degenerate and
Defective Fokker–Planck
Equations

1.1 Introduction

1.1.1 Background

The study of Fokker–Planck equations (sometimes also called Kolmogorov forward equa-
tions) has a long history - going back to the early 20th century. Originally, Fokker and
Planck used their equation to describe Brownian motion in a PDE form, rather than its
usual SDE representation.
In its most general form, the Fokker–Planck equation reads as

∂t f (t , x) =
d∑

i , j=1
∂xi x j

(
Di j (x) f (t , x)

)− d∑
i=1

∂xi

(
Ai (x) f (t , x)

)
, (1.1.1)

with t > 0, x ∈ Rd , and where Di j (x), Ai (x) are real valued functions, with the matrix
D(x) = (

Di j (x)
)

i , j=1,...,d being positive semidefinite.
The Fokker–Planck equation has many usages in modern mathematics and physics,
with connection to statistical physics, plasma physics, stochastic analysis and math-
ematical finance. For more information about the equation we refer the reader to [19].
Here we will consider a very particular form of (1.1.1) that allows degeneracies and de-
fectiveness to appear.

1.1.2 The Fokker–Planck Equation in our Setting

In this chapter we will focus our attention on Fokker–Planck equations of the form:

∂t f (t , x) = L f (t , x) := div
(
D∇ f (t , x)+Cx f (t , x)

)
, t > 0, x ∈Rd , (1.1.2)

with appropriate initial conditions, where the matrix D (the diffusion matrix) and C
(the drift matrix) are assumed to be constant and real valued.
In addition to the above, we will also assume the following:
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1 Degenerate and Defective Fokker–Planck Equations

(A) D is a positive semidefinite matrix with

1 ≤ r := rank(D) ≤ d .

(B) All the eigenvalues of C have positive real part (this is sometimes called positive
stable).

(C) There exists no non-trivialCT -invariant subspace of Ker(D) (this is equivalent to
hypoellipticity of (1.1.2), cf. [12]).

Each of these conditions has a significant impact on the equation:

◦ Condition (A) allows the possibility that our Fokker–Planck equation is degener-
ate (r < d).

◦ Condition (B) implies that the drift term confines the system. Hence it is crucial
for the existence of a non-trivial steady state to the equation, and

◦ Condition (C) tells us that, when D is degenerate, C compensates for the lack
of diffusion in the appropriate direction and “pushes” the solution back to where
diffusion happens.

Equations of the form (1.1.2), with emphasis on the degenerate structure (and hence
d ≥ 2), have been extensively investigated recently (see [2],[17]) and were shown to re-
tain much of the structure of their non-degenerate counterpart. When it comes to the
question of long-time behaviour, it has been shown in [2] that under Conditions (A)–
(C) there exists a unique equilibrium state f∞ to (1.1.2) with unit mass (it was actually
shown that the kernel of L is one dimensional) and that the convergence rate to it can
be explicitly estimated by the use of the so called (relative) entropy functionals. Based
on [3, 5], and denoting by R+ := {x > 0 | x ∈R} and R+

0 := R+ ∪ {0}, we introduce these
entropy functionals:

Definition 1.1.1. We say that a function ψ is a generating function for an admissible
relative entropy if ψ 6≡ 0, ψ ∈C

(
R+

0

)∩C 4
(
R+)

, ψ(1) =ψ′(1) = 0, ψ′′ > 0 on R+ and

(
ψ′′′)2 ≤ 1

2
ψ′′ψ′′′′. (1.1.3)

For such a ψ, we define the admissible relative entropy eψ
(·| f∞)

to the Fokker–Planck
equation (1.1.2) with unit mass equilibrium state f∞, as the functional

eψ
(

f | f∞
)

:=
∫
Rd
ψ

(
f (x)

f∞(x)

)
f∞(x)d x, (1.1.4)

for any non-negative f with unit mass.
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Remark 1.1.2. It is worth to note a few things about Definition 1.1.1:

◦ Asψ is only defined on R+
0 the admissible relative entropy can only be used for non-

negative functions f . This, however, is not a problem for equation (1.1.2) as it prop-
agates non-negativity.

◦ Assumption (1.1.3) is equivalent to the concavity of 1
ψ′′ on R+.

◦ Important examples of generating functions include ψ1(y) := y log y − y + 1 (the
Boltzmann entropy) and ψ2(y) := 1

2 (y −1)2.
Note that for f ∈ L2

(
Rd , f −1∞

)
e2( f | f∞) = 1

2
‖ f − f∞‖2

L2(Rd , f −1∞ ).

This means that up to some multiplicative constant, e2 is the square of the (weighted)
L2 norm.

A detailed study of the rate of convergence to equilibrium of the relative entropies
for (1.1.2) when r < d was completed recently in [2]. Denoting by L1+

(
Rd

)
the space of

non-negative L1 functions on Rd , the authors have shown the following:

Theorem 1.1.3. Consider the Fokker–Planck equation (1.1.2) with diffusion and drift
matricesD andC which satisfy Conditions (A)–(C). Let

µ := min
{
Re(λ) |λ is an eigenvalue ofC

}
. (1.1.5)

Then, for any admissible relative entropy eψ and a solution f (t ) to (1.1.2) with initial
datum f0 ∈ L1+

(
Rd

)
, of unit mass and such that eψ( f0| f∞) <∞ we have that:

(i) If all the eigenvalues from the set

{λ |λ is an eigenvalue ofC and Re(λ) =µ} (1.1.6)

are non-defective 1, then there exists a fixed geometric constant c ≥ 1, that doesn’t
depend on f , such that

eψ( f (t )| f∞) ≤ ceψ( f0| f∞)e−2µt , t ≥ 0.

(ii) If one of the eigenvalues from the set (1.1.6) is defective, then for any ε > 0 there
exists a fixed geometric constant cε, that doesn’t depend on f , such that

eψ( f (t )| f∞) ≤ cεeψ( f0| f∞)e−2(µ−ε)t , t ≥ 0. (1.1.7)

1An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic multiplicity. We
will call the difference between these numbers the defect of the eigenvalue.
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1 Degenerate and Defective Fokker–Planck Equations

The loss of the exponential rate e−2µt in part (i i ) of the above theorem is to be ex-
pected, however it seems that replacing it by e−2(µ−ε)t is too crude. Indeed, if one con-
siders the much related, finite dimensional, ODE equivalent

ẋ =−Bx

where the matrixB ∈Rd×d is positive stable and has, for example, a defect of order 1 in
an eigenvalue with real part equal to µ> 0 (defined as in (1.1.5)). Then one notices that

‖x(t )‖2 ≤ c‖x0‖2 (
1+ t 2)e−2µt , t ≥ 0,

i.e. the rate of decay is worsened by a multiplication of a polynomial of the order twice
the defect of the “minimal eigenvalue”.
The goal of this chapter is to show that the above is also the case for our Fokker–Planck
equation.
We will mostly focus our attention on the family of relative entropies ep

(·| f∞)
, with

1 < p ≤ 2, which are generated by

ψp (y) := y p −p(y −1)−1

p(p −1)
.

Notice that ψ1 can be understood as the limit of the above family as p goes to 1.
An important observation about the above family, that we will use later, is the fact that
the generating function for p = 2, associated to the entropy e2, is actually defined on R
and not only R+. This is not surprising as we saw the connection between e2 and the
L2 norm. This means that we are allowed to use e2 even when we deal with functions
without a definite sign.
Our main theorem for this chapter is the following:

Theorem 1.1.4. Consider the Fokker–Planck equation (1.1.2) with diffusion and drift
matrices D and C which satisfy Conditions (A)–(C). Let µ be defined as in (1.1.5) and
assume that one, or more, of the eigenvalues ofC with real partµ are defective. Denote by
n > 0 the maximal defect of these eigenvalues. Then, for any 1 < p ≤ 2, the solution f (t ) to
(1.1.2) with unit mass initial datum f0 ∈ L1+

(
Rd

)
and finite p-entropy, i.e. ep

(
f0| f∞

)<∞,
satisfies

ep
(

f (t )| f∞
)≤{

c2e2
(

f0| f∞
)(

1+ t 2n
)

e−2µt , p = 2,

cp
(
p(p −1)ep ( f0| f∞)+1

) 2
p
(
1+ t 2n

)
e−2µt , 1 < p < 2,

for t ≥ 0, where cp > 0 is a fixed geometric constant, that doesn’t depend on f0, and f∞ is
the unique equilibrium with unit mass.

The main idea, and novelty, of this work is in combining elements from Spectral The-
ory and the study of our p-entropies. We will give a detailed study of the geometry of
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1.2 The Fokker–Planck Equation

the operator L in the L2
(
Rd , f −1∞

)
space and deduce, from its spectral properties, the re-

sult for e2. Since the other entropies, ep for 1 < p < 2, lack the underlying geometry of
the L2 space that e2 enjoys, we will require additional tools: We will show a quantitative
result of hypercontractivity for non-symmetric Fokker–Planck operators that will assure
us that after a certain, explicit time, any solution to our equation with finite p-entropy
will belong to L2

(
Rd , f −1∞

)
. This, together with the dominance of e2 over ep for functions

in L2
(
Rd , f −1∞

)
will allow us to “push” the spectral geometry of L to solutions with initial

datum that only has finite p-entropy.
We have recently become aware that the long-time behaviour of Theorem 1.1.4 has been
shown in a preprint by Monmarché, [15]. However, the method he uses to show this re-
sult is a generalised entropy method (more on which can be found in §1.5), while we
have taken a completely different approach to the matter.
The structure of the chapter is as follows: In §1.2 we will recall known facts about the
Fokker–Planck equation (degenerate or not). §1.3 will see the spectral investigation of
L and the proof of Theorem 1.1.4 for p = 2. In §1.4 we will show our non-symmetric hy-
percontractivity result and conclude the proof of our Theorem 1.1.4. Lastly, in §1.5 we
will recall another important tool in the study of Fokker–Planck equations — the Fisher
information — and show that Theorem 1.1.4 can also be formulated for it, due to the
hypoelliptic regularisation of the equation.

1.2 The Fokker–Planck Equation

This section is mainly based on recent work of Arnold and Erb (see [2]). We will pro-
vide here, mostly without proof, known facts about degenerate (and non-degenerate)
Fokker–Planck equations of the form (1.1.2).

Theorem 1.2.1. Consider the Fokker–Planck equation (1.1.2), with diffusion and drift
matrices D and C that satisfy Conditions (A)–(C), and an initial datum f0 ∈ L1+

(
Rd

)
.

Then

(i) There exists a unique classical solution f ∈C∞ (
R+×Rd

)
to the equation. Moreover,

if f0 6= 0 it is strictly positive for all t > 0.

(ii) For the above solution
∫
Rd f (t , x)d x = ∫

Rd f0(x)d x.

(iii) If in addition f0 ∈ Lp
(
Rd

)
for some 1 < p ≤∞, then f ∈C

(
[0,∞),Lp

(
Rd

))
.

Theorem 1.2.2. Assume that the diffusion and drift matrices, D and C, satisfy Condi-
tions (A)–(C). Then, there exists a unique stationary state f∞ ∈ L1

(
Rd

)
to (1.1.2) satisfying∫

Rd f∞(x)d x = 1. Moreover, f∞ is of the form:

f∞(x) = cKe− 1
2 xT K−1x , (1.2.1)
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where the covariance matrix K ∈ Rd×d is the unique, symmetric and positive definite
solution to the continuous Lyapunov equation

2D =CK+KCT ,

and where cK > 0 is the appropriate normalization constant. In addition, for any f0 ∈
L1+

(
Rd

)
with unit mass, the solution to the Fokker–Planck equation (1.1.2) with initial

datum f0 converges to f∞ in relative entropy (as referred to in Theorem 1.1.3).

Remark 1.2.3. In the case where f0 ∈ L1+
(
Rd

)
is not of unit mass, it is immediate to de-

duce that the solution to the Fokker–Planck equation with initial datum f0 converges to(∫
Rd f0(x)d x

)
f∞(x).

Corollary 1.2.4. The Fokker–Planck operator L can be rewritten as

L f = div

(
f∞(x)CK∇

(
f (t , x)

f∞(x)

))
(1.2.2)

(cf. Theorem 3.5 in [2]).

A surprising, and useful, property of (1.1.2) is that the diffusion and drift matrices
associated to it can always be simplified by using a change of variables. The following
can be found in [1]:

Theorem 1.2.5. Assume that the diffusion and drift matrices satisfy Conditions (A)–(C).
Then, there exists a linear change of variable that transforms (1.1.2) to itself with new
diffusion and drift matricesD andC such that

D = diag{d1,d2, . . . ,dr ,0, . . . ,0} (1.2.3)

with d j > 0, j = 1, . . . ,r andCs := C+CT

2 =D. In these new variables the equilibrium f∞
is just the standard Gaussian withK = I .

The above matrix normalisation has additional impact on the calculation of the ad-
joint operator:

Corollary 1.2.6. LetCs =D. Then:

(i) (
LD,C

)∗ = LD,CT ,

where L∗ denotes the (formal) adjoint of L, considered w.r.t. L2
(
Rd , f −1∞

)
. The do-

main of L will be discussed in §1.3.

(ii) The kernels of L and L∗ are both spanned by exp(− |x|2
2 ). This is not true in general,

i.e. for a Fokker–Planck operator L without the matrix normalisation assumption.
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Proof. (i) Under the normalising coordinate transformation of Theorem 1.2.5 we see
from (1.2.2) that∫

Rd
f (x)LD,Cg (x) f −1

∞ (x)d x =−
∫
Rd

f∞(x)∇
(

f (x)

f∞(x)

)T

C∇
(

g (x)

f∞(x)

)
d x

=
∫
Rd

div

(
f∞(x)CT∇

(
f (x)

f∞(x)

))
g (x) f −1

∞ (x)d x.

(1.2.4)

(ii) follows from (1.2.1) andK = I .

From this point onwards we will always assume that Conditions (A)–(C) hold, and that
we are in the coordinate system whereD is of form (1.2.3) and equalsCs .

1.3 The Spectral Study of L

The main goal of this section is to explore the spectral properties of the Fokker–Planck
operator L in L2

(
Rd , f −1∞

)
, and to see how one can use them to understand rates of con-

vergence to equilibrium for e2. The crucial idea we will implement here is that, since
L2

(
Rd , f −1∞

)
decomposes into orthogonal eigenspaces of L with eigenvalues that get in-

creasingly farther to the left of the imaginary axis, one can deduce improved convergence
rates on “higher eigenspaces”.
The first step in achieving the above is to recall the following result from [2], where we
use the notationN0 :=N∪ {0}:

Theorem 1.3.1. Denote by

Vm := span

{
∂
α1
x1

. . .∂αd
xd

f∞(x)
∣∣∣ α1, . . . ,αd ∈N0,

d∑
i=1

αi = m

}
.

Then, {Vm}m∈N0
are mutually orthogonal in L2

(
Rd , f −1∞

)
,

L2
(
Rd , f −1

∞
)
= ⊕

m∈N0

Vm ,

and Vm are invariant under L and its adjoint (and thus under the flow of (1.1.2)).
Moreover, the spectrum of L satisfies

σ (L) = ⋃
m∈N0

σ
(
L|Vm

)
,

σ
(
L|Vm

)={
−

d∑
i=1

αiλi

∣∣∣ α1, . . . ,αd ∈N0,
d∑

i=1
αi = m

}
,

where
{
λ j

}
j=1,...,d are the eigenvalues (with possible multiplicity) of the matrix C. The

eigenfunctions of L (or eigenfunctions and generalized eigenfunctions in the case C is
defective) form a basis to L2

(
Rd , f −1∞

)
.
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1 Degenerate and Defective Fokker–Planck Equations

Let us note that this orthogonal decomposition is non-trivial since L is in general
non-symmetric. The above theorem quantifies our previous statement about “higher
eigenspaces”: the minimal distance between the eigenvalues of L restricted to the “higher”
L-invariant eigenspace Vm and the imaginary axis is mµ. Thus, the decay we expect to
find for initial datum from Vm is of order e−2mµt (in the quadratic entropy, e.g.). How-
ever, as the function we will use in our entropies are not necessarily contained in only
finitely many Vm , we might need to pay a price in the rate of convergence.
This intuition is indeed true. Denoting by

Hk := ⊕
m≥k

Vm (1.3.1)

for any k ≥ 0, we have the following:

Theorem 1.3.2. Let fk ∈ Hk for some k ≥ 1 and let f (t ) be the solution to (1.1.2) with
initial data f0 = f∞+ fk . Then for any 0 < ε< µ there exists a geometric constant ck,ε ≥ 1
that depends only on k and ε such that

e2
(

f (t )| f∞
)≤ ck,εe2( f0| f∞)e−2(kµ−ε)t , t ≥ 0. (1.3.2)

Remark 1.3.3. The loss of an ε in the decay rate of (1.3.2) – compared to the decay rate
solely on Vk – can have two causes:

1. For drift matrices C with a defective eigenvalue with real part µ, the larger decay
rate 2kµwould not hold in general. This is illustrated in (1.1.7), which provides the
best possible purely exponential decay result, as proven in [2].

2. For non-defective matrices C, the improved decay rate 2kµ actually holds, but
our method of proof, that uses the Gearhart-Prüss Theorem, cannot yield this re-
sult. The decay estimate (1.3.2) will be improved in Theorem 1.3.11: There, the
ε-reduction drops out in the non-defective case.

Remark 1.3.4. As we insinuated in the introduction to our work, an important obser-
vation to make here is that the initial data, f0, doesn’t have to be non-negative (and in
many cases, is not). While this implies that f (t ) might also be non-negative, this poses
no problems as e2 is the squared (weighted) L2 norm (up to a constant). Theorem 1.3.2
would not work in general for ep as the non-negativity of f (t ) is crucial there (in other
words, f0 would not be admissible).

The main tool to prove Theorem 1.3.2 is the Gearhart–Prüss Theorem (see for instance
Th. 1.11 Chap. V in [8]). In order to be able to do that, we will need more information
about the dissipativity of L and its resolvents with respect to Hk .

Lemma 1.3.5. Let Vm be as defined in Theorem 1.3.1. Consider the operator L with the
domain D(L) = span{Vm , m ∈N0}. Then L is dissipative, and as such closable. Moreover,
its closure, L, generates a contraction semigroup on L2

(
Rd , f −1∞

)
.

20



1.3 The Spectral Study of L

Proof. Given f ∈ D(L), and denoting g := f
f∞ , we notice that (1.2.2) withK = I implies

that(
L f , f

)
L2(Rd , f −1∞ ) =

∫
Rd

div
(

f∞(x)C∇g (x)
)

g (x)d x =−
∫
Rd

∇g (x)TC∇g (x) f∞(x)d x

=−
∫
Rd

∇g (x)TD∇g (x) f∞(x)d x ≤ 0,

where we have used the fact thatCs =D. Thus, L is dissipative.
To show the second statement we use the Lumer-Phillips Theorem (see for instance Th.
3.15 Chap. II in [8]). Since L2

(
Rd , f −1∞

) = ⊕
m∈N0

Vm it will be enough to show that for
λ > 0 we have that Vm ⊂ Range(λI −L) for any m. As Vm ⊂ D(L), is finite dimensional,
and is invariant under L (Theorem 1.3.1 again) we can consider the linear bounded
operator L|Vm : Vm → Vm . Since we have shown that L is dissipative, we can conclude
that the eigenvalues of L|Vm have non-positive real parts, implying that (λI −L) |Vm is
invertible. This in turn implies that

Vm = Range
(
(λI −L) |Vm

)⊂ Range(λI −L) ,

completing the proof.

To study the resolvents of L we will need to use some information about its “dual”:
the Ornstein-Uhlenbeck operator.
For a given symmetric positive semidefinite matrixQ= (qi j ) and a real, negatively sta-
ble matrixB = (bi j ) on Rd we consider the Ornstein-Uhlenbeck operator

PQ,B := 1

2

∑
i , j

qi j∂
2
xi x j

+∑
i , j

bi j x j∂xi =
1

2
Tr

(
Q∇2

x

)+ (Bx,∇x) , x ∈Rd . (1.3.3)

Similarly to our conditions on the diffusion and drift matrices, we will only be inter-
ested in Ornstein-Uhlenbeck operators that are hypoelliptic. In the above setting, this
corresponds to the condition

rank
[
Q

1
2 ,BQ

1
2 , . . . ,Bd−1Q

1
2

]
= d .

The hypoellipticity condition guarantees the existence of an invariant measure, dµ, to
the process. This measure has a density w.r.t. the Lebesgue measure, which is given by

dµ

d x
(x) = cM e− 1

2 xT M−1x , with M :=
∫ ∞

0
eBsQeB

T s d s

where cM > 0 is a normalization constant. It is well known that the above definition of
M is equivalent to finding the unique solution to the continuous Lyapunov equation

Q=−BM −MBT . (1.3.4)
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1 Degenerate and Defective Fokker–Planck Equations

(See for instance Theorem 2.2 in [20], §2.2 of [13].)
Hypoelliptic Ornstein-Uhlenbeck operators have been studied for many years, and more
recently in [18] the authors considered them under the additional possibility of degen-
eracy in their diffusion matrixQ. In [18], the authors described the domain of the closed
operator PQ,B , and have found the following resolvent estimation:

Theorem 1.3.6. Consider the hypoelliptic Ornstein-Uhlenbeck operator PQ,B , as in (1.3.3),
and its invariant measure dµ(x). Then there exist some positive constants c,C > 0 such
that for any z ∈ Γκ, with

Γκ :=
{

z ∈C
∣∣∣∣ Re z ≤ 1

2 (1−Tr(B)) ,
∣∣Re z − (

1− 1
2 Tr(B)

)∣∣≤ c
∣∣z − (

1− 1
2 Tr(B)

)∣∣ 1
2κ+1

}
(1.3.5)

and where κ is the smallest integer 0 ≤ κ≤ d −1 such that

rank
[
Q

1
2 ,BQ

1
2 , . . . ,BκQ

1
2

]
= d , (1.3.6)

one has that

‖(PQ,B − zI
)−1‖B(L2(Rd ,dµ)) ≤C

∣∣∣∣z −(
1− 1

2
Tr(B)

)∣∣∣∣− 1
2κ+1

.

We illustrate the spectrum of PQ,B and the domain Γκ in Figure 1.3.1.
In order to use the above theorem for our operator, L, we show the connection between
it and P in the following lemma:

Lemma 1.3.7. Assume that the associated diffusion and drift matrices for L, defined on
L2

(
Rd , f −1∞

)
, and PQ,B , defined on L2

(
Rd ,dµ(x)

)
, satisfy

Q= 2D,B =−C.

Then dµ(x) = f∞(x)d x is the invariant measure for P = PQ,B and its adjoint, and (up to

the natural transformation L f
f∞ = P∗( f

f∞ )) we have L = P∗.

Proof. We start by recalling that we assume thatD =Cs . Since (1.3.4) can be rewritten
as

2D =CM +MCT

for our choice of Q and B, we conclude that M = I for P2D,−C and that
(
P2D,−C

)∗ =
P2D,−CT (the last equality can be shown in a similar way to (1.2.4)). Thus, the invariant
measure corresponding to both these operators is f∞(x)d x.

Let f ∈ D(L) ⊂ L2
(
Rd , f −1∞

)
and define g f := f

f∞ ∈ L2
(
Rd , f∞

)
. Then

LD,C f (x)

f∞(x)
= div

(
f∞(x)C∇g f (x)

)
f∞(x)

= div
(
C∇g f (x)

)+ ∇ f∞(x)TC∇g f (x)

f∞(x)

= div
(
D∇g f (x)

)−xTC∇g f (x) = P2D,−CT g f (x) = (
P2D,−C

)∗g f (x) ,

(1.3.7)
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Figure 1.3.1: The black dots representσ(PQ,B) with the eigenvalues of the 2×2 matrixB
given as λ1,2 = −1± 7

2 i . The shaded area represents the set Γκ of Theorem
1.3.6 with κ= 1.

where the adjoint is considered w.r.t. L2
(
Rd , f∞

)
. In particular, if f (t , ·) ∈ L2

(
Rd , f −1∞

)
solves (1.1.2) then g f (t , ·) satisfies the adjoint equation ∂t g f =

(
P2D,−C

)∗g f .

With this at hand we can recast, and improve, Theorem 1.3.6 for the operator L and
its closure.

Proposition 1.3.8. Let any k ∈N0 be fixed. Consider the set Γκ, defined by (1.3.5), asso-
ciated toQ= 2D,B =−CT (Condition (C) guarantees the existence of such κ). Then we
have that, for any z ∈ Γκ, the operator (L− zI ) |Hk : Hk → Hk is well defined, closable, and
its closure is invertible with∥∥∥∥((

L− zI
)
|Hk

)−1
∥∥∥∥

B(Hk )
≤C

∣∣∣∣z −(
1+ 1

2
Tr(C)

)∣∣∣∣− 1
2κ+1

, (1.3.8)

where C > 0 is the same constant as in Theorem 1.3.6.

Proof. We consider the case k = 0 first. Due to Theorem 1.3.6 we know that for any
z ∈ Γκ, P2D,−CT − zI is invertible on L2

(
Rd , f∞

)
. Hence, for any f ∈ L2

(
Rd , f −1∞

)
there

exists a unique ` f ∈ L2
(
Rd , f∞

)
such that(

P2D,−CT − zI
)
` f (x) = f (x)

f∞(x)
,
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which can also be written differently due to (1.3.7), as(
L− zI

)(
f∞(x)` f (x)

)= f (x).

This implies that L− zI is bijective on its appropriate space.
Next we notice that, with the notations from Lemma 1.3.7

sup
‖ f ‖=1

‖
(
L− zI

)−1
f ‖L2(Rd , f −1∞ ) = sup

‖ f ‖=1
‖ f∞` f ‖L2(Rd , f −1∞ )

= sup
‖ f ‖=1

‖` f ‖L2(Rd , f∞) = sup
‖g f ‖=1

‖(P2D,−CT − zI
)−1 g f ‖L2(Rd , f∞) ,

from which we conclude that

‖
(
L− zI

)−1‖B(L2(Rd , f −1∞ )) = ‖(P2D,−CT − zI
)−1‖B(L2(Rd , f∞)) ,

completing the proof for this case.
We now turn our attention to the restrictions (L− zI ) |Hk with k ≥ 1 and domain

Dk := span{Vm ,m ≥ k} = D(L)∩Hk .

Since L|Vm : Vm →Vm ∀m ∈N0 we have that (L− zI ) |Hk : Dk → Hk . Moreover, the dissi-
pativity of L on D(L) assures us that L is dissipative, and as such closable, on the Hilbert
space Hk . Thus (L− zI )|Hk is closable too and

(L− zI ) |Hk =
(
L− zI

)
|Hk .

Additionally, since the only part of L2
(
Rd , f −1∞

)
that is not in Hk is a finite dimensional

subspace of D(L), we can conclude that

D
(
(L− zI )|Hk

)
= D(L)∩Hk .

Given z in the resolvent set of L we know that L − zI |Vm : Vm → Vm is invertible for any
m and as such

(L− zI )|Vm (Vm) =Vm .

Thus,
Vm ⊂ Range

(
(L− zI )|Hk

)
, ∀m ≥ k.

We conclude that (L − zI )|Hk is injective with a dense range in Hk for any z ∈ Γκ, and
hence invertible on its range. The validity of (1.3.8) for k = 0 allows us to extend our
inverse to Hk with the same uniform bound as is given in (1.3.8). The general case is
now proved.
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1.3 The Spectral Study of L

From this point onward, we will assume that we are dealing with the closed opera-
tor L and with its appropriate domain (that includes

⋃
m∈N0 Vm) when we consider our

equation. We will also write L instead of L in what is to follow.
Lemma 1.3.5 and Proposition 1.3.8 are all the tools we need to estimate the uniform ex-
ponential stability of our evolution semigroup on each Hk , an estimation that is crucial
to show Theorem 1.3.2.

Proposition 1.3.9. Consider the Fokker–Planck operator L, defined on L2
(
Rd , f −1∞

)
, and

the spaces {Hk }k≥1 defined in (1.3.1). Then, for any 0 < ε<µ, the semigroup generated by
the operator L+ (

kµ−ε) I |Hk , with domain D(L)∩Hk , is uniformly exponentially stable.
I.e., there exists some geometric constant Ck,ε > 0 such that

‖eLt‖B(Hk ) ≤Ck,εe−(kµ−ε)t , t ≥ 0. (1.3.9)

Proof. We will show that

Mk,ε := sup
Re z>0

∥∥∥∥((
L+ [kµ−ε]I

)− zI
)−1

∥∥∥∥
B(Hk )

<∞ ,

and conclude the result from the fact that L generates a contraction semigroup accord-
ing to Lemma 1.3.5 and the Gearhart-Prüss Theorem.
The study of upper bounds for the resolvents of L+ [kµ−ε]I in the right-hand complex
plane relies on subdividing this domain into several pieces. This is illustrated in Figure
1.3.2, which we will refer to during the proof to help visualise this division.
Since L generates a contraction semigroup, for any ε> 0, L −εI generates a semigroup
that is uniformly exponentially stable on L2(Rd , f −1∞ ). The Gearhart-Prüss Theorem ap-
plied to L−εI implies that

M̃k,ε := sup
Re z>0

∥∥(L− (ε+ z)I )−1
∥∥

B(Hk ) ≤ sup
Re z>0

∥∥(L− (ε+ z)I )−1
∥∥

B(L2(Rd , f −1∞ )) <∞,

where we removed the subscript Hk from the operator on the left-hand side to simplify
notations.
Since

L− (ε+ z) I = L+ [kµ−ε]I − (
z +kµ

)
I ,

we see that

M̃k,ε = sup
Re z1>0

∥∥∥∥((
L+ [kµ−ε]I

)− (
z1 +kµ

)
I
)−1

∥∥∥∥
B(Hk )

= sup
Re z>kµ

∥∥∥∥((
L+ [kµ−ε]I

)− zI
)−1

∥∥∥∥
B(Hk )

(this term corresponds to the right-hand side of the dashed line in Figure 1.3.2).
From the above we conclude that

Mk,ε = max

(
M̃k,ε , sup

0<Re z≤kµ

∥∥∥(
L− [z −kµ+ε]I

)−1
∥∥∥

B(Hk )

)
,

25



1 Degenerate and Defective Fokker–Planck Equations

Figure 1.3.2: choosing k = 2, the solid dots represent σ((L + [2µ− ε]I )|H2 ) where the
eigenvalues of the 2× 2 matrix C are given by λ1,2 = 1± 7

2 i . The empty
dots are the eigenvalues of the operator L + [2µ− ε]I that disappear due
to the restriction to H2, and the shaded area represents the compact set
{z ∈C | 0 ≤ Re z ≤ 2µ}∩ {z 6∈ Γκ+2µ−ε} where κ= 1.

which implies that we only need to show that the second term in the parenthesis is
finite (this term corresponds to the area between the dashed line and the imaginary
axis in Figure 1.3.2).
Using Proposition 1.3.8 we conclude that

sup
z−kµ+ε∈Γκ

∥∥∥(
L− [

z −kµ+ε] I
)−1

∥∥∥<∞

(represented in Figure 1.3.2 by the domain between the two solid blue curves). We con-
clude that Mk,ε <∞ if and only if

sup
{0<Re z≤kµ}∩{z 6∈Γκ+kµ−ε}

∥∥∥(
L− [z −kµ+ε]I

)−1
∥∥∥

B(Hk )
<∞.

Since Re z = −ε is the closest vertical line to Re z = 0 which intersects
σ

((
L+ [kµ−ε]I

) |Hk

)
, we notice that

{
0 < Re z ≤ kµ

}∩ {
z 6∈ Γκ+kµ−ε} (represented by

the shaded area in Figure 1.3.2) is a compact set in the resolvent set of
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1.3 The Spectral Study of L

(
L+ [kµ−ε]I

) |Hk . As the resolvent map is analytic on the resolvent set, we conclude
that Mk,ε <∞, completing the proof.

Remark 1.3.10. While the constant mentioned in (1.3.9) is a fixed geometric one, the
original Gearhart-Prüss theorem doesn’t give an estimation for it. However, recent stud-
ies have improved the original theorem and have managed to find explicit expression
for this constant by paying a small price in the exponential power. As we can afford to
“lose” another small ε, we could use references such as [11, 14] to have a more concrete
expression for Ck,ε. We will avoid giving such an expression in this work to simplify its
presentation.

We finally have all the tools to show Theorem 1.3.2:

Proof of Theorem 1.3.2. Using the invariance of V0 and Hk under L and Proposition 1.3.9
we find that for any fk ∈ Hk

e2
(
eLt (

fk + f∞
) | f∞)= e2

(
eLt (

fk
)+ f∞| f∞

)= 1

2

∥∥eLt fk
∥∥2

Hk

≤ 1

2
C 2

k,εe−2(kµ−ε)t
∥∥ fk

∥∥2
Hk

=C 2
k,εe−2(kµ−ε)t e2

(
fk + f∞| f∞

)
,

showing the desired result.

Theorem 1.3.2 has given us the ability to control the rate of convergence to equilib-
rium of functions with initial data that, up to f∞, live on a “higher eigenspace”. Can we
use this information to understand what happens to the solution of an arbitrary initial
datum f0 ∈ L2

(
Rd , f −1∞

)
with unit mass?

The answer to this question is Yes.
Since for any k ≥ 1

L2
(
Rd , f −1

∞
)
=V0 ⊕

(
k⊕

m=1
Vm

)
⊕Hk+1

and the Fokker–Planck semigroup is invariant under all the above spaces, we are moti-
vated to split the solution of our equation into a part in V0⊕Hk+1 and a part in

⊕k
m=1 Vm

- which is a finite dimensional subset of D(L). As we now know that decay in
⊕k

m=1 Vm

is slower than that for Hk+1 we will obtain a sharp rate of convergence to equilibrium.
We summarise the above intuition in the following theorem:

Theorem 1.3.11. Consider the Fokker–Planck equation (1.1.2) with diffusion and drift
matrices satisfying Conditions (A)–(C). Let f0 ∈ L1+

(
Rd

)∩L2
(
Rd , f −1∞

)
be a given function

with unit mass such that
f0 = f∞+ fk0 + f̃k0 ,

where fk0 ∈Vk0 is non-zero and f̃k0 ∈ Hk0+1. Denote by [L]k0 the matrix representation of
L with respect to an orthonormal basis of Vk0 and let

nk0 := max
{
defect of λ |λ is an eigenvalue of [L]k0 and Reλ=−k0µ

}
,
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where µ is defined in (1.1.5). Then, there exists a geometric constant ck0 , which is inde-
pendent of f0, such that

e2
(

f (t )| f∞
)≤ ck0 e2

(
f0| f∞

)(
1+ t 2nk0

)
e−2k0µt . (1.3.10)

Remark 1.3.12. As can be seen in the proof of the theorem, the sign of f0 plays no role.
As such, the theorem could have been stated for f0 ∈ L1

(
Rd

)∩L2
(
Rd , f −1∞

)
. We decided

to state it as is since it is the form we will use later on, and we wished to avoid possible
confusion.

Proof of Theorem 1.3.11. Due to the invariance of all Vm under L we see that

f (t ) = f∞+eLt fk0 +eLt f̃k0 ,

with eLt fk0 ∈Vk0 and eLt f̃k0 ∈ Hk0+1. From Theorem 1.3.2 we conclude that

e2
(

f∞+eLt (
f̃k0

) | f∞)≤ ck0,εe2
(

f∞+ f̃k0 | f∞
)

e−2((k0+1)µ−ε)t ,

for any 0 < ε<µ.
Next, we denote by dk := dim(Vk ) and let {ξi }i=1,...,dk0

be an orthonormal basis for Vk0 .
The invariance of Vm under L implies that we can write

eLt fk0 =
dk0∑
i=1

ai (t )ξi

with a(t ) :=
(
a1(t ), . . . , adk0

(t )
)

satisfying the simple ODE

ȧ(t ) = [L]T
k0
a(t ).

This, together with the definition of nk0 and the fact that a matrix and its transpose
share eigenvalues and defect numbers, implies that we can find a geometric constant
that depends only on k0 such that

dk0∑
i=1

a2
i (t ) ≤ ck0

(
1+ t 2nk0

)
e−2k0µt

dk0∑
i=1

a2
i (0). (1.3.11)

Since

e2
(

f (t )| f∞
)= e2

(
f∞+eLt ( f̃k0 )+eLt ( fk0 )| f∞

)= 1

2

∥∥eLt ( f̃k0 )+eLt ( fk0 )
∥∥2

L2(Rd , f −1∞ )

= 1

2

∥∥eLt ( f̃k0 )
∥∥2

L2(Rd , f −1∞ )+
1

2

∥∥∥∥∥
dk0∑
i=1

ai (t )ξi

∥∥∥∥∥
2

L2(Rd , f −1∞ )
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= e2
(

f∞+eLt ( f̃k0 )| f∞
)+ 1

2

dk0∑
i=1

ai (t )2,

we see, by combining Theorem 1.3.2 and (1.3.11) that

e2
(

f (t )| f∞
)≤ck0,εe2

(
f∞+ f̃k0 | f∞

)
e−2((k0+1)µ−ε)t

+ ck0

2

dk0∑
i=1

a2
i (0)

(
1+ t 2nk0

)
e−2k0µt .

Hence

e2
(

f (t )| f∞
)≤ max

(
ck0,ε,ck0

)(
e2

(
f∞+ f̃k0 | f∞

)+ 1

2

∥∥ fk0

∥∥2
L2(Rd , f −1∞ )

)(
1+ t 2nk0

)
e−2k0µt .

This completes the proof, as we have seen that

e2( f0| f∞) = e2
(

f∞+ f̃k0 | f∞
)+ 1

2

∥∥ fk0

∥∥2
L2(Rd , f −1∞ ) .

Remark 1.3.13. The idea to split a solution into a few parts is viable only for the 2-
entropy. The reason behind it is that such splitting, regardless of whether or not it can
be done to functions outside of L2

(
Rd , f −1∞

)
, will most likely create functions without a

definite sign. These functions can not be explored using the p-entropy with 1 < p < 2.

Theorem 1.3.11 gives an optimal rate of decay for the 2−entropy. However, one can
underestimate the rate of decay by using Theorem 1.3.2 and remove the condition fk0 6=
0 to obtain the following:

Corollary 1.3.14. The statement of Theorem 1.3.11 remains valid when replacing k0 by
any 1 ≤ k1 ≤ k0. However, the decay estimate (1.3.10) will not be sharp when k1 < k0.

Proof of Theorem 1.1.4 for p = 2. The proof follows immediately from Corollary 1.3.14
for k1 = 1.

Now that we have learned everything we can on the convergence to equilibrium for
e2, we can proceed to understand the convergence to equilibrium of ep .

1.4 Non-symmetric Hypercontractivity and the
p-Entropy

In this section we will show how to deduce the rate of convergence to equilibrium for the
family of p-entropies, with 1 < p < 2, from e2. The main thing that will make the above
possible is a non-symmetric hypercontractivity property of our Fokker–Planck equation
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- namely, that any solution to the equation with (initially only) a finite p-entropy will
eventually be “pushed” into L2

(
Rd , f −1∞

)
, at which point we can use the information we

gained on e2.
Before we show this result, and see how it implies our main theorem, we explain why
and how this non-symmetric hypercontractivity helps.

Lemma 1.4.1. Let f ∈ L1+
(
Rd

)
with unit mass. Then

(i)

ep ( f | f∞) = 1

p(p −1)

(
‖ f ‖p

Lp
(
Rd , f

1−p
∞

)−1

)
.

(ii) for any 1 < p1 < p2 ≤ 2 there exists a constant Cp1,p2 > 0 such that

ep1 ( f | f∞) ≤Cp1,p2 ep2 ( f | f∞).

In particular, for any 1 < p < 2

ep ( f | f∞) ≤Cp e2( f | f∞),

for a fixed geometric constant.

Proof. (i ) is trivial. To prove (i i ) we consider the function

g (y) :=
{p2(p2−1)

p1(p1−1)
y p1−p1(y−1)−1
y p2−p2(y−1)−1 , y ≥ 0, y 6= 1

1, y = 1.

Clearly g ≥ 0 on R+, and it is easy to check that it is continuous. Since we have
limy→∞ g (y) = 0, we can conclude the result using (1.1.4).

It is worth to note that the second point of part (i i ) of Lemma 1.4.1 can be extended
to general generating function for an admissible relative entropy. The following is taken
from [3]:

Lemma 1.4.2. Let ψ be a generating function for an admissible relative entropy. Then
one has that

ψ(y) ≤ 2ψ′′(1)ψ2(y), y ≥ 0.

In particular ep ≤ 2e2 for any 1 < p < 2 whenever e2 is finite.

Lemma 1.4.1 assures us that, if we start with initial data in L2
(
Rd , f −1∞

)
, then ep will be

finite. Moreover, due to Theorem 1.1.4 for p = 2, and the fact that the solution to (1.1.2)
remains in L2

(
Rd , f −1∞

)
, we have that

ep ( f (t )| f∞) ≤ 2e2( f (t )| f∞) ≤Ce2( f0| f∞)
(
1+ t 2n)

e−2µt .
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However, one can easily find initial data f0 6∈ L2
(
Rd , f −1∞

)
with finite p-entropies. If one

can show that the flow of the Fokker–Planck equation eventually forces the solution to
enter L2

(
Rd , f −1∞

)
, we would be able to utilise the idea we just presented, at least from

that time on.
This explicit non-symmetric hypercontractivity result we desire, is the main new theo-
rem we present in this section.

Theorem 1.4.3. Consider the Fokker–Planck equation (1.1.2) with diffusion and drift
matricesD andC satisfying Conditions (A)–(C). Let f0 ∈ L1+

(
Rd

)
be a function with unit

mass and assume there exists ε> 0 such that∫
Rd

eε|x|
2

f0(x)d x <∞. (1.4.1)

(i) Then, for any q > 1, there exists an explicit t0 > 0 that depends only on geometric
constants of the problem such that the solution to (1.1.2) satisfies

∫
Rd

f (t , x)q f −1
∞ (x)d x ≤

(
q

π(q +1)

) qd
2

(
8π2

q −1

) d
2
(∫
Rd

eε|x|
2

f0(x)d x

)q

(1.4.2)

for all t ≥ t0.

(ii) In particular, if f0 satisfies ep ( f0| f∞) <∞ for some 1 < p < 2 we have that

e2( f (t )| f∞) ≤ 1

2

(
8
p

2

3 ·2
1
p

)d (
p(p −1)ep ( f0| f∞)+1

) 2
p −1

 , (1.4.3)

for t ≥ t̃0(p) > 0, which can be given explicitly.

Remark 1.4.4. As we consider ep in our hypercontractivity, which is, up to a constant,

the Lp norm of g := f
f∞ with the measure f∞(x)d x, one can view our result as a hypercon-

tractivity property of the Ornstein-Uhlenbeck operator, P (for an appropriate choice of
the diffusion matrixQ and drift matrixB), discussed in §1.3. With this notation, (1.4.3)
is equivalent to

‖g (t )‖L2( f∞) ≤Cp,d‖g0‖Lp ( f∞) , t ≥ t̃0(p) (1.4.4)

for 1 < p < 2, where Cp,d :=
(

8
p

2

3·2
1
p

) d
2

. Since e2 decreases along the flow of our equation,

(1.4.4) is valid for p = 2 with C2,d = 1. Thus, by using the Riesz-Thorin theorem one can

improve inequality (1.4.4) to the same inequality with the constant C
2
p −1

p,d . We would like

to point out at this point that a simple limit process shows that (1.4.4) is also valid for
p = 1, but there is no connection between the L1 norm of g and the Boltzmann entropy,
e1, of f0.
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Remark 1.4.5. Since its original definition for the Ornstein-Uhlenbeck semigroup in the
work of Nelson, [16], the notion of hypercontractivity has been studied extensively for
Markov diffusive operators (implying selfadjointness). A contemporary review of this
topic can be found in [4]. For such selfadjoint generators, hypercontractivity is equiv-
alent to the validity of a logarithmic Sobolev inequality, as proved by Gross [10]. For
non-symmetric generators, however, this equivalence does not hold: While a log Sobolev
inequality still implies hypercontractvity of related semigroups (cf. the proof of Theorem
5.2.3 in [4]), the reverse implication is not true in general (cf. Remark 5.1.1 in [22]). In
particular, hypocoercive degenerate parabolic equations cannot give rise to a log Sobolev
inequality, but they may exhibit hypercontractivity (as just stated above).
The last 20 years have seen the emergence of the, more delicate, study of hypercontractiv-
ity for non-symmetric and even degenerate semigroups. Notable works in the field are the
paper of Fuhrman, [9], and more recently the work of Wang et al., [6, 7, 21]. Most of these
works consider an abstract Hilbert space as an underlying domain for the semigroup, and
to our knowledge none of them give an explicit time after which one can observe the hy-
percontractivity phenomena (Fuhrman gives a condition on the time in [9]).
Our hypercontractivity theorem, which we will prove shortly, gives not only an explicit
and quantitative inequality, but also provides an estimation on the time one needs to
wait before the hypercontractivity occurs. To keep the formulation of Theorem 1.4.3 sim-
ple we did not include this “waiting time” there, but we emphasised it in its proof. More-
over, the hypercontractivity estimate from Theorem 1.4.3(i) only requires (1.4.1), a weighted
L1 norm of f0. This is weaker than in usual hypercontractivity estimates, which use Lp

norms as on the r.h.s. of (1.4.4).

It is worth to note that we prove our theorem under the setting of the ep entropies,
which can be thought of as Lp spaces with a weight function that depends on p.

In order to be able to prove Theorem 1.4.3 we will need a few technical lemmas.

Lemma 1.4.6. Given f0 ∈ L1+
(
Rd

)
with unit mass, the solution to the Fokker–Planck equa-

tion (1.1.2) with diffusion and drift matricesD andC that satisfy Conditions (A)–(C) is
given by

f (t , x) = 1

(2π)
d
2
p

detW (t )

∫
Rd

e− 1
2

(
x−e−Ct y

)T
W (t )−1

(
x−eCt y

)
f0(y)d y, (1.4.5)

where

W (t ) := 2
∫ t

0
e−CsDe−CT sd s.

This is a well known result, see for instance §1 in [12] or §6.5 in [19].

Lemma 1.4.7. Assume that the diffusion and drift matrices,D andC, satisfy Conditions
(A)–(C), and letK be the unique positive definite matrix that satisfies

2D =CK+KCT .
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1.4 Non-symmetric Hypercontractivity and the p-Entropy

Then (in any matrix norm)

‖W (t )−K‖ ≤ c(1+ t 2n)e−2µt , t ≥ 0,

where c > 0 is a geometric constant depending on n and µ, with n being the maximal
defect of the eigenvalues ofC with real part µ, defined in (1.1.5).

Proof. We start the proof by noticing thatK is given by

K = 2
∫ ∞

0
e−CsDe−CT sd s

(see for instance [18]). As such

‖W (t )−K‖ ≤ 2
∫ ∞

t
‖e−CsDe−CT s‖d s ≤ 2‖D‖

∫ ∞

t
‖e−Cs‖‖e−CT s‖d s.

Using the fact that

Ae−CtA−1 = e−ACA−1t

for any regular matrixA, we conclude that, if J is the Jordan form ofC, then

‖e−Ct‖ ≤ ‖AJ‖‖A−1
J ‖‖e−J t‖ , (1.4.6)

whereAJ is the similarity matrix betweenC and its Jordan form.
For a single Jordan block of size n +1 (corresponding to a defect of n in the eigenvalue
λ), J̃ , we find that

eJ̃ t =


eλt teλt . . . t n

n! eλt

eλt . . . t n−1

(n−1)! e
λt

. . .
...

0 eλt

 where J̃ =


λ 1 0

. . . . . .
1

0 λ

 .

Thus, we conclude that

‖eJ̃ t x‖1 ≤
n+1∑
i=1

n+1∑
j=i

t j−i

( j − i )!
eRe(λ)t

∣∣x j
∣∣≤ (

n+1∑
i=1

(
1+ t n)

eRe(λ)t

)
‖x‖1

= (n +1)
(
1+ t n)

eRe(λ)t‖x‖1, t ≥ 0.

Due to the equivalence of norms on finite dimensional spaces, there exists a geometric
constant c1 > 0, that depends on n, such that

‖eJ̃ t‖ ≤ c1
(
1+ t n)

eRe(λ)t . (1.4.7)
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Coming back to C, we see that the above inequality together with (1.4.6) imply that
‖e−Ct‖ is controlled by the norm ofC’s largest (measured by the defect number) Jordan
block of the eigenvalue with smallest real part. From this, and (1.4.7), we conclude that

‖e−Ct‖ ≤ c2(1+ t n)e−µt , t ≥ 0. (1.4.8)

The same estimation for ‖e−CT t‖ implies that

‖W (t )−K‖ ≤ c3

∫ ∞

t

(
1+ s2n)

e−2µsd s,

for some geometric constant c3 > 0 that depends on n. Since∫ ∞

t
s2ne−2µsd s =

[
1

2µ
t 2n + 2n

(2µ)2
t 2n−1 + 2n(2n −1)

(2µ)3
t 2n−2 + ...+ (2n)!

(2µ)2n+1

]
e−2µt

we conclude the desired result.

While we can continue with a general matrix K, it will simplify our computations
greatly ifK would have been I . Since we are working under the assumption thatD =
CS , the normalization from Theorem 1.2.5 implies exactly that. Thus, from this point
onwards we will assume thatK is I .

Lemma 1.4.8. For any ε> 0 there exists an explicit t1 > 0 such that for all t ≥ t1

‖W −1(t )−I‖ ≤ ε,

whereW (t ) is as in Lemma 1.4.7. An explicit, but not optimal choice for t1 is given by

t1(ε) := 1

2(µ−α)
log

c(1+ε)
(
1+ ( n

αe

)2n
)

ε

 , (1.4.9)

where 0 <α<µ is arbitrary and c > 0 is given by Lemma 1.4.7.

Proof. We have that for any invertible matrixA

‖A−1 −I‖ = ‖ (A−I)A−1‖ ≤ ‖A−I‖‖A−1‖.

In addition, if ‖A−I‖ < 1, then

‖A−1‖ = ‖(I − (I −A))−1‖ ≤ 1

1−‖A−I‖ .

Thus, for any t > 0 such that ‖W (t )−I‖ < 1 we have that

‖W −1(t )−I‖ ≤ ‖W (t )−I‖
1−‖W (t )−I‖ . (1.4.10)
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Defining t̃1(ε) as

t̃1(ε) := min

{
s ≥ 0

∣∣∣ (
1+ t 2n)

e−2µt ≤ ε

c(1+ε)
, ∀t ≥ s

}
, (1.4.11)

with the constant c given by Lemma 1.4.7, we see from Lemma 1.4.7 that for any t ≥ t̃1(ε)

‖W (t )−I‖ ≤ ε

1+ε .

Combining the above with (1.4.10), shows the first result for t1 = t̃1(ε).

To prove the second claim we will show that

t1(ε) ≥ t̃1(ε).

For this elementary proof we use the fact that

max
t≥0

e−at t b =
(

b

ae

)b

for any a,b > 0. Thus, choosing a = 2α, where 0 <α<µ is arbitrary, and b = 2n we have
that (

1+ t 2n)
e−2µt ≤

(
1+

( n

αe

)2n
)

e−2(µ−α)t , t ≥ 0.

As a consequence, if (
1+

( n

αe

)2n
)

e−2(µ−α)t ≤ ε

c(1+ε)
, ∀t ≥ s, (1.4.12)

then s ≥ t̃1(ε) due to (1.4.11). The smallest possible s in (1.4.12) is obtained by solving
the corresponding equality for t , and yields (1.4.9), concluding the proof.

We now have all the tools to prove Theorem 1.4.3

Proof of Theorem 1.4.3. To show (i ) we recall Minkowski’s integral inequality, which will
play an important role in estimating the Lp norms of f (t ).
Minkowski’s Integral Inequality: For any non-negative measurable function F on (X1×
X2,µ1 ×µ2), and any q ≥ 1 one has that

(∫
X2

∣∣∣∣∫
X1

F (x1, x2)dµ1(x1)

∣∣∣∣q

dµ2(x2)

) 1
q

≤
∫

X1

(∫
X2

|F (x1, x2)|q dµ2(x2)

) 1
q

dµ1(x1).

(1.4.13)
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Next, we fix an ε1 = ε1(ε, q) ∈ (0,1), to be chosen later. From Lemma 1.4.7 and 1.4.8 we
see that, for t ≥ t1(ε1) with

t1(ε1) := 1

2(µ−α)
log

c(1+ε1)
(
1+ ( n

αe

)2n
)

ε1


for some fixed 0 <α<µ, we have that

‖W (t )−I‖ ≤ ε1

1+ε1
< ε1, ‖W −1(t )−I‖ ≤ ε1,

and hence
W (t ) > (1−ε1)I , W (t )−1 ≥ (1−ε1)I .

As such, for t ≥ t1(ε1)∣∣∣∣e− 1
2

(
x−e−Ct y

)T
W (t )−1

(
x−eCt y

)
f0(y)

∣∣∣∣q

≤ e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2 ∣∣ f0(y)

∣∣q (1.4.14)

and
detW (t ) ≥ (1−ε1)d . (1.4.15)

We conclude, using (1.4.13), the exact solution formula (1.4.5), (1.4.14) and (1.4.15) that
for t ≥ t1(ε1) it holds:∫

Rd

∣∣ f (t , x)
∣∣q f −1

∞ (x)d x

≤ (2π)
d
2

(2π(1−ε1))
qd
2

(∫
Rd

(∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2 ∣∣ f0(y)

∣∣q e
|x|2

2 d x

) 1
q

d y

)q

= (2π)
d
2

(2π(1−ε1))
qd
2

(∫
Rd

(∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2

e
|x|2

2 d x

) 1
q ∣∣ f0(y)

∣∣d y

)q

.

(1.4.16)

We proceed by choosing ε1 > 0 such that q(1− ε1) > 1 (or equivalently ε1 < q−1
q ) and

denoting
η := q(1−ε1)−1 > 0.

Shifting the x variable by 1
2 e−Ct y and completing the square, we find that

∫
Rd

e− q
2 (1−ε1)

∣∣x−e−Ct y
∣∣2

e
|x|2

2 d x =
∫
Rd

e− η+1
2

∣∣x− 1
2 e−Ct y

∣∣2

e

∣∣∣x+ 1
2 e−Ct y

∣∣∣2
2 d x

=
∫
Rd

exe−Ct y e− η
2

∣∣x− 1
2 e−Ct y

∣∣2

d x =
∫
Rd

e
− η

2

∣∣∣x− 1
2

(
1+ 2

η

)
e−Ct y

∣∣∣2

e

(
1
2+ 1

2η

)∣∣e−Ct y
∣∣2

d x

=
(

2π

η

) d
2

e

(
1
2+ 1

2η

)∣∣e−Ct y
∣∣2

.

(1.4.17)
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Using (1.4.8) we can find a uniform geometric constant c2 such that

‖e−Ct‖2 ≤ c2
2

(
1+ t n)2 e−2µt ≤ 2c2

2

(
1+ t 2n)

e−2µt .

Following the proof of Lemma 1.4.8 we recall that if

t ≥ 1

2(µ−α)
log

(
c̃(1+ε2)

(
1+ n

αe

)2n

ε2

)
,

where 0 <α<µ is arbitrary and for any c̃,ε2 > 0, then(
1+ t 2n)

e−2µt ≤ ε2

c̃(1+ε2)
.

Thus, choosing

c̃ = c2
2(1+η)

qη
= c2

2(1−ε1)

q(1−ε1)−1
and ε2 = ε1

1−ε1

we get that if

t ≥ t2(ε1) := 1

2(µ−α)
log

(
c2

2(1−ε1)
(
1+ n

αe

)2n(
q(1−ε1)−1

)
ε1

)
,

where 0 <α<µ is arbitrary and for any c̃,ε2 > 0, then(
1

2
+ 1

2η

)
‖e−Ct‖2 ≤ c2

2(1+η)

qη
q

(
1+ t 2n)

e−2µt ≤ qε1.

Combining this with our previous computations ((1.4.16) and (1.4.17)), we find that for
any t ≥ t0(ε1) := max(t1(ε1), t2(ε1))

∫
Rd

∣∣ f (t , x)
∣∣q f −1

∞ (x)d x ≤ (2π)d(1− q
2 )

(1−ε1)
qd
2 η

d
2

(∫
Rd

eε1|y|2 f0(y)d y

)q

.

If ε1 is chosen more restrictively than before, namely ε1 ≤ q−1
2q , then we have

q −1

2
≤ η< q −1 and 1−ε1 ≥ q +1

2q
,

which implies the first statement of the theorem by choosing ε1 := min
(
ε, q−1

2q

)
.

For the proof of (ii) we note that (1.4.3) is equivalent to

‖ f (t )‖2
L2(Rd , f −1∞ ) ≤

(
8
p

2

3 ·2
1
p

)d

‖ f0‖2

Lp
(
Rd , f

1−p
∞

). (1.4.18)
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With the Hölder inequality we obtain

∫
Rd

e
p−1
4p |x|2 f0(x)d x ≤

(∫
Rd

e− |x|2
4 d x

) p−1
p

(∫
Rd

e
p−1

2 |x|2 f p
0 (x)d x

) 1
p

= 2
d
2

p−1
p ‖ f0‖Lp

(
Rd , f

1−p
∞

).

Hence, ep ( f0| f∞) <∞ implies (1.4.1) with ε= p−1
4p , and (1.4.18) follows from (1.4.2) with

q = 2 and t̃0(p) = t0

(
p−1
4p

)
.

Remark 1.4.9. If the condition (1.4.1) holds for ε= 1
2 we can give an explicit upper bound

for the “waiting time” in the hypercontractivity estimate (1.4.2). For such ε we have

ε1 := min
(
ε, q−1

2q

)
= q−1

2q , and by choosing α = µ
2 we can see that t0(ε1) from the proof

of Theorem 1.4.3 is

t0(q) := 1

µ
log

max
(
c(3q −1),2c2

2
q+1
q−1

)(
1+

(
2n
µe

)2n
)

q −1

 ,

where c,c2 are geometric constants found in the proof of Lemma 1.4.7.

With the non-symmetric hypercontractivity result at hand, we can finally complete
the proof of our main theorem for 1 < p < 2.

Proof of Theorem 1.1.4 for 1 < p < 2. Using Theorem 1.4.3 (i i ) we find an explicit
T0(p) such that for any t ≥ T0(p) the solution to the Fokker–Planck equation, f (t ), is
in L2

(
Rd , f −1∞

)
. Proceeding similarly to the previous remark (but now with q = 2 and

ε= p−1
4p ) we have ε1 := min

(
p−1
4p , 1

4

)
= p−1

4p . This yields the following upper bound for the

“waiting time” in the hypercontractivity estimate (1.4.3):

T0(p) := 1

µ
log

max
(
c(5p −1),2c2

2
3p2+p

p+1

)(
1+

(
2n
µe

)2n
)

p −1

 .

Using Lemma 1.4.2, Theorem 1.1.4 for p = 2 (which was already proven in §1.3), and
inequality (1.4.3) we conclude that for any t ≥ T0(p)

ep ( f (t )| f∞) ≤ 2e2( f (t )| f∞) ≤ 2c̃2e2
(

f (T0(p))| f∞
)(

1+ (
t −T0(p)

)2n
)

e−2µ(t−T0(p))

≤ 2c̃p e2µT0(p) (p(p −1)ep ( f0| f∞)+1
) 2

p
(
1+ t 2n)

e−2µt .
(1.4.19)
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To complete the proof we recall that any admissible relative entropy decreases along
the flow of the Fokker–Planck equation (see [2] for instance). Thus, for any t ≤ T0(p) we
have that

ep ( f (t )| f∞) ≤ ep ( f0| f∞) ≤ ep ( f0| f∞)e2µT0(p) (1+ t 2n)
e−2µt . (1.4.20)

The theorem now follows from (1.4.19) and (1.4.20), together with the fact that for a
1 < p < 2

ep ( f0| f∞) ≤Cp
(
p(p −1)ep ( f0| f∞)+1

) 2
p ,

where Cp := supx≥0
x

(p(p−1)x+1)
2
p
<∞.

We end this section with a slight generalization of our main theorem:

Theorem 1.4.10. Let ψ be a generating function for an admissible relative entropy. As-
sume in addition that there exists Cψ > 0 such that

ψp (y) ≤Cψψ(y) (1.4.21)

for some 1 < p < 2 and all y ∈ R+. Then, under the same setting of Theorem 1.1.4 (but
now with the assumption eψ( f0| f∞) <∞) we have that

eψ( f (t )| f∞) ≤ cp,ψ
(
eψ( f0| f∞)+1

) 2
p
(
1+ t 2n)

e−2µt , t ≥ 0,

where cp,ψ > 0 is a fixed geometric constant.

Proof. The proof is almost identical to the proof of Theorem 1.1.4. Due to (1.4.21) we
know that ep ( f0| f∞) <∞. As such, according to Theorem 1.4.3 (i i ) there exists an ex-
plicit T0(p) such that for all t ≥ T0(p) we have that f (t ) ∈ L2

(
Rd , f −1∞

)
and

e2( f (t )| f∞) ≤ 1

2

(
8
p

2

3 ·2
1
p

)d (
Cψp(p −1)eψ( f0| f∞)+1)

) 2
p −1

 .

The above, together with Lemma 1.4.2 gives the appropriate decay estimate on eψ for
t ≥ T0(p). Since eψ decreases along the flow of our equation, we can deal with the inter-
val t ≤ T0(p) like in the previous proof, yielding the desired result.

In the next, and last, section of this chapter we will mention another natural quantity
in the theory of the Fokker–Planck equations - the Fisher information. We will briefly
explain how the method we presented here is different to the usual technique one con-
siders when dealing with the entropy. Moreover we describe how to infer from our main
theorem an improved rate of convergence to equilibrium - in relative Fisher informa-
tion.
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1.5 Decay of the Fisher Information

The study of convergence to equilibrium for the Fokker–Planck equations via relative
entropies has a long history. Unlike the study we presented here, which relies on de-
tailed spectral investigation of the Fokker–Planck operator together with a non-symmetric
hypercontractivity result, the common method to approach this problem - even in the
degenerate case - is the so called entropy method.
The idea behind the entropy method is fairly simple: once an entropy has been chosen
and shown to be a Lyapunov functional to the equation, one attempts to find a linear
relation between it and the absolute value of its dissipation. In the setting of the our
equation, the latter quantity is referred to as the Fisher information.
More precisely, it has been shown in [2] that:

Lemma 1.5.1. Let ψ be a generating function for an admissible relative entropy and
let f (t , x) be a solution to the Fokker–Planck equation (1.1.2) with initial datum f0 ∈
L1+

(
Rd

)
. Then, for any t > 0 we have that

d

d t
eψ

(
f (t )| f∞

)=
−

∫
Rd
ψ′′

(
f (t , x)

f∞(x)

)
∇

(
f (t , x)

f∞(x)

)T

Cs∇
(

f (t , x)

f∞(x)

)
f∞(x)d x ≤ 0.

Definition 1.5.2. For a given positive semidefinite matrixP the expression

IPψ ( f | f∞) :=
∫
Rd
ψ′′

(
f (x)

f∞(x)

)
∇

(
f (x)

f∞(x)

)T

P∇
(

f (x)

f∞(x)

)
f∞(x)d x ≥ 0.

is called the relative Fisher Information generated by ψ.

The entropy method boils down to proving that there exists a constant λ> 0 such that

IPψ ( f | f∞) ≥λeψ( f | f∞). (1.5.1)

WhenD is positive definite, the above (with the choiceP :=D) is a Sobolev inequality
(and a log-Sobolev inequality for ψ=ψ1), and a standard way to prove it is by using the
Bakry-Émery technique (see [3, 5] for instance). This technique involves differentiat-
ing the Fisher information along the flow of the Fokker–Planck equation and finding a
closed functional inequality for it. By an appropriate integration in time, one can then
obtain (1.5.1).
Problems start arising with the above method whenD is not invertible. As can be seen
from the expression of IDψ - there are some functions that are not identically f∞ yet yield
a zero Fisher information. In recent work of Arnold and Erb ([2]), the authors managed
to circumvent this difficulty by defining a new positive definite matrixP0 that is strongly
connected to the drift matrixC, and for which (1.5.1) is valid as a functional inequality.
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1.5 Decay of the Fisher Information

They proceeded to successfully use the Bakry-Émery method on IP0
ψ and conclude from

it, and the log-Sobolev inequality, rates of decay for IDψ (which is controlled by IP0
ψ ) and

eψ. This is essentially what is behind the exponential decay in Theorem 1.1.3. Moreover,
in the defective case (ii), it led to an ε-reduced exponential decay rate.
As we have managed to obtain better convergence rates to equilibrium (in relative en-
tropy) for the case of defective drift matricesC, one might ask whether or not the same
rates will be valid for the associated Fisher information IDp := IDψp

. The answer to that
question is Yes, and we summarise this in the next theorem:

Theorem 1.5.3. Consider the Fokker–Planck equation (1.1.2) with diffusion and drift
matrices D and C which satisfy Conditions (A)–(C). Let µ be defined as in (1.1.5) and
assume that one, or more, of the eigenvalues ofC with real part µ are defective. Denote
by n > 0 the maximal defect of these eigenvalues. Then, for any 1 < p ≤ 2, the solution
f (t ) to (1.1.2) with initial datum f0 ∈ L1+

(
Rd

)
that has unit mass and IP0

p ( f0| f∞) < ∞
satisfies:

IDp
(

f (t )| f∞
)≤ cIP0

p
(

f (t )| f∞
)≤ cp ( f0)

(
1+ t 2n)

e−2µt , t ≥ 0,

where cp ( f0) depends on IP0
p ( f0| f∞).

Proof. We first note that Proposition 4.4 from [2] implies the estimate
ep

(
f0| f∞

) ≤ cIP0
p ( f0| f∞) <∞, and hence Theorem 1.1.4 applies. This decay of ep car-

ries over to IP0
p due to the following two ingredients: For small t we can use the purely

exponential decay of IP0
p as established in Proposition 4.5 of [2] (with the rate 2(µ−ε)).

And for large time we use the (degenerate) parabolic regularisation of the Fokker–Planck
equation (1.1.2): As proven in Theorem 4.8 of [2] we have for all τ ∈ (0,1] that

IP0
ψ ( f (τ)| f∞) ≤ ck0

τ2κ+1
eψ

(
f0| f∞

)
,

where ψ is the generating function for an admissible relative entropy. And κ > 0 is the
minimal number such that there exists λ̃> 0 with

κ∑
j=0
C jD

(
CT ) j ≥ λ̃I .

The existence of such κ and λ̃ is guaranteed by Condition (C) and equivalent to the rank
condition (1.3.6)- cf. Lemma 2.3 in [1].
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2 Sharp Decay Estimates in Local
Sensitivity Analysis for Evolution
Equations with Uncertainties:
from ODEs to Linear Kinetic
Equations

2.1 Introduction

Kinetic models arise from mesoscopic approximations of particle systems, as such, they
are not first principle equations, thus contain empirical coefficients such as collision
kernels in the Boltzmann equation, scattering coefficients in transport equations, forc-
ing or source terms, and measurement errors in initial and boundary data, etc. Such
errors can be modeled by uncertainties, or random inputs. Quantifying these uncer-
tainties have important industrial and practical applications, in order to identify the
sensitivities of input parameters, validate the models, conduct risk management, and
ultimately improve these models.

In recent years one has seen activities in conducting uncertainty quantifications (UQ)
for kinetic equations, see [14] for a recent review. One of the important analysis in UQ
is the so-called local sensitivity analysis, in which one aims to understand how sensitive
the solution depends on the input parameters [26]. For kinetic equations, a major tool
to conduct sensitivity analysis for random kinetic equations has been the coercivity,
or more generally, hypocoercivity, which originated in the study of long-time behavior
of kinetic equations (see [28, 11, 9, 23]). In such analysis, by using the hypocoerciv-
ity of the kinetic operator, in a perturbative setting, namely, considering solutions near
the global equilibrium (see [13]), one can establish the long time convergence toward
the local equilibrium with an exponential time decay rate. Such analysis has been ex-
tended to kinetic equations with random inputs, in both linear (see [15, 20]) and nonlin-
ear (see [17, 21, 25]) settings. For stochastic Galerkin methods, hypocoercivity analysis
even leads to exponential decay of numerical errors [21, 25], while in classical numer-
ical analysis one often obtains errors that grow exponentially in time. In these works,
however, the decay rates were not sharp.

Over the last two decades, entropy methods have become an important and robust
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

tool to prove exponential convergence to equilibrium in kinetic and parabolic equa-
tions (see [27, 6, 10, 19, 11]). But sharpness of the decay rate is only known in few
cases (see [6] for the situation in Fokker–Planck equations). For linear finite dimen-
sional ODEs, however, a method of constructing Lyapunov functionals to reveal optimal
decay rates has been known for a long time, see [7], §22.4.

More recently in [5], such strategies were transferred to Fokker–Planck (FP) equations
on Rd and used to estimate the decay behavior of their solutions. For both, the ODE
and the FP setting, one obtains the sharp exponential decay rate, as long as none of the
eigenvalues determining the spectral gap of the generator is defective1. Recently this
method was applied to PDEs that allow for a modal decomposition, like kinetic BGK
models on the torus (see [1, 2]). They are relaxation-type models for collisional gases,
introduced by the physicists Bhatnagar, Gross and Krook in [8].

In the defective case, however, the sharp decay behavior is of the form of a polynomial
times an exponential, and different strategies have to be applied.

In order to catch the sharp decay behavior in the case of a defective FP equation,
one can use the spectral properties of the FP operator to split the solution into two
subspace-invariant parts: The first one corresponds to the spectral gap and is finite
dimensional; there the sharp (defective) decay behavior can be computed explicitly.
The second part of the solutions corresponds to a subspace “away” from the spectral
gap, and it has a faster exponential decay. This approach gives sharp decay functions
for defective FP equations for various entropies as shown in [4].

Alternatively, one can extend the Lyapunov functional by allowing it to be time depen-
dent, see [22]. In §2.2 of this chapter we will translate that strategy from linear Fokker–
Planck equations inRd (as in Corollary 12 of [22]) to the ODE setting. We shall also refine
the method such that it can yield uniform decay bounds in the non-defective limit. This
extension will be crucial for our PDE-applications presented in §3–§5: a convection-
diffusion equation, a BGK model and a linear Fokker–Planck equation onR respectively.
There we shall allow for uncertainty in the model coefficients and carry out a first (and
for the convection-diffusion equations also second) order sensitivity analysis. In a local
sensitivity analysis one tries to estimate the behavior of the (higher order) derivatives
of the solution with respect to the input variables [26]. Estimates of such derivatives
are not only important to assess the sensitivity of the solution on the input parameters,
they also provide regularity of the solution in the parameter space which is important
to determine the convergence order of numerical approximations in the random space
[12, 15, 16]. In the Fourier space, the resulting evolution equations for the paramet-
ric derivatives are mostly defective systems for which the sharp decay estimates can be
obtained by using the Lyapunov functional approaches for defective deterministic sys-
tems. We would also like to point out that for the case of linear Fokker–Planck equation
with a random drift, studied in §5, the global equilibrium is also random, while in pre-
vious sensitivity analysis for uncertain kinetic equations the global equilibria were all

1An eigenvalue is defective, if its algebraic multiplicity is strictly greater than its geometric multiplicity.
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2.2 Lyapunov Functionals for Defective ODEs

deterministic [17, 21].

2.2 Lyapunov Functionals for Defective ODEs

In this section we first review (from [1]) the Lyapunov functional method for non-defective
ODEs and then extend it to the defective case. This is based on constructing a norm
adapted to the problem that allows to recover the sharp decay behavior.

2.2.1 Construction of Lyapunov Functionals

Let the matrix2 C ∈ Cd×d be positive stable, i.e. its eigenvalues satisfy Re(λi ) > 0 for
i = 1, . . . ,d , and let µ := mini=1,...,d Re(λi ) > 0. We want to find a Lyapunov functional for
the equation

d

d t
x(t ) =−C x(t ), x ∈Cd , t ≥ 0 (2.2.1)

that allows to deduce the sharp decay rate of solutions with energy-type estimates. For
the construction of this functionals we consider the Jordan transformation of the matrix
C H , denoting the Hermitian transpose of the matrix C (with eigenvalues λi ). We shall
distinguish different cases of eigenvalue defectiveness:

C H =V diag(J1, . . . , JN )V −1, (2.2.2)

where Jn for n ∈ {1, . . . , N } are the Jordan blocks of C H with length ln ∈ {1, . . . ,d}. A Jor-
dan block of length one is an eigenvalue as a diagonal element, and a Jordan block Jn

of length ln > 1 corresponds to a chain of generalized eigenvectors of C H of order k
satisfying

C H v (k)
n =λn v (k)

n + v (k−1)
n , k ∈ {1, . . . , ln −1}, (2.2.3)

where v (0)
n is an eigenvector of C H , corresponding to λn . We denote the (semi-)

norm
|x|2P := xH P x,

for a Hermitian positive (semi-)definite matrix P ∈Cd×d to be defined.

Case 1: Jn is a Jordan block of length ln = 1 with Re(λn) ≥µ.
We define the rank 1 matrix3 Pn := v (0)

n ⊗ v (0)
n and get (cf. (2.51) in [5])

d

d t
|x(t )|2Pn

=−xH (C H Pn +PnC )x ≤−2µxH Pn x =−2µ|x(t )|2Pn
. (2.2.4)

2Due to the large amount of matrices appearing, we will refrain from denoting them bold in this chapter.
3For v, w ∈Cd we denote v ⊗w := v ·w H where · is the matrix-matrix multiplication.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Case 2: Jn is a Jordan block of length ln > 1 with Re(λn) >µ.
As in the proof of Lemma 4.3 in [5], we choose the coefficients bi

n > 0 as

b1
n := 1; b j

n := c j (τn)2(1− j ), j ∈ {2, . . . , ln},

where c1 := 1, c j := 1+ (c j−1)2 for j ∈ {2, . . . , ln} and τn := 2(Re(λn)−µ) > 0. Then the
matrix

Pn :=
ln∑

i=1
bi

n v (i−1)
n ⊗ v (i−1)

n

satisfies

C H Pn +PnC ≥ 2µPn (2.2.5)

and, as in (2.2.4), one gets

d

d t
|x(t )|2Pn

≤−2µ|x(t )|2Pn
. (2.2.6)

Case 3: Jn is a Jordan block of length ln > 1 with Re(λn) =µ.
A translation of the strategy of Corollary 12 in [22] to the ODE setting leads to the fol-
lowing construction. For each m ∈ {1, . . . , ln}, define the vector function

w m
n (t ) :=

m∑
k=1

t m−k

(m −k)!
v (k−1)

n , t ≥ 0. (2.2.7)

For m ∈ {2, . . . , ln} we have

d

d t
w m

n (t ) =
m−1∑
k=1

t m−k−1

(m −k −1)!
v (k−1)

n ,

from which it follows (using (2.2.3)) that

C H w m
n (t )−λn w m

n (t ) =
m∑

k=2

t m−k

(m −k)!
v (k−2)

n = d

d t
w m

n (t ). (2.2.8)

Next we define the time dependent Hermitian positive semi-definite matrix

P m
n (t ) := w m

n (t )⊗w m
n (t ), m ∈ {1, . . . , ln}. (2.2.9)
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2.2 Lyapunov Functionals for Defective ODEs

Notice that w 1
n(t ) = v (0)

n . So for m = 1 the computation for the estimate of d
d t |x(t )|2

P 1
n (t )

is the same as in (2.2.4) (with equality since Re(λn) = µ). For m ∈ {2, . . . , ln} we use the
identity (2.2.8), and compute

d

d t
|x(t )|2P m

n (t ) = ẋH (t )P m
n (t )x(t )+xH (t )P m

n (t )ẋ(t )+xH (t ) ˙P m
n (t )x(t )

=−xH (t )[C H w m
n (t )⊗w m

n (t )+w m
n (t )⊗w m

n (t )C ]x(t )

+xH (t )
[

(C H w m
n (t )−λn w m

n (t ))⊗w m
n (t )

]
x(t )

+xH (t )
[

w m
n (t )⊗ (C H w m

n (t )−λn w m
n (t ))

]
x(t )

=−2µxH (t )w m
n (t )⊗w m

n (t )x(t ) =−2µ|x(t )|2P m
n (t )

and directly obtain

|x(t )|2P m
n (t ) = e−2µt |x(0)|2P m

n (0), t ≥ 0. (2.2.10)

For arbitrary βm
n > 0, define

Pn(t ) :=
ln∑

m=1
βm

n P m
n (t ). (2.2.11)

We have span{v (0)
n , . . . , v (ln−1)

n } = span{w 1
n(t ), . . . , w ln

n (t )} for all t ≥ 0, since the transfor-

mation matrix between these two sets is given by e−λn t e Jn t . Hence, the matrix Pn(t )
is positive definite on the subspace span{v (0)

n , . . . , v (ln−1)
n }. In the corresponding semi-

norm | · |2Pn (t ) the solution x(t ) satisfies

|x(t )|2Pn (t ) = e−2µt |x(0)|2Pn (0), t ≥ 0.

For later convenience, we denote

Iµ := {n ∈ {1, . . . , N } | ln > 1,Re(λn) =µ}, (2.2.12)

to collect all indices with non-trivial Jordan blocks corresponding to µ, i.e. correspond-
ing to the above Case 3.

Combining the three cases:

Now let us define

P (t ) := ∑
n 6∈Iµ

βnPn + ∑
n∈Iµ

Pn(t ) = ∑
n 6∈Iµ

βnPn + ∑
n∈Iµ

ln∑
m=1

βm
n P m

n (t ), (2.2.13)

where Pn and P m
n (t ) are chosen, depending on the above Cases 1–3 of the corresponding

Jordan block Jn . The weightsβn > 0 are arbitrary in Cases 1–2, and the (arbitrary)βm
n > 0
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

pertain to Case 3. The matrix P (t ) is positive definite for every t ≥ 0, since it has full rank
by construction and it is the sum of positive semi-definite matrices. It satisfies

d

d t
|x(t )|2P (t ) ≤−2µ|x(t )|2P (t ), (2.2.14)

and by applying Gronwall’s lemma, we conclude:

Lemma 2.2.1. Let C ∈ Cd×d be positive stable and let µ > 0 be the smallest real part of
all eigenvalues. Let diag(J1, . . . , JN ) be the Jordan normal form of C H , where Jn for n ∈
{1, . . . , N } is a Jordan block of length ln with eigenvalue λn .

1. If all eigenvalues with real part equal to µ are non-defective, i.e. Iµ =;, then there
exists a time-independent Hermitian positive definite matrix P ∈ Cd×d , such that
the solutions to (2.2.1) satisfy

|x(t )|2P ≤ e−2µt |x(0)|2P . (2.2.15)

2. If at least one eigenvalue with real part equal to µ is defective, i.e. Iµ 6= ;, then there
exists a time-dependent matrix P (t ) ∈ Cd×d , which is Hermitian positive definite
for all t ≥ 0 such that the solutions to (2.2.1) satisfy

|x(t )|2P (t ) ≤ e−2µt |x(0)|2P (0). (2.2.16)

For further details on the algebraic interpretation of the time-independent matrix P ,
we refer to the remarks following Lemma 4.3 in [5]. See Example 2.2 in [3] (with ω 6= 0)
for an ODE example and the relevance of the modified (time-independent) P-norm for
the trajectories of the ODE.

Remark 2.2.2. The matrix P (t ) is — with the construction described above — not unique.
For one, arbitrary coefficients βn ,βm

n > 0 in the definition of P (t ) in (2.2.13) are admissi-
ble. Secondly, the construction depends on the specific choice of (generalized) eigenvectors
fixed in (2.2.3).

Remark 2.2.3. The matrix P (t ) can also be written as a matrix product:

P (t ) =V e J tΣ(t )B(V e J t )H ,

with V and J from (2.2.2),

B := diag(β1
1, . . . ,βl1

1︸ ︷︷ ︸
l1 entries

, . . . ,β1
N , . . . ,βlN

N︸ ︷︷ ︸
lN entries

) ∈Rd×d ,

with notation βm
n :=βn for each n 6∈ Iµ and corresponding m ∈ {1, . . . , ln} and

Σ(t ) := diag(e−2Re(λ1)t , . . . ,e−2Re(λ1)t︸ ︷︷ ︸
l1 times

, . . . ,e−2Re(λN )t , . . . ,e−2Re(λN )t︸ ︷︷ ︸
lN times

) ∈Cd×d .

This representation of P (t ) directly implies that detP (t ) ≡ detP (0) (cf. Fig. 2.2.3).

50



2.2 Lyapunov Functionals for Defective ODEs

In the following remark and in Example 2.2.5, we investigate the geometry of the mod-
ified norms of Lemma 2.2.1.

Remark 2.2.4. For an ODE (2.2.1), we distinguish different eigenvalue settings of the ma-
trix C ∈Cd×d , in order to isolate the interesting phenomena.

◦ Case 1: C is in Case 1 of Lemma 2.2.1: Due to Lemma 2.2.1, there exists a time-
independent P-norm such that solutions decay as (2.2.15). The geometric reason
for the strict decay is the following: This specific norm is modified such that the
trajectories of solutions to the ODE are never tangential to the P-norm level curves
{x ∈Cd | |x|2P = const.} (cf. Fig. 2.2.2).

To prove this, denote f (x) := xH P x. Then, the normal vector of the P-norm level
curve at point x ∈ Cd \ {0} is given as the P-norm gradient of f (x), i.e. η(x) :=
∇P f (x) = P−1∇ f (x) = 2x (see, e.g. (2.1.13) in [18] for gradients of Riemannian
manifolds). The (backwards-in-time facing) solution tangent vector at point x is
given as −ẋ =C x. Due to the matrix inequality (2.2.5), η(x) and −ẋ are never per-
pendicular, i.e. the P-norm angle between them is bounded from below:

〈x,C x〉P

|x|P |C x|P
= xH PC x

|x|P |C x|P
= 1

2

xH (C T P +PC )x

|x|P |C x|P
≥µ xH P x

|x|P |C x|P
=µ |x|P

|C x|P
≥ µ

|C |P
> 0,

where |C |P denotes the matrix norm induced by the vector norm |x|P .

◦ Case 2: C is in Case 2 of Lemma 2.2.1: First, for the time-independent matrix Pε,
as defined in [5], Lemma 4.3, the analogous result as for the above case is true. The
calculation is identical, up to replacing µ by µ−ε (cf. Example 2.2.5). Thus, also
in the defective case, the solutions are never tangential to the level curves of the
Pε-norm.

The P (t )-norm of Case 2 in Lemma 2.2.1 has a different geometric effect on solu-
tions due to its time-dependency. In fact, a solution x(t ) can even be tangential to
the P (t )-norm level curves for all times, while still maintaining sharp exponential
decay, as Example 2.2.5 below shows.

◦ Case 3: All eigenvalues of C have real partµ (defective or non-defective): For t ≥ 0,
the P (t )-angle between η(x(t )) and −ẋ(t ) stays constant, i.e.

〈x(t ),C x(t )〉P (t )

|x(t )|P (t )|C x(t )|P (t )
= 〈x(0),C x(0)〉P (0)

|x(0)|P (0)|C x(0)|P (0)
. (2.2.17)

Indeed, in this case, (2.2.14) becomes an equality (with P (t ) ≡ P (0), if all eigen-
values are non-defective), and hence |x(t )|2P (t ) = e−2µt |x(0)|2P (0) for all t ≥ 0. In the
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

following computation we use the polarization identity in the first and last step.
The second identity follows from the fact that, if x(t ) is a solution to (2.2.1), so is
(I +C )x(t ) and (I + iC )x(t ) (with initial conditions (I +C )x(0) and (I + iC )x(0),
respectively):

〈x(t ),C x(t )〉P (t )

|x(t )|P (t )|C x(t )|P (t )
= 1

4

|x(t )+C x(t )|2P (t ) −|x(t )−C x(t )|2P (t )

e−µt |x(0)|P (0)e−µt |C x(0)|P (0)

+ 1

4

i |x(t )− iC x(t )|2P (t ) − i |x(t )+ iC x(t )|2P (t )

e−µt |x(0)|P (0)e−µt |C x(0)|P (0)

= 1

4

e−2µt |x(0)+C x(0)|2P (0) −e−2µt |x(0)−C x(0)|2P (0)

e−µt |x(0)|P (0)e−µt |C x(0)|P (0)

+ 1

4

e−2µt i |x(0)− iC x(0)|2P (0) −e−2µt i |x(0)+ iC x(0)|2P (0)

e−µt |x(0)|P (0)e−µt |C x(0)|P (0)

= 〈x(0),C x(0)〉P (0)

|x(0)|P (0)|C x(0)|P (0)

for all t ≥ 0.

Example 2.2.5. Consider the IVP ẋ =−C x, x(0) = (6,6)T , with matrix

C =
(

1 1
2

−1
2 0

)
,

which has the defective eigenvalue and spectral gap λ = µ = 1
2 and the (generalized)

eigenvectors

w (0) = 1p
2

(
1, −1

)T
, w (1) = 1p

2

(
1, 1

)T
.

Our goal is to obtain a better geometric understanding of the necessity of a time-dependent
norm for sharp decay estimates of solutions. To this end, we compare the here pre-
sented Lyapunov functional constructions with functionals considered in [5].

The naive approach of using the Euclidean norm of the solution x(t ) exhibits non
strict decay (the dashed curve in Fig. 2.2.1 has a horizontal tangent at t = 1). The time-
independent norm | · |Pε , as defined in [5], Lemma 4.3, with the matrix

Pε = 1p
2

( 1
2ε2 +1 1

2ε2 −1
1

2ε2 −1 1
2ε2 +1

)
, ε> 0,

yields uniform exponential decay, but the rate µ− ε is not sharp. See Fig. 2.2.1 for the
decay plot and Fig. 2.2.2 for a geometric reasoning why a modified norm can yield ex-
ponential decay.
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2.2 Lyapunov Functionals for Defective ODEs

The P (t )-norm, with matrix

P (t ) = 1

2

(
t 2 +2t +2 t 2

t 2 t 2 −2t +2

)
,

as defined in (2.2.13) (with weights β1 =β2 = 1), provides the sharp exponential decay

|x(t )|2P (t ) = e−t |x(0)|2P (0) = e−t |x(0)|22, t ≥ 0.

See Figures 2.2.3–2.2.4 for the geometric evolution of the P (t )-norm.
Choosing the initial condition x̃(0) = (0,7)T , yields the solution x̃(t ) that is tangential

to the P (t )-norm level curve for each t ≥ 0, while the exponential decay of the solution
in P (t )-norm is still sharp, see Figure 2.2.5.

♦

Figure 2.2.1: The dashed line shows the decay of the solution in the Euclidean norm. It
initially exhibits a wavy behavior, where at time t∗ = 1, there is no strict
decay at all. The dotted line describes the solution in Pε-norm with ε= 0.4.
It yields uniform exponential decay, however, the decay rate is not sharp.

The solid line shows the decay of |x(t )|P (t ) with sharp exponential rate e− 1
2 t .

Lemma 2.2.1 shows that the P (t )-norm of any solution to (2.2.1) decays exponentially.
But due to the time dependence of the norm itself, it is not evident that this is an ap-
propriate functional to capture the sharp decay rate of solutions. Hence, we shall next
compare the P (t )-norm to the Euclidean norm.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Figure 2.2.2: The dashed line shows the solution trajectory x(t ). At the marked point
x(t∗), the solution is tangential to the Euclidean level curve. This implies
non-strict decay in the Euclidean norm (cf. Fig. 2.2.1) at t∗ = 1. The ellipse
represents a level curve of the Pε-norm (with ε = 0.4). It modifies the ge-
ometry such that the solution is never tangential to the level curves of |·|Pε .
This assures strict exponential decay in the Pε-norm, however the rate is
not sharp.

An arbitrary Hermitian positive definite matrix P ∈Cn×n satisfies

λP
minI ≤ P ≤λP

maxI , (2.2.18)

where λP
min is the smallest and λP

max is the largest eigenvalue of P . Using this inequality
for P (t ), and the decay estimate (2.2.16), leads to the Euclidean decay estimate

|x(t )|22 ≤ (λP (t )
min)−1|x(t )|2P (t ) ≤ (λP (t )

min)−1e−2µt |x(0)|2P (0)

≤ (λP (t )
min)−1λP (0)

maxe−2µt |x(0)|22.

But here the decay behavior is “hidden” in the smallest eigenvalue of P (t ). The true
qualitative behavior of |x(t )|22 will be derived next.

The following technical Lemma 2.2.6 allows us, in the subsequent step, to estimate the
time-dependency of the P m

n (t )-semi-norm. The strategy of the proof has already been
used for Corollary 12 of [22] in the setting of Fokker–Planck equations on Rd . However,
our refined estimate here, for one, provides an upper bound for the time-dependence
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2.2 Lyapunov Functionals for Defective ODEs

Figure 2.2.3: The dashed line in the plot describes the solution x(t ) with the marked
points x(0), x(1), . . . , x(5). Additionally, the level curves of {x ∈ R2 | |x|2P (t ) =
4} for t = 0,1, . . . ,5 are plotted. In direction of the eigenvector of the ma-
trix C , w (0), the distances stay constant in time. The area spanned by
each ellipse-shaped level curve stays constant (cf. Remark 2.2.3), while the
semi-major axis of the ellipse stretches out and tilts towards the eigenvec-
tor axis w (0) as time increases. The stretch is linear in t in the direction of
±w (0): For arbitrary t ≥ 0, the point ±p2(1− t ,1+ t )T is on the ellipse with
the tangent (±p2,±p2)T + span{w (0)}.

of a more general class of modified norms. And additionally, the constants appearing in
the estimate are explicit, depending on m and a parameter θ which, later on, allows to
optimize the constants in the decay estimate of solutions to the ODE (2.2.1).

Lemma 2.2.6. For linearly independent vectors v1, . . . , vm ∈Cd define

ŵ m(t ) : = ξm vm +
m−1∑
j=1

ξ j (t )v j , (2.2.19)

where ξ j (t ) for j ∈ {1, . . . ,m − 1} are (arbitrary) real-valued polynomials in t ≥ 0, and
ξm > 0. Furthermore let

P̂ m(t ) := ŵ m(t )⊗ ŵ m(t ), t ≥ 0; Q j := v j ⊗ v j , j ∈ {1, . . . ,m}.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Figure 2.2.4: The level curves of {x ∈ R2 | |x|2P (t ) = e−t |x(0)|22} for t = 0,1, . . . ,4 are plotted
(cf. Fig. 2.2.3). They intersect with the solution trajectories exactly at the
marked points x(0), x(1), . . . , x(4), which corresponds to the statement of
Lemma 2.2.1, Case 2. Notice that the tangents of the level curves of | · |P (t )

at x(t ) are all parallel to each other. The intersection angle in the P (t )-norm
is time-independent, see Remark 2.2.4, Case 3.

Then, the following inequality holds for every x ∈Cd , θ ∈ (0,1) and t ≥ 0 :

|x|2
P̂ m (t )

≥ (1−θ)(ξm)2|x|2Qm −
(

(m −1)2

θ
−1

)m−1∑
k=1

(ξk (t ))2|x|2
Qk .

Notice that the second (t-dependent) term of the r.h.s. involves only the semi-norms
|x|Q1 , . . . , |x|Qm−1 .

The technical proof is deferred to Appendix 2.A.

Remark 2.2.7. Lemma 2.2.6 is formulated in a general form, to be applicable also to
§2.4 below. Here, we use it to estimate the time-dependency of the P m

n (t )-semi-norms (as
defined in (2.2.9)) for arbitrary n ∈ Iµ and corresponding m ∈ {2, . . . , ln}. In notation of

Lemma 2.2.6, choose v1 = v (0)
n , . . . , vm = v (m−1)

n and ξk (t ) = t m−k

(m−k)! for k ∈ {1, . . . ,m}, which
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2.2 Lyapunov Functionals for Defective ODEs

Figure 2.2.5: The level curves of {x ∈ R2 | |x|2P (t ) = e−t |x̃(0)|22} for t = 0,1, . . . ,4 are plot-

ted analogous to Fig. 2.2.4, but here for the initial value x̃(0) = (0,7)T . The
solution x̃(t ) is tangential to the P (t )-norm level curves for each t ≥ 0.

leads to ŵ m
n (t ) = w m

n (t ). Then, Lemma 2.2.6 yields

|x|2P m
n (t ) ≥

(1−θ) |x|2P m
n (0) −

(
(m −1)2

θ
−1

)m−1∑
k=1

(
t m−k

(m −k)!

)2

|x|2
P k

n (0)
,

(2.2.20)

for every n ∈ Iµ, all corresponding m ∈ {2, . . . , ln}, x ∈Cd , θ ∈ (0,1) and t ≥ 0.

In the next step, we combine the exponential decay in P (t )-norm of solutions, (2.2.16)
with the lower bound (2.2.20). This allows to estimate the P (0)-norm decay of solutions
and, consequently, the decay behavior in the Euclidean norm. In contrast to the re-
sult stated in [22] for the FP setting, we obtain an multiplicative constant C in the esti-
mate depending explicitly on the maximal defect associated to µ and the choice of the
weights βm

n of P (t ).
The freedom of choice in the weights and their influence on the constant C is of great

importance in §2.3–§2.5, as C will need to stay bounded in the non-defective limit (see
Example 2.2.11 below).

Theorem 2.2.8. Let C ∈ Cd×d be positive stable and let µ > 0 be the smallest real part
of all eigenvalues. Let M be the maximal size of a Jordan block associated to µ (i.e. the
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

maximal defect associated to µ is M−1). Then there exists a constant C > 0, such that the
solutions to (2.2.1) satisfy

|x(t )|22 ≤C (1+ t 2(M−1))e−2µt |x(0)|22. (2.2.21)

The constant C can be chosen as

C :=


(λP

min)−1λP
max, M = 1,

2(λP (0)
min )−1λP (0)

maxcM max
n∈Iµ

[ ln∑
m=1

βm
n

min
k∈{1,...,m}

βk
n

]
, M ≥ 2, (2.2.22)

where λP (0)
min is the smallest and λP (0)

max is the largest eigenvalue of the matrix P (0) (with
P (0) ≡ P for M = 1), which is defined in (2.2.13). The constants cM for M ≥ 2 are given as:

cM = 2M−2

(
M−1∏
j=1

4 j 2 −1

)(
M∏

j=2

j∑
k=1

1

[( j −k)!]2

)
.

The technical proof of this result is deferred to Appendix 2.A.

Remark 2.2.9. If, for all n ∈ Iµ, the weights βm
n of the matrix P (0) are monotonically

decreasing in m, i.e. βm
n ≥βm+1

n for m ∈ {1, . . . , ln −1}, then

max
n∈Iµ

[ ln∑
m=1

βm
n

min
k∈{1,...,m}

βk
n

]
= M .

Remark 2.2.10. Note that we could calculate the solution to the ODE system (2.2.1) di-
rectly, by means of its Jordan transformation, and get qualitatively the same decay be-
havior as in (2.2.21), but possibly with a different multiplicative constant: Using x(t ) =
e−C t x(0), C = (V H )−1 J H V H , we obtain

|x(t )|22 ≤ |V |22|V −1|22|e−J H t |22|x(0)|22
≤ |V |22|V −1|22ĉM (1+ t 2(M−1))e−2µt |x(0)|22, (2.2.23)

where |V |2 denotes the matrix norm induced by the vector norm | · |2, V is the transfor-
mation matrix from (2.2.2), J := diag(J1, . . . , JN ) the corresponding Jordan matrix, and
ĉM depends only on the largest Jordan block. So what is the gain of the result in Theorem
2.2.8?

Firstly, the construction of the matrix P (t ) and the method of estimating the P (t )-norm
decay of the solution can be translated almost directly to the infinite dimensional setting
of the Fokker–Planck equation with linear drift, where a direct way of calculating the
decay (as in the finite dimensional ODE case) is not possible (see [5] for the exponential
decay in the non-defective case and [22] for an improved decay in the defective case).
In the Fokker–Planck setting on Rd , the place of the P (t )-norm is taken by the modified
Fisher information involving P (t ).

Secondly, the result also makes it possible to systematically calculate the multiplica-
tive constant C from (2.2.21), which we will use in §2.3–§2.5, and which can be further
exploited to get decay results for infinite dimensional ODE systems (see [1], §4.3).
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2.2 Lyapunov Functionals for Defective ODEs

2.2.2 Uniform Decay Estimates in Non-Defective Limits

The advantage of the P (t )-norm estimation compared to (2.2.23) can be seen in the
following example.

Example 2.2.11. Consider the matrix

Cε :=
(
1 ε

0 1

)
with arbitrary ε 6= 0. Its corresponding Jordan transformation matrix reads

Vε :=
(
1 0
0 1

ε

)
,

and M = 2. For ε→ 0 the factor |Vε|2|V −1
ε |2 in (2.2.23) becomes unbounded of order ε−1

(even though the true decay of the solution improves to e−t |x(0)|2 in the limit). This is
due to the discontinuity of the Jordan transformation at the transition from defective-
ness to non-defectiveness. We apply Theorem 2.2.8 to the ODE system ẋ = −Cεx, with
the following eigenvectors of C H

ε :

v (0)
1 = (

0, 1
)T

and v (1)
1 = (1

ε , 0
)T

.

When using β1
1,ε = 1 and β2

1,ε = ε2 in (2.2.13), we get Pε(0) = I , and hence the constant

Cε = 12 ·max{2,1+ε2} (2.2.24)

stays bounded in the non-defective limit ε→ 0. ♦

This example shows that, while the method presented here is still relying on the Jor-
dan transformation (as P (t ) is constructed with generalized eigenvectors), the addi-
tional weights βm

n in the matrix P (t ) allow for estimates more closely related to the ac-
tual behavior of the solutions. As sketched in Example 2.2.11 this can allow for (but
does not guarantee) an estimate that is uniform in the non-defective limit. In §2.3–§2.5
we will see further examples of specific choices of the weights βm

n that lead to uniform
estimates in the non-defective limit.

Remark 2.2.12. While the proof of Theorem 2.2.8 is formulated to work for arbitrarily
large defects, more careful estimations can improve the decay estimate. We shall now
show an improvement for defect one. For any n ∈ Iµ the inequality (2.A.2) with m = 2
and θ = 1

2 yields

|x(t )|2
P 2

n (0)
≤ 2e−2µt

(
t 2|x(0)|2

P 1
n (0)

+|x(0)|2
P 2

n (0)

)
,

where we used (2.2.10) with P 1
n(t ) = P 1

n(0).
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

For n ∈ Iµ with ln = 2 the decay estimate for Pn(0) =β1
nP 1

n(0)+β2
nP 2

n(0) follows as

|x(t )|2Pn (0) ≤ 2e−2µt (1+ β2
n

β1
n

t 2)|x(0)|2Pn (0).

We can use this estimate to get an improved upper bound for solutions from Example
2.2.11 in the Euclidean norm (compared to (2.2.21) with (2.2.24)): With the same matrix
choice Pε(0) = P 1

1 (0)+ ε2P 2
1 (0) = I as in Example 2.2.11, it follows that solutions to ẋ =

−Cεx satisfy

|x(t )|22 = |x(t )|2Pε(0) ≤ 2e−2t (1+ε2t 2)|x(0)|22, t ≥ 0. (2.2.25)

This estimate not only yields a bounded multiplicative constant for ε→ 0, but also yields
a sharp decay rate — namely purely exponential — for the non-defective limit case ε= 0.
In comparison, the solution propagator norm estimate for all ε ∈R is given as

|e−Cεt x(0)|22 = e−2t
∣∣∣∣(1 −εt

0 1

)∣∣∣∣2

2

|x(0)|22

= e−2t

1+ ε2t 2

2
+

√
ε2t 2 + ε4t 4

4

 |x(0)|22 (2.2.26)

εt→∞≈ e−2t (2+ε2t 2)|x(0)|22.

This shows that (2.2.25) is rather accurate.

Remark 2.2.13. Consider an ODE (2.2.1) with matrix C that has a Jordan block Jn2 in
Case 2 from §2.2.1, i.e. ln2 > 1 and Re(λn2 ) > µ. Then, the construction of Case 2 can be
replaced with the one of Case 3. This means, exchanging the time-constant matrix Pn2 ,
which has predetermined weights bm

n2
, by a time-dependent matrix P̃n2 (t ), which allows

for arbitrary weights βm
n2

> 0. For simplicity let us assume M = 1. With the appropriate
(straightforward) modifications of Lemma 2.2.1 and Theorem 2.2.8 (treating Jn2 as Case
3), this yields the decay estimate (2.2.21) with the modified constant

C̃ := 2(λP̃ (0)
min )−1λP̃ (0)

maxcln2

[ ln2∑
m=1

βm
n2

min
k∈{1,...,m}

βk
n2

]
, (2.2.27)

where P̃ (t ) is the matrix defined by (2.2.13), but with P̃n2 (t ) instead of Pn2 .
For ODE families ẋε = −Cεxε and their non-defective limits ε→ 0, this modification

can be beneficial: The additional weights of P̃n2 (t ) provide further possibilities to obtain
a multiplicative constant C̃ε that is bounded for ε→ 0. In §2.5.2 (Case k = 3), we will
see an example of an ODE family where Theorem 2.2.8 yields an unbounded constant Cε

(for all possible weights) but a bounded constant C̃ε for ε→ 0 (with the correct choice of
weights).
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2.2.3 Uniform Decay for a Family of ODEs

We shall consider now an extension of Example 2.2.11 which will be relevant for the
PDEs discussed in §2.3–§2.5: We consider the matrix family with parameter z ∈R

C (z) :=
(
µ(z) µ′(z)

0 µ(z)

)
=µ(z)

(
1 µ′(z)

µ(z)

0 1

)
(2.2.28)

with a given function µ ∈ C 1(R) and µ(z) ≥ µmin = µ(z0) > 0. For simplicity let z0 ∈
R∪ {∞,−∞} be the unique global point of minimum (infimum if |z0| =∞) of µ.

We are now interested in a uniform-in-z estimate on the matrix propagator e−C (z)t

with t ≥ 0, based on the estimate (2.2.25). To this end we have to consider the interplay
of two effects: On the one hand the parameter value z = z0 yields the smallest expo-
nential decay rate µmin but it is without defect, since µ′(z0) = 0 makes C (z0) a diagonal
matrix. On the other hand the parameters z 6= z0 yield a larger decay, but with a defect
(as long as µ′(z) 6= 0). Hence we shall be interested in the question, whether or not the
typical defective decay of the form O ((1+t 2)e−2µmint ) persists for the uniform estimate of
|e−C (z)t |2 for t →+∞. In the subsequent examples we shall illustrate that both scenarios
are in fact possible.

Example 2.2.14. Let µ(z) :=µmin +αz2 with some α> 0, and hence z0 = 0. From Exam-

ple 2.2.11 with (2.2.25) (using ε= µ′(z)
µ(z) , t 7→ tµ(z)) we obtain the uniform decay estimate

|e−C (z)t |22 ≤ 2e−2µmint sup
z∈R

f1(z, t ), z ∈R, t ≥ 0, (2.2.29)

with
f1(z, t ) := (1+4α2z2t 2)e−2αz2t .

An elementary computation yields

sup
z∈R

f1(z, t ) =
{

1, αt ≤ 1
2 ,

2αte− 2αt−1
2αt , αt > 1

2 ,

with the asymptotic behavior supz∈R f1(z, t ) =O ( 2α
e t ) as t →+∞. Hence, estimate (2.2.29)

exhibits the typical defective decay behavior, and the term te−2µmint cannot be dropped
in the estimate. ♦

Example 2.2.15. Let µ(z) :=µ0 +αeβz with some α> 0 and β ∈R\ {0} with |β| < 2. Here,
z0 =−∞sgn(β). Then (2.2.25) yields the uniform decay estimate

|e−C (z)t |22 ≤ 2e−2µ0t sup
z∈R

f2(z, t ), z ∈R, t ≥ 0, (2.2.30)

with

f2(z, t ) := (1+α2β2e2βz t 2)e−2αeβz t .
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Since ∂t f2(z,0) =−2αeβz < 0 and ∂t f2(z, t ) 6= 0 for every z ∈R, t ≥ 0, we conclude

|e−C (z)t |22 ≤ 2e−2µ0t sup
z∈R

f2(z,0) = 2e−2µ0t , z ∈R, t ≥ 0.

Hence, this example shows a purely exponential decay behavior, which is rather typical
for the non-defective case. ♦

We remark that we could not find an example of a parameter function µ ∈C 1(R) with
a minimum at |z0| <∞ for which the algebraic factor vanishes in the uniform estimate.

In the following sections §2.3–§2.5 we investigate parabolic and kinetic evolution
equations in which equation coefficients depend on an uncertainty variable z ∈ R. Af-
ter a Fourier decomposition, the sensitivity analysis leads to families of defective ODE
systems of type similar to (2.2.28), for which we are interested in uniform-in-z decay
estimates of solutions with sharp rate. Sharpness is understood here in the sense that
in the class of C 1(R) parameter functions µ(z) satisfying µ0 := infz∈Rµ(z) > 0, the decay
estimate is of type O (1+ t m)e−2µ0t for large t , with minimal m ∈N0. As Example 2.2.14
illustrates, m > 0 is necessary to cover arbitrary C 1(R) parameter functions.

With the three examples of §3–§5 we shall illustrate the various challenges of this pro-
cedure to obtain estimates: uniformity in the Fourier modes and in the non-defective
limit(s).

2.3 Linear Convection-Diffusion Equations with
Uncertain Coefficients

First we consider the parabolic equation on the 1D torus

∂t u(x, z, t ) =−a(z)∂xu(x, z, t )+b(z)∂2
xu(x, z, t ), x ∈T1, t ≥ 0, (2.3.1)

u(x, z,0) = u0(x, z), (2.3.2)

for u(x, z, t ) ∈ R with the space variable x, convection coefficient a(z) ∈ R and diffusion
coefficient b(z) satisfying b0 := infz∈Rb(z) > 0. We are interested in the sensitivity of
solutions with respect to the uncertainty parameter z ∈R contained in the coefficients.
We assume that the coefficients satisfy a,b ∈ C 1(R). For each z ∈ R, the equation is
mass conserving (in time), i.e. 1

2π

∫ 2π
0 u(x, z, t )d x = const ., and the unique normalized

steady state is given as u∞(x, z) = 1. Correspondingly we shall also assume that the
initial condition is normalized as 1

2π

∫ 2π
0 u0(x, z)d x = 1 for all z ∈R.

A Fourier expansion of u with respect to x ∈ T1, allows to rewrite the PDE (for each
fixed z) as a family of ODEs. With the notation u(x, z) = ∑

k∈Zuk (z)e i kx , the equation
for each Fourier mode uk , k ∈Z reads

∂t uk (z) =−i ka(z)uk (z)−k2b(z)uk (z), (2.3.3)

with the explicit solutions uk (z, t ) = e−k2b(z)t−i ka(z)t uk (z,0). Due to the above normal-
ization we have for the k = 0 mode: u0(z, t ) = u∞

0 (z) = 1.
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2.3.1 First Order Parameter Sensitivity Analysis

Now we analyze the (linear order) sensitivity of the equation with respect to the uncer-
tainty in the coefficients a(z) and b(z). Therefore we consider the evolution equation
for v(x, z, t ) := ∂zu(x, z, t ), given as

∂t v(z) =−(∂z a(z))∂xu(z)+ (∂zb(z))∂2
xu(z)−a(z)∂x v(z)+b(z)∂2

x v(z). (2.3.4)

The Fourier modes vk (z, t ) := ∂zuk (z, t ) for k ∈Z satisfy

∂t vk (z) =−i k(∂z a(z))uk (z)−k2(∂zb(z))uk (z)− i ka(z)vk (z)−k2b(z)vk . (2.3.5)

For k ∈Z\ {0} the system of (2.3.3) and (2.3.5) reads

∂t

(
uk

vk

)
︸︷︷︸

yk (z,t ):=

=−k2

(
b(z)+ i a(z)

k 0

∂zb(z)+ i∂z a(z)
k b(z)+ i a(z)

k

)
︸ ︷︷ ︸

Ck (z):=

(
uk

vk

)
. (2.3.6)

Our goal is to obtain a decay estimate with sharp decay rate for solutions to (2.3.6),
uniform in z ∈R by applying Theorem 2.2.8.

Due to the normalization of the initial conditions u0, we have v0(z, t ) = 1
2π

∫ 2π
0 v(x, z, t )d x ≡

0, and in particular for the initial condition
∫ 2π

0 v0(x, z)d x = 0. Hence, its steady state
is v∞

0 (z) = 0; the (expected) decay of all higher modes vk ,k ∈ Z \ {0} implies v∞(x, z) ≡
0. With the notation y := (u, v)T , the unique (normalized) steady state of the system
(2.3.1), (2.3.4) is y∞(x, z) ≡ (1,0)T .

For each Fourier mode k ∈ Z \ {0}, the double eigenvalue of the matrix Ck (z) is given
as

λk (z) := b(z)+ i a(z)

k
.

Hence, the matrix is positive stable and the steady state is given as y∞
k = 0 ∈ C2. The

spectral gap of the evolution operator in (2.3.6) is given by µk (z) := k2b(z) > 0 and the
eigenvalue λk (z) of Ck (z) is defective, if and only if ∂zλk (z) 6= 0.

If we consider all Fourier modes, the spectral gap for the whole sequence {yk (z)}k∈Z\{0}

is given as

µ(z) := min
k∈Z\{0}

µk (z) =µ±1(z) = b(z),

and it is realized by the modes k =±1. The steady state is given by the sequence {y∞
k }k∈Z =

{(δ0k ,0)T }k∈Z, with δ0k denoting the Kronecker delta.
In what follows, we investigate the decay rate of solutions to the system of equations

(2.3.1) and (2.3.4) towards the steady state with a sharp rate, uniform in the uncertainty
variable z.
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The solution vector y(·, z, t ) ∈ L2(0,2π) is equivalent to {yk (z, t )}k∈Z by Parseval’s iden-
tity. As the ODE system for each Fourier mode k ∈ Z \ {0} can be defective for certain
values in z ∈ R, we expect a uniform-in-z decay rate that is not purely exponential. In
fact, for non-constant a and b, defectiveness is the more typical behavior of the matrix
Ck (z).

For each fixed k ∈ Z \ {0}, we proceed with a case distinction between the defective
and non-defective case.

Case 1; z ∈R, such that ∂zλk (z) = 0:

The matrix Ck (z) is diagonal and the solutions are given as yk (z, t ) = e−k2λk (z)t yk (z,0).
Hence, for each k and z, the decay of solutions to (2.3.6) is given as

|yk (z, t )|22 = e−2k2b(z)t |yk (z,0)|22. (2.3.7)

Case 2; z ∈R, such that ∂zλk (z) 6= 0:

In this case the eigenvalue λk (z) of Ck (z) is defective of order 1, i.e. M = 2, for k ∈Z\{0}.
Hence we shall apply Theorem 2.2.8 to get a sharp decay estimate for solutions to (2.3.6).

To denote the dependence on the Fourier mode k ∈ Z, we shall use the subscript k,
e.g., we use Pk (z,0) for the matrix P (z,0), defined in (2.2.13), that corresponds to Ck (z).
Similarly, we denote Pk (z,0)’s weights βm

n in (2.2.13) by βm
n,k .

For k ∈Z\ {0}, the matrix Ck (z) is positive stable and the eigenvector and generalized
eigenvector of C H

k (z), corresponding to λk (z), are given as

v (0)
1,k = (

1, 0
)T

, v (1)
1,k (z) =

(
0, 1

∂zλk (z)

)T
.

In analogy to Example 2.2.11 we choose β1
1,k = 1 and β2

1,k (z) = |∂zλk (z)|2, leading to

Pk (z,0) = v (0)
1,k ⊗ v (0)

1,k +|∂zλk (z)|2v (1)
1,k ⊗ v (1)

1,k = I .

An appropriate choice of βm
1,k is essential here, in order to make the matrix Pk (z,0) (and

hence the constant Ck (z) below) uniformly bounded for ∂zλk (z) → 0, i.e. for the non-
defective limit.

Now we can apply Theorem 2.2.8 (for the rescaled time τk = k2t ) to get the following
decay estimate for solutions to the system (2.3.6) for each k ∈Z\ {0} and z ∈R:

|yk (z, t )|22 ≤Ck (z)(1+k4t 2)e−2k2b(z)t |yk (z,0)|22, (2.3.8)

with the constant Ck (z) ≥ 0 defined in (2.2.22), given as

Ck (z) = 12 ·
(
1+ |∂zλk (z)|2

min{1, |∂zλk (z)|2}

)
= 12 ·max{2,1+|∂zλk (z)|2}. (2.3.9)

Combining Case 1 and Case 2, we infer a decay estimate for the first order parameter
sensitivity equations by applying Parseval’s identity:
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2.3 Linear Convection-Diffusion Equations with Uncertain Coefficients

Theorem 2.3.1. Let a,b ∈C 1(R) where b0 := infz∈Rb(z) > 0 and ∂z a,∂zb ∈ L∞(R). Then,
there exists a constant C > 0, such that normalized solutions y(x, z, t ) = (u(x, z, t ), v(x, z, t ))T

of the system (2.3.1), (2.3.4) with steady state y∞ := (1,0)T satisfy

sup
z∈R

‖y(·, z, t )− y∞‖2
L2(0,2π;R2) ≤C (1+ t 2)e−2b0t sup

z∈R
‖y(·, z,0)− y∞‖2

L2(0,2π;R2)

for t ≥ 0.

Proof. Combining both estimates (2.3.7) and (2.3.8) leads to

|yk (z, t )|22 ≤ C̃ (1+k4t 2)e−2k2b(z)t |yk (z,0)|22, k ∈Z\ {0}, (2.3.10)

with the constant

C̃ = sup
k 6=0,z∈R

Ck (z) ≤ 12max{2,1+‖∂z a‖2
∞+‖∂zb‖2

∞}

independent of z ∈R and k ∈Z\ {0}. With Parseval’s identity we obtain

‖y(·, z, t )− y∞‖2
L2(0,2π;R2) =

1

2π

∑
k∈Z

|yk (z, t )− y∞
k |22

≤ 1

2π

∑
k∈Z\{0}

C̃ (1+k4t 2)e−2k2b(z)t |yk (z,0)|22

≤C (1+ t 2)e−2b0t‖y(·, z,0)− y∞‖2
L2(0,2π;R2),

where we used the estimate

(1+k4t 2)e−2k2b0t ≤ c(1+ t 2)e−2b0t , t ≥ 0,k 6= 0,

with c := maxt≥0(1+t 2)e−2b0t . Taking the supremum over z ∈R completes the proof.

2.3.2 Second Order Parameter Sensitivity Analysis

Next we shall extend the above analysis to second order. This will also illustrate the
challenges involved in obtaining uniform decay estimates in defective limits.

We assume a,b ∈C 2(R) and denote w(x, z, t ) := ∂2
zu(x, z, t ). By differentiation of (2.3.4)

with respect to z, the second order sensitivity equation is given as

∂t w(z) =−(∂2
z a(z))∂xu(z)+ (∂2

zb(z))∂2
xu(z)

−2(∂z a(z))∂x v(z)+2(∂zb(z))∂2
x v(z)

−a(z)∂x w(z)+b(z)∂2
x w(z).

(2.3.11)

65



2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

The system for the Fourier mode k ∈ Z \ {0} of (u, v, w)T , with wk (z, t ) := ∂z vk (z, t ), is
given as

∂t

uk

vk

wk


︸ ︷︷ ︸

yk (z,t ):=

=−k2

 λk (z) 0 0
∂zλk (z) λk (z) 0
∂2

zλk (z) 2∂zλk (z) λk (z)


︸ ︷︷ ︸

Dk (z):=

uk

vk

wk

 . (2.3.12)

As before, w0(z, t ) ≡ 0, and in particular for the initial condition
∫ 2π

0 w 0(x, v)d x = 0.
Hence the unique (normalized) steady state of the second order sensitivity system is
y∞(x, z) := (u∞(x, z), v∞(x, z), w∞(x, z))T ≡ (1,0,0)T .

The triple eigenvalue is λk (z), with Re(λk (z)) > 0 and its defectiveness for k ∈ Z \ {0}
depends on the values of ∂zλ(z) and ∂2

zλ(z), i.e.

rank(Dk (z)−λk (z)) =


0, if ∂zλk (z) = ∂2

zλk (z) = 0,

1, if ∂zλk (z) = 0&∂2
zλk (z) 6= 0,

2, if ∂zλk (z) 6= 0.

As in the first order analysis, we need to discuss the decay behavior of these three
cases separately:

Case 1; z ∈R such that ∂zλ(z) = ∂2
zλ(z) = 0:

In this case, the eigenvalueλk (z) is non-defective and the solutions are given as yk (z, t ) =
e−k2λk (z)t yk (z,0) from which we obtain the decay

|yk (z, t )|22 = e−2k2b(z)t |yk (z,0)|22. (2.3.13)

Case 2; z ∈R, such that ∂zλ(z) = 0 and ∂2
zλ(z) 6= 0:

In this case the eigenvalue λk (z) is defective of order one, i.e. M = 2. To obtain a sharp
decay estimate of solutions, we construct Pk (z,0) according to (2.2.13): N = 2, l1 = 2,
l2 = 1, M = 2 and choosing β1

1,k = 1, β2
1,k = |∂2

zλk (z)|2 and β1
2,k = 1. The (generalized)

eigenvectors of D H
k (z) are given as

v (0)
1,k = (

1, 0, 0
)T

, v (1)
1,k (z) =

(
0, 0, 1

∂2
zλk (z)

)T
, v (0)

2,k = (
0, 1, 0

)T
.

This leads to

Pk (z,0) = v (0)
1,k ⊗ v (0)

1,k +|∂2
zλk (z)|2v (1)

1,k (z)⊗ v (1)
1,k (z)+ v (0)

2,k ⊗ v (0)
2,k = I .

We can now apply Theorem 2.2.8 (for the rescaled time τk = k2t ) and get the decay
estimate

|yk (z, t )|22 ≤Ck (z)(1+k4t 2)e−2k2b(z)t |yk (z,0)|22 (2.3.14)
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with the constant Ck (z), defined in (2.2.22), given as

Ck (z) = 12 ·max{2,1+|∂2
zλk (z)|2}.

Note that this constant Ck (z) is uniformly bounded in the non-defective limit ∂2
zλk (z) →

0 (from defect 1 to non-defective), but it does not reduce to (2.3.13), hence it is not
uniformly sharp.

Case 3; z ∈R, such that ∂zλk (z) 6= 0:

The eigenvalue λk (z) is defective of order two with N = 1, l1 = 3 and M = 3. The (gener-
alized) eigenvectors of D H

k (z) are given as

v (0)
1,k (z) = (

1, 0, 0
)T

, v (1)
1,k (z) =

(
0, 1

∂zλk (z)
, 0

)T
,

v (2)
1,k (z) =

(
0,

−∂2
zλk (z)

2(∂zλk (z))3
, 1

2(∂zλk (z))2

)T
.

For this case the previous strategy of finding weights for P (t ) (as defined in (2.2.13))
that give a uniform in z decay estimate for solutions via Theorem 2.2.8 does not work

directly. All choices of weights β j
1,k (z) for j ∈ {1,2,3} lead to constants Ck (z) (defined

in (2.2.22)) that are not bounded uniformly in z. The problem arises for the defec-
tive limit from defect 2 to defect 1, more precisely, for sequences (zn)n∈N ⊂ R such that

0 6= ∂zλk (zn) → 0 in combination with
∂2

zλk (zn )
∂zλk (zn ) 6→ 0 as n → ∞. All weight choices of

β
j
1,k (zn) lead to (λPk (zn ,0)

min )−1λ
Pk (zn ,0)
max →∞ due to the three different powers of ∂zλk (zn)

that appear in the (generalized) eigenvectors of D H
k (zn).

However, this problem can be fixed with small adjustments to the proof of Theorem 2.2.8,
which yield a uniform in z decay estimate.

Define

w̃ 3
k (z, t ) := w 3

1,k (z, t )+ ∂2
zλk (z)

2(∂zλk (z))2
w 2

1,k (z, t ),

which is our replacement for w 3
k (z, t ), with w j

1,k (z, t ) for j ∈ {2,3} from (2.2.7). It satisfies

w̃ 3
k (z,0) =

(
0, 0, 1

2(∂zλk (z))2

)T
,

which eliminates the problematic factor 2(∂zλk (z))3 present in w 3
k (z,0). The corre-

sponding semi-norm matrix is

P̃ 3
k (z, t ) := w̃ 3

k (z, t )⊗ w̃ 3
k (z, t ).
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Similar to definition (2.2.13), let

P̃k (z, t ) := P 1
1,k (z, t )+|∂zλk (z)|2P 2

1,k (z, t )+4|∂zλk (z)|4P̃ 3
k (z, t ), (2.3.15)

which is positive definite for all k 6= 0, z ∈R, t ≥ 0 and satisfies P̃k (z,0) = I .
As definition (2.2.13) is modified, we cannot directly use Theorem 2.2.8 to get a decay

estimate in the Euclidean norm. The idea of the proof of Theorem 2.2.8 is to estimate
each P m

n -semi-norm decay separately, see (2.A.3). Combining them yields a decay esti-
mate in the P-norm. We will now follow the idea of the proof of Theorem 2.2.8 but have
to carefully modify each step to work for P̃k .

First, one can easily verify that for m = 1,2 the estimate (2.A.3) remains true, if we
replace Pk (z,0) by P̃k (z,0) = I :

|yk (z, t )|2
P 1

1,k (z,0)
≤ e−2k2b(z)t |yk (z,0)|22, t ≥ 0,k 6= 0, (2.3.16)

and (using c2 = 6)

|yk (z, t )|2
P 2

1,k (z,0)
≤ 6

min{1, |∂zλk (z)|2}
(1+k4t 2)e−2k2b(z)t |yk (z,0)|22, (2.3.17)

for t ≥ 0, k 6= 0.
Next we shall derive a similar estimate for the semi-norm | · |P̃ 3

k (z,0).

Lemma 2.3.2. Let yk (z, t ) be a solution of the ODE (2.3.12) and z ∈R, such that ∂zλk (z) 6=
0. Then,

|yk (z, t )|2
P̃ 3

k (z,0)
≤ 146.25

1+|∂2
zλk (z)|2

min{1, |∂zλk (z)|4}
(1+k8t 4)e−2k2b(z)t |y(z,0)|22 (2.3.18)

for t ≥ 0, k ∈Z\ {0}.

The technical proof is deferred to Appendix 2.A.
Finally, we can estimate solutions to (2.3.12) in Euclidean norm with the help of (2.3.15):

|yk (z, t )|22 = |yk (z, t )|2
P̃k (z,0)

= |yk (z, t )|2
P 1

1,k (z,0)
+|∂zλk (z)|2|yk (z, t )|2

P 2
1,k (z,0)

+4|∂zλk (z)|4|yk (z, t )|2
P̃ 3

k (z,0)
.

Using (2.3.16) for P 1
1,k (z,0) and (2.3.17) for P 2

1,k (z,0) allows to estimate the first two

terms. For the third term including P̃ 3
k (z,0), we use (2.3.18) to get

|yk (z, t )|22 ≤
[

1+6max{1, |∂zλk (z)|2}(1+k4t 2)

+4max{1, |∂zλk (z)|4}(1+|∂2
zλk (z)|2)146.25(1+k8t 4)

]
e−2k2b(z)t |yk (z,0)|22

≤
[

1+ (
12+585(1+|∂2

zλk (z)|2)
)

max{1, |∂zλk (z)|4}
]

×(1+k8t 4)e−2k2b(z)t |yk (z,0)|22
(2.3.19)
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for t ≥ 0, k ∈ Z \ {0}. Most notably, as ∂z a,∂zb,∂2
z a,∂2

zb ∈ L∞(R), the multiplicative con-
stant

C̃k (z) := 1+ (
12+585(1+|∂2

zλk (z)|2)
)

max{1, |∂zλk (z)|4}

is uniformly bounded in z ∈R. This includes the problematic limit ∂zλk (z) → 0 in com-
bination with ∂2

zλk (z) 6= 0 (defect 2 to defect 1), which is our desired result for Case 3.

Combining Cases 1–3 for z ∈R leads to:

Theorem 2.3.3. Let a,b ∈ C 2(R) where b0 := infz∈Rb(z) > 0 and
b,∂z a,∂zb,∂2

z a,∂2
zb ∈ L∞(R). Then, there exists a constant C > 0, such that normalized

solutions y(x, z, t ) = (u, v, w)T to the system of equations (2.3.1), (2.3.4) and (2.3.11) with
steady state y∞ := (1,0,0)T satisfy

sup
z∈R

‖y(·, z, t )− y∞‖2
L2(0,2π;R3) ≤C (1+ t 4)e−2b0t sup

z∈R
‖y(·, z,0)− y∞‖2

L2(0,2π;R3)

for t ≥ 0.

Proof. Analogous to the first order sensitivity equations, combining the three above
cases of defects of Dk (z), leads to a decay estimate uniform in z ∈ R. Due to the es-
timates (2.3.13), (2.3.14) and (2.3.19), there exists an C̃ > 0 independent of z ∈ R and
k ∈Z\ {0} such that

|yk (z, t )|22 ≤ C̃ (1+k8t 4)e−k2b(z)t |yk (z,0)|22, t ≥ 0.

With Parseval’s identity (in analogy to the proof of Theorem 2.3.1) the desired result
follows.

2.3.3 Decay Estimates with Duhamel’s Formula

Another method to get decay estimates with sharp rate for sensitivity equations is to use
Duhamel’s formula instead of the above presented Lyapunov functional method.

In the case of the Fourier transformed linear heat-convection equation (2.3.3), the
solution uk (z, t ) is given explicitly as uk (z, t ) = e−k2λk (z)t uk (z,0). We can interpret the
Fourier transformed first order sensitivity equation (2.3.5) as an inhomogeneous equa-
tion of form

∂t vk (z, t )+k2λk (z)vk (z, t ) = gk (z, t )

with gk (z, t ) :=−k2(∂zλk (z))uk (z, t ). By Duhamel’s formula we get

vk (z, t ) = e−k2λk (z)t vk (z,0)−k2(∂zλk (z))
∫ t

0
e−k2λk (z)(t−s)e−k2λk (z)suk (z,0)d s

= e−k2λk (z)t vk (z,0)−k2(∂zλk (z))te−k2λk (z)t uk (z,0).
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

By using the solution propagator norm (2.2.26) with εt = k2t , this yields the decay esti-
mate for each Fourier-mode yk (z, t ) = (uk , vk )T , k ∈Z\ {0}:

|yk (z, t )|22 ≤
4

3
(1+k4t 2)e−2k2b(z)t |yk (z,0)|22, t ≥ 0.

By iteration, Duhamel’s formula gives a decay estimate for sensitivity equations of ar-
bitrary order. A similar method of iteratively deducing decay estimates was used e.g. in
[15] (see Theorems 4.1 and 4.2) and [21] (see Theorems 2.1 and 4.4).

2.4 Goldstein–Taylor Model with Uncertain
Coefficients

Our starting point is the linear one-dimensional BGK-model for the probability density
f (x, v, t ) ≥ 0. This kinetic equation reads

∂t f + v∂x f = MT (v)
∫
R

f (x, v, t )d v − f (x, v, t ), (2.4.1)

for x ∈ T1, velocities v ∈ R, and the Maxwell distribution MT (v) = (2πT )−
1
2 e− |v |2

2T , with
given temperature T . Exponential decay towards the equilibrium for this v-continuous
model was proved in §4.3 of [1]. We reduce the model drastically and allow only for two
discrete velocities v± = ±1, denoting f±(x, t ) := f (x,±1, t ). This leads to the system of
equations

∂t f+(x, t ) =−∂x f+(x, t )+σ( f−(x, t )− f+(x, t )),

∂t f−(x, t ) = ∂x f−(x, t )−σ( f−(x, t )− f+(x, t )),

called Goldstein–Taylor model with the relaxation coefficient σ > 0. These equations
serve as a toy model that still exhibits many features of (2.4.1). For σ = 1

2 , an explicit
exponential decay rate of the two velocity model by means of Lyapunov functionals was
shown in §1.4 of [11]. The sharp decay estimate was found in [1], §4.1 with a refined
functional. We are interested here in augmenting the large-time analysis with a sensi-
tivity analysis.

2.4.1 First Order Parameter Sensitivity Analysis

Similarly to §2.3 we allow the relaxation coefficient to contain uncertainty and denote
it by σ(z). Throughout §2.4, assume σ ∈ C 1(R), ∂zσ ∈ L∞(R), σ0 := infz∈Rσ(z) > 0, and
σ1 := supz∈Rσ(z) < 2. This leads to the following equations for x ∈ T1, the parameter
z ∈R and t ≥ 0:

∂t f+(x, z, t ) =−∂x f+(x, z, t )+ σ(z)

2
( f−(x, z, t )− f+(x, z, t )),

∂t f−(x, z, t ) = ∂x f−(x, z, t )− σ(z)

2
( f−(x, z, t )− f+(x, z, t )),

(2.4.2)
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with initial condition

f±(x, z,0) = f 0
±(x, z).

For each z ∈R assume f 0
±(·, z, t ) ∈ L1+(T1).

The model is conserving total mass (in time), i.e.
∫ 2π

0 [ f+(x, z, t )
+ f−(x, z, t )]d x = const. for all z ∈ R. The unique normalized steady state for the system
is given as f ∞+ (z) = f ∞− (z) = 1

2 . Correspondingly, we shall also assume that the initial

total mass is normalized, as 1
2π

∫ 2π
0 [ f 0+(x, z)+ f 0−(x, z)]d x = 1.

To analyze the (linear order) sensitivity of the equation with respect to the relax-
ation function σ(z), we investigate the corresponding family of sensitivity equations
for g±(x, z, t ) := ∂z f±(x, z, t ) ∈R. For each z ∈R, they are given as

∂t g+(x, z, t ) =−∂x g+(x, z, t )+ σ(z)

2
(g−(x, z, t )− g+(x, z, t ))

+ ∂zσ(z)

2
( f−(x, z, t )− f+(x, z, t )),

∂t g−(x, z, t ) = ∂x g−(x, z, t )− σ(z)

2
(g−(x, z, t )− g+(x, z, t ))

− ∂zσ(z)

2
( f−(x, z, t )− f+(x, z, t )).

(2.4.3)

For each z ∈R, this system (2.4.3) is also conserving total mass (in time), i.e.
∫ 2π

0 [g+(x, z, t )+
g−(x, z, t )]d x = const . Due to the normalization of f 0

±(x, z), we have 1
2π

∫ 2π
0 [g 0+(x, z)+

g 0−(x, z)]d x = 0 with the corresponding steady state given as g∞+ (x, z) = g∞− (x, z) = ∂z f ∞
± (x, z) =

0.
To analyze the decay behavior of solutions of the above system (2.4.2)–(2.4.3), we con-

sider the Fourier series f±(x, z, t ) =∑
k∈Z f±,k (z, t )e i kx . It is convenient to introduce the

following linear combinations of the Fourier modes f±,k , k ∈Z:

uk (z, t ) :=
(

f+,k (z, t )+ f−,k (z, t )
f+,k (z, t )− f−,k (z, t )

)
.

For each k ∈Z they satisfy the decoupled ODE system

∂t uk (z, t ) =−
(

0 i k
i k σ(z)

)
︸ ︷︷ ︸
Ak (z):=

uk (z, t ). (2.4.4)

For k ∈Z, the matrix Ak (z) has the eigenvalues

λ±,k (z) := σ(z)

2
± i

√
k2 − σ2(z)

4
.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Note that the discriminant is always positive for k 6= 0, due to our assumption 0 <σ(z) <
2.

The eigenvectors are given by

v̂±,k (z) :=
(

iλ∓(z)
k , 1

)T
, k ∈Z\ {0}, and v̂+,0 :=

(
1
0

)
, v̂−,0 :=

(
0
1

)
.

Similarly to (2.4.4), the Fourier modes

wk (z, t ) :=
(

g+,k (z, t )+ g−,k (z, t )
g+,k (z, t )− g−,k (z, t )

)
,

with g±,k = ∂z f±,k , satisfy the ODE systems

∂t wk (z, t ) =−
(

0 i k
i k σ(z)

)
wk (z, t )−

(
0 0
0 ∂zσ(z)

)
uk (z, t ), k ∈Z.

Combining the two ODE systems for uk and wk leads to the following 4× 4-systems
describing the first order sensitivity equations for the model (2.4.2) in Fourier space:

∂t

(
uk (z, t )
wk (z, t )

)
︸ ︷︷ ︸

yk (z,t ):=

=−


0 i k 0 0
i k σ(z) 0 0
0 0 0 i k
0 ∂zσ(z) i k σ(z)


︸ ︷︷ ︸

Dk (z):=

(
uk (z, t )
wk (z, t )

)
, k ∈Z. (2.4.5)

Due to the block triangular form of the matrix Dk (z), the eigenvalues of Dk (z) are not
affected by ∂zσ(z):

λ±,k (z) := σ(z)

2
± i

√
k2 − σ2(z)

4
, k ∈Z,

where both eigenvalues have algebraic multiplicity two.
For k ∈ Z the matrix Dk (z) is defective, if and only if ∂zσ(z) 6= 0: For k = 0 only

the eigenvalue λ+,0(z) = σ(z) is defective of order one, and for k 6= 0 both eigenvalues
λ±,k (z) are defective of order one.

2.4.2 Sharp Decay Estimates for the Parameter Sensitivity
Equations

The reasons for the assumptions from §2.4.1 imposed on σ(z) will become evident in
the following analysis: The lower bound σ0 > 0 is needed in order to get a uniform in
z ∈ R decay rate. The assumptions σ1 < 2 and ‖∂zσ‖∞ <∞ are necessary for the multi-
plicative constant in the decay estimate (obtained by Theorem 2.2.8) to be bounded for
all z ∈R.
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2.4 Goldstein–Taylor Model with Uncertain Coefficients

The decay rate of each mode k ∈ Z is determined by the size of the spectral gap of
Dk (z), which we denote by µk (z) > 0, and its defectiveness. For D0(z) the eigenvalues
are λ+,0(z) =σ(z) and λ−,0(z) = 0. Hence, the spectral gap for the zeroth mode is µ0(z) =
σ(z). The zeroth mode of the steady state in our transformed setting is given as y∞

0 =
( f ∞

+,0+ f ∞
−,0, f ∞

+,0− f ∞
−,0, g∞

+,0+g∞
−,0, g∞

+,0−g∞
−,0)T = (1,0,0,0)T . This implies that any solution

to (2.4.5) for k = 0, z ∈R fulfills the decay estimate∣∣y0(z, t )− y∞
0

∣∣2
2 ≤C0(z)(1+ t 2)e−2σ(z)t

∣∣y0(z,0)− y∞
0

∣∣2
2 , t ≥ 0, (2.4.6)

with the constant

C0(z) = 12 ·max{2,1+|∂zσ(z)|2} ≤ 12 ·max{2,1+‖∂zσ‖2
∞}

that can be computed in analogy to Case 2 in §2.3.1. Note that Theorem 2.2.8 can only
be applied here to the two-dimensional subspace of C4 that pertains to λ+,0(z) = σ(z).
In the orthogonal subspace corresponding to λ−,0 = 0, we have y−,0(z, t ) = y−,0(z,0) =
y∞
−,0 = (1,∗,0,∗)T , where ‘∗’ denotes the elements of y+,0.
For the modes k ∈ Z \ {0} the matrix Dk (z) is positive stable and the spectral gap is

independent of k (in contrast to the examples in §2.3 and §2.5):

µk (z) := min{Re(λ+,k (z)),Re(λ−,k (z))} = σ(z)

2
.

Moreover, the steady state is given as y∞
k = 0 ∈C4.

In the next step, we apply Theorem 2.2.8 to the system (2.4.5) to get a sharp decay
estimate for each Fourier mode k ∈Z\ {0} of type

|yk (z, t )− y∞
k |22 ≤Ck (z)2(1+ t 2)e−σ(z)t |yk (z,0)− y∞

k |22.

A summation over the estimates for all Fourier modes will allow us to apply Parseval’s
identity on the left-hand side. In order to apply it also on the right-hand side one re-
quires a uniform in k and z bound of the multiplicative decay constant Ck (z). We shall
derive this bound now.

For each k ∈Z \ {0}, the matrix Pk (z,0) of Theorem 2.2.8 has to be chosen depending
on the defectiveness of the matrix Dk (z), which is determined by the value of ∂zσ(z).

Case 1; z ∈R such that ∂zσ(z) = 0:

The matrix Dk (z) is non-defective, and we construct the matrix Pk (z,0) according to
(2.2.13): N = 4, with ln = 1 for n ∈ {1, . . . ,4}, M = 1, i.e. each n is in Case 1 of §2.2.
Choosing βn,k = 1 leads to

Pk (z,0) := v (0)
1,+,k ⊗ v (0)

1,+,k + v (0)
1,−,k ⊗ v (0)

1,−,k + v (0)
2,+,k ⊗ v (0)

2,+,k + v (0)
2,−,k ⊗ v (0)

2,−,k ,
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

and the eigenvectors of D H
k (z) corresponding to λ∓,k (z) = λ±,k (z) (i.e. satisfying the

equation D H
k v (0)

i ,±,k =λ±,k v (0)
i ,±,k for i = 1,2) are given as

v (0)
1,±,k (z) =

(
− iλ∓,k (z)

k , 1, 0, 0
)T

, v (0)
2,±,k (z) =

(
0, 0, − iλ∓,k (z)

k , 1
)T

.

For each fixed value σ ∈ [σ0,σ1], we have

lim
k→+∞

ṽ (0)
1,±,k (σ) =


∓1
1
0
0

 , lim
k→+∞

ṽ (0)
2,±,k (σ) =


0
0
∓1
1

 ,

as well as

lim
k→−∞

ṽ (0)
1,±,k (σ) =


±1
1
0
0

 , lim
k→−∞

ṽ (0)
2,±,k (σ) =


0
0
±1
1

 ,

where we used the notations ṽ (0)
i ,±,k (σ(z)) = v (0)

i ,±,k (z) for i = 1,2. Denoting P̃k (σ(z),0) =
Pk (z,0), it follows that

lim
|k|→∞

max
σ∈[σ0,σ1]

|P̃k (σ,0)−2I |2 = 0. (2.4.7)

For each σ ∈ [σ0,σ1] and k 6= 0, the four vectors ṽ1,±,k (σ) and ṽ2,±,k (σ) are linearly in-
dependent and hence, the matrix P̃k (σ,0) is positive definite. As all entries of P̃k (σ,0)
are continuous in σ ∈ [σ0,σ1] and the eigenvalues are continuous with respect to the
matrix entries, we get

inf
z∈R

λ
Pk (z,0)
min ≥ min

σ∈[σ0,σ1]
λ

P̃k (σ,0)
min =:λk,min > 0.

Similarly, we get

sup
z∈R

λ
Pk (z,0)
max ≤ max

σ∈[σ0,σ1]
λ

P̃k (σ,0)
max =:λk,max <∞.

Because of (2.4.7) we have λk,max,λk,min → 2 for |k|→∞, and therefore

λmin := min
k∈Z\{0}

λk,min > 0, λmax := max
k∈Z\{0}

λk,max <∞.

We summarize Case 1: For all z ∈ R such that Dk (z) is non-defective, Theorem 2.2.8
yields the decay estimate∣∣yk (z, t )− y∞

k

∣∣2
2 ≤ 2Ck (z)e−σ(z)t |yk (z,0)− y∞

k |22, (2.4.8)

with a uniform bound for the constants Ck (z) (defined in (2.2.22)), i.e.

0 <Ck (z) = (λPk (z,0)
min )−1λ

Pk (z,0)
max ≤ (λmin)−1λmax =: C <∞,

for z ∈R and k 6= 0.
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2.4 Goldstein–Taylor Model with Uncertain Coefficients

Case 2; z ∈R such that ∂zσ(z) 6= 0:

The two eigenvalues λ±,k (z) of Dk (z) are both defective. The eigenvectors and gen-
eralized eigenvectors of D H

k (z) corresponding to λ∓,k (z) = λ±,k (z) (i.e. the generalized

eigenvectors satisfy D H
k v (1)

±,k =λ±,k v (1)
±,k + v (0)

±,k ) are given as

v (0)
±,k (z) =

(
− iλ∓,k (z)

k , 1, 0, 0
)T

,

v (1)
±,k (z) =

(
iλ2

∓,k (z)

2k3 ,
λ∓,k (z)

2k2 ,
−iλ∓,k (z)
σz (z)k (1− λ2

∓,k (z)

k2 ), 1
σz (z) (1− λ2

∓,k (z)

k2 )
)T

.

Now we construct the matrix Pk (z,0) according to (2.2.13): N = 2, with l+ = l− = M = 2,

i.e. both n ∈ {+,−} are in Case 3 of §2.2. Choosing β1
±,k = 1 and β2

±,k = (σz (z))2

4 , leads to

Pk (z,0) := v (0)
+,k ⊗ v (0)

+,k +
(σz(z))2

4
v (1)
+,k ⊗ v (1)

+,k

+ v (0)
−,k ⊗ v (0)

−,k +
(σz(z))2

4
v (1)
−,k ⊗ v (1)

−,k .

As mentioned in §2.3 the specific choice of weights βm
± is crucial in order to get a uni-

formly bounded constant Ck (z) in the non-defective limit ∂zσ(z) → 0.
Abbreviating L := ‖∂zσ‖∞, for each value (σ,σz) ∈ [σ0,σ1]× [−L,L] (with notation in

analogy to Case 1), we have

lim
k→+∞

ṽ (0)
±,k (σ,σz) =


∓1
1
0
0

 , lim
k→+∞

σz

2
ṽ (1)
±,k (σ,σz) =


0
0
∓1
1

 ,

and

lim
k→−∞

ṽ (0)
±,k (σ,σz) =


±1
1
0
0

 , lim
k→−∞

σz

2
ṽ (1)
±,k (σ,σz) =


0
0
±1
1

 .

It follows that

lim
|k|→∞

max
(σ,σz )∈[σ0,σ1]×[−L,L]

|P̃k (σ,σz ,0)−2I |2 = 0. (2.4.9)

For each (σ,σz) ∈ [σ0,σ1] × [−L,L], the four vectors ṽ (0)
±,k (σ,σz) and σz ṽ (1)

±,k (σ,σz) are
linearly independent. This can be checked by considering the last two components of
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

σz ṽ (1)
±,k (σ,σz): They have the same form as the last two components of ṽ (0)

2,±,k (σ,σz) from
Case 1 above, up to a multiplicative factor that is non-zero for all k 6= 0 due to σ1 < 2.

Hence, the matrix P̃k (σ,σz ,0) is positive definite on [σ0,σ1]× [−L,L]. Due to the spe-

cific choice of β2
±,k = (σz (z))2

4 all entries of P̃k (σ,σz ,0) are continuous with respect to
(σ,σz). With the same argument as in Case 1, we get

inf
z∈R

λ
Pk (z,0)
min ≥ min

(σ,σz )∈[σ0,σ1]×[−L,L]
λ

P̃k (σ,σz ,0)
min =:λk,min > 0,

and

sup
z∈R

λ
Pk (z,0)
max ≤ max

(σ,σz )∈[σ0,σ1]×[−L,L]
λ

P̃k (σ,σz ,0)
max :=λk,max <∞.

The limit (2.4.9) implies

λmin := min
k∈Z\{0}

λk,min > 0, λmax := max
k∈Z\{0}

λk,max <∞.

We summarize Case 2: For all z ∈ R such that Dk (z) is defective, Theorem 2.2.8 yields
the decay estimate∣∣yk (z, t )− y∞

k

∣∣2
2 ≤Ck (z)(1+ t 2)e−σ(z)t |yk (z,0)− y∞

k |22. (2.4.10)

Here, the constants Ck (z) from (2.2.22), using c2 = 6, are uniformly bounded since ∂zσ ∈
L∞(R):

0 <Ck (z) = 12 · (λPk (z,0)
min )−1λ

Pk (z,0)
max

(
1+

(σz (z))2

4

min
{

1, (σz (z))2

4

})

≤ 12 · (λmin)−1λmax max{2,1+ ‖∂zσ‖2∞
4

} =: C <∞

for all z ∈R and k 6= 0.

Now, we have all the necessary ingredients to estimate the decay of solutions to the
system (2.4.2)–(2.4.3). Denote

Φ := (
f+, f−, g+, g−

)T
, Φ∞ := (1

2 , 1
2 , 0 0

)T
,

y := (
f++ f−, f+− f−, g++ g−, g+− g−

)T
, y∞ := (

1, 0, 0, 0
)T

.

Theorem 2.4.1. Let σ ∈ C 1(R) where σ0 := infz∈Rσ(z) > 0, σ1 := supz∈Rσ(z) < 2 and
∂zσ ∈ L∞(R). Then, there exists a constant C > 0, such that normalized solutionsΦ(x, z, t )
of the system (2.4.2)–(2.4.3) satisfy

sup
z∈R

‖Φ(·, z, t )−Φ∞‖2
L2(0,2π;R4) ≤C (1+ t 2)e−σ0t sup

z∈R
‖Φ(·, z,0)−Φ∞‖2

L2(0,2π;R4)

for t ≥ 0.
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Proof. Applying Parseval’s identity and the decay estimates (2.4.6), (2.4.8) and (2.4.10),
where the constants Ck (z) are uniformly bounded in z ∈R, k ∈Z, one obtains

‖Φ(·, z, t )−Φ∞‖2
L2(0,2π;R4) =

1

2
‖y(·, z, t )− y∞‖2

L2(0,2π;R4)

= 1

4π

∑
k∈Z

|yk (z, t )− y∞
k |22

≤ 1

4π

∑
k∈Z

2Ck (z)(1+ t 2)e−σ(z)t |yk (z,0)− y∞
k |22

≤C (1+ t 2)e−σ0t‖Φ(·, z,0)−Φ∞‖2
L2(0,2π;R4)

for all t ≥ 0.

2.5 Fokker–Planck Equations with Uncertain
Coefficients

In this section we consider the Fokker–Planck equation (FPE) with the spatial variable
x ∈R,

∂t f (x, z, t ) = ∂x[∂x f (x, z, t )+a(z)x f (x, z, t )] =: L(z) f (x, z, t ), t ≥ 0, (2.5.1)

with initial condition

f (x, z,0) = f 0(x, z).

The drift parameter a(z) depends only on the uncertainty parameter z ∈ R and we as-
sume a ∈C 1(R) with a0 := infz∈R a(z) > 0. As in §2.3–§2.4, we want to analyze the sensi-
tivity of the decay for solutions to the steady state w.r.t. z ∈ R. Contrary to the previous
examples, the steady state here also depends on z.

For each z ∈R the unique normalized steady state of the equation, i.e. L(z) f ∞(x, z) =
0 with

∫
R f ∞(x, z)d x = 1, is given as

f ∞(x, z) =
√

a(z)

2π
e− x2

2 a(z).

Denoting g (x, z, t ) := ∂z f (x, z, t ), the first order linear sensitivity equation is given as

∂t g (x, z, t ) = L(z)g (x, z, t )+az(z)[x∂x f (x, z, t )+ f (x, z, t )], x ∈R, t ≥ 0, (2.5.2)

for each fixed z ∈ R. The corresponding steady state is given as g∞(x, z) := ∂z f ∞(x, z)
which satisfies

∫
R g∞(x, z)d x = 0.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

A direct approach to estimate the decay of g via Duhamel’s formula (cf. §2.3.3) is not
(easily) feasible: While a decay estimates with sharp rate for f (x, z, t ) is available, the de-
cay behavior of the term x∂x f (x, z, t ) is not immediate. In [17], the Duhamel approach
was taken to obtain decay estimates for nonlinear Vlasov–Fokker–Planck equations, but
those estimates were not sharp.

We choose to expand f (x, z, t ) and g (x, z, t ) into eigenfunctions of L(z). This allows
us to use a recursive relation of the eigenfunctions hk (x, z) and x∂xhk (x, z) for k ∈N0.

2.5.1 Eigenfunctions of the FP-Operator L(z)

The normalized eigenfunctions of L(z) on the weighted space L2(( f ∞)−1) (with the in-
ner product 〈 f , g 〉L2(( f ∞)−1) =

∫
R f g ( f ∞)−1d x) are rescaled Hermite functions. The prob-

abilists’ Hermite polynomials are defined as

Hk (x) := (−1)k e
x2

2
d k

d xk
e− x2

2 , k ∈N0, x ∈R,

and satisfy the recursion

H ′
k (x) = xHk (x)−Hk+1(x) = kHk−1(x), k ∈N, x ∈R. (2.5.3)

The Hermite functions are given as

h̃k (x) := 1p
2πk !

Hk (x)e− x2

2 , k ∈N0, x ∈R, (2.5.4)

satisfying (due to (2.5.3)) ∂x h̃k (x) = −pk +1 h̃k+1(x). We further denote the Hermite
functions rescaled by a(z) as

hk (x, z) :=
√

a(z) h̃k (x
√

a(z)). (2.5.5)

This rescaling is chosen such that the Hermite functions hk (z, ·) are normalized in L2(( f ∞)−1)
for all k ∈N0. Notice that f ∞(x, z) = h0(x, z) and g∞(x, z) =− ∂z a(z)p

2a(z)
h2(x, z).

For later use we note that, due to (2.5.3), the rescaled Hermite functions satisfy

xhk (x, z) = 1p
a(z)

[
p

k +1hk+1(x, z)+
p

k hk−1(x, z)], (2.5.6)

for k ∈N, x, z ∈R. Using (2.5.3) again, this implies

x∂xhk (x, z) =−
p

k +1[
p

k +2hk+2(x, z)+
p

k +1hk (x)], (2.5.7)

for k ∈N0, x, z ∈R.
The spectrum of L(z), with z ∈R fixed, is given as

σ(L(z)) = {−a(z)k | k ∈N0}.
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An orthonormal basis of eigenfunctions for the FP-operator L(z) on L2(( f ∞)−1) is given
by the rescaled Hermite functions defined in (2.5.5) (see e.g. [24], §5.5.1, §10.1.4), i.e. for
z ∈R fixed:

L2(( f ∞)−1) = ⊕
k∈N0

span{hk (·, z)}, L(z)hk (·, z) =−a(z)k hk (·, z).

2.5.2 Sharp Decay Estimate for the Parameter Sensitivity
Equations

Let us assume f 0(·, z), g 0(·, z) ∈ L2(( f ∞)−1) where f (x, z, t ) is a probability density,
∫
R f 0(x, z)d x =

1, and g 0(x, z) does not carry any mass, i.e. 0 = ∫
R g 0(x, z)d x = (g 0(·, z),h0(·, z))L2(( f ∞)−1).

The eigenfunction expansions for the corresponding solutions f (x, z, t ) of (2.5.1) and
g (x, z, t ) of (2.5.2) are given as

f (x, z, t ) =
∞∑

k=0
fk (z, t )hk (x, z), g (x, z, t ) =

∞∑
k=1

gk (z, t )hk (x, z),

for x, z ∈R and t ≥ 0. Due to (2.5.1), each eigenmode evolves as

∂t fk (z, t ) =−a(z)k fk (z, t ), k ∈N0, (2.5.8)

and hence f0(z, t ) = 1. Plugging the eigenfunction expansion for g into (2.5.2) leads to

∞∑
k=1

∂t gk (z, t )hk (x) =−a(z)
∞∑

k=1
kgk (z, t )hk (x, z)

+az(z)
∞∑

k=0
fk (z, t ) [hk (x, z)+x∂xhk (x, z)] .

Applying identity (2.5.7) gives

∞∑
k=1

∂t gk (z, t )hk (x)

=−a(z)
∞∑

k=1
kgk (z, t )hk (x, z)+az(z)

∞∑
k=0

fk (z, t )hk (x, z)

+az(z)
∞∑

k=0
−(k +1) fk (z, t )hk (x, z)−

√
(k +1)(k +2) fk (z, t )hk+2(x, z)

=−a(z)
∞∑

k=1
kgk (z, t )hk (x, z)−az(z) f1(z, t )h1(x, z)

−az(z)
∞∑

k=2
[k fk (z, t )+

√
k(k −1) fk−2(z, t )]hk (x, z).
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Separating the eigenmodes then yields

∂t g1(z, t ) =−a(z)g1(z, t )−az(z) f1(z, t ),

∂t gk (z, t ) =−ka(z)gk (z, t )−az(z)
[
k fk (z, t )+

√
k(k −1) fk−2(z, t )

]
, k ≥ 2. (2.5.9)

In contrast to f , the kth modes of g do not decouple for k ≥ 1. They are rather coupled
as the pair ( f1, g1), respectively the triples ( fk−2, fk , gk ) for k ≥ 2. For k = 1 the evolution
equation for f1(z, t ), g1(z, t ) can be written as the ODE system

∂t

(
f1

g1

)
︸︷︷︸

y1(z,t ):=

=−a(z)

(
1 0

α(z) 1

)
︸ ︷︷ ︸
C1(z):=

(
f1

g1

)
, (2.5.10)

for z ∈R, t ≥ 0, with the notation

α(z) := az(z)

a(z)
.

For k = 2, equation (2.5.9) can be written as

∂t g̃2(z, t ) =−2a(z)[g̃2(z, t )+α(z) f2(z, t )],

with g̃2(z, t ) := g2(z, t )+ α(z)p
2

, since f0(z, t ) = ∫
R f (x, z, t )d x ≡ 1. The corresponding sys-

tem of equations is given as

∂t

(
f2

g̃2

)
︸︷︷︸

y2(z,t ):=

=−2a(z)

(
1 0

α(z) 1

)
︸ ︷︷ ︸
C2(z):=

(
f2

g̃2

)
, (2.5.11)

for z ∈R, t ≥ 0. Since the matrices C1(z) =C2(z) are defective, if and only if az(z) 6= 0, we
shall now distinguish these cases.

Case k = 1,2 and z ∈R such that az(z) = 0:

The matrices C1(z) =C2(z) are diagonal and the solutions of the eigenmodes k = 1,2 are
given explicitly as

yk (z, t ) = e−ka(z)t yk (z,0), t ≥ 0,k = 1,2.

The decay estimate

|yk (z, t )|22 ≤ e−2ka(z)t |yk (z,0)|22, t ≥ 0,k = 1,2, (2.5.12)

follows.
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2.5 Fokker–Planck Equations with Uncertain Coefficients

Case k = 1,2 and z ∈R such that az(z) 6= 0:

The matrices C1(z) = C2(z) are defective of order 1 and we apply Theorem 2.2.8 to get
a uniform-in-z decay estimate. The construction of the matrices P1(z, t ) = P2(z, t ) re-
sembles Example 2.2.11 (with ε = α(z) and rescaling t 7→ ka(z)t ). It yields the decay
estimate

|yk (z, t )|22 ≤Ck (z)(1+k2a(z)2t 2)e−2ka(z)t |yk (z,0)|22, k = 1,2, (2.5.13)

with the uniform in z ∈R bounded constant (for k = 1,2)

Ck (z) = 12 ·max{2,1+α(z)2} ≤ 12max

{
2,1+ ‖az‖2∞

a2
0

}
=: C1,2. (2.5.14)

Notice that by definition of y2(z, t ) the decay y2(z, t )
t→∞−→ 0 implies g2(z, t )

t→∞−→ −α(z)p
2
=

(g∞(·, z),h2(·, z))L2(( f ∞)−1). This concludes the analysis for the modes k = 0,1,2.
For our goal to get a decay estimate with sharp uniform-in-z decay rate of the system

(2.5.1)–(2.5.2) as formulated in Theorem 2.5.2 below, it is important to get a “precise”
decay estimate for the modes k = 1,3. Only these two modes have the spectral gap a(z)
of the system of equations (2.5.1)–(2.5.2). The other modes have larger spectral gaps
and decay much faster. On the level of the modal equations for k ≥ 4 all we need are
“sufficient” decay estimates, namely rates at least as good as the ones of the modes
k = 1,3. This is in contrast to §2.4 where every Fourier mode has the spectral gap σ(z)

2 of
the sensitivity equations and needs “precise” treatment.

For the modes k ≥ 3, the equation for gk (z, t ) corresponds to

∂t

 fk−2

fk

gk


︸ ︷︷ ︸

yk (z,t ):=

=−ka(z)

 k−2
k 0 0
0 1 0

γ(k)α(z) α(z) 1


︸ ︷︷ ︸

Ck (z):=

 fk−2

fk

gk

 , (2.5.15)

for z ∈R, t ≥ 0, denoting

γ(k) :=
√

k −1

k
∈ [

√
2
3 ,1).

For each k ≥ 3, the eigenvalues of Ck (z) are λ1,k = k−2
k and λ2,k = 1, where λ2,k is defec-

tive of order 1, if and only if az(z) 6= 0. The (non-defective) spectral gap of Ck (z) is given
as

µk = k −2

k
, k ≥ 3.
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Case k = 3 and z ∈R such that az(z) = 0:

The matrix C H
3 (z) is diagonal and the solutions for the eigenmodes are given explicitly

as

f1(z, t ) = e−a(z)t f1(z,0),

f3(z, t ) = e−3a(z)t f3(z,0), g3(z, t ) = e−3a(z)t g3(z,0), t ≥ 0.

The decay estimate

|y3(z, t )|22 ≤ e−2a(z)t |y3(z,0)|22, t ≥ 0 (2.5.16)

follows.

Case k = 3 and z ∈R such that az(z) 6= 0:

In this case the eigenvalue λ2,3(z) = 1 is defective, but this eigenvalue does not corre-
spond to the spectral gap µ3 = 1

3 .
The matrix C3(z) corresponds to two Jordan blocks. In notation from §2.2 this means:

N = 2, l1 = 1, l2 = 2 and M = 1. We use Theorem 2.2.8 with the modification of Remark
2.2.13 for n2 = 2. The (generalized) eigenvectors of C H

3 (z) are given as

v (0)
1,3 = (1,0,0)T ,

v (0)
2,3(z) = (0, α(z), 0)T , v (1)

2,3(z) = (
√

3
2α(z), 0, 1)T .

With the modifications described in Remark 2.2.13, the matrix P̃3(z, t ) is constructed
with three arbitrary weights: We choose them asβ1

1,3(z) = 1,β1
2,3(z) =α(z)−2 andβ2

2,3(z) =
1, which leads to

P̃3(z,0) =

1+ 3
2α(z)2 0

√
3
2α(z)

0 1 0√
3
2α(z) 0 1

 .

Then, Remark 2.2.13 (with the rescaling t 7→ 3a(z)t ) leads to the decay estimate

|y3(z, t )|22 ≤ C̃3(z)e−2a(z)t |y3(z,0)|22, t ≥ 0,

with the constant

C̃3(z) = λ
P̃3(z,0)
max

λ
P̃3(z,0)
min

12 ·max{2,1+α(z)2}. (2.5.17)
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2.5 Fokker–Planck Equations with Uncertain Coefficients

Denoting δ(z) := 1+ 3
4α(z), the eigenvalues of P̃3(z,0) are given as

λ
P̃3(z,0)
1,2 = δ(z)±

√
δ(z)2 −1, λ

P̃3(z,0)
3 = 1,

with λP̃3(z,0)
max =λP̃3(z,0)

1 and λP̃3(z,0)
min =λP̃3(z,0)

2 . Since

λ
P̃3(z,0)
max

λ
P̃3(z,0)
min

= 2δ(z)2 −1+2δ(z)
√
δ(z)2 −1

≤ 4δ(z)2 −1 = 3+ 9

4
α(z)4 +6α(z)2,

the constant is uniformly bounded in z by

C̃3(z) ≤ (6+ 21

4

‖az‖4∞
a4

0

)12 ·max{2,1+ ‖az‖2∞
a2

0

} =: C3.

We arrive at

|y3(z, t )|22 ≤C3e−2a(z)t |y3(z,0)|22 (2.5.18)

for t ≥ 0.

Case k ≥ 4 and z ∈R:
In this case the equations for the kth mode (2.5.15) does not correspond to the spectral
gap a(z) of the system (2.5.1)–(2.5.2). In fact, the exponential decay rate of |yk (z, t )|22,
k ≥ 4 is at least 4a(z), which is double the rate of the slowest modes k = 1,3. Thus, there
is more freedom of choice for the matrix Pk (z) for k ≥ 4. This is important in order to
get a uniform in z and k estimate for k ≥ 4. The additional difficulty compared to k = 3
is the uniform bound for k →∞. Indeed, even Remark 2.2.13 would not give a matrix
P̃k (z,0) with uniform condition number for fixed z and k →∞, and therefore a decay
estimate constant C̃k (z) that is unbounded in k.

The following lemma builds on the fact that the Euclidean norm, i.e. using P̃ = I ,
yields already a “sufficient” decay estimate as long as |α(z)| is small enough. An appro-
priate rescaling of the third coordinate via a modified norm does the trick for all z ∈R.

Lemma 2.5.1. For k ≥ 4 and z ∈R solutions to (2.5.15) satisfy the decay estimate

|yk (z, t )|22 ≤C≥4e−2a(z)t |yk (z,0)|22, t ≥ 0, (2.5.19)

with the constant C≥4 := 2(1+ ‖∂z a‖4∞
a4

0
).

The elementary but technical proof is deferred to Appendix 2.A.
Combining the above five cases for k ∈N0 and z ∈ R leads to the desired uniform-in-

z decay estimate for arbitrary initial conditions on L2(( f ∞)−1)×L2(( f ∞)−1) with sharp
rate:
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

Theorem 2.5.2. Let a ∈ C 1(R) where a0 := infz∈R a(z) > 0 and ∂z a ∈ L∞(R). Then, there
exists a constant C > 0, such that normalized solutions Φ(x, z, t ) = ( f , g )T of the system
(2.5.1)–(2.5.2) with steady stateΦ∞(x, z) := ( f ∞, g∞)T satisfy

sup
z∈R

‖Φ(·, z, t )−Φ∞(·, z)‖2
L2(( f ∞)−1)

≤C (1+ t 2)e−2a0t sup
z∈R

‖Φ(·, z,0)−Φ∞(·, z)‖2
L2(( f ∞)−1)

for t ≥ 0 with an explicit constant C > 0 only depending on a0 and ‖∂z a‖∞, as given in
(2.5.20) below.

Proof. With Parseval’s identity and the collected decay estimates (2.5.12), (2.5.13), (2.5.16),
(2.5.18) and (2.5.19), we obtain

‖Φ(·, z, t )−Φ∞(·, z)‖2
L2(( f ∞)−1)

=
∞∑

k=1
| fk (z, t )|2 +|g1(z, t )|2 + ∣∣g2(z, t )+ α(z)p

2

∣∣2 +
∞∑

k=3
|gk (z, t )|2

≤
∞∑

k=1
|yk (z, t )|22

≤C1,2

2∑
k=1

(1+k2a(z)2t 2)e−2ka(z)t |yk (z,0)|22 +C3e−2a(z)t |y3(z,0)|22

+C≥4

∞∑
k=4

e−2a(z)t |yk (z,0)|22

≤ (C1,2 +C3 +C≥4)(1+a(z)2t 2)e−2a(z)t

(
sup
z∈R

∞∑
k=1

|yk (z,0)|22
)

.

Using the fact that (1+a(z)2t 2)e−2a(z)t ≤ (1+a2
0t 2)e−2a0t for t ≥ 0, z ∈R leads to

‖Φ(·, z, t )−Φ∞(·, z)‖2
L2(( f ∞)−1)

≤C (1+ t 2)e−2a0t sup
z∈R

‖Φ(·, z,0)−Φ∞(·, z)‖2
L2(( f ∞)−1)

for each fixed z ∈R, t ≥ 0 with the constant

C := 2max{1, a2
0}(C1,2 +C3 +C≥4)

= 2max{1, a2
0}

[
12 ·max{2,1+ ‖az‖2∞

a2
0

}(7+ 21

4

‖az‖4∞
a4

0

)+2(1+ ‖az‖4∞
a4

0

)

]
<∞. (2.5.20)

Remark 2.5.3. Similar to §2.3.3, Duhamel’s formula would also yield a decay estimate
here. The eigenfunction modes of f (x, z, t ) are given explicitly due to (2.5.8). This allows
us to use Duhamel’s formula for the evolution equation (2.5.9), providing the eigenfunc-
tion modes of gk (z, t ) in explicit form.
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2.5 Fokker–Planck Equations with Uncertain Coefficients

2.5.3 Uncertain Diffusion Coefficient

As an alternative to (2.5.1) we consider now the following Fokker–Planck equation on R
with uncertainty in the diffusion term:

∂t u(x, z, t ) = ∂x(d(z)ux(x, z, t )+xu(x, z, t )) =: L1(z)u(x, z, t ), (2.5.21)

for x, z ∈R, t ≥ 0 and a diffusion coefficient d ∈C 1(R) satisfying d0 := infz∈Rd(z) > 0. For
v(x, z, t ) := ∂zu(x, z, t ) the first order linear sensitivity equation is given as

∂t v(x, z, t ) = L1(z)v(x, z, t )+dz(z)uxx(x, z, t ), (2.5.22)

for x, z ∈ R, t ≥ 0. A strategy similar to the one used in §2.5.2 can also be applied here:
The rescaled Hermite functions

ĥk (x, z) := d(z)−
1
2 h̃k (xd(z)−

1
2 )

with h̃k (x, z) defined in (2.5.4) are an orthonormal basis of L2((ĥ0)−1) of eigenfunctions
of L1(z), i.e.

L1(z)ĥk (·, z) =−k ĥk (·, z), k ∈N0,

which determines the whole (z-independent) spectrum

σ(L1(z)) =−N0.

It follows that the unique normalized steady state of L1(z) and the corresponding steady
state for (2.5.22) are given as

u∞(x, z) = ĥ0(x, z) = 1p
2πd(z)

e− x2

2d(z) ,

v∞(x, z) = ∂zu∞(x, z) = dz(z)p
2d(z)

ĥ2(x, z),

respectively. An eigenfunction expansion leads to the non-defective ODE systems for
the eigenfunction modes k ≥ 2:

∂t

(
uk−2

vk

)
=−

(
k −2 0

dz (z)
d(z)

p
(k −1)k k

)
︸ ︷︷ ︸

Ak (z):=

(
uk−2

vk

)
, z ∈R, t ≥ 0,

and ∂t v0(z, t ) = 0, ∂t v1(z, t ) = −v1(z, t ). The matrix Ak (z), k ≥ 2, has the eigenvalues
λ1,k = k − 2 and λ2,k = k, and hence, is not defective. Contrary to the models previ-
ously investigated, the FPE with added uncertainty in the diffusion term does not result
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2 Sharp Decay Estimates for Linear Evolution Equations with Uncertainties

in the typical defective decay behavior for v(x, z, t ). The decay behavior of solutions
φ(x, z, t ) := (u, v)T of the system (2.5.21)–(2.5.22) can hence be estimated easily by

sup
z∈R

‖φ(·, z, t )−φ∞(·, z)‖2
L2((u∞)−1) ≤C e−t sup

z∈R
‖φ(z,0)−φ∞(·, z)‖2

L2((u∞)−1),

with φ∞ := (u∞, v∞)T , a constant C > 0 and t ≥ 0.
To sum up, we observe that the FPE (2.5.1) with uncertainty in the drift term gives rise

to a more complicated and interesting decay behavior.

2.6 Conclusion

In this chapter we perform a sensitivity analysis for several linear PDEs with uncertainty
by a Lyapunov functional method, obtaining sharp decay rates to the global equilib-
rium.

First, a systematic derivation of Lyapunov functionals — in the form of modified
norms — for arbitrary linear ODE systems is given. The Lyapunov functional approach
has a simple geometric interpretation: In the deformed metric, the angle between any
trajectory and the level curves of the P-norm is uniformly bounded away from zero (for
P constant in t ). The novelty here is the inclusion of defective ODEs, which demand
time-dependence in the norms | · |P (t ) in order to obtain sharp decay estimates of or-
der (1+ t M )e−µt . This approach is realized via a matrix P (t ), which is constructed from
the explicit (generalized) eigenvectors of the system matrix accompanied by arbitrary
weights. In the presence of an uncertainty parameter z, we obtain decay estimates that
are uniform in z, which includes non-defective limits. In such cases, the matrix P (z, t )
has to be constructed more carefully, taking advantage of the non-uniqueness of P (z, t )
in the above method.

This method is applied to three PDEs, a convection-diffusion equation, a two-velocity
BGK equation, and a Fokker–Planck equation, where each of these equations feature
uncertainty in the equation parameters. A linear sensitivity analysis is performed, where
for the convection-diffusion equation a second order sensitivity is also included. The
analysis works well with PDEs that allow for a Fourier mode decomposition, since each
mode evolves according to an ODE. Hence, the decay estimates have to be uniform in
the eigenmodes k. In the presented examples (with the exception of §2.5.3) defects ap-
pear in the resulting ODEs.

Sharp decay estimates which are uniform in the uncertainty parameter z were ob-
tained for these PDEs. The technical difficulty here is the possible appearance of non-
defective limits due to the z-dependence of the ODEs, when one considers derivatives
of solutions with respect to z. This problem is solved with a careful choice of the ma-
trix P (z, t ), exploiting the fact that its construction (and in particular its weights) is not
unique.
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2.6 Conclusion

Let us point out an aspect of the sensitivity analysis of the Fokker–Planck equation in
§2.5 distinct from the other investigated PDEs: The equilibrium that solutions converge
to, depends itself on the uncertainty parameter.

The method could be helpful even for nonlinear PDEs with uncertainties. For those
problems, usually perturbative solutions, namely solutions near global equilibria, are
studied, in which the exponential decay due to the linear(-ized) hypocoercivity dom-
inates the nonlinear growth. See e.g. [23, 28, 9, 13, 2, 1] for deterministic settings and
[21, 17, 25] for inclusion of uncertainty quantification. One expects that our analysis can
lead to sharper decay rates than previously used energy estimates in Sobolev spaces.
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Appendix

2.A Proofs

Proof of Lemma 2.2.6

Proof. For arbitrary i , j ∈ {1, . . . ,m} and α> 0

v i ⊗ v j + v j ⊗ v i ≥− 1

α
Q i −αQ j (2.A.1)

holds true, as can be directly validated in matrix representation.
We estimate ŵ m

n (t )⊗ŵ m
n (t ) from below by using inequality (2.A.1) for the double sum:

ŵ m
n (t )⊗ ŵ m

n (t ) =
m∑

k=1
(ξk (t ))2Qk + ∑

i , j∈{1,...,m}
i 6= j

ξi (t )ξ j (t )v i ⊗ v j

≥
m∑

k=1
(ξk (t ))2Qk − ∑

k,l∈{1,...,m}
l<k

(
1

α
(ξk (t ))2Qk +α(ξl (t ))2Q l

)
.

We reorder the double sum and notice that each term depends on only one of the two
indices:

ŵ m
n (t )⊗ ŵ m

n (t )

≥
m∑

k=1
(ξk (t ))2Qk −

m∑
k=2

k−1∑
l=1

(
1

α
(ξk (t ))2Qk +α(ξl (t ))2Q l

)

=
m∑

k=1
(ξk (t ))2Qk −

m∑
k=2

k −1

α
(ξk (t ))2Qk −α

m−1∑
l=1

(m − l )(ξl (t ))2Q l

= (1− m −1

α
)(ξm)2Qm +

m−1∑
k=1

(
1− k −1

α
−α(m −k)

)
(ξk (t ))2Qk .

For the first coefficient to be positive, we needα> m−1. Moreover one has mink=1,...,m−1{1−
k−1
α

−α(m −k)} = 1−α(m −1) and therefore

ŵ m
n (t )⊗ ŵ m

n (t ) ≥ (1− m −1

α
)(ξm)2Qm − (α(m −1)−1)

m−1∑
k=1

(ξk (t ))2Qk ,

which yields the desired result for θ := m−1
α ∈ (0,1).
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Proof of Theorem 2.2.8

If M = 1 there are no defective eigenvalues with real partµ. In this case, the result follows
from (2.2.15) and the estimates (2.2.18) with the corresponding matrix P .

For M > 1, we fix an arbitrary n ∈ Iµ and first estimate the P m
n (0)-semi-norm decay

for the corresponding m ∈ {2, . . . , ln}. To achieve this, we combine the decay estimate
(2.2.10) and (2.2.20) that gives a lower bound on the P m

n (t )-semi-norm with terms only
depending on P k

n (0)-semi-norms (k ∈ {1, . . . ,m}). This yields

(1−θ)|x(t )|2P m
n (0) −

(
(m −1)2

θ
−1

)m−1∑
k=1

(
t m−k

(m −k)!

)2

|x(t )|2
P k

n (0)

≤ |x(t )|2P m
n (t ) = e−2µt |x(0)|2P m

n (0).

Rearranging and dividing by (1−θ) leads to

|x(t )|2P m
n (0) ≤

(
(m −1)2

θ
−1

)
1

1−θ︸ ︷︷ ︸
dm (θ):=

m−1∑
k=1

(
t m−k

(m −k)!

)2

|x(t )|2
P k

n (0)

+ 1

1−θ e−2µt |x(0)|2P m
n (0).

(2.A.2)

By induction we shall show that, for arbitrary but fixed n ∈ Iµ and all corresponding
m ∈ {1, . . . , ln}, there exists a constant cm > 0 only depending on m, such that

|x(t )|2P m
n (0) ≤

1

min
k=1,...,m

βk
n

cm(1+ t 2(m−1))e−2µt |x(0)|2Pn (0), t ≥ 0, (2.A.3)

where Pn(0) =∑ln
m=1β

m
n P m

n (0) by definition (2.2.11).
For m = 1, the matrix P m

n is not time-dependent and (2.2.10) immediately yields (2.A.3)
with c1 = 1

2 .
For the inductive step, we assume the claim is true for all k ∈ {1, . . . ,m} with some

m ≥ 1 and constants ck > 0 monotonically increasing in k and start from (2.A.2), written
for m +1:

|x(t )|2
P m+1

n (0)
≤ dm+1(θ)

m∑
k=1

(
t m+1−k

(m +1−k)!

)2

|x(t )|2
P k

n (0)

+ 1

1−θ e−2µt |x(0)|2
P m+1

n (0)

≤ dm+1(θ)
m∑

k=1

t 2(m+1−k)

[(m +1−k)!]2

1

min
j∈{1,...,k}

β
j
n

ck (1+ t 2(k−1))e−2µt |x(0)|2Pn (0) (2.A.4)

+ 1

βm+1
n

1

1−θ e−2µt |x(0)|2Pn (0)
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where (2.A.3) with k ∈ {1, . . . ,m} was used in the second estimate.
In order to combine both of the terms in (2.A.4) into one summation, we compute

infθ∈(0,1) max{dm+1(θ), 1
1−θ }. For m = 1, one has infθ∈(0,1) max{d2(θ), 1

1−θ } = 2. For m > 1,

the coefficient dm+1(θ) has its minimum at θmin = m2−m
p

m2 −1 with value dm+1(θmin) =
2m2 + 2m

p
m2 −1− 1. As dm+1(θmin) ≥ 1

1−θmin
, one gets infθ∈(0,1) max{dm+1(θ), 1

1−θ } =
dm+1(θmin).

In total

inf
θ∈(0,1)

max{dm+1(θ),
1

1−θ } ≤ 4m2 −1, m ≥ 1. (2.A.5)

Applying this estimate to (2.A.4) and, additionally, using the upper bound
maxk=1,...,m t 2(m+1−k) + t 2m ≤ 2(1+ t 2m) for all t ≥ 0, one gets

|x(t )|2
P m+1

n (0)
≤ 1

min
k∈{1,...,m+1}

βk
n

×2(4m2 −1)cm

m+1∑
k=1

1

[(m +1−k)!]2︸ ︷︷ ︸
cm+1:=

(1+ t 2m)e−2µt |x(0)|2Pn (0),

which concludes the induction and hence the proof of (2.A.3) for m ∈ {1, . . . , ln}.
The constant cm+1 for m ∈ {1, . . . , ln −1} is given as

cm+1 = 2m−1

(
m∏

j=1
4 j 2 −1

)(
m+1∏
j=2

j∑
k=1

1

[( j −k)!]2

)
.

By definition (2.2.13) the matrix P (0) is given as

P (0) = ∑
n 6∈Iµ

βnPn︸ ︷︷ ︸
PI c
µ

:=

+ ∑
n∈Iµ

ln∑
m=1

βm
n P m

n (0)︸ ︷︷ ︸
PIµ :=

.

The first term, PI c
µ

, covers the Cases 1–2. Applying Gronwall’s lemma directly to the
inequalities (2.2.4) and (2.2.6) yields

|x(t )|2PI c
µ

≤ e−2µt |x(0)|2PI c
µ

.

Now, we take a closer look at the decay behavior of solutions with respect to the PIµ-
semi-norm that corresponds to Case 3.

|x(t )|2PIµ
=

( ∑
n∈Iµ

β1
n |x(t )|2

P 1
n (0)

+ ∑
n∈Iµ

ln∑
m=2

βm
n |x(t )|2P m

n (0)

)
. (2.A.6)
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The first term includes only semi-norms that are time-independent, i.e. P 1
n(t ) ≡ P 1

n(0),
and using (2.2.10) directly gives the decay behavior. For the second term in (2.A.6), we
apply (2.A.3) and get

|x(t )|2PIµ
≤ ∑

n∈Iµ

β1
ne−2µt |x(0)|2

P 1
n (0)

+ ∑
n∈Iµ

ln∑
m=2

βm
n

min
k∈{1,...,m}

βk
n

cm(1+ t 2(m−1))e−2µt |x(0)|2Pn (0)

≤ e−2µt
∑

n∈Iµ

|x(0)|2Pn (0)

+max
n∈Iµ

[ ln∑
m=2

βm
n

min
k∈{1,...,m}

βk
n

cm

]
2(1+ t 2(M−1))e−2µt

∑
n∈Iµ

|x(0)|2Pn (0)

≤ 2cM max
n∈Iµ

[ ln∑
m=1

βm
n

min
k∈{1,...,m}

βk
n

]
(1+ t 2(M−1))e−2µt |x(0)|2PIµ

.

Now, using (2.2.18) for P (0), the decay behavior in the Euclidean norm follows as

|x(t )|22 ≤ (λP (0)
min )−1|x(t )|2P (0)

= (λP (0)
min )−1

(
|x(t )|2PI c

µ

+|x(t )|2PIµ

)
≤ (λP (0)

min )−1
(
e−2µt |x(0)|2PI c

µ

+2cM max
n∈Iµ

[ ln∑
m=1

βm
n

min
k∈{1,...,m}

βk
n

]
(1+ t 2(M−1))e−2µt |x(0)|2PIµ

)

≤ 2(λP (0)
min )−1λP (0)

maxcM max
n∈Iµ

[ ln∑
m=1

βm
n

min
k∈{1,...,m}

βk
n

]
(1+ t 2(M−1))e−2µt |x(0)|22,

where the constant C := 2(λP (0)
min )−1λP (0)

maxcM max
n∈Iµ

[ ln∑
m=1

βm
n

mink∈{1,...,m}β
k
n

]
depends only on

the matrix P (0).

Proof of Lemma 2.3.2

Proof. Since w 2
1,k , w 3

1,k satisfy (2.2.8) with n = 1 and m = 2,3, their linear combination

w̃ 3
k satisfies

d

d t
w̃ 3

k (z, t ) = (D H
k (z)−λk (z))w̃ 3

k (z, t ).
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The computation leading to (2.2.10) also applies here (with rescaled time τk = k2t ) and
results in

|yk (z, t )|2
P̃ 3

k (z,k2t )
= e−2k2b(z)t |yk (z,0)|2

P̃ 3
k (z,0)

. (2.A.7)

Now, our goal is an estimate in the P̃ 3
k (z,0)-semi-norm with help of Lemma 2.2.6. By

definition

w̃ 3
k (z, t ) = ξ1

k (z, t )w 1
1,k (z,0)+ξ2

k (z, t )w 2
1,k (z,0)+ξ3

k w̃ 3
k (z,0),

with the polynomials

ξ1
k (z, t ) = t 2

2
+ ∂2

zλk (z)

2(∂zλk (z))2
t , ξ2

k (z, t ) = t and ξ3
k (z, t ) = 1.

Lemma 2.2.6 yields

|x|2
P̃ 3

k (z,t )
≥ (1−θ)|x|2

P̃ 3
k (z,0)

−
(

4

θ
−1

)[
|ξ1

k (z, t )|2|x|2
P 1

1,k (z,0)
+|ξ2

k (z, t )|2|x|2
P 2

1,k (z,0)

] (2.A.8)

for any (fixed) x ∈C3, θ ∈ (0,1), t ≥ 0. Replace x by a solution yk (z, t ) to (2.3.12) (rescaling
ξk (z, t ) to ξk (z,k2t ) to account for the prefactor k2 in the ODE). Then (in analogy to the
estimate (2.A.2)), using (2.A.7) leads to

|yk (z, t )|2
P̃ 3

k (z,0)
≤ d3(θ)

[
|ξ1

k (z,k2t )|2|yk (z, t )|2
P 1

1,k (z,0)
+|ξ2

k (z,k2t )|2|yk (z, t )|2
P 2

1,k (z,0)

]
+ 1

1−θ e−2k2b(z)t |yk (z,0)|2
P̃ 3

k (z,0)
,

(2.A.9)

with d3(θ) := 4−θ
θ(1−θ) as in (2.A.2). Minimizing in θ with estimate (2.A.5) yields

inf
θ∈(0,1)

max

{
d3(θ),

1

1−θ
}
≤ 15.

Next we use the estimates (2.3.16), (2.3.17) and the fact that P̃ 3
k (z,0) ≤ 1

4|∂zλk (z)|4 I to pro-
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ceed with (2.A.9):

|yk (z, t )|2
P̃ 3

k (z,0)
≤ 15

[∣∣∣k4t 2

2
+k2t

∂2
zλk (z)

2(∂zλk (z))2

∣∣∣2 + 6k4t 2

min{1, |∂zλk (z)|2}
(1+k4t 2)

+ 1

4|∂zλk (z)|4
]

e−2k2b(z)t |yk (z,0)|22

≤ 15
1+|∂2

zλk (z)|2
min{1, |∂zλk (z)|4}

[
k8t 4

4
+ k4t 2

4
+ k6t 3

2

+6(k4t 2 +k8t 4)+ 1

4

]
e−2k2b(z)t |yk (z,0)|22

≤ 146.25
1+|∂2

zλk (z)|2
min{1, |∂zλk (z)|4}

(1+k8t 4)e−2k2b(z)t |y(z,0)|22.

Proof of Lemma 2.5.1

Proof. To show that the matrix

P̃ (z) :=

 1 0 0
0 1 0
0 0 1

2 min{1, 1
α(z)4 }

 (2.A.10)

satisfies

C H
k (z)P̃ (z)+ P̃ (z)Ck (z) ≥ 1

2
P̃ (z), z ∈R,k ≥ 4, (2.A.11)

we show that

Ak (z) :=C H
k (z)P̃ (z)+ P̃ (z)Ck (z)− 1

2
P̃ (z)

=


3
2 − 4

k 0 1
2γ(k)min{α(z), 1

α(z)3 }

0 3
2

1
2 min{α(z), 1

α(z)3 }
1
2γ(k)min{α(z), 1

α(z)3 } 1
2 min{α(z), 1

α(z)3 } 3
4 min{1, 1

α(z)4 }


is positive definite.

As k ≥ 4, the first two leading minors are positive. The third minor is positive, if

det Ak (z) = 9

8

(
3

2
− 4

k

)
min{1,

1

α(z)4
}− 3

8
γ(k)2 min{α(z)2,

1

α(z)6
}

− 1

4

(
3

2
− 4

k

)
min{α(z)2,

1

α(z)6
} > 0
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for all z ∈R, k ≥ 4. For all k ≥ 4, we distinguish the following two cases:
For z ∈R such that |α(z)| ≥ 1 the condition det Ak (z) > 0 is equivalent to

f (k,α(z)2,γ(k)) :=
(

3

2
− 4

k

)(9

4
− 1

2α(z)2

)
− 3

4α(z)2
γ(k)2 > 0.

The function [4,∞)× [1,∞)× [
√

2
3 ,1) 3 (k,α2,γ) 7→ f (k,α2,γ), is monotonously increas-

ing in k and α2 but monotonously decreasing in γ, hence

f (k,α(z)2,γ(k)) ≥ f (4,1,1) = 1

8
> 0.

For z ∈R such that |α(z)| ≤ 1 the condition det Ak (z) > 0 is equivalent to

g (k,α(z)2,γ(k)) :=
(

3

2
− 4

k

)(9

4
− 1

2
α(z)2

)
− 3

4
γ(k)2α(z)2 > 0.

The function [4,∞)× [0,1]× [
√

2
3 ,1) 3 (k,α2,γ) 7→ g (k,α2,γ) is monotonously increasing

in k and monotonously decreasing in α2 and γ, hence

g (k,α(z)2,γ(k)) ≥ g (4,1,1) = 1

8
> 0.

This proves the matrix inequality (2.A.11). With a similar calculation as (2.2.4) (and
the rescaling t 7→ kα(z)t ), this implies

|yk (z, t )|2
P̃ (z)

≤ e− 1
2 ka(z)t |yk (z,0)|2

P̃ (z)
, t ≥ 0,k ≥ 4.

With 1
2 min{1, 1

α(z)4 }I ≤ P̃ (z) ≤ I , z ∈R, we obtain

|yk (z, t )|22 ≤ 2max{1,α(z)4}e−2a(z)t |yk (z,0)|22, t ≥ 0,k ≥ 4,

from which the desired result follows.
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3 On the Goldstein–Taylor
Equation with Space-Dependent
Relaxation

3.1 Introduction

The object of this chapter is the large-time analysis of the Goldstein–Taylor equation on
the one-dimensional torus T, i.e. on [0,2π] with periodic boundary conditions, and for
t ∈ (0,∞):

∂t f+(x, t )+∂x f+(x, t ) = σ(x)

2
( f−(x, t )− f+(x, t )),

∂t f−(x, t )−∂x f−(x, t ) =−σ(x)

2
( f−(x, t )− f+(x, t )),

f±(x,0) = f±,0(x),

(3.1.1)

where f±(x, t ) are the density functions of finding an element with a velocity ±1 in a
position x ∈T at time t > 0. The function

σ ∈ L∞
+ (T) := {

f ∈ L∞(T)
∣∣ ess min f > 0

}
is the relaxation coefficient, and f±,0 are the initial conditions. Since (3.1.1) is mass
conserving, its steady state is of the form

f±,∞(x) = f∞ , x ∈T ; f∞ := 1

2
( f+,0 + f−,0)avg,

with the notation

havg := 1

2π

∫ 2π

0
h(x)d x. (3.1.2)

The Goldstein–Taylor model was originally considered as a diffusion process, result-
ing as a limit of a discontinuous random migration in 1D, where particles may change
direction with rateσ. It appeared in the context of turbulent fluid motion and the teleg-
rapher’s equation, see [21, 14], respectively. (3.1.1) can also be seen as a special, 1D case
of a BGK-model (named after the three physicists Bhatnagar, Gross, and Krook [10]), a
kinetic equation with discrete velocities. They appear in applications like gas and fluid
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dynamics as velocity discretisations of various kinetic models (e.g. the Boltzmann equa-
tion). The mathematical analysis of such discrete velocity models has a long standing
tradition, see [11, 17] and references therein.

Although the Goldstein–Taylor equation is very simple, it still exhibits an interesting
and mathematically rich structure. Hence, it has been attracting continuous interest
over the last 20 years. Most of its mathematical analyses were devoted to the follow-
ing three topics: scaling limits, asymptotic preserving (AP) numerical schemes, and its
large-time behaviour. In a diffusive scaling, the Goldstein–Taylor model can be viewed
as a hyperbolic approximation to the heat equation [20]. Various AP-schemes for this
model in the stiff relaxation regime (i.e. for σ→∞) were constructed and analysed in
[16, 15, 4]. Since the large-time convergence of solutions to (3.1.1) towards its unique
steady state is also the topic of this chapter, we shall review the related literature in some
more detail.

Analytically, the main difficulty of (3.1.1) is its hypocoercivity, as defined in [23]: The
relaxation operator on the r.h.s. is not coercive on T×R2. Hence, for each fixed x, the
r.h.s. by itself would drive the system to its local equilibrium, it is to the kernel of the
relaxation operator, span{

(1
1

)
}, but the local mass (density) might be different at differ-

ent positions. Convergence to the global equilibrium ( f∞, f∞)T only arises due to the
interplay between local relaxation and the transport operator on the l.h.s. of (3.1.1).

The Goldstein–Taylor model is included in the analysis of [5], when choosing the ve-

locity matrix V = diag(1,−1) and the relaxation matrixA(x) = σ(x)
2

(
1 −1
−1 1

)
≥ 0. Expo-

nential convergence to the steady state is proved there for the system (3.1.1) with inflow
boundary conditions. Such boundary conditions make the problem significantly easier
than in the periodic set-up envisioned here, in particular when allowing for σ(x) to be
zero on a subset of T.

In [12] the authors proved polynomial decay towards the equilibrium, allowing σ(x)
to vanish at finitely many points.

In [22] the author proved exponential decay for solutions to (3.1.1) with more general
σ(x) ≥ 0. That work is based on a (non-local in time) weak coercive estimate on the
damping.

While the papers mentioned so far did not focus on the optimality of the (exponential)
decay rate, Bernard and Salvarani [9] were able to prove exponential decay for the case
σ(x) ≥ 0 with the optimal rate

µ(σ) = min
{
σavg, D̃(0)

}
,

where D̃(0) is the spectral gap of the telegrapher’s equation1, but excluding the case
when some of those eigenvalues with real part equal to µ(σ) are defective. On the one

1More precisely, D̃(0) = inf
{

Reλ j
∣∣λ j ∈ spectrum of

(
0 −1

−∂xx σ

)
\ {0}

}
, with this matrix being the gen-

erator of the telegrapher’s equation, see [9, Proposition 3.5], [18, Theorem 2]. We note that, for σ
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hand, this result closes the large-time analysis of the Goldstein–Taylor model, up to
the restrictive requirement f±,0 ∈ H 1(T). But on the other hand, even for simple non-
constant relaxation functions σ(x), the precise value of the spectral gap D̃(0) is hardly
accessible, see e.g. Appendix 3.A. Moreover, as [9] heavily relies on the equivalence of
(3.1.1) to the telegrapher’s equation, it cannot be extended to other discrete velocity
models in 1D.

This motivates our subsequent analysis: We aim for a method that can be extended
to other discrete velocity BGK-models (as illustrated below on a system with 3 veloci-
ties), that admits L2-initial data, and that yields sharp rates for constant σ. Moreover, it
should also apply to general non-homogeneous σ ∈ L∞+ (T). In the non-homogeneous
case, however, it will not achieve an optimal rate of convergence to the appropriate
equilibrium of the system. The method to be derived here will use a Lyapunov function
technique in the spirit of the earlier works [23, 13, 1, 2].

This chapter is structured as follows: In §3.2 we give the analytical setting of the prob-
lem and present the main convergence theorem. In §3.3 we will consider some known
results for the torus, and explore some properties of the entropy functional and the anti-
derivative of a function on T, defined in (3.2.2) and (3.2.3). In §3.4 we will consider the
case where σ(x) = σ is constant, explore the spectral properties of the operator which
governs (3.2.1), see how Eθ arises as one recast the Fourier information in spatial vari-
ables, and conclude by proving part (a) of our main theorem. Continuing to §3.5, we
will prove, using our perturbative approach to the problem, part (b) of our main the-
orem. The robustness of our method will be shown in §3.6 where we use it to obtain
an explicit rate of convergence for a three velocities Goldstein–Taylor model, and in our
Appendix 3.A we will discuss a potential way one can improve the technique we would
have presented in §3.5, and explicitly show the lack of optimality of it for a particular
case.

3.2 The Setting of the Problem and Main Results

To better understand the Goldstein–Taylor system, (3.1.1), one starts by recasting it in
the macroscopic variables

u := f++ f− ≥ 0, v := f+− f−,

which yield the system on T× (0,∞):

∂t u(x, t )+∂x v(x, t ) = 0,

∂t v(x, t )+∂xu(x, t ) =−σ(x)v(x, t ),

u(·,0) = u0 := f+,0 + f−,0, v(·,0) = v0 := f+,0 − f−,0 ,

(3.2.1)

constant and in Fourier space, the matrix

(
0 −1

k2 σ

)
is related toCk from (3.4.2) by a simple similarity

transformation.
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whose theory of existence and uniqueness is straightforward (since the r.h.s. is a bound-
ed perturbation of the transport operator; see §2 in [12] or, more generally, [19]). More-
over, when one tries to understand the qualitative behaviour of (3.2.1), one notices that
the equation for u speaks of “total mass conservation” (upon integration over the spa-
tial interval (0,2π)), while the equation for v predicts a strong decay to zero for the func-
tion. This means, at least intuitively, that the difference between f+ and f− should go
to zero, and that their sum retains its mass. As the main driving force of the equation is
a transport operation on the torus, we will not be surprised to learn that the long time
behaviour of u (and since v should go to zero, of f+ and f− as well) is convergence to a
constant. All of this has been verified in several cases, most generally in [9].

We now set the framework that will assist us in the investigation of the long time be-
haviour of (3.2.1), in a relatively general case. The natural Hilbert space to consider this
problem is L2(T)2, with the standard inner product for each component:

〈
f1, f2

〉
:= 1

2π

∫ 2π

0
f1(x) f2(x)d x,

where the bar denotes complex conjugation. Since (3.1.1) and (3.2.1) are (only) hypoco-
ercive, the symmetric part of their generators (i.e. the operators on their r.h.s.) are not
coercive on L2(T)2. Hence, the standard L2-norm cannot serve as a usable Lyapunov
functional. As it is typical for hypocoercive equations (see [23, 13, 1]), a possible rem-
edy is to rather consider a “twisted” norm (often also referred to as entropy functional),
constructed such that this functional strictly decays along each trajectory (u(t ), v(t )).
The following functional is not an ansatz, but it will be derived in §3.4 as a Lyapunov
functional to yield the sharp exponential decay for constant σ, when using an appro-
priate θ = θ(σ).

Definition 3.2.1. Let f , g ∈ L2 (T) and let θ > 0 be given. Then we define the entropy
Eθ( f , g ) as

Eθ( f , g ) := ‖ f ‖2 +‖g‖2 − θ

2π

∫ 2π

0
Re

(
∂−1

x f (x)g (x)
)

d x, (3.2.2)

where the anti-derivative of f is defined as

∂−1
x f (x) :=

∫ x

0
f (y)d y −

(∫ x

0
f (y)d y

)
avg

(3.2.3)

with the average defined in (3.1.2).

Several recent studies (like [13, 1]) considered the Goldstein–Taylor system with con-
stant σ. This case is fairly easy as it can be based on a Fourier analysis, constructing
a Lyapunov functional as a sum of quadratic operators for each Fourier mode. But the
moment we changeσ(x) to a non-constant function — even to one that is natural in the
Fourier setting, such as sine or cosine — the Fourier analysis becomes almost impossi-
ble to solve.
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3.2 The Setting of the Problem and Main Results

The main idea that guided us in our approach was to re-examine the case where σ is
constant and to recast the modal Fourier norm by using a pseudo-differential operator,
without needing its modal decomposition. This functional, which is exactly Eθ for par-
ticular choices of θ = θ(σ), can then be extended to the case where σ(x) is not constant,
and it yields quantitative results for the convergence. As the nature of this approach is
perturbative, our decay rates are then not optimal. However, the methodology itself is
fairly robust, and is viable in other cases, such as the multi-velocity Goldstein–Taylor
model (as we shall see).

The main theorem we will show in this chapter is the following, where we shall use
the vector notation

f (t ) :=
(

f+(t )

f−(t )

)
, f0 :=

(
f+,0

f−,0

)
. (3.2.4)

Theorem 3.2.2. Let u, v ∈ C ([0,∞);L2 (T)) be mild2 real valued solutions to (3.2.1) with
initial datum u0, v0 ∈ L2 (T). Denoting by uavg := (u0)avg follows:

a) If σ(x) =σ is constant we have that:

If σ 6= 2 then
Eθ(σ)

(
u(t )−uavg, v(t )

)≤ Eθ(σ)
(
u0 −uavg, v0

)
e−2µ(σ)t

for all t ≥ 0, where

θ (σ) :=
{
σ, 0 <σ< 2,
4
σ

, σ> 2,
µ (σ) :=

{
σ
2 , 0 <σ< 2,
σ
2 −

√
σ2

4 −1, σ> 2.

If σ= 2 then for any 0 < ε< 1

E 2(2−ε2)
2+ε2

(
u(t )−uavg, v(t )

)≤ E 2(2−ε2)
2+ε2

(
u0 −uavg, v0

)
e−2(1−ε)t ,

for all t ≥ 0. Consequently if σ 6= 2∥∥∥ f (t )−
(

f∞
f∞

)∥∥∥≤Cσ

∥∥∥ f0 −
(

f∞
f∞

)∥∥∥e−µ(σ)t (3.2.5)

where

Cσ :=


√
2+σ
2−σ , 0 <σ< 2,√
σ+2
σ−2 , σ> 2,

f∞ = uavg

2
, (3.2.6)

and the decay rate µ(σ) is sharp.

For σ= 2 we have that for any 0 < ε< 1∥∥∥ f (t )−
(

f∞
f∞

)∥∥∥≤
p

2

ε

∥∥∥ f0 −
(

f∞
f∞

)∥∥∥e−(1−ε)t . (3.2.7)

2We use mild solution in the termonology of semigroup theory [19].
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

b) If σ(x) is non-constant such that

0 <σmin := essinfx∈Tσ(x) < ess supx∈Tσ(x) =:σmax <∞,

then by defining

θ∗ := min

(
σmin,

4

σmax

)
(3.2.8)

and

α∗ (σmin,σmax) :=


σmin

(
4+2

√
4−σ2

min−σminσmax

)
4+2

√
4−σ2

min−σ2
min

, σmin < 4
σmax

,

σmax −
√
σ2

max −4, σmin ≥ 4
σmax

,

(3.2.9)

we have that

Eθ∗
(
u(t )−uavg, v(t )

)≤ Eθ∗
(
u0 −uavg, v0

)
e−α∗(σmin,σmax)t

for all t ≥ 0 and as result

∥∥∥ f (t )−
(

f∞
f∞

)∥∥∥≤
√

2+θ∗
2−θ∗

∥∥∥ f0 −
(

f∞
f∞

)∥∥∥e−α∗(σmin,σmax)
2 t , (3.2.10)

with f∞ defined in (3.2.6).

Remark 3.2.3. If we consider a sequence of relaxation functions σn(x), n ∈N, satisfying
the conditions of (b), then for σmin,n →σ, σmax,n →σ with σ 6= 2 follows

θ∗ → min

(
σ,

4

σ

)
, and α∗ →

{
σ−

p
σ2 −4, σ> 2,

σ, σ< 2.

Hence, we recovering the results of part (a) of the above theorem.
In addition, one should note that when σmin > 4

σmax
, we have that

α∗ (σmin,σmax) = 2µ (σmax) ,

where µ (σ) was defined in part (a) of the Theorem. This validates the intuition that, if
σmax is “dominant”, the convergence rate of the solution can be estimated using the “worst
convergence rate”, corresponding to µ (σmax), of the σ(x) =σ case.

Lastly, one notices that, when σmin = 4
σmax

,

σmin

(
4+2

√
4−σ2

min −σminσmax

)
4+2

√
4−σ2

min −σ2
min

=σmax −
√
σ2

max −4,

which shows the continuity of α∗ with respect to σmin and σmax.
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3.3 Preliminaries

3.3 Preliminaries

In this short section we will remind the reader of a few simple properties of functions
on the torus, as well as explore properties of the anti-derivative function, ∂−1

x f , and our
functional Eθ( f , g ). Most of the simple proofs will be deferred to Appendix 3.B.

We begin with the well known Poincaré inequality:

Lemma 3.3.1 (Poincaré Inequality). Let f ∈ H 1
per (T) with favg = 0. Then

‖ f ‖ ≤ ‖ f ′‖. (3.3.1)

Next we focus our attention on some simple, yet crucial properties, of the anti-derivative
function which was defined in (3.2.3).

Lemma 3.3.2. Let f ∈ L1 (T). Then:

i)
(
∂−1

x f
)

avg = 0.

ii) ∂−1
x f is differentiable a.e. on [0,2π] and ∂x

(
∂−1

x f
)

(x) = f (x) a.e.

iii) If in addition f is differentiable we have that ∂−1
x

(
∂x f

)
(x) = f (x)− favg.

iv) If, in addition, we have that favg = 0, then ∂−1
x f is a continuous function on the torus,

and �∂−1
x f (k) =

{
f̂ (k)
i k , k 6= 0,

0, k = 0.
(3.3.2)

Remark 3.3.3. An important corollary of (ii), (iv) and the fact that f is a function on the
torus is the fact that, as long as favg = 0, we are allowed to use integration by parts with
∂−1

x f (x) on this boundaryless manifold without qualms.

The last part of this section is dedicated to the investigation of our newly defined
functional, Eθ.

Lemma 3.3.4. Let f , g ∈ L2 (T) be such that favg = 0 and let θ ∈ R be given. Then the
entropy Eθ( f , g ), defined in (3.2.2), satisfies

Eθ
(

f , g
)≤ (

1+ |θ|
2

)(‖ f ‖2 +‖g‖2) . (3.3.3)

If in addition |θ| < 2 we have that

Eθ
(

f , g
)≥ (

1− |θ|
2

)(‖ f ‖2 +‖g‖2) . (3.3.4)

In particular, if 0 ≤ θ < 2 we have that(
1− θ

2

)(‖ f ‖2 +‖g‖2)≤ Eθ
(

f , g
)≤ (

1+ θ

2

)(‖ f ‖2 +‖g‖2) . (3.3.5)
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

Lastly, we shall prove the following theorem, which finally brings the system (3.2.1)
into play, and on which we will rely on frequently in our future estimation.

Proposition 3.3.5. Let u, v ∈ C ([0,∞);L2 (T)) be (real valued) mild solutions to (3.2.1)
with initial datum u0, v0 ∈ L2 (T). Then for any θ ∈R

d

d t
Eθ

(
u(t )−uavg, v(t )

)=−θ‖u(t )−uavg‖2 + 1

2π

∫ 2π

0
(θ−2σ(x))v(x, t )2d x

+ θ

2π

∫ 2π

0
σ(x)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x −θ (

v(t )avg
)2 ,

(3.3.6)

where

uavg = 1

2π

∫ 2π

0
u0(x)d x = 1

2π

∫ 2π

0
u(x, t )d x, ∀t > 0. (3.3.7)

Proof. We begin by noticing that the validity of (3.3.7) follows immediately from the fact
that u is a mild solution and the conservation of mass property of the system (3.2.1).
Moreover, one can see that replacing (u(t ), v(t )) by

(
u(t )−uavg, v(t )

)
yields an equiva-

lent solution (up to a constant shift in the initial data) to the system of equations, with
the additional condition that the average of the first component is zero for all t ≥ 0.
With this observation in mind, we can assume without loss of generality that uavg = 0
and continue. For the proof of (3.3.6) we first assume that (u, v) is a classical solution,
pertaining to u0, v0 ∈ H 1

per(T). The general result then follows by a simple density argu-
ment.

Using the Goldstein–Taylor equations we see that

d

d t
‖u(t )‖2 = 2〈u,∂t u〉 =−2〈u,∂x v〉 .

d

d t
‖v(t )‖2 = 2〈v,∂t v〉 =−2〈v,∂xu +σv〉 .

Since

〈u,∂x v〉+〈v,∂xu〉 = 1

2π

∫ 2π

0
∂x (uv) (x, t )d x = 0 ,

we see that
d

d t

(‖u(t )‖2 +‖v(t )‖2)=− 1

π

∫ 2π

0
σ(x)v(x, t )2d x. (3.3.8)

We now turn our attention to the mixed term of Eθ(u, v):

d

d t

θ

2π

∫ 2π

0
∂−1

x u(x, t )v(x, t )d x

= θ

2π

∫ 2π

0
∂−1

x (∂t u) (x, t )v(x, t )d x + θ

2π

∫ 2π

0
∂−1

x u(x, t )∂t v(x, t )d x

=− θ

2π

∫ 2π

0
∂−1

x (∂x v) (x, t )v(x, t )d x − θ

2π

∫ 2π

0
∂−1

x u(x, t )[∂xu(x, t )+σ(x)v(x, t )]d x.
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3.4 Constant Relaxation Function

Using points (ii) and (iii) of Lemma 3.3.2, together with Remark 3.3.3, we find that the
above equals

− θ

2π

∫ 2π

0

(
v(x, t )− v(t )avg

)
v(x, t )d x + θ

2π

∫ 2π

0
u(x, t )2d x

− θ

2π

∫ 2π

0
σ(x)∂−1

x u(x, t )v(x, t )d x.

Subtracting this from (3.3.8) (as there is a minus in definition (3.2.2)) yields (3.3.6).

3.4 Constant Relaxation Function

In recent years, the Goldstein–Taylor model onTwith constantσwas frequently tackled
with a modal decomposition w.r.t. x. This approach allows for an extension to other
discrete velocity models and even continuous velocities [1], but of course not to the
non-homogeneous case. We briefly review some recent results: In [13, §1.4] exponential
convergence was shown, but not with the sharp rate. In [1, §4.1] a hypocoercive decay
estimate of the form ∥∥∥ f (t )−

(
f∞
f∞

)∥∥∥
L2

≤ c e−µ(σ)t
∥∥∥ f0 −

(
f∞
f∞

)∥∥∥
L2

,

with the notation f (t ) := ( f+(t ), f−(t ))T and the sharp rate

µ(σ) :=
{
σ, 0 <σ< 2,
σ
2 −

√
σ2

4 −1, σ> 2,

was obtained (see also Fig. 3.4.2 below). And in [3, Th. 1.1] also the minimal constant c
was provided.

In this section we will focus our attention on the (recast) Goldstein–Taylor equation
with a constant relaxation rate, σ(x) =σ, i.e.

∂t u(x, t ) =−∂x v(x, t ),

∂t v(x, t ) =−∂xu(x, t )−σv(x, t ) .
(3.4.1)

While the modal analysis is straightforward, we have to show it in detail, to obtain the
explicit decay rates for each Fourier mode, as well as an “optimal Lyapunov functional”
for each mode — in the sense of providing the sharp decay rates. This will allow to
derive our entropy functional, first on a modal level and then without modes, in terms
of a pseudo-differential operator as defined in (3.2.2). As was mentioned in §3.2, this
will give us intuition to the long time behaviour of the equation in several cases even
when σ(x) is not constant.
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

3.4.1 Fourier Analysis and the Spectral Gap

One natural way to understand the long-time behaviour of (3.4.1) relies on a simple
Fourier Analysis and a hypocoercivity technique that was developed by Arnold and Erb
in [6]. We begin with the former, and focus on the latter from the next subsection on-
wards.

Using the Fourier transform on the torus (i.e. in the spatial variables), we see that
(3.4.1) is equivalent to the infinite dimensional ODE system:

∂t

(
û(k)
v̂(k)

)
=−

(
0 i k

i k σ

)
︸ ︷︷ ︸
Ck :=

(
û(k)
v̂(k)

)
, k ∈Z. (3.4.2)

The eigenvalues ofCk are given by

λ±,k := σ

2
±

√
σ2

4
−k2, k ∈Z,

and as such:

◦ Invariant space: For k = 0, we find that λ−,0 = 0 and λ+,0 =σ. In fact, as

C0 =
(
0 0
0 σ

)
, (3.4.3)

we can conclude immediately that û(t ,0) = û0(0) and v̂(t ,0) = v̂0(0)e−σt , corre-
sponding to the mass conservation of the original equation and the rapid decay
of the difference between the masses of f− and f+.

◦ Case I: For 0 < |k| ≤ bσ2 c, with σ
2 6∈ N, one finds two real valued eigenvectors, the

minimum between is

λ−,k = σ

2
−

√
σ2

4
−k2 = 2k2

σ+
p
σ2 −4k2

,

i.e. the long-time behaviour of û(k) and v̂(k) is controlled by e
−

(
σ
2 −

√
σ2
4 −k2

)
t
.

◦ Case II: For 0 < k = σ
2 ∈N the two eigenvalues coincide and are equal to σ

2 . Hence,
that eigenvalue is defective, i.e. corresponds to a Jordan block of size 2, and the
long time behaviour of û(k) and v̂(k) is controlled by (1+ t )e−σ

2 t .

◦ Case III: For |k| > bσ2 c, one finds two complex and conjugated eigenvalues, whose
real part equals σ

2 . We can conclude that the long-time behaviour of û(k) and v̂(k)

is controlled by e−σ
2 t .
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3.4 Constant Relaxation Function

Figure 3.4.1: The eigenvalues λ±,k of Ck , |k| ∈ N for σ = 5. The spectral gap is µ = (5−p
21)/2.

From the observations above, we notice that, as long as we subtract û(0), i.e. as long
as we remove the initial total mass from the original solution, all the modes converge
exponentially to zero. Their rates have a sharp, and uniform-in-k lower bound that
depends on σ. It will be denoted by µ (σ), the spectral gap of (3.4.1).

Case I, i.e. 0 < |k| < bσ2 c, is the most “difficult case”, as the real part of the eigenval-
ues depends on k. However, one notices that the lower eigenvalue, λ−,k , increases with
k, which implies that, if there are k-s such that 0 < |k| < bσ2 c, the slowest possible con-
vergence will be given by λ−,±1. As we need to compare the decay rates of all modes
simultaneously, we find that it is enough to consider the following possibilities:

◦ 0 <σ< 2: We only have Case III, i.e. all modes are controlled by e−σ
2 t .

◦ σ = 2: We have Case III, as well as defectiveness in k = ±1 (Case II). This means
that the modes are controlled by (1+ t )e−t . If one searches for a pure exponential
control, the best one can get is e−(1−ε)t , for any given ε> 0.

◦ σ > 2: We have Cases I and III, and potentially Case II. All the modes that cor-

respond to Case I are controlled by e
−

(
σ
2 −

√
σ2
4 −1

)
t
, while those that correspond to

Case III are controlled by e−σ
2 t . If Case II is realised, i.e. σ

2 ∈ N \ {1}, we find that

the modes k = ±σ
2 are controlled by (1+ t )e−σ

2 t . In total, thus, all the modes are

controlled by e
−

(
σ
2 −

√
σ2
4 −1

)
t
, and the coefficient in the exponent is the spectral gap

of the Goldstein–Taylor system (3.4.1).
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

Figure 3.4.2: The exponential decay rate,µ (σ), of our solutions. One sees a linear growth
until σ = 2 where the defectiveness appears (hence the circle). From that
point onwards the decay rate decreases, and is of order O

( 1
σ

)
.

Before we turn our attention to properly consider these cases and “uncover” our spa-
tial entropy, we remind the reader the hypocoercivity technique which will allow us to
transform the spectral gap information ofCk into a an appropriate norm that will show
the desired decay.

3.4.2 Hypocoercivity

In the previous subsection we have concluded that, barring the zero mode, all the Fourier
modes of (3.4.2) decay exponentially (excluding potentially also those with |k| = σ

2 since
the defective modes have a correction with a polynomial of degree 1). The lack of pos-
itive definiteness of the governing matrix, Ck , impedes us in seeing this behaviour in
the Euclidean norm on C2. However, an appropriately modified norm (determined by
a positive definite matrix Pk ) can serve as a Lyaponov functional that decays with the
expected rate (forCk non-defective).

This is exactly the idea that motivated Arnold and Erb, and which is expressed in the
following theorem (see [6], [1, Lemma 2]):

Theorem 3.4.1. Let the matrix C ∈ Cn×n be positive stable (i.e. have only eigenvalues
with positive real parts). Let

µ= min
{

Reλ |λ is an eigenvalue ofC
}
.

Then:
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3.4 Constant Relaxation Function

i) If all eigenvalues with real part equal to µ are non-defective, there there exists a Her-
mitian, positive definite matrixP such that

CHP +PC ≥ 2µP . (3.4.4)

ii) If at least one eigenvalue with real part equal to µ is defective, then for any ε> 0, one
can find a Hermitian, positive definite matrixPε such that

CHPε+PεC ≥ 2
(
µ−ε)Pε , (3.4.5)

whereCH denotes the Hermitian transpose ofC.

We remark that the matricesP andPε are never unique. One can utilise the theorem
in the following way: Assuming the eigenvalues associated to C’s spectral gap, µ, are
non-defective, then by defining the norm

‖y‖2
P := 〈

y,P y
〉= y HP y,

one sees that, if y(t ) solves the ODE ẏ =−Cy , then

d

d t
‖y‖2

P =−〈
y,

(
CHP +PC)

y
〉≤−2µ‖y‖2

P , (3.4.6)

resulting in the correct decay rate. The same approach works in the second case of
Theorem 3.4.1.

Besides the general idea of this methodology, Arnold and Erb have given a recipe (one
that was later extended in [8] to defective cases, using a time dependent matrix P ) to
finding the matrixP ,Pε:

Assuming thatC is diagonalisable, and letting {ωi }i=1,...,n be the eigenvectors ofCH ,
the matrixP > 0 can be chosen to be3

P =
n∑

i=1
biωi ⊗ωi , (3.4.7)

for any positive sequence {bi }i=1,...,n . The above formula remains true, for a particu-
lar choice of {bi }i=1,...,n , in the case whereC is not diagonalisable. In that case we also
need to augment the eigenvectors with the generalised eigenvectors. We refer the inter-
ested reader to Lemma 4.3 in [6]. Moreover, for n = 2, the case we shall need below, and
C non-defective, all matrices P satisfying (3.4.4) are indeed of the form (3.4.7), see [3,
Lemma 3.1].

Now we return to the Fourier transformed Goldstein–Taylor system (3.4.2) to deter-
mine the modal Lyapunov functionals. A short computation, where the weights b1, b2

are chosen such that both diagonal elements of P are 1, finds the following matrices
(For Case III we also require b1 = b2, as this minimises the condition number of the
resulting matrixPk among the admissible ones.):

3For v, w ∈Cd we denote v ⊗w := v ·w H where · is the matrix-matrix multiplication.
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

◦ Case I: 0 < |k| < bσ2 c, with σ
2 6∈N. In this case we have:

P (I )
k :=

(
1 − i 2k

σ
i 2k
σ

1

)
. (3.4.8)

◦ Case II: |k| = bσ2 c ∈N. As this case fosters defective eigenvalues, we will only con-
sider the case σ = 2 (as was mentioned beforehand), and state the matrix corre-
sponding to k =±1:

P (I I )
ε,±1 :=

(
1 ∓ i (2−ε2)

2+ε2

± i (2−ε2)
2+ε2 1

)
. (3.4.9)

◦ Case III: |k| > bσ2 c. In this case we have:

P (I I I )
k :=

(
1 − iσ

2k
iσ
2k 1

)
. (3.4.10)

3.4.3 Derivation of the spatial entropy Eθ(u, v)

The goal of this subsection is twofold: First we shall define a modal entropy to quantify
the exponential decay of solutions to (3.4.2) towards its steady state:

û∞(k) =
{

û0(k = 0) = (u0)avg, k = 0,
0, k 6= 0,

v̂∞(k) = 0 , k ∈Z. (3.4.11)

Since the matrixC0 from (3.4.3) has no spectral gap, the mode k = 0 plays a special role,
and hence will be treated separately.

The second goal is to relate that modal-based entropy to the spatial entropy Eθ from
Definition 3.2.1, which is not based on a modal decomposition. To this end we already
remark that the off-diagonal factors i k in (3.4.8) and 1

i k in (3.4.10) correspond in physi-
cal space, roughly speaking, to a first derivative and an anti-derivative, respectively.

As in §3.4.1 we shall distinguish three cases of σ:

Case 0 <σ< 2:

Then all modes k 6= 0 satisfy |k| > bσ2 c, and hence are in Case III. We recall from §3.4.1
that all modes decay here with the sharp rate σ

2 . For a modal entropy to reflect this

decay, we hence have to use for each mode a Lyapunov functional
∥∥(û(k,t )

v̂(k,t )

)∥∥2
Pk

, where

Pk satisfies the inequality (3.4.4) with µ= σ
2 . Pk =P (I I I )

k is the most convenient choice.
Then we define the modal entropy for any {û(k), v̂(k)}k∈Z such that û(0) = 0:

E (û, v̂) := ∑
k∈Z\{0}

‖
(
û(k)
v̂(k)

)
‖2
P (I I I )

k

+‖
(
û(0)
v̂(0)

)
‖2 (3.4.12)

= ∑
k∈Z

(
|û(k)|2 −σRe

(
û(k)

i k
v̂(k)

)
+|v̂(k)|2

)
, (3.4.13)
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3.4 Constant Relaxation Function

where we used the convention û(0)
0 = 0. The mode k = 0 was included since û(0, t ) =

û(0) = 0 and v̂(0, t ) = v̂(0)e−σt . Using Plancherel’s equality, and (iv) from Lemma 3.3.2,
we find that

E (û, v̂) = Eσ (u, v) , (3.4.14)

which shows why we consider the spatial entropy functional from Definition 3.2.1 in
this case.
We note that, since uavg(t ) is conserved, together with part (iv) of Lemma 3.3.2, explains
why we have chosen to use the anti-derivative of u, and not of v .

Case σ> 2:

This situation is more complicated, as we have a mixture of the above three cases:
finitely many k-s in Z for which 0 < |k| < bσ2 c (i.e. Case I), Case II for two k-s if σ

2 ∈ N,
while the rest satisfy |k| > bσ2 c (i.e. Case III). Following the above methodology to con-

struct the modal entropy, we would need to use a combination ofP (I )
k andP (I I I )

k , given
by (3.4.8) and (3.4.10), and potentially a matrix for the defective modes. This is feasible
on the modal level, but does not easily translate back to the spatial variables. It would
yield a complicated pseudo-differential operator “inside” the spatial entropy.

Recalling the discussion from §3.4.1 we see that the overall decay rate, µ= σ
2 −

√
σ2

4 −1
is only determined by the modes k =±1. Since all the other modes decay faster, we are
not obliged to use “optimal” modal Lyapunov functionals for these higher modes. This
gives some leeway for choosing the matricesPk , |k| > 1.

For k 6= 0 we shall use in fact the matrix

P suff
k :=P (I I I )

k

(
σ→ 4

σ

)
=

(
1 − 2i

kσ
2i
kσ 1

)
> 0 , (3.4.15)

which satisfiesP suff
±1 =P (I )

±1 for the crucial lowest modes. It also satisfies the following re-

sult, which implies exponential decay of all modal Lyapunov functionals
∥∥(û(k,t )

v̂(k,t )

)∥∥2
P suff

k
,

k 6= 0 with rate 2µ=σ−
p
σ2 −4.

Lemma 3.4.2. Let σ> 2. Then

CH
k P

suff
k +P suff

k Ck −2µP suff
k ≥ 0, ∀k 6= 0 .

The proof of this lemma is straightforward. Proceeding like in (3.4.12) we define the
modal entropy for any {û(k), v̂(k)}k∈Z such that û(0) = 0:

E (û, v̂) := ∑
k∈Z\{0}

‖
(
û(k)
v̂(k)

)
‖2
P suff

k
+‖

(
û(0)
v̂(0)

)
‖2 .

Due to (3.4.14) and (3.4.15) it is related to the spatial entropy functional from Definition
3.2.1 as

E (û, v̂) = E 4
σ

(u, v) .

115



3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

Case σ= 2 :

Just like in the previous case, the lowest frequency modes, k =±1, control the long time
behaviour. However, the matrices C±1 are now defective, which leads to a (purely) ex-
ponential decay rate reduced by ε.

We proceed similarly to the case σ> 2 and define for some ε> 0:

P suff
ε,k =P (I I I )

k

(
σ→ 2

(
2−ε2

)
2+ε2

)
=

 1 − i(2−ε2)
k(2+ε2)

i(2−ε2)
k(2+ε2) 1

> 0 , (3.4.16)

which satisfies P suff
ε,±1 =P (I I )

ε,±1 for the crucial lowest modes. It also satisfies the following

result, which implies exponential decay of all modal Lyapunov functionals
∥∥(û(k,t )

v̂(k,t )

)∥∥2
P suff
ε,k

,

k 6= 0 with rate of at least 2µ= 2(1−ε).

Lemma 3.4.3. Let σ= 2. Then

CH
k P

suff
ε,k +P suff

ε,k Ck −2µP suff
ε,k > 0 ∀k 6= 0 .

Proceeding like in (3.4.12) we define the modal entropy for any {û(k), v̂(k)}k∈Z such
that û(0) = 0:

E (û, v̂) := ∑
k∈Z\{0}

‖
(
û(k)
v̂(k)

)
‖2
P suff
ε,k

+‖
(
û(0)
v̂(0)

)
‖2 .

Due to (3.4.14) and (3.4.16) it is related to the spatial entropy functional from Definition
3.2.1 as

E (û, v̂) = E 2(2−ε2)
2+ε2

(u, v) .

3.4.4 The Evolution of the Spatial Entropy

In the previous subsection we have shown how, depending on the value of σ, the en-
tropies Eσ, E 4

σ
and E 2(2−ε2)

2+ε2

are the correct candidates to show the exponential conver-

gence to equilibrium. A closer look at (3.4.6) shows that each modal Lyapunov func-
tional

∥∥(û(k,t )
v̂(k,t )

)∥∥2
Pk

decays exponentially, and hence also the spatial entropy Eθ. Recall-
ing the decay rates presented in §3.4.3 for the three regimes of σ, confirms that we have
actually already proved most of part (a) of Theorem 3.2.2. However, as our main goal is
to consider these functionals in the spatial variable alone (i.e. without a modal decom-
position), we shall show how one achieves the correct convergence result following a
direct calculation. This will also serve as a preparation for §3.5.

Theorem 3.4.4. Under the same conditions of Theorem 3.2.2 with σ(x) =σ, one has that

◦ If 0 <σ< 2 then

Eσ
(
u(t )−uavg, v(t )

)≤ Eσ
(
u0 −uavg, v0

)
e−σt .
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3.4 Constant Relaxation Function

◦ If σ> 2 then

E 4
σ

(
u(t )−uavg, v(t )

)≤ E 4
σ

(
u0 −uavg, v0

)
e
−

(
σ−

p
σ2−4

)
t
.

◦ If σ= 2 then for any 0 < ε< 1

E 2(2−ε2)
2+ε2

(
u(t )−uavg, v(t )

)≤ E 2(2−ε2)
2+ε2

(
u0 −uavg, v0

)
e−2(1−ε)t .

Proof. Using Proposition 3.3.5, we find that:
If 0 <σ< 2:

d

d t
Eσ

(
u(t )−uavg, v(t )

)=−σ‖u(t )−uavg‖2 −σ‖v(t )‖2

+σ
2

2π

∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x −σ(

v(t )avg
)2

=−σEσ
(
u(t )−uavg, v(t )

)−σ(
v(t )avg

)2 ≤−σEσ
(
u(t )−uavg, v(t )

)
.

Note that since we know that vavg(t ) = v0,avge−σt we can compute Eθ
(
u(t )−uavg, v(t )

)
explicitly.

If σ> 2:

d

d t
E 4

σ

(
u(t )−uavg, v(t )

)=− 4

σ
‖u(t )−uavg‖2 −

(
2σ− 4

σ

)
‖v(t )‖2

+ 4

2π

∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x − 4

σ

(
v(t )avg

)2

≤−
(
σ−

√
σ2 −4

)
E 4

σ

(
u(t )−uavg, v(t )

)+(
σ−

√
σ2 −4− 4

σ

)
‖u(t )−uavg‖2

+
(

4

σ
−σ−

√
σ2 −4

)
‖v(t )‖2 + 4

2π

(
1− σ−

p
σ2 −4

σ

)∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x.

The desired inequality is valid if and only if

4

2π

∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

≤
(
σ−

√
σ2 −4

)
‖u(t )−uavg‖2 +

(
σ+

√
σ2 −4

)
‖v(t )‖2.

(3.4.17)

Cauchy-Schwartz inequality, together with Poincaré inequality (Lemma 3.3.1) and Lemma
3.3.2, imply that

4

2π

∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x ≤ 4‖u(t )−uavg‖‖v(t )‖
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= 2

(√
σ−

√
σ2 −4‖u(t )−uavg‖

)(√
σ+

√
σ2 −4‖v(t )‖

)
.

Together with the fact that 2 |ab| ≤ a2 +b2 shows (3.4.17) and concluding the proof in
this case.

If σ= 2:

d

d t
E 2(2−ε2)

2+ε2

(
u(t )−uavg, v(t )

)=−2
(
2−ε2

)
2+ε2

‖u(t )−uavg‖2 − 2
(
2+3ε2

)
2+ε2

‖v(t )‖2

+ 1

2π
· 4

(
2−ε2

)
2+ε2

∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x − 2

(
2−ε2

)
2+ε2

(
v(t )avg

)2

≤−2(1−ε)E 2(2−ε2)
2+ε2

(
u(t )−uavg, v(t )

)−2ε

(
1− 2ε

2+ε2

)
‖u(t )−uavg‖2

−2ε

(
1+ 2ε

2+ε2

)
‖v(t )‖2 + 1

2π
·
(

4ε
(
2−ε2

)
2+ε2

)∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x.

Like before, the desired inequality will follow if

1

2π
·
(

2
(
2−ε2

)
2+ε2

)∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

≤
(
1− 2ε

2+ε2

)
‖u(t )−uavg‖2 +

(
1+ 2ε

2+ε2

)
‖v(t )‖2.

This is valid since

1

2π
·
(

2
(
2−ε2

)
2+ε2

)∫ 2π

0
∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

≤ 2
p

4+ε4

2+ε2
‖u(t )−uavg‖‖v(t )‖ ≤ 2

(√
1− 2ε

2+ε2
‖u(t )−uavg‖

)(√
1+ 2ε

2+ε2
‖v(t )‖

)

≤
(
1− 2ε

2+ε2

)
‖u(t )−uavg‖2 +

(
1+ 2ε

2+ε2

)
‖v(t )‖2,

where we used Cauchy-Schwartz inequality, Poincaré inequality, and Lemma 3.3.2 again.
The theorem is now complete.

As the last part of this section, we finally prove part (a) of Theorem 3.2.2:

Proof of part (a) of Theorem 3.2.2. The decay estimates of Eθ, for the appropriate θ, fol-
lows immediately from Theorem 3.4.4. To show (3.2.5) and (3.2.7) we remind ourselves
that

f+ = u + v

2
, f− = u − v

2
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3.5 Space-Dependent Relxation

and

‖ f ‖2 +‖g‖2 ≤ 2

2−θEθ
(
g , f

)
, Eθ

(
g , f

)≤ 2+θ
2

(‖ f ‖2 +‖g‖2)
for 0 < θ < 2 and favg = 0, according to Lemma 3.3.4. Thus, using the definition of f∞
from (3.2.6) we see that

‖ f+(t )− f∞‖2 +‖ f−(t )− f∞‖2

= 1

2
‖u(t )−uavg‖2 + 1

2
‖v(t )‖2 ≤ 1

2−θEθ
(
u(t )−uavg, v(t )

)
≤ 1

2−θEθ
(
u0 −uavg, v0

)
e−2µ(σ)t ≤ 1

2
· 2+θ

2−θ
(‖u0 −uavg‖2 +‖v0‖2)e−2µ(σ)t

= 2+θ
2−θ

(‖ f+,0 − f∞‖2 +‖ f−,0 − f∞‖2)e−2µ(σ)t ,

which shows the result for the appropriate choices of θ(σ) andµ(σ). Forσ= 2 we choose

θ(2) = 2
(
2−ε2

)
2+ε2

, µ(2) = 1−ε .

The sharpness of the decay rate for σ 6= 2 can be verified easily on the first mode, e.g.
for u0 = 0, v0 = e i x .

With the constant case fully behind us, we can now focus on the case where σ(x) is a
non-constant function.

3.5 Space-Dependent Relxation

The long-time behaviour of solutions to the Goldstein–Taylor equation (3.1.1), or equiv-
alently its recast form (3.2.1), become increasingly harder to understand, if the relax-
ation function, σ(x), is not a constant. However, as shown in §3.4, we have managed to
find a potential spatial entropy, that captures the exact behaviour of the decay to equi-
librium. The idea that we will employ in this section is to use the same type of entropy
to try and estimate the convergence rate even whenσ(x) is not constant. This is, as men-
tioned in the introduction, a perturbative approach — yet the methodology, and ideas,
are robust enough that the authors believe that it can be generalised to many other set-
tings.

A central Lemma to establish our main result is the following:

Lemma 3.5.1. Let u, v ∈ L2 (T) be classical solutions to (3.2.1) with initial datum u0 ∈
L1+ (T) , v0 ∈ L1 (T). Denoting by uavg := (u0)avg we have that for any 0 < α,θ < 2 the con-
ditions

α< θ, 2σmin > θ+α, (3.5.1)

sup
x∈T

(
θ2 (σ(x)−α)2 −4(θ−α) (2σ(x)−θ−α)

)≤ 0, (3.5.2)
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

imply that
Eθ

(
u(t )−uavg, v(t )

)≤ Eθ
(
u0 −uavg, v0

)
e−αt . (3.5.3)

Proof. Using (3.3.6) from Proposition 3.3.5, and the fact that θ
(
v(t )avg

)2 ≥ 0, we find
that

d

d t
Eθ

(
u(t )−uavg, v(t )

)≤−αEθ
(
u(t )−uavg, v(t )

)− (θ−α)‖u(t )−uavg‖2

− 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x + θ

2π

∫ 2π

0
(σ(x)−α)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x.

The proof of the theorem will follow from the above inequality if we can show that

θ

2π

∫ 2π

0
(σ(x)−α)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

≤ (θ−α)‖u(t )−uavg‖2 + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x.

(3.5.4)

Due to condition (3.5.1) we have that

inf
x∈T (2σ(x)−θ−α) = 2σmin −θ−α> 0

and as such, together with Young inequality |ab| ≤ a2

θ + θb2

4 for any θ > 0, and Poincaré
inequality, (3.3.1), we have that∣∣∣∣ θ2π

∫ 2π

0
(σ(x)−α)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

∣∣∣∣
≤ θ

2π

∫ 2π

0

√
2σ(x)−θ−α |v(x, t )| |σ(x)−α|p

2σ(x)−θ−α
∣∣∂−1

x

(
u(x, t )−uavg

)∣∣d x

(3.5.5)

≤ θ

2π

(∫ 2π

0
(2σ(x)−θ−α) v(x, t )2d x

) 1
2
(∫ 2π

0

(σ(x)−α)2

2σ(x)−θ−α
(
∂−1

x

(
u(x, t )−uavg

))2
d x

) 1
2

≤ 1

2π

∫ 2π

0

θ2 (σ(x)−α)2

4(2σ(x)−θ−α)

(
∂−1

x

(
u(x, t )−uavg

))2
d x + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x

≤ sup
x∈T

(
θ2 (σ(x)−α)2

4(2σ(x)−θ−α)

)
‖u(t )−uavg‖2 + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x,

where we rewrote

σ(x)−α=
√

2σ(x)−θ−α · σ(x)−αp
2σ(x)−θ−α

so that the term with v(x, t ) we obtain (with the help of Young and Poincaré inequalities)
would be exactly the one that appears in the right hand side of (3.5.4).
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The above implies that (3.5.4) will be valid when

sup
x∈T

θ2 (σ(x)−α)2

4(2σ(x)−θ−α)
≤ θ−α,

which is equivalent, due to the positivity of the denominator, to (3.5.2). The proof is
thus complete.

Remark 3.5.2. It is worth to note that the conditions expressed in (3.5.1) are crucial in
our estimation. Indeed, they tell us that both

(θ−α)‖u(t )−uavg‖2

and
1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x

are non-negative. If one of the conditions would not be true, we would be able to cook
initial data such that the mixed term is zero, and the above terms add up to something
strictly negative - which in term might break the functional inequality we are aiming to
attain.

The next step we consider, is to look for θ andα such that conditions (3.5.1) and (3.5.2)
are satisfied and the decay rate in (3.5.3), α, is maximised.

We remind our readers the definition of θ∗ from Theorem 3.2.2,

θ∗ = min

(
σmin,

4

σmax

)
,

which in a sense captures the parameters behind the behaviour whenσ(x) is a constant
which is not 2. With this at hand we have the following:

Lemma 3.5.3. Assume that 0 < σmin < σmax <∞, where σmin and σmax were defined in
Theorem 3.2.2. Then

α∗ (σmin,σmax) :=


σmin

(
4+2

√
4−σ2

min−σminσmax

)
4+2

√
4−σ2

min−σ2
min

, σmin < 4
σmax

,

σmax −
√
σ2

max −4, σmin ≥ 4
σmax

,

is such that θ∗ and α∗ (σmin,σmax) satisfy conditions (3.5.1) and (3.5.2).

Proof. Clearly, since

θ∗ ≤
{
σmin, σmin <σmax ≤ 2,

4
σmax

, σmax > 2,

we find that 0 < θ∗ < 2.
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We continue by considering condition (3.5.2), and constructing parameters which
will give condition (3.5.1) automatically. Denoting by

f
(
α,θ, y

)
:= θ2 (

y −α)2 −4(θ−α)
(
2y −θ−α)

for (α,θ) that satisfy condition (3.5.1) and y ∈ [σmin,σmax], we find that for a fixed α and
θ, f is an upward parabola in y whose non-positive part lies between its roots

y± (α,θ) :=α+ 2(θ−α)

θ2

(
2±

√
4−θ2

)
.

Thus, for condition (3.5.2) to be satisfied we need that

y− (α,θ) ≤σmin, and σmax ≤ y+ (α,θ) .

A simple calculation, using the fact that for 0 < θ < 2

2
√

4−θ2 > 4−θ2,

shows that for a fixed θ

y− (α,θ) ≤σmin ⇐⇒ α≤
θ

(
2
p

4−θ2 − (4−σminθ)
)

2
p

4−θ2 − (
4−θ2

) = γmin (θ) ,

σmax ≤ y+ (α,θ) ⇐⇒ α≤
θ

(
2
p

4−θ2 + (4−σmaxθ)
)

2
p

4−θ2 + (
4−θ2

) = γmax (θ) .

Thus, if we choose α (θ) for a fixed θ so that condition (3.5.2) is valid, we must have that

α (θ) ≤ min
(
γmin (θ) ,γmax (θ)

)
.

To continue and motivate our choice we show next that γmax (θ) ≤ γmin (θ). Indeed, this
is valid if and only if

2
p

4−θ2 + (4−σmaxθ)

2+
p

4−θ2
≤ 2

p
4−θ2 − (4−σminθ)

2−
p

4−θ2

which is equivalent to

2(8−θ (σmin +σmax))+
√

4−θ2 θ (σmax −σmin) ≤ 4
(
4−θ2) ,

or
2(σmax +σmin −2θ)

σmax −σmin
≥

√
4−θ2,
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an inequality that is satisfied when θ ≤ min(σmin,2).4

Since, in addition, for any θ ≤ 4
σmax

with θ < 2 we have that

γmax (θ) ≤ 2θ
p

4−θ2

2
p

4−θ2 + (
4−θ2

) < θ,

we can deduce that for any θ ∈ (0,θ∗] ⊂
(
0,min

(
σmin, 4

σmax
,2

)]
γmax(θ) = min

(
γmin(θ),γmax(θ)

)
, γmax (θ) < θ,

and as such the pair
(
θ,γmax(θ)

)
satisfies condition (3.5.2) as well as

γmax(θ)+θ < 2θ ≤ 2θ∗ ≤ 2σmin.

We conclude that θ and γmax (θ) satisfy both desired conditions, for any θ ∈ (0,θ∗].
Aiming to maximiseγmax (θ), which will correspond to our desired decay rate of Lemma

3.5.1, on (0,θ∗] we notice that

d

dθ

(
θ

(
2
√

4−θ2 +4−σmaxθ
))

= 2p
4−θ2

(
4−2θ2 + (2−σmaxθ)

√
4−θ2

)
d

dθ

(
2
√

4−θ2 +4−θ2
)
=− 2θp

4−θ2

(
1+

√
4−θ2

)
and as such

d

dθ
γmax (θ) =

2
(
4−2θ2 + (2−σmaxθ)

p
4−θ2

)(
2
p

4−θ2 +4−θ2
)

(
4−θ2

) 3
2

(
2+

p
4−θ2

)2

+
2θ2

(
2
p

4−θ2 +4−σmaxθ
)(

1+
p

4−θ2
)

(
4−θ2

) 3
2

(
2+

p
4−θ2

)2

=
(8−2σmaxθ)

(
8+4

p
4−θ2 −θ2

)
(
4−θ2

) 3
2

(
2+

p
4−θ2

)2 = 8−2σmaxθ(
4−θ2

) 3
2

.

Thus, γmax (θ) increases in the domain θ ∈ (0,θ∗] ⊂
(
0, 4

σmax

]
.

Defining
α∗ (σmin,σmax) := max

θ∈(0,θ∗]
γmax (θ) = γmax

(
θ∗

)
4

2(σmax +σmin −2θ)

σmax −σmin
≥ 2(σmax −σmin)

σmax −σmin
= 2 ≥

√
4−θ2.
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

we find that the desired conditions are satisfied and

α∗ (σmin,σmax) =



σmin

(
2
√

4−σ2
min+(4−σmaxσmin)

)
2
√

4−σ2
min+

(
4−σ2

min

) , σmin < 4
σmax

,

8
σmax

√
4− 16

σ2
max

2
√

4− 16
σ2

max
+4− 16

σ2
max

, σmin > 4
σmax

,

=


σmin

(
2
√

4−σ2
min+(4−σmaxσmin)

)
2
√

4−σ2
min+

(
4−σ2

min

) , σmin < 4
σmax

,

4

σmax+
p
σ2

max−4
, σmin > 4

σmax
,

which is exactly the formula given in the Lemma. The proof is thus complete.

Remark 3.5.4. It is worth to note that we could have chosen θ = θ∗ in the above proof,
without considering the derivative of γmax (θ). We have elected to consider it, though, to
show that θ = θ∗ is the optimal choice (in the sense of getting the bestα for Lemma 3.5.1),
following this methodology.

In addition, following the last statement of Remark 3.2.3, we see that at the boundary
case of σmin = 4

σmax
there is no ambiguity in the choice of α∗ in our proof.

We now posses all the tools which are required to prove part (b) of Theorem 3.2.2.

Proof of part (b) of Theorem 3.2.2. The convergence estimation for Eθ∗
(
u(t )−uavg, v(t )

)
follows immediately from Lemma 3.5.1 and Lemma 3.5.3. To obtain (3.2.10) we use
Lemma 3.3.4 in a similar fashion to the way we proved part (a).

3.6 Convergence to Equilibrium in a Three Velocity
Goldstein–Taylor Model

The Goldstein–Taylor model can be thought of as a simplification of a BGK system

∂t f (x, v, t )+ v ·∇x f (x, v, t )−∇xV (x) ·∇v f (x, v, t ) =MT (t )

∫
f (x, v, t )d v − f (x, v, t )

in the discrete velocity space v ∈ {v1, . . . , vn}, with x ∈T, V (x) = 0 andMT (t ) a constant
matrix that speaks of the long-time behaviour. Under the natural physical assumption
of the conservation of momentum, i.e.

∑n
i=1 vi = 0, and the expectation that the equi-

librium state would be equally distributed and constant5, we recover the general multi-

5The motivation for this is the two velocity Goldstein–Taylor model, where we expect the velocities dis-
tributions to behave the same. If one wants to approximate the BGK equation onRd with a Maxwellian
as a velocity distribution, M must be chosen as a discretisation of it, which yields unequal distribution
of the appropriate equilibrium states.
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velocity Goldstein–Taylor on T× (0,∞):

∂t fi (x, t )+ vi fi (x, t ) =σ(x)




1
n
...
1
n

⊗ (1, . . . ,1)−I


 f1(x, t )

...
fn(x, t )

 (3.6.1)

where we have added a relaxation rate, σ(x), to the “collision side”, and where

{v1, . . . , vn} =
{

{−k, . . . ,−1,1, . . . ,k} , n = 2k,

{−k, . . . ,−1,0,1, . . . ,k} , n = 2k −1,
n ∈N, n ≥ 2.

A careful look shows that
1
n
...
1
n

⊗ (1, . . . ,1)−I = 1

n


1−n 1 . . . 1

1 1−n . . . 1
...

...
...

...
1 1 . . . 1−n


which has ξ1 = (1,1, . . . ,1)T in its kernel, and A = {

(ξ1, . . . ,ξn)T ∈Rn | ∑n
i=1ξi = 0

}
as its

n−1 dimensional eigenspace corresponding to the eigenvalueλ=−1. This corresponds
to the conservation of total mass, and the fact that the differences

{
fi − f j

}
i , j=1,...,n con-

verge to zero. For more information we refer the interested reader to [1].
In our section we shall consider a simple three velocity Goldstein–Taylor model, which

is governed by the following system of equations on T× (0,∞)

∂t f1(x, t )+∂x f1(x, t ) = σ(x)

3

(
f2(x, t )+ f3(x, t )−2 f1(x, t )

)
,

∂t f2(x, t ) = σ(x)

3

(
f1(x, t )+ f3(x, t )−2 f2(x, t )

)
,

∂t f3(x, t )−∂x f3(x, t ) = σ(x)

3

(
f1(x, t )+ f2(x, t )−2 f3(x, t )

)
.

(3.6.2)

Much like our Goldstein–Taylor equation, (3.1.1), we can recast the above with the vari-
ables

u1 = f1 + f2 + f3, u2 = f1 − f3, u3 = f1 + f3 −2 f2,

and obtain the system

∂t u1(x, t )+∂xu2(x, t ) = 0,

∂t u2(x, t )+ 1

3
∂x (2u1(x, t )+u3(x, t )) =−σ(x)u2(x, t ),

∂t u3(x, t )+∂xu2(x, t ) =−σ(x)u3(x).

(3.6.3)

Following our intuition we expect that by denoting

u∞ := 1

2π

∫
T

(
f1,0(x)+ f2,0(x)+ f3,0(x)

)
d x,
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3 On the Goldstein–Taylor Equation with Space-Dependent Relaxation

we will find that

u1(t , x) −→
t→∞ u∞, u2(t , x) −→

t→∞ 0, u3(t , x) −→
t→∞ 0.

The case σ(x) = σ > 0 yields some fairly simple ODEs for mi (t ) = ∫
Tui (x, t )d x, which

confirm the above.
Looking at (3.6.3), we see that the first two equations are similar to (3.2.1), though

with an additional “mixed term” and a different “weight” for ∂xu1. This is the intuition
behind the following theorem:

Theorem 3.6.1. Let u1,u2 and u3 be classical solutions to (3.6.3) with initial datum
u1,0,u2,0,u3,0 ∈ L1+ (T). Denoting by

Eθ
(

f , g ,h
)

:= ‖ f ‖2 + 3

2
‖g‖2 + 1

2
‖h‖2 − θ

2π

∫ 2π

0
Re

(
∂−1

x f (x)g (x)
)

d x,

we have that

Eθ (u1(t )−u∞,u2(t ),u3(t )) ≤Eθ
(
u1,0 −u∞,u2,0,u3,0

)
e−αt (3.6.4)

for any θ > 0 and α> 0 such that

θ+ 3α

2
< 3σmin, α< 2σmin, α≤ 2θ

3
, (3.6.5)

and (
sup
x∈T

θ2 (σ(x)−α)2

12σ(x)−4θ−6α

)
+

(
sup
x∈T

θ2

18(2σ(x)−α)

)
≤

(
2θ

3
−α

)
. (3.6.6)

Remark 3.6.2. It is important to note that the idea that guides us in defining Eθ is sim-
ilar to that that helped us find Eθ from (3.2.2). However, the norms of the functions are
weighted differently, which corresponds, in part, to the different weighting of the trans-
port parts of the system (3.6.3).

Proof. We start by noticing that the transformation

u1 → u1 −u∞, u2 → u2, u3 → u3

keeps (3.6.3) invariant, so we may assume, without loss of generality, that u∞ = 0. This,
together with the equation for u1(x, t ) implies that

(u1(t ))avg =
(
u1,0

)
avg = u∞ = 0.

Next, we compute the time derivatives of the L2 norms:

d

d t
‖u1(t )‖2 = 2〈u1,∂t u1〉 =−2〈u1,∂xu2〉 ,
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d

d t
‖u2(t )‖2 =−4

3
〈u2,∂xu1〉− 2

3
〈u2,∂xu3〉−2〈u2,σu2〉 ,

and
d

d t
‖u3(t )‖2 =−2〈u3,∂xu2〉−2〈u3,σu3〉 .

Thus

d

d t

(
‖u1(t )‖2 + 3

2
‖u2(t )‖2 + 1

2
‖u3(t )2‖

)
=− 3

2π

∫ 2π

0
σ(x)u2(x, t )2d x

− 1

2π

∫ 2π

0
σ(x)u3(x, t )2d x

(3.6.7)

Next, we see that

d

d t

∫ 2π

0
∂−1

x u1(x, t )u2(x, t )d x =−
∫ 2π

0
∂−1

x (∂xu2) (x, t )u2(x, t )d x

−1

3

∫ 2π

0
∂−1

x u1(x, t )∂x (2u1(x, t )+u3(x, t ))d x −
∫ 2π

0
σ(x)∂−1

x u1(x, t )u2(x, t )d x

= 2π
(
(u2(t ))2

avg −‖u2(t )‖2
)
+ 4π

3
‖u1(t )‖2

+1

3

∫ 2π

0
u1(x, t )u3(x, t )d x −

∫ 2π

0
σ(x)∂−1

x u1(x, t )u2(x, t )d x

where we used Lemma 3.3.2. As such, we find that

d

d t

(
− θ

2π

∫ 2π

0
∂−1

x u1(x, t )u2(x, t )

)
d x = θ‖u2(t )‖2 −θ (u2(t ))2

avg

−2θ

3
‖u1(t )‖2 − θ

6π

∫ 2π

0
u1(x, t )u3(x, t )d x + θ

2π

∫ 2π

0
σ(x)∂−1

x u1(x, t )u2(x, t )d x,

from which, together with (3.6.7), we conclude that

d

d t
Eθ (u1(t ),u2(t ),u3(t )) =− 1

2π

∫ 2π

0
(3σ(x)−θ)u2(x, t )2d x

− 1

2π

∫ 2π

0
σ(x)u3(x, t )2d x − 2θ

3
‖u1(t )‖2 −θ (u2(t ))2

avg

− θ

6π

∫ 2π

0
u1(x, t )u3(x, t )d x + θ

2π

∫ 2π

0
σ(x)∂−1

x u1(x, t )u2(x, t )d x,

(3.6.8)

and as such

d

d t
Eθ (u1(t ),u2(t ),u3(t )) =−αEθ (u1(t ),u2(t ),u3(t ))+Rθ,α,σ(t )
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Rθ,α,σ(t ) =− 1

2π

∫ 2π

0

(
3σ(x)−θ− 3α

2

)
u2(x, t )2d x

− 1

2π

∫ 2π

0

(
σ(x)− α

2

)
u3(x, t )2d x −

(
2θ

3
−α

)
‖u1(t )‖2 −θ (u2(t ))2

avg

− θ

6π

∫ 2π

0
u1(x, t )u3(x, t )d x + θ

2π

∫ 2π

0
(σ(x)−α)∂−1

x u1(x, t )u2(x, t )d x,

(3.6.9)

To conclude the proof it is enough to show that under conditions (3.6.5) and (3.6.6) we
have that Rθ,α,σ(t ) ≤ 0. A stronger statement, which we will prove, is that∣∣∣∣− θ

6π

∫ 2π

0
u1(x, t )u3(x, t )d x + θ

2π

∫ 2π

0
(σ(x)−α)∂−1

x u1(x, t )u2(x, t )d x

∣∣∣∣
≤ 1

2π

∫ 2π

0

(
3σ(x)−θ− 3α

2

)
u2(x, t )2d x + 1

2π

∫ 2π

0

(
σ(x)− α

2

)
u3(x, t )2d x +

(
2θ

3
−α

)
‖u1(t )‖2.

(3.6.10)
Similar to the techniques we’ve used in the proof of part (b) of Theorem 3.2.2, and using
the positivity of appropriate functions that follows from (3.6.5), we see that∣∣∣∣ θ2π

∫ 2π

0
(σ(x)−α)∂−1

x u1(x, t )u2(x, t )d x

∣∣∣∣
≤ θ

2π

∫ 2π

0

|σ(x)−α|√
3σ(x)−θ− 3α

2

∣∣∂−1
x u1(x, t )

∣∣ ·√3σ(x)−θ− 3α

2
|u2(x, t )|d x

≤
(
sup
x∈T

θ2 (σ(x)−α)2

12σ(x)−4θ−6α

)
‖u1(t )‖2 + 1

2π

∫ 2π

0

(
3σ(x)−θ− 3α

2

)
u2(x, t )2d x,

and that∣∣∣∣ θ6π
∫ 2π

0
u1(x, t )u3(x, t )d x

∣∣∣∣≤ θ

2π

∫ 2π

0

|u1(x, t )|
3
√
σ(x)− α

2

√
σ(x)− α

2
|u3(x, t )|d x

≤
(
sup
x∈T

θ2

18(2σ(x)−α)

)
‖u1(t )‖2 + 1

2π

∫ 2π

0

(
σ(x)− α

2

)
u3(x, t )2d x.

Thus, one sees that (3.6.10) holds when(
sup
x∈T

θ2 (σ(x)−α)2

12σ(x)−4θ−6α

)
+

(
sup
x∈T

θ2

18(2σ(x)−α)

)
≤

(
2θ

3
−α

)
,

which is (3.6.6). The proof is complete.

While we have elected to not optimise the choice of α (like in §3.5), we can still infer
the following, simpler yet far from optimal, corollary:
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Corollary 3.6.3. Let θ > 0 and α> 0 be such that

θ+ 3α

2
< 3σmin, α< 2σmin, α≤ 2θ

3
,

and
θ2σ2

max

12σmin −4θ−6α
+ θ2

18(2σmin −α)
≤

(
2θ

3
−α

)
then

Eθ (u1(t )−u∞,u2(t ),u3(t )) ≤Eθ
(
u1,0 −u∞,u2,0,u3,0

)
e−αt .

In particular, for

α∗ := min

(
σmin

2
,

3σmin

9σ2
max +1

)
we have that θα∗ := 3α∗ andα∗ satisfy the above requirements, and as such E3α∗ decays
exponentially to zero with rate α∗.

Proof. Since α< 2σmin ≤σmax +σmin we see that

α−σmax <σmin ≤σ(x) <σmax +α.

Thus
(σ(x)−α)2 ≤σ2

max.

Using the above, with additional elementary estimation on the denominator of the ex-
pressions that appear in (3.6.6), we conclude that if

θ2σ2
max

12σmin −4θ−6α
+ θ2

18(2σmin −α)
≤

(
2θ

3
−α

)
then (3.6.6) is valid. This, together with Theorem 3.6.1, shows the first statement of the
corollary.

To show the second part we notice that with the choice θα∗ = 3α∗ and α∗ ≤ σmin
2

θα∗ + 3α∗

2
= 9α∗

2
≤ 9σmin

4
< 3σmin, α∗ < σmin

2
< 2σmin, α∗ ≤ 2α∗ = 2θα∗

3
.

Thus, in this case, the first condition of the corollary hold. Plugging θ∗α in the second
condition, and using the fact that

12σmin −4θα∗ −6α∗ = 12σmin −18α∗ ≥ 3σmin

and

2σmin −α∗ ≥ 3

2
σmin
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when α∗ ≤ σmin
2 , we see that in that case

θ2
α∗σ2

max

12σmin −4θα∗ −6α∗ + θ2
α∗

18(2σmin −α∗)
≤ (

9σ2
max +1

) α∗2

3σmin
.

Thus, since
2θ∗α

3 −α∗ =α∗, our desired condition is valid when

α∗ ≤ 3σmin

9σ2
max +1

,

which concludes the proof.
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Appendix

3.A Lack of Optimality

In this appendix we will briefly, and more formally than not, discuss the optimality of
our main theorem by comparing the result we obtained to the optimal exponential rate
of convergence to the Goldstein–Taylor equation, found in [9]. In fact, we aim to do
a bit more. We will show how in some simple cases, our general methodology can be
improved, and continue to show that even this improved bound is less than that given
in [9].

To set the scene, we mention that the relaxation function we will eventually explore
will be:

σ(x) =
{

1, 0 ≤ x ≤π,

4, π< x ≤ 2π.
(3.A.1)

The choice of 1 and 4 as the particular constants for σ(x) is motivated by the fact that
in this case σmin = σmax

4 , and so our choice of θ∗ = 1 in our main theorem comes “from
both directions”.

Before we start with a more structured discussion, we would like to motivate our idea
of how to improve the technique we developed in §3.5. A crucial point in the proof
of the differential equation that governs the behaviour of Eθ∗ , expressed in part (b) of
Theorem 3.2.2, was the estimation:∣∣∣∣ θ2π

∫ 2π

0
(σ(x)−α)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

∣∣∣∣
≤ 1

2π

∫ 2π

0

θ2 (σ(x)−α)2

4(2σ(x)−θ−α)

(
∂−1

x

(
u(x, t )−uavg

))2
d x + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x

≤ sup
x∈T

(
θ2 (σ(x)−α)2

4(2σ(x)−θ−α)

)
‖u(t )−uavg‖2 + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x,

which can be found in (3.5.5) in the proof of Lemma 3.5.1.
Passing from the second to the third line in the above is a result of an L∞ estimation,

plus the “normal” Poincaré inequality, (3.3.1). One idea that comes to mind on how
one can improve this is to try and replace these two inequality with a weighted Poincaré
inequality, i.e. to try and find a minimal constant Cω, for a given weight ω(x), such that∫ 2π

0

(
f (x)− favg

)2
ω(x)d x ≤C 2

ω

∫ 2π

0

(
f ′(x)

)2 d x. (3.A.2)
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Indeed, denoting by

Cω := inf

{
C > 0

∣∣∣ ∫ 2π

0

(
f (x)− favg

)2
ω(x)d x ≤C 2

∫ 2π

0

(
f ′(x)

)2 d x

}
,

we find that Cω is in fact a minimum, which in turn satisfies (3.A.2). One can immedi-
ately see that if ω is bounded then

Cω ≤
√
‖ω‖∞,

which shows how replacing the L∞ approach with the weighted Poincaré constant in
the estimations of (3.5.5) will gives a smaller upper bound, which in turn will translate
to a larger range of choices for θ and α. Indeed, one find that∣∣∣∣ θ2π

∫ 2π

0
(σ(x)−α)∂−1

x

(
u(x, t )−uavg

)
v(x, t )d x

∣∣∣∣
≤ θ2

4
C 2

(σ(x)−α)2
2σ(x)−θ−α

‖u(t )−uavg‖2 + 1

2π

∫ 2π

0
(2σ(x)−θ−α)v(x, t )2d x,

yielding, according to the proof of Lemma 3.5.1, the following condition for the expo-
nential convergence of Eθ with a rate α:

θ2

4
C 2

(σ(x)−α)2
2σ(x)−θ−α

≤ θ−α. (3.A.3)

Since

sup
x∈T

θ2 (σ(x)−α)2

4(2σ(x)−θ−α)
≤ θ−α

implies
θ2

4
C 2

(σ(x)−α)2
2σ(x)−θ−α

≤ sup
x∈T

θ2 (σ(x)−α)2

4(2σ(x)−θ−α)
≤ θ−α,

we see that (3.A.3) gives us, as suggested, an improved decay rate.
Naturally, the study of weighted Poincaré inequalities is far from easy, which is the

reason why we elected to present the L∞ variant of the proof. However in the simple
case we consider, and slightly more general cases, one can find the Poincaré constant.

The structure of the appendix is as follows: In §3.A.1 we will discuss the weighted
Poincaré constant, and show some cases where one can explicitly compute it, which we
will then use in our simple case in §3.A.2. We will then use [9] to evaluate the optimal
convergence rate to (3.1.1) under the assumption that σ(x) is given by (3.A.1) in §3.A.3,
and conclude in §3.A.4 where we will compare the three available rates of convergence:
The one from Theorem 3.2.2, the one we’ll obtain in §3.A.2, and the optimal one which
will be computed in §3.A.3.

132



3.A Lack of Optimality

3.A.1 Weighted Poincaré Inequality

Since our goal in this appendix is to show how one can utilise the weighted Poincaré
inequality to improve our methodology, we will deal the finding of the associated con-
stant more formally than rigorously. We start by recasting the problem of finding Cω

as a minimisation problem, and assume formally that it poses a solution, and that the
differential equation we will find to classify the extremal points of our functional will
provide this global minimum.

Consider the functional

F :D = H 1
0 (T)∩H 2 (T) →R

given by

F (u) :=
∫ 2π

0

(
u′(x)

)2 d x,

and denote by

cmin := min

{
F (u)

∣∣∣ u ∈D,
∫ 2π

0
u(x)2ω(x)d x = 1,

∫ 2π

0
u(x)d x = 0

}
. (3.A.4)

Since for any u ∈D we have that

F (u) ≥ 1

C 2
ω

∫ 2π

0

(
u(x)−uavg

)2
ω(x)d x

we see that cmin ≥ 1
C 2
ω

. The converse is also true as for any u ∈D we have that

v = u −uavg√∫ 2π
0

(
u(x)−uavg

)2
ω(x)d x

satisfy the conditions in the definition of cmin and as such∫ 2π
0

(
u′(x)

)2 d x∫ 2π
0

(
u(x)−uavg

)2
ω(x)d x

=F (v) ≥ cmin.

Due to the sharpness of Cω, the above inequality implies that 1
C 2
ω
≥ cmin, and we ca con-

clude that

C 2
ω = 1

cmin
.

Thus, to find Cω we focus our attention on finding cmin. Assuming that u∗ is a minimiser,
we see that

d

dε
F

 u∗+ε
(
h −havg

)√∫ 2π
0

(
u∗(x)+ε(

h(x)−havg
))2

ω(x)d x

∣∣∣
ε=0

(3.A.5)
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for any h ∈ H 1
0 (T)∩H 2 (T). Since

d

dε

∫ 2π

0

(
u′
∗(x)+εh′(x)

)2 d x
∣∣∣
ε=0

= 2
∫ 2π

0
u′
∗(x)h′(x)d x

=−2
∫ 2π

0
u′′
∗(x)h(x)d x,

and

d

dε

∫ 2π

0

(
u∗(x)+ε(

h(x)−havg
))2

ω(x)d x
∣∣∣
ε=0

= 2
∫ 2π

0
u∗(x)

(
h(x)−havg

)
ω(x)d x

= 2
∫ 2π

0
u∗(x)h(x)ω(x)d x −2havg

∫ 2π

0
u∗(x)ω(x)d x,

equation (3.A.5) together with the fact that u∗ is in the minimisation set of (3.A.4) im-
plies that

−2
∫ 2π

0
u′′
∗(x)h(x)d x−

(∫ 2π

0

(
u′(x)

)2 d x

)(
2
∫ 2π

0
u∗(x)h(x)ω(x)d x −2havg

∫ 2π

0
u∗(x)ω(x)d x

)
= 0,

which can be rewritten as∫ 2π

0

(
u′′
∗(x)+λu∗(x)ω(x)−τ)h(x)d x = 0

with

λ=
∫ 2π

0

(
u′
∗(x)

)2 d x =F (u∗) > 0 6 (3.A.6)

and

τ= 1

2π

(∫ 2π

0

(
u′
∗(x)

)2 d x

)(∫ 2π

0
u∗(x)ω(x)d x

)
. (3.A.7)

From the above we can conclude two things:

◦ u∗ solves the differential equation

u′′+λu(x)ω(x)−τ= 0 (3.A.8)

for λ> 0 and τ ∈R.

◦ λ=F (u∗).

6F (u∗) = 0 is and only if u∗ is constant, and since u∗ ∈ H 1
0 (T), this constant must be zero, which con-

tradicts the fact that
∫ 2π

0 u∗(x)2ω(x)d x = 1.

134



3.A Lack of Optimality

Thus, solving (3.A.8) and finding the minimal positive λ for which it is valid gives us the
inverse of the desired weighted Poincaré constant.7

We would also like to mention that (3.A.8) can be obtained by means of constrained
Euler-Lagrange equations.

The differential equation (3.A.8) is, in general, not simple to solve but in certain cases
— which include our own, one can obtain some results. We will consider weights of the
form:

ωσ1,σ2 (x) =
{
σ1, 0 ≤ x ≤π,

σ2, π< x ≤ 2π.

In that case, we find that the solution to our equation is given by

u(x) =
c1 sin

(√
λσ1x

)
+ c2 cos

(√
λσ1x

)
+ τ
λσ1

, 0 < x <π,

c3 sin
(√

λσ2x
)
+ c4 cos

(√
λσ2x

)
+ τ
λσ2

, π< x < 2π,

=
{

u1(x), 0 < x <π,

u2(x) π< x < 2π.

Since u ∈ H 1
0 (T)∩H 2 (T) and satisfies the minimisation conditions, we also have that:

u1(0) = u2 (2π) ,

u1(π) = u2(π),

u′
1(0) = u′

2(2π),

u′
1(π) = u′

2(π),∫ π

0
u1(x)d x +

∫ π

0
u2(x)d x = 0,∫ π

0
σ1u1(x)2d x +

∫ π

0
σ2u2

2(x)d x = 1.

As the existence of an extremal point implies that there is a non-zero vector (c1,c2,c3,c4,c5,τ)T

and λ > 0 such all the above is satisfied, we conclude, just by considering the first five
constraints, that there is a 5×5 matrix, M(λ), such that

M (λ)


c1

c2

c3

c4

τ

=


0
0
0
0
0

 .

As the above system has a non-trivial solution, det(M (λ)) = 0, which is how we search
for options of λ. Adding the last constraint, one can use numerical methods to estimate

cmin (σ1,σ2) =λmin (σ1,σ2) .
7Here lies the assumption that a global minimum exists, and that it is an extremal point.
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3.A.2 Improved Methodology

Returning to the proof of the differential inequality that governs the evolution of Eθ,
expressed in Lemma 3.5.1, and in particular to (3.5.5), we see that with the choice of
θ∗ = 1 and σ(x) as in (3.A.1), we have that

d

d t
E1

(
u(t )−uavg, v(t )

)≤−αE1
(
u(t )−uavg, v(t )

)−(
1−α− C 2

ωα

4

)
‖u(t )−uavg‖2

where

ωα(x) =
{

1−α, 0 ≤ x ≤π,
(4−α)2

7−α , π< x ≤ 2π,
= (σ(x)−α)2

2σ(x)−1−α .

which implies that we search for α for which

α≤ 1− C 2
ωα

4
.

Choosing

α0 =α∗ (1,4) = 4−p
12 = 2

(
2−p

3
)

,

which is rate one gets from our main theorem, Theorem 3.2.2, one can follow the pro-
cess described in the previous subsection to find that

C 2
ωα0

= 1.12013,

which satisfies the above condition. One can further imagine a way to improve this
process: we can try to create a sequence {αn}n∈N such that each αn “maximises” the
previous step, i.e.

αn = 1−
C 2
ωαn−1

4
, n ∈N,

while still satisfies
C 2
ωαn
4 ≤ 1−αn . This means that for a given αn , we compute Cωαn

in
a manner that was described in the previous subsection (note that ωα is always of the
form we’ve explored), and proceed to define αn+1. Taking the limit in this process, if it
exists, gives a viable candidate which in addition could satisfy

αmax,P = 1−
C 2
ωαmax,P

4
.

Doing so in our case, and using numerical methods, one finds

αmax,P ≈ 0.7234.
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3.A.3 Optimal Rate of Convergence

The optimal rate of exponential convergence to the Goldstein–Taylor equation, (3.1.1),
was found by Bernard and Salvarani in [9], and is expressed in the following theorem:

Theorem 3.A.1. Consider the Goldstein–Taylor equations on T
2π × (0,∞):

∂t f+(x, t ) =−∂x f+(x, t )+ σ̃(x)( f−(x, t )− f+(x, t )),

∂t f−(x, t ) = ∂x f−(x, t )− σ̃(x)( f−(x, t )− f+(x, t )),

f±(x,0) = f±,0(x),

(3.A.9)

where f±,0 ∈ H 1
(
T

2π

)
are non-negative functions, and σ̃ ∈ L∞ (

T
2π

)
. Then, denoting by

f∞ := 1

2

∫ 1

0

(
f+,0(x)+ f−,0(x)

)
d x,

we find that there exists a constant A∗ that depends only on ‖ f±,0‖H 1
(
T

2π

) and ‖σ̃‖∞, such

that
‖ f+(t )− f∞‖L2

(
T

2π

)+‖ f−(t )− f∞‖L2
(
T

2π

) ≤ A∗e−αBSt

with
αBS = 2min

(
‖σ̃‖L1

(
T

2π

),−D(0)
)

,

where
D(0) = lim

R→0+
sup

{
Re(γ) | γ ∈ sp (Aσ̃) ,

∣∣γ∣∣≥ R
}

and Aa is the operator whose domain is D (Aσ̃) = (
H 1

0

(
T

2π

)∩H 2
(
T

2π

))⊕H 1
0

(
T

2π

)
, and whose

matrix representation is

Aσ̃ =
(

0 1
d 2

d x2 −2σ̃

)
.

αBS is the optimal exponential decay rate associated in these settings.

To compare the above result with our estimation we notice that a rescaling of both
variables by a factor of 2π is required, and that the relaxation function in (3.A.9) lack the
factor of a half which the relaxation function in our equations, (3.1.1), has. Taking all of
this into account, we see that the connection between the relaxation functions is given
by

σ̃(ξ) =πσ (2πξ) , ξ ∈ T

2π
,

and the appropriate decay rate one finds in our setting will be α= αBS
2π .

For simplicity we will sometimes identify T
2π as [0,1] with periodic conditions. From

the definition of σ(x) in our special case, (3.A.1), we find that

σ̃(ξ) =
{
π, 0 ≤ ξ≤ 1

2 ,

4π, 1
2 < ξ≤ 1.

(3.A.10)
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As can be seen in [18], the spectrum of Aσ̃, besides potentially {0}, is discrete and its
eigenvalues, γ, satisfy

Re
(
γ
) ∈ [−2‖σ̃‖∞,0] . (3.A.11)

The eigenvalue problem

Aσ̃

(
u
v

)
= γ

(
u
v

)
,

with γ 6= 0, is equivalent to the set of equations

u = γv,

u′′−2σ̃v = γv,

which translates to
v ′′(ξ) = γ(

2σ̃(ξ)+γ)
v(ξ),

and u = γv . As u and v are both real valued functions, γ ∈R, and due to (3.A.11) we find
that

γ
(
2σ̃(ξ)+γ)≤ 0.

Using (3.A.10), and the above consideration, we find that the solution to the our differ-
ential equation is given by

v(ξ) =
c1 sin

(√
−γ(

2π+γ)
x
)
+ c2 cos

(√
−γ(

2π+γ)
x
)

, 0 ≤ ξ≤ 1
2

c3 sin
(√

−γ(
8π+γ)

x
)
+ c4 cos

(√
−γ(

8π+γ)
x
)

, 1
2 < ξ≤ 1,

=
{

v1(ξ) 0 ≤ ξ≤ 1
2 ,

v2(ξ) 1
2 < ξ≤ 1,

together with the “boundary” conditions

v1(0) = v2 (1) ,

v1

(
1

2

)
= v2

(
1

2

)
,

v ′
1(0) = v ′

2(1),

v ′
1

(
1

2

)
= v ′

2

(
1

2

)
,

which follow from the fact that u, v ∈ H 1
0

(
T

2π

)∩H 2
(
T

2π

)
. Much like the previous subsec-

tion, §3.A.2, we can find a (singular) 4×4 matrix, M
(
γ
)
, such that

M
(
γ
)


c1

c2

c3

c4

=


0
0
0
0

 .
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and {
Re(γ) | γ ∈ sp(Aσ̃) ,

∣∣γ∣∣≥ R
}= {

γ ∈ [−8π,0)∩ (−R,R)c | det
(
M

(
γ
))= 0

}
.

With the help of numerical methods one finds that

D(0) = sup
{
γ ∈ [−8π,0) | det

(
M

(
γ
))= 0

}≈−2.7283.

With D(0) computed, we find that

αBS ≈ 2min
(‖σ̃‖L1([0,1]),2.7283

)= 2min

(
5π

2
,2.7283

)
= 5.4566

and as such α≈ 0.86844.

3.A.4 Comparison of Convergence Rates

We now have three convergence rates for the case

σ(x) =
{

1, 0,≤ x ≤π,

4, π< x ≤ 2π.

◦ The rate from our main theorem is α∗ = 4−p
12 ≈ 0.5359.

◦ The rate from our improved technique in §3.A.2 is αmax,P ≈ 0.7234.

◦ The rate from the work of Bertrand and Salvarani is α≈ 0.86844.

This shows, as expected, the lack of optimality in our technique.

3.B Deferred proofs

Proof of Lemma 3.3.1. While the proof is standard, we show it here for completion and
to fix the sharp constant. Denoting the k-th Fourier coefficient of f by

f̂ (k) := 1

2π

∫ 2π

0
f (x)e−i kxd x

we find that
f̂ ′(k) = i k f̂ (k) (3.B.1)

for all k ∈ Z (including k = 0). The condition favg = 0 is equivalent to f̂ (0) = 0 and as
such, using Plancherel’s equality, we find that

‖ f ‖2 = ∑
k∈Z

∣∣ f̂ (k)
∣∣2 = ∑

k∈Z\{0}

∣∣ f̂ (k)
∣∣2

= ∑
k∈Z\{0}

∣∣ f̂ ′(k)
∣∣2

k2
≤ ∑

k∈Z\{0}

∣∣ f̂ ′(k)
∣∣2 = ∑

k∈Z

∣∣ f̂ ′(k)
∣∣2 = ‖ f ′‖2,

completing the proof.
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Proof of Lemma 3.3.2. Since for any function h ∈ L1 (T)(
h −havg

)
avg = 0 ,

we conclude (i) from the definition of ∂−1
x f (x). To show (ii) we invoke the fundamental

theorem of calculus (the version from Lebesgue theory), and to show (iii) we notice that
if f is differentiable

∂−1
x

(
∂x f

)
(x) =

∫ x

0
∂y f (y)d y − 1

2π

∫ 2π

0

(∫ x

0
∂y f (y)d y

)
d x

= f (x)− f (0)− 1

2π

∫ 2π

0

(
f (x)− f (0)

)
d x = f (x)− favg.

Lastly, we notice that the continuity of ∂−1
x f (x) as a function on the interval [0,2π] is

a standard result from Analysis. To conclude the continuity on the torus, though, we
must also show that ∂−1

x f (0) = ∂−1
x f (2π). This is equivalent to

0 =
∫ 0

0
f (x)d x =

∫ 2π

0
f (x)d x = 2π favg,

which is exactly the additional assumption. In addition, (3.3.2) for k 6= 0 follows imme-
diately from (3.B.1) and (ii). For k = 0 we use

�∂−1
x f (0) = (

∂−1
x f

)
avg = 0,

according to (i). The proof is thus complete.

Proof of Lemma 3.3.4. We will establish that∣∣∣∣ θ2π
∫ 2π

0
∂−1

x f (x)g (x)d x

∣∣∣∣≤ |θ|
2

(‖ f ‖2 +‖g‖2)
from which (3.3.3), (3.3.4) and (3.3.5) all follow. Indeed, from the Cauchy-Schwartz in-
equality, the Poincaré inequality — which is valid since (∂−1

x f )avg = 0 — and point (ii) of
Lemma 3.3.2 we conclude that∣∣∣∣ θ2π

∫ 2π

0
∂−1

x f (x)g (x)d x

∣∣∣∣≤ |θ|‖∂−1
x f ‖‖g‖ ≤ |θ|

2

(‖∂−1
x f ‖2 +‖g‖2)

≤ |θ|
2

(‖∂x
(
∂−1

x f
)‖2 +‖g‖2)= |θ|

2

(‖ f ‖2 +‖g‖2) .

The proof is thus completed.
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