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Abstract

Fokker-Planck equations arise in models in statistical physics which constitute diffusion
processes (related to Brownian motion) in the framework of probability theory. In particu-
lar, the case of a Brownian motion in a potential raises questions concerning the long-time
behavior: Is there a (unique) equilibrium? Does the evolution converge to an equilib-
rium? If so, can we give a rate of convergence? Such questions emerge for instance when
computing averages in statistical physics.

The aim of this Bachelor Thesis is to investigate these questions based on the entropy
method (an analytic approach based on techniques in partial differential equations) as well
as the theory of Markov processes (a stochastic approach). The connection between the
partial differential equation and its corresponding stochastic differential equation allows
one to attack this problem from these two angles.

The work is organized as follows. In Chapter 1, we start with a short outline of diffusion
models and the context of invariant measures in statistical physics. Then, we will derive
the Fokker-Planck equation from stochastic differential equations which are both studied
in the following. Furthermore, we discuss the Ornstein-Uhlenbeck process as a toy problem
for the study of long-time behavior. Chapter 2 is devoted to the existence and uniqueness
of solutions. Here, we will determine the associated semigroup using spectral analysis on
one hand. On the other hand, results from stochastic differential equations are used to
obtain a solution of the corresponding stochastic differential equation.

In Chapter 3, we will investigate the entropy method in order to study the long-time
behavior of solutions. One key result in this investigation is the validity of a convex Sobolev
inequality which allows one to extend conclusions to a wider range of situations.

In Chapter 4, we give convergence results from the theory of Markov processes which will
then be applied to our particular case. This yields exponential convergence of the the law,
subgeometric rates and lower bounds, each under specific conditions. Then, we provide
numerical simulations in Chapter 5.

Finally, in the appendix, Chapter A, the reader can find fundamental definitions as well
as results concerning self-adjoint operators, Markov processes and stochastic differential
equations which are used later on. In addition, some proofs from Chapter 2 and 3 are
postponed to Section A.3 and A.4, respectively.
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1. Introduction

Diffusion processes arising from stochastic differential equations are used in statistical
physics to study models in which both external forces as well as random forces play a
significant role. Such models occur for instance in solid-space physics or chemical physics.

In the first section, we will briefly outline two diffusion models described by stochastic
differential equations with which we will be concerned in this work. Then, we will briefly
recall the context of invariant measures in statistical physics and derive the Fokker-Planck
equation, which will be studied in the following chapters too. Finally, we discuss the
Ornstein-Uhlenbeck process as a toy problem in the study of long-time behavior.

1.1. A stochastic differential equation in diffusion models

In this work we will consider diffusion processes governed by stochastic differential equations
having the form

dXt = b(Xt)dt+ σ(Xt)dWt. (1.1)

For instance, the process Xt models positions and/or velocities of particles and b(Xt)dt
describes an external force possibly originating from a potential which acts on the parti-
cles. The ordinary differential equation dXt = b(Xt)dt models the major trajectory of the
particles. The term σ(Xt)dWt, where Wt denotes a Brownian motion, adds random forces
due to collisions or thermal fluctuations, for instance, and leads to a perturbation of the
trajectory. In the following we will give two examples.

Chemical reactions. It is known that the process X can be used in chemistry to model
the positions and/or velocities of atoms, see for instance [SM79, Section 2, p. 605]. Particles
rest in a certain configuration with other particles due to molecular bonds which can be
viewed as an external force described by the term b(Xt)dt. Therefore, the force originate
from a potential V , hence b(Xt) = −∇V (Xt). When considering forces due to collisions of
the particles one adds a white noise via the term σ(Xt)dWt.

If the particles form a configuration, the process Xt will oscillate about this equilibrium
state. Such a state corresponds to a local minimum of the potential V . However, if the
collisions are strong enough such that molecular bonds are broken, then a chemical reaction
takes place leading to new configurations. Every possible molecular configuration corre-
sponds to a local minimum of the potential V in Rd. Furthermore, there will be different
ways to reach a certain stable equilibrium which lead to different chemical reactions.

Concerning the long-time behavior of the process Xt one might be interested in stable
equilibria as well as the speed of reaching those final molecular configurations.
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1. Introduction

Movements in crystal structures. Yet another model leading to (1.1) is concerned
with the migration of impurities or vacant positions in the lattice of a crystal (see [SM79,
Section 3, p. 608]). In a crystal atoms are arranged according to a lattice. As an effect
of thermal fluctuations they oscillate about their positions. Impurities are stuck between
the atoms of the crystal due to atomic forces. However, since the atoms move around their
position in the lattice, impurities can squeeze through the crystal structure in order to
reach another stable place between atoms. In a similar way, this leads to movements of
vacant positions in the lattice. As an effect some of the physical properties of the crystal
change.

Like in the previous example atomic forces b(Xt) = −∇V (Xt) are modeled via a poten-
tial V . Stable positions correspond to local minima of V which can be left due to thermal
fluctuations. Furthermore, thermal fluctuations are expressed by a white noise σ(Xt)dWt.
Moreover, depending on the structure of the crystal certain directions through the lattice
are more or less likely, which determines the structure of the matrix σ(Xt).

Finally, a study of the long-time behavior might give insights to the physical properties
of the crystal in the long run.

1.2. Long-time behavior and invariant measure

In the study of a system with a huge amount of particles it seems impossible to calculate the
evolution of each particle both on a conceptional and a numerical level, since most of the
initial data is unknown and the number of variables is too large ([Sto15, Subsection 1.3.1,
p. 12]). The set of all possible values of the considered degrees of freedom of the particles
is called phase space and is denoted by Ω. In statistical physics one is not interested in the
actual data (e.g. positions, velocities) of particles, but for instance on averages of the form

Eµ[A] =

∫
Ω
A(q) dµ(q). (1.2)

The probability measure µ on Ω enables one to study the system without the whole in-
formation. The function A is called an observable which corresponds to some macroscopic
effect like temperature or pressure ([Sto15, Subsection 1.1.2, p. 4-5]). The function A
might also be the indicator function of some set B ⊂ Rd and (1.2) yields the probability of
the particles to be found in B.

For the analysis of systems involving in time the probability measure µ is replaced by
the law (µt)t≥0 of some process (Xt)t≥0. One might ask whether (µt)t≥0 converges to some
equilibrium distribution µ∞ in the sense that∫

Ω
A(q) dµt(q)→

∫
Ω
A(q) dµ∞(q) as t→∞.

Furthermore, if this is the case, can we also give a rate of speed? For instance, is there
an exponential convergence? In such a situation the study of the system (after some
ascertained time) can be conducted with µ∞.

In the study of ergodic properties of Markov processes the measure µ∞ is an invariant
measure of the Markov family (Xt)t≥0 satisfying Ptµ∞ = µ∞ with the Markov kernel Pt
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1. Introduction

of X. See Section A.2 for the definition and corresponding notions of a Markov process or
Markov family.

1.3. Derivation of the Fokker-Planck equation

We consider again the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt or Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs

for the process (Xt)t≥0 on Rd, d ∈ N the dimension. Here, X0 is the given initial random
variable on Rd, b : Rd → Rd and σ : Rd → Rd×r for some integer r ∈ N. The process
(Wt)t≥0 is some r-dimensional Brownian motion. The integral on the right denotes the Itô
integral.

Now, our goal is to derive a partial differential equation which is satisfied by the law
(µt)t≥0 of the process (Xt)t≥0. Therefore, we apply Itô’s formula to ϕ(t,Xt) for a test
function ϕ ∈ C∞c ([0,+∞)× Rd) and take expectations

E[ϕ(t,Xt)]− E[ϕ(0, X0)] =

∫ t

0
E[∂tϕ(s,Xs)] ds+

∫ t

0
E[∇ϕ(s,Xs) · b(Xs)] ds

+
∑
i,j

∫ t

0
E[Aij∂

2
ijϕ(s,Xs)] ds

where we defined the matrix A := 1
2σσ

> ∈ Rd×d. By defining the differential operator

L∗ϕ :=
∑
i,j

Aij∂
2
ijϕ+ b · ∇ϕ

we can rewrite this with the law (µt)t≥0∫
Rd

ϕ(t, x) dµt(x)−
∫
Rd

ϕ(0, x) dµ0(x) =

∫ t

0

∫
Rd

(L∗ϕ(s, x) + ∂tϕ(s, x)) dµt(x)ds.

Recall that ϕ has compact support, so we can send t→ +∞ and obtain

−
∫ +∞

0

∫
Rd

∂tϕ(s, x) dµt(x)ds−
∫
Rd

ϕ(0, x) dµ(x) =

∫ +∞

0

∫
Rd

L∗ϕ(s, x) dµt(x)ds.

Therefore, the law satisfies the Fokker-Planck equation

∂tµt =
∑
i,j

∂2
ij(µtAij) + div(µtb) (1.3)

in the distributional sense. This is a partial differential equation of parabolic type and also
called forward Kolmogorov equation or Smoluchowski equation ([Ris96, Subsection 1.2.6]).
If the law (µt)t≥0 has a smooth density (t, x) 7→ ρ(t, x) with respect to the Lebesgue
measure, then ρ satisfied (1.3) in the classical sense.
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1. Introduction

In our study we will focus on Fokker-Planck equations having the form

∂tρ = div(D(∇ρ+ ρ∇V )) = div
(
e−VD∇

(
ρeV

))
(1.4)

with a diffusion matrix D : Rd → Rd×d and a potential V : Rd → R. In this case the
differential operator L∗ from above is

L∗ϕ =
∑
i,j

Dij∂
2
jiϕ+ (divD −D∇V ) · ∇ϕ

which is the formal adjoint of the operator on the right in (1.4). As we will see, this operator
is the generator of a Markov process satisfying the stochastic differential equation

dXt = (divD −D∇V )(Xt)dt+ σ(Xt)dWt (1.5)

with b = divD −D∇V and D = 1
2σσ

> with the notation from above. Here, divD(x) ∈ Rd
is defined by (divD)j :=

∑
i ∂iDij .

The stochastic differential equation (1.5) is called overdamped Langevin equation ([Sto15,
Subsection 4.1.2, p. 57]). The physical interpretation is the same as in Section 1.1. The
function V denotes a potential confining particles modeled by the process (Xt)t≥0, for
instance. The matrix σ takes the inhomogeneity of the diffusion into account.

The Fokker-Planck equation (1.4) has e−V as a time-independent solution. In the case
cV :=

∫
Rd e

−V dx < ∞ the measure µ∞ :=
(
e−V /cV

)
λ defines an invariant measure

for (Xt)t≥0. Here, λ denotes the Lebesgue measure.
In Chapter 3, we will prove exponential convergence of solutions of (1.4) to e−V in relative

entropy (which implies convergence in L1), based on the entropy method. In Chapter 4,
we study the exponential convergence of averages of the form (1.2) (or, as we will refer to
it, convergence in weighted L∞ spaces) as well as subgeometric rates and lower bounds in
total variational norm.

1.4. Ornstein-Uhlenbeck Process

In general one cannot calculate solutions of a Fokker-Planck equation explicitly. However, if
the diffusion matrix is the identity and the potential is quadratic, one can obtain an explicit
solution. Then, the tend to the equilibrium as well as the actual rate of convergence will
be explicit from the solution.

We examine the following stochastic differential equation

dXt = −Xtdt+
√

2dBt (1.6)

and the corresponding partial differential equation

∂tρ(t, x) = div(∇ρ(t, x) + xρ(t, x)) (1.7)

satisfied by the density Xt ∼ ρ(t, ·)λ with initial state X0 ∼ ρ0λ. The dimension is
d ∈ N, ρ : [0,∞) × Rd → R. The process Xt is called Ornstein-Uhlenbeck process ([Ris96,

5



1. Introduction

Section 3.2, p. 38], [KS00, Chapter 5, Example 6.8, p. 358]). Let us consider the one-
dimensional case d = 1. The time-homogeneous solution e−V /cV from the last section
reads ρ∞(x) := e−x

2/2/
√

2π. In order to solve the stochastic differential equation we make
the ansatz

Xt = X0e
−t + e−t

∫ t

0
a(s)dBs,

which yields together with the product rule

dXt = −Xtdt+ e−ta(t)dBt.

By comparing this with (1.6) we obtain a(t) =
√

2et and hence

Xt = X0e
−t +

√
2

∫ t

0
es−tdBs. (1.8)

First of all, observe that e−tX0 has the density ρ0(ety)et, since

P(e−tX0 ∈ A) =

∫
etA

f0(y) dy =

∫
A
f0(ety)et dy.

Furthermore, the stochastic integral on the right in (1.8) is a centered Gaussian random
variable, since es−t is deterministic. In addition, its variance is (1− e−2t) by Itô’s isometry.

Now, notice that Xt is the sum of X0e
−t and a Gaussian random variable for t > 0,

which are independent. Therefore, the density of Xt is the convolution of the corresponding
densities. We obtain

ρ(t, x) =

∫
R
ρ0(yet)et

1

(2π(1− e−2t))1/2
exp

(
− (x− y)2

2(1− e−2t)

)
dy

=

∫
R
ρ0(y)

1

(2π(1− e−2t))1/2
exp

(
−(x− ye−t)2

2(1− e−2t)

)
dy.

(1.9)

Note, that we calculated the fundamental solution of (1.7) in (1.9). Formula (1.9) also
yields ρ(t, x) → ρ∞(x) as t → ∞ and hence the convergence to the equilibrium. Further-
more, this proves uniqueness of the time-homogeneous solution ρ∞(x) = e−x

2/2/
√

2π.
In the following we will present another way to determine the solution. Consider the

Fokker-Planck equation

∂tρ = (ρ′ + xρ)′ = (ρ∞(ρρ−1
∞ )′)′, (1.10)

where the prime denotes differentiating with respect to x. Define g := ρρ−1
∞ which yields

∂tg = g′′ − xg′ = ρ−1
∞ (g′ρ∞)′ =: Lg. (1.11)

The operator L, which is a priori defined on C∞c (R), is symmetric on L2(R, ρ∞) with scalar
product

〈f, g〉L2(R,ρ∞) =

∫ +∞

−∞
fgρ∞ dx.

6



1. Introduction

Indeed, we have

〈f, Lg〉L2(R,ρ∞) =

∫ +∞

−∞
f(g′ρ∞)′ dx = −

∫ +∞

−∞
f ′g′ρ∞ dx.

We will prove in Section 2.1 that L has a self-adjoint extension. More precisely, we will see
that the closure of L is self-adjoint, see Proposition 2.2. Now, we will calculate the spectral
decomposition of L and therefore consider the following eigenvalue problem

ψ′′ − xψ′ = λψ. (1.12)

We will prove that the functions, also known as probabilists’ Hermite polynomials (see
[BGL14, Subsection 2.7.1, p. 105-107] and [Tay11, p. 127-128])

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2, λn = −n, n ∈ N0, (1.13)

solve (1.12) with corresponding eigenvalues (λn)n and that they satisfy the relation∫ +∞

−∞
Hn(x)Hm(x)ρ∞(x) dx = n!δnm. (1.14)

First of all, an induction infers that Hn is a polynomial of degree n. Furthermore, we
have the following two relations

H ′n(x) = xHn(x)− (−1)nex
2/2 d

n

dxn

[
xe−x

2/2
]

= xHn(x)− xHn(x) + nHn−1(x) = nHn−1(x),
(1.15)

Hn+1(x) = (−1)nex
2/2 d

n

dxn

[
xe−x

2/2
]

= xHn(x)− nHn−1(x). (1.16)

Therefore, we obtain using (1.15) in the first and (1.16) in the second equality for xHn−1

H ′′n − xH ′n = n(n− 1)Hn−2 − nxHn−1

= n(n− 1)Hn−2 − n(Hn + (n− 1)Hn−2) = −nHn.

Equation (1.14) now follows from partial integration together with the relation (1.15)
(w.l.o.g. n ≥ m)

(−1)m√
2π

∫ +∞

−∞
Hn(x)

dm

dxm
[e−x

2/2] dx =
1√
2π

∫ +∞

−∞
H(m)
n (x)e−x

2/2 dx

=
1√
2π

n!

(n−m)!

∫ +∞

−∞
Hn−m(x)e−x

2/2 dx = n!δnm.

In order to prove that the orthogonal functions (Hn)n are complete, we first note that
{H0, . . . Hn} and {1, . . . , xn} span the same linear subspace of L2(ρ∞) for each n ∈ N0.
Therefore, we have to show that f ∈ L2(ρ∞) and

1√
2π

∫ +∞

−∞
xnf(x)e−x

2/2 dx = 0, ∀n ∈ N0,

7



1. Introduction

implies f ≡ 0. Since fρ∞ ∈ L1(R, λ), we can calculate the Fourier transform

ω 7→ 1

2π

∫ +∞

−∞
f(x)e−iωx−x

2/2 dx =

∞∑
n=0

(−iω)n

n!

1

2π

∫ +∞

−∞
xnf(x)e−x

2/2 dx = 0.

The Fourier transform is injective and we obtain fρ∞ ≡ 0, hence f ≡ 0.
All in all, the functions ψn(x) = Hn(x)/

√
n! are an orthonormal basis of L2(R, ρ∞) and

the solution of the eigenvalue problem (1.12).
The solution of (1.11) for g0 ∈ L2(ρ∞) can be written as

g(t, x) =

∞∑
n=0

e−nt 〈g0, ψn〉L2(ρ∞) ψn(x)

converging in L2(ρ∞). Recalling the transformation g = ρρ−1
∞ , a solution of the Fokker-

Planck equation (1.10) with initial data ρ0 with ρ0ρ
−1
∞ ∈ L2(ρ∞) can be written as

ρ(t, x) =

∞∑
n=0

e−nt
(∫ +∞

−∞
ρ0(y)ψn(y) dy

)
ψn(x)ρ∞(x) (1.17)

Note that this series converges in L2(ρ−1
∞ ) due to the transformation g = ρρ−1

∞ and
‖g‖L2(ρ∞) = ‖ρ‖L2(ρ−1

∞ ). In particular, it converges also in L2(R).

In the case that ρ0 is the density of some initial probability distribution,
∫
ρ0 dx = 1, the

first term, n = 0, is ρ∞ = e−x
2/2/
√

2π due to ψ0 = 1. The rate of convergence now follows
from

‖ρt − ρ∞‖L1(Rd) = ‖ρ∞(gt − 1)‖L1(Rd) ≤ ‖
√
ρ∞‖L2(Rd) ‖gt − 1‖L2(ρ∞)

≤ e−t
( ∞∑
n=1

∣∣∣〈g0, ψn〉L2(ρ∞)

∣∣∣2)1/2

= e−t ‖g0 − 1‖L2(ρ∞) .

Note that the second inequality is in fact an equality in the case g0 = ψ1, ρ0(x) = xρ∞(x).
In Chapter 3, we will consider the convergence of ρt to ρ∞ via some entropy functional

(we will give a definition in Section 3.1). One such entropy functional has the form

e(ρt | ρ∞) =

∫ +∞

−∞

(
ρt
ρ∞
− 1

)2

ρ∞ dx = ‖gt − 1‖2L2(ρ∞) .

Hence, we obtain by the above analysis

e(ρt | ρ∞) ≤ e−2te(ρ0 | ρ∞),

where the rate is optimal by our previous observation. We conclude this example with the
following remarks:

(i) As we saw before the study of the Ornstein-Uhlenbeck process immediately yielded
the fundamental solution of the Fokker-Planck equation and hence a representation of
the solution. Furthermore, we established convergence towards the equilibrium and
its uniqueness.

8



1. Introduction

(ii) The spectral decomposition gives a formula of the solution too, but with the calcula-
tion of the eigenfunctions and eigenvalues. If one is merely interested in the rate of
convergence to equilibrium only the smallest nonzero eigenvalue in absolute value is
needed.
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2. Solution theory

In this chapter we undergo the analysis of existence and uniqueness to the Fokker-Planck
equation

∂tρ = div(D(∇ρ+ ρ∇V )) = div(De−V∇(ρeV )), ρ(0, x) = ρ0(x) (2.1)

as well as the stochastic differential equation

dXt = (divD −D∇V )(Xt)dt+ σ(Xt)dWt, X0 = ξ. (2.2)

Similar as in the previous chapter D is a given diffusion matrix and V a given poten-
tial. More precisely, D : Rd → Rd×d and V : Rd → R, where d ∈ N is the dimension.
Furthermore, ρ : [0,∞)× Rd → R and we will sometimes write ρt instead of ρ(t, ·).

In addition, D(x) = 1
2σσ

>(x) ∈ Rd×d is symmetric and W = (Wt,Ft, t ≥ 0) denotes
some r-dimensional Brownian motion. Here r ∈ N is some integer and σ is also matrix-
valued, σ(x) ∈ Rd×r. Moreover, ξ is a random variable denoting the initial condition of the
process X.

We already outlined the connection between (2.1) and (2.2) in Section 1.3. In the case
that the process X has a smooth density ρ, i.e. Xt ∼ ρ(t, ·)λ, this solves the Fokker-Planck
equation.

We will always impose the following conditions.

Assumption 2.1. For D, V and σ like above it holds:

(A) D,V, σ ∈ C∞(Rd);

(B) D is bounded on Rd and uniformly elliptic, i.e. there exists α > 0 such that ξ>D(x)ξ ≥
α|ξ|2 for all x, ξ ∈ Rd;

(C) ρ∞ := e−V ∈ L1(Rd) and w.l.o.g.
∫
ρ∞ dx = 1.

We already know that ρ∞ is the density of the equilibrium distribution and prove unique-
ness later on.

In the first section we will solve (2.1) via the spectral decomposition of a self-adjoint op-
erator. This yields the corresponding semigroup (like in the case of the Ornstein-Uhlenbeck
process in (1.17)). In the second section we will study (2.2) and prove existence of solutions
under certain conditions. These solutions are strong Markov processes and one obtains fun-
damental solutions of the Fokker-Planck equation via their densities (similar to (1.9) for
the Ornstein-Uhlenbeck process).

Some (long) proofs are postponed to the appendix, Section A.3. Furthermore, in the
appendix (Section A.1, A.2) the reader can find all definitions as well as statements from
the theory of self-adjoint operators, Markov processes and stochastic differential equations
which are used later on.

10



2. Solution theory

2.1. Study of the partial differential equation

At first, we will rewrite (2.1) with the substitution g := ρeV , which satisfies

∂tg = eV div(De−V∇g), g(0, x) = ρ0(x)eV (x). (2.3)

Let’s define the probability measure µ := f∞λ as well as the differential operator Lϕ :=
eV div(De−V∇ϕ) on C∞c (Rd). Again, λ is the Lebesgue measure. We observe for ϕ,ψ ∈
C∞c (Rd) via partial integration∫

Rd

ψLϕdµ =

∫
Rd

ψdiv(De−V∇ϕ) dx = −
∫
Rd

∇ψ>D∇ϕdµ.

Thus L is symmetric in L2(µ). The following proposition summarizes important properties
of L. See Section A.3.1 for a proof and a definition of the weighted Sobolev space H1(µ).

Proposition 2.2. Let Assumption 2.1 be valid and consider the above operator L :
C∞c (Rd) ⊂ L2(µ) → L2(µ). Then, L is symmetric and has a self-adjoint extension Lex
with domLex ⊂ H1(µ). Furthermore, this extension is the closure of L and hence unique.
In addition, we have σ(Lex) ⊂ (−∞, 0], 0 ∈ σp(Lex) and kerLex contains only constants,
dim kerLex = 1.

Remark 2.3. (i) The very last assertion tells us that the equilibrium of (2.3) is (up to
normalization) unique in L2(µ).

(ii) Under the above assumption, i.e. −L symmetric and monotone (〈−Lϕ,ϕ〉L2(µ) ≥ 0 for
all ϕ ∈ dom (−L)), the Friedrichs’ extension theorem applies, inferring the existence of
a self-adjoint extension (see [Yos08, XI.7 Theorem 2, p. 317]). However, we will give a
proof in the appendix (subsection A.3.1) without using the Friedrichs’ extension, since
in our concrete case it corresponds to solving an elliptic partial differential equation.

(iii) For our further studies we will write L instead of Lex for the self-adjoint extension.

Now we are able to solve the initial value problem (2.3).

Theorem 2.4. Let Assumption 2.1 be satisfied and consider (2.3) with initial data g0 ∈
L2(µ). Then, there exists a unique solution g in the following sense: g ∈ C([0,∞) ;L2(µ))∩
C1((0,∞);L2(µ)), g(t) ∈ domL for all t > 0 and

dg

dt
(t) = Lg(t), g(0) = g0

It can be written in the form g(t, ·) := eLtg0(·), where eLt : L2(µ) → L2(µ) denotes the
strongly continuous contraction semigroup with infinitesimal generator L. Furthermore,
the solution has the following properties:

(i) eLtg0 =
∫
σ(L) e

λt dE(λ)g0 =
∫

(−∞,0) e
λt dE(λ)g0 +

∫
g0 dµ;

(ii) t 7→ eLtg0 is infinitely often differentiable on (0,∞);

11



2. Solution theory

(iii) eLtg0 ∈ domLk for all t > 0, k ∈ N, hence eLtg0 ∈ C∞(Rd);

(iv) (t, x) 7→ eLtg0 is smooth;

(v) limt→+∞ e
Ltg0 =

∫
g0 dµ in L2(µ).

Remark 2.5. The above assumptions would allow us to use the Hille-Yosida Theorem
for dissipative operators in order to prove the existence of the semigroup eLt (see [Yos08,
IX.8, p. 250] or [Bre11, Theorem 7.7, p. 194]). However, the spectral theorem enables
us to prove all the other assertions right away. The proof can be found in the appendix,
Subsection A.3.1.

Finally, we obtain a solution of (2.1).

Corollary 2.6. Suppose Assumption 2.1 is satisfied. Then, the solution of (2.1) with
initial condition ρ0 ∈ L2(ρ−1

∞ ) is given by the smooth function ρt = e−V eLt(ρ0e
V ). The

map L2(ρ−1
∞ ) → L2(ρ−1

∞ ) : ρ0 7→ e−V eLt(ρ0e
V ) defines a strongly continuous contraction

semigroup. Furthermore, if
∫
ρ0 dx = 1 then

∫
ρt dx = 1 for all t ≥ 0. Finally, we have

‖ρt − ρ∞‖L2(ρ−1
∞ ) → 0 as t→∞.

Proof. Everything, despite of the last two assertions, follows from Theorem 2.4 and the
fact that ‖ρt‖L2(ρ−1

∞ ) =
∥∥ρtρ−1

∞
∥∥
L2(ρ∞)

= ‖gt‖L2(µ). For the last but one claim we observe

ρt ∈ L1(Rd) and for 0 < s ≤ t∫
Rd

ρt dx−
∫
Rd

ρs dx =

∫
Rd

∫ t

s
∂tρr drdx =

∫ t

s

∫
Rd

∂tρrρ
−1
∞ dµdr =

∫ t

s

∫
Rd

Lgr dµdr.

The last expression vanishes, since 〈1, Lgr〉L2(µ) = 0. The last equation is also valid for
s = 0, because

‖ρs − ρ0‖L1(Rd) = ‖gs − g0‖L1(ρ∞) ≤ ‖gs − g0‖L2(ρ∞) → 0

as s→ 0 we obtain the claim. The last assertion follows from Theorem 2.4 (v).

Concerning the method given above note that we have to pay a high prize in order
to obtain a solution of (2.1). More precisely, we needed ρ0e

V ∈ L2(µ) or equivalently
ρ2

0e
V ∈ L1(Rd).

2.2. Study of the stochastic differential equation

In the following we investigate solutions of (2.2). Sometimes it is convenient to set b(x) :=
(divD −D∇V )(x). As we will see the corresponding generator L reads

Lϕ =
∑
i,j

Dij∂
2
jiϕ+ (divD −D∇V ) · ∇ϕ. (2.4)

Since the coefficients in (2.2) are smooth, hence locally Lipschitz-continuous, we get
uniqueness of strong solutions of (2.2) from Theorem A.12. However, locally Lipschitz-
continuous is not sufficient for global existence. We employ the following idea, which is
familiar from studying ordinary differential equations (see also [Kha12, Chapter 3.4, p.
74-74]): we construct a solution (Xn

t )t≥0 on the ball Bn(0) (n ∈ N), on which all conditions
in Theorem A.13 are satisfied.

12



2. Solution theory

The process may or may not reach the boundary of the ball after some finite time.
If it does we stop it. For all n we get a local solution and since those solutions are
unique, (Xn

t )t≥0 will coincide with (Xm
t )t≥0 for m < n before it reaches the boundary of

Bm(0). Thus, we can define a process (Xt)t≥0 by gluing together all local solutions, which
constitutes a well-defined solution. The rigorous proof together with the construction of
the filtration (Ft) is given in the appendix, Subsection A.3.2. We summarize the result in
the following proposition.

Proposition 2.7. Assume that Assumption 2.1 holds and consider the equation (2.2).
Given (Ω,F ,P), a Brownian motion (Wt)t≥0 and initial data ξ, there exists a (Ft) stopping
time τ and a process (Xt,Ft, t < τ) which is a solution to (2.2) in the following sense:

(i) (Xt, t < τ) is adapted and continuous (a.s.),

(ii) X0 = ξ on {τ > 0},

(iii)
∫ t

0 (|bi(Xs)|2 + |σij(Xs)|2) ds <∞ a.s. on {t < τ},

(iv) Xt = ξ +
∫ t

0 b(Xs) ds+
∫ t

0 σ(Xs) dWs a.s. on {t < τ}.

Furthermore, (Xt,Ft, t < τ) is unique, i.e. if (Yt,Ft, t < σ) (σ a stopping time) is a
solution in the above sense, then σ ≤ τ and Xt = Yt on {t < σ ∧ τ} (despite of a null set
independent of t).

Remark 2.8. Observe that a priori {τ =∞} can be rather small (e.g. a null set). For
instance, there are ordinary differential equations (σ ≡ 0) having solutions which “explode”
in finite time. We will discuss cases where P(τ = ∞) = 1 and thus (Xt)t≥0 is a strong
solution (see Definition A.11).

In the following we discuss a condition that allows us to prove P(τ =∞) = 1 (see [Kha12,
Section 3.4, p.74-77]).

Proposition 2.9. Under the conditions of Proposition 2.7 assume furthermore that there
is a nonnegative function G ∈ C2(Rd) and a constant c > 0 such that

LG ≤ cG, lim
R→+∞

inf
|x|≥R

G(x) = +∞.

Finally, suppose E[G(X0)] < ∞. Then, the solution in Proposition 2.7 is defined for all
times, i.e. P(τ =∞) = 1 and

E[G(Xt)] ≤ E[G(X0)]ect.

Hence, (Xt)t≥0 is a strong solution.

Proof. Let τn := inf {t > 0 : |Xt| ≤ n}. By construction of (Xt)t≥0 and Itô’s formula we
have

E
[
G(Xt∧τn)e−c(t∧τn)

]
= E[G(X0)] + E

[∫ t∧τn

0
(LG(Xs)− cG(Xs))e

−cs ds

]
≤ E[G(X0)],

13



2. Solution theory

which implies

E[G(Xt∧τn)] ≤ ectE[G(X0)]. (2.5)

We further obtain by the nonnegativity of G

E[G(Xt∧τn)] ≥ E[G(Xτn)1{τn≤t}] ≥ inf
|x|≥n

G(x)P(τn ≤ t)

and hence

P(τ ≤ t) ≤ P(τn ≤ t) ≤
ectE[G(X0)]

inf |x|≥nG(x)
→ 0 for n→∞.

Since t was arbitrary, we obtain P(τ <∞) = 0 and by applying Fatou’s lemma in (2.5)

E[G(Xt)] ≤ ectE[G(X0)].

Remark 2.10. It is worth to discuss why the solution to (2.2) intuitively should not
“explode”. First of all, if D ≡ I and V ≡ 0 then (Xt)t≥0 is simply a Brownian motion,
which behaves nicely. If we add a confinement potential then the process (Xt)t≥0 has a
drift which, roughly speaking, points to minima of the potential. Thus, (Xt)t≥0 should
intuitively behave even more nicely than a Brownian motion does. In order to describe this
property we assume 〈∇V (x), x〉 ≥ 0.

If the diffusion is not homogeneous, then we will assume 〈D∇V (x), x〉 ≥ 0 instead. In
addition, we will impose D, divD to be bounded, which implies that the diffusion is not
arbitrarily strong and D does not oscillate quickly.

The intuitive reasoning actually works as the next lemma points out.

Lemma 2.11. Let Assumption 2.1 be valid and assume E[|X0|2k] < ∞ for some k ∈
N. Furthermore, suppose that D and its first derivatives are uniformly bounded as well
as 〈D∇V (x), x〉 ≥ 0 whenever |x| ≥ M for some constant M . Then, the conclusion of
Proposition 2.9 holds and for all t ≥ 0

E[|Xt|2k] ≤ C(t, k)E[|X0|2k] +K(t, k)

for some constants C(t, k),K(t, k) ≥ 0.

The aim of the proof is to apply Proposition 2.9 by defining G(x) = |x|2k + C and
estimating LG. See A.3.2 for the calculations.

We end this section with some properties of the solution of (2.1) and (2.2). We will use
the following maximum principle for parabolic equations. Its proof is provided in [Fri64,
Section 2.2, Theorem 5, p. 39].

Theorem 2.12. Consider a classical solution u ∈ C1,2((0,∞) × Rd) ∩ C([0,∞) × Rd) of
the following parabolic partial differential equation with continuous coefficients

∂tu(t, x) =
∑
ij

aij(x)∂2
jiu(t, x) +

∑
i

bi(x)∂iu(t, x) + c(x)u(t, x).

Furthermore, assume that the matrix (aij) is positive definite at every point and u ≥ 0. If
u admits the value zero at some point (t0, x0), then u(t, x) = 0 for all (t, x) ∈ [0, t0]× Rd.

14
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Theorem 2.13. Let Assumption 2.1 together with the condition from the previous Lemma
2.11 be valid. Thus, D and its first derivatives are bounded, 〈D∇V (x), x〉 ≥ 0 for all
|x| ≥ M , M some constant, and E[|X0|2k] < ∞ for some k ∈ N. Let µ0 be the law of X0.
Then, we have:

(i) One can define a (time-homogeneous) strong Markov family (Xt,Ft, t ≥ 0), (Px)x on
some probability space (Ω,F ) from the solution of (2.2) for every initial condition
ξ ≡ x ∈ Rd. The generator has the form L as in (2.4), where its domain contains
C2
c (Rd).

(ii) Suppose the Markov process (Xt)t≥0 on (Ω,F ,Px) with initial state x ∈ Rd has a
density p(t, x, ·) with respect to Lebesgue-measure which is smooth in all variables.
Then, (t, y) 7→ p(t, x, y) is a fundamental solution of (2.1) with singularity at x ∈ Rd,
t = 0.

(iii) Suppose (Xt)t≥0 on (Ω,F ,Pµ0) has a density ρ(t, ·) with (t, x) 7→ ρ(t, x) smooth.
Then, this is a classical solution of (2.1). If in addition (Xt)t≥0 has a smooth density
p like in (ii), then the solution has the representation

ρ(t, x) =

∫
p(t, y, x) dµ0(y). (2.6)

(iv) Every classical solution ρ(t, ·) of (2.1) which is a density of some probability measure
satisfies ρ(t, ·) > 0 for t > 0 if ρ0 6≡ 0. In particular, we have p(t, x, ·) > 0, t > 0.

Remark 2.14. (i) Under assumptions one can prove that the transition kernel Pt of the
Markov family (Xt)t≥0 has a smooth density, i.e. there exists for all x ∈ Rd, t > 0 a
smooth function (t, y) 7→ p(t, x, y) with

Px(Xt ∈ A) =

∫
A
p(t, x, y) dy.

for every A ∈ B(Rd). In essence, one assumes that the smooth coefficients and
all their derivatives grow at most polynomially at infinity and that D is uniformly
positive definite (see [Hai16, Theorem 6.3, p. 26]).

(ii) Continuous solutions having a representation like (2.6) are also called mild solutions.
See [SCDM04, Definition 2.1, p. 242, Subsection 3.1, p. 242-245] for the definition
and an investigation of the quantum Fokker-Planck equation, where the fundamental
solution is calculated for a quadratic potential based on the method of characteristics.

Proof of Theorem 2.13. (i) By virtue of the previous Lemma 2.11 the equation (2.2) has
a global solution. Furthermore, by Theorem A.14 we can define a strong Markov
family (Xt,Ft, t ≥ 0) with probability measures (Px)x∈Rd on a measure space (Ω,F ),
such that (Xt)t≥0 on (Ω,F ,Px) is the strong solution with initial state x ∈ Rd.
In order to prove that the generator L has the form (2.4), take f ∈ C2

c (Rd). Now,
apply Itô’s formula to f(Xt) yielding

f(Xt)− f(X0) =

∫ t

0
Lf(Xs) ds+

∫ t

0
∇f(Xs)

>σ(Xs) dWs.
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2. Solution theory

We obtain after taking expectations

Ex[f(Xt)]− f(x) =

∫ t

0
Ex[Lf(Xs)] ds.

We divide by t and take the limit t → 0, which exists, since s 7→ Ex[Lf(Xs)] is
continuous (by dominated convergence) with lims→0 Ex[Lf(Xs)] = Lf(x). Thus, we
establish

lim
t→0

1

t
(Ex[f(Xt)]− f(x)) = Lf(x)

and the domain of L contains every function f ∈ C2
c (Rd).

(ii) We already know that the law solves (2.1) in the sense of distributions. Since p is
smooth, it certainly solves the equation in the classical sense (for t > 0). Now, choose
a bounded function ϕ ∈ C(Rd), then we obtain by dominated convergence and the
continuity of (Xt)t≥0

lim
t→0

∫
Rd

ϕ(y)p(t, x, y) dy = lim
t→0

Ex[ϕ(Xt)] = ϕ(x).

Therefore, (t, y) 7→ p(t, x, y) has singularity at x for t = 0.

(iii) The Markov process (Xt)t≥0 on (Ω,F ,Pµ0) has initial distribution µ and its law solves
(2.1) in the sense of distribution. Hence, the corresponding smooth density ρ(t, ·) is
a classical solution of (2.1).

The representation (2.6) follows from∫
ϕ(x)ρ(t, x) dy = Eµ0 [ϕ(Xt)] =

∫
Ey[ϕ(Xt)] dµ0(y)

=

∫ ∫
ϕ(x)p(t, y, x) dx dµ0(y) =

∫
ϕ(x)

∫
p(t, y, x) dµ0(y) dx

for arbitrary ϕ bounded and continuous.

(iv) Since ρ is a classical solution and a density of some probability measure, ρ(t, ·) ≥ 0,
the maximum principle Theorem 2.12 applies.
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3. Entropy method

In this chapter we study the convergence to equilibrium of solutions of the Fokker-Planck
equation (2.1) via the entropy method. The idea is to analyze the long-time behavior of
an entropy functional e (see Definition 3.1 below) along a solution ρt, i.e. e(ρt).

In the first section we will briefly introduce entropy functionals and state some properties
used later on. Then, we outline the entropy method in Section 3.2 in order to establish one
primary convergence result (where the proof is provided in the appendix, see Section A.4).
Furthermore, the link with convex Sobolev inequalities will be discussed. This will allow
us to extend the results.

In the case of a logarithmic entropy functional the corresponding convex Sobolev inequal-
ity is the logarithmic Sobolev inequality studied by Gross for Gaussian reference measures
(or in our framework equilibrium measures), see [Gro75]. A famous condition, under which
a logarithmic Sobolev inequality holds, is due to Bakry and Emery, see for instance [BGL14,
Section 5.7]. The following investigation is based on the work [AMTU01] where these re-
sults were extended to more general relative entropy functionals, leading to convex Sobolev
inequalities mentioned above. In addition, sharpness of these inequalities and applica-
tions to non-symmetric linear as well as nonlinear Fokker-Planck equations were studied in
[AMTU01].

3.1. Entropy functionals

At first we shall give a definition as well as some properties of an entropy functional. We
refer to [AMTU01, Subsection 2.2, p. 12-18] for the proofs of these properties.

Definition 3.1 (relative entropy). Consider a function ψ ∈ C([0,∞]) ∩ C4((0,∞)) satis-
fying

ψ(1) = 0, ψ′′ ≥ 0, ψ′′ 6≡ 0, (ψ′′′)2 ≤ 1

2
ψ′′ψIV .

We define for two probability density functions ρ1, ρ2 with ρ1/ρ2 finite ρ2λ-a.s. (λ the
Lebesgue measure) the relative entropy of ρ1 with respect to ρ2 by

eψ(ρ1 | ρ2) :=

∫
Rd

ψ

(
ρ1

ρ2

)
ρ2 dx ≥ 0.

The function ψ is called the generating function of eψ. Furthermore, if ψ′(1) = 0 then ψ is
normalized.

Remark 3.2. For every generating function ψ there is its normalization ψ̃(σ) = ψ(σ) −
ψ′(1)(σ − 1), which generates the same relative entropy as ψ (due to

∫
ρ1 dx =

∫
ρ2 dx).
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3. Entropy method

For instance, the original relative entropy generated by σ lnσ−σ+1 and its generalization
generated by

χ(σ) = α(σ + β) ln

(
σ + β

1 + β

)
− α(σ − 1) (3.1)

for α > 0, β ≥ 0 provide relative entropies in the above sense. Another example is given
by the generating function ϕ(σ) = α(σ − 1)2, for α > 0. Note that the generated entropy
functional eϕ corresponds to the L2(ρ−1

2 )-norm, i.e.

eϕ(ρ1 | ρ2) =

∫
Rd

α

(
ρ1

ρ2
− 1

)2

ρ2 dx = α

(∫
Rd

ρ2
1ρ
−1
2 dx− 1

)
.

In order to cover all admissible entropies in our investigations it will be useful to know
certain growth properties of generating functions, which are stated in the following lemma.
Furthermore, the lemma contains a continuity property of entropy functionals. We refer to
[AMTU01, Remark 2.3, Lemma 2.8, Lemma 2.9, p. 13-18] for the proofs.

Lemma 3.3. Consider a normalized generator ψ. Then, we have the following properties:

(i) Suppose limj→+∞ ρj = ρ in L2(ρ̃−1) for probability density functions (ρj)j, ρ, ρ̃.
Then, limj→∞ eψ(ρj | ρ̃) = eψ(ρ | ρ̃).

(ii) The functions σ 7→ σψ′(σ) and ψ′ are increasing. Moreover, ψ′′ > 0 and ψ′′ is
decreasing.

(iii) Let µ2 = ψ′′(1) then for all σ ≥ σ0 > 0 it holds

ψ(σ) ≤ ψ(σ0)

(
σ

σ0

)2

+ µ2

(
σ

σ0
− 1

)
(σ − 1) (3.2)

and we have for all σ0 ≥ σ > 0

ψ(σ) ≤ ψ(σ0)
σ

σ0
+ µ2

(
σ

σ0
− 1

)
(σ − 1). (3.3)

The next lemma shows that convergence in entropy to zero, i.e. eψ(ρt | ρ∞)→ 0, provides
convergence in L1 as well. This is a generalization of the Csiszár-Kullback inequality. The
proof can be found in [AMTU01, p. 15].

Lemma 3.4. Consider a relative entropy eψ and two probability density functions ρ1, ρ2.
Then, we have (with µ2 = ψ′′(1))

1

2
‖ρ1 − ρ2‖2L1(Rd) ≤

1

µ2
eψ(ρ1 | ρ2).

In Section 2.1, we studied solutions ρt of (2.1) in L2(ρ−1
∞ ) via the substitution gt := ρt/ρ∞,

recalling the time homogeneous solution ρ∞ := e−V of (2.1). The convergence of ρt to ρ∞ in
L2(ρ−1

∞ ), see Corollary 2.6, implies the following convergence result for the relative entropy
(see also [AMTU01, Lemma 2.11, p. 19]).

18



3. Entropy method

Lemma 3.5. Let Assumption 2.1 be satisfied and consider a solution ρt of (2.1) with initial
distribution ρ0 ∈ L2(ρ−1

∞ ). For every relative entropy eψ it holds

eψ(ρt | ρ∞)→ 0 as t→∞.

Proof. We know ψ(σ) ≤ µ2(σ−1)2 =: ϕ(σ) by choosing σ0 = 1 in Lemma 3.3 (iii) (recalling
ψ(1) = 0) and therefore

0 ≤ eψ(ρt | ρ∞) ≤ eϕ(ρt | ρ∞) = µ2

∥∥∥∥ ρtρ∞ − 1

∥∥∥∥2

L2(ρ∞)

= µ2 ‖ρt − ρ∞‖2L2(ρ−1
∞ )

.

The last expression tends to zero as t→∞ by Corollary 2.6.

3.2. Convergence in relative entropy

The entropy method consists of the following steps.

(1) Given an admissible relative entropy eψ we calculate the entropy dissipation along the
trajectory of a solution ρt of (2.1) with initial data ρ0 ∈ L2(ρ−1

∞ ), i.e. for t > 0

d

dt
eψ(ρt | ρ∞) =: Iψ(ρt | ρ∞).

The function Iψ(ρt | ρ∞) is also called the relative Fisher information.

(2) Then, one proves the validity of a convex Sobolev inequality under assumptions on D,V
for initial data ρ0 ∈ L2(ρ−1

∞ ), i.e. there holds for t > 0

eψ(ρt | ρ∞) ≤ − 1

2λ
Iψ(ρt | ρ∞). (3.4)

According to the first step, this implies exponential convergence of the entropy with a
given rate 2λ, i.e. for t ≥ 0

eψ(ρt | ρ∞) ≤ e−2λteψ(ρ0 | ρ∞). (3.5)

(3) Finally, the result can be extended to initial distributions having finite entropy.

Remark 3.6. Set gt = ρt/ρ∞. A formal calculation shows

Iψ(ρt | ρ∞) = −
∫
Rd

ψ′′(gt)∇g>t D∇gtρ∞ dx

using ∂tgt = eV div(De−V∇gt) and partial integration. Therefore, the convex Sobolev
inequality (3.4) reads

eψ(ρt | ρ∞) ≤ 1

2λ

∫
Rd

ψ′′
(
ρt
ρ∞

)
∇
(
ρt
ρ∞

)>
D∇

(
ρt
ρ∞

)
ρ∞ dx (3.6)

This becomes Gross’ inequality when ψ(σ) = σ lnσ − σ + 1, D ≡ I and ρ∞ is a Gaussian
density, i.e. ρ∞(x) = e−|x|

2/2/(2π)d/2, see [Gro75].
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We start the above investigation with the following lemma which provides step (1).

Lemma 3.7. Let Assumption 2.1 be satisfied and consider a solution ρt of (2.1) with
ρ0 ∈ L2(ρ−1

∞ ). Furthermore, consider a relative entropy eψ. Then, eψ(ρt | ρ∞) < ∞ and
for 0 ≤ s ≤ t we have

eψ(ρt | ρ∞)− eψ(ρs | ρ∞) =

∫ t

s

(
−
∫
Rd

ψ′′(gr)∇g>r D∇grρ∞ dx
)
dr ≤ 0. (3.7)

The proof can be found in the appendix, see Section A.4. The technical point in proving
(3.7) is that σ 7→ ψ′(σ) and σ 7→ ψ′′(σ) can have a singularity at σ = 0. The idea is to use
an approximating function ψε → ψ for ε→ 0, which does not have a singularity.

In the following we will provide our first convergence result in the case of homogeneous
diffusion, i.e. when D ≡ I.

Proposition 3.8. Let us assume Assumption 2.1 together with D ≡ I. Furthermore,
assume that Hess V (x) ≥ λI for all x ∈ Rd. Consider a solution ρt of (2.1) with ρ0 ∈
L2(ρ−1

∞ ) and some relative entropy eψ. Then, the convex Sobolev inequality (3.6) holds and
for t ≥ 0

eψ(ρt | ρ∞) ≤ e−2λteψ(ρ0 | ρ∞).

Remark 3.9. The assumption Hess V ≥ λI is a special case of the Bakry-Emery condition,
see [BGL14, Theorem 5.7.4, p. 270]. The general condition also considers the curvature of
a Riemannian manifold with which one is working (instead of Rd). The primary idea is to
study the dissipation of the entropy dissipation, i.e. d

dtIψ(ρt | ρ∞). However, there is again

the technicality in computing d
dtIψ(ρt | ρ∞), since σ 7→ ψ′′(σ) and σ 7→ ψ′′′(σ) can have a

singularity at σ = 0. Therefore, we will approximate ρ0ρ
−1
∞ = g0 ∈ L2(ρ∞) by initial data

which are bounded away from zero and satisfy a gradient estimate |∇gt| ≤ C (following
[OV00, Section 4, p. 18]). Finally, one can use the uniform convexity of V to obtain the
convex Sobolev inequality (3.6), following [AMTU01, Lemma 2.13, p. 21]. The proof is
provided in the appendix, see Subsection A.4.1

Finally, step (3) extends the exponential convergence to a wider class of initial distri-
butions. We state it in a separate fashion, in order to point out the independence of the
above steps.

Theorem 3.10. Let Assumption 2.1 be satisfied and consider a relative entropy eψ. Sup-
pose that for every solution ρt of (2.1) with initial data ρ0 ∈ L2(ρ−1

∞ ) there is exponential
convergence towards the equilibrium with rate 2λ, i.e. it holds for t ≥ 0

eψ(ρt | ρ∞) ≤ e−2λteψ(ρ0 | ρ∞).

Then, the same result is true for initial distributions ρ0 with finite entropy eψ(ρ0 | ρ∞) <∞.

The proof is provided in [AMTU01, Theorem 2.16, p. 26]. The idea is to approximate a
given initial distribution with finite entropy by functions ρ ∈ L2(ρ−1

∞ ).
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3. Entropy method

Remark 3.11. The fact that the convex Sobolev inequality (3.6) is the essential point
where the conditions on V and D play a role is of great significance. It shows us that the
whole analysis of convergence to equilibrium is in essence a matter of proving a convex
Sobolev inequality (for solutions having initial data in L2(ρ−1

∞ )).

In order to prove further convergence results it is important that inequality (3.6) can be
extended. We state the assertion and refer to [AMTU01, Corollary 2.18, p. 29] for a proof.

Theorem 3.12. Assume Hess V ≥ λI in addition to Assumption 2.1, then for every
positive probability density function ρ ∈ C∞(Rd), the convex Sobolev inequality (3.6) is
valid for any relative entropy with ρ∞ = e−V .

Remark 3.13. One can weaken the assumption of ρ ∈ C∞(Rd) and ρ > 0. However, one
has to give a meaning to the right term in (3.6), see [AMTU01, Remark 2.12, p. 20].

Now, we can cover the case of inhomogeneous diffusion D under the general assumptions
(see [AMTU01, Corollary 2.17, p. 29 and Remark 3.1, p. 34]).

Theorem 3.14. Let Assumption 2.1 be valid (in particular, D ≥ αI) and assume Hess V ≥
λI. Consider a relative entropy eψ. Then, any solution ρt of (2.1) with initial data ρ0

having finite entropy converges exponentially to the equilibrium in relative entropy and
hence in L1. More precisely, it holds for t ≥ 0

eψ(ρt | ρ∞) ≤ e−2λαteψ(ρ0 | ρ∞) and ‖ρt − ρ∞‖L1(Rd) ≤ e
−λαt

√
2

µ2
eψ(ρ0 | ρ∞).

Proof. We set gt = ρt/ρ∞ and obtain for ρ0 ∈ L2(ρ−1
∞ ) using Lemma 3.7 as well as D ≥ αI

eψ(ρt | ρ∞)− eψ(ρ0 | ρ∞) = −
∫ t

0

∫
Rd

ψ′′(gr)∇g>r D∇grρ∞ dxdr

≤ −α
∫ t

0

∫
Rd

ψ′′(gr)|∇gr|2ρ∞ dxdr.

By Theorem 3.12 it holds

1

2λ

∫
Rd

ψ′′(gr)|∇gr|2ρ∞ dx ≥ eψ(ρr | ρ∞)

and hence by the previous inequality

eψ(ρt | ρ∞)− eψ(ρ0 | ρ∞) ≤ −2λα

∫ t

0
eψ(ρr | ρ∞) dr.

This yields exponential convergence with rate 2λα in relative entropy via Gronwall’s lemma.
Now, Theorem 3.10 applies yielding the result for initial data having finite entropy. Finally,
Lemma 3.4 infers for t ≥ 0

‖ρt − ρ∞‖2L1(Rd) ≤
2

µ2
e−2λαteψ(ρ0 | ρ∞).

This completes the proof.
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3. Entropy method

The next extension of these results allows the conclusion that the long-time behavior only
depends on the growth of V at infinity. Thus, a solution still tends towards the equilibrium.
The following perturbation result is originally due to Holley and Stroock, see [HS87], and
was generalized in [AMTU01, Theorem 3.1, p. 38-39] (on which the proof below is based).
The statement reads:

Theorem 3.15. Suppose that for V , D in (2.1), where Assumption 2.1 is satisfied, the
convex Sobolev inequality (3.6) holds for some relative entropy eψ. Consider Ṽ = V +v for

some smooth bounded function v with
∫
ρ̃∞ dx = 1 (ρ̃∞ = e−Ṽ ). Let a, b be such that

0 < a ≤ e−v ≤ b. (3.8)

Then, the convex Sobolev inequality (3.6) is also valid with ρ̃∞ replacing ρ∞ and with
constant max

(
b/a2, b2/a

)
/2λ instead of 1/2λ.

Proof. In the following we will omit the subscript t in ρt and corresponding expressions.
It suffices to prove the result only for solutions ρ of (2.1) with initial data ρ0 ∈ L2(ρ−1

∞ ) =
L2(ρ̃−1

∞ ), since one can then extend it via Theorem 3.10. Recall that solutions are strictly
positive for t > 0, see Theorem 2.13 (iv). We want to prove∫

Rd

ψ

(
ρ

ρ̃∞

)
ρ̃∞ dx ≤

1

2λ
max

(
b

a2
,
b2

a

)∫
Rd

ψ′′
(
ρ

ρ̃∞

)
∇
(
ρ

ρ̃∞

)>
D∇

(
ρ

ρ̃∞

)
ρ̃∞ dx,

which contains the term ρ/ρ̃∞. Therefore, we set f̃ := ρ/ρ̃∞ and observe∫
Rd

f̃ ρ̃∞ dx = 1.

So it suffices to prove the corresponding inequality for f̃ ∈ L2(ρ̃∞) with ‖f̃‖L1(ρ̃∞) = 1.

Note that f̃ should be smooth and positive too. By the same observation the convex Sobolev
inequality corresponding to V,D is true for f ∈ L2(ρ∞) with ‖f‖L1(ρ∞) = 1. Furthermore,

L2(ρ∞) = L2(ρ̃∞) and we can recover unit norm by scaling.
Choose f̃ like above and set f := f̃/‖f̃‖L1(ρ∞). We will make us of the following estimate

ψ′′(σ0) ≤

ψ
′′(σ1), σ1 ≤ σ0,

ψ′′(σ1)
σ1

σ0
, σ1 > σ0,

(3.9)

which follows either from ψ′′(σ) being a decreasing function or σψ′′(σ) being an increasing
function (see Lemma 3.3 (ii)). We set σ1 = f̃ and σ0 = f , which are both positive.

We distinguish two cases. The first one is σ1 ≥ σ0 or equivalently ‖f̃‖L1(ρ∞) ≥ 1. Now,
we will use (3.2) in Lemma 3.3 for σ = σ1 yielding∫

Rd

ψ(f̃)ρ̃∞ dx ≤
∫
Rd

{
ψ(f)‖f̃‖2L1(ρ∞) + µ2(‖f̃‖L1(ρ∞) − 1)(f̃ − 1)

}
ρ̃∞ dx

≤ b‖f̃‖2L1(ρ∞)

∫
Rd

ψ(f)ρ∞ dx ≤
b

2λ
‖f̃‖2L1(ρ∞)

∫
Rd

ψ′′(f)∇f>D∇fρ∞ dx
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3. Entropy method

where we used ‖f‖L1(ρ∞) = 1, (3.8) and the convex Sobolev inequality. Using the definition
of f , (3.8) and the second inequality in (3.9) we establish∫

Rd

ψ(f̃)ρ̃∞ dx ≤ ‖f̃‖L1(ρ∞)
b

2λa

∫
Rd

ψ′′(f̃)∇f̃>D∇f̃ ρ̃∞ dx

The assertion now follows from ‖f̃‖L1(ρ∞) ≤ 1/a.
In the case σ0 ≥ σ1, one uses (3.3) similarly and obtains∫

Rd

ψ(f̃)ρ̃∞ dx ≤
∫
Rd

{
ψ(f)‖f̃‖L1(ρ∞) + µ2(‖f̃‖L1(ρ∞) − 1)(f̃ − 1)

}
ρ̃∞ dx

≤ b‖f̃‖L1(ρ∞)

∫
Rd

ψ(f)ρ∞ dx ≤
b

2λ
‖f̃‖L1(ρ∞)

∫
Rd

ψ′′(f)∇f>D∇fρ∞ dx

Using the first inequality in (3.9) and 1/b ≤ ‖f̃‖L1(ρ∞), we conclude

≤ b

2λa
‖f̃‖−1

L1(ρ∞)

∫
Rd

ψ′′(f̃)∇f>D∇fρ̃∞ dx ≤
b2

2λa

∫
Rd

ψ′′(f̃)∇f̃>D∇f̃ ρ̃∞ dx.

We conclude this chapter with the following remarks.

Remark 3.16. Theorem 3.15 seems to be very satisfying, since it extends the convergence
results based on Theorem 3.14 to potentials which are uniformly convex with constant λ
out of some bounded set, for instance.

There are conditions which imply the existence of a spectral gap λ0 (i.e. σ(L)\{0} has
distance λ0 from 0) and hence infer exponential convergence with rate λ0. For instance,
following [AMTU01, Section 2, p. 9-11] one uses the substitution ht = ρt/

√
ρ∞ in (2.1)

yielding

∂tht = −L̃ht = div(D∇ht)− Ṽ ht, Ṽ := −1

2
eV/2div(e−V/2D∇V ).

The operator L̃ is densely defined on L2(Rd) and can be extended to a self-adjoint operator
(see [AMTU01, Section 2, p. 10]). Now, if Ṽ (x) → ∞ as |x| → ∞, then nearly the
same proof in [RS78, Theorem XIII.67, p. 249] implies that L̃ has compact resolvent, i.e.
(L̃ − λ)−1 is a compact operator for all λ /∈ σ(L̃). This implies that the spectrum of L̃ is
discrete and the eigenvalues diverge to infinity. Hence, L̃ has a spectral gap. The same
assertions are then also true for L.

In the case D ≡ I the above condition reads

−1

2
∆V (x) +

1

4
|∇V (x)|2 → +∞, for |x| → +∞.

We note that such a growth condition will enable us to prove exponential convergence in
Section 4.3.

In the general case of inhomogeneous diffusion (D 6≡ I) the above condition lack of
physical meaning. In contrast to that, we assumed V to be uniformly convex and D to be
uniformly elliptic while using the entropy method.
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3. Entropy method

On the other hand, one can show that a convex Sobolev inequality (3.6) implies a spectral
gap λ0, which is in general larger than λ. More precisely, the convex Sobolev inequality
implies a Poincaré inequality, see for instance [Rot81, Section 3]. However, the entropy
method enables one to give a rate λ right away from the equation rather than calculating
the spectral gap.
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4. Ergodic methods

In this chapter, we will deal with the long-time behavior of solutions to the stochastic
differential equation (2.2). As we already know (under conditions on D, V , see Theorem
2.13) they constitute a strong, time-homogeneous Markov family (Xt,Ft, t ≥ 0,Px) with
infinitesimal generator L, see (2.4). We denote the transition kernel by Pt.

In the first and second section, we outline results from the theory of Markov processes.
We give general conditions which infer exponential convergence of the law to the invariant
measure in weighted L∞ spaces. In addition, we state a theorem yielding convergence in
total variational norm with a subgeometric rate and prove lower bounds.

In the final section, we apply the above statements to the Markov process which solves
(2.2) by imposing conditions on the potential V and the diffusion matrix D.

4.1. Exponential convergence

The following result of Markov processes are formulated in discrete time and can then be
applied to continuous time without any losses. Therefore, suppose we were given a time-
homogeneous Markov chain X = (Xn,Fn,Px) with transition kernel P. We will need the
following two assumptions for the major theorem.

(i) Lyapunov condition: There is a function G : Rd → [0,∞) and constants K ≥ 0,
γ ∈ (0, 1) such that for all x ∈ Rd

(PG)(x) ≤ γG(x) +K.

(ii) Doeblin’s condition: There exists a constant α ∈ (0, 1) and a probability measure π
with

inf
x∈C
P(x, ·) ≥ απ(·),

where C =
{
x ∈ Rd : G(x) ≤ R

}
for some R > 2K/(1− γ).

Remark 4.1. We give a brief intuitive explanation of the above conditions and assume
that G(x)→ +∞ for |x| → +∞ (as it will be the case in Section 4.3). Roughly speaking,
the first condition prohibits arbitrary big jumps of X during one time step when starting
in the “center” {G ≤ R} of G (R > 0 some number). The second assumption allows one to
bound the probability of what is happening in the next time step uniformly with respect
to starting points in the center of G.

Thus, the Markov chain cannot leave the center immediately and the behavior in the
following time step is similar when starting in this region.
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4. Ergodic methods

With the function G one defines the weighted L∞G -norm by

‖ϕ‖L∞G = sup
x

|ϕ(x)|
1 +G(x)

for measurable functions ϕ. Furthermore, define L∞G to be the space of measurable functions
for which the above norm is finite. Certainly, L∞G is complete and contains L∞.

Now, the major theorem, which provides convergence with exponential rate in the
weighted space L∞G , reads as follows:

Theorem 4.2. Consider a time-homogeneous Markov chain (Xn,Fn, n ∈ N,Px) which
satisfies the above conditions. Then, there exists a unique invariant measure µ∞. It satisfies∫

Gdµ∞ <∞.

In addition, there exists C > 0, ρ ∈ (0, 1) with∥∥∥∥Pnϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

≤ Cρn
∥∥∥∥ϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

for all ϕ ∈ L∞G .

The proof is provided in [Hai16, Theorem 3.6, p.13] or [Sto15, Theorem 3.4, p. 47].
Now we want to apply this theorem to the solution of (2.2), which is a time-continuous

Markov processes having continuous paths. We will consider for some fix time T > 0 the
embedded Markov chain (XT

n ,F
T
n , n ∈ N,Px) defined by XT

n := XnT , F T
n := FnT . The

transition kernel is therefore P = PT .
Furthermore, it is convenient to adapt the Lyapunov condition in terms of the generator

of the time-continuous Markov process. One sufficient condition is (see [Hai16, Exercise
3.3, p. 12]):

Lemma 4.3. Consider the time-homogeneous Markov family (Xt,Ft, t ≥ 0) solving (2.2).
Suppose there exists a function G : C2(Rd; [0,∞)) and constants c,K > 0 with LG ≤
K − cG. Then, for every fixed time T > 0 the above Lyapunov condition holds for the
embedded Markov chain (XT

n )n∈N with transition kernel PT .

Proof. Applying Itô’s rule to ectG(Xt) yields

e−cTG(XT )−G(X0) ≤
∫ T

0
e−cs(K − cG(Xs)) ds+

∫ T

0
∇G(Xs)

>σ(Xs) dWs.

The stochastic integral is a local martingale. Therefore, after picking a localizing sequence
of stopping times (τn)n∈N and taking expectations we obtain

Ex
[
ec(T∧τn)G(XT∧τn)

]
−G(x) ≤ Ex

[∫ T∧τn

0
e−cs(K − cG(Xs)) ds

]
≤ K

c

(
ecT − 1

)
.
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Since the left integrand is nonnegative and continuous, we have by Fatou’s Lemma

Ex[ecTG(XT )] ≤ G(x) +
K

c

(
ecT − 1

)
.

This is equivalent to

PTG(x) ≤ e−cTG(x) +
K

c

(
1− e−cT

)
≤ e−cTG(x) +

K

c
. (4.1)

Since c, T > 0, we have γ := e−cT ∈ (0, 1), which concludes the proof.

Now, we can provide a time-continuous version of the above theorem.

Theorem 4.4. Consider the time-homogeneous Markov family (Xt,Ft, t ≥ 0) which solves
(2.2) and assume that it satisfies the assumption of the previous Lemma 4.3. Furthermore,
assume that for some T > 0 the transition kernel PT of the corresponding embedded Markov
chain satisfies Doeblin’s condition. Then, the conclusion of Theorem 4.2 is also true for
(Xt)t≥0. In particular, we have the estimate∥∥∥∥Ptϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

≤ Cρbt/T c
∥∥∥∥ϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

for constants ρ ∈ (0, 1), C > 0 and for all ϕ ∈ L∞G .

Remark 4.5. Certainly, by changing the constant C and defining λ := − ln ρ > 0 we
obtain Ce−λt on the right side.

Proof. We fix T > 0 and consider again the corresponding embedded Markov chain
(XT

n )n∈N satisfying the assumptions of Theorem 4.2. Therefore, there exists an invariant
measure µT∞ for (XT

n )n∈N. Define

µ∞(A) :=
1

T

∫ T

0
PtµT∞(A) dt

and observe that µ∞ is invariant for X ([Hai16, Proposition 2.8, p. 11]). Indeed,

Psµ∞(A) =
1

T

∫ T

0
Pt+sµT∞(A) dt =

1

T

∫ T+s

s
PtµT∞(A) dt = µ∞(A)

since ∫ T+s

T
PtµT∞(A) dt =

∫ s

0
PtPTµT∞(A) dt =

∫ s

0
PtµT∞(A) dt

using the invariance of µT∞. Note that

t 7→ PtµT∞(A) =

∫
A
Px(Xt ∈ A) dµT∞(x)

is measurable, since for open sets A this follows from the continuity and hence for all
measurable sets A ∈ B(Rd).
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Furthermore, we have by (4.1)∫
Gdµ∞ =

1

T

∫ T

0

∫
PtG(x) dµT∞(x) dt ≤ 1

T

∫ T

0

∫ (
K

c
+ e−ctG(x)

)
dµT∞(x) dt <∞.

Uniqueness will follow from the convergence towards the invariant measure.
Fix t > 0 and set n ∈ N such that t = nT + h with h < T . We have for any ϕ ∈ L∞G

Ph+Tnϕ(x)−
∫
ϕdµ∞ =

∫
Phϕ(y) (dPn(x, y)− dµ∞(y)) .

Now, set φ := Phϕ and observe by (4.1)

sup
x

|φ(x)|
1 +G(x)

≤ sup
x

‖ϕ‖L∞G
1 +G(x)

∫
(1 +G(y)) dPh(x, y) ≤ ‖ϕ‖L∞G sup

x

1 +K/c+ e−chG(x)

1 +G(x)

which is bounded by (1 +K/c) ‖ϕ‖L∞G , hence φ ∈ L∞G . This also shows ‖Ph‖L∞G ≤ 1 +K/c.

Thus, we obtain from the convergence result of the embedded Markov chain∥∥∥∥Pnφ− ∫ φdµ∞

∥∥∥∥
L∞G

≤ Cρn
∥∥∥∥Phϕ− ∫ Phϕdµ∞∥∥∥∥

L∞G

= Cρn
∥∥∥∥Ph(ϕ− ∫ ϕdµ∞

)∥∥∥∥
L∞G

which is ∥∥∥∥Ptφ− ∫ φdµ∞

∥∥∥∥
L∞G

≤ (1 +K/c)Cρn
∥∥∥∥ϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

.

Redefining C concludes the proof.

4.2. Subgeometric convergence and lower bounds

The Lyapunov condition in the previous section was strong in the sense that it implies
exponential convergence. However, sometimes this rate of convergence is not true and it
makes sense to consider other rates of convergence as well as lower bounds.

The first statement relies on a Lyapunov condition together with a minorization condition
(see [Hai16, Theorem 4.1, p. 16]).

(i) Lyapunov condition: There exists a continuous function G : Rd → [1,∞) such that
{G ≤ c} is compact for all c ≥ 1. Furthermore, it holds LG ≤ K − ϕ(G) for some
constant K and a strictly concave function ϕ : R+ → R+. In addition, ϕ(0) = 0 and
ϕ is increasing to infinity.

(ii) Minorization condition: For every C > 0 there is α > 0, T > 0 such that

‖PT (x, ·)− PT (y, ·)‖TV ≤ 2(1− α)

for every x, y with G(x) +G(y) ≤ C.
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Theorem 4.6. Consider a strong Markov family (Xt,Ft, t ≥ 0) with continuous paths.
Under the above assumptions there exists a unique invariant measure µ∞, which further-
more satisfies

∫
ϕ(G) dµ∞ <∞.

Define

Hϕ(u) :=

∫ u

1

ds

ϕ(s)
,

then we have

‖Pt(x, ·)− µ∞‖TV ≤
CG(x)

H−1
ϕ (t)

+
C

(ϕ ◦H−1
ϕ )(t)

for some constant C and all x ∈ Rd.

Remark 4.7. The proof is provided in [Hai16, Theorem 4.1, p. 16-22] and is based on the
so called coupling method. The idea is the following. One takes two realizations (Xt)t≥0,
(Yt)t≥0 of the Markov process at hand with initial condition x0, y0, respectively, and makes
use of the coupling inequality

‖Pt(x0, ·)− Pt(y0, ·)‖TV ≤ 2P(Xt 6= Yt).

(This inequality follows directly from the definition of the total variational norm). Now
it depends on our realizations (Xt)t≥0, (Yt)t≥0 whether P(Xt 6= Yt) converges to zero or
not. For instance, if we build our probability space together with (Xt)t≥0, (Yt)t≥0 in such
a way, that they are independent, then it does not tend to zero. So, one has to find two
realizations which are “independent enough” such that the above probability converges and
that one obtains estimates. Such constructions are called couplings of the law of (Xt)t≥0

and (Yt)t≥0.

Now, we turn to lower bounds of convergence ([Hai16, Section 5, p. 23-24]).

Theorem 4.8. Suppose µ∞ is an invariant measure of some Markov family (Xt,Ft, t ≥ 0)
with continuous paths. Furthermore, assume that there is a function G : R → [1,∞)
satisfying:

(i) There is some function f : [1,∞)→ [0, 1] with Id ·f : y 7→ yf(y) increasing to infinity
and µ∞(G ≥ y) ≥ f(y) for every y ≥ 1.

(ii) There exists a function g : R × R+ → [1,∞) increasing in its second argument with
ExG(Xt) ≤ g(x, t) for every initial condition x ∈ Rd.

Then, we have

‖Pt(x, ·)− µ∞‖TV ≥
1

2
f
(
(Id · f)−1 (2g(x, t))

)
for every initial condition x ∈ Rd.
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Proof. First we observe for fixed y ≥ 1 and t ≥ 0

‖Pt(x, ·)− µ∞‖TV ≥ |Pt(x, ·)− µ∞|({G(x) ≥ y}) ≥ µ∞(G(x) ≥ y)− Pt(x, {G(x) ≥ y}).

By Markov’s inequality we have

Pt(x, {G(x) ≥ y}) = Px(G(Xt) ≥ y) ≤ g(x, t)

y
,

where the last inequality uses the second assumption. Together with the first condition we
obtain

‖Pt(x, ·)− µ∞‖TV ≥ f(y)− g(x, t)

y
.

By assumption there exists y0 with (Id · f)(y0) = 2g(x, t), hence f(y0) = 2g(x, t)/y0. After
setting y = y0 above we establish

‖Pt(x, ·)− µ∞‖TV ≥
g(x, t)

y0
=

1

2
f(y0) =

1

2
f
(
(Id · f)−1 (2g(x, t))

)
.

4.3. Application to the Fokker-Planck equation

As it is always the case we will impose some conditions on the coefficients V , D in order
to use the previous results. Those assumptions also provide the global existence of the
Markov family (i.e. Proposition 2.9 applies). First of all, we check the validity of Doeblin’s
condition as well as the minorization condition. Suppose we already have a Lyapunov
function G such that G(x)→ +∞ for |x| → +∞ (as this will be the case later on).

Both conditions then follow from the existence of a smooth density p(t, x, y) of Pt un-
der Px (see Remark 2.14). We know that p(t, x, y) > 0 for t > 0 by Theorem 2.13 (iv). By
continuity there is for every compact set C ⊂ Rd a constant α > 0 with p(T, x, y) ≥ α for
all x, y ∈ C (and any fixed time T > 0). Hence,

p(T, x, ·) ≥ αλ(C)π(·), π(·) :=
1

λ(C)
λ(· ∩ C)

whenever x ∈ C. At last we have to ensure that C :=
{
x ∈ Rd : G(x) ≤ R

}
is compact for

every R ≥ 0 in order to provide Doeblin’s condition. But this will always be the case.
Furthermore, the minorization condition is also satisfied. Again consider a Lyapunov

function like in Subsection 4.2 and fix any time T > 0. Again we know p(T, x, z) > 0. Fix
some z∗ ∈ Rd. Choose C > 0 arbitrary and define the set

C := {(x, y) : G(x) +G(y) ≤ C} ⊂ {G ≤ C}2,

where {G ≤ C} is compact by the assumptions on G. Therefore, {G ≤ C}×B1(z∗) is also
compact and there is some c > 0 with

p(T, x, z) ≥ c
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for all (x, z) ∈ {G ≤ C} × B1(z∗), where B1(z∗) denotes the unit ball with center z∗. Fix
(x, y) ∈ C and define X+ := {p(T, x, ·) ≥ p(T, y, ·)}. Then,∫

|p(T, x, z)− p(T, y, z)| dz ≤ 1−
∫
X+

p(T, y, z) dz + 1−
∫

(X+)c
p(T, x, z) dz

≤ 2− cλ(X+ ∩B1(z∗))− cλ((X+)c ∩B1(z∗)) = 2− cλ(B1(z∗)).

Define α := cλ(B1(z∗))/2 > 0 which does not depend on x, y (whereas X+ does). So we
finally proved

‖PT (x, ·)− PT (y, ·)‖TV ≤ 2(1− α)

for all (x, y) ∈ C.
The only thing which is left, is the existence of a Lyapunov function G such that {G ≤ C}

is compact for every C > 0. At first we deal with a homogeneous diffusion, i.e. D ≡ I.
The general situation works then similar when imposing further assumptions.

Homogeneous diffusion

Here we follow [Hai16, Sec 7, p. 34-35] and [Sto15, Subsection 4.3.3, p. 66-67].
We will make the following assumptions (in addition Assumption 2.1): there are constants

c1, c2 > 0 and k ∈ (0,∞) with

〈∇V (x), x〉 ≥ c1|x|2k, |Hess V (x)| ≤ c2|x|2k−2 (4.2)

for |x| ≥ M , for some constant M ≥ 0. (One might even assume that V and all its
derivatives grow at most polynomially in order to ensure the existence of a smooth density,
see Remark 2.14 or [Hai16, Sec 7, p. 34]). Thus, V should grow like |x|2k at infinity. Note
that under those assumptions the Markov process exists for all times (Lemma 2.11).

The generator of the Markov process reads

Lϕ = ∆ϕ−∇V · ∇ϕ.

There are a few Lyapunov functions that work out. However, one has to consider the
case k ≥ 1/2 and k ∈ (0, 1/2).

Case I (k ≥ 1/2): Define G(x) = exp(αV (x)), yielding

LG(x) = α(∆V (x) + (α− 1)|∇V (x)|2) exp(αV (x)). (4.3)

With Cauchy’s inequality and the assumptions one observes |∇V (x)|2 ≥ C|x|4k−2 as well
as |∆V (x)| ≤ C|x|2k−2 for some constant C > 0 and |x| ≥ M . If k > 1/2 the gradient
diverges faster than Hess V . If k = 1/2 then |∆V (x)| tends to zero for |x| → ∞ whereas

|∇V (x)|2 ≥ C > 0. Hence, when fixing α ∈ (0, 1) we have for some c > 0 and M̃ ≥ 0 large
enough

LG(x) ≤ −cG(x)
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whenever |x| ≥ M̃ . By continuity we can find K ≥ 0 with

LG(x) ≤ K − cG(x)

for all x ∈ Rd and Theorem 4.4 applies.
Another type of Lyapunov function would be G(x) = |x|n for n ∈ N, n ≥ 2. We have for

some constants c,K > 0 like above

LG(x) = n(d+ n− 2)|x|n−2 − n 〈∇V (x), x〉 |x|n−2

≤ n(d+ n− 2)|x|n−2 − nc1|x|n−2+2k ≤ K − cG(x)

if k ≥ 1. (But we only needed the growth condition on ∇V ).
One could also use G(x) = exp(α|x|n) with α > 0 and n ∈ N, n ≥ 2 in order to obtain

LG(x) = (αn(d+ n− 2)|x|n−2 + n2α2|x|2|x|2n−4 − αn 〈∇V (x), x〉 |x|n−2) exp(α|x|n)

≤ αn((d+ n− 2)|x|n−2 + nα|x|2n−2 − c1|x|n−2+2k) exp(α|x|n)

for large |x|. This works out if 2k > n.
Theorem 4.4 implies that there is a unique invariant measure µ∞, which we already know

to be e−V λ, with
∫
Gdµ∞ <∞. Furthermore, for all x ∈ Rd∣∣∣∣Ptϕ(x)−

∫
ϕdµ∞

∣∣∣∣ ≤ (1 +G(x))Cρbt/T c
∥∥∥∥ϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

for some C > 0, ρ ∈ (0, 1) and all ϕ ∈ L∞G .
If we want to consider an initial condition ξ with distribution µ we just consider the

Markov process X on (Ω,F ,Pµ) with

Pµ(F ) :=

∫
Px(F ) dµ(x)

for F ∈ F . Thus, by integrating the above inequality∣∣∣∣Eµ[ϕ(Xt)]−
∫
ϕdµ∞

∣∣∣∣ ≤ (1 +

∫
Gdµ

)
Cρbt/T c

∥∥∥∥ϕ− ∫ ϕdµ∞

∥∥∥∥
L∞G

(4.4)

Certainly, one has to ensure
∫
Gdµ <∞. For instance, in the case k ≥ 1 one can choose

G(x) = |x|2 (n = 2) and obtains exponential convergence for initial data having finite
second order moments.

Case II (k ∈ (0, 1/2)): In the following, we consider k ∈ (0, 1/2) which implies that
|Hess V | converges to zero for |x| → ∞. In addition to the above conditions, assume that
there are constants A,B > 0 with

A|x|2k ≤ V (x) ≤ B|x|2k (4.5)
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for |x| ≥ M and some M > 0. For notational simplicity we write |x|2k . V (x) . |x|2k
instead of (4.5) and similar inequalities since the constants do not matter. We choose again
G(x) = exp(αV (x)) with α ∈ (0, 1) and obtain

LG(x) ≤ K − c|x|4k−2 exp(αV (x)).

Since |x|2k . lnG(x) . |x|2k, we have

|x|4k−2 . (lnG(x))2−1/k . |x|4k−2 (4.6)

and

LG(x) ≤ K − c G(x)

(lnG(x))1/k−2

redefining c. The function ϕ(x) := cx/(lnx)1/k−2 is strictly concave (with continuous
extension ϕ(0) = 0) and increases to infinity. Certainly, G ≥ 1 also increases to infinity.
We can apply Theorem 4.6 and therefore set

Hϕ(u) =

∫ u

1

(lnx)1/k−2

cx
dx =

∫ lnu

0

y1/k−2

c
dy =

(lnu)1/k−1

c(1/k − 1)

with H−1
ϕ (v) = exp(βvk/(1−k)), β > 0. Furthermore,

(ϕ ◦H−1
ϕ )(t) = c

exp(βtk/(1−k))

βt(1−2k)/(1−k)

and hence 1/(ϕ ◦ H−1
ϕ )(t) is bounded. We obtain the following convergence result from

Theorem 4.6 (absorbing the second summand in the first one by increasing the constant
independently of x)∥∥p(t, x, ·)− e−V ∥∥

L1 = ‖Pt(x, ·)− µ∞‖TV ≤ C exp(αV (x)− βt
k

1−k ). (4.7)

Here, we can even give a lower bound using Theorem 4.8. Again with G(x) = exp(αV (x))
and (4.3), (4.6) we obtain for any α > 0 the bounded

LG ≤ c|x|4k−2G(x) ≤ c G(x)

(lnG(x))1/k−2

with c > 0. Since L is the generator of X, we obtain (by using Fatou’s lemma on the left
and monotone convergence on the right side for the localizing sequence of stopping times)

Ex[G(Xt)]−G(x) ≤ Ex
[∫ t

0
c

G(Xs)

(lnG(Xs))1/k−2
ds

]
.

Recalling the definition of ϕ and the fact that it is concave, we use Jensen’s inequality
yielding

Ex[G(Xt+h)]− Ex[G(Xt)] ≤
∫ t+h

t
ϕ(Ex[G(Xs)]) ds
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which implies

lim sup
h↘0

1

h
(Ex[G(Xt+h)]− Ex[G(Xt)]) ≤ ϕ(Ex[G(Xt)]).

The limit on the left is the right, upper derivative of Ex[G(Xt)]. The function g(x, t) =
G(x) exp(ctk/(1−k)) satisfies ∂tg = ϕ(g) and is therefore an upper solution with initial data
G(x). From the differential inequality we obtain

Ex[G(Xt)] ≤ g(x, t).

Note that g satisfies condition (ii) in Theorem 4.8 and only (i) is left. We observe for large
y ≥ 1 (in order to use (4.5))

µ∞(G ≥ y) = µ∞(αV ≥ ln y) ≥
∫
{|x|2k≥ln y/αA}

e−B|x|
2k
dx = C

∫
{r2k≥ln y/αA}

e−Br
2k
dr.

Recalling 2k− 1 < 0, we further estimate (where the constant C might change from line to
line)

C

∫
{r2k≥ln y/αA}

r2k−1

r2k−1
e−Br

2k
dr ≥ C

(
ln y

αA

)(1−2k)/2k ∫
{r2k≥ln y/αA}

r2k−1e−Br
2k
dr

= C

(
ln y

αA

)1/2k−1

y−B/αA ≥ Cy−B/αAα1−1/2k,

where the last inequality uses the fact that any polynomial grows faster than the logarithm
(and one can adapt the constant C > 0). If we decrease C further we establish

µ∞(G ≥ y) ≥ Cy−B/αAα1−1/2k

for all y ≥ 1. Now, define f(y) := Cy−B/αAα1−1/2k and increase α such that γ :=
B/αA < 1 holds. Then, yf(y) increases to infinity. Thus, Theorem 4.8 applies and in
the following we calculate the lower bound. We have

(Id · f)−1(z) =
( z

Cα1−1/2k

)1/(1−γ)
,

hence

(Id · f)−1(2g(x, t)) =

(
2

Cα1−1/2k

)1/(1−γ)

exp

(
α

1− γ
V (x) +

c

1− γ
tk/(1−k)

)
.

Finally, we obtain∥∥p(t, x, ·)− e−V ∥∥
L1 = ‖Pt(x, ·)− µ∞‖TV ≥ C exp

(
− αγ

1− γ
V (x)− cγ

1− γ
tk/(1−k)

)
. (4.8)

For fixed x the bound is of the type C exp(ctk/(1−k)) which is the same as in (4.7). Since
k/(1− k) < 1, there is no exponential convergence in the total variational norm (or in L1

concerning the densities).
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Inhomogeneous diffusion

The generator of the Markov process is

Lϕ =
∑
i,j

Dij∂
2
jiϕ+ (divD −D∇V ) · ∇ϕ.

All calculations from Case I in the previous analysis with the Lyapunov function G(x) =
exp(αV (x)) are similar if we make the following assumptions: D and divD are uniformly
bounded. Furthermore, we have the growth conditions

〈D∇V (x), x〉 ≥ c1|x|2k, |Hess V (x)| ≤ c2|x|2k−2

and A|x|2k ≤ V (x) ≤ B|x|2k.
We conclude this chapter with the following remarks.

Remark 4.9. (i) The results above based on the growth condition (4.2) cover a variety of
situations. (Recall that we only needed the first inequality in the case k ≥ 1, D ≡ I
when choosing the Lyapunov function G(x) = |x|n). In particular, we established
exponential convergence for potentials which have roughly speaking at least linear
growth. In addition to that, not only did we prove subgeometric rates, but also
showed the necessity of studying them via lower bounds for potentials having weaker
growth properties.

Concerning the physical meaning of those conditions, the first inequality in (4.2) (in
Case I with k ≥ 1) is reminiscent of the convexity condition required in the last
chapter. (In fact, the uniform convexity implies it with k = 1).

(ii) Although we gave properties enabling us to apply the theorems from the previous
section, it does not seem to be easy to apply those results in a specific situation. One
always has to find a Lyapunov function, which might not be a simple task.

(iii) One drawback of the presented results are the undetermined constants occurring in our
final estimates (4.4), (4.7), (4.8). In particular, the rate ρ in (4.4) remains unknown
here. In contrast to that, the entropy method allows one to give at least a certain
order of magnitude for the rate in the case that V is not uniformly convex, but satisfies
the conditions in Theorem 3.15.
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5. Numerical simulations

5.1. Numerical procedure and examples

In this chapter, we discuss two numerical examples and apply the preceding convergence
results. We consider the one-dimensional Fokker-Planck equation with homogeneous diffu-
sion matrix

∂tu(t, x) = ∂2
xu(t, x) + V ′(x)∂xu(t, x) + V ′′(x)u(t, x). (5.1)

In the first example, the potential is a double-well potential, i.e. V1(x) = x4 − x2. In the
second example, we consider the potential

V2(x) =

{
|x|9/10 |x| ≥ 1/10,

p(x) |x| ≤ 1/10.

Here p is some polynomial such that V is C2. See Figure 5.1 for a plot of these two
potentials. We also plot the effect on the first potential after adding a perturbation which
allows us to use the perturbation result in Theorem 3.15. Below we also provide plots
concerning the convergence in L1, relative entropy as well as in weighted L∞ spaces.

Before we focus on the numerical results we briefly explain the numerical methods used
here. More precisely, we use both a finite difference scheme and the Euler-Maruyama
method.

(i) Finite difference scheme: Take an interval [−L,L] with L > 0 large enough such
that values of the initial condition as well as the density of the invariant measure ρ∞
outside of [−L,L] can be neglected. In order to solve (5.1) on [−L,L] we consider
homogeneous Dirichlet boundary conditions and discretize derivatives according to a
equidistant grid −L = x0 < x1 < · · · < xN = L, h = xi+1 − xi by

∂2
xu(t, xi) =

1

h2
(u(t, xi+1)− 2u(t, xi) + u(t, xi−1)) ,

∂xu(t, xi) =
1

2h
(u(t, xi+1)− u(t, xi−1)) .

This constitutes a discrete differential operator (i.e. a matrix) Lh yielding the linear
ordinary differential equation in time

d

dt
ū(t) = Lhū(t) (5.2)

for the time-dependent vector ū(t) ∈ RN+1 with initial condition ū(0). The matrix
Lh acts on v ∈ RN+1 as follows: (Lhv)0 = v0, (Lhv)N = vN and for i = 1, . . . , N − 1

(Lhv)i =

(
1

h2
− V ′(xi)

2h

)
vi−1 +

(
− 2

h2
+ V ′′(xi)

)
vi +

(
1

h2
+
V ′(xi)

2h

)
vi+1.
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Figure 5.1.: Left: Plot of the potential V1(x) = x4 − x2 and the change of V1 after adding
a perturbation. Right: Plot of the potential V2(x) = |x|9/10 for |x| ≥ 1/10.

Note that the boundary conditions imply ū0(t) = ūN (t) = 0 and hence we only
need to calculate the other N − 1 vector entries. A numerical calculation shows that
the eigenvalues of Lh are negative and growing in absolute value. Therefore, we use
an L-stable Runge-Kutta method, which prevails the stability of the linear ordinary
differential equation (5.2). (Here we used a three staged, fourth order DIRK method).

Finally, we calculate the L1 (or total variational) difference and the relative entropy
with respect to ρ∞ = e−V with a composite Simpson’s rule based on the grid (xi)i.

(ii) Euler-Maruyama scheme: We discretized the stochastic differential equation

dXt = −V ′(Xt)dt+
√

2dWt

according to a fixed time step τ . Given the value Xn one calculates

Xn+1 = Xn − τV ′(Xn) +
√

2(W(n+1)τ −Wnτ ),

which is in essence one step in the explicit Euler method. For the last term, we
know that Sn+1 := W(n+1)τ − Wnτ is centered Gaussian with standard deviation√
τ independent of the past up to time nτ . Now the scheme works as follows: one

samples the initial condition yielding the value X0. In order to obtain Xn+1 from Xn

one samples Sn+1 ∼ N (0, τ) and sets

Xn+1 = Xn − τV ′(Xn) +
√

2Sn+1.

This simulation is performed N times, which gives N discrete sample paths
(Xi

0, . . . , X
i
T ), i = 1, . . . , N , up to time Tτ (T ∈ N).
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Then we calculate the empirical or statistical expectation of some test function ϕ by

Eemp[ϕ(Xn)] :=
1

N

N∑
i=1

ϕ(Xi
n)

at the time point nτ .

Example I: We consider the double-well potential V1(x) = x4 − x2 and the initial con-
dition ρ0(x) = e−(x−30)2/2/

√
2π, a Gaussian density with mean 30 and variance one.

From our investigation in Section 4.3, see (4.4), we obtain exponential convergence of
Eµ[ϕ(Xt)] for all bounded functions ϕ. In Figure 5.2, the difference∣∣∣∣Eemp[ϕ(Xn)]−

∫
ϕdµ∞

∣∣∣∣ (5.3)

is plotted based on the Euler-Maruyama scheme. The test functions are ϕ1(x) = x in the
first (hence we calculate the mean) and ϕ2 = 1[−1,0] in the second case. One can see that
the exponential rate is approximately 1.7.

Figure 5.2.: Semilogarithmic1 plot of absolute difference between statistical expectation and
expectation with respect to the invariant measure against time (Example I).
The test functions are ϕ1(x) = x and the indicator function ϕ2 = 1[−1,0].

Moreover, one can add a bounded perturbation v in order to obtain a uniformly convex
potential, see again Figure 5.1. Then Theorem 3.15 yields exponential convergence in L1

(total variation) as well as in relative entropy.
In Figure 5.3, we plotted the L1-difference as well as the relative entropy based on the

finite difference scheme. The entropy here is generated by (like in (3.1) with α = β = 1)

χ(σ) = (σ + 1) ln

(
σ + 1

2

)
− (σ − 1).

1In a semilogarithmic plot only the second coordinate axis is logarithmic.
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One can observe the exponential rate to be approximately λ = 1.5. We expect that the
relative entropy decreases like exp(−2λt) and due to Lemma 3.4 the L1-norm like exp(−λt),
which is indeed the case in Figure 5.3.

Furthermore, observe that the rate is larger between the times 0 and approximately 0.3
in the right plot in Figure 5.3. This is because the initial density was “far” away from the
center and hence the “attraction” is much bigger due to the term x4.

Figure 5.3.: Semilogarithmic plot of total variational distance and relative entropy of a
solution with respect to the equilibrium distribution against time (Example I).

Example II: In the following we consider the potential

V2(x) =

{
|x|9/10 |x| ≥ 1/10,

p(x) |x| ≤ 1/10.

Note again that p is some polynomial such that V is C2. We have the initial condition
ρ0(x) = e−(x−50)2/2/

√
2π. In Section 4.3, Case II, we gave a subgeometric rate (4.7) as

well as a lower bound (4.8) of the same form for the total variation when considering the
fundamental solution. In this example, the growth rate of V is k = 9/20 (with the notation
from Section 4.3) and the bounds have the form

C exp
(
αV2(x)− βt9/11

)
, C ′ exp

(
−α′V2(x)− β′t9/11

)
.

The constants C,C ′, β, β′ are positive. Note that, although it is not an exponential bound,
the decay is quite fast (depending on β and β′). Furthermore, since we are interested
in the process with the above initial condition the constants C and C ′ are, respectively,
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proportional to ∫
exp(αV2)ρ0 dx,

∫
exp(−α′V2)ρ0 dx.

This follows from (4.7) and (4.8) by an integration with respect to ρ0λ. Therefore, by the
unboundedness of the potential V we expect that the first one will be quite large and the
second one small if one starts far away from the origin (like we do). However, even in
this example it is difficult to apply the bounds since the constants (in particular β, β′) are
unknown (as we already discussed in Remark 4.9).

We turn to the numerical results. In Figure 5.4, the total variation is plotted based on
the finite difference scheme, where the left one is semilogarithmic. One can see that an
exponential convergence does not take place at the beginning. In Figure 5.4, to the right
we added two upper bounds of the above form by choosing the constants according to
the plot of the total variation. Hence, the correct error estimate (if one would know the
values of the constants appearing in the upper bound) might or might not look like that.
Nevertheless, observe that for these “guessed” bounds the constant C is indeed large.

Figure 5.4.: Left: Semilogarithmic plot of total variational distance of the solutions with
respect to the equilibrium against time (Example II). Right: Plot of the total
variational distance together with two “guessed” rates against time.

In addition, we plotted the difference (5.3) in Figure 5.5 with the test functions ϕ3(x) = x
(hence the mean) and ϕ4 = 1[10,60]. For this simulation we used the Euler-Maruyama
scheme. Observe that there is (at least up to the time point 100 in Figure 5.5) no expo-
nential convergence.

Note that both Figure 5.4 and Figure 5.5 suggest that the convergence is better than
the lower bound, since the logarithmic plots show a concave shaped curve. But the lower
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bound of the form C ′ exp(−β′t9/11) would have a convex logarithmic plot. One reason for
this might be that the constant C ′ is small, which we would expect as mentioned above.
Furthermore, also the case that β′ > 0 is large would allow our observation.

Figure 5.5.: Semilogarithmic plot of absolute difference between statistical average and
the corresponding integral with respect to the invariant measure against time
(Example II). The test functions are ϕ3(x) = x and the indicator function
ϕ4 = 1[10,60].

5.2. Conclusion

As we saw in Chapter 3, the entropy method enables us to give simple conditions implying
the exponential tend to equilibrium. In particular, the perturbation result in Theorem 3.15
allowed us to widely extend the applicability.

The analysis via Markov processes allowed us to infer the same in weighted L∞-spaces.
Furthermore, we could also study the case where an exponential convergence does not
take place via subgeometric rates and lower bounds. More precisely, the L1-difference
‖ρt − ρ∞‖L1 decays like exp(−βtα) for 0 < α < 1, β > 0. However, in our second example
we could observe that conceptually the decay was faster than the lower bound of the form
C ′ exp(−β′tα) would allow. At the very end of the last section we suggested that this is
due to the constants C ′, β′. Unfortunately, this remains an unsatisfactory point in the
preceding analysis.

In comparison, one advantage of the entropy method is the fact that it allowed us to
calculate rates whereas such constants remain unknown in the stochastic approach. In par-
ticular, the constants appearing in the subgeometric and lower estimates remain unknown
in Example II in the previous section. However, the growth conditions in Section 4.3 cover
a lot of situations.
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A. Appendix

A.1. Digression: Spectral theory

We give the definition of a symmetric/self-adjoint (unbounded) operator on a Hilbert space
H. Furthermore, we recall a few properties of spectral measures and state the spectral
theorem for unbounded self-adjoint operators. We make references to [Kal18], [Yos08] for
full statements and proofs. Furthermore, we refer to [Kal18, Chapter 5, p. 100-118], [Yos08,
IX.1-8, p. 231-251] for the theory of semigroups.

Definition A.1. A linear operator A : domA ⊂ H → H, densely defined, is called
symmetric if and only if A ⊂ A∗ (in the sense of linear relations), i.e. domA ⊂ domA∗ and
for all x, y ∈ domA it holds (Ax, y) = (x,Ay). The operator A will be called self-adjoint if
A = A∗, i.e. domA = domA∗ and A is symmetric.

For the definition of a spectral measure and the integral of an (un-)bounded measurable
function with respect to a spectral measure see [Kal18, Definition 2.1.1, p. 31], [Kal18,
Lemma 2.1.5, p. 36], [Kal18, Definition 4.5.2, p. 90].

Proposition A.2. Let E denote a spectral measure on (Ω,A) and H. The mapping φ 7→∫
Ω φdE, φ : Ω→ C measurable, has the following properties:

(i) If φ is bounded, then so is
∫
φdE.

(ii) φ 7→
∫

Ω φdE is a C∗-homomorphism, in particular for all φ, ψ bounded, measurable∫
Ω
φdE

∫
Ω
ψ dE =

∫
Ω
φψ dE

(iii) Whenever φn → φ pointwise and supn ‖φn‖∞ <∞ for bounded, measurable functions
φn, φ, then

∫
φn dE →

∫
φdE in the strong operator topology.

(iv) If g ∈ dom
(∫

Ω φdE
)

then for all h ∈ H〈∫
Ω
φdEg, h

〉
=

∫
Ω
φdEg,h,

where the Borel measure on the right side is defined by A 7→ Eg,h(A) := 〈E(A)g, h〉.

(v) g ∈ dom
(∫

Ω φdE
)

if and only if
∫
|φ|2 dEg,g <∞.

(vi) If φ, ψ are bounded and g, h ∈ H then∫
Ω
φdE∫

Ω ψ dEg,h
=

∫
Ω
φψ dEg,h.
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(vii) We have σ
(∫

Ω φdE
)
⊂ φ(Ω) with the closure in C ∪ {+∞}.

For the proof of the following theorem see [Kal18, Theorem 4.6.1, p. 96] or [Yos08, XI.6,
p. 313].

Theorem A.3 (spectral theorem). Consider a self-adjoint operator A : domA ⊂ H → H.
Then there exists a unique spectral measure E on (R,B(R)) and H, such that

A =

∫
λ dE(λ).

Furthermore, σ(A) contains the support of E, E(R\σ(A)) = 0.

A.2. Digression: Markov processes and stochastic
differential equations

In this section we recall the definition of a (strong) Markov process and as an example
Brownian motion (see [KS00, Section 2.5-2.6, p. 47-48, 71-89]). Furthermore, we give
statements from the theory of stochastic differential equations.

Definition A.4 (Markov process). Let (Ω,F ,P) be a probability space and µ a Borel
measure on (Rd,B(Rd)). A progressively measurable process (Xt,Ft, t ≥ 0) with values in
(Rd,B(Rd)) on this probability space is called a Markov process with initial distribution µ
if

(i) P(X0 ∈ A) = µ(A) for all A ∈ B(Rd),

(ii) P(Xt+s ∈ A | Fs) = P(Xt+s ∈ A | Xs) a.s. for all s, t ≥ 0 and A ∈ B(Rd).

Furthermore, X is called a strong Markov process if in addition

P(XS+t ∈ A | FS) = P(XS+t ∈ A | XS)

is satisfied for all t ≥ 0, A ∈ B(Rd) and (Ft) stopping times S.

Definition A.5 (strong Markov family). A d-dimensional, time-homogeneous strong Mar-
kov family is a progressively measurable process (Xt,Ft; t ≥ 0) with values in (Rd,B(Rd))
on some measurable space (Ω,F ) together with a family of probability measures (Px)x∈Rd

on (Ω,F ) with the properties:

(i) x 7→ Px(F ) is B(Rd)-B[0, 1]-measurable for every fixed F ∈ F ;

(ii) Px(X0 = x) = 1 for all x ∈ Rd;

(iii) for every x ∈ Rd, A ∈ B(Rd), t ≥ 0 and every (Ft) stopping time S

Px(XS+t ∈ A | FS) = PXS
(Xt ∈ A).
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The advantage of a (strong) Markov family is that one obtains a (strong) Markov process
with initial distribution µ by defining the probability measure

Pµ(F ) :=

∫
Px(F ) dµ(x), F ∈ F ,

and considering the process X on (Ω,F ,Pµ).

Definition A.6. Consider a (strong) Markov family (Xt,Ft; t ≥ 0) on (Ω,F ). Then we
define the following notions. Here, B(Rd;R) denotes the space of functions Rd → R which
are essentially bounded and measurable.

(i) The transition or Markov kernel is defined by Pt(x,A) := Px(Xt ∈ A) for every t ≥ 0,
A ∈ B(Rd), x ∈ Rd. For t ≥ 0 fixed this extends to an operator Pt : B(Rd;R) →
B(Rd;R) with operator norm one by defining Ptf(x) := Ex[f(Xt)].

(ii) The Markov kernel acts also on probability measures µ on Rd according to

Ptµ(A) =

∫
Rd

Pt(x,A) dµ(x)

for every A ∈ B(Rd) and t ≥ 0. Hence, Ptµ defines a probability measure on Rd.

(iii) The generator of the Markov process is an operator A acting on a suitable subspace
of B(Rd;R) such that

lim
t→0

1

t
(Ex[f(Xt)]− f(x)) = Af(x), ∀x ∈ Rd.

(iv) The process is said to have continuous paths if t 7→ Xt(ω) is continuous for all ω ∈ Ω.

Remark A.7. Property (iii) in Definition A.5 for the deterministic stopping time S ≡ s
infers Ps(Ptf) = Ps+tf for every f ∈ B(Rd;R) and t, s ≥ 0. In the same way one has
Ps(Ptµ) = Ps+tµ for every probability measure µ on Rd. Observe also that the probability
measure Ptµ is just the law of Xt on (Ω,F ,Pµ).

Definition A.8 (Brownian motion). An adapted process (Wt,Ft, t ≥ 0) with values in
(Rd,B(Rd)) on some probability space (Ω,F ,P) is called a d-dimensional standard Brow-
nian motion if

(i) P(W0 = 0) = 1,

(ii) Wt −Ws is independent from Fs for all t ≥ s ≥ 0,

(iii) Wt −Ws ∼ N (0, (t− s)I), i.e. centered Gaussian with covariance (t− s)I,

(iv) (Wt)t≥0 has (a.s.) continuous sample paths.

If we define W x = (Wt + x,Ft, t ≥ 0) then this process is a Brownian motion starting
at x ∈ Rd. Brownian motion is an example of a strong Markov process and together with
the previous family of processes (W x)x∈Rd it constitutes a strong Markov family ([KS00,
Section 2.6, p. 79-89]).
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Remark A.9. Most of the time when working with a stochastic process we will ensure that
the filtration satisfies the usual conditions, i.e. F0 contains all P-null sets and Ft =

⋂
s>t Fs

(right-continuity). In the case of Brownian motion this can be done with the augmented
filtration (see [KS00, Section 2.7, p. 89-94]). The augmentation of some filtration (Gt) is
defined by Ft := σ(Gt ∪N ), where N is the set of all P-null sets.

The following definition is fundamental for our study in Chapter 4.

Definition A.10. A probability measure µ on Rd is called an invariant measure for the
Markov family (Xt,Ft; t ≥ 0) if Ptµ = µ for all t ≥ 0.

The remainder of this section is devoted to stochastic differential equations of the form

dXt = b(Xt)dt+ σ(Xt)dWt (A.1)

with Borel measurable functions b : R→ Rd, σ : Rd → Rd×r for fixed integers d, r ∈ N. The
process (Xt)t≥0 takes values in Rd and (Wt)t≥0 is some r-dimensional Brownian motion.
For convenience we define |σ(x)|2 :=

∑
i,j |σij(x)|2. We refer to [KS00, Section 5.1, p.

284-291] for the proofs.

Definition A.11 (strong solution). Consider a given probability space (Ω,F ,P) with a
Brownian motion W as well as an initial random vector ξ. Define Ft to be the augmentation
of the filtration Gt := σ(ξ,Ws : 0 ≤ s ≤ t). A continuous process (Xt, t ≥ 0) on this space
is called a strong solution if

(i) (Xt)t≥0 is adapted to (Ft),

(ii) P(X0 = ξ) = 1,

(iii) P
[∫ t

0 (|bi(Xs)|2 + |σij(Xs)|2) ds <∞
]

= 1 for all 1 ≤ i ≤ d, 1 ≤ j ≤ r,

(iv) (A.1) is satisfied for all 0 ≤ t <∞, i.e.

Xt = X0 +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs P-a.s.

Note that since a strong solution (Xt)t≥0 is adapted and continuous, it is also progres-
sively measurable ([KS00, Prop. 1.13, p. 5]).

Theorem A.12 (strong uniqueness). If b, σ are locally Lipschitz-continuous, then there is
at most one (up to indistinguishability) strong solution to (A.1).

Theorem A.13 (strong existence). Assume that b, σ are globally Lipschitz-continuous, i.e.

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K(|x− y|)

for some constant K. Then for every probability space (Ω,F ,P) with a Brownian motion
(Wt)t≥0 and an initial condition ξ there exists a strong solution (Xt)t≥0 to (A.1).
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Let (Y x
t )t≥0 be the strong solution with initial state x ∈ Rd. Since (Y x

t )t≥0 has (a.s.)
continuous paths we can consider the canonical version of this process. We define Ω :=
C[0,∞)d with its Borel σ-algebra F := B(C[0,∞)d) (the space is endowed with the
topology of uniform convergence on compact sets) together with the family of probability
measures Px := P(Y x)−1 on Ω. Furthermore, we define Xt(ω) := ω(t) for every ω ∈ Ω,
t ≥ 0 and the natural filtration Ft := σ(Xs : 0 ≤ s ≤ t). One can prove the following
([KS00, Theorem 5.4.20 and Remark 4.21, p. 322]).

Theorem A.14. Suppose b, σ are bounded on compact sets (and independent of t) and
there is a unique strong solution (Y x

t )t≥0 for every initial state x ∈ Rd. Consider the
canonical version (Xt)t≥0 on (C[0,∞)d,B(C[0,∞)d)) with the family Px. Then, (Xt)t≥0

defines a (time-homogeneous) strong Markov family.

A.3. Postponed proofs from Chapter 2

A.3.1. Proof of Proposition 2.2 and Theorem 2.4

We consider

∂tg = eV div(De−V∇g), g(0, x) = f0(x)eV (x),

where g = f/f∞ and f satisfies the Fokker-Planck equation (2.1). We recall µ := f∞λ
and Lϕ := eV div(De−V∇ϕ) on C∞c (Rd). The operator L is symmetric on L2(µ). The
following proof, in which we define a self-adjoint extension, is based on solving elliptic
partial differential equations in the weak sense.

Therefore, we define the weighted Sobolev space (see [Tur00, Section 2.1, p. 16])

H1(Rd, µ) := H1(µ) :=
{
f ∈ L2(µ) : ∂xif ∈ L2(µ), i = 1, . . . , d

}
,

where derivatives are taken in the sense of distribution. A norm is defined by

‖u‖2H1(µ) := ‖u‖2L2(µ) +
d∑
i=0

‖∂xiu‖
2
L2(µ)

such that H1(µ) is a Hilbert space (like the familiar Sobolev space H1(Rd, λ)). The scalar
product in L2(µ) will be denoted by 〈·, ·〉. We also note the following

Lemma A.15. Under the considered Assumption 2.1 C∞c (Rd) is dense in L2(µ), H1(µ).

Proof. First observe that H1(µ) ⊂ L1
loc(Rd), since e−V is continuous and positive. There-

fore, the product rule ∂xi(uϕ) = ∂xiuϕ+u∂xiϕ holds for u ∈ H1(µ), ϕ ∈ C∞c (Rd). Consider
η ∗ 1Bk(0) with a ball Bk(0) centred at the origin with radius k and a mollifier η, such that
η ∗ 1Bk(0) = 1 on Bk−1(0) and = 0 on Bk+1(0)c. Then∥∥∂xiu− ∂xi [u(η ∗ 1Bk(0))]

∥∥
L2(µ)

≤
∥∥∂xiu− ∂xiu(η ∗ 1Bk(0))

∥∥
L2(µ)

+
∥∥u∂xi(η ∗ 1Bk(0))

∥∥
L2(µ)

and note that ∂xi(η∗1Bk(0)) is supported in Bk+1(0)\Bk−1(0). Now, both terms converge to
zero by dominated convergence. Since u(η ∗1Bk(0)) has compact support and approximates
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u in H1(µ), it suffices to consider u ∈ H1(µ) with compact support K ⊂ Rd in order to
prove that C∞c (Rd) is dense in H1(µ). Observe that u ∈ H1(Rd). By choosing uk = ηk ∗u ∈
C∞c (Rd) with a sequence of mollifiers (ηk) such that ‖∂xiu− ηk ∗ ∂xiu‖L2 → 0 we obtain

‖∂xiu− ∂xiuk‖L2(µ) = ‖∂xiu− ηk ∗ ∂xiu‖L2(µ) ≤ sup
x∈K

e−V (x) ‖∂xiu− ηk ∗ ∂xiu‖L2 → 0

as k →∞. This implies ‖u− uk‖H1(µ) → 0 for k →∞, since also ‖u− ηk ∗ u‖L2(µ) → 0.

Proof of Proposition 2.2. Self-adjoint extension: We already know that 〈Lϕ,ψ〉L2(µ) =

〈ϕ,Lψ〉L2(µ) as well as 〈Lϕ,ϕ〉L2(µ) ≤ 0 for ϕ,ψ ∈ C∞c (Rd). It suffices to prove the
existence of a self-adjoint extension of A := I − L. Consider the (stationary) partial
differential equation Au = f and its weak formulation: find u ∈ H1(µ) such that for all
v ∈ H1(µ)

a(u, v) :=

∫
∇v>D∇u dµ+

∫
uv dµ =

∫
fv dµ =: F (v)

with f ∈ L2(µ). The bilinear form a(·, ·) on H1(µ) is continuous and coercive, i.e.
|a(u, v)| ≤ ‖u‖H1(µ) ‖v‖H1(µ), a(u, u) ≥ min(α, 1) ‖u‖2H1(µ). Since F is continuous on

H1(µ), the Lax-Milgram lemma implies that there exists a unique solution u ∈ H1(µ).
Accordingly, we can define an operator S : L2(µ) → L2(µ), where S(f) is the weak solu-
tion to Au = f . Furthermore, we have ‖S‖ ≤ min(α, 1)−1. We conclude from uniqueness
kerS = {0}.
Now, we define Aex : ranS → L2(µ) : u 7→ S−1u, which is clearly an extension of A
by uniqueness. Certainly, C∞c (Rd) ⊂ domAex := ranS ⊂ H1(µ) dense in L2(µ). One
can see that S is symmetric, hence self-adjoint. Thus Aex is self-adjoint too. Indeed,
we have 〈Aexx, y〉 = 〈Aexx, SAexy〉 = 〈SAexx,Aexy〉 = 〈x,Aexy〉 for x, y ∈ domAex, so
Aex is symmetric. Take x ∈ domA∗ex arbitrary. By definition there is x∗ ∈ L2(µ) with
〈Aexy, x〉 = 〈y, x∗〉 for all y ∈ domAex. Consequently, we have 〈AexSz, x〉 = 〈Sz, x∗〉 for
all z ∈ L2(µ), which implies 〈z, x〉 = 〈z, Sx∗〉. Thus Sx∗ = x ∈ ranS = domAex and Aex
is self-adjoint. We can define a self-adjoint extension of L by Lex := I −Aex.

Closure of L and uniqueness: In order to prove that Lex is the closure of L it suffices to
prove the same relation for Aex and A from above. At first we will show that ranA is dense
in L2(µ), which follows if we can prove H1(µ) ⊂ ranA, because H1(µ) is dense in L2(µ).
Suppose that there is some 0 6= x ∈ H1(µ) with x /∈ ranA, then ranA ⊂ (span{x})⊥.
But this infers a(u, x) = 〈Au, x〉 = 0 for all u ∈ domA. Since domA = C∞c (Rd) is
dense in H1(µ) and a is a continuous bilinear form on H1(µ) we obtain a(u, x) = 0 for
all u ∈ H1(µ). By uniqueness of the weak formulation it follows x = 0, a contradiction.
Therefore, we establish ranA = L2(µ).

Now, observe that Aex contains the closure of A, because it is closed as a consequence of the
self-adjointness. For the other inclusion take u ∈ domAex and f := Aexu. Since ranA is
dense we can find a sequence Aun → f in L2(µ). Hence, we obtain un = SAun → Sf = u
and therefore, Aex is contained in the closure of A.

For uniqueness let L̃ be another self-adjoint extension of L. The operator L̃ is closed and
hence L̃ extends also Lex. But then it follows that L∗ex extends L̃∗ which yields Lex = L̃.
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Spectrum of Lex: Take λ > 0 arbitrary and observe λI − Lex = Aex + (λ − 1)I. We
can conclude like above 〈Aexu+ (λ− 1)u, u〉 ≥ min(α, λ) ‖u‖2H1(µ). Again with the Lax-

Milgram lemma there is a bounded operator Sλ, ‖Sλ‖ ≤ min(α, λ)−1, such that Sλ(f) is
the unique weak solution of Aexu+ (λ− 1)u = f . We want to prove that Sλ is the inverse
operator of Aex + (λ− 1)I.

Therefore, set f := Aexu+(λ−1)u for an arbitrary u ∈ domAex. Since 〈Aexu, v〉 = a(u, v),
u is also a weak solution and thus u = Sλ(Aex + (λ− 1)I)u, i.e. Sλ(Aex + (λ− 1)I) = I.

In order to prove (Aex + (λ − 1)I)Sλ = I, we first observe domAex ⊂ ranSλ and by
uniqueness kerSλ = {0}. Now, if u ∈ ranSλ, then there is f ∈ L2(µ) with Sλf = u such
that

〈f, v〉 = a(u, v) + (λ− 1) 〈u, v〉

for all v ∈ H1(µ). Uniqueness of the weak solution implies S(f−(λ−1)u) = u ∈ domAex.
Since Sλf = u this implies, f = (Aex+(λ−1)I)Sλf and thus Aexu+(λ−1)I is continuously
invertible.

This proves λ ∈ ρ(Lex). In addition, we know that C\R ⊂ ρ(Lex), because Lex is self-
adjoint. Certainly, 0 ∈ σ(Lex) and if u ∈ kerLex, then 0 = 〈−Lexu, u〉 = 〈Aexu− u, u〉 ≥
α ‖∇u‖2L2(µ). Consequently, u is constant.

For the proof of Theorem 2.4 we will need the following regularity result.

Lemma A.16. Suppose Assumption 2.1 is satisfied and consider the weak solution u ∈
H1(µ) of Lu = f with f ∈ H1(µ). If f ∈ Hk

loc(Rd) for some fixed k ∈ N then u ∈ Hk+2
loc (Rd).

Proof. Fix some Ω ⊂ Rd open, bounded. We choose ϕ ∈ C∞c (Ω) as a test function in the
weak formulation and obtain ∫

Ω
∇u>D∇ϕdµ =

∫
Ω
fϕ dµ,

which is then also true for every ϕ ∈ H1
0 (Ω). Thus, the restriction of u to Ω, u ∈ H1(Ω), is

a weak solution of the equation −div(e−VD∇u) = fe−V on Ω. Note that the matrix-valued
function e−VD is uniformly elliptic on Ω and fe−V ∈ Hk(Ω) by smoothness of e−V . Now,
the familiar interior regularity results (see [Eva10, Section 6.3, Theorem 2, p. 314]) imply
u ∈ Hk+2

loc (Ω).

In order to prove Theorem 2.4 we follow [Bau14, p. 103-104, 106-107]. We will use the
spectral theorem as well as properties of a spectral measure stated in Section A.1.

Proof of Theorem 2.4. Uniqueness: We obtain for two solutions u, v by differentiating the
norm

d

dt
‖u− v‖2L2(µ) = 2 〈L(u− v), u− v〉 ≤ 0.

Together with the initial condition (u − v)(0) = 0 we conclude ‖(u− v)(t)‖L2(µ) = 0 for
all t ≥ 0.
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Semigroup: By setting eLt :=
∫
σ(L) e

λt dE(λ) we define a family of bounded operators
with

eLteLs =

∫
σ(L)

eλteλs dE(λ) = eL(t+s),
∥∥eLt∥∥ = sup

λ∈σ(L)
|eλt| ≤ 1

for all t, s ≥ 0. Since the continuous functions eλt are uniformly bounded on the spectrum
of L, we obtain strongly continuity of eLt.

Regularity in time: After fixing t > 0 we obtain from Taylor’s formula

λk

(
eλ(t+h) − eλt

h

)
= λk+1eλt + λk+2heλϑ(h)

with ϑ(h) ∈ (t − |h|, t + |h|) and k ∈ N0. Now, the right side is uniformly bounded in
λ ∈ σ(L) and h, whenever |h| < t, respectively ϑ(h) > 0. Furthermore, for h → 0 it
converges pointwise to λk+1eλt. We conclude

lim
h→0

∥∥∥∥∥
∫
σ(L)

λk
eλ(t+h) − eλt

h
dE(λ)g0 −

∫
σ(L)

λk+1eλt dE(λ)g0

∥∥∥∥∥
L2(µ)

= 0

for all k ∈ N0 and g0 ∈ L2(µ). This is

dk

dtk
eLtg0 =

∫
σ(L)

λkeλt dE(λ)g0.

Regularity in space: At first we have to prove eLtg0 ∈ domLk for g0 ∈ L2(µ), t > 0 and
recall Lk =

∫
σ(L) λ

k dE(λ). This statement is equivalent to∫
σ(L)
|λ|2k dEeLtg,eLtg =

∫
σ(L)
|λ|2ke2λt dEg,g <∞,

which is satisfied for t > 0. In addition,

LeLtg0 =

∫
σ(L)

λeλt dE(λ)g0 =
d

dt
eLtg0,

thus eLtg0 is a solution of (2.3).

Furthermore, for every k ∈ N, k ≥ 1 we have LkeLtg0 ∈ domL ⊂ H1(µ), hence LkeLtg0 ∈∈
H1(Ω) for every Ω ⊂ Rd open and bounded. Lemma A.16 yields Lk−1eLtg0 ∈ H1+2(Ω)
and inductively eLtg0 ∈ H2k+1(Ω) for every Ω ⊂ Rd open, bounded and every k ∈ N.
We conclude eLtg0 ∈ C∞(Rd) by Sobolev’s embedding theorem ([Eva10, Theorem 6,
Subsection 5.6.3, p. 284]).

Joint regularity: We sketch this part and consider only joint continuity (see also [Bau14,
Prop. 4.20, p. 106]). Fix t0 > 0. By Sobolev’s inequality in Sobolev’s embedding theorem
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we can choose an integer n ∈ N such that for every compact set K ⊂ Rd there is a constant
C ≥ 0 with

sup
x∈K

∣∣∣e−V (x)/2
(
eLtg0(x)− eLt0g0(x)

)∣∣∣ ≤ C ∥∥∥e−V (x)/2
(
eLtg0(x)− eLt0g0(x)

)∥∥∥
Hn(K)

.

Since e−V/2 and all its derivatives up to order n are bounded on K and e−V/2 is also
bounded away from zero on K, we obtain by redefining the constant C

sup
x∈K

∣∣eLtg0(x)− eLt0g0(x)
∣∣ ≤ C n∑

k=0

∥∥∥LkeLtg0 − LkeLt0g0

∥∥∥
L2(µ)

.

Now, λkeλt → λkeλt0 as t → t0 and λkeλt is uniformly bounded in λ, t, where λ ∈ σ(L).
Therefore, we obtain for t→ t0∥∥∥LkeLtg0 − LkeLt0g0

∥∥∥
L2(µ)

→ 0,

hence

sup
x∈K
|eLtg0(x)− eLt0g0(x)| → 0.

This implies the joint continuity. The joint continuity of the t, x-derivatives works similar.

Long-time behavior: Whenever λ < 0, eλt → 0 for t→ +∞ and eλt is bounded uniformly
in λ, t. Thus, we obtain strong convergence of eLt, i.e.

lim
t→+∞

∥∥∥∥eLtg0 −
∫
g0 dµ

∥∥∥∥
L2(µ)

= lim
t→+∞

∥∥∥∥∥
∫

(−∞,0)
eλt dE(λ)g0

∥∥∥∥∥
L2(µ)

= 0.

This concludes the proof.

A.3.2. Proof of Proposition 2.7 and Lemma 2.11

The following proof gives the rigorous justifications in order to obtain Proposition 2.7.
Recall the idea of gluing together local solution of the stochastic differential equation (2.2)
discussed at the beginning of Section 2.2. The filtration (Ft) in the statement is constructed
as follows: If (Wt,Gt, t ≥ 0) is a Brownian motion on (Ω,F ,P) and ξ is a random variable

on it, then F̃t := σ(Gs ∪ ξ s ≤ t). Finally, Ft is defined to be the augmentation of F̃t like
in Remark A.9 and therefore satisfies the usual conditions.

Proof of Proposition 2.7. Existence: For n ∈ N define bn and σn such that

bn(x) = b(x), σn(x) = σ(x), for x ∈ Bn(0)
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and bn, σn fulfill the conditions in Theorem A.13, i.e. are globally Lipschitz-continuous
and grow at most linearly. By virtue of Theorem A.13 there are continuous processes Y n

satisfying

Y n
t = ξ +

∫ t

0
bn(Y n

s ) ds+

∫ t

0
σn(Y n

s ) dWs (A.2)

as well as the other assertions in Definition A.11. For the sake of notation, we will assume
that equation (A.2) is satisfied for all ω ∈ Ω. Set τn := inf {t > 0 : Y n ∈ Bn(0)c}, which
are (Ft) stopping times. We show that Y n

t = Y m
t on {t ≤ τn} for n < m.

First of all we have bn(x) = bm(x), σn(x) = σm(x) for x ∈ Bn(0) and therefore on {t ≤ τn}

Y m
t = ξ +

∫ t

0
bn(Y m

s ) ds+

∫ t

0
σn(Y m

s ) dWs.

Strong uniqueness (Theorem A.12) implies Y m
t = Y n

t on {t ≤ τn} (despite of a null set
independent of t). Furthermore, we observe τn ≤ τm and define the stopping time τ :=
supn τn as well as Ω̃ :=

⋂
1≤n<m {Y m

t = Y n
t ,∀t ≤ τn}. For every ω ∈ Ω̃ and t < τ(ω) we

define a continuous process by Xt(ω) := Y n
t (ω) with n such that t ≤ τn(ω). This definition

does not depend on n we pick to ensure t ≤ τn(ω).

We obtain for any ω ∈ Ω̃, t < τ(ω) and n with t ≤ τn(ω)

Xt(ω) =

(
ξ +

∫ t

0
b(Y n

s ) ds+

∫ t

0
σ(Y n

s ) dWs

)
(ω)

=

(
ξ +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs

)
(ω).

That is on {t < τ}

Xt = ξ +

∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dWs.

Furthermore, on {τ > 0} we have X0 = ξ and on {t < τ}∫ t

0
(|bi(Xs)|2 + |σij(Xs)|2) ds <∞,

since this is satisfied for all Y n. Because Xt = Y n
t on {t ≤ τn}∩Ω̃ and Ω̃c ∈ F0 by the usual

conditions, we conclude that Xt∧τn is adapted for all n. But then so is (Xt,Ft, t < τ).

Uniqueness: Let (Zt,Ft, t < σ) together with a stopping time σ be another solution. By
strong uniqueness we observe Y n

t = Zt on {t < σ ∧ τn} for all n ∈ N. But this isXt = Zt on
{t < σ ∧ τ}. Assume for a moment that σ > τ . Take ω such that (Xt)t≥0, (Zt)t≥0 are equal
for all t < σ(ω) ∧ τ(ω) = τ(ω) and τ(ω) <∞. Moreover, define the sequence tn := τn(ω)
and observe tn < τ(ω), tn → τ(ω). By definition of τn we have |Ytn(ω)| = |Xtn(ω)| ≥ n.
Since Y is continuous, we obtain |Yτ(ω)(ω)| =∞. Therefore, σ ≤ τ must hold.

This concludes the proof.
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At the end of this section we give all calculations needed to prove Lemma 2.11 based on
Proposition 2.9 which yields the existence of a global solution to the stochastic differential
equation (2.2).

Proof of Lemma 2.11. First we will consider k = 1. We define the function G(x) := |x|2+C
for some constant C ≥ 0 to be determined later. We have for |x| ≥M

LG =
∑
i,j

2Dij + 2 〈divD −D∇V (x), x〉 ≤ 2d2 ‖D‖∞ + 2|divD||x| − 〈D∇V (x), x〉

≤ 2d2 ‖D‖∞ + d ‖divD‖∞ + |x|2

and for |x| ≤M

LG ≤ 2d2 ‖D‖∞ + d ‖divD‖∞ + 2 ‖D‖∞ sup
|x|≤M

|∇V (x)|M + |x|2.

If we define C accordingly, we obtain LG ≤ G and Proposition 2.9 applies.
For k > 1 it works similarly. We define G(x) := |x|2k + C, then we have

∇G(x) = 2kx|x|2k−2, Hess G(x) = 2kI|x|2k−2 + 2k(2k − 2)xx>|x|2k−4

and thus∑
i,j

Dij

(
2k|x|2k−2 + 2k(2k − 2)xixj |x|2k−4

)
≤ ck ‖D‖∞ |x|

2k−2 ≤ ck ‖D‖∞ (1 + |x|2k)

for some constant ck by using xixj ≤ (x2
i + x2

j )/2. In the same manner

2k 〈divD,x〉 |x|2k−2 ≤ 2k ‖divD‖∞ |x|
2k−1 ≤ 2k ‖divD‖∞ (1 + |x|2k).

Together with

2k 〈D∇V (x), x〉 |x|2k−2 ≤ 2k ‖D‖∞ sup
|x|≤M

|V (x)|M2k−1 =: cm

for |x| ≤M we obtain

LG(x) ≤ (ck ‖D‖∞ + 2k ‖divD‖∞)(1 + |x|2k) + cm ≤ ckG(x)

by redefining ck and defining C properly. Again Proposition 2.9 applies.

A.4. Postponed proofs from Chapter 3

In the following we will give a proof of Lemma 3.7 and Proposition 3.8.
For the first one, recall that ρ is solution of (2.1) with initial data ρ0 ∈ L2(ρ−1

∞ ), where
Assumption 2.1 holds. Recall µ = ρ∞λ, g = ρ/ρ∞ from Section 2.1 and Theorem 2.4 for
properties of the semigroup.
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Proof of Lemma 3.7. In order to prove eψ(ρt | ρ∞) < ∞, we first observe by Lemma 3.3
(iii) for σ0 = 1 that ψ(σ) ≤ ψ(1)(σ − 1)2 for σ ≥ 0. Therefore, we infer

eψ(ρt | ρ∞) =

∫
Rd

ψ(gt)dµ ≤
∫
Rd

ψ(1)(gt − 1)2 dµ = ψ(1) ‖gt − 1‖2L2(µ) <∞.

Since we deal with normalized generating functions, we have ψ ≥ 0 and hence the claim.
Recall that ψ′ and ψ′′ can have a singularity at σ = 0. Therefore, we consider the

approximation for ε < 1

ψ′′ε (σ) =

{
ψ′′(σ), σ ≥ ε,
ψ′′(ε) σ < ε.

Note that ψ′′ is decreasing (see Lemma 3.3 (ii)) and hence ψ′′ε ≤ ψ′′. Furthermore, ψ′′ε ↗ ψ′′

as ε→ 0. We define for ε < 1

ψε(σ) =

∫ σ

1

(∫ τ

1
ψ′′ε (η) dη

)
dτ.

Note that ψε(σ) = ψ(σ) for σ ≥ ε, since ε < 1, ψ(1) = ψ′(1) = 0 (see Definition 3.1). We
infer ψε ≤ ψ and ψε ↗ ψ as ε→ 0. In addition, ψ′ε, ψε do not have a singularity at σ = 0.

Furthermore, we also need the following estimate ψ′ε(σ) = ψ′(σ) ≤ ψ′′(1)σ for σ ≥ 1.
This follows, since ψ′′ is decreasing and hence with ψ′(1) = 0

ψ′(σ) =

∫ σ

1
ψ′′(τ) dτ ≤ σψ′′(1).

Recall that ψ′ is an increasing function. This yields the estimate c(ε) ≤ ψ′ε(σ) ≤ C(ε)σ
for all σ ≥ 0 for constants c(ε), C(ε) depending on ε. Note that we also have the bounds
0 ≤ ψ′′ε ≤ C ′(ε) for all σ ≥ 0 for some constant C ′(ε).

Now, since ψ(gt) is smooth for t > 0 we obtain for 0 < s ≤ t

ψε(gt)− ψε(gs) =

∫ t

s
ψ′ε(gr)∂tgr dr

and integrating with respect to µ yields

eψε(ρt | ρ∞)− eψε(ρs | ρ∞) =

∫
Rd

∫ t

s
ψ′ε(gr)∂tgr drdµ.

The right integral exists, since ψ′ε(gr) ≤ C(ε)gr and gr∂tgr ∈ L1(µ). We obtain by a partial
integration∫ t

s

〈
ψ′ε(gr), ∂tgr

〉
L2(µ)

dr =

∫ t

s

〈
ψ′ε(gr), Lgr

〉
L2(µ)

dr = −
∫ t

s

∫
Rd

ψ′′ε (gr)∇g>r D∇gr dµdr,

which is justified, since ψ′ε(gr) ∈ H1(µ), 0 ≤ ψ′′ε ≤ C ′(ε). Finally, we let ε → 0 and
use monotone convergence on the right side of the previous equation and in eψε(ρt | ρ∞)
yielding

eψ(ρt | ρ∞)− eψ(ρs | ρ∞) = −
∫ t

s

∫
Rd

ψ′′(gr)∇g>r D∇gr dµdr.
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A.4.1. Proof of Proposition 3.8

The given proof is based on [OV00, Section 4, p. 18] (for Step 1-3 below) and [AMTU01,
Lemma 2.13, p. 21] (for Step 4). Recall that we assume D ≡ I, Hess V ≥ λI together with
Assumption 2.1.

At first we reduce our investigation to “nice” functions and derive bounds on the solution
g = ρ/ρ∞ of (2.3). Then we calculate the entropy dissipation and its dissipation. In the
final step we use the condition Hess V ≥ λI to derive the convex Sobolev inequality, which
implies convergence in relative entropy.

Step 1. We will consider g = ρ/ρ∞ for a solution ρ of (2.1) with ρ0 ∈ L2(ρ−1
∞ ), ρ ≥ 0

first. Recall that it satisfies (2.3), i.e.

∂tg = ∆g −∇V · ∇g = ρ−1
∞ div(ρ∞∇g) = Lg (A.3)

Now, we want reduce the problem to solutions g which are bounded away form zero and
infinity and satisfy a gradient bound. Therefore, define

gn0 (x) :=


1/n g0(x) < 1/n,

g0(x) 1/n ≤ g0(x) ≤ n,
n g0(x) > n.

Obviously, gn0 → g0 in L2(ρ∞). Define gn,l0 to be a smooth approximation of gn0 in L2(ρ∞)

such that |∇gn,l0 | ≤ K(n, l) for some constant K(n, l) > 0 depending on n, l and 1/n ≤
gn,l0 ≤ n. This can be done with mollifies. Hence, gn,n0 is a smooth approximation of g0 in
L2(ρ∞) with

0 < cn ≤ gn,n0 ≤ Cn, |∇gn,n0 | ≤ Kn.

Therefore, eLtgn,n0 → eLtg0 in L2(ρ∞) for each t ≥ 0 by the continuity of eLt. This implies
ρnt → ρt in L2(ρ−1

∞ ) for the corresponding solutions of (2.1).
Suppose that we already proved

eψ(ρnt | ρ∞) ≤ e−2λteψ(ρn0 | ρ∞).

Then Lemma 3.3 infers the same inequality for ρt. Furthermore, the convex Sobolev in-
equality (3.6) follows from the entropy decay for solutions ρt with ρ0 ∈ L2(ρ−1

∞ ). Indeed,
we have the decay estimate for 0 ≤ s ≤ t

eψ(ρt | ρ∞) ≤ e−2λ(t−s)eψ(ρs | ρ∞),

since we can consider ρt to be the solution after time (t − s) with initial data ρs by the
uniqueness of solutions (see Theorem 2.4). Hence, by Lemma 3.7 we have∫ t

s

(
−
∫
Rd

ψ′′(gr)∇g>r D∇grρ∞ dx
)
dr ≤ (e−2λ(t−s) − 1)eψ(ρs | ρ∞)

Dividing by (t− s) and sending t↘ s yields the inequality.

54



A. Appendix

Step 2. Consider g0 ∈ L2(ρ∞) smooth with

0 < c ≤ g0 ≤ C, |∇g0| ≤M.

The condition Hess V ≥ λI allows us to use Theorem 2.13. Take x ∈ Rd, s ∈ R and observe
(as a function of s using Taylor’s theorem)

V (x− sx) = V (x)− 〈∇V (x), x〉+
1

2
〈x,Hess V (θ)x〉

≥ V (x)− 〈∇V (x), x〉+
λ

2
|x|2.

At last set s = 0 yielding 〈∇V (x), x〉 ≥ λ|x|2/2 ≥ 0.
By Theorem 2.13 (iii) the solution can be written as

gt(x) = eV (x)

∫
p(t, y, x)ρ0(y) dy = eV (x)

∫
p(t, y, x)e−V (y)g0(y) dy

Using the bounds on g0 and the fact that e−V is the density of the invariant measure with
respect to the corresponding Markov process, i.e.

∫
p(t, y, x)e−V (y) dy = e−V (x), we infer

0 < c ≤ gt ≤ C.

In addition to the above bounds, the condition Hess V ≥ λI was used in [OV00, Section
4, p. 18] to derive the gradient estimate sup |∇gt| ≤ e−2λt sup |∇g0| ≤ M for all t ≥ 0.
(Such a gradient estimate was also proved in [BGL14, Subsection 3.2.3, p. 143-149] under
the same condition).

Step 3. Now, we calculate the entropy dissipation and its dissipation for gt from the
previous step. At first, we have for fixed t > 0 and a function φ ∈ C∞c (Rd)

d

dt

∫
Rd

ψ(gt)φdµ =

∫
ψ′(gt)Lgtφdµ = −

∫
ψ′′(gt)|∇gt|2φdµ−

∫
ψ′(gt)∇gt · ∇φdµ.

The interchange as well as the partial integration can be performed since φ has compact
support. Choose φn such that φn → 1, ∇φn → 0 and |∇φn| uniformly bounded. For
instance, define φn = 1Bn(0) ∗ η with the ball Bn(0) of radius n and a fixed mollifier η.

Since the integrands are bounded we obtain

lim
n

d

dt

∫
Rd

ψ(gt)φ
n dµ = −

∫
ψ′′(gt)|∇gt|2 dµ.

Observe that the above limit with respect to n is uniform with respect to t.
Thus, t 7→

∫
ψ(gt)φ

n dµ is differentiable for every t, n and its derivative converges uni-
formly in t. This implies

d

dt

∫
Rd

ψ(gt) dµ = Iψ(ρt | ρ∞) = −
∫
ψ′′(gt)|∇gt|2 dµ.
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Now we turn to d
dtIψ(ρt | ρ∞). We have

d

dt
−
∫
ψ′′(gt)|∇gt|2φn dµ = −

∫
ψ′′′(gt)∂tgt|∇gt|2φn dµ−

∫
ψ′′(gt)∇gt · ∇∂tgtφn dµ

In order to obtain the uniform convergence in t we use the bounds for the first respectively
the second integral (K is some constant)∫

ψ′′′(gt)|∂tgt||∇gt|2|φn − 1| dµ ≤ K ‖∂tgt‖L2(µ) ‖φn − 1‖L2(µ) ,∫
ψ′′(gt)|∇gt · ∇∂tgt||φn − 1| dµ ≤ K ‖∇∂tgt‖L2(µ) ‖φn − 1‖L2(µ) .

It follows from the definition of the semigroup eLt via the spectral decomposition that
‖∂tgt‖L2(µ) and ‖∇∂tgt‖L2(µ) are locally uniformly bounded in t. Again we have

d

dt
Iψ(ρt | ρ∞) = Rψ(ρt | ρ∞) = −

∫
ψ′′′(gt)∂tgt|∇gt|2 dµ−

∫
ψ′′(gt)∇gt · ∇∂tgt dµ. (A.4)

Step 4. In this step, we turn to the exponential convergence of the relative entropy with
rate 2λ. First, we prove such a decay for the entropy dissipation and therefore analyze
Rψ(ρt | ρ∞). By virtue of (A.3) we start with partial integration in the first integral in
(A.4),

R1 :=

∫
Rd

∇
(
ψ′′′(gt)|∇gt|2

)
· ∇gt dµ

=

∫
Rd

ψIV (gt)|∇gt|4 dµ+ 2

∫
Rd

ψ′′′(gt)∇g>t (Hess gt)∇gt dµ.

The surface integral vanishes since the integrand is bounded and ρ∞ vanishes at infinity.
For the second integral in (A.4), we observe at first

∇gt · ∇∂tgt = ∇gt · ∇(∆gt −∇V · ∇gt)
= ∇gt · ∇(∆gt)−∇g>t (Hess gt)∇V −∇g>t (Hess V )∇gt

(A.5)

The first and third term will be very important. The latter allows us to make use of the
condition, whereas the first one will lead to a wise application of partial integration. First
we calculate

1

2
∆(|∇gt|2) = div((Hess gt)∇gt) = tr ((Hess gt)(Hess gt)) +∇gt · ∇∆gt

= ‖Hess gt‖2F +∇gt · ∇∆gt.

We denoted by ‖·‖F the Frobenius norm. Using this expression for ∇gt · ∇∆gt in (A.5)
yields

∇gt · ∇∂tgt =
1

2
∆(|∇gt|2)−∇g>t (Hess gt)∇V − ‖Hess gt‖2F −∇g

>
t (Hess V )∇gt
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Because of

1

2
∆(|∇gt|2)ρ∞ −∇g>t (Hess gt)∇V ρ∞ =

1

2
div
(
∇(|∇gt|2)ρ∞

)
we obtain

∇gt · ∇∂tgtρ∞ =
1

2
div
(
∇(|∇gt|2)ρ∞

)
− ‖Hess gt‖2F ρ∞ −∇g

>
t (Hess V )∇gtρ∞.

Plugging this into the second integral in (A.4) gives

R2 :=−
∫
Rd

ψ′′(gt)div(∇(|∇gt|2)ρ∞) dx

+ 2

∫
Rd

ψ′′(gt)
{
‖Hess gt‖2F +∇g>t (Hess V )∇gt

}
dµ.

Now, we obtain after partial integration in the first integral and using the positive definite-
ness of Hess V in the second one

R2 ≥
∫
Rd

ψ′′′(gt)∇gt · ∇(|∇gt|2) dµ+ 2

∫
Rd

ψ′′(gt)
{
‖Hess gt‖2F + λ|∇gt|2

}
dµ.

The surface integral vanishes since |∇(|∇gt|2)| = |2(Hess gt)∇gt| ∈ L1(ρ∞) and ψ′′′(gt) is
bounded.

The very last integral is

2

∫
Rd

ψ′′(gt)λ|∇gt|2 dx = −2λIψ(ρt | ρ∞).

Combining all integrals Rψ(ρt | ρ∞) = R1 +R2 we establish

Rψ(ρt | ρ∞) ≥ −2λIψ(ρt | ρ∞) +

∫
Rd

ψIV (gt)|∇gt|4 dµ

+

∫
Rd

ψ′′′(gt)
[
2∇g>t (Hess gt)∇gt +∇gt · ∇(|∇gt|2)

]
dµ+ 2

∫
Rd

ψ′′(gt) ‖Hess gt‖2F dµ

Observe

2∇g>t (Hess gt)∇gt +∇gt · ∇(|∇gt|2) = 4∇g>t (Hess gt)∇gt.

The integrand in the last three integrals is

ψIV (gt)|∇gt|4 + 4ψ′′′(gt)∇g>t (Hess gt)∇gt + 2ψ′′(gt) ‖Hess gt‖2F

This can expressed by

tr

((
ψIV (gt) 2ψ′′′(gt)
2ψ′′′(gt) 2ψ′′(gt)

)(
|∇gt|4 ∇g>t (Hess gt)∇gt

∇g>t (Hess gt)∇gt ‖Hess gt‖2F

))
= tr (XY )
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and we obtain

Rψ(ρt | ρ∞) ≥ −2λIψ(ρt | ρ∞) +

∫
Rd

tr (XY ) dµ.

We have ψIV ≥ 0 and 2ψIV ψ′′ − 4(ψ′′′)2 ≥ 0, since ψ generates a relative entropy, and
hence the matrix X is positive semi-definite. Because of

∇g>t (Hess gt)∇gt ≤ |∇gt| |(Hess gt)∇gt| ≤ ‖Hess gt‖F |∇gt|
2

the determinant of the second matrix Y is nonnegative, hence this matrix is positive semi-
definite. Therefore, tr (XY ) ≥ 0 and we establish

Rψ(ρt | ρ∞) ≥ −2λIψ(ρt | ρ∞).

By virtue of Iψ(ρt | ρ∞) ≤ 0 this is

d

dt
|Iψ(ρt | ρ∞)| ≤ −2λ|Iψ(ρt | ρ∞)| (A.6)

and we obtain with Gronwall’s Lemma

|Iψ(ρt | ρ∞)| ≤ e−2λ|Iψ(ρ0 | ρ∞)|.

By Lemma 3.5 we know eψ(ρt | ρ∞)→ 0 and by the above inequality |Iψ(ρt | ρ∞)| → 0 as
t→ +∞. Now, we integrate (A.6) from t to +∞ yielding

Iψ(ρt | ρ∞) =
d

dt
eψ(ρt | ρ∞) ≤ −2λeψ(ρt | ρ∞).

This implies again by Gronwall’s Lemma

eψ(ρt | ρ∞) ≤ e−2λeψ(ρ0 | ρ∞).

which concludes the proof.
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[BGL14] D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion
operators. Grundlehren der mathematischen Wissenschaften. Springer, Cham
[u.a.], 2014.

[Bre11] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations.
Universitext. Springer, New York, NY [u.a.], 2011.

[Eva10] L. C. Evans. Partial differential equations. Graduate studies in mathematics.
American Math. Soc., Providence, RI, 2. edition, 2010.

[Fri64] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall,
Englewood Cliffs, NJ, 1964.

[Gro75] L. Gross. Logarithmic sobolev inequalities. American Journal of Mathematics,
1 December 1975, Vol.97(4), pp.1061-1083, 1975.

[Hai16] M. Hairer. Convergence of Markov Processes. Lecture notes. University of
Warwick, 2016.

[HS87] R. Holley and D. Stroock. Logarithmic sobolev inequalities and stochastic
ising models. Journal of Statistical Physics, 1987, Vol.46(5), pp.1159-1194,
1987. We use logarithmic Sobolev inequalities to study the ergodic properties
of stochastic Ising models both in terms of large deviations and in terms of
convergence in distribution.
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