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English German
compound interest Zinseszins
expiry date/maturity Verfallstag/Fälligkeit
fixed-term deposit Festgeld
holder Käufer einer Option
interest Zins
interest rate Zinssatz
loan Kredit
payoff Auszahlung
premium Optionspreis
savings account Sparguthaben
share Anteil
stock Aktie
strike/exercise price Ausübungspreis
time to expiration Laufzeit
underlying (asset) Basiswert
volatility Preisschwankung/Volatilität
writer Verkäufer einer Option

Table 1: English-German translations of financial terms used in the lecture notes.
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1 Introduction

A financial derivative is an agreement between two parties based on an underlying
asset (or just underlying). It is designed to hedge financial transactions, but they can
be also used to speculate on the prices of the underlying. Already in ancient Greece,
shipping contracts for trading were used, similar to forward contracts (see below). The
buyer receives some money upfront, which finances the trading voyage. After return (if
successful), the buyer pays back the loan and the required interest. Similar commodity
forward contracts were used in the Roman era, in Italy from the 10th century on, and in
Japan in the 18th century.

In the 17th century, financial options were issued in the Dutch Republic to hedge
the rapidly increasing prices of tulip bulbs, which were very fashionable at that time.
In these options, the obligation to purchase tulip bulbs at a fixed price was converted
to an opportunity to do so. The tulip market was accompanied by wild speculative
transactions, leading eventually in February 1637 to a collapse of the tulip bulb contract
prices.

Later, further precursors of today’s financial derivatives have been issued and traded,
but a regulated market was still missing. In 1848, the Chicago Board of Trade of the USA
opened, providing a central location as a storage and market place for grain. Some years
later, in 1865, the contracts were standardized. The Chicago Board Option Exchange,
founded in 1973 as an extension of the Chicago Board of Trade, then became the first
exchange to offer standardized options trading.

Derivatives gained widespread use in the 1970s, fostered by the computer technol-
ogy allowing the complex models and computations to be solved in an efficient way.
In the same decade, in 1973, Fischer Black and Myron Scholes published their seminal
paper “The pricing of options and corporate liabilities”. Robert Merton expanded the
mathematical understanding of the option pricing model. (Interestingly, Louis Bache-
lier already formulated in 1900 a theory of option pricing in his PhD thesis, far before
Black, Scholes, and Merton. However, Bachelier did not include a theory of hedging and
replication by dynamic strategies; see the discussion in [32].) The Black-Scholes formula
led to a boom in option trading. Merton and Scholes received the Nobel Memorial Prize
in Economic Sciences in 1997 for their new methodology to value derivatives (Black
died in 1995 and could not receive the award). Nowadays, in spite of the financial crisis
from 2007, the derivative market is huge – its size is estimated to be more than ten times
larger than the total world gross domestic market. Therefore, the understanding and
control of financial instruments is of paramount importance for companies and also for
the society.

These lecture notes are devoted to the modeling and numerical simulation of financial
derivatives. In particular, we derive the Black-Scholes equation and the Black-Scholes
formula, discuss its limitations and extensions, and present some numerical techniques
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to solve the corresponding financial models. The topic forces us to use several mathe-
matical techniques:

▶ mathematical modeling,
▶ stochastic analysis,
▶ theory of partial differential equations,
▶ numerical analysis.

The lecture notes are organized in such a way that no special knowledge is assumed to
follow the arguments – besides of calculus, ordinary differential equations, and a basic
understanding of probability theory.

What is a financial derivative? It is a contract whose value at the expiry date is de-
termined by the value of the underlying asset at or up to expiration. The underlying
asset can be, for instance, a stock, commodity, index, or currency. Generally, we can
distinguish four classes of financial derivatives:

▶ Forward contracts. A forward contract is an agreement between two counterparties
to sell or purchase an asset for a price agreed upon today with delivery and pay-
ment at a fixed future date. Forwards can be used to hedge risks like currency rate
risk.

▶ Future contract. Future contracts are very similar to forward contracts. They are
standardized contracts between two counterparties to sell or purchase an asset for
a price agreed upon today with delivery and payment at a fixed future date. In
contrast to forwards, they are exchange-traded and both parties are required to
put up an initial amount of cash to mitigate the risk of default of either party.

▶ Option contracts. Option contracts give the owner the right, but not the obligation,
to sell or purchase an asset for the exercise price until or at the expiry date. In
contrast to forward or future contracts, the owner has no obligation to carry out
the right of selling or buying the underlying asset. This allows the owner to hedge
or mitigate risk due to changes in the asset price.

▶ Swaps. A swap is a contract determining the cash flow exchange of the counter-
parties. For instance, one party may exchange an uncertain cash flow to a certain
one or to swap a fixed interest rate to a floating one. Swaps are used to hedge risks
like the interest rate or currency risk, but they may be also used to speculate on
changes of the underlying price. Common swaps are interest rate swaps, currency
swaps, credit swaps, commodity swaps, and equity swaps.

We see that financial derivatives are defined through the following values:

▶ the quantity and class of the underlying asset,
▶ the expiry date,
▶ the excercise or strike price,
▶ the type of contract (the right or obligation to buy or sell the asset).
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In the lecture notes, we focus on financial options. The most common ones are vanilla
options, and we distinguish between European and American options. The former option
class can be exercised only at the expiry date, the latter one can be exercised until or at
expiration. Each of these two option classes can be exercised as a call option or put option.
The holder of a call option has the right to buy a fixed amount of the underlying for a
fixed price from the option seller (called the writer), while a put option gives the holder
the right to sell a fixed amount of the underlying for a fixed price to the writer; see Table
2. A more formal definition of European options is as follows.

Call Put
European Exercise at expiry only Exercise at expiry only

Right to buy the underlying Right to sell the underlying
American Exercise until or at expiry Exercise until or at expiry

Right to buy the underlying Right to sell the underlying

Table 2: Overview of vanilla options.

Definition 1.1 (European option). A European call (put) option is a contract with the
following conditions: The holder of the option has the right but not the obligation to buy the
underlying from the writer (to sell the underlying to the writer) at the expiry date T for the
fixed strike or exercise price K.

The option gives a right, so it has a value. We denote the value of an call option at
time t by Ct = C(t), the value of a put option by Pt = P(t).1 Let St be the value of the
underlying at time t. At expiration, we may distinguish two cases for a call option:

▶ ST > K: We exercise the option, purchase the underlying at price K, and sell it
immediately on the spot for the price ST. We realize the profit ST − K > 0.

▶ ST < K: The right to exercise the option is not interesting since we can buy the un-
derlying on the market for a cheaper price than guaranteed by the option contract.
The option expires.

This shows that the value CT of the call option at expiration (the so-called payoff) is

CT = max{0, ST − K} = (ST − K)+.

We can use similar arguments to determine the payoff of a put option. If ST > K, the put
option has no value since we can sell the underlying for a higher price on the market,
while for ST < K, we buy the underlying on the spot for the price ST, exercise the

1It is common in the theory of stochastic processes to use an index for the time variable. The notation
C(ω) or P(ω) is used for the stochastic variables ω. In the theory of partial differential equations, an
index usually means partial differentiation with respect to that variable. We try to avoid any confusion,
which may arise because of these two conventions.
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option, and sell the underlying for the price K. We realize the profit K − ST > 0. Thus,
the payoff PT of the put option equals

PT = (K − ST)
+.

The holder of a call option bets on rising prices, while the writer speculates on falling
prices. The opposite holds for put options. The payoff of European options can be
illustrated by the payoff diagrams in Figure 1.1.
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Figure 1.1: Payoff diagrams of a European call option (left) and put option (right).

Remark. (1) Our arguments only hold when we neglect transaction costs, bid-ask spreads,
etc. We specify these assumptions in Section 3.1 and discuss models including transaction
costs in Section 3.8.

(2) When an option is exercised, usually the underlying will not be delivered physically but
just the profit will be paid out (this is called cash settlement). As we already mentioned,
options may be used to speculate on falling or rising prices or to hedge the underlying asset
against price fluctuations and to mitigate risk.

We denote the value of a (call or put) option by V(S, t). This means that V is a
function of time t and all possible realizations of the value of the underlying S, modeled
by a function St(ω) := S(ω, t), where the stochastic variable ω varies in the set of all
possible events. At time t, exactly one value of the underlying St is realized, and the
value of the option is V(St, t), but the function V is defined for all values S. The key
question is: Which is the “fair” price V(S, 0) at time t = 0, when the writer sells the
option?

We will show below that, under some assumptions on the financial market, the fair
price V(S, t) satisfies the following partial differential equation, the Black-Scholes equa-
tion:

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S

− rV = 0, S ∈ (0, ∞), t ∈ (0, T).

Here, the parameter r ≥ 0 is the riskfree interest rate and σ > 0 the volatility, a measure
for the fluctuations of the underlying. At time t = T, the value of the option is known:

V(S, T) =
{

(S − K)+ : call,
(K − S)+ : put.
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Boundary conditions at S = 0 and S → ∞ will be specified in Section 3.1. Thus, the
differential equation has to be solved backwards in time, and we are looking for the
solution V(S, t) at t = 0. Interestingly, the equation can be transformed to the heat
equation and solved explicitly, leading to the Black-Scholes formula. The Black-Scholes
theory will be detailed in Section 3.

In contrast to European options, American options can be exercised at or before the
expiration date. The formal definition is as follows.

Definition 1.2 (American option). An American call (put) option is a contract with the
following conditions: The holder of the option has the right but not the obligation to purchase
the underlying from the writer (to sell the underlying to the writer) at any time before and
including the expiry date.

The value of an American call or put option at time t = T is the same as for the cor-
responding European option. Since American options can be also exercised before the
expiration date, its value is at least as large as the value of the corresponding European
option. Besides the value of the American option at time t = 0, we also need to deter-
mine the optimal exercise date. This leads to a free-boundary problem. We will study
American options in Section 6.

Exotic options are all options which are not of vanilla style (European or American
options). We mention some of them:

▶ The Bermudan option can only exercised on specified dates on or before expiration.
The American option is a special case of a Bermudean option.

▶ The payoff of an Asian option is determined by the average of the price of the
underlying over some time period.

▶ The barrier option requires that the price of the underlying must or must not pass a
certain level or barrier before it can be exercised.

▶ The binary option pays a certain amount if the price of the underlying satisfies
some defined condition on expiration. Otherwise, it expires. Therefore, is is an
all-or-nothing option.

▶ The payoff of lookback options depends on the minimum or maximum of the price
of the underlying.

▶ Multi-asset options depend on several underlyings, and correspondingly, the payoff
depends on the price of these underlyings at expiration.

While the value of European options can be determined explicity under some con-
ditions on the market, this does not hold true in more general situations or for certain
exotic options. This makes it necessary to develop numerical methods to determine
approximate values for the option price. In these lecture notes, we will discuss three
numerical techniques:

▶ Binomial methods (Section 4),
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▶ Monte-Carlo methods (Section 5),
▶ finite-difference methods (Section 6).

In Section 2, we investigate basic properties of vanilla options and basic elements
of stochastic analysis, needed for the derivation and formulation of the Black-Scholes
equations presented in Section 3.



10 2 BASICS

2 Basics

2.1 Financial options

The price of a European option can be determined explicitly under some simplifying
assumptions on the financial market. The most important condition is the absence of
arbitrage. Arbitrage is the riskfree profit by exploiting a price difference between two
markets or two financial products. To illustrate this notion, let us consider a simple
example taken from [16, Beispiel 1.3].

Example 2.1 (Arbitrage). We consider a financial market that allows for only three
investment possibilities: a bond, a stock, and a European call option. The bond is
a debt security which requires the writer to pay interest (called the coupon) to the
holder and to pay the principal at a fixed later date, similar to a fixed-term deposit.
We neglect default risk and assume that the bond is riskfree. The values of the bond,
stock, and option at time t are denoted by Bt, St, and Ct, respectively. We assume
that at time t = 0, B0 = 100, S0 = 100, and C0 = 10. The call option has the strike
price K = 100 and the expiration date T. We assume that trading is only possible at
t = 0 and t = T and that there exist only two states of the financial market, “high”
and “low” with

“high”: BT = 110, ST = 120,
“low”: BT = 110, ST = 80.

We construct the following portfolio: We buy 2/5 shares of the bond and one call
option and sell 1/2 share of the stock. The portfolio at time t = 0 becomes π0 =
2
5 · 100 + 10 − 1

2 · 100 = 0, i.e., initially it has no value. At time t = T, we have

“high”: πT =
2
5
· 110 + (120 − 100)+ − 1

2
· 120 = 4,

“low”: πT =
2
5
· 110 + (80 − 100)+ − 1

2
· 80 = 4.

Thus, the portfolio has always the value 4 at time t = T. Then the portfolio must
have a positive value also at time t = 0, and the holder could sell it at time t = 0 to
realize an instantaneous riskfree profit. This is called arbitrage.

Why do we have arbitrage? The reason is that the price for the call option is too
low. If any investment has the same chances of profit, there are numbers c1, c2 ∈ R

such that
c1 · Bt + c2 · St = Ct for t = 0, T.
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Clearly, the fair price at t = 0 is C0 = c1 · B0 + c2 · S0. At time t = T, we have

“high”: c1 · 110 + c2 · 120 = (120 − 100)+ = 20,
“low”: c1 · 110 + c2 · 80 = (80 − 100)+ = 0.

This is a linear system with solution c1 = −4/11 and c2 = 1/2. We infer that

C0 = − 4
11

· 100 +
1
2
· 100 =

300
22

≈ 13.64.

As we have replicated the call option by means of the bond and stock, this approach
is called a replication strategy.

The assumption of the absence of an instantaneous and riskfree profit (arbitrage) is
fundamental in the theory of financial markets. A savings account is generally riskfree
but the interest is paid only after some time; options may allow for an instantaneous
profit but the investment if not riskfree. Real markets are not free of arbitrage. We
assume that the financial market is efficient (liquid, accessible, and transparent) which
rules out arbitrage opportunities. Interestingly, we can determine some bounds on the
option prices just from the assumption of absence of arbitrage.

To derive these bounds, we consider a financial market with the following assump-
tions:

▶ there is no arbitrage,
▶ there are no dividend payments on the underlying,
▶ the riskfree interest rate is the same for investments and loans,
▶ the market is liquid and accessible (i.e., trading is possible at any time).

The riskfree interest rate is denoted by r ≥ 0, and we suppose continuous interest pay-
ments. This means that the return of an investment K0 > 0 after time t = T equals
K = K0erT. This formula can be derived from discrete returns at t = △t, . . . , n△t, where
n△t = T. Including compound interest, the return equals after n payments:

Kn = K0(1 + r△t)n = K0(1 + rT/n)n → K0erT as n → ∞.

If we invest today the amount Ke−rT (or buy a bond with value Ke−rT), we receive the
value K after time T. The factor e−rT is called the discount factor.

We claim the following relationship between bond, option, and stock value.

Proposition 2.2 (Put-call parity). Under the stated assumptions on the financial market,
it holds that

St + Pt − Ct = Ke−r(T−t) for all 0 ≤ t ≤ T,

where Pt := P(St, t) and Ct := C(St, t).

Proof. Consider the following portfolio: Purchase a stock S and a European put option
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P with strike K and expiry T and sell a European call option with strike K and expiry T.
The portfolio has the value π = S + P − C. At time t = T, its value is

πT = ST + (K − ST)
+ − (ST − K)+ = K.

We claim that the value equals πt = Ke−r(T−t) for any t < T. This corresponds to a
bond with value Ke−r(T−t) at time t.

Suppose that πt < Ke−r(T−t) at some time t. Then we buy the portfolio, borrow the
amount Ke−r(T−t) and put aside Ke−r(T−t) − πt > 0. At time t = T, the portfolio has the
value K which we use to pay back the loan. This means that we have realized at time t
the instantaneous riskfree profit Ke−r(T−t) − πt > 0; contradiction.

Suppose that πt > Ke−r(T−t) at some time t. Now, we sell the portfolio, invest
Ke−r(T−t) in a riskfree bond and put aside πt − Ke−r(T−t) > 0. At time t = T, we
sell the bond which has the value K and buy back the portfolio. We have realized an
instantaneous riskfree profit; contradiction. □

European options satisfy the following bounds.

Proposition 2.3 (Bounds for European options). It holds for 0 ≤ t ≤ T that

(i) (St − Ke−r(T−t))+ ≤ Ct ≤ St,

(ii) (Ke−r(T−t) − St)
+ ≤ Pt ≤ Ke−r(T−t).

Proof. We only consider the call option. The bounds for the put option follow from
those for the call option and the put-call parity.

The lower bound Ct ≥ 0 is clear since otherwise, a call with Ct < 0 would yield an
instantaneous riskfree profit. Similarly, Pt ≥ 0. It holds Ct ≤ St since otherwise, we
sell the call and purchase the underlying. At time t = T, we maybe need to sell the
underlying to fulfill the obligation of the call contract. Still, because of Ct − St > 0, we
have realized an instantaneous riskfree profit at time t, which is a contradiction.

The remaining bound Ct ≥ St − Ke−r(T−t) follows from the call-put parity:

Ct = St + Pt − Ke−r(T−t) ≥ St − Ke−r(T−t),

which finishes the proof. □

Similar bounds can be shown for American options with values CA, PA. The values
of the corresponding European options are denoted by CE. PE.

Proposition 2.4 (Bounds for American options). It holds for 0 ≤ t ≤ T:

(i) (St − Ke−r(T−t))+ ≤ CA(St, t) ≤ St,
(ii) CA(St, t) = CE(St, t),
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(iii) Ke−r(T−t) ≤ St + PA(St, t)− CA(St, t) ≤ K,

(iv) (Ke−r(T−t) − St)
+ ≤ PA(St, t) ≤ K.

In real markets, the value of American and European call options is generally not
the same because of dividend payments. Statement (iii) can be seen as a put-call parity
for American options.

Proof. (i) This follows as in the proof of Proposition 2.3.
(ii) Assume that we exercise the American option at time t < T. We receive the

amount St − K > 0 (if St − K ≤ 0, we would not exercise the option). It follows from (i)
that

CA(St, t) ≥ (St − Ke−r(T−t))+ = St − Ke−r(T−t) > St − K.

This means that it is better to sell the option than to exercise it. Thus, the early exercise
it not optimal, but then the option works like a European option.

(iii) Since American put options are more flexible than European ones, we have PA ≥
PE. By the put-call parity and (ii), we infer that

CA − PA ≤ CE − PE = St − Ke−r(T−t),

which is the lower bound. For the upper bound, we apply an arbitrage argument.
Assume that St − K > CA(St, t) − PA(St, t) for some t. Consider the portfolio πt =
CA(St, t) − PA(St, t) − St + K < 0. The cash flow gives −πt > 0. Let τ ≤ T be the
exercise time of the American put option. It holds that τ ≥ t since otherwise, the put
option has already been exercised before time t. We distinguish two cases:

▶ If Sτ ≤ K then (because of CA ≥ 0)

πτ = CA(Sτ, τ)− (K − Sτ)− Sτ + Ker(τ−t) ≥ −K + Ker(τ−t) ≥ 0.

▶ If Sτ > K then (because of CA(Sτ, τ) ≥ Sτ − K > 0)

πτ ≥ (Sτ − K)− 0 − Sτ + Ker(τ−t) = −K + Ker(τ−t) ≥ 0.

We have found a portfolio that allows for arbitrage; contradiction.
(iv) The inequalities in (iii) can be formulated as

Ke−r(T−t) − St + CA ≤ PA ≤ K − St + CA.

Now, we know from (i), (iii), and Proposition 2.3 (i) that

PA ≥ Ke−r(T−t) − St + CE ≥ Ke−r(T−t) − St + (St − Ke−r(T−t))+

= (Ke−r(T−t) − St)
+,

PA ≤ K − St + CE ≤ K − St + St = K.

This ends the proof. □
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Remark. The lower bound for American put options can be strengthened to

PA(St, t) ≥ (K − St)
+.

Indeed, the case K ≤ St means that PA ≥ 0 which is trivial. Therefore, let K > St. If
PA(St, t) < (K − St)+ = K − St for some t, we buy a put option and excercise it immediately
to make the riskfree, instantaneous profit (K − St)− PA(St, t) > 0; contradiction.

The bounds for European and American option values are illustrated in Figure 2.1.
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Figure 2.1: Qualitative illustration of the prices of European and American options. It is assumed
that there are no dividend payments.

2.2 Stochastic analysis

We give a concise introduction to basic elements of stochastic analysis, which are needed
to formulate the stochastic asset price dynamics and to valuate financial options. We
only state the needed results and refer for proofs and examples to the literature, for
instance, [3, 10, 27].

The key objects are stochastic processes [27, Section 2]. For this, let Ω be an arbi-
trary set (the set of all possible events). A σ-algebra F on Ω is a family of subsets of Ω
satisfying the following properties:

(i) ∅ ∈ F , (ii) ∀A ∈ F : Ω\A ∈ F , (iii) ∀An ∈ F :
∞⋃

n=1

An ∈ F .

For instance, the collection of open sets on a topological space X forms a σ-algebra, the
Borel σ-algebra B(X). A probability measure P : F → [0, 1] is a function satisfying

(i) P(∅) = 0, P(Ω) = 1,

(ii) ∀An ∈ F pairwise disjoint : P
( ∞⋃

n=1

An

)
=

∞

∑
n=1

P(An).

We call the triple (Ω,F , P) a probability space.
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Let X : Ω → R be any function on (Ω,F , P). We call this function F -measurable if
the preimage X−1(U) = {ω ∈ Ω : X(ω) ∈ U} is an element of F for all open (or all
Borel) sets U ⊂ R. A random variable is a F -measurable function X : Ω → R. The same
definition holds for codomains Rn instead of R.

The expectation E of a random variable X is defined as the Lebesgue integral

E(X) =
∫

Ω
XdP =

∫
Ω

X(ω)dP(ω).

Definition 2.5 (Stochastic process). A family (Xt)t≥0 of random variables Xt : Ω → R

defined on a probability space (Ω,F , P) is called a stochastic process. For fixed ω ∈ Ω, we
call the function t 7→ Xt(ω) a trajectory or path of Xt.

Example. An example of a stochastic process is the value St of an asset (stocks,
bonds, commodities, etc.). More precisely, the value is given by St(ω), where ω

is an element of the event space Ω but usually, we omit the dependence on ω.

In the following, let (Ω,F , P) be a probability space. A filtration F = (Ft)t≥0 is an
increasing family of sub-σ-algebras of F , i.e. Fs ⊂ Ft for all 0 ≤ s ≤ t. The filtra-
tion Ft represents the set of events observable up to time t and it becomes larger when
time progresses. A natural filtration (FX

t )t≥0 of a stochastic process X = (Xt)t≥0 is the
smallest σ-algebra on Ω that contains all preimages of measurable sets in R, i.e.

FX
t = σ

{
X−1

s (U) : 0 ≤ s ≤ t, U ∈ B(R)}. (2.1)

The natural filtration of a stochastic process contains information on all the past history
of the process.

We want to consider only those stochastic processes for which, at any time, the as-
sociated filtration gives us enough information to find the value of the process. We call
such processes adapted.

Definition 2.6 (Adapted stochastic process). We call a stochastic process (Xt)t≥0 F-
adapted if Xt is Ft-measurable for any t ≥ 0.

We need special adapted stochastic processes, which have the property that at time
t > 0, the expectation of Xt, given the knowledge until time s ≤ t, equals Xs. Roughly
speaking, this means that Xs is the best expected value of Xt. Such a process is called a
martingale. For its precise definition, we need the notion of conditional expectation; see
[27, Appendix B].
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Definition 2.7 (Conditional expectation). Let X : Ω → R be a random variable on
a probability space (Ω,F , P) such that E|X| < ∞ and let B ⊂ F be a σ-algebra. Then
E(X|B) : Ω → R is the a.s. (= almost surely) unique function satisfying

(i) E(X|B) is B-measurable,

(ii)
∫

B
E(X|B)dP =

∫
B

XdP for all B ∈ B.

This definition contains an existence and uniqueness result which follows from the
Theorem of Radon-Nikodym. Indeed, the finite measure µ(B) =

∫
B XdP for B ∈ B is

absolutely continuous with respect to P|B (i.e., µ(B) = 0 for all B ∈ B with P(B) = 0),
therefore there exists a function f : Ω → R such that µ(B) =

∫
B f dP and it is enough to

set E(X|B) := f .
We note the tower property of conditional expectations: If B ⊂ C ⊂ F then

E
(
E(X|C)|B

)
= E(X|B) P-a.s.

Indeed, by definition, ∫
B

E(X|B)dP =
∫

B
XdP for all B ∈ B,∫

C
E(X|C)dP =

∫
C

XdP for all C ∈ C.

The last identity clearly also holds for all B ∈ B ⊂ C. Therefore, combining these
identities leads to ∫

B
E(X|B)dP =

∫
B

E(X|C)dP for all B ∈ B,

which, by uniqueness, shows that E(E(X|C)|B) equals E(X|B).

Definition 2.8 (Martingale). Let (Xt)t≥0 be a stochastic process on a probability space
(Ω,F , P) and let F = (Ft)t≥0 be a filtration. We call (Xt)t≥0 a martingale if (Xt)t≥0 is
F-adapted, E|Xt| < ∞ for all t ≥ 0, and

E(Xt|Fs) = Xs P-a.s. for all s ≤ t.

Example. Let Y be a random variable which is F-measurable with E|Y| < ∞, and
let F = (Ft)t≥0 be a filtration. We claim that Xt = E(Y|Ft) defines a martingale.
Indeed, by the tower property, since Fs ⊂ Ft for s ≤ t,

E(Xt|Fs) = E
(
E(Y|Ft)|Fs

)
= E(Y|Fs) = Xs.
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An important example for a martingale is the Brownian motion or Wiener process
(see [29, Section 2.1]).

Definition 2.9 (Wiener process). A stochastic process (Wt)t≥0 on a probability space
(Ω,F , P) is called a (standard) Wiener process if

(i) W0 = 0,

(ii) W has continuous trajectories P-a.s.,

(iii) W has independent increments, i.e. Wt1 − W0, Wt2 − Wt1 , . . . , Wtn − Wtn−1 are inde-
pendent for all 0 ≤ t1 ≤ · · · ≤ tn ≤ T and n ∈ N,

(iv) W has Gaussian increments, i.e. Wt − Ws is N(0, t − s)-distributed for all s < t, i.e.
Wt − Ws is normally distributed with E(Wt − Ws) = 0 and Var(Wt − Ws) = t − s.

Example. The Brownian motion allows us to define a model for the asset price dy-
namics. The first idea is to write the asset value St as the sum of the price at time
t = 0, S0, a premium a · t, and a stochastic component Zt,

St = S0 + a · t + Zt, t ≥ 0.

This ansatz may lead to negative values of St if Zt is sufficiently large and negative.
We do not allow negative values and prefer another idea. A bond Bt with riskfree
interest rate r ∈ R evolves according to Bt = B0ert or, equivalently, ln Bt = ln B0 + rt.
This motivates the following ansatz for St:

ln St = ln S0 + a · t + Zt, t ≥ 0.

We assume that the stochastic component is normally distributed with expectation
zero and variance σ2t, where σ > 0. These properties are satisfied by the Brownian
motion (times σ),

ln St = ln S0 + a · t + σWt, t ≥ 0.

Taking the exponent leads to St = S0 exp(at + σWt).

Although almost every trajectory t 7→ Wt(ω) is continuous, it is neither differen-
tiable nor of bounded variation. This has an important consequence for the value of
an asset. Indeed, assume that the asset price is modeled by a Brownian motion Wt and
that we are allowed to trade the asset only at times 0 = t0 < t1 < · · · < tn = T. At
time tk, we can choose to hold Xk shares of the asset but we are only allowed to use
information up to time tk, i.e., we cannot see the future. The change in value in the pe-
riod [tk−1, tk] is the change in price times the number of shares we own at time tk−1, i.e.
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Xk−1(Wtk − Wtk−1). Thus, the change in value from t0 to tn equals the sum

n

∑
k=1

Xk−1(Wtk − Wtk−1).

When we allow for trading in continuous time, the sum becomes the stochastic integral∫ T

0
XtdWt.

Since the Brownian motion is not of bounded variation, we cannot associate a measure
with the increments to construct a Lebesgue-Stieltjes integral, and it is not clear how to
define the integral.

This problem can be solved by defining the integral
∫ T

0 XtdWt first for so-called sim-
ple processes, which are piecewise constant in time. More precisely, let 0 = t0 < t1 <
· · · < tn = T be a partition of [0, T] and set Xt(ω) = θk−1(ω) for tk−1 < t ≤ tk, where
θk−1 is a Ftk−1-measurable random variable. We assume that

∫ T
0 E|Xt|2dt < ∞. Then

(Xt)t≥0 is called simple, and its stochastic integral is defined by∫ T

0
XtdWt :=

n

∑
k=1

θk−1(Wtk − Wtk−1).

It can be shown that I(t, ω) :=
∫ t

0 Xs(ω)dWs(ω) is a martingale with respect to the
filtration F. We wish to extend the definition to square-integrable adapted stochastic
processes. Let (Xt)t≥0 be a stochastic process satisfying the following properties:

(i) (t, ω) 7→ Xt(ω) is (B ×F )-measurable, where B is the Borel σ-algebra of [0, ∞),

(ii) (Xt) is adapted,

(iii)
∫ T

0 E|Xt|2dt < ∞ for all T > 0.

It is possible to show that for given (Xt)t≥0 satisfying these properties, there exists a
sequence (Y(n)) of simple processes such that

E
∫ T

0
|Xt − Y(n)

t |2dt → 0 as n → ∞.

By the Itô isometry (see Theorem 2.10),

E
( ∫ T

0
|Xt − Y(n)

t |dWt

)2

= E
∫ T

0
|Xt − Y(n)

t |2dt,

the sequence (
∫ T

0 |Xt −Y(n)
t |dWt)n∈N is a Cauchy sequence in L2(P), and we can define∫ T

0
XtdWt := lim

n→∞

∫ T

0
Y(n)

t dWt.
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The limit exists in the sense of L2(P) and is independent of the choice of (Y(n)). The
integral can be chosen in such a way that t 7→

∫ t
0 XsdWs is continuous and It(ω) =∫ t

0 Xs(ω)dWs(ω) is a martingale.
It remains to formulate the Itô isometry. (We ignore the inconsistency that we are

using the stochastic integral before actually defining it. For a rigorous proof, we prove
first the Itô isometry for simple processes, define the Itô integral, and then prove the Itô
isometry for general stochastic processes.)

Theorem 2.10 (Itô isometry). Let (Xt)t≥0 be a stochastic process adapted to the natural
filtration (see (2.1)) of the Wiener process. Then

E
( ∫ T

0
XtdWt

)2

= E
∫ T

0
X2

t dt. (2.2)

The derivation of the Black-Scholes equation for financial derivatives is based on an
integral version of the chain rule, called the Itô formula. For its statement, we need the
notion of an Itô process.

Definition 2.11 (Itô process). Let T > 0 and a, b be F-adapted stochastic processes satis-
fying

∫ T
0 |at|dt < ∞ and

∫ T
0 b2

t dt < ∞ P-a.s. Furthermore, let (Wt)t≥0 be the Brownian mo-
tion and (Xt)t≥0 be a stochastic process on the probability space (Ω,F , P). We call (Xt)t≥0
an Itô process if

Xt = X0 +
∫ t

0
asds +

∫ t

0
bsdWs, 0 ≤ t ≤ T.

We write formally
dXt = atdt + btdWt, 0 ≤ t ≤ T. (2.3)

The function a is called the drift and b the diffusion coefficient. Equation (2.3) is a lin-
ear stochastic differential equation. We call (Xt)t≥0 also an Itô process if the differential
equation is nonlinear, i.e., if the functions a and b also depend on Xt:

dXt = a(Xt, t)dt + b(Xt, t)dWt, t > 0.

Example. Let at = 0 and bt = 1. Then Xt = X0 +
∫ t

0 dWs = X0 + Wt, since W0 = 0.
Thus, a Wiener process is a special Itô process. Next, let at = rXt ≥ 0 and bt =

0. Then Xt = X0 + r
∫ t

0 Xsds is the integral formulation of the differential equation
dXt/dt = rXt with the solution Xt = X0ert. We can interpret Xt as a bond with
interest rate r ≥ 0.

These two extreme cases can be combined to formulate a stochastic differential
equation for the value of an asset St. Indeed, the relative return dSt/St, where we
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interpret dSt as the infinitesimal change of St, is given by two components. The deter-
ministic, riskfree return equals µdt, where the drift µ is a measure of the average rate
of growth of the asset value. The stochastic component is modeled by σdWt, where
the volatility σ measures the standard deviation of the returns. Both µ and σ may
depend on t and St. Combining these terms, we arrive at the stochastic differential
equation

dSt = µStdt + σStdWt, t ≥ 0. (2.4)

Note that St is a martingale if the drift vanishes, µ = 0, since Wt is a martingale. We
show later (see the next example) that St = S0 exp(at + σWt) is the solution to (2.4)
for a suitable value of a.

Let (Xt)t≥0 be an Itô process such that dX = adt + bdW and f : R → R be a smooth
function. Is ( f (Xt))t≥0 also an Itô process? The answer is yes, and we can compute
the stochastic differential equation for f (Xt) by using a stochastic Taylor expansion.
Intuitively, we expect that

d f (Xt) = fx(Xt)dXt +
1
2

fxx(Xt)dX2
t + · · ·

= fx(Xt)(atdt + btdWt) +
1
2

fxx(Xt)
(
a2dt2 + ab(dtdWt + dWtdt) + b2dW2

t
)
+ · · · .

The expression E((Wt+△t − Wt)2) = △t motivates the symbolic formula E(dW2) = dt.
Thus, dW is of the “order”

√
dt (in expectation). As the expansion is only needed for

terms up to order dt, we expect that dtdW and dWdt can be neglected, leading to

d f (Xt) = fx(Xt)(atdt + btdWt) +
1
2

fxx(Xt)b2dt.

These formal observations can be made rigorous (and slightly generalized) by the Itô
formula for Itô processes.

Theorem 2.12 (Itô formula for an Itô process). Let (Xt)t≥0 be an Itô process and
f : R × [0, ∞) → R be a twice continuously differentiable function. Then ( f (Xt, t))t≥0 is
also an Itô process satisfying for 0 ≤ t ≤ T,

d f (Xt, t) =
(

ft(Xt, t) + fx(Xt, t)at +
1
2

fxx(Xt, t)b2
t

)
dt + fx(Xt)btdWt,

where ft = ∂ f /∂t, fx = ∂ f /∂X, and fxx = ∂2 f /∂X2.

Example. We have seen that the asset price can be modeled by

dSt

St
= µdt + σdWt, t ≥ 0. (2.5)
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We assume that µ and σ are constants. The expression dSt/St looks like the differ-
ential of ln St. Since St is an Itô process, this is not completely true. Indeed, Itô’s
formula gives for f (z) = ln z, a = µS, and b = σS:

d ln St = µSt
dt
St

− 1
2
(σSt)

2 dt
S2

t
+ σSt

dWt

St
=

(
µ − 1

2
σ2
)

dt + σdWt

=
dSt

St
− 1

2
σ2dt.

Thus, we have the correction −1
2 σ2dt due to the stochastic nature of St. In integral

form, the previous equation reads as

ln St = ln S0 +
∫ t

0

(
µ − 1

2
σ2
)

ds +
∫ t

0
σdWs = ln S0 +

(
µ − 1

2
σ2
)

t + σWt.

Taking the exponent leads to the analytic solution to the asset price equation,

St = S0 exp
((

µ − 1
2

σ2
)

t + σWt

)
, t ≥ 0.

A similar expression, St = S0 exp(at + σWt), was already stated previously. This
process is called a geometric Brownian motion. It is the explicit solution to the linear
stochastic differential equation (2.5). Compared to our previous price model, the
premium a · t becomes (µ − σ2/2)t.

For later reference, we calculate the expected value and the variance of the geometric
Brownian motion.

Lemma 2.13. Let St = S0 exp((µ − 1
2 σ2)t + σWt) be a geometric Brownian motion. Then

E(St) = S0eµt, Var(St) = S2
0e2µt(eσ2t − 1). (2.6)

Proof. Since the Brownian motion is N(0, t)-distributed, its density is given by (2πt)−1/2 exp(−x2/(2t)),
Hence, we compute

E(St) = S0eµt−σ2t/2E(eσWt) =
S0eµt−σ2t/2

√
2πt

∫
R

eσxe−x2/(2t)dx

=
S0eµt
√

2πt

∫
R

e−(x−σt)2/(2t)dx = S0eµt,

Var(St) = E(S2
t )− E(St)

2 = S2
0e2µt−σ2tE(e2σWt)− E(St)

2

= S2
0e2µt−σ2t(e−σ2t/2E(e2σWt)

)
− (S0eµt)2

= S2
0e2µt+σ2t − (S0eµt)2 = S2

0e2µt(eσ2t − 1),

showing the claim. □
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The product rule of stochastic analysis is different than that one in differential calcu-
lus since it involves a contribution due to the quadratic variation process. The following
result holds for Itô processes.

Lemma 2.14 (Itô’s product rule). Let (Xt)t≥0 and (Yt)t≥0 be two stochastic processes on
the probability space (Ω,F , P) with

dX = a1dt + b1dW, dY = a2dt + b2dW.

Then
d(XY) = XdY + YdX + d[X, Y], where d[X, Y] := b1b2dt.

To motivate this rule, we write formally

d(XY) = XdY + YdX + dXdY, where

dXdY = a1a2dt2 + (a1b2 + a2b1)dtdW + b1b2dW2.

Neglecting the higher-order terms dt2 and dtdW and replacing dW2 by dt shows that
d[X, Y] := dXdY = b1b2dt. For a more rigorous proof, we apply the two-dimensional
Itô formula (see below) to the function f (x1, x2) = x1x2.

Example. Let (Xt)t≥0 be a stochastic process and (Yt)t≥0 be a family of continuously
differentiable functions Y : [0, ∞) → R. Then dYt = (dYt/dt)dt and Itô’s product
rule gives

d(XtYt) = XtdYt + YtdXt,

which looks like the product rule from standard calculus. This formula is used to
analyze the product of a stock price and a bond value.

We also need a multidimensional version of the Itô formula for Itô processes. For
this, we first introduce multidimensional stochastic processes.

Definition 2.15 (Multidimensional processes). Let (Ω,F , F, P) be a filtered probability
space.

(1) We call Bt = (B1(t), . . . , Bn(t)) an n-dimensional (standard) Wiener process (or
Brownian motion) if the components Bi(t) are independent one-dimensional Wiener
processes and the vector B(t)− B(s) is standard normally distributed. We write Bt ∼
N(0, It), where I ∈ Rn×n is the unit matrix.

(2) We call the vector Wt = (W1(t), . . . , Wn(t)) correlated Wiener processes if B is an
n-dimensional Wiener process and there exists a matrix A ∈ Rn×n such that W = AB.
The covariance matrix of W equals Σ = AA⊤. We write Wt ∼ N(0, Σt).
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(3) We call (Xt)t≥0 with X = (X1, . . . , Xn) a multidimensional Itô process if

dXi = aidt +
n

∑
j=1

bijdWj,

where a = (a1, . . . , an), b = (bij)
n
i,j=1 are adapted stochastic processes, and (W1(t),

. . . , Wn(t)) is a vector of correlated Wiener processes.

We recall that the correlation between two stochastic processes X1 and X2 is defined
by

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)
√

Var(X2)
,

where the covariance between X1 and X2 is given by

Cov(X1, X2) = E[(X1 − EX1)(X2 − EX2)].

The covariance matrix of W = (W1, . . . , Wn) has the coefficients Cov(Wi, Wj) and the
diagonal elements Cov(Wi, Wi) = EW2

i (i, j = 1, . . . , n).

Example. In the two-dimensional case, the covariance matrix of (W1, W2) can be for-
mulated as

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
,

where σ2
1 = EW2

1 , σ2
2 = EW2

2 , and ρ = Cov(W1, W2)/(σ1σ2) ∈ [−1, 1] is the corre-
lation coefficient between the two Wiener processes W1 and W2. If ρ > 0, we say
that W1 and W2 are positively correlated, and if ρ < 0 that W1 and W2 are negatively
correlated.

Theorem 2.16 (Multidimensional Itô formula). Let (Xt)t≥0 be a multidimensional Itô
process and f : Rn × [0, ∞) → R be a twice continuously differentiable function. The
correlated Wiener processes are assumed to have the covariance matrix Σ such that Σii = 1
for i = 1, . . . , n. Then ( f (Xt, t))t≥0 is also a multidimensional Itô process whose components
satisfy for 0 ≤ t ≤ T,

d f (Xt, t) =
(

∂ f
∂t

(Xt, t) +
n

∑
i=1

∂ f
∂xi

(Xt, t)ai(t) +
1
2

n

∑
i,j=1

∂2 f
∂xi∂xj

(Xt, t)(btΣb⊤t )ij

)
dt

+
n

∑
i=1

∂ f
∂xi

(Xt, t)bi(t) · dWt.

Since Σii = 1, the correlation ρij = Σij/
√

ΣiiΣjj = Σij equals the covariance coef-
ficient. As a rule of thumb, one may write dWidWj = ρijdt to indicate the correlation
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between Wi and Wj.

Example. We compute the multidimensional Itô formula for options on multiple as-
sets. Let (Si(t))t≥0 be the value of the ith underlying, satisfying the Itô differential
equation

dSi = µiSidt + σiSidWi,

where W1, . . . , Wn are correlated Wiener processes with covariance matrix Σ. We
assume that Σii = 1 for i = 1, . . . , n and Σij = ρij ≥ 0 for i ̸= j. Then ai = µiSi,
bij = δijσiSi and consequently, (bΣb⊤)ij = σiσjSiSjΣij. This yields

d f (St, t) =
(

∂ f
∂t

+
n

∑
i=1

µiSi
∂ f
∂Si

+
1
2

n

∑
i,j=1

ρijσiσjSiSj
∂2 f

∂Si∂Sj

)
dt +

n

∑
i=1

σiSi
∂ f
∂Si

dWi. (2.7)
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3 The Black-Scholes model

The main goal of this section is to determine the price of an option in the framework of
the Black-Scholes model and to discuss some of its extensions. To simplify the presenta-
tion, we assume that the occuring stochastic processes are adapted to the corresponding
filtration and that their expectation and variance always exist. Moreover, to avoid too
many technicalities, we give formal arguments only and refer to the literature for rigor-
ous proofs.

3.1 Black-Scholes formulas

We impose the following simplifying assumptions on the financial market:
▶ The price of the underlying satisfies the stochastic differential equation

dSt = µStdt + σStdWt, 0 < t < T, (3.1)

with constant parameters µ ∈ R and σ ≥ 0.
▶ The constant interest rate r ≥ 0 is the same for investments and loans. The corre-

sponding bond satisfies the differential equation

dBt = rBtdt, 0 < t < T. (3.2)

▶ The stochastic processes are continuous and defined on a filtered probability space
(Ω,F , F, P). This means that crashes are not modeled.

▶ No dividends are paid on the underlying asset.
▶ The market is arbitrage-free, liquid, and frictionless (no transaction costs, the debit

and credit interests are the same, all market parties have the same information,
and any asset can be traded any time). In particular, short selling is allowed (i.e.,
we may sell a security that we do not own).

Let V(S, t) be the value of an option at time t. The aim is to derive an evolution
equation for V. To this end, we use a replication strategy, i.e., we construct a portfolio that
produces the same payoff function as another asset (in our case, a riskless bond). We
assume that V is twice continuously differentiable with respect to S and continuously
differentiable with respect to t. Let us consider a portfolio that consists of c1(t) shares
of the bond, c2(t) shares of the underlying, and a short option (this means that we sold
the option; a long option means that we bought the option):

πt = c1(t)Bt + c2(t)St − V(St, t). (3.3)

When the shares c1(t) and c2(t) are negative, we are short selling the corresponding
asset. We assume that the portfolio is self-financing, i.e., changes in the shares have to
be financed from the portfolio exclusively and not from exogeneous transfer of money.
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Given a portfolio πt = c(t) · S(t) := ∑n
i=1 ci(t)Si(t), its value at t +△t equals its value

at time t plus a contribution due to the change of prices of the assets:

πt+△t = πt + c(t) ·
(
S(t +△t)− S(t)

)
,

where we need to take into account the shares c(t) at time t. In the “infinitesimal limit”,
we obtain formally a stochastic differential equation, leading to the following definition.

Definition 3.1 (Self-financing portfolio). We call the portfolio πt = c(t) · S(t) self-
financing if πt satisfies the following stochastic differential equation for t ≥ 0,

dπt =
n

∑
i=1

ci(t)dSi(t).

Assuming that the portfolio (3.3) is riskless and self-financing, we are able to derive
the Black-Scholes equation.

Theorem 3.2 (Black-Scholes equation). Let the assumptions stated at the beginning of
this subsection hold. Then the option price is a solution to the partial differential equation

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S

− rV = 0, S > 0, t > 0, (3.4)

with final condition V(S, T) = VT(S) for S ≥ 0.

Equation (3.4) is a backward parabolic equation since we have prescribed a final
value not an initial datum. Therefore, the sign of the second derivative of V is positive
and not negative as in standard parabolic equations. The final datum is given by

VT(S) =
{

(S − K)+ : call,
(K − S)+ : put.

(3.5)

In the following, we abbreviate a partial derivative by an index, i.e. Vt = ∂V/∂t, VSS =
∂2V/∂S2, etc. However, do not confuse Vt with the value Vt = V(t) of the stochastic
process V.

Proof of Theorem 3.2 The proof is based on Itô’s formula and a no-arbitrage argument.
The idea is to set c2(t) = VS in the portfolio (3.3). Since πt is riskless and the market is
assumed to be arbitrage-free, its value cannot be better than a riskless bond, i.e.

dπ = rπdt = r(c1B + c2S − V)dt.

The assumption that πt is self-financing leads to

dπ = c1dB + c2dS − dV(S, t) = (c1rB + c2µS)dt + c2σSdW − dV(S, t),
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using the equations for the asset price and bond value (3.2). The equation for dV(S, t) is
determined from Itô’s formula, using (3.1):

dV(S, t) =
(

Vt + VSµS +
1
2

VSSσ2S2
)

dt + VSσSdW.

Inserting this expression in the equation for dπ, we find that

r(c1B + c2S − V)dt = dπ = (c1rB + c2µS)dt + c2σdW − dV(S, t)

=

(
c1rB + (c2 − VS)µS − Vt −

1
2

σ2S2VSS

)
dt + σS(c2 − VS)dW.

Since c2 = VS, some terms cancel and we end up with

r(VSS − V)dt = −
(

Vt +
1
2

σ2S2
)

dt.

This is a differential equation which can be written as (3.4). (Indeed, the differential
equation a(t)dt = 0 is written in integral formulation as

∫ t
0 a(τ)dτ = 0 for all t > 0.

This implies that a(t) = 0 for all t > 0.) □

Remark. Interestingly, the choice c2 = VS cancels the stochastic component and makes the dy-
namics of V(S, t) purely deterministic. Moreover, the drift rate µ has been canceled out. The
choice c2 = VS is called delta hedging strategy, which eliminates the risk due to stochas-
tic fluctuations. Choosing the so-called delta ∆ := VS makes the portfolio riskless, at least
under the assumptions imposed on the market. In real markets, other risks, like volatility
risk, model risk, or default risk, exist, and these risks cannot be completely hedged. It is still
possible to derive a Black-Scholes-type equation, but it involves an additional function, the
market price of risk. We come back to this point in Section 3.6 in the context of volatility risk.

Remark. The identity for dV can be obtained formally just by the Taylor expansion

dV = Vtdt + VSdS +
1
2

VSSdS2 = Vtdt + VSS(µdt + σdW) +
1
2

VSSS2(µdt + σdW)2

= Vt + VSµSdt + VSσSdW +
1
2

VSSS2σ2dW2 = Vt + VSµSdt +
1
2

VSSS2σ2dt + VSσSdW

by neglecting “higher-order” terms and using dW2 = dt. This formal computation may help
to memorize the Itô formula.

We solve the Black-Scholes equation (3.4) on the set (S, T) ∈ (0, ∞) × (0, T). For
unique solvability, we need to prescribe boundary conditions at S = 0 and for S → ∞.
Consider first a call, V = C. Then C(0, t) = 0 since the right to purchase a valueless asset
has no value too. If the value of the asset is very large (compared to usual assets on the
market), it is very likely that the call will be exercised, and its value is S − Ke−r(T−t)

(we need to discount the strike K). As S is very large, we may neglect the second term,
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which leads to the condition C(S, t) ∼ S as S → ∞, meaning that C(S, t)/S → 1 as
S → ∞.

Next, let V = P be a put option. When the asset price is very high, it is likely that we
do not exercise the put, and its value is negligible: P(S, t) → 0 as S → ∞. To determine
the value at S = 0, we use the put-call parity (Proposition 2.2):

P(0, t) = C(0, t) + Ke−r(T−t) − 0 = Ke−r(T−t).

We summarize:

European call: C(0, t) = 0, C(S, t) ∼ S (S → ∞), (3.6)

European put: P(0, t) = Ke−r(T−t), P(S, t) → 0 (S → ∞). (3.7)

The Black-Scholes equation (3.4) with final condition (3.5) and boundary conditions
(3.6) or (3.7) can be solved explicitly.

Theorem 3.3 (Black-Scholes formulas). Problem (3.4), (3.5), and either (3.6) or (3.7) has
the solution

call: V(S, t) = SΦ(d1)− Ke−r(T−t)Φ(d2), (3.8)

put: V(S, t) = Ke−r(T−t)Φ(−d2)− SΦ(−d1), (3.9)

where Φ is the distribution function of the standard normal distribution,

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2dz, x ∈ R,

and d1/2 are the real numbers

d1/2 =
ln(S/K) + (r ± σ2/2)(T − t)

σ
√

T − t
. (3.10)

Proof. Step 1: We transform equation (3.4) to the heat equation. For this, we eliminate
first the nonconstant coefficients S and S2. Set

x = ln(S/K), τ = 1
2 σ2(T − t), v(x, τ) = V(S, t)/K.

For S ∈ (0, ∞) and t ∈ [0, T], we have x ∈ R and τ ∈ [0, T1], where T1 := 1
2 σ2T. Using

the chain rule of differential calculus,

Vt = K
∂v
∂τ

dτ

dt
= −1

2
Kσ2vτ, VS = K

∂v
∂x

dx
dS

=
K
S

vx, VSS = − K
S2 vx +

K
S2 vxx,

it follows that

0 = Vt +
1
2

σ2S2VSS + rSVS − rV = −1
2

Kσ2
(

vτ + vx − vxx −
2r
σ2 vx +

2r
σ2 v

)
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and consequently, setting k = 2r/σ2,

vτ − vxx + (1 − k)vx + kv = 0. (3.11)

The final condition transforms to the initial datum v(x, 0) = (S − K)+/K = (ex − 1)+.
Next, we eliminate the lower-order terms by making the ansatz v(x, τ) = exp(αx +

βτ)u(x, τ) with parameters α, β ∈ R which will be determined later. Inserting this
ansatz into (3.11), using

vτ = eαx+βτ(βu + uτ), vx = eαx+βτ(αu + ux), vxx = eαx+βτ(α2u + 2αux + uxx),

and dividing the resulting expression by exp(αx + βτ), we infer that

0 = (βu + uτ)− (α2u + 2αux + uxx) + (1 − k)(αu + ux) + ku

= uτ − uxx + (−2α + 1 − k)ux + (−α2 + (1 − k)α + β + k)u.

The lower-order terms are eliminated if we choose α = 1
2(1 − k) and β = −1

4(k + 1)2,
since

−α2 + (1 − k)α + β + k =
1
4
(1 − 2k + k2)− 1

4
(1 + 2k + k2) + k = 0.

This means that the function

u(x, τ) = exp(−αx − βτ) = exp
(

1
2
(k − 1)x +

1
4
(k + 1)2τ

)
v(x, τ)

solves the equation
uτ − uxx = 0, x ∈ R, τ ∈ (0, T1], (3.12)

with the initial condition

u(x, 0) = u0(x) := e(k−1)x/2(ex − 1)+ =
(
e(k+1)x/2 − e(k−1)x/2)+. (3.13)

Step 2: We know from the lectures on partial differential equations that the solution
to (3.12)-(3.13) equals

u(x, τ) =
1√
4πτ

∫ ∞

−∞
u0(z)e−(x−z)2/(4τ)dz =

1√
4πτ

∫ ∞

0
u0(z)e−(x−z)2/(4τ)dz.

We formulate the integral in terms of the standard normal distribution Φ. Using the
transformation y = (z − x)/

√
2τ and (3.13), we deduce that

u(x, τ) =
1√
2π

∫ ∞

−x/
√

2τ
u0(

√
2τy + x)e−y2/2dy

=
1√
2π

∫ ∞

−x/
√

2τ
exp

(
1
2
(k + 1)(x + y

√
2τ)

)
e−y2/2dy
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− 1√
2π

∫ ∞

−x/
√

2τ
exp

(
1
2
(k − 1)(x + y

√
2τ)

)
e−y2/2dy. (3.14)

These integrals can be formulated in terms of Φ. Indeed, a computation shows that

1√
2π

∫ ∞

−x/
√

2τ
exp

(
1
2
(k ± 1)(x + y

√
2τ)

)
e−y2/2dy

= exp
(

1
2
(k ± 1)x +

1
4
(k ± 1)2τ

)
Φ(d1/2).

Consequently, we obtain

u(x, τ) = exp
(

1
2
(k + 1)x +

1
4
(k + 1)2τ

)
Φ(d1)

− exp
(

1
2
(k − 1)x +

1
4
(k − 1)2τ

)
Φ(d2).

Step 3: Finally, we transform back:

V(S, t) = Kv(x, τ) = K exp
(
− 1

2
(k − 1)x − 1

4
(k + 1)2τ

)
u(x, τ)

= K exp(x)Φ(d1)− K exp
(
− 1

4
(k + 1)2τ +

1
4
(k − 1)2τ

)
Φ(d2)

= SΦ(d1)− Ke−kτΦ(d2) = SΦ(d1)− Ke−r(T−t)Φ(d2).

Step 4: It remains to verify the final and boundary conditions. The final condition
is fulfilled in the sense of the limit t → T since the denominator of d1/2 is singular at
t = T. Indeed, it follows in the limit t → T from

d1/2 →


∞ : S > K
0 : S = K

−∞ : S < K
and Φ(d1/2) →


1 : S > K
1
2 : S = K
0 : S < K

(see Figure 3.1) that

V(S, t) = SΦ(d1)− Ke−r(T−t)Φ(d2) →
{

S − K : S > K
0 : S ≤ K

}
= (S − K)+.

We turn to the boundary conditions. We have d1/2 → −∞ as S → 0, thus Φ(d1/2) →
0 and consequently, V(S, t) → 0 as S → 0. When S → ∞, we find that Φ(d1/2) → 1 and
thus, Φ(d2)/S → 0 from which we deduce that

V(S, t)
S

= Φ(d1)− Ke−r(T−t) Φ(d2)

S
→ 1 as S → ∞.

Step 5: The formula for put options follows from that one for call options and the
put-call parity. This completes the proof. □
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Figure 3.1: Distribution function Φ of the
standard normal distribution.
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The option premiums for a European call and put option at various times are illus-
trated in Figure 3.2. The distribution function Φ is computed by means of the error
function erf, which is implemented in mathematical software packages according to

Φ(x) =
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, where erf(z) :=
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Figure 3.2: Values of the European call option (left) and put option (right) at times t = 0, 0.2, 0.4,
0.6, 0.8, 1 with parameters K = 100, T = 1, r = 0.1, and σ = 0.4.

Remark. (Variational framework of the Black-Scholes equations). The derivation of the Black-
Scholes formulas in Theorem 3.3 is based on the assumption that the interest rate r and the
volatility σ are constant. It is possible to extend this approach to time-dependent functions
r(t) and σ(t), which still leads to explicit formulas; see [30]. However, such formulas do not
exist in more general situations, e.g., when the coefficients r or σ are given by another equa-
tion or when they depend nonlinearly on the option price or its derivatives (which is the case
when transaction costs are included; see Section 3.8). Then it is appropriate to work with the
original Black-Scholes equation. Its mathematical treatment, however, is delicate since the
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coefficient 1
2 σ2S2 vanishes at S = 0 such that standard techniques from the theory of partial

differential equations do not apply. We discuss briefly the mathematical framework to treat
such situations. Details are presented in [1, Section 2.3].
Consider the Black-Scholes equation

Vt −
1
2

σ2S2VSS − rSVS + rV = 0, S > 0, 0 < t < T, (3.15)

where r > 0 and σ > 0 may depend on (S, t). Observe that we have reversed the time,
t 7→ −t, to make it an initial-boundary-value problem. The initial and boundary conditions
are

V(S, 0) = VT(S), V(0, t) = V0(t), lim
S→∞

V(S, t) = 0.

The boundary condition for S → ∞ corresponds to a put option. The price of a call option
can be obtained from the put-call parity. Since the coefficients of VSS and VS vanish at S = 0,
we cannot expect that the derivatives exist in the standard sense, for instance in the weak
sense VSS(t) ∈ L2(R+) or VS(t) ∈ L2(R+), where L2(R+) is the space of square integrable
functions and R+ = (0, ∞). This problem is overcome by introducing the space

X =
{

V ∈ L2(R+) : SVS ∈ L2(R+)
}

,

where the derivative is understood in the sense of distributions. This space becomes a Hilbert
space endowed with the norm

∥V∥2
X =

∫ ∞

0

(
V(S)2 + S2VS(S)2)dS.

We derive a weak formulation for (3.15), where only first weak derivatives are contained. Let
V be a smooth solution to (3.15) and multiply this equation by a test function U ∈ C∞

0 (R+).
Then

0 =
∫ ∞

0

(
Vt −

1
2

σ2S2VSS − rSVS + rV
)

UdS

=
∫ ∞

0

(
VtU +

1
2

σ2S2VSUS + (σσSS2 + σ2S − rS)VSU + rVU
)

dS.

The boundary integral vanishes since 1
2 σ2S2VSU = 0 at S = 0 and for S → ∞ (U has compact

support on R+). This can be written as

d
dt

∫ ∞

0
VUdS + a(V, U) = 0, where

a(V, U; t) =
∫ ∞

0

(
1
2

σ2S2VSUS + rVU
)

dS +
∫ ∞

0

(
SσσS + σ2 − r

)
SVSUdS.

Under suitable assumptions on r and σ, it can be shown that the bilinear form a is continuous
in the sense

|a(V, U)| ≤ C1∥V∥X∥U∥X for all V, U ∈ X,

and that it satisfies the Gårding inequality,

a(V, V) ≥ C2∥V∥2
X − C3∥V∥2

L2(R+)
for all V ∈ X,
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which is a coercivity property. A general existence result then provides the existence of a
solution V ∈ C0([0, T]; L2(R+)) ∩ L2(0, T; X) with Vt ∈ L2(0, T; X′), where X′ is the dual
space of X.

Example. Since the end of 2017, there exist European options on the Bitcoin price.
Bitcoin is a decentralized digital currency that is not backed by a central bank or gov-
ernment. Bitcoin-to-Bitcoin transactions are made by digitally exchanging anony-
mous encrypted codes. The Bitcoin network is designed to mathematically generate
no more than 21 million Bitcoins. Currently, about 19 million Bitcoins are in cir-
culation. The Bitcoin-Euro rate is highly volatile, and the annualized volatility has
reached 500% in certain periods! Figure 3.3 (left) shows the Bitcoin price from De-
cember 2017 until June 2018. Its value changed dramatically over the last years; the
first exchange rate for one Bitcoin was 0.08 USD cent only. The Bitcoin value is still
very volatile; between 2018 and 2024 it changed in the range between 3000 and 64,000
EUR.

Bitcoins can be seen more as a trading asset than a currency. As popularity in
the cryptocurrency grows, the products to trade the underlying asset widens, and
Bitcoin futures and Bitcoin option contracts have been launched. European options
in Bitcoins are the same as on any other asset, but the volatility is usually much
higher compared to the volatility of stocks (which is typically around 15 . . . 30%).
We present in Figure 3.3 (right) the Black-Scholes values of a European call option
for various volatilities. The call price increases significantly with the volatility, which
can be interpreted as a measure of the uncertainty of the price at expiration time.
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Figure 3.3: Left: Bitcoin values from 05 December 2017 until 03 June 2018. Right: Call option
prices according to the Black-Scholes formula for σ = 0.5, 1.0, 1.5, 2.0, r = 0.01, K = 10,000, and
T = 0.5 (6 months).
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3.2 Risk-neutral valuation

The price V of an option can be determined by the expected value of the discounted
payoff with respect to a modified probability measure, the so-called risk-neutral mea-
sure. In this section, we discuss this valuation.

Theorem 3.4 (Risk-neutral pricing formula). Let the assumptions of Theorem 3.2 hold
with the exception that the interest rate (rt)t≥0 is a deterministic process and the drift (µt)t≥0
and volatility (σt)t≥0 are adapted stochastic processes such that dSt = µtStdt + σtStdWt.
Then the arbitrage-free price of the option is

Vt = exp
(
−
∫ T

t
rsds

)
EQ(VT|Ft), 0 < t < T,

where Q is the risk-neutral measure and the expected value is taken with respect to Q.

According to the Girsanov theorem, the risk-neutral measure is defined by the Ra-
don-Nikodym derivative

dQ
dP

∣∣∣∣
t
= exp

(
− 1

2
γ2t − γWt

)
, (3.16)

where γ := (µ − r)/σ is called the market price of risk. This allows us to move from the
“real-world” asset price dynamics

dSt = µStdt + σStdWt

to the risk-neutral price dynamics

dSt = rStdt + σStdWQ
t ,

where WQ
t is defined by dWQ

t = γdt + dW; see the proof below.

Proof. Let Dt = exp(−
∫ t

0 rsds) be the discount process. It satisfies dDt = −rtDrdt. We
rewrite the Itô process (St)t≥0 as

dSt = rtStdt + σtSt

(
µt − rt

σt
dt + dWt

)
= rtStdt + σtSt(γtdt + dWt).

This motivates us to introduce the new process dWQ = γdt + dW. The interpretation of
γ = (µ − r)/σ is that it is the amount which the investor expects as a compensation for
the risk. Therefore, γ is called the market price of risk. The new process (WQ

t )t≥0 is not
a Wiener process under P, but it can be shown (by the Girsanov theorem) that (WQ

t )t≥0
is a Wiener process under the probability measure Q, which is defined by (3.16).
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We define the stochastic process (Xt)t≥0 by

dXt = ∆tdSt + rt(Xt − ∆tSt)dt.

It can be interpreted as a portfolio with ∆t shares of the stock and the remaining value
Xt − ∆tSt is invested in a bond. This strategy is always self-financing since Xt is by
definition the gain from the trade. We claim that (DtXt)t≥0 is a martingale under Q.
Indeed, using dSt = rtStdt + σtStdWQ

t and the product rule (Lemma 2.14), we find that

d(DtXt) = DtdXt + XtdDt = Dt
(
∆tdSt + rt(Xt − ∆tSt)dt

)
− rtDtXtdt

= Dt∆t(rtStdt + σtStdWQ
t )− rtDt∆tStdt = Dt∆tσtStdWQ

t .

Suppose that Xt is the portfolio replicating the option. By the martingale representa-
tion theorem (guaranteeing that any martingale with respect to the Brownian filtration
can be expressed as an Itô integral with respect to WQ), such a process always exists.
Then Vt = Xt, and by definition of a martingale, we infer that for t ≤ T,

Vt =
1

Dt
(DtXt) =

1
Dt

EQ(DTXT|Ft) =
DT

Dt
EQ(VT|Ft),

which concludes the proof. □

Remark. The value Vt in Theorem 3.4 can be computed explicitly when r and σ are constant.
For this, we insert definition (3.14) of u(x, τ) and definition (3.13) of u0(x) to obtain

V(S, t) = K exp
(
− 1

2
(k − 1)x − 1

4
(k + 1)2τ

)
u(x, τ)

(3.14)
=

K√
2π

exp
(
− 1

2
(k − 1)x − 1

4
(k + 1)2τ

) ∫ ∞

−∞
u0(x +

√
2πy)e−y2/2dy

(3.13)
=

1√
2π

exp
(
− 1

2
(k − 1)x − 1

4
(k + 1)2τ

)
×
∫ ∞

−∞
exp

(
1
2
(k − 1)(x +

√
2πy)− y2

2

)(
Kex+

√
2πy − K

)+dy

=
1√
2π

∫ ∞

−∞
exp

(
− 1

4
(k + 1)2τ +

1
2
(k − 1)

√
2τy − y2

2

)(
Se

√
2τy − K

)+dy.

Then, transforming back with y 7→ S′ := Se
√

2τy, a computation shows that

V(S, t) = EQ(e−r(T−t)VT(S)|Ft
)
,

where EQ(VT(S)|Ft) =
∫ ∞

0 f (S′; S, t)VT(S)dS′/S′ is the expected value of VT with respect to
the density function

f (S′; S, t) =
1

σ
√

2π(T − t)
exp

(
− [ln(S′/S)− (r − σ2/2)(T − t)]2

2σ2(T − t)

)
of the log-normal distribution for S = St.
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Remark. There exists a close relationship between the risk-neutral measure and the market
model. For this, let the market model consist of stocks St and risk-free bonds Bt. We say that
a contingent claim X (a nonnegative, FT- measurable random variable) is attainable if there
exists a self-financing trading strategy, i.e., there exist (at, bt) such that aTBT + bTST = X.
An arbitrage-free market model is complete if every contingent claim is attainable. Then the
following two results hold:

▶ First fundamental theorem of asset pricing: A market model on a discrete probability
space (Ω,F , P) is arbitrage-free if and only if there exists at least one risk-neutral measure
that is equivalent to P.

▶ Second fundamental theorem of asset pricing: An arbitrage-free market model is complete
if and only if there exists a unique risk-neutral measure equivalent to P.

We refer to [11, 14, 28] for details and proofs.

The fact that the option price can be determined from either the Black-Scholes for-
mula or the expectation is not a surprise. Indeed, both formulations are related by
means of the Feynman-Kac formula.

Theorem 3.5 (Feynman-Kac formula). Let u : R × [0, T] → R be a solution to the
backward parabolic equation

∂tu + a(x, t)ux +
1
2

b(x, t)2uxx − r(x, t)u = 0, 0 < t < T, u(T) = g, (3.17)

where a, b, r, g are suitable smooth functions with at most linear growth in x. Furthermore,
let (Xt)t∈[0,T] be an Itô process satisfying

dXt = a(Xt, t)dt + b(Xt, t)dWt, 0 < t < T, Xt = x. (3.18)

Then u can be written as the expectation

u(x, t) = E
(

exp
(
−
∫ T

t
r(Xs, s)ds

)
g(XT)

∣∣∣∣Xt = x
)

. (3.19)

The converse is also true: Any Itô process satisfying (3.18) defines via (3.19) a solution to the
backward parabolic equation (3.17).

This theorem provides a link between partial differential equations and diffusion
processes. Solutions to partial differential equations can be interpreted as expecta-
tions of suitable transformations of solutions to stochastic differential equations and
vice versa.

Remark. Equation (3.17) is backward in time. For forward equations, we transform t 7→ T − t
and obtain the following version of the Feynman-Kac formula: Let (Xt)t∈[0,T] solve (3.18)
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with X0 = x. Then

u(x, t) = E
(

exp
( ∫ t

0
r(Xs, s)ds

)
g(Xt)

)
solves ∂tu − a(x, t)ux − 1

2 b(x, t)2uxx + r(x, t)u = 0 for 0 < t < T and u(0) = g.

3.3 Implied volatility

While the interest rate of a riskfree bond can be rather easily determined from market
data, it is more involved to compute the volatility σ. One approach is to consider his-
torical data and to compute the historical volatility σhist. It is the annualized standard
deviation of the logarithmic asset values, Yi = ln(Si+1/Si), where Si is the price of the
asset at day ti. Then

σhist =
√

N
(

1
n − 1

n−1

∑
i=1

(Yi − Y)2
)1/2

, where Y =
1

n − 1

n−1

∑
i=1

Yi,

where n is the number of sample points and N is the average number of banking days
(often, N = 252 is taken). Other definitions take into account that older data are less
relevant and introduce a weight function.

Another approach to determine σ in the Black-Scholes formula is to compute the
implied volatility implicit in the option value. We write d1/2(σ) to highlight that these
parameters, defined in (3.10), depend on σ. For a given option value C0, we need to
solve the equation

C0 = C(σ) := SΦ(d1(σ))− Ke−r(T−t)Φ(d2(σ)).

There exists a unique solution, at least as long as the arbitrage bounds (S − Ke−r(T−t))+

≤ C0 ≤ S are fulfilled, and we call the solution σimpl, i.e. C(σimpl) = C0. This statement
follows from the intermediate value theorem applied to the function σ 7→ C(σ), since
∂C/∂σ > 0 and consequently, C(σ)− C0 ≤ 0 for σ = 0 and C(σ)− C0 ≥ 0 as σ → ∞.
The unique zero of f (σ) := C(σ)−C0 can be calculated iteratively by using the Newton
method. Let σ0 > 0 be an initial guess and define

σk+1 = σk −
f (σk)

f ′(σk)
, k ∈ N ∪ {0}.

The derivative can be computed: f ′(σk) = (∂C/∂σ)(σk) = S
√

T − tΦ′(d1(σk)). It is
possible to show that (σk) converges as k → ∞, and the limit is the implied volatility.

When we calculate the implied volatility from market data on an underlying with
the same expiration date but different strike prices, we observe that σimpl is not constant.
It turns out that the function K 7→ σimpl forms a “smile’, i.e., the implied volatility is
smallest at the money and it becomes larger in the money or out of the money. These notions
mean the following:
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▶ At-the-money: The strike price is identical (or close to) the price of the underlying.
▶ In-the-money: The strike price is lower (higher) than the price of the underlying

when we consider call (put) options. Being in the money means that the option is
worth exercising.

▶ Out-of-the-money: The strike price is higher (lower) than the price of the underly-
ing when we consider call (put) options. An option that is out of the money may
likely have no value at expiration date.

This observation shows that the standard Black-Scholes model – strictly speaking – fails
in real markets. Yet, the Black-Scholes formulas are still used extensively in practice.
More elaborated models have been developed using a stochastic volatility instead of
a constant volatility (see Section 3.6) or using jump models instead of the Brownian
motion (see Section 3.8).

As an example of the volatility smile, we present in Figure 3.4 the values of the im-
plied volatility versus the strike price of a call option on the DAX index, issued by the
Deutsche Bank, with expiration time of three months. We clearly see that the volatility
is large in-the-money and out-of-the-money. Interestingly, the volatility is smallest (at
K ≈ 14,000) not exactly at the money (the DAX index was about 13,000).

Figure 3.4: Volatility smile for a call option
on the DAX index.
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Remark. The volatility can be an important measure of the state of the financial market. Large
values of the volatility come from large fluctuations of the price of the underlying. This
increases the risk of valuating the asset, and it is reasonable that this increases the call option
price. The change of the call price with respect to the volatility is called vega or kappa, and it
can be computed explicitly from the Black-Scholes formula:

κ =
∂C
∂σ

=
∂P
∂σ

= S

√
T − t
2π

exp
(
− d2

1
2

)
,

where d1 is given in (3.10). We see that V(S, t) increases with the volatility since κ > 0.
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3.4 Options on dividend paying assets

One of our market model assumptions was that there are no dividend payments. We ex-
tend the Black-Scholes model to assets with continuous or discrete dividend payments.

• Continuous dividend payments. Options on an index involve many stocks with
dividend payments which are approximately distributed all along the year. Therefore,
an easy approach is to assume that these payments are continuous in time. Furthermore,
we suppose that the dividend yield δ is proportional to the price of the asset S, i.e., we
receive the dividend δS△t after time △t. By the no-arbitrage principle, the price of the
asset decreases by exactly this value. Otherwise, we would make an instantaneous risk-
free profit of amount δS△t by purchasing the asset at time t and selling it immediately
after having received the dividend. Thus, the drift µ in the asset price model needs to
be changed to µ − δ:

dS = (µ − δ)Sdt + σSdW,

and we need to include the dividend payment in the variation of the self-financing
portfolio (3.3):

dπ = c1dB + c2(dS + δSdt)− dV(S, t).

Choosing c2 = VS, applying Itô’s formula, and using dB = rBdt, the same computation
as in Section 3.1 leads to

dπ =

(
c1rB + δSVS − Vt −

1
2

σ2S2VSS

)
dt

As the portfolio is riskless, we have

dπ = rπdt = r(c1B + SVS − V)dt,

and equating these identities, we arrive at the modified Black-Scholes equation

Vt +
1
2

σ2S2VSS + (r − δ)SVS − rV = 0, S ∈ (0, ∞), t ∈ (0, T). (3.20)

The final condition is as before, but we need to modify the boundary conditions. We
only consider call options since the corresponding expressions for put options can be
derived from the modified put-call parity

Se−δ(T−t) + Pt − Ct = Ke−r(T−t),

which takes into account the discount factor for the asset price. When S = 0, the call
option has no value, while as S → ∞, V(S, t) approaches the discounted asset price:

V(0, t) = 0, V(S, t) ∼ Se−δ(T−t) as S → ∞. (3.21)

This problem can be solved explicitly.
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Proposition 3.6 (Call option price with continuous dividends). The solution to problem
(3.20)-(3.21) with final condition C(S, T) = (S − K)+ reads as

C(S, t) = Se−δ(T−t)Φ(dδ
1)− Ke−r(T−t)Φ(dδ

2),

where

dδ
1/2 =

ln(S/K) + (r − δ ± σ2/2)(T − t)
σ
√

T − t
.

Remark. It can be seen that the call option on an asset with dividend payments is always
cheaper than the corresponding one on an asset without dividend payments. The correspond-
ing price for a put option equals

P(S, t) = Ke−r(T−t)Φ(−dδ
2)− Se−δ(T−t)Φ(−dδ

1).

Proof. The idea is to define the new variable C∗(S, t) := eδ(T−t)C(S, t). It fulfills the
Black-Scholes equation

C∗
t +

1
2

σ2S2C∗
SS + (r − δ)SC∗

S − rC∗

= eδ(T−t)
(

Ct − δC +
1
2

σ2S2CSS + (r − δ)SCS − rC
)

= −δeδ(T−t)C = −δC∗,

with the final condition C∗(S, T) = (S − K)+ and the initial conditions

C∗(0, t) = 0, C∗(S, t) ∼ S (S → ∞).

This is exactly the Black-Scholes problem with interest rate r − δ. Its solution is given
by

C(S, t) = e−δ(T−t)C∗(S, t) = e−δ(T−t)(SΦ(δδ
1)− Ke−(r−δ)(T−t)Φ(dδ

2)
)
,

which yields the statement of the proposition. □

• Discrete dividend payments. When the underlying of the option is a stock, the
dididend is usually paid once per year. In this situation we need to consider discrete
dividend payments. Let this payment happen at time t = td during the lifetime of the
option. The following arguments can be extended to a finite number of payments, but
we restrict ourselves to a single payment to simplifiy the notation.

At time t = td, the holder of the stock receives the dividend d · S, where d ∈ [0, 1) is
the dividend rate and S is the stock value just before the dividend payment. As before,
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because of the no-arbitrage principle, the asset value must decrease right after t = td by
the amount d · S,

S(t+d ) = (1 − d)S(t−d ),

where
S(t+d ) = lim

t↘td
St, S(t−d ) = lim

t↗td
St

are the limits from above and below, respectively. Clearly, we assume that such limits
exist almost surely. Note that if d > 0, the asset price is discontinuous. However, the
option price is continuous in time since the option holder does not receive any dividend
payment. This means that

V
(
S(t−d ), t−d

)
= V

(
S(t+d ), t+d

)
= V

(
(1 − d)S(t−d ), t+d

)
.

Since we consider all possible realizations of the stochastic process St, we require that

V(S, t−d ) = V((1 − d)S, t+d ) for all S > 0. (3.22)

The option value can be computed from the Black-Scholes equation in the intervals
(td, T] and [0, td) except at the point t = td. At t = td, we use the jump condition (3.22).
More precisely, the algorithm is as follows:

▶ Solve the Black-Scholes equation in [td, T] with final condition V(S, T) = VT(S).
This gives the value V(S, t+d ).

▶ Define V(S, t−d ) according to (3.22).
▶ Solve the Black-Scholes equation in [0, td] with final condition V(S, t−d ).

Example. We determine the premium on a European call option with expiration date
T and strike K on a stock with a single dividend payment at time td. We denote by
Cd(S, t) the call price and by CE(S, t; K) the call price on a European call option with
the same specification but on a stock without dividend payment. We know that

Cd(S, t) = CE(S, t; K) for td < t ≤ T.

At time t = td, the interface condition (3.22) reads as

Cd(S, t−d ) = Cd((1 − d)S, t+d ) = CE((1 − d)S, t+d ; K).

It remains to determine the option value for 0 ≤ t < td. We claim that

Cd(S, t) = (1 − d)CE(S, t; K/(1 − d)) for 0 ≤ t < td.

To show this statement, we consider the function C∗(S, t) := CE((1 − d)S, t; K).
It solves the Black-Scholes equation since the factor 1 − d cancels. We compute the
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final and initial conditions:

C∗(S, T) = ((1 − d)S − K)+ = (1 − d)
(

S − K
1 − d

)+

,

C∗(0, t) = 0, C∗(S, t) ∼ (1 − d)S as S → ∞.

As the Black-Scholes equation is uniquely solvable, this shows that C∗(S, t) equals
1 − d times the price of a European option with strike K/(1 − d), i.e. C∗(S, t) =
(1 − d)CE(S, t; K/(1 − d)), which is our claim. The solution is illustrated in Figure
3.5 for a call option with dividend rate d = 0.05 and dividend payment at td = 0.6.

Figure 3.5: Values of the European call op-
tion Cd at times t = 0, 0.2, 0.4 (solid lines),
0.6, 0.8, 1 (dashed lines) with parameters
K = 100, T = 1, r = 0.1, σ = 0.4. The
dividend with rate d = 0.05 is paid at
td = 0.6.

40 60 80 100 120 140
0

10

20

30

40

50

t = 0

t = T

3.5 Multi-asset options

The Black-Scholes equation derived in Section 3.1 determines the price of a European
option on a single asset. In this subsection, we consider options on several underlyings
Si. The processes (Si(t))t≥0 are assumed to satisfy

dSi = µiSidt + σiSidWi, i = 1, . . . , n,

where W1, . . . , Wn are correlated Wiener processes with covariance matrix Σ satisfying
Σii = 1 and Σij = ρij for i ̸= j. To derive a multidimensional Black-Scholes equation, we
consider the riskless and self-financing portfolio

πt = c0(t)Bt +
n

∑
i=1

ci(t)Si(t)− V(St, t),

where c0, . . . , cn are the shares of the corresponding assets, the bond process solves dB =
rBdt, and V(St, t) is the value of a European option. We repeat the arguments used for
the derivation of the standard Back-Scholes equation. Since the portfolio is assumed to
be riskless and self-financing, we obtain

dπ = rπdt = r
(

c0B +
n

∑
i=1

ciSi − V
)

dt, (3.23)
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dπ = c0dB +
n

∑
i=1

cidSi − dV = c0rBdt +
n

∑
i=1

ci(µiSidt + σiSidWi)− dV. (3.24)

By the multidimensional Itô formula, we can compute dV (see (2.7)):

dV(S, t) =
(

Vt +
n

∑
i=1

µiSiVSi +
1
2

n

∑
i,j=1

ρijσiσjSiSjVSiSj

)
dt +

n

∑
i=1

σiSiVSi dWi.

Inserting this expression into (3.24) and equating (3.23) and (3.24), it follows that

c0rBdt +
n

∑
i=1

rciSidt − rVdt = c0rBdt +
n

∑
i=1

ciµiSidt +
n

∑
i=1

σiSi(ci − VSi)dWi

−
(

Vt +
n

∑
i=1

µiSiVSi +
1
2

n

∑
i,j=1

ρijσiσjSiSjVSiSj

)
dt.

Then choosing ci = VSi , the stochastic part cancels, and we end up with a deterministic
equation. We summarize this result in the following theorem.

Theorem 3.7 (Multidimensional Black-Scholes equation). Let the assumptions at the
beginning of this section hold. Then the option price is a solution to the partial differential
equation

Vt +
1
2

n

∑
i,j=1

ρijσiσjSiSjVSiSj + r
n

∑
i=1

SiVSi − rV = 0

for Si ∈ (0, ∞), t > 0, and the final datum is given by V(S, T) = VT(S) for S ∈ [0, ∞)n.

Example (Basket option). As as application, we consider basket options, which are
contracts on n assets with the payoff function VT(S) = VT(S1, . . . , Sn). Similarly as
explained in the remark on page 35, the option price according to the Black-Scholes
equation can be formulated as an integral with respect to some density function:

V(S, t) =
∫
(0,∞)n

f (S′; S, t)VT(S)
dS′

S′
1 · · · S′

n
, (3.25)

where the density function reads as

f (S′; S, t) =
e−r(T−t)

(σ1 · · · σn)
√
(2π(T − t))n det Σ

exp
(
− 1

2
z⊤Σ−1z

)
,

where zi =
ln(S′

i/Si)− (r − σ2
i /2)(T − t)

σi
√

T − t
, z = (z1, . . . , zn)

⊤.

The payoff of the basket option may be defined by the payoff of a vanilla option
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associated to the weighted value of the basket. For instance, in case of a call option,
we may set

VT(S) =
( n

∑
i=1

αiSi − K
)+

,

where αi ≥ 0 are some weights. Another example of a payoff is given by the maxi-
mum of the payoffs of the single-asset options, i.e.

VT(S) = max{(Si − K)+ : i = 1, . . . , n}.

The difficulty in the valuation of basket options is the integration of the high-
dimensional Black-Scholes equation or the high-dimensional integral (3.25). Indeed,
when the basket consists of the DAX index with 30 stocks, we need to calculate a
30-dimensional integral. Even if we have only three base points in each of the 30
directions, we need to perform 330 ≈ 2 · 1014 evaluations, which is extremely time
consuming. A possible way out is the use of Monte-Carlo or quasi Monte-Carlo
simulations, which are discussed in Section 5.

The determination of the correlations ρij is usually a delicate task. A possibility is to
estimate them from historical data. For instance, consider the case of two assets with
correlation ρ := ρ12 = ρ21. Let Si(t0), . . . , Si(tm) be observed prices of the ith asset at the
times t0, . . . , tm. The correlation between S1 and S2 is estimated by the asset log return
instead of the price:

ρ̂ =
∑n

k=1 Yk
1 Yk

2√
∑n

k=1(Y
k
1 )

2 ∑n
k=1(Y

k
2 )

2
, where

Yk
i = ln

Si(tk)

Si(tk−1)
− 1

m

m

∑
j=1

ln
Si(tj)

Si(tj−1)
, i = 1, 2, k = 1, . . . , m.

3.6 Stochastic interest rate and volatility

We have assumed that the interest rate and the volatility are given functions. Generally,
these functions are not deterministic, and it is reasonable to model them as stochas-
tic processes. Let us first consider stochastic interest rate models (with deterministic
volatility). One class of models is given by

drt = κ(θ − rt)dt + σtrα
t dW̃t, t > 0,

where κ > 0, θ ≥ 0, and α ≥ 0 are constant model parameters. The Wiener process
W̃t may be different from the Wiener process Wt in the equation for the asset price,
and both Wiener processes may or may not be correlated. When the interest rate rt is
smaller (larger) than θ, the drift κ(θ − rt) is positive (negative), and we expect increasing
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(decreasing) interest rates. This means that there is a tendency to return to the mean
value θ (disregarded stochastic fluctuations). This effect is called mean reversion. Two
examples for α are

▶ α = 0: Vasicek model [34] (also called Ornstein-Uhlenbeck process),
▶ α = 1

2 : Cox-Ingersoll-Ross (CIR) model [9].
Due to the stochastic component that may be negative, the solution to the Vasicek model
may become negative. Although negative interest rates have been observed in the
course of the financial crisis after 2007, one may prefer to avoid such an effect. Neg-
ative values of rt are avoided in the CIR model since the stochastic term vanishes when
rt = 0. More precisely, the interest rate stays positive if κθ > σ2

t /2 [35, Section 40.8.2].
Next, we consider stochastic volatility models. Usually, they are also of mean-

reversion type:
dσ2

t = κ(θ − σ2
t )dt + λtσ

2α
t dW̃t.

The mean value θ may be constant or time-dependent. Examples are
▶ α = 1: Hull-White model [19],
▶ α = 1

2 : Heston model [17].
We wish to derive a Black-Scholes equation taking into account the Heston model.

The dynamics is given by

dSt = µtStdt + σtStdWt, dUt = κ(θ − Ut)dt + λt
√

UtdW̃t, (3.26)

where Ut := σ2
t . The option price V depends on the asset price S, the variance U, and

the time t.

Theorem 3.8 (Heston-Black-Scholes equation). Let the assumptions stated at the be-
ginning of Section 3.1 hold and consider the Heston market model (3.26) with the correlation ρ

between Wt and W̃t (i.e. formally dWdW̃ = ρdt). Then there exists a function γ = γ(S, U, t)
such that the option price is a solution to the modified Black-Scholes equation

Vt +
1
2

US2VSS + ρλUVSU +
1
2

λ2UVUU + rSVS − rV =
(
κ(θ − U)− γλ

√
U
)
VU,

where S ∈ (0, ∞), U ∈ (0, ∞), and t ∈ (0, T).

The function γ(S, U, t) is called the market price of volatility risk. It needs to be
determined from additional information on the market.

Proof. We derive the Black-Scholes equation for V(S, U, t) by hedging a suitable riskless
self-financing portfolio π. Since we have two sources of randomness, we need to hedge
the option with two other contracts, the stock S and another option Ṽ depending on S,
U, and t:

π = c1S + c2Ṽ − V.
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By assumption, the portfolio is self-financing, so its change is given by

dπ = c1dS + c2dṼ − dV. (3.27)

By Itô’s lemma,

dV = Vtdt + VSdS + VUdU +
1
2

VSSdS2 + VSUdSdU +
1
2

VUUdU2.

Squaring the changes of the processes St and Ut, we obtain formally

dS2 = (µSdt + σSdW)2 = σ2S2dt,

dU2 =
(
κ(θ − U)dt + λ

√
UdW̃

)2
= λ2Udt,

dSdU = σλS
√

UdWdW̃ = ρσλS
√

Udt.

Consequently, it follows that

dV = Vtdt + VSdS + VUdU +

(
1
2

σ2S2VSS + ρσλS
√

UVSU +
1
2

λ2UVUU

)
dt,

dṼ = Ṽtdt + ṼSdS + ṼUdU +

(
1
2

σ2S2ṼSS + ρσλS
√

UṼSU +
1
2

λ2UṼUU

)
dt.

Inserting these equations into (3.27) gives

dπ = −
(

Vt +
1
2

σ2S2VSS + ρσλS
√

UVSU +
1
2

λ2UVUU

)
dt

+ c2

(
Ṽt +

1
2

σ2S2ṼSS + ρσλS
√

UṼSU +
1
2

λ2UṼUU

)
dt

+
(
c1 + c2ṼS − VS

)
dS +

(
c2ṼU − VU

)
dU. (3.28)

We eliminate the randomness appearing in dS and dU by setting

c1 + c2ṼS − VS = 0, c2ṼU − VU = 0,

which determines c1 and c2:

c2 =
VU

ṼU
, c1 = VS −

VU

ṼU
ṼS.

Since the portfolio is riskless, we also have

dπ = rπdt = r(c1S + c2Ṽ − V)dt.

Equating this expression with (3.28) and inserting the relations for c1 and c2 leads to

1
VU

(
Vt +

1
2

σ2S2VSS + ρσλS
√

UVSU +
1
2

λ2UVUU + rSVS − rV
)
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=
1

ṼU

(
Ṽt +

1
2

σ2S2ṼSS + ρσλS
√

UṼSU +
1
2

λ2UṼUU + rSṼS − rṼ
)

.

The left-hand side only depends on V, the right-hand side only on Ṽ. We can choose
any option Ṽ. Therefore, this identity can only hold if both sides are independent of
the contract type and in some sense “constant”. Still, this “constant” may depend on
the independent variables S, U, and t. Denoting this “constant” by γ0 = γ0(S, U, t), it
follows that

Vt +
1
2

σ2S2VSS + ρσλS
√

UVSU +
1
2

λ2UVUU + rSVS − rV = γ0VU.

Analogous to the introduction of the risk-neutral measure in the proof of Theorem 3.4,
we introduce the market price of volatility risk as

γ =
µ̃ − γ0

σ̃
, where µ̃ = κ(θ − U), σ̃ = λ

√
U,

which yields γ0 = µ̃− σ̃γ = κ(θ −U)−λ
√

Uγ. Inserting this expression in the previous
Black-Scholes equation concludes the proof. □

3.7 Application: Pricing Asian options

Asian options are contracts whose payoff depends on the average of the values of the
underlying. They are useful if, for instance, price fluctuations of the underlying are high
due to low liquidity in the market or due to price manipulations. There are various pos-
sibilites how to compute the average (discrete or continuous, arithmetic or geometric):

▶ Arithmetic averages:

S =
1
n

n

∑
i=1

S(ti), S =
1
T

∫ T

0
Stdt,

▶ Geometric averages:

S =

( n

∏
i=1

S(ti)

)1/n

, S = exp
(

1
T

∫ T

0
ln Stdt

)
.

The payoff function involves such an average and either the strike or the final asset
price, which distinuishes two types of Asian options:

▶ Fixed strike: call CT = (S − K)+, put PT = (K − S)+,
▶ Floating strike: call CT = (ST − S)+, put PT = (S − ST)

+.
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We wish to derive a Black-Scholes equation for Asian options of European type
whose payoff is a function of St and the average It =

∫ t
0 f (Sτ, τ)dτ, i.e. VT = VT(S, I).

For instance, we have f (S, t) = S and VT = (S − I/T)+ in the case of an arithmetic-
average floating strike call option. The dynamics of the asset price is as usual given by

dSt = µtStdt + σtStdWt, t > 0.

Note that the average It can be interpreted also as a stochastic process since

dIt = f (St, t)dt, t > 0.

Thus, the pair (St, It) is an Itô process.

Theorem 3.9 (Black-Scholes equation for Asian options). Let the assumptions stat-
ed at the beginning of Section 3.1 hold. Then the option price is a solution to the modified
Black-Scholes equation

Vt +
1
2

σ2S2VSS + f (S, t)VI + rSVS − rV = 0, S > 0, I > 0, t ∈ (0, T). (3.29)

Proof. We consider the portfolio π = c1B + c2S − V(S, I, t), where the bond B has the
riskless interest rate r ≥ 0. Assuming that the portfolio is riskless and self-financing, we
deduce from Itô’s formula, after a similar computation as in the proof of Theorem 3.8,
that

dπ = c1dB + c2dS − dV(S, I, t)

= c1rBdt + (c2 − VS)dS −
(

Vt +
1
2

σ2S2VSS + f (S, t)VI

)
dt,

dπ = rπdt = r(c1B + c2S − V)dt.

Equating both equations and setting c2 = VS, it follows that

Vt +
1
2

σ2S2VSS + f (S, t)VI + rSVS − rV = 0,

which ends the proof. □

Equation (3.29) is a partial differential equation. It is generally not of parabolic type
since the derivative VI I is missing. Therefore, its (numerical) solution is delicate. How-
ever, when we consider arithmetic averages and a special payoff, we can reduce the
Black-Scholes equation for the two variables (S, I) to a parabolic equation of one vari-
able by a similarity reduction technique.
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Proposition 3.10 (Arithmetic-average Asian option). Let V be a solution to (3.29) with
f (S, t) = S and let the final datum given by VT(S, I) = SαF(I/S), where α ∈ R and the
function F = F(R) with R = I/S are given. Then H(R, t) = S−αV solves the equation

Ht +
1
2

σ2R2HRR +
(
1 − σ2(α − 1)R − rR

)
HR + (α − 1)

(
α

2
σ2 + r

)
H = 0, (3.30)

where R > 0, t ∈ (0, T), and the final condition is H(R, T) = F(R).

Proof. The result follows by differentiating V(S, I, t) = SαH(I/S, t),

Vt = SαHt, VI = Sα−1HR,

VS = αSα−1H − Sα−2 IHR = Sα−1(αH − RHR),

VSS =
(
α(α − 1)Sα−2H − αSα−3 IHR

)
−
(
(α − 2)Sα−3 IHR − Sα−4 I2HRR

)
= Sα−2(α(α − 1)H − 2(α − 1)RHR + R2HRR

)
,

and inserting these expressions into (3.29). □

Example. Equation (3.30) simplifies for an arithmetic-average floating strike call option.
Indeed, when VT(S, I) = (S − I/T)+ = S(1 − (I/S)/T)+, we have α = 1 and
F(R) = (1 − R/T)+, and the option price is V = SH, where H solves

Ht +
1
2

σ2R2HRR + (1 − rR)HR = 0, R > 0, t ∈ (0, T).

The final condition is H(R, T) = (1 − R/T)+. We can specify boundary conditions
at R = 0 and for R → ∞. When R = I/S → ∞ and I is fixed, it follows that S → 0.
Then the call will not be exercised and has no value at S = 0, i.e.

H(R, t) → 0 as R → ∞.

Assume that H is twice differentiable at R ↘ 0 and for t ∈ (0, T). Passing to the
limit R ↘ 0 in the differential equation for H, we obtain the boundary condition on
R ↘ 0:

Ht + HR = 0 on R ↘ 0, t ∈ (0, T).

The option price is now given as a solution to this parabolic problem, V(S, I, t) =
SH(I/S, t). We solve this problem numerically in Section 5.8.

3.8 Beyond Black-Scholes

The Black-Scholes equation in Section 3.1 was derived under a number of assumptions
some of which are not realistic in real-world markets. Nevertheless, the Black-Scholes
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equations are widely used in practice because the Black-Scholes formulas are easy to
calculate and it is a good basis for more refined models.

It is possible to relax most of the conditions, and in this section, we will discuss
some generalizations. To simplify the presentation and to highlight the ideas, we only
sketch the extensions and use sometimes quite heuristic arguments. Let us review the
assumptions imposed in Section 3.1:

▶ There are no dividend payments: Dividend yields can be included in the Black-
Scholes model; see Section 3.4.

▶ The interest rate r and volatility σ are constant: We have already discussed models
with stochastic interest rates and stochastic volatilities in Section 3.6.

▶ The stock price is governed by the Wiener process: The analysis of real-market
data has shown that there might be heavy-tailed returns which cannot be repro-
duced by the Brownian motion. Thus, other stochastic processes need to be used.
An example is the fractional Brownian motion.

▶ There are no market crashes: This means that the underlying stochastic process is
continuous. We know from real markets that crashes may happen. This may be
modeled, for instance, by jump-diffusion equations.

▶ The market is frictionless: This includes that there are no transaction costs. Again,
this is a strong simplification and may lead to wrong prices when delta-hedging
is expensive. Models including transcation costs typically lead to nonlinear Black-
Scholes equations.

In the following, we discuss the last three extensions in more detail.

• Fractional Brownian motion. The fractional Brownian motion is a generaliza-
tion of the standard Brownian motion. It can be defined by the properties that it is a
continuous-time stochastic process (BH

t )t≥0 with BH
0 = 0, the expectation EBH

t = 0 and
the covariance

E(BH
s BH

t ) =
1
2
(
s2H + t2H − |s − t|2H) for all s, t ≥ 0.

The number H ∈ (0, 1) is called the Hurst parameter. When H = 1/2, we recover the
standard Brownian motion (Wt)t≥0 with covariance E(WsWt) = min{s, t}, i.e. B1/2

t =
Wt. Figure 3.6 illustrates some paths of the fractional Brownian motion for various
values of H. We see that the trajectories are becoming smoother for increasing values of
H.

There are some important differences between the fractional and the standard Brow-
nian motion:

▶ The increments of the fractional Brownian motion with H ̸= 1/2 are not indepen-
dent; they are independent for the Wiener process (H = 1/2) only.

▶ Almost all trajectories are locally Hölder continuous of order α < H.
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Figure 3.6: Trajectories of the fractional
Brownian motion for H = 0.15 (top), H =

0.5 (middle), and H = 0.85 (bottom).
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▶ The fractional Brownian motion has a long-range dependence (or long memory)
in the sense of

∞

∑
n=1

E
[
BH

1 (BH
n+1 − BH

n )
]
= ∞, H > 1/2.

Long-range dependence means that the coupling between values at different times
does not decrease rapidly (i.e. exponential) for increasing time differences. The
sum is zero in the case of the Wiener process H = 1/2, which means that the
Wiener process has a short-range dependence.

The fractional Brownian motion can be computed as a stochastic integral involving the
Wiener process (obtained by Mandelbrot and Van Ness):

BH
t = BH

0 +
1

Γ(H + 1/2)

( ∫ 0

−∞

(
(t − s)H−1/2 − (−s)H−1/2)dWs

+
∫ t

0
(t − s)H−1/2dWs

)
, t > 0,

where Γ is the Gamma function and the definition for t < 0 is similar.
The price of the underlying is assumed to satisfy the stochastic differential equation

dSt = µStdSt + σStdBH
t , 0 < t < T,

which can be interpreted – as for Itô processes – as the integral formulation

St = S0 +
∫ t

0
µSτdτ +

∫ t

0
σSτdBH

τ .

The definition of the stochastic integral depends on the value of H. Indeed, when 1/2 <
H < 1, we can define the integral using pathwise Riemann-Stieltjes integrals since the
fractional Brownian motion has Hölder continuous trajectories, and the corresponding
integral is called a Young integral; see, e.g., the textbook [4]. When H < 1/2, there exist
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several integral notions, and the integrals may be different. In the case 1/4 < H < 1/2,
the definition is based on the theory of rough paths analysis introduced by Lyons [24].
Statistical analysis indicates that the Hurst parameter in financial markets is between
1/2 and 1, such that it is sufficient to consider this parameter range only.

In the Black-Scholes model (H = 1/2), there exists an equivalent probability mea-
sure Q under which µ = r and the discounted price process e−rtSt is a martingale. When
H ̸= 1/2, there still exists an equivalent probability measure Q under which µ = r, but
e−rtSt is not a martingale under Q. However, using the theory of forward/Wock inte-
grals, it is possible to define the self-financing property and to derive a formula for the
call option price [13, 18]:

Ct = StΦ(d1)− Ke−r(T−t)Φ(d2), where

d1/2 =
ln(S/K) + r(T − t)± σ2(T2H − t2H)/2

σ
√

T2H − t2H
.

Observe that we recover the classical Black-Scholes formula for H = 1/2.
Remark. There are several methods to simulate fractional Brownian motion. Here we report a

technique using the Cholesky decomposition:
▶ Compute the variance-covariance matrix S̄ = (S̄ij) with S̄ij =

1
2 (t

2H
i + t2H

j − |ti − tj|2H) for
i, j = 1, . . . , n.

▶ Compute the square root matrix Σ, the solution to Σ2 = S̄, using Cholesky decomposition.
▶ Construct a vector v of n numbers from independent standard normal distributions.
▶ The vector u = Σv yields a sample of fractional Brownian motions.

• Jump-diffusion models. The Wiener process is continuous in time, and jumps in
prices cannot be modeled. Jumps can be described by so-called jump-diffusion models,
containing the Brownian motion (the diffusion part) and the Poisson process (the jump
part).

A Poisson process (Nt)t≥0 represents the number of events that have happened up
to and including time t. The waiting time between events is exponentially distributed
(i.e. a random variable with density function ϕλ(x) = λe−λt for some λ > 0), while the
total number of events up to time t is a Poisson process. The Poisson process has the
Poisson distribution with parameter λt (and λ > 0), i.e., it is integer-valued and

P(Nt = n) =
(λt)n

n!
e−λt, n ∈ N.

The Poisson process satisfies N0 = 0 and it has independent increments Nt − Ns for
t > s (i.e. for any s, t ≥ 0 with s ≤ t, the increment Nt − Ns has the same distribution as
Nt−s). It holds that E(Nt) = λt and Var(Nt) = λt.

For financial applications, a process with a single jump size is not sufficient; the jump
size may change from occurence to occurence. For this reason, we introduce compound
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Poisson processes. Here, the waiting times between jumps are exponentially distributed
but the jump sizes can have any distribution. More precisely, we call the process

Xt =
Nt

∑
i=1

Yi

a compound Poisson process if (Nt)t≥0 is a Poisson process and (Yi)i∈N is a sequence of
independent random variables with some law ϕ. The trajectories are piecewise constant
with random jump sizes distributed according to the law ϕ.

A compound Poisson process can be simulated from the following algorithm:
▶ Simulate NT from the Poisson distribution with parameter λT. This can be done,

for instance, using the MATLAB command poissrnd(lambda*T).
▶ Simulate NT uniformly distributed random variables U1, . . . , UNT on [0, T].
▶ Simulate NT independent variables Y1, . . . , YNT with law ϕ.
▶ Then the compound Poisson process is given by

Xt =
NT

∑
i=1

Yiχ{Ui≤t},

where χA is the characteristic function on the set A.
We set Ji = exp Yi. We interpret Ji − 1 as the relative price jump size (in percent). For

instance, if there are no jumps, i.e. Yi = 0, then Ji − 1 = 0. The value of the underlying
changes to (J − 1)S. The Merton jump-diffusion model [26] is then defined by

dS = µSdt + σSdW + (J − 1)SdN,

where S is evaluated at t− just before a jump happens at time t. Whenever a jump occurs
(dN ̸= 0), the relative price of the underlying dS/S changes by the amount (J − 1)dN.
We can solve this stochastic differential equation by using the following variant of the
Itô lemma. Let (Xt) solve

dXt = atdt + btdWt +△XtdNt,

where △Xt is another process, and let f : (0, ∞) → R be a twice differentiable function.
Then

d f (X) =

(
at f ′(X) +

1
2

b2
t f ′′(X)

)
dt + bt f ′(X)dWt +

(
f (X +△X)− f (X)

)
.

We apply this formula to f = ln, X = S, and △X = (J − 1)S, which gives

d ln S =

(
µ − 1

2
σ2
)

dt + σdW +
(

ln(S + (J − 1)S)− ln S
)
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=

(
µ − 1

2
σ2
)

dt + σdW + ln J =
(

µ − 1
2

σ2
)

dt + σdW + Y.

Integrating this expression in (0, t) leads to

ln St − ln S0 =

(
µ − 1

2
σ2
)

t + σWt +
Nt

∑
i=1

Yi,

since we have Nt jumps of height Yi, and the integration of the last term becomes a sum.
We infer that

St = S0 exp
((

µ − 1
2

σ2
)

t + σWt +
Nt

∑
i=1

Yi

)

= S0 exp
((

µ − 1
2

σ2
)

t + σWt

) Nt

∏
i=1

exp(Yi).

Thus, between the jumps, the process evolves like a geometric Brownian motion, while
after each jump, the value of St is multiplied by Ji = exp(Yi). The additional contribu-
tion ∑Nt

i=1 Yi is a compound Poisson process.
Next, we wish to derive the price of an option V(S, t). The jump-diffusion version

of Itô’s lemma becomes here

dV(S, t) =
(

Vt + µSVS +
1
2

σ2S2VSS

)
dt + σSVSdW +

(
V(JS, t)− V(S, t)

)
dN,

as V(S + (J − 1)S, t) − V(S, t) = V(JS, t) − V(S, t). Assuming that the portfolio π =
V − ∆S consists of one option and −∆ = −VS shares of the underlying and is self-
financing, the change of the portfolio becomes

dπ = dV − ∆dS =

(
Vt + µSVS +

1
2

σ2S2VSS

)
dt

+ σSVSdW +
(
V(JS, t)− V(S, t)

)
dNt − ∆

(
µSdt + σSdW + (J − 1)SdN

)
.

Choosing ∆ = VS, some terms cancel and we end up with

dπ =

(
Vt +

1
2

σ2S2VSS

)
dt +

(
V(JS, t)− V(S, t)− (J − 1)SVS

)
dNt. (3.31)

Merton argued that the jump component of the asset price should not be priced in the
option. We used a similar argument in the derivation of the option price on dividend-
paying assets in Section 3.4. Then the expectation of the change of the portfolio is the
same as the profit from a riskless investment, E(dπ) = rπdt. This argument is not com-
pletely convincing, but a common assumption when the risk cannot be fully hedged.
We also have E(dN) = λdt. Therefore, taking the expectation in (3.31) leads to

Vt +
1
2

σ2S2VSS + λ
(
V(JS, t)− V(S, t)− (J − 1)SVS

)
= rπ = r(V − VSS). (3.32)
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The concept of compound processes can be generalized, leading to Lévy processes. We
say that a stochastic process (Lt)t≥0 is a Lévy process if L0 = 0, Lt has independent and
stationary increments, and Lt is stochastically continuous, i.e. for all ε > 0 and t ≥ 0, it
holds that

lim
h→0

P(|Lt+h − Lt| > ε) = 0.

(We say that the increments are independent if for all t1 < · · · < tn, the increments
Lt1 , Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent.) Other definitions replace the stochastic
continuity by right continuity with left limits for the paths of Lt. Wiener and Poisson
processes are special Lévy processes. In contrast, general Lévy processes may have
infinitely many jumps in each finite interval.

The price dynamics can be given by an exponential Lévy model, St = S0 exp(µt +
Lt). It can be shown that in the risk-neutral world, the price of a European option
V(S, T) is given by a partial-integro differential equation (called PIDE),

Vt +
1
2

σ2S2VSS + rSVS − rV +
∫

R

(
V(Sey, t)− V(S, t)− S(ey − 1)VS(S, t)

)
ν(dy) = 0,

(3.33)
where ν is the Lévy measure (i.e. ν(0) = 0 and

∫
R

min{1, |y|2}ν(dy) < ∞). This equation
is nonlocal, since the integral term needs the solution for all values. We refer to [8,
Chapter 12] for details on the derivation and numerical solution. We just remark that
in the Merton jump-diffusion model (3.32), we have ν(R) < ∞. In this case, we can
compute each of the three integrals in (3.33), which leads to a model like (3.32).

• Transaction costs. The Black-Scholes model is based on the assumption that hedg-
ing the portfolio does not involve any costs. In real markets, however, transaction costs
(or bid-ask spreads) need to be paid. Here, we present the approach of Leland [22]. He
assumes that rebalancing can happen only at discrete times with time step △t. Hence,
the price dynamics is given by the discrete equation

△S = µS△t + σS△W.

We suppose that the transaction cost is proportional to the trading volume, i.e., trading
c shares of an asset S costs γcS, where γ > 0 is the transaction cost rate.

Similarly as in Section 3.1, we derive the price V(S, t) of an option by hedging the
portfolio π = cS − V(S, t). The change of the (self-financing) portfolio equals

△π = c△S −△V(S, t)− γS|△c|,

where the additional term −γS|△c| is the cost of trading |△c| assets. As usual, we
assume that the portfolio change cannot be better than a change of a riskless bond with
interest rate r, △π = rπ△t. It remains to determine △V(S, t). For this, we use a discrete
Itô lemma:

△V(S, t) =
(

Vt + µSVS +
1
2

σ2S2VSS

)
△t + σSVS△W.
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Combining these expressions, it follows that

r(cS − V)△t = rπ△t = △π = c△S −△V(S, t)− γS|△c|

= c
(
µS△t + σS△W

)
−
(

Vt + µSVS +
1
2

σ2S2VSS

)
△t

− σSVS△W − γS|△c|.

Choosing c = VS, the stochastic terms and the µ-terms cancel:

r(SVS − V)△t = −
(

Vt +
1
2

σ2S2VSS

)
△t − γS|△c|.

It remains to determine |△c|. Since ∂c/∂S = VSS, we may expand as

△c =
∂c
∂S

△S +
∂c
∂t
△t + O((△S)2) = VSS△S + VSt△t + O((△S)2)

= VSS△S + O(△t) = VSS(µS△t + σS△W) + O(△t)
= σSVSS△W + O(△t).

Thus, |△c| = σS|VSS||△W|+ O(△t). It is possible to show that E(|△W|) =
√

2△t/π,
so we replace |△c| by σS|VSS|

√
2△t/π and obtain

r(SVS − V)△t = −
(

Vt +
1
2

σ2S2VSS

)
△t − γσS2|VSS|

√
2
π

√
△t.

Note that we have neglected a term of order O(△t), which is questionable. Thus, the
replacement of |△c| can be seen as a further assumption. Division by △t now leads to

Vt +
1
2

σ2S2VSS +

√
2γσ√
π△t

S2|VSS|+ rSVS − rV = 0.

Setting

σ̃(VSS)
2 = σ2

(
1 +

2
√

2γ

σ
√

π△t
sign(VSS)

)
,

this equation can be formulated as

Vt +
1
2

σ̃(VSS)
2S2VSS + rSVS − rV = 0. (3.34)

Equation (3.34) is a nonlinear partial differential equation. The effective volatility
σ̃ depends on the gamma Γ = VSS, which can be seen as a measure of the degree of
mishedging the portfolio. In the absence of transaction costs, the price of a European
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call option is convex with respect to S, so VSS > 0. We expect that this still holds true
for sufficiently small transaction costs. Then we can drop the modulus sign and obtain

σ̃2 = σ2 +
γσ√
2π△t

.

Note that the limit △t → 0 is not possible in this model. Moreover, as long as the option
price stays convex, it gives the linear Black-Scholes equation with an increased volatility.
For other options (for instance, barrier options), Γ = VSS may change its sign, and we
need to solve the nonlinear equation.

We have seen that discrete hedging leads to an error in the replication (which we ig-
nored by approximating |△c|). Strictly speaking, this makes the no-arbitrage argument
invalid. An alternative approach to the no-arbitrage framework is to introduce prefer-
ences of the investors to evaluate the option price. In arbitrage pricing, the risk tolerance
of an investor is not relevant, since she/he is never exposed to any risk. Here, an in-
vestor follows a trading strategy that optimizes her/his preferences. Transaction costs
will influence the trading strategy and change the expected cost of the replication. The
preferences of an investor can be modeled by a utility function, and the investor aims
to maximize the utility. Based on this approach, Barles and Soner [2] derived equation
(3.34) with the following adjusted volatility:

σ̃(VSS)
2 = σ2(1 + g(er(T−t)a2S2VSS)

)
,

where a = γ
√

µN, µ is the risk aversion factor, N is the number of options to be sold,
and g is the unique solution to

dg
dz

=
g(z) + 1

2
√

zg(z)− z
, z ̸= 0, g(0) = 0. (3.35)

The solution to this ordinary differential equation is illustrated in Figure 3.7. It is a
smooth variant of the sign function for negative arguments, but in contrast to the sign
function, g is unbounded for positive arguments.
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Figure 3.7: Solution to the differential
equation (3.35).
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4 Binomial models

4.1 The Cox-Ross-Rubinstein model

Often, financial markets are modeled by simple time-discrete models, so-called bino-
mial or tree models or Cox-Ross-Rubinstein models. In this section, we review these
models and show their relation to the Black-Scholes formula. The financial market is
assumed to consist of the following products:

▶ Bond Bt: At time t = 0, the bond has the value B0 = 1. Assuming that the riskfree
interest rate is r ≥ 0 and that the return is continuous, its value at t = △t is
B△t = er△t.

▶ Stock St: The value at time t = 0 equals S0 = S. At t = △t, the market has exactly
two states: up or down, and we assume that Su = uS (up) with probability p > 0
and Sd = dS (down) with probability 1 − p > 0, where u > d > 0.

▶ Call option Ct: The call option has the strike K > 0 and expiration date t > 0.
We suppose as in Section 3.1 that the market is arbitrage-free, liquid, and frictionless.

Consider first one period of time. At time t = △t, the value of the call option is
Cu = (uS − K)+ (up) with probability p or Cd = (dS − K)+ (down) with probability
1 − p. We wish to determine its value at time t = 0.

Lemma 4.1. The value of the call option at time t = 0 in the one-period model equals

C0 = e−r△t(p∗Cu + (1 − p∗)Cd
)
, where p∗ =

er△t − d
u − d

. (4.1)

Proof. The proof is based on a replication strategy, similar as in the derivation of the
Black-Scholes equations. We introduce the portfolio

πt = c1Bt + c2St − Ct, t = 0,△t.

We assume that this portfolio has no value at time t = 0 and t = △t:

0 = c1B0 + c2S − C0,
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0 = c1er△t + c2uS − Cu (up),

0 = c1er△t + c2dS − Cd (down).

This is a linear system for the unknowns c1 and c2 with the solution

c1 =
uCd − dCu

(u − d)er△t , c2 =
Cu − Cd
(u − d)S

.

Then the option price at time t = 0 is

C0 = c1B0 + c2S =
uCd − dCu

(u − d)er△t +
Cu − Cd

u − d
,

and a reformulation gives the conclusion. □

Remark. (1) We claim that our assumptions on the financial market imply that d ≤ er△t ≤ u
and thus 0 ≤ p∗ ≤ 1. Indeed, a stock must earn a return at least as large as the interest
rate r in the up state and at most as low as r in the down state, dS ≤ er△tS ≤ uS.

(2) The option premium C0 can be interpreted – like in the Black-Scholes model – as the dis-
counted expectation value with respect to p∗. Indeed, let X be a discrete stochastic pro-
cess such that X = Xu with probability p∗ and X = Xd with probability 1 − p∗. Then
Ep∗(X) = p∗Xu + (1 − p∗)Xd, and (4.1) can be written as

C0 = e−r△tEp∗
(
(S△t − K)+

)
.

This expression corresponds to the option price from Theorem 3.4. The risk-neutral mea-
sure is represented here just by the so-called risk-neutral probability p∗. Because of

Ep∗(S△t) = p∗uS + (1 − p∗)dS =
er△t − d

u − d
uS +

u − er△t

u − d
dS = er△tS,

the expected value of the asset equals the return of the bond. This is the viewpoint of a
risk-neutral investor who is indifferent between a risky asset and a riskless investment.

Next, we consider an n-period financial market with times t = 0,△t, . . . , n△t, where
n△t = T. In each period [t, t +△t], the asset price changes by the factor u (up) with
probability p or d (down) with probability 1 − p; see Figure 4.1. Thus, after k up states
and n − k down states, the asset value becomes Sn

k := ukdn−kS.
Again, we wish to determine the call price at time t = 0. When n = 2, we have,

according to Lemma 4.1,

C0 = e−r△t(p∗Cu + (1 − p∗)Cd
)
,

where Cu and Cd are given by

Cu = e−r△t(p∗(S2
2 − K)+ + (1 − p∗)(S2

1 − K)+
)
,
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Figure 4.1: Binomial tree with n periods.

Cd = e−r△t(p∗(S2
1 − K)+ + (1 − p∗)(S2

0 − K)+
)
.

This gives

C0 = e−2r△t
(
(p∗)2(S2

2 − K)+ + 2p∗(1 − p∗)(S2
1 − K)+ + (1 − p∗)2(S2

0 − K)+
)

.

We can guess the option price for the n-period model:

C0 = e−nr△t
n

∑
k=0

(
n
k

)
(p∗)k(1 − p∗)n−k(Sn

k − K)+. (4.2)

This formula can be written in different ways as shown in the following proposition.

Proposition 4.2 (Call option price). The call price of the n-period financial market at time
t = 0 equals

C0 = e−rTEp∗
(
(Sn

· − K)+
)
, (4.3)

where

Ep∗(X) =
n

∑
k=0

(
n
k

)
(p∗)k(1 − p∗)n−kXk

is the expected value of a discrete stochastic process (Xk)0≤k≤n. Furthermore, it holds that

C0 = SΦ(m, p′)− Ke−rTΦ(m, p∗), (4.4)

where p′ = p∗ue−r△t, p∗ = (er△t − d)/(u − d), and

Φ(m, p) =
n

∑
k=m

(
n
k

)
pk(1 − p)n−k
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with m = min{0 ≤ k ≤ n : Sn
k − K ≥ 0} is the binomial cumulative distribution function.

Equation (4.3) is the discounted expectation value of the payoff with respect to the
risk-neutral probability p∗. Formula (4.4) is a discrete version of the Black-Scholes for-
mula (3.8) for t = 0. We observe that Φ(m, p) is the probability that the binomial process
Xp with parameter p has values larger or equal m:

Φ(m, p) = P(Xp ≥ m).

Proof. We only need to show (4.4) since (4.3) follows immediately from (4.2). Using the
definition Sn

k = ukdn−kS, (4.2) becomes

C0 = e−rn△t
n

∑
k=m

(
n
k

)
(p∗)k(1 − p∗)n−kukdn−kS − e−rn△t

n

∑
k=m

(
n
k

)
(p∗)k(1 − p∗)n−kK

= S
n

∑
k=m

(
n
k

)
(p∗ue−r△t)k((1 − p∗)de−r△t)n−k − Ke−rT

n

∑
k=m

(
n
k

)
(p∗)k(1 − p∗)n−k.

The definition of p∗ implies that p∗u + (1 − p∗)d = er△t or e−r△t(1 − p∗)d = 1 −
p∗ue−r△t and thus 1 − p′ = 1 − p∗ue−r△t = (1 − p∗)de−r△t. We deduce that

C0 = S
n

∑
k=m

(
n
k

)
(p′)k(1 − p′)n−k − Ke−rT

n

∑
k=m

(
n
k

)
(p∗)k(1 − p∗)n−k,

and taking into account the definition of Φ, we conclude the proof. □

4.2 Relation with the Black-Scholes formula

By the central limit theorem, we expect that the binomial distribution on {0, . . . , n} con-
verges in some sense to the standard normal distribution as n → ∞. Hence, we may
conjecture that the option price of the discrete model “converges” to the price computed
from the Black-Scholes formula. Before we make this statement precise, we recall the
central limit theorem.

Theorem 4.3 (Central limit theorem). Let Yn be a binomial random variable with param-
eter p on {0, . . . , n}. Then

lim
n→∞

P
(

Yn − np√
np(1 − p)

≤ x
)
= Φ(x) :=

1√
2π

∫ x

−∞
e−z2/2dz.

Recall that a binomial random variable Y with parameters n ∈ N and p ∈ [0, 1] is
defined via P(Y = k) = (n

k)pk(1 − p)n−k.
We claim that the option price (4.4) converges to the Black-Scholes price (3.8) for a

certain choice of u and d.
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Theorem 4.4. Let u = exp(σ
√
△t) and d = exp(−σ

√
△t) and let C0 be the option price

(4.4). Then
lim
△t→0

C0 = SΦ(d1)− Ke−rTΦ(d2),

where the limit △t → 0 means that also n → ∞ such that n△t = T is constant, and d1/2
are defined in (3.10).

Proof. Since
C0 = SP(Xp′ ≥ m)− Ke−rTP(Xp∗ ≥ m),

it is sufficient to show that P(Xp′ ≥ m) → Φ(d1) and P(Xp∗ ≥ m) → Φ(d2) as △t → 0.
We prove only the latter relation as the proof of the former one is similar.

First, we make a Taylor expansion for p∗ with respect to △t:

p∗ =
er△t − e−σ

√
△t

eσ
√
△t − e−σ

√
△t

=
(1 + r△t)− (1 − σ

√
△t + σ2△t/2) + O(|△t|3/2)

(1 + σ
√
△t + σ2△t/2)− (1 − σ

√
△t + σ2△t/2) + O(|△t|3/2)

=
σ + (r − σ2/2)

√
△t + O(△t)

2σ + O(△t)
as △t → 0.

This shows that

lim
△t→0

p∗ =
1
2

, lim
△t→0

2p∗ − 1√
△t

=
r − σ2/2

σ
.

We infer that

lim
△t→0

np∗(1 − p∗)
(

ln
u
d

)2

= lim
△t→0

T
△t

p∗(1 − p∗)(2σ
√
△t)2

= lim
△t→0

4p∗(1 − p∗)σ2T = σ2T, (4.5)

lim
△t→0

n
(

p∗ ln
u
d
+ ln d

)
= lim

△t→0

T
△t
(

p∗ · 2σ
√
△t − σ

√
△t
)

= lim
△t→0

T√
△t

(2p∗ − 1)σ =

(
r − σ2

2

)
T. (4.6)

We need to normalize Xp in order to apply the central limit theorem:

P(Xp∗ ≥ m) = 1 − P(Xp∗ < m) = 1 − P
(

Xp∗ − np∗√
np∗(1 − p∗)

<
m − np∗√

np∗(1 − p∗)

)
. (4.7)

By definition of m (see the proof of Proposition 4.2), Sn
m − K = Sumdn−m − K ≥ 0 which

is equivalent to ln(umdn−mS) ≥ ln K or m ln u + (n − m) ln d ≥ − ln(S/K). We solve
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this inequality for m:

m ≥ − ln(S/K) + n ln d
ln(u/d)

.

Again by definition of m, there exists a number γ ∈ [0, 1) such that

m = − ln(S/K) + n ln d
ln(u/d)

+ γ.

Hence, taking into account the limits (4.5), (4.6), and ln(u/d) = 2σ
√
△t → 0 as △t → 0,

we obtain

m − np∗√
np∗(1 − p∗)

=
− ln(S/K)− n ln d − np∗ ln(u/d) + γ ln(u/d)

ln(u/d)
√

np∗(1 − p∗)

→ − ln(S/K)− (r − σ2/2)T
σ
√

T
as △t → 0.

We perform the limit △t → 0 or, equivalently, n → ∞ in (4.7) to infer from the central
limit theorem that

lim
△t→0

P(Xp∗ ≥ m) = 1 − Φ
(
− ln(S/K)− (r − σ2/2)T

σ
√

T

)
.

Finally, because of 1 − Φ(−x) = Φ(x), we deduce that

lim
△t→0

P(Xp∗ ≥ m) = Φ
(

ln(S/K) + (r − σ2/2)T
σ
√

T

)
= Φ(d2),

concluding the proof. □

4.3 Binomial method

The Cox-Ross-Rubinstein model allows us to design a numerical algorithm to determine
the option price. The advantage of the algorithm, compared to the explicit formula (4.4)
is that we may consider exotic options for which no explicit formula is available.

As in the previous subsections, we divide the time interval [0, T] into n equal subin-
tervals of length △t = T/n. Our assumptions on the financial market are similar to
those in Section 4.1:

▶ The asset price Si+1 at time ti+1 = (i + 1)△t can take only two values: either
Si+1 = uSi (up state) with probability p > 0 or Si+1 = dSi (down state) with
probability 1 − p > 0.

▶ The expected return after time △t is the same as for a riskless bond. This means
that we set µ = r in (2.6) of the geometric Brownian motion:

E(Si+1) = Sier△t, Var(Si+1) = S2
i e2r△t(eσ2△t − 1). (4.8)
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▶ The expected value of the time-continuous option price Vt is the same as for the
riskless bond, E(Vi+1) = Vier△t.

Furthermore, we suppose that the market is arbitrage-free, liquid, and frictionless. The
model includes three parameters: p, u, and d, which need to be determined. The idea is
to equate the expectation and variance of Si from (4.8) with

E(Si+1) = p · uSi + (1 − p) · dSi,

Var(Si) = E(S2
i+1)− E(Si+1)

2 = p(uSi)
2 + (1 − p)(dSi)

2 −
(

puSi + (1 − p)dSi
)2.

This yields

Sier△t = E(Si+1) = puSi + (1 − p)dSi, (4.9)

S2
i e2r△t(eσ2△t − 1) = Var(Si+1) = p(uSi)

2 + (1 − p)(dSi)
2 −

(
puSi + (1 − p)dSi

)2.

Inserting the first equation into the second one and dividing by S2
i gives

e2r△t(eσ2△t − 1) = pu2 + (1 − p)d2 − e2r△t.

We add e2r△t to find that

e(2r+σ2)△t = pu2 + (1 − p)d2. (4.10)

Equations (4.9) (after division by Si) and (4.10) are two equations for the three pa-
rameters p, u, and d. We need a third equation to determine these parameters uniquely.
Since we obtain the same asset price when it increases once and decreases once, Si =
d(uSi) = u(dSi), it is reasonable to assume that

ud = 1. (4.11)

The nonlinear system (4.9)-(4.11) can be solved explicitly:

u = s +
√

s2 − 1, d = s −
√

s2 − 1, p =
er△t − d

u − d
,

where

s :=
1
2
(
e−r△t + e(r+σ2)△t).

Remark. We discuss the binomial method.

(1) There are many possible choices for the third equation. For instance, we may set p = 1/2
or equate the third moments E(S3

i ).
(2) Observe that the value for p corresponds to the riskneutral value p∗; see (4.1).
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(3) We have argued in Section 4.1 that d ≤ er△t ≤ u. These inequalities are satisfied since

s −
√

s2 − 1 ≤ er△t ≤ s +
√

s2 − 1

is equivalent to |er△t − s| ≤
√

s2 − 1 or

1
2
(
e−r△t + er△t) ≤ s =

1
2
(
e−r△t + e(r+σ2)△t),

and this inequality is satisfied (since σ ≥ 0).
(4) Often, an approximated binomial method is used in the literature:

u = eσ
√
△t, d = e−σ

√
△t, p =

er△t − d
u − d

.

This choice follows from an expansion of u = s +
√

s2 − 1 = eσ
√
△t + O(|△t|3/2) as △t →

0. However, the inequalities d ≤ er△t ≤ u are only satisfied if △t ≤ (σ/r)2, which means
that the time step cannot be chosen arbitrarily large.

We are now able to formulate the algorithm: Let S0 the asset price at time t = 0 and
set Sji = ujdi−jS0, which is the asset price after j up states and i − j down states (this
requires that i ≥ j). The set {Sji : i = 0, . . . , n, j = 0, . . . , i} contains all possible asset
prices at time ti = i△t.

▶ Initialization of the binomial tree: Sjn = ujdn−jS0 for j = 0, . . . , n.
▶ Computation of the final option price:

Vjn =

{
(Sjn − K)+ : call,
(K − Sjn)

+ : put,
j = 0, . . . , n.

For the third step, we need a recursion formula for the option values Vji. The first
equation (4.9) of the nonlinear system can be written as

Sjier△t = puSji + (1 − p)dSji = pSj+1,i+1 + (1 − p)Sj,i+1.

Recall that we have assumed that the expected value of Vi+1 equals Vier△t. Thus, sup-
posing that the evolution of the option price follows the up and down states as for the
asset price, we may propose

Vjier△t = pVj+1,i+1 + (1 − p)Vj,i+1.

▶ Backward iteration: Compute in case of European options

Vji = e−r△t(pVj+1,i+1 + (1 − p)Vj,i+1
)
,

and in case of American options

Zji = e−r△t(pVj+1,i+1 + (1 − p)Vj,i+1
)
,

Vji =

{
max{(Sji − K)+, Zji} : call,
max{(K − Sji)

+, Zji} : put.

Then V00 is an approximation of V(S0, 0).
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Observe that, technically, we have evaluated a Bermudean option, which is an option
that can only be exercised at certain specified dates. For an increasing number of time
steps, we approach the American option price.

Figure 4.2 shows the values of a European put option computed by the binomial
method using n = 5 and n = 50 time steps. For comparison, the prices computed from
the Black-Scholes formula are also plotted. We see that in case n = 5, the prices differ
from the Black-Scholes values at the money, while the prices with n = 50 cannot be
distinguished from the Black-Scholes values in the figure.

Figure 4.2: Comparison of the put
price computed from the Black-Scholes
formula (solid line) and the binomial
method with n = 5 (marker *) and n = 50
(marker o). The parameters are K = 100,
r = 0.1, σ = 0.4, and T = 1.
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Remark. In case of dividend payments, we need to modify the previous algorithm. When the
divident payment occurs continuously with rate δ > 0, we just replace r in the expression
for p by r − δ:

u = s +
√

s2 − 1, d = s −
√

s2 − 1, p =
e(r−δ)△t − d

u − d
,

A more realistic case is modeled when the dividend payment is discrete, for instance at time
tD. Then we may use the same values for p, u, and d as for the no-dividend case, but at time
tD, the asset value jumps by the dividend payment D, and we replace SjD by SjD − D.
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5 Monte-Carlo method

The fair price of exotic options generally can only be determined by means of numer-
ical methods. Often, we need to solve stochastic differential equations or to integrate
high-dimensional integrals. In this section, we detail the Monte-Carlo method for the
solution of such situations.

The key steps of a Monte-Carlo simulation (for a call option) are as follows:

▶ Simulation of the asset values: Compute m paths S(k)
t , k = 1, . . . , m, of the stochas-

tic process (St)t≥0 solving the stochastic differential equation

dSt = rStdt + σStdWt, 0 < t < T. (5.1)

▶ Calculation of the payoff function: Compute, for each path k = 1, . . . , m, V(k)
T =

(S(k)
T − K)+.

▶ Estimator for the expectation: The expected value of VT may be approximated by

Ê(VT) =
1
m

m

∑
k=1

V(k)
T , where VT = (V(1)

T , . . . , V(m)
T ).

▶ Calculation of the option price: An approximation of the option price is given by
V̂0 = e−rTÊ(VT).

The last three steps are easy to compute. The third step is based on the law of large
numbers according to which the arithmetic average of uniformly distributed and inde-
pendent random variables converges almost surely to the expected value. The challenge
is the first step, which consists of two tasks:

▶ the simulation of m independent realizations of a Wiener process W(k)
t and

▶ the approximate solution of (5.1) associated to the corresponding path of the Wie-
ner process.

A simple approximation of the stochastic differential equation (5.1) is

△St = rSt△t + σSt△Wt, (5.2)

where △St = St+△t − St and △Wt = Wt+△t − Wt. We expect that this approximation
is only of low order, and one may ask for better discretizations (which are discussed
below). We need to determine realizations of △Wt, which are N(0,△t)-distributed. For
instance, we may compute realizations of an N(0, 1)-distributed random variable Z and
then define △Wt = Z

√
△t. In Figure 5.1, we illustrate 20 trajectories of St obtained from

(5.2).
In the following sections, we explain how normally distributed random variables

can be computed and how (5.1) can be approximated up to a certain order.
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Figure 5.1: Trajectories of St with r = 0.01,
σ = 0.3, S0 = 1, and △t = 0.01.
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5.1 Pseudo random numbers

All realizations of random numbers with computer algorithms do not give real random
numbers, since the algorithms are deterministic. Therefore, we call them pseudo random
numbers. It is possible to produce true random numbers from physical processes with
statistically random noise signals, like thermal noise, atmospheric noise, or quantum
phenomena, but we are discussing only pseudo random numbers.

The idea is to produce uniformly distributed (pseudo) random numbers, and then
to transform them into random numbers that are distributed according to the desired
density function. We recall that the random variable X is uniformly distributed on [0, 1],
written as X ∼ U[0, 1], if X possesses the density f (x) = 1 for x ∈ [0, 1], i.e.

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx = b − a for 0 ≤ a ≤ b ≤ 1.

We say that a sequence of random numbers is F-distributed if the numbers are indepen-
dent realizations of random variables with cumulative distribution function F, where
F(x) =

∫ x
−∞ f (z)dz. Clearly, pseudo random numbers are never independent since

they are calculated from a deterministic algorithm, but we are satisfied with random
numbers that satisfy the statistical properties approximately. In the following, we detail
some selected random number generators.

• Uniformly distributed random numbers. The oldest random number generators
are based on linear congruence: Let X0 ∈ {0, . . . , m − 1} with m ∈ N be given; compute

Xi+1 = (aXi + b) mod m, i ∈ N,

where a, b ∈ {0, . . . , m − 1}. The operation “a mod m” computes the remainder of the
division a/m. in the mathematical software MATLAB, the numbers a = 75 = 16807,
b = 0, and m = 231 − 1 are chosen. The numbers Xi repeat after some iterations, but the
period is maximal, p = 231 − 1 ≈ 2 · 109. This algorithm is called mcg16807 (mcg stands
for “multiplicative congruential generator”).
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An extremely large period is obtained in the so-called Mersenne-Twister algorithm,
developed by Makoto Matsumoto and Takuji Nishimura in 1997 [25], namely p =
219937 − 1 ≈ 4 · 106001 (this number is a Mersenne prime number). The algorithm is
as follows: Let X1, . . . , Xn with n = 624 be given; compute for i > n,

h = Xi−n − (Xi−n mod 231) + (Xi−n+1 mod 231),
Zi = Zi−227 ⊕ ⌊h/2⌋ ⊕ ((h mod 2) · 9908B0DFhex),

a = Zi ⊕ ⌊Xi/211⌋,

b = a ⊕ ((a · 27) ∧ 9D2C5680hex),

c = b ⊕ ((b · 215) ∧ EFC60000hex),

Xi = c ⊕ ⌊c/218⌋,

where ⊕ is the bitwise XOR operation, ∧ the AND operation, ⌊x⌋ = max{m ∈ N : m ≤
x} is the floor function (e.g. ⌊2.7⌋ = 2 and ⌊−2.4⌋ = −3), and the index “hex” means
that the corresponding number is a hexidecimal number. This algorithm is implemented
in MATLAB as the function mt19937ar.

• Normally distributed random numbers. Normally distributed random numbers
can be computed from uniformly distributed numbers. We discuss two methods:

▶ inversion of the distribution function,
▶ transformation of random numbers.

For the first technique, let X ∼ U[0, 1] be a uniformly distributed random variable and F
be a continuous, strictly monotone function. We claim that the random variable F−1(X)
is F-distributed. Indeed, the assumptions guarantee that the inverse F−1 exists. Since X
is uniformly distributed, we have P(X ≤ x) = x for x ∈ [0, 1]. Consequently,

P(F−1(X) ≤ x) = P(X ≤ F(x)) = F(x),

showing the claim. This result is applicable to the standard normal cumulative distribu-
tion function Φ(x) = (2π)−1/2

∫ x
−∞ e−y2/2dy, but Φ−1 is not explicit. We need to invert

Φ(x) = y numerically, using for instance the Newton method. Unfortunately, this prob-
lem is ill-conditioned around y = 1, meaning that small changes in y yield large changes
in x. Therefore, one may replace Φ−1 by a rational function R and set x = R(y). We
refer to [16, Section 5.2.2] and [33, Appendix D2] for further details.

The second technique is based on the following result.

Lemma 5.1. Let X be a random variable with density function f on the set Ω = {x ∈ Rn :
f (x) > 0}. The mapping g : Ω → g(Ω) is assumed to be invertible with continuously
differentiable inverse g−1 : g(Ω) → Ω (this is called a diffeomorphism). Then the random
variable Y = g(X) has the density function

y 7→ f (g−1(y))
∣∣∣∣det

dg−1

dy
(y)
∣∣∣∣, y ∈ g(Ω).
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Proof. We give only a motivation of the result; a full proof can be found in [12, Theorem
4.2]. By a change of variables, for any set ω ⊂ Rn,

P(g(X) ∈ ω) = P(X ∈ g−1(ω)) =
∫

g−1(ω)
f (z)dz =

∫
ω

f (g−1(y))
∣∣∣∣det

dg−1

dy
(y)
∣∣∣∣dy,

which shows the claim. □

This transformation is not useful in one dimension but surprisingly in two dimen-
sions. Indeed, we have f (x) = 1 (uniform distribution) and we are looking for a func-
tion g such that y = g(x) and the transformed density function is the one-dimensional
standard normal distribution: ∣∣∣∣dg−1

dy
(y)
∣∣∣∣ = e−y2/2

√
2π

.

This differential equation for g−1 has no explicit solution. However, in two dimensions,
we choose the transformation y = g(x) with

g(x) =
(√

−2 ln x1 cos(2πx2)√
−2 ln x1 sin(2πx2)

)
, x = (x1, x2)

⊤ ∈ [0, 1]2.

Its inverse is explicit,

g−1(y) =
(

exp(−|y|2/2)
arctan(y2/y1)/(2π)

)
, y = (y1, y2)

⊤,

and the determinant becomes, for x = g−1(y),∣∣∣∣det
dg−1

dy

∣∣∣∣ = ∣∣∣∣det

(
−y1x1 −y2x1

1
2π

−y2/y2
1

1+y2
2/y2

1

1
2π

1/y1
1+y2

2/y2
1

) ∣∣∣∣ = x1

2π
=

e−|y|2/2

2π
,

which is the two-dimensional standard normal density function of two independent
one-dimensional random variables. We infer that if X ∼ U[0, 1] then g(X) ∼ N(0, I),
where I is the unit matrix. This gives the algorithm of Box-Muller:

▶ Generate X1, X2 ∼ U[0, 1].
▶ Compute Y1 =

√
−2 ln X1 cos(2πX2) and Y2 =

√
−2 ln X1 sin(2πX2)

Then Y1 and Y2 are standard normally distributed.
The Box-Muller algorithm needs three function calls (sqrt, ln, and cos/sin) to gener-

ate two random numbers. This effort can be reduced by the polar rejection algorithm
that only needs two function calls (sqrt, ln). However, it produces random numbers
which need to be rejected if they are not in the domain of definition.
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More efficient is the Ziggurat algorithm which does not need sqrt or ln as function
calls, but uses only multiplications. As in the polar rejection algorithm, the algorithm
produces random numbers which possibly have to be rejected. The name originates
from covering the distribution function with stacked rectangular segments. This algo-
rithm is much faster than the Box-Muller or polar rejection method. As the Ziggurat
algorithm is more complex to implement, it is best used when many random numbers
have to be computed.

• Correlated normally distributed random numbers. When we simulate a multidi-
mensional Brownian motion, we often need correlated random variables. They can be
generated from standard normally distributed random variables.

Proposition 5.2. Let X = (X1, . . . , Xn)⊤ be a vector of (independent) standard normally
distributed random variables Xi with density function f (x) = (2π)−n/2e−|x|2/2. Further-
more, let µ ∈ Rn and Σ ∈ Rn×n be a symmetric positive definite matrix with the Cholesky
decomposition Σ = LL⊤ with a lower triangular matrix L. Then Y = µ + LX is N(µ, Σ)-
distributed.

Proof. It is sufficient to show that Z = LX is N(0, Σ)-distributed. This follows with
z = Lx and dz = |det L|dx from

f (x)dx =
1

(2π)n/2 exp
(
− x⊤x

2

)
dx

=
1

(2π)n/2 exp
(
− (L−1z)⊤(L−1z)

2

)
dx

=
1

(2π)n/2 exp
(
− z⊤(LL⊤)−1z

2

)
dx

=
1

(2π)n/2|det L|
exp

(
− z⊤Σ−1z

2

)
dz

=
1

(2π)n/2(det Σ)1/2 exp
(
− z⊤Σ−1z

2

)
dz.

Thus, Y = µ + Z is N(µ, Σ)-distributed. □

This yields the following algorithm:
▶ Determine the Cholesky decomposition Σ = LL⊤.
▶ Compute independent Xi ∼ N(0, 1) for i = 1, . . . , n and set X = (X1, . . . , Xn).
▶ Compute Y = µ + LX ∼ N(µ, Σ).
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Example 5.3. We wish to determine a two-dimensional N(0, Σ)-distributed random
variable (Y1, Y2), where

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
.

We say that (Y1, Y2) is correlated with correlation coefficient ρ ∈ [−1, 1]. Recall that if
ρ = 0, the random variables Y1 and Y2 are uncorrelated; ρ < 0 means that the random
variables are negatively correlated, and if ρ > 0, they are positively correlated.

The ansatz

L =

(
a 0
b c

)
leads to (

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
=

(
a 0
b c

)(
a b
0 c

)
=

(
a2 ab
ab b2 + c2

)
,

and by equating coefficients, a2 = σ2
1 , ab = ρσ1σ2, b2 + c2 = σ2

2 . Solving for a, b, and
c gives

L =

(
σ1 0

ρσ2 σ2
√

1 − ρ2

)
.

Consequently, if Z1 and Z2 are independent and N(0, 1)-distributed then(
Y1
Y2

)
= L

(
Z1
Z2

)
=

(
σ1Z1

σ2(ρZ1 +
√

1 − ρ2Z2)

)
is N(0, Σ)-distributed.

5.2 Euler-Maruyama method

We wish to approximate stochastic differential equations of the form

dXt = a(Xt, t)dt + b(Xt, t)dWt, 0 < t < T. (5.3)

We are looking for approximations Yi of Xti , where ti = ih, h = T/n > 0 is the (uniform)
time step, and n ∈ N. Non-uniform time steps may also be considered, but we restrict
ourselves to uniform ones to simplify the presentation. The stochastic process (Xt)t≥0
is an Itô process, and we can write, according to Definition 2.11,

Xti+1 = X0 +
∫ ti+1

0
a(Xs, s)ds +

∫ ti+1

0
b(Xs, s)dWs,

Xti = X0 +
∫ ti

0
a(Xs, s)ds +

∫ ti

0
b(Xs, s)dWs.
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Subtracting both equations gives

Xti+1 = Xti +
∫ ti+1

ti

a(Xs, s)ds +
∫ ti+1

ti

b(Xs, s)dWs.

Depending on the approximation of the integrals, we obtain different methods. When
we take a and b constant over [ti, ti+1), we can compute the stochastic integral, giving

△Wi :=
∫ ti+1

ti

dWs = Wti+1 − Wti ,

and this expression is N(0, h)-distributed. This leads to the Euler-Maruyama method:

Definition 5.4 (Euler-Maruyama scheme).

Yi+1 = Yi + a(Yi, ti)h + b(Yi, ti)△W, i = 0, . . . , n − 1, (5.4)

where △W =
√

hZ and Z is standard normally distributed.

This method corresponds to the explicit Euler method for ordinary differential equa-
tions. Note that we employ the same realizations of the Wiener process Wt in (5.3) and
(5.4).

Example. The Euler-Maruyama scheme for the asset price dynamics (5.1) reads as

S(k)
i+1 = S(k)

i (1 + rh + σ△W(k)), i = 0, . . . , n − 1, k = 1, . . . , m,

where △W(k) = Z
√

h, Z is N(0, 1)-distributed, and k is the index of the Monte-Carlo
simulation. The put option price is approximated by

Pm = e−rT 1
m

m

∑
k=1

(
K − S(k)

n
)+.

The exact solution P∗ is given by the Black-Scholes formula (3.8). Figure 5.2 shows
the relative error |Pm − P∗|/P∗ versus the number of simulations m using the param-
eters K = 100, r = 0.03, σ = 0.3, T = 1, S0 = 70, and h = 0.02. We observe that the
error decays rather slowly. This behavior will be discussed in more detail in Section
5.6.

Let us introduce the piecewise constant function Xh
t = Yi for t ∈ (ti, ti+1], i =

0, . . . , n − 1. We are interested in the quality of the approximation Xh
t , i.e. in the er-

ror |Xh
t − Xt|. This error is different for each realization of the Wiener process, so it is

reasonable to average it. We define:
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Figure 5.2: Relative error of the put option
price versus number of the Monte-Carlo
simulations, computed from the Euler-
Maruyama scheme.
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Definition 5.5 (Strong convergence). Let Xt be a solution to (5.3) (i.e. an Itô process)
and let Xh

t be an approximation of Xt. We say that Xh
T converges strongly to XT with order

m > 0 at time T if there exists C > 0 such that for all (sufficiently small) h > 0,

E|Xh
T − XT| ≤ Chm.

Furthermore, Xh
T is called strongly convergent to XT if limh→0 E|Xh

T − XT| = 0.

Remark. We discuss how the expectation of |Xh
T − XT| is determined in practice. If X1, . . . , Xm

are independent samples of a random variable X with the same expectation and variance,
we may use the estimator

εm =
1
m

m

∑
i=1

Xi.

It has the property of being unbiased and with converging variance, i.e.

E(εm) =
1
m

m

∑
i=1

E(Xi) =
1
m

m

∑
i=1

E(X) = E(X),

Var(εm) =
1

m2

m

∑
i=1

Var(Xi) =
1
m

Var(X) → 0 as m → ∞.

Now, determine m realizations W(1)
t , . . . , W(m)

t of a Wiener process, let X(k)
t for k = 1, . . . , m be

solutions to (5.3), and let Xh,(k)
t for k = 1, . . . , m be defined by (5.4). Then we can approximate

the error E|XT − Xh
T| by

ε̂n =
1
m

m

∑
k=1

|X(k)
T − Xh,(k)

T |.

The convergence rate of the explicit Euler method is one. As the difference Wti+1 −
Wti has standard deviation h1/2, we cannot expect the same convergence order for the
Euler-Maruyama method. The following theorem shows that the order is only 1/2; see
[20, Theorem 10.2.2].

Theorem 5.6 (Strong convergence rate of Euler-Maruyama). Let Xt be a solution to
(5.3) and let Xh

t be given by the Euler-Maruyama scheme (5.4). Furthermore, assume that



5.2 Euler-Maruyama method 75

there exists C > 0 independent of h such that for all X, Y ∈ R and t ∈ [0, T],

EX2
0 < ∞,

(
E|X0 − Xh

0 |2
)1/2 ≤ Ch1/2,

|a(X, t)|+ |b(X, t)| ≤ C(1 + |X|),
|a(X, t)− a(Y, t)|+ |b(X, t)− b(Y, t)| ≤ C|X − Y|,
|a(X, t)− a(X, s)|+ |b(X, t)− b(X, s)| ≤ C(1 + |X|)|t − s|1/2.

Then, for another constant C > 0 which does not depend on h, such that for all t ∈ [0, T],

E|Xt − Xh
t | ≤ Ch1/2.

Proof. We show first that EX2
t is bounded uniformly in t ∈ [0, T]. Equation (5.3) is

written as

Xt = X0 +
∫ t

0
a(Xs, s)ds +

∫ t

0
b(Xs, s)dWs.

Taking the square, using the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), taking
the expectation value, and applying the Cauchy-Schwarz inequality and the Itô isome-
try (Theorem 2.10), we obtain

EX2
t ≤ 3EX2

0 + 3E
( ∫ t

0
a(Xs, s)ds

)2

+ 3E
( ∫ t

0
b(Xs, s)dWs

)2

≤ 3EX2
0 + CE

∫ t

0
a(Xs, s)2ds + CE

∫ t

0
b(Xs, s)2ds.

Since a and b grow at most linearly with Xs, by assumption, it follows that

EX2
t ≤ CEX2

0 + CE
∫ t

0

(
1 + X2

s )ds ≤ C(X0, T) +
∫ t

0
EX2

s ds.

By Gronwall’s lemma, we find that

EX2
t ≤ C(X0, T) for all 0 ≤ t ≤ T. (5.5)

In the following, we proceed by iteration. Assume that, for some i = 0, . . . , n − 1,
E|Xti − Xh

ti
|2 ≤ Ch. If i = 0, this estimate holds by assumption. Next, for t ∈ (ti, ti+1],

we take the difference of

Xt = Xti +
∫ t

ti

a(Xs, s)ds +
∫ t

ti

b(Xs, s)dWs,

Xh
t = Yi +

∫ t

ti

a(Yi, ti)ds +
∫ t

ti

b(Yi, ti)dWs
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to obtain similarly as above

E|Xt − Xh
t |2 ≤ 3E|Xti − Yi|2 + 3E

( ∫ t

ti

∣∣a(Xs, s)− a(Yi, ti)
∣∣ds
)2

+ 3E
( ∫ t

ti

∣∣b(Xs, s)− b(Yi, ti)
∣∣dWs

)2

≤ 3E|Xti − Yi|2 + CE
∫ t

ti

∣∣a(Xs, s)− a(Yi, ti)
∣∣2ds

+ CE
∫ t

ti

∣∣b(Xs, s)− b(Yi, ti)
∣∣2ds.

By the local Lipschitz continuity of a, we have∣∣a(Xs, s)− a(Yi, ti)
∣∣ ≤ ∣∣a(Xs, s)− a(Xs, ti)

∣∣+ ∣∣a(Xs, ti)− a(Yi, ti)
∣∣

≤ C(1 + |Xs|)h1/2 + C|Xs − Yi|,

and a similar estimate holds for b. Therefore, using the induction hypothesis and (5.5),

E|Xt − Xh
t |2 ≤ 3E|Xti − Yi|2 + ChE

∫ t

ti

(1 + X2
s )ds + CE

∫ t

ti

|Xs − Yi|2ds

≤ Ch + Ch
∫ t

ti

ds + Ch
∫ t

ti

E(X2
s )ds + CE

∫ t

ti

|Xs − Yi|2ds

≤ Ch + C
∫ t

ti

E|Xs − Xh
s |2ds.

Gronwall’s lemma implies that E|Xt − Xh
t |2 ≤ C(X0, T)h. Finally, we use the Cauchy-

Schwarz inequality to conclude that E|Xt − Xh
t | ≤ (E|Xt − Xh

t |2)1/2 ≤ Ch1/2. □

Instead of estimating the expectation of the difference |XT − Xh
T|, we may also con-

sider the difference of the expectations, |EXT − EXh
T|. This leads to the concept of weak

convergence.

Definition 5.7 (Weak convergence). Let Xt be a solution to (5.3) (i.e. an Itô process), let
Xh

t be an approximation of Xt, and let g : R → R be a continuous function. We say that Xh
T

converges weakly to XT with order m > 0 with respect to g at time T > 0 if there exists a
constant C > 0 such that for all (sufficiently small) h > 0,∣∣E(g(XT))− E(g(Xh

T))
∣∣ ≤ Chm. (5.6)

If g(x) = x, we simply say that Xh
T converges weakly to XT with order m.
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In this definition, we are not interested in the pathwise convergence, so we may use
different paths for each time step i 7→ i + 1 in the Monte-Carlo algorithm. The weak
convergence concept is interesting for European options which are path-independent.
Strong convergence is needed if the whole path plays a role, for instance, for path-
dependent derivatives like Asian options.

Remark. (1) In the literature, sometimes the weak convergence is defined differently: Xh
T

converges weakly if (5.6) holds for all smooth functions g with bounded derivatives.
(2) The weak convergence rate is always at least as large as the strong convergence rate. In-

deed, let Xh
T be strongly convergent to XT with order m and let g ∈ C1(R) be such that

g′ ≤ K. Then, by the mean-value theorem,∣∣E(g(XT))− E(g(Xh
T))
∣∣ ≤ E

∣∣g(XT)− g(Xh
T)
∣∣ ≤ KE|XT − Xh

T| ≤ KChm,

where K depends on g′, proving the claim.

While the strong convergence rate of the Euler-Marumyama scheme is only 1/2, the
weak convergence rate is one; see [20, Theorem 14.1.5].

Theorem 5.8 (Weak convergence rate for Euler-Maruyama). Let Xt be a solution to
(5.3) and let Xh

t be given by the Euler-Maruyama scheme (5.4). Furthermore, assume that a
and b are smooth functions (at least C4) with bounded derivatives and g is another smooth
function. Then there exists a constant C > 0 which does not depend on h such that for h > 0,∣∣E(g(XT))− E(g(Xh

T))
∣∣ ≤ Ch.

Proof. The proof is based on the Faynman-Kac formula and Itô’s lemma; see Theorems
3.5 and 2.12. Since it is rather technical, we present only some ideas. For a full proof, we
refer to [23, Theorem 8.45].

Let ε = E(g(XT)) − E(g(Xh
T)). We need to prove that |ε| ≤ Ch for some constant

C > 0. By the Feynman-Kac formula, u(x, t) = E(g(Xt)) solves ∂tu − 1
2 b(x, t)2uxx −

a(x, t)ux = 0 with u(x, 0) = g(x) and dXt = a(Xt, t)dt + b(Xt, t)dWt, X0 = x. In
particular, u(X0, T) = E(g(XT)). We consider another stochastic process,

dZt = a(Zt∗ , t∗)dt + b(Zt∗ , t∗)dWt, Z0 = X0,

and t∗ = ti if t ∈ [ti, ti+1) (i.e., t∗ is a function of t). Since the drift and diffusion are
constant on the intervals [ti, ti+1), the process Zt interpolates the numerical method,
which means that Zti = Xh

ti
. In particular, u(ZT, 0) = E(g(ZT)) = E(g(Xh

T)). Itô’s
formula gives

ε = u(X0, T)− u(ZT, 0) = u(Z0, T)− u(ZT, 0) = −E
∫ T

0
du(Zt, T − t),
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where

du(Zt, T − t) =
(
− ∂tu + aux +

1
2

b2uxx

)
(Zt, T − t)dt + bux(Zt, T − t)dWt.

This expression is inserted in the expression for ε, taking into account that the expecta-
tion of the stochastic term vanishes:

ε = −E
∫ T

0

(
− ∂tu + aux +

1
2

b2uxx

)
(Zt, T − t)dt.

The goal now is to show that

ε =
∫ T

0

∫ t

ti

EQ(Zs, s)dsdt, t ∈ [ti, ti+1),

for some process Q, where EQ(Zs, s) is bounded on (0, T). Since |t− ti| ≤ h, this implies
that |ε| ≤ C|t − ti| ≤ Ch. □

5.3 Milstein method

The strong convergence rate of the Euler-Maruyama method is only 1/2. This motivates
the derivation of numerical schemes that are of higher order. To this end, we consider
an Itô process (Xt)t≥0 solving dXt = a(Xt)dt + b(Xt)dWt and choose a smooth function
g : R → R. We proceed as in [33, Section 3.2].

Let t ∈ (ti, ti+1]. Then, by Itô’s lemma,

g(Xt) = g(Xti) +
∫ t

ti

(
a(Xs)g′(Xs) +

1
2

b(Xs)
2g′′(Xs)

)
ds +

∫ t

ti

b(Xs)g′(Xs)dWs.

The choice g = a and g = b gives, respectively,

a(Xt) = a(Xti) +
∫ t

ti

(
a(Xs)a′(Xs) +

1
2

b(Xs)
2a′′(Xs)

)
ds +

∫ t

ti

b(Xs)a′(Xs)dWs,

b(Xt) = b(Xti) +
∫ t

ti

(
a(Xs)b′(Xs) +

1
2

b(Xs)
2b′′(Xs)

)
ds +

∫ t

ti

b(Xs)b′(Xs)dWs.

Replacing a(Xt) and b(Xt) in

Xt = Xti +
∫ t

ti

a(Xs)ds +
∫ t

ti

b(Xs)dWs

by these expressions, it follows that

Xt = Xti +
∫ t

ti

(
a(Xti) +

∫ s

ti

(
aa′ +

1
2

b2a′′
)
(Xτ)dτ +

∫ s

ti

(ba′)(Xτ)dWτ

)
ds
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+
∫ t

ti

(
b(Xti) +

∫ s

ti

(
ab′ +

1
2

b2b′′
)
(Xτ)dτ +

∫ s

ti

(bb′)(Xτ)dWτ

)
dWs

= Xti + a(Xti)(t − ti) + b(Xti)(Wt − Wti) + R, (5.7)

where the remainder R equals

R =
∫ t

ti

( ∫ s

ti

(
aa′ +

1
2

b2a′′
)
(Xτ)dτ +

∫ s

ti

(ba′)(Xτ)dWτ

)
ds

+
∫ t

ti

( ∫ s

ti

(
ab′ +

1
2

b2b′′
)
(Xτ)dτ +

∫ s

ti

(bb′)(Xτ)dWτ

)
dWs.

If we neglect R, we obtain the Euler-Maruyama method. We can derive a more precise
scheme by approximating

R = b(Xti)b
′(Xti)

∫ t

ti

∫ s

ti

dWτdWs + O(h3/2),

since the other terms are of order O(h2) (double deterministic integral) and O(h3/2)
(double deterministic-stochastic integrals). The error made is expected to be of order
O(h), as dWt is of “order” O(h1/2). We have approximated (bb′)(Xτ) by (bb′)(Xti) since
the double stochastic integral can be computed explicitly:∫ t

ti

∫ s

ti

dWτdWs =
∫ t

ti

(Ws − Wti)dWs =
∫ t

ti

WsdWs − Wti(Wt − Wti).

To determine the remaining stochastic integral, we apply Itô’s formula (Theorem 2.12)
to f (x) = x2 and a = 0, b = 1:

dW2
t = d f (Wt) =

(
fx(Wt)a +

1
2

fxx(Wt)b2
)

dt + fx(Wt)bdWt = dt + 2WtdWt,

or in integral form, ∫ t

ti

dW2
s =

∫ t

ti

ds + 2
∫ t

ti

WsdWs.

This gives ∫ t

ti

WsdWs =
1
2
(W2

t − W2
ti
)− t − ti

2
,

and we infer that ∫ t

ti

∫ s

ti

dWτdWs =
1
2
(
(Wt − Wti)

2 − (t − ti)
)
. (5.8)

This leads to the Milstein method.
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Definition 5.9 (Milstein scheme).

Yi+1 = Yi + a(Yi, ti)h + b(Yi, ti)△W +
1
2

b(Yi, ti)
∂b
∂x

(Yi, ti)
(
(△W)2 − h

)
, (5.9)

where i = 0, . . . , n − 1, △W =
√

hZ, and Z is standard normally distributed.

Example. Compared to the Euler-Maruyama scheme, the Milstein scheme just con-
tains an additional term. The scheme becomes for the asset price dynamics (5.1):

S(k)
i+1 = S(k)

i

(
1 + rh + σ△W +

1
2

σ2((△W)2 − h
))

,

where i = 0, . . . , n − 1, k = 1, . . . , m. We show in Figure 5.3 the relative errors of the
Monte-Carlo put price computed from the Euler-Maruyama and Milstein schemes.
For a small number of simulations, the solution from the Milstein scheme does not
show a significant improvement; this becomes more apparent for large simulation
numbers, here for m > 80,000. By the way: Both curves are not just shifted; their
difference is of the order of 10−4 which is too small to be visible.

Figure 5.3: Relative errors of the put op-
tion price versus number of the Monte-
Carlo simulations, computed from the
Euler-Maruyama and Milstein schemes.
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10-3

Euler-Maruyama

Milstein

The Milstein method is weakly and strongly convergent with order m = 1. When
the diffusion term b(Xt, t) is constant in the first argument, the Milstein scheme reduces
to the Euler-Maruyama method. In this special case, the Euler-Maruyama method is
strongly convergent with order m = 1 instead of the general order m = 1/2.

Theorem 5.10 (Strong convergence of Milstein scheme). Let Xt be a solution to (5.3)
and let Xh

t be given by the Milstein scheme (5.9). Furthermore, let a and b be smooth functions
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with bounded derivatives, E|X0 − Xh
0 | ≤ Ch, and let bb′ be globally Lipschitz continuous.

Then there exists a constant C > 0 independent of h such that

E|XT − Xh
T| ≤ Ch.

Since the weak convergence rate is always as large as the strong convergence rate,
the Milstein scheme is weakly and strongly convergent with order one.

Proof. We only sketch the proof; for details we refer to [23, Theorem 8.32]. The calcula-
tion (5.7) at the beginning of this section reveals that

Xt = Xti + a(Xti , ti)(t − ti) + b(Xti , ti)(Wt − Wti) +
∫ t

ti

∫ s

ti

(bb′)(Xτ, τ)dWτdWs + R̃,

Xh
t = Yi + a(Yi, ti)(t − ti) + b(Yi, ti)(Wt − Wti) +

1
2
(bb′)(Yi, ti)

(
(Wt − Wti)

2 − (t − ti)),

where the prime means derivation with respect to the first variable and the remainder
R̃ is given by

R̃ =
∫ t

ti

( ∫ s

ti

(
aa′ +

1
2

b2a′′
)
(Xτ)dτ +

∫ s

ti

(ba′)(Xτ)dWτ

)
ds

+
∫ t

ti

∫ s

ti

(
ab′ +

1
2

b2b′′
)
(Xτ)dτdWs.

Then E|Xt − Xh
t | ≤ I1 + · · ·+ I4 + |R̃|, where

I1 = E|Xti − Yi|,
I2 = E|a(Xti , ti)− a(Yi, ti)||t − ti|,
I3 = E|b(Xti , ti)− b(Yi, ti)||Wt − Wti |,

I4 = E
∣∣∣∣ ∫ t

ti

∫ s

ti

(bb′)(Xτ, τ)dWτdWs −
1
2
(bb′)(Yi, ti)

(
(Wt − Wti)

2 − h)
∣∣∣∣.

We proceed by induction. Assume that E|Xti −Yi| ≤ Ch for some i. This means that I1 ≤
Ch. Since a and b have bounded derivatives, these functions are Lipschitz continuous,
and it follows that I2 ≤ Ch2 and I3 ≤ Ch3/2. It remains to show that I4 ≤ Ch and R̃ ≤
Ch (this follows from the approximation of the stochastic integrals). Assuming these
estimates, we conclude that E|Xt − Xh

t | ≤ Ch for t = ti+1 and consequently E|Xti+1 −
Yi+1| ≤ Ch. This finishes the proof. □

5.4 Itô-Taylor and Runge-Kutta schemes

The Euler-Maruyama and Milstein schemes are derived from an Itô-Taylor expansion,
which means that they are derived from a stochastic Taylor expansion of the solution in
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the integral representation. A disadvantage of this approach is that partial derivatives
need to be evaluated, which decreases the efficiency of the scheme. This problem can be
solved by replacing the partial derivatives by a Taylor expansion, leading to derivative-
free schemes or so-called stochastic Runge-Kutta methods. We present two examples.

• Strong order 1.0 Runge-Kutta method. The Milstein method requires the eval-
uation of the partial derivative ∂b/∂x. This can be avoided by replacing the derivative
by its first-order Taylor expansion:

b(X +△X)− b(X) = b′(X)△X + O(△X2).

Using △X = a(X)h + b(X)△W (this is the Euler-Maruyama approximation of dX =
a(X)dt + b(X)dW) and consequently O(△X2) = O(△W2) = O(h), we obtain

b(X +△X)− b(X) = b′(X)
(
a(X)h + b(X)△W

)
+ O(h) = b′(X)b(X)△W + O(h).

The expectation of △W is
√

h, so we may write

b(X +△X)− b(X) = b′(X)b(X)
√

h + O(h)

or, replacing △X in this expression by a(X)h + b(X)
√

h and solving for b′(X)b(X),

b′(X)b(X) =
1√
h

(
b(X̃)− b(X)

)
+ O(

√
h), where X̃ = X + a(X)h + b(X)

√
h.

This gives the following variant of the Milstein scheme.

Definition 5.11 (Strong order 1.0 Runge-Kutta scheme).

Yi+1 = Yi + a(Yi, ti)h + b(Yi, ti)△W +
1

2
√

h

(
b(Ỹi, ti)− b(Yi, ti)

)(
(△W)2 − h

)
,

where Ỹi = Yi + a(Yi, ti)h + b(Yi, ti)
√

h, △W =
√

hZ, Z ∼ N(0, 1).

The strong convergence order is the same as for the Milstein scheme, but we only
need to evaluate functions and not its derivatives. Instead of evaluating b(Yi, ti) and
(∂b/∂x)(Yi, ti), we need to evaluate only b(Yi, ti) and b(Ỹi, ti).

This approach can be extended to general Runge-Kutta schemes, but the strong or-
der 1.5 cannot be surpassed if we use only the increments △W of the Wiener process.
This order limit can be bypassed by introducing additional random variables to ap-
proximate the iterated stochastic integrals like

∫ t
ti

∫ s
ti

dWτdWs. This idea was used in [5]
to construct strong order 2.0 Runge-Kutta methods in which the deterministic compo-
nent of the method is given by the classical (explicit four-stages) Runge-Kutta method.
Higher-order methods can also be constructed using Itô-Taylor expansions, and in the
following, we give an example.
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• Strong order 1.5 Taylor method. We derive the scheme by taking into account the
remainder in (5.7). Instead of approximating

R1 :=
∫ t

ti

∫ s

ti

(bb′)(Xτ)dWτdWs ≈ (bb′)(Xti)
∫ t

ti

∫ s

ti

dWτdWs

=
1
2
(bb′)(Xti)

(
(Wt − Wti)

2 − (t − ti)
)
,

which is only of first order, we apply Itô’s formula to compute a better approximation:

(bb′)(Xt) = (bb′)(Xti) +
∫ t

ti

(
a(bb′)′ +

1
2

b2(bb′)′′
)
(Xs)ds +

∫ t

ti

b(bb′)′(Xs)dWs.

The second term is of order O(h). Then, integrating the previous equation twice with
respect to the Wiener process,

R1 = (bb′)(Xti)
∫ t

ti

∫ s

ti

dWτdWs + O(h)
∫ t

ti

∫ s

ti

dWτdWs

+
∫ t

ti

∫ s

ti

∫ τ

ti

(b(bb′)′)(Xz)dWzdWτdWs.

Using
∫ t

ti

∫ s
ti

dWτdWs =
1
2((Wt − Wti)

2 − (t − ti)) (see (5.8)), it follows that

R1 =
1
2
(bb′)(Xti)

(
(Wt − Wti)

2 − (t − ti)
)
+ O(h2)

+
∫ t

ti

∫ s

ti

∫ τ

ti

(b(bb′)′)(Xz)dWzdWτdWs.

Finally, we approximate (b(bb′)′)(Xz) by (b(bb′)′)(Xti) (which introduces an error of
order O(h3/2)) and use the formula∫ t

ti

∫ s

ti

∫ τ

ti

dWzdWτdWs =
1
2

(
1
3
(Wt − Wti)

3 − (t − ti)

)
(Wt − Wti)

to find that

R1 =
1
2
(bb′)(Xti)

(
(Wt − Wti)

2 − (t − ti)
)

+
1
2
(b(bb′)′)(Xti)

(
1
3
(Wt − Wti)

3 − (t − ti)

)
(Wt − Wti) + O(h3/2).

Then the remainder R in (5.7) becomes at t = ti+1:

R =
∫ t

ti

∫ s

ti

(
aa′ +

1
2

b2a′′
)

dτds +
∫ t

ti

∫ s

ti

(ba′)dWτds
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+
∫ t

ti

∫ s

ti

(
ab′ +

1
2

b2b′′
)

dτdWs + R1

=
1
2

(
aa′ +

1
2

b2a′
)
(Xti)h

2 + (ba′)(Xti)
∫ t

ti

∫ s

ti

dWτds

+

(
ab′ +

1
2

b2b′′
)
(Xti)

∫ t

ti

∫ s

ti

dτdWs +
1
2
(bb′)(Xti)

(
(Wt − Wti)

2 − (t − ti)
)

+
1
2
(b(bb′)′)(Xti)

(
1
3
(Wt − Wti)

3 − (t − ti)

)
(Wt − Wti) + O(h3/2).

The following lemma shows that the two double integrals are related.

Lemma 5.12. It holds that∫ t

ti

∫ s

ti

dWτds +
∫ t

ti

∫ s

ti

dτdWs = (Wt − Wti)(t − ti).

Proof. We apply the Itô formula to the Itô process Xt = Wt (i.e. a = 0 and b = 1 in the
formula) with the function g(x, t) = xt:

g(Wt, t) = g(Wti , ti) +
∫ t

ti

(
∂tg + agx +

1
2

b2gxx

)
(Ws, s)ds +

∫ t

ti

bgx(Ws, s)dWs.

This gives

tWt = tiWti +
∫ t

ti

Wsds +
∫ t

ti

sdWs

or, solving for the last integral,∫ t

ti

sdWs = tWt − tiWti −
∫ t

ti

Wsds.

Next, we compute, using the previous identity,∫ t

ti

∫ s

ti

dWτds =
∫ t

ti

(Ws − Wti)ds =
∫ t

ti

Wsds − Wti(t − ti),∫ t

ti

∫ s

ti

dτdWs =
∫ t

ti

(s − ti)dWs =
∫ t

ti

sdWs − ti(Wt − Wti)

= Wt(t − ti)−
∫ t

ti

Wsds.

The lemma follows after adding these expressions. □

Therefore, the double integrals can be formulated in terms of a single stochastic pro-
cess, △Z =

∫ t
ti

∫
ti

dWτds. In view of (5.7), this leads to the following scheme which is of
strong convergence order 1.5:
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Definition 5.13 (Strong order 1.5 Taylor scheme).

Yi+1 = Yi + a(Yi, ti)h + b(Yi, ti)△W +
1
2
(bb′)(Yi, ti)

(
(△W)2 − h

)
+ (ba′)(Yi, ti)△Z +

1
2

(
aa′ +

1
2

b2a′′
)
(Yi, ti)h2 +

(
ab′ +

1
2

b2b′′
)
(△Wh −△Z)

+
1
2

b(Yi, ti)
(
bb′′ + (b′)2)(Yi, ti)

(
1
3
(△W)3 − h

)
△W,

where i = 0, . . . , n − 1, the prime means differentiation with respect to the x-variable, and
△Z represents the double integral

∫ ti+1
ti

∫ s
ti

dWτds.

When we are interested in weak convergence only, we can replace the random vari-
ables △W and △Z by simpler ones with the same moments. A computation shows that
△Z has the expectation, variance, and covariance

E(△Z) = 0, E(△Z)2 =
h3

3
, E(△W△Z) =

h2

2
.

One can see that the pair of correlated normally distributed random variables (△W,
△Z) can be realized from two independent standard normally distributed random vari-
ables (Y1, Y2) via

△W =
√

hY1, △Z =
h3/2

2

(
Y1 +

Y2√
3

)
.

This scheme has the weak convergence order two.
Remark. (1) We can also construct weakly convergent schemes of higher order, but because

of the approximation of the multiple integrals, the computational effort becomes high.
Moreover, in contrast to higher-order schemes for ordinary differential equations, higher-
order solvers for stochastic differential equations are often less compelling. The reason is
that often the initial condition is chosen from a probability distribution and higher-order
methods do not necessarily improve the accuracy of the solution.

(2) All presented schemes are explicit. Explicit schemes for stiff discretizations (arising from
stochastic partial differential equations, for instance), suffer from severe stability issues.
Therefore, implicit approximations seem to be preferable. As outlined in [20, Section 9.8],
implicit schemes may lead to some difficulties, because they involve reciprocals of Gaus-
sian random variables not having finite absolute moments. This issue may be avoided by
employing semi-implicit methods that are explicit in the diffusion term and implicit in the
drift term. A simple example is the semi-implicit Euler-Maruyama scheme

Yi+1 = Yi + a(Yi+1, ti+1)h + b(Yi, ti)△W, i = 0, . . . , n − 1.

This scheme has the strong convergence order 1/2 like the explicit Euler-Maruyama meth-
od. We refer to [20, Chapter 12] for more details, in particular on the stability properties
of implicit schemes.
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5.5 Systems of stochastic differential equations

We have considered so far only scalar equations. However, the modeling of options
with stochastic volatility or of basket options leads to systems of stochastic differential
equations. In this section, we extend the Milstein scheme to systems of dimension n.
We proceed as in [16, Section 5.3.4]. More precisely, we consider

dX(j)(t) = a(j)(Xt, t)dt +
m

∑
k=1

b(jk)(Xt, t)dW(k)(t), j = 1, . . . , n,

where Xt = (X(1)(t), . . . , X(n)(t)). This system can be written in compact form as

dXt = a(Xt, t)dt + b(Xt, t)dWt, t > 0,

where a : Rn × [0, ∞) → Rn, b : Rn × [0, ∞) → Rn×m, and Wt = (W(1)(t), . . . , W(m)(t))
is an m-dimensional Wiener process.

In case m = 1, we can interpret the term bb′ in the Milstein scheme as the product
of the Jacobian b′ = (∂b(i)/∂xj) and the vector b = (b(1), . . . , b(n))⊤, and the Milstein
scheme becomes

Y(j)
i+1 = Y(j)

i + a(j)(Yi, ti)h + b(j)(Yi, ti)△W +
1
2

m

∑
k=1

∂b(j)

∂xk
(Yi, ti)b(k)(Yi, ti)

(
(△W)2 − h

)
.

The general case m > 1 is more involved, and we report only the result. Repeating the
derivation of the Milstein scheme from Section 5.3, it holds that

Y(j)
i+1 = Y(j)

i + a(j)(Yi, ti)h +
n

∑
k=1

b(jk)(Yi, ti)△W(k)

+
m

∑
p,q=1

n

∑
ℓ=1

∂b(jq)

∂xℓ
(Yi, ti)b(ℓp)(Yi, ti)

∫ ti+1

ti

∫ s

ti

dW(p)
τ dW(q)

s .

We face two problems:

▶ How can we determine efficiently the double integrals Ipq =
∫ ti+1

ti

∫ s
ti

dW(p)
τ dW(q)

s ?

▶ How can we compute efficiently the derivatives (∂b(jq)/∂xℓ)(Yi, ti)?
Let us consider the first problem. It is sufficient to compute the integral Ipq up to

O(h), since the Milstein scheme is of first order. The idea is to formulate the integral
as the solution of a system of stochastic differential equations with one-dimensional
Wiener processes and to discretize this system using the Euler-Maruyama method. For
notational simplicity, let p = 2 and q = 1.

Lemma 5.14. The solution to the stochastic differential system

dXt =

(
X(2)

t 0
0 1

)
dWt, ti ≤ t ≤ ti+1, Xti =

(
0
0

)
, (5.10)
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at t = ti+1 reads as

Xti+1 =

(
I21

△W(2)

)
,

where △W(2) = W(2)
ti+1

− W(2)
ti

.

Proof. The second equation dX(2)
t = dW(2)

t is the Itô process

X(2)
s = X(2)

ti
+
∫ s

ti

dW(2)
τ =

∫ s

ti

dW(2)
τ .

Inserting this expression into the first equation dX(1)
t = X(2)

t dW(1)
t then gives

X(1)
ti+1

= X(1)
ti

+
∫ ti+1

ti

X(2)
s dW(1)

s =
∫ ti+1

ti

∫ s

ti

dW(2)
τ dW(1)

s .

This finishes the proof. □

For the approximation of (5.10), we divide the interval [ti, ti+1] into N subintervals of
length δ = h/N. Let Zk = (Z(1)

k , Z(2)
k ) be an approximation of the intermediate values

Xti+kδ. Then Z0 = Xti = 0 and the Euler-Maruyama approximation of (5.10) is

Zk+1 = Zk +

(
Z(2)

k 0
0 1

)
△Wk, where △Wk = Wti+(k+1)δ − Wti+kδ

and k = 0, . . . , N − 1. The Euler-Maruyama scheme has the strong convergence order
1/2, so one may ask the question whether this leads to an approximation of I21 that is
of first order. This is the case if we choose N ≥ 1/h. Indeed, because of δ = h/N,

E
∣∣Z(1)

N − I21
∣∣ ≤ Cδ1/2 = C

(
h
N

)1/2

≤ Ch.

Next, we turn to the second problem. As in the previous subsection, we can avoid
the computation of the derivatives ∂b/∂xℓ by using a stochastic Runge-Kutta scheme.
For this, we replace the partial derivative by a suitable finite difference.

Lemma 5.15. It holds that
n

∑
ℓ=1

(
b(jq)

∂xℓ
b(ℓp)

)
(Yi, ti) =

1√
h

(
b(jq)(Ỹ(p)

i , ti)− b(jq)(Yi, ti)
)
+ O(

√
h),

where
Ỹ(p)

i = Yi + a(Yi, ti)h + b(p)(Yi, ti) ·
√

H,

b(p) are vectors and
√

H = (
√

h, . . . ,
√

h) ∈ Rn.
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Proof. The result follows from a Taylor expansion:

1√
h

(
b(jq)(Ỹ(p)

i , ti)− b(jq)(Yi, ti)
)
=

1√
h

(
Db(jq)(Yi, ti) ·

(
Ỹ(p)

i − Yi) + O(h)
)

=
1√
h

(
Db(jq)(Yi, ti) ·

(
a(Yi, ti)h + b(p)(Yi, ti) ·

√
H
)
+ O(

√
h)

= Db(jq)(Yi, ti) · b(p)(Yi, ti) + O(
√

h),

where Db(jq) is the gradient of b(jq) with respect to (x1, . . . , xn). □

We summarize the strong order 1.0 Runge-Kutta scheme for systems:

Definition 5.16 (Strong order 1.0 Runge-Kutta scheme for systems).

Yi+1 = Yi + a(Yi, ti)h + b(Yi, ti) · △W

+
1√
h

m

∑
p,q=1

(
b(q)(Ỹ(p)

i , ti)− b(q)(Yi, ti)
)

Ipq,

where △W =
√

hZ, Z ∼ N(0, 1), and

Ỹ(p)
i = Yi + a(Yi, ti)h + b(p)(Yi, ti) ·

√
H, Ipq =

∫ ti+1

ti

∫ s

ti

dW(p)
τ dW(q)

s ,

recalling that
√

H = (
√

h, . . . ,
√

h) ∈ Rn.

Remark. The double integrals Ipq can be explicitly calculated in a few cases. Indeed, if p = q,
we obtain the double integral already computed for the Milstein scheme, leading to

Ipp =
1
2
(
(△W(p))2 − h), where △W(p) = W(p)

ti+1
− W(p)

ti
.

When b does not depend on x (called additive noise), the derivative ∂b/∂xℓ vanishes, and the
Milstein and Runge-Kutta schemes reduce to the Euler-Maruyama method. Finally, if b is a
diagonal matrix and n = m (called diagonal noise), we only need to approximate bj(∂bj/∂xj),
which leads to the double integrals Ijj.

5.6 Quasi Monte-Carlo method and variance reduction

In the previous sections, we have explained how to simulate realizations of Wiener pro-
cesses and to approximate the corresponding stochastic differential equations. We ex-
plore in the following the accuracy of the Monte-Carlo method and present some tech-
niques to accelerate the algorithm.
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We consider an abstract framework. The goal is to approximate the expected value
θ = E(ϕ(X)), where ϕ(X) is a functional of a random variable X. Let X(k)

h for k =
1, . . . , m be sample paths from Monte-Carlo simulations with time step h. We assume
that the approximation has the weak convergence order one and that the variances of
ϕ(X(k)

h ) and ϕ(X) are the same,

Var(ϕ(X(k)
h )) = Var(ϕ(X)) =: σ2.

The expectation θ = E(ϕ(X)) is approximated by the estimator

θm =
1
m

m

∑
k=1

ϕ(X(k)
h ),

and we expect that θm → E(ϕ(X)) as h → 0 and m → ∞. We wish to estimate ϕ(X)
with accuracy ε in the mean square error, MSE = O(ε2), where

MSE = E
[
(θm − E(ϕ(X)))2].

We split the mean square error into two parts:

MSE = E
[(

θm − E(θm) + E(θm)− E(ϕ(X))
)2]

= E
[
(θm − E(θm))

2]+ E
[
(E(θm)− E(ϕ(X)))2]

+ 2E
[(

θm − E(θm)
)(

E(θm)− E(ϕ(X))
)]

= E
[
(θm − E(θm))

2]+ (E(θm)− E(ϕ(X))
)2

+ 2 E
[
θm − E(θm)

]︸ ︷︷ ︸
=0

(
E(θm)− E(ϕ(X))

)
= E

[
(θm − E(θm))

2]+ (E(θm)− E(ϕ(X))
)2.

The first term on the right-hand side is the Monte-Carlo variance, Var(θm), the second
term is the bias of the approximation. As we assumed that the weak convergence order
equals one, we have |E(θm)− E(ϕ(X))| = O(h) as h → 0. The Monte-Carlo variance is
proportional to 1/m since

Var(θm) =
1

m2 Var
( m

∑
k=1

ϕ(X(k)
h )

)
=

1
m2

m

∑
k=1

σ2 =
σ2

m
.

We infer that the mean square error of the Monte-Carlo method is

MSE = O
(

1
m

)
+ O(h2) as m → ∞ and h → 0.

In the following, we write a = O(b) to indicate that both a and b are of the same
order, i.e. C1a ≤ b ≤ C2a for some constants C1 ≤ C2. To ensure that MSE is proportional
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to ε2, we need that 1/m = O(ε2) and h2 = O(ε2), which means that m = O(ε−2) and
h = O(ε). The computational cost of the Monte-Carlo method is proportional to the
number of paths m times the cost of generating one path, which is the number of time
steps in each path, 1/h. Thus, the cost of the algorithm is proportional to m/h = O(ε−3).
This means that if we want to reduce the error by one order of magnitude (i.e. by the
factor 10), the cost is increased by the factor 1000!

Another question concerns the absolute error |θm − E(ϕ(X))|. By the Chebychev
inequality,

P
(
|θm − E(ϕ(X))| ≥ δ

)
≤ 1

δ2 E
[(

θm − E(ϕ(X))
)2]

=
MSE

δ2 .

We know from the previous computation that MSE = Var(θm) + O(h2) = σ2/m +
O(h2). Then, choosing δ =

√
MSE /ε, we find that

P
(
|θm − E(ϕ(X))| ≥

√
MSE

ε

)
≤ ε

or, since
√

MSE = σ/
√

m + O(h) as h → 0,

P
(
|θm − E(ϕ(X))| < σ√

ε
√

m
+ O

(
h√

ε

))
> 1 − ε. (5.11)

This means that the reduction of the absolute error by one order of magnitude requires
to decrease the time step by the same factor and to increase the number of sample paths
by the factor 100.

Therefore, it is reasonable to devise strategies to decrease the error of the Monte-
Carlo method. In the following, we discuss two strategies:

▶ quasi Monte-Carlo methods,
▶ variance reduction techniques.

• Quasi Monte-Carlo method. The idea of the quasi Monte-Carlo method is to use
random numbers that are more equidistributed than pseudo random numbers. Random
numbers are independent and identically distributed (at least approximately in case of
pseudo random numbers). Often, the independence is not crucial to the computation.
If this property can be discarded, one may create so-called low-discrepancy numbers. The
discrepancy is a measure for the equidistribution of the random numbers. An easy
example is the van der Corput sequence with base 2:

1
2

,
1
4

,
3
4

,
1
8

,
5
8

,
3
8

,
7
8

,
1
16

, . . . .

The ith element of the sequence is computed by bit inversion:

i =
j

∑
k=0

dk2k 7→ xi =
j

∑
k=0

dk2−k−1.
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For instance, i = 5 = 22 + 20 gives d2 = 1, d1 = 0, d0 = 1 and consequently, x5 =
1/21 + 0/22 + 1/23 = 5/8. This ansatz can be generalized to an arbitrary base b ≥ 2.
The van der Corput sequence uniformly fills out the unit interval. We compare the van
der Corput numbers with uniformly distributed pseudo random numbers in Figure 5.4.
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Figure 5.4: Left: The first 5000 van der Corput numbers with base 2 (x-axis) and 3 (y-axis).
Right: 5000 uniformly distributed pseudo random numbers, generated by the Mersenne-Twister
generator.

It is possible to show that the error of the approximation by the quasi Monte-Carlo
method is O((log m)s/m), where s > 0, whereas the Monte-Carlo error

√
MSE is of

the order O(1/
√

m) (see (5.11)). Thus, the accuracy of the quasi Monte-Carlo method
increases generally faster than that of the Monte-Carlo method. However, this is guar-
anteed only if the number of paths m is large.

The second approach is to decrease the variance σ in (5.11). The idea is to calculate
the expectation more accurately with fewer calls to the random-number generator. We
discuss two techniques:

▶ antithetic variables,
▶ control variates.

• Antithetic variables. Let θ = EY, where Y = ϕ(X), ϕ : R → R is some function
and X a random variable. The goal is to estimate the expectation θ. Let Y1 and Y2 be
two samples of Y with the same expectation and same variance as Y. The estimator

Ŷ =
1
2
(Y1 + Y2)

is unbiased since EŶ = 1
2(EY1 + EY2) = EY. In the following, we use the identity

0 ≤ Var(Y1 ± Y2) = E
[(
(Y1 − EY1)± (Y2 − EY2)

)2]
= E[(Y1 − EY1)

2 + (Y2 − EY2)
2 ± 2(Y1 − EY1)(Y2 − EY2)

]
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= Var(Y1) + Var(Y2)± 2 Cov(Y1, Y2), (5.12)

from which we deduce (taking the minus sign) that

Cov(Y1, Y2) ≤
1
2
(

Var(Y1) + Var(Y2)
)
. (5.13)

This holds for any random variables Y1 and Y2 (with finite variance). If Y1 and Y2 are
negatively correlated, i.e. Cov(Y1, Y2) < 0, we obtain a variance reduction since, using
(5.12) with the plus sign,

Var(Ŷ) =
1
4

Var(Y1 + Y2)
(5.12)
=

1
4
(

Var(Y1) + Var(Y2) + 2 Cov(Y1, Y2)
)

<
1
4
(

Var(Y1) + Var(Y2)
)
=

1
2

Var(Y).

In fact, even if the covariance is positive, the variance is potentially reduced since by
(5.13), it follows that

Var(Ŷ) =
1
4
(

Var(Y1) + Var(Y2) + 2 Cov(Y1, Y2)
)

≤ 1
2
(

Var(Y1) + Var(Y2)
)
= Var(Y).

Example. Consider the variable θ created from the standard normally distributed
variable Z and let θ− be computed as θ but from −Z such that Var(θ) = Var(θ−).
For instance, θ and θ− may be the payoff function of an option associated to the stock
prices Si and S−

i , respectively, defined through the Euler-Maruyama approximation
of dS = S(rdt + σdW),

Si+1 = Si(1 + rh + σZ
√

h), S−
i+1 = S−

i (1 + rh − σZ
√

h)

for i = 0, . . . , n − 1, where Z ∼ N(0, 1). Then the payoff of a put option using
antithetic variables is given by

θ̂ =
1
2
(
(K − Sn)

+ + (K − S−
n )

+
)
.

Figure 5.5 illustrates the relative error of the put option price computed from the
Euler-Maruyama scheme with and without antithetic variables. We observe a signif-
icant reduction of the error even after a small number of simulations.

• Control variates. We want to estimate θ = EY, where Y = ϕ(X) and X is some
random variable. Suppose that there exists another random variable Z (the so-called
control variate) such that the expectation θ̃ = EZ can be computed explicitly (or easily)
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Figure 5.5: Relative error of the put op-
tion price versus number of Monte-Carlo
simulations, computed from the Euler-
Maruyama scheme with and without an-
tithetic variables.
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and that it is closely related to θ = EY. Thus, we expect that the covariance Cov(Y, Z)
is close to its maximal value, Var(Y); see (5.13). We claim that if Cov(Y, Z) ̸= 0, the new
random variable

Ŷ = Y + β(Z − EZ)

has a smaller variance than Y for a suitable parameter β. Note that this gives an un-
biased estimator since EŶ = EY. To show the claim, we compute the variance, using
Var(EZ) = 0 and (5.12) with the plus sign:

Var(Ŷ) = Var(Y) + Var(βZ) + 2 Cov(Y, βZ)

= Var(Y) + β2 Var(Z) + 2β Cov(Y, Z)

= Var(Y) + Var(Z)
(

β +
Cov(Y, Z)

Var(Z)

)2

− Cov(Y, Z)2

Var(Z)
.

Choosing the minimizing value β = −Cov(Y, Z)/ Var(Z), it follows that

Var(Ŷ) = Var(Y)− Cov(Y, Z)2

Var(Z)
< Var(Y).

In concrete cases, the computation of β may be not obvious since the covariance is
usually not known explicitly. A way out is to replace the covariance Cov(Y, Z) and the
variance Var(Z) by the values coming from a first Monte-Carlo simulation.

Example. Consider an arithmetic-average fixed strike Asian call option with the
payoff Y = (S − K)+, where S = (1/n)∑n

i=1 S(ti). An easy choice for Z is the stock
itself, Z = ST, since Y and Z are positively correlated. Another choice is the payoff
of a European call option, Z = (ST − K)+, since its expectation is known exactly
from the Black-Scholes formula. An even better choice is Z = [(Πn

i=1S(ti))
1/n − K]+,

which is the payoff of an Asian option with discrete geometric average, since its ex-
pectation is also known exactly. As this choice incorporates all discrete values S(ti) of
the underlying, we expect that the correlation with Y is rather high and the reduction
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of the variance is significant.

5.7 Multilevel Monte-Carlo method

The multilevel Monte-Carlo method uses a number of levels of resolution with the
aim to reduce the computational cost from O(ε−3) (see the beginning of Section 5.6)
to O(ε−2(log ε)2). It can be seen as a generalization of the control variate technique. In-
deed, let X1 be some sample computed from a fine grid and X0 be a sample computed
from a coarse grid. We want to estimate EX1. As X0 is much cheaper to simulate than
X1, we write

EX1 = EX0 + E(X1 − X0),

where EX0 is the control variate and E(X1 − X0) is a correction.
To extend this idea to L grids, we proceed as in [23, Section 8.6]. Let Yℓ for ℓ =

0, . . . , L be Euler-Maruyama approximations of the random variable XT, being, for in-
stance, the payoff of an option at time T. We introduce the time step sizes hℓ = κ−ℓT on
the interval [0, T], where κ ∈ {2, 3, . . .} is some number. Then ℓ = 0 corresponds to the
coarest grid and ℓ = L to the finest grid. The multilevel Monte-Carlo method is based
on the decomposition

E(ϕ(YL)) = E(ϕ(Y0)) +
L

∑
ℓ=1

E
(
ϕ(Yℓ)− ϕ(Yℓ−1)

)
.

The first term on the right-hand side is the lowest level expectation, and the second term
contains the corrections.

We need to find estimators for these expectations. For this, let Y(k)
ℓ for k = 1, . . . , mℓ

be independent identically distributed samples of Yℓ, ℓ = 0, . . . , L. An estimator for
E(ϕ(Y0)) is the average

µ0 =
1

m0

m0

∑
k=1

ϕ(Y(k)
0 ),

and the correction at level ℓ can be estimated by

µℓ =
1

mℓ

mℓ

∑
k=1

(
ϕ(Y(k)

ℓ )− ϕ(Y(k)
ℓ−1)

)
, ℓ = 1, . . . , L.

Then we can estimate E(ϕ(XT)) by µ̂ = ∑L
ℓ=0 µℓ.

We divide the error E(ϕ(XT))− µ̂ = ηWD + ηMC into two parts,
▶ the weak discretization error

ηWD = E(ϕ(XT))− E(ϕ(YL)), and

▶ the multilevel Monte-Carlo error,

ηMC = E(ϕ(YL))− µ̂.
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The error ηWD is of order O(hL) since the Euler-Maruyama scheme has the weak con-
vergence order one. To achieve ηWD = O(ε), we identify O(hL) = O(κ−LT) = O(ε), i.e.,
we need κ−LT ≤ ε (up to some factor). This is the case if L ≥ log(Tε−1)/ log κ.

The error ηMC can be expanded according to

ηMC = E(ϕ(Y0))− µ0 +
L

∑
ℓ=1

(
E
[
ϕ(Yℓ)− ϕ(Yℓ−1)

]
− µℓ

)
.

In order to achieve ηMC = O(ε), we compute µ0, which estimates E(ϕ(Y0)), with a
large number m0 of samples, while the corrections are calculated with smaller sample
numbers. Since µ0 is related to the coarsest grid, the samples are cheap to compute. The
samples on the finer grids are more costly, but less samples are sufficient. In contrast,
a standard Monte-Carlo simulation needs a large number of samples on the finest grid.
The number mℓ of samples can be chosen in such a way that Var(µ̂) = O(ε2) (use m0 ≥
ε−2 and mℓ ≥ ε−2Lhℓ; see [23, Lemma 8.46]). This guarantees that ηMC = O(ε) (use the
Chebychev inequality).

We still need to determine the computational cost of finding µ̂. We measure the cost
as the number of steps needed in the numerical method to compute µ̂. Using mℓ =
O(ε−2Lhℓ) and L = O(log(Tε−1)) = O(log ε), we find that

cost =
L

∑
ℓ=0

mℓh−1
ℓ =

L

∑
ℓ=0

O(ε−2Lhℓ)h−1
ℓ = O(L2ε−2) = O

(
ε−2(log ε)2

)
.

Therefore, the multilevel Monte-Carlo method reduces the computational cost by al-
most one order of magnitude.

5.8 Application: Pricing Asian options in the Heston model

We want to combine some techniques presented in the previous sections to simulate an
Asian option in the Heston model. We proceed as in [16, Section 5.5]. The goal is to
determine the premium of an arithmetic-average floating-strike Asian call option with
payoff

VT(ST) =

(
ST − 1

T

∫ T

0
Sτdτ

)+

,

where the price of the underlying Sτ is computed from the Heston model

dSt = rtStdt + σtStdW1(t),

dσ2
t = κ(θ − σ2

t )dt + νσtdW2(t), 0 < t < T,

where κ, θ, ν are positive numbers, the interest rate rt is time-dependent but given, and
the Wiener process (W1, W2) is N(0, Σ)-distributed with covariance matrix

Σ =

(
1 ρ

ρ 1

)
.
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We have explained the computation of a two-dimensional Wiener process in the
example on page 72. With the independent one-dimensional standard normally dis-
tributed random variables Z1 and Z2, the vector(

W1
W2

)
=

(
Z1

ρZ1 +
√

1 − ρ2Z2

)
is N(0, Σ)-distributed. The option price is estimated according to

V̂0 = exp
(
−
∫ T

0
rtdt

)
1
m

m

∑
k=1

(
S(k)

T − 1
n

n

∑
i=1

S(k)
ti

)+

,

where S(k)
t are the samples of St, m is the number of Monte-Carlo simulations and n is

the number of time steps. This gives the following algorithm:

▶ Calculate the increments of the two-dimensional Wiener process from

△W(k)
1 = Z(k)

1

√
h, △W(k)

2 = ρZ(k)
1

√
h +

√
1 − ρ2Z(k)

2

√
h.

▶ Solve the Heston model using the Euler-Maruyama scheme:

(σ
(k)
i+1)

2 = (σ
(k)
i )2 + κ

(
θ − (σ

(k)
i )2)h + νσ

(k)
i △W(k)

2 ,

S(k)
i+1 = S(k)

i
(
1 + rti h + σ

(k)
i △W(k)

1

)
, i = 0, . . . , n − 1.

▶ Compute the approximation of the option price:

V̂0 = exp
(
−
∫ T

0
rtdt

)
1
m

m

∑
k=1

(
S(k)

T − S(k)
)+

, S(k)
=

1
n

n

∑
i=1

S(k)
ti

.

An alternative is the use of the Milstein scheme with the functions

a(Yi, ti) =

(
rti Si

κ(θ − σ2
i )

)
, b(Yi, ti) =

(
σiSi 0

0 νσi

)
.

As detailed in Section 5.5, the Milstein scheme needs the derivatives of b with respect to
the first variable, which is, in the present case, the vector Yi = (Si, σ2

i ). It follows that

∂b11

∂Si
= σi,

∂b11

∂σ2
i
=

Si

2σi
,

∂b22

∂Si
= 0,

∂b22

∂σ2
i
=

ν

2σi
.

A computation shows that

Si+1 = Si(1 + rti h + σi△W1(ti)) +
1
2

σ2
i Si
(
(△W1(ti))

2 − h
)
+

ν

2
Si I21,
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m \ ρ −0.9 −0.5 −0.2 0.2 0.5 0.9
10,000 9.607 9.623 9.630 9.631 9.625 9.612
50,000 9.734 9.818 9.881 9.968 10.035 10.132
100,000 9.740 9.817 9.876 9.956 10.015 10.093
500,000 9.856 9.946 10.015 10.108 10.179 10.279
2,000,000 9.793 9.881 9.947 10.039 10.108 10.204
5,000,000 9.810 9.898 9.964 10.054 10.122 10.216

Table 3: Prices of the Asian option for various values of the correlation ρ (horizontal axis) and
the number m of Monte-Carlo simulations (vertical axis).

σ2
i+1 = σ2

i + κ(θ − σ2
i )h + νσi△W2(ti) +

ν2

2
(
(△W2(ti))

2 − h
)
.

The integral I21 can be approximated by solving the stochastic differential equation from
Lemma 5.14. More precisely, if Z0 = (Z(1)

0 , Z(2)
0 ) = (0, 0), we iterate

Zk+1 = Zk +

(
Z(2)

k 0
0 1

)
△Wk, k = 0, . . . , N − 1,

and obtain I21 = Z(1)
N . If N ≥ 1/h, this scheme is weakly converging with order one.

We compute the value of the Asian option with the parameters

S0 = 80, T = 1, κ = 3, θ = 0.3, ν = 0.5,

the time-dependent interest rate rt = 0.01(sin(2πt) + t) + 0.03, and the time step is
h = 0.01. In Table 3, we illustrate the prices V0 of the Asian option as a function of the
correlation parameter ρ and the number m of Monte-Carlo simulations from the Euler-
Maruyama scheme. The dependency on ρ is rather weak; the premium increases with
the correlation. Furthermore, we observe that the number of Monte-Carlo simulations
need to be very large to obtain accurate results. This motivates the introduction of
variance-reduction techniques as explained in Section 5.6.
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6 Finite-difference methods

Although the price of European options can be computed explicitly from the Black-
Scholes formulas, this generally does not hold true for exotic options like Asian op-
tions. Since Monte-Carlo simulations may be too time consuming, another approach is
to solve the corresponding partial differential equation if it exists. In this section, we ex-
plain the discretization using finite differences, which is in particular suitable in one or
two dimensions. Alternative discretization techniques are finite element, finite volume,
or discontinuous Galerkin methods, which are not discussed in this course (since there
exist specialized courses for these topics). We follow the approach of [16, Section 6.2].

6.1 The θ-method

The idea of the finite-difference method is to replace derivatives by finite differences. To
explain this technique, we first consider the diffusion equation

∂tu − uxx = 0, 0 < t < T, u(x, 0) = u0(x), x ∈ R, (6.1)

which follows from the Black-Scholes equation after transformation (see Section 3.1).
This problem can be solved explicitly, but we consider it as a prototype example to
highlight the ideas. More complex equations will be considered below.

For the numerical approximation, we restrict the problem to a bounded interval and
prescribe

u(−L, t) = b1(t), u(L, t) = b2(t), 0 < t < T,

where b1 and b2 approximate the solution at −L and L, respectively, and L > 0 is so
large that the restriction to the finite interval does not change the solution significantly.
Clearly, this is a rather vague statement, and a precise analysis has to be made for the
problem at hand.

Let m, n ∈ N and set h = 2L/n and τ = T/m. We introduce the grid (xi, tj) with

xi = −L + ih, tj = jτ for i = 0, . . . , n, j = 0, . . . , m.

By Taylor expansion around x (assuming that u is sufficiently smooth), we find that

u(x ± h, t) = u(x, t)± ux(x, t)h +
1
2

uxx(x, t)h2 ± 1
6

uxxx(x, t)h3 + O(h4).

Adding both expressions, the terms of order h and h3 cancel and we end up, after divi-
sion by h2, with

1
h2

(
u(x + h, t)− 2u(x, t) + u(x − h, t)

)
= uxx(x, t) + O(h2). (6.2)
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We replace uxx in (6.1) by these approximations to find that

∂tu(x, t) =
1
h2

(
u(x + h, t)− 2u(x, t) + u(x − h, t)

)
+ O(h2),

∂tu(x, t + τ) =
1
h2

(
u(x + h, t + τ)− 2u(x, t + τ) + u(x − h, t + τ)

)
+ O(h2).

The time derivative ∂tu can be discretized in different ways,

∂tu(x, t) =
1
τ

(
u(x, t + τ)− u(x, t)

)
+ O(τ),

∂tu(x, t + τ) =
1
τ

(
u(x, t + τ)− u(x, t)

)
+ O(τ).

We combine the previous approximations:

1
τ

(
u(x, t + τ)− u(x, t)

)
=

1
h2

(
u(x + h, t)− 2u(x, t) + u(x − h, t)

)
+ O(h2 + τ),

1
τ

(
u(x, t + τ)− u(x, t)

)
=

1
h2

(
u(x + h, t + τ)− 2u(x, t + τ) + u(x − h, t + τ)

)
+ O(τ + h2).

Multiplying the first equation by 1 − θ, the second equation by θ (where θ ∈ [0, 1]) and
adding both equations, it follows that

1
τ

(
u(x, t + τ)− u(x, t)

)
=

1 − θ

h2

(
u(x + h, t)− 2u(x, t) + u(x − h, t)

)
+

θ

h2

(
u(x + h, t + τ)− 2u(x, t + τ) + u(x − h, t + τ)

)
(6.3)

+ O(τ + h2).

Equation (6.3) motivates the following scheme for the approximations wj
i of u(xi, tj):

1
τ
(wj+1

i − wj
i) =

1 − θ

h2 (wj
i+1 − 2wj

i + wj
i−1) +

θ

h2 (w
j+1
i+1 − 2wj+1

i + wj+1
i−1) (6.4)

for i = 1, . . . , n− 1 and j = 0, . . . , m− 1. This scheme is called the θ-method. Some values
of θ are of special interest:

▶ θ = 0: We can solve wj+1
i for i = 1, . . . , n − 1 directly from wj

i . This approximation
is called the explicit Euler scheme.

▶ θ = 1: The values for wj+1
i can only be obtained by solving a linear system. This

method is called the implicit Euler scheme. Note that the solution of a linear system
is needed for any θ > 0.
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▶ θ = 1/2: The corresponding discretization is called the Crank-Nicolson scheme. It is
again an implicit scheme but it has a better convergence rate with respect to time
than the implicit Euler method, as shown below.

We wish to formulate (6.4) as a matrix problem. For this, we reformulate (6.4), setting
γ = τ/h2:

−γθwj+1
i+1 + (2γθ + 1)wj+1

i − γθwj+1
i−1

= γ(1 − θ)wj
i+1 −

(
2γ(1 − θ)− 1

)
wj

i + γ(1 − θ)wj
i−1.

The initial and boundary conditions become

wj
0 = b1(tj), wj

n = b2(tj), w0
i = u0(xi)

for j = 1, . . . , m and i = 1, . . . , n − 1. These equations can be written in matrix form as

Awj+1 = Bwj + dj, j = 0, . . . , m − 1, (6.5)

for the unknowns wj = (wj
1, . . . , wj

n−1)
⊤. The vector dj ∈ Rn−1 is given by

dj =


γ(1 − θ)b1(tj) + γθb1(tj+1)

0
...
0

γ(1 − θ)b2(tj) + γθb2(tj+1)


The tridiagonal matrices A, B ∈ R(n−1)×(n−1) are defined by

A = diag
(
− γθ, 2γθ + 1,−γθ

)
,

B = diag
(
γ(1 − θ),−2γ(1 − θ) + 1, γ(1 − θ)

)
.

Here, we have used the notation

diag(a, b, c) =



b c 0 · · · 0

a b c
...

0 . . . . . . . . . 0
... a b c
0 · · · 0 a b

 .

Interestingly, linear systems with tridiagonal matrices can be solved efficiently using
the LU decomposition in a lower triangular matrix L and an upper triangular matrix U.
Since A is tridiagonal, we can make the ansatz

A = L · U with L = diag(ℓ, 1, 0), U = diag(0, d, u),
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where ℓ = (ℓi), 1, d = (di), and u = (ui) are vectors in Rn−1. By inspection, the
coefficients di and ℓi are given recursively by

d1 = 2γθ + 1,
for i = 1, . . . , n − 1 : ℓi = −γθ/di, di+1 = 2γθ + 1 + ℓi/(γθ).

Then the matrix equation (6.5), LUwj+1 = Bwj + dj, can be formulated in terms of L and
U as

Lz = Bwj + dj, Uwj+1 = z,

and these linear systems can be easily solved by forward and backward iteration.
There are two mathematical questions that we need to investigate:
▶ Has the linear system (6.5) a unique solution?
▶ Does the solution converge to a solution to (6.1) when (h, τ) → 0?
The first question is not difficult to answer. The answer is affirmative when A is

invertible. To show this, we use the Gerschgorin circle theorem, which provides a bound
of the spectrum of a square matrix.

Theorem 6.1 (Gerschgorin). Let A = (aij) ∈ Rn×n and let ri = ∑n
j=1, j ̸=i |aij|. Then all

eigenvalues λ of A lie within the union of the balls around aii with radius ri, i.e.

λ ∈
n⋃

i=1

Bri(aii) :=
n⋃

i=1

{
z ∈ C : |z − aii| ≤ ri

}
.

The matrix A is strictly diagonally dominant, i.e.

|aii| = 2γθ + 1 > 2γθ ≥ ∑
j ̸=i

|aij| = ri.

This shows that 0 ̸∈ Bri(aii) (see Figure 6.1) and consequently, λ = 0 cannot be an
eigenvalue. This implies that A is invertible and the linear system (6.5) can be uniquely
solved.

Figure 6.1: Illustration for the application
of Gerschgorin’s theorem.

The answer to the second question on the convergence is more involved. The goal
is to show that wj − u(tj) converges in some norm with order O(τ + h2). The idea is to
prove concistency and stability and then to deduce convergence.

To define consistency, we set uj
i = u(xi, tj) and

L(uj
i) =

1
τ
(uj+1

i − uj
i)−

1 − θ

h2 (uj
i+1 − 2uj

i + uj
i−1)−

θ

h2 (u
j+1
i+1 − 2uj+1

i + uj+1
i−1).
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This means that we have inserted the solution at the grid points in the scheme. We
expect from Taylor expansion that L(uj

i) is of order O(τ + h2). This is confirmed, and
refined, by the following lemma.

Lemma 6.2 (Consistency). Let utt be continuous. Then

L(uj
i) =

{
O(τ + h2) if θ ̸= 1/2,
O(τ2 + h2) if θ = 1/2.

Denoting by L(uj) the vector of all L(uj
i), we can write L(uj) = Auj+1 − Buj − dj.

It holds that L(wj) = 0 since wj is the solution to the numerical scheme (6.5), but ej :=
L(uj) generally does not vanish, and we call ej the truncation error. The lemma says
that the truncation error is at least of order O(τ + h2) and improves to O(τ2 + h2) for
the Crank-Nicolson scheme.

Proof. We already know from the Taylor expansion at the beginning of the section that

1 − θ

h2 (uj
i+1 − 2uj

i + uj
i−1) +

θ

h2 (u
j+1
i+1 − 2uj+1

i + uj+1
i−1)

= (1 − θ)uxx(xi, tj) + θuxx(xi, tj+1) + O(h2)

= uxx(xi, tj) + θ
(
uxx(xi, tj+1)− uxx(xi, tj)

)
+ O(h2)

= uxx(xi, tj) + θτuxxt(xi, tj) + O(τ2 + h2).

Note that by assumption, uxxt = (uxx)t = utt is continuous. Furthermore, we have

1
τ
(uj+1

i − uj
i) = ut(xi, tj) +

τ

2
utt(xi, ti) + O(τ2).

Combining these expansions and recalling that uxxt = utt, it follows that

L(uj
i) = ut(xi, tj) +

τ

2
utt(xi, ti)− uxx(xi, tj)− θτuxxt(xi, ti) + O(τ2 + h2)

=
τ

2
(
utt(xi, ti)− 2θτuxxt(xi, ti)

)
+ O(τ2 + h2)

=
τ

2
(1 − 2θ)utt(xi, ti) + O(τ2 + h2).

If θ = 1/2, the first term on the right-hand side vanishes and L(uj
i) = O(τ2 + h2).

Otherwise, we observe that this term is of order τ, yielding L(uj
i) = O(τ + h2). □

By stability, we mean that the spectral radius of A−1B is smaller than one. We recall
that the spectral radius ρ(A) of a matrix A = (Aij) is defined by

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

The meaning of the notion of stability is that the matrix in wj+1 = A−1Bwj + A−1dj

(which is a reformulation of (6.5)) leads to a stable behavior in the sense that previous
errors are damped.
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Lemma 6.3 (Stability). It holds ρ(A−1B) < 1 if 0 < γ ≤ 1/(2 − 4θ) for 0 ≤ θ < 1/2 and
γ > 0 if 1/2 ≤ θ ≤ 1, where γ = τ/h2.

If 1/2 ≤ θ ≤ 1, we say that the scheme is unconditionally stable since no condition on
γ is required. If 0 ≤ θ < 1/2, the bound on γ gives a restriction on the choice of the
time step when the spatial grid size is given.

Proof. We write A = I + γθF and B = I − γ(1 − θ)F, where I ∈ R(n−1)×(n−1) is the unit
matrix and F = diag(−1, 2,−1) ∈ R(n−1)×(n−1). The eigenvalues of F can be computed
explicitly:

λk = 4 sin2
(

kπ

2n

)
, k = 1, . . . , n − 1.

Thus, the eigenvalues of A−1 are given by µk = 1/(1+ γθλk). The matrices A and B are
related through B = I/θ − (1/θ − 1)A. Multiplying this expression by A−1 yields

A−1B =
1
θ

A−1 −
(

1
θ
− 1
)

I. (6.6)

Hence, the eigenvalues of A−1B are µk/θ − (1/θ − 1) and the condition ρ(A−1B) < 1
holds if and only if for all k = 1, . . . , n − 1,

1 >

∣∣∣∣µk
θ

−
(

1
θ
− 1
)∣∣∣∣ = ∣∣∣∣1θ 1

1 + γθλk
− 1

θ
+ 1
∣∣∣∣ = ∣∣∣∣− γλk

1 + γθλk
+ 1
∣∣∣∣.

This is equivalent to

−1 < − γλk
1 + γθλk

+ 1 < 1 or 0 <
γλk

1 + γθλk
< 2.

Inserting the expression for λk, we find that the latter inequality is equivalent to

(2 − 4θ)γ sin2
(

kπ

2n

)
< 1.

This is always satisfied if θ ≥ 1/2. When θ < 1/2, we need the condition (2 − 4θ)γ ≤ 1
or γ ≤ 1/(2 − 4θ). □

Consistency and stability imply convergence of the scheme, as shown in the follow-
ing theorem.

Theorem 6.4 (Convergence). Let uj
i = u(xi, tj) be the solution to (6.1) and let wj =

(wj
1, . . . , wj

n−1)
⊤ be the finite-difference solution to (6.4) with initial datum w0

i = u0(xi).

Set uj = (uj
1, . . . , uj

n−1)
⊤. We assume that utt ∈ C0 and γ ≤ 1/(2 − 4θ) if θ < 1/2. Then

there exists C > 0 depending on A, B, and u and its derivatives such that for all (sufficiently
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small) τ, h > 0,
max

j=1,...,m
∥wj − uj∥2 ≤ C(τ + h2).

If θ = 1/2, we can replace the right-hand side by C(τ2 + h2).

The norm ∥ · ∥2 is the Euclidean vector norm defined by ∥v∥2
2 = ∑n−1

i=1 v2
i /(n − 1) for

v ∈ Rn−1. It induces the matrix norm

∥A∥2 = sup
∥v∥2 ̸=0

∥Av∥2

∥v∥2
for A ∈ R(n−1)×(n−1),

which is related to the spectral radius by ∥A∥2 = ρ(A⊤A)1/2. If A is symmetric, it
follows that ∥A∥2 = ρ(A). Actually, because of (6.6), A−1B is symmetric, so ∥A−1B∥2 =
ρ(A−1B) < 1.

Proof. The vectors wj and uj satisfy the relations

Awj = Bwj−1 + dj−1, Auj = Buj−1 + dj−1 + ej−1,

where, by Lemma 6.2, the truncation error ej−1 fulfills the estimate

∥ej−1∥2 ≤ C max
i=1,...,n−1

|ej−1
i | ≤ Ccons(τ + h2), j = 1, . . . , m.

We estimate the difference wj − uj = A−1B(wj−1 − uj−1) − A−1ej−1 by recursion and
using w0 = u0:

∥wj − uj∥2 ≤ ∥A−1B∥2∥wj−1 − uj−1∥2 + ∥A−1∥2∥ej−1∥2

≤ ∥A−1B∥j
2∥w0 − u0∥2 +

j−1

∑
k=0

∥A−1B∥j+k−1
2 ∥A−1∥2∥ek∥2

≤
1 − ∥A−1B∥j

2
1 − ∥A−1B∥2

∥A−1∥2 max
k=0,...,j−1

∥ek∥2

≤ ∥A−1∥2

1 − ∥A−1B∥2
max

k=0,...,j−1
∥ek∥2 ≤ C(τ + h2),

where C = Ccons∥A−1∥2/(1 − ∥A−1B∥2) and we have used the stability estimate of
Lemma 6.3 yielding ∥A−1B∥2 < 1. When θ = 1/2, Lemma 6.2 shows that the conver-
gence actually improves to τ2 + h2. □

Remark. (Higher-order convergence in h.) A higher convergence rate can be achieved by us-
ing multipoint formulas. The idea is to approximate uxx up to an order higher than two.
Using Taylor expansion, we can show, for instance, that

uxx(x) =
1
h2

(
− 1

12
u(x + 2h) +

4
3

u(x + h)− 5
2

u(x) +
4
3

u(x − h)− 1
12

u(x − 2h)
)
+ O(h4).
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Thus, we may replace the three-point stencil wi+1 − 2wi + wi−1 in (6.4) by the five-point
stencil

1
h2

(
− 1

12
wi+2 +

4
3

wi+1 −
5
2

wi +
4
3

wi−1 −
1
12

wi−2

)
.

This yields the convergence rate O(h4). The disadvantage is that the bandwidth of the matrix
is increased, which decreases the efficiency of the solution to the associated linear system. An
alternative is to use so-called higher-order compact schemes. They keep the three-point stencil
but allow for a higher-order convergence rate. The idea is to evaluate the differential equa-
tion at the points xi−1, xi, and xi+1 and to add a suitable linear combination. For instance, a
fourth-order compact scheme for uxx = f is given by

1
h2 (wi+1 − 2wi + wi−1) =

1
12
(

f (xi+1) + 10 f (xi) + f (xi−1)
)
.

The price to pay is the increased number of evaluations of the right-hand side.

Remark. (Higher-order convergence in τ.) The θ-scheme (6.4) can be written as

wj+1 = wj + τ
(
(1 − θ)L(wj) + θL(wj+1)

)
,

where L(wj) is the finite-difference approximation of uxx(tj). Higher-order approximations
can be derived from the general ansatz

wj+1 = wj + τ
s

∑
ℓ=1

bℓkℓ, kℓ = L
(

wj + τ
s

∑
m=1

aℓmkm

)
,

where the weights bℓ satisfy ∑s
ℓ=1 bℓ = 1. This gives the family of Runge-Kutta methods, which

may be explicit or implicit, depending on the choice of the coefficients aℓm. In particular, if
amm ̸= 0, we need to solve a system of nonlinear equations. By decoupling the equations, we
still keep the nonlinearity, but only need to solve nonlinear equations instead of a nonlinear
system, whose numerical solution is more involved. For this, we assume that aℓm = 0 for
m > ℓ and write the scheme as

kℓ = L
(

wj + τ
ℓ−1

∑
m=1

aℓmkm + τaℓℓkℓ

)
=: F(kℓ).

The Newton method for kℓ − F(kℓ) = 0 becomes(
I − ∂F

∂kℓ
(ki

ℓ)

)(
ki+1
ℓ − ki

ℓ

)
= F(ki

ℓ)− ki
ℓ,

where the superindex i denotes the iteration number. Approximating the derivative (∂F/∂kℓ)
(kℓ) = τaℓℓ(∂L/∂kℓ)(kℓ) by τaℓℓ(∂L/∂kℓ)(wj), we obtain(

I − τaℓℓ
∂L
∂kℓ

(wj)

)(
ki+1
ℓ − ki

ℓ

)
= L

(
wj + τ

ℓ−1

∑
m=1

aℓmki
m + τaℓℓki

ℓ

)
− ki

ℓ.

If we perform only one iteration step, this leads to the ROW (Rosenbrock-Wanner) scheme.
The solution of one iteration only requires an LU decomposition which is computationally
cheap. This scheme (for s = 2) is implemented in the MATLAB solver ode23s and it is of
order two. The solver has nice stability properties, and in particular, it is sensitive to stiff
problems where stability conditions are complicated.
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6.2 Application: Pricing arithmetic-average floating-strike calls

We discretize the arithmetic-average floating-strike call option from Section 3.7 using
finite differences. We recall the equations:

Ht +
1
2

σ2R2HRR + (1 − rR)HR = 0, R > 0, 0 < t < T,

H(R, T) = (1 − R/T)+, R > 0,
H(R, t) → 0 as R → ∞, Ht(0, t) + HR(0, t) = 0, 0 < t < T.

We expect that for sufficiently large values of R, H(R, t) is close to zero. Therefore, we
choose some L > 0 and set H(L, t) = 0 to solve the equation in the bounded interval
[0, L]. We choose the grid points Ri = ih and tj = jτ and set H j

i = H(Ri, tj).
The second derivative Hxx is discretized by the central finite differences (6.2):

HRR(xi, tj) =
1
h2 (H j

i+1 − 2H j
i + H j

i−1) + O(h2)

The first derivative HR can be approximated by the one-sided finite differences

HR(xi, tj) =
1
h
(H j

i+1 − H j
i ) + O(h) or HR(xi, tj) =

1
h
(H j

i − H j
i−1) + O(h),

but we prefer a second-order discretization to match the discretization order of HRR.
Therefore, we choose the central discretization

HR(xi, tj) =
1

2h
(H j

i+1 − H j
i−1) + O(h2),

which can be derived from the one-sided approximations by addition. A disadvantage
of the central discretization of HR is its instability in case of large coefficients |1 − rR|
(i.e. if the equation is convection dominant). This can be solved by using an upwind
discretization, which is based on one-sided approximations but taking care of the sign
of 1− rR, combined with a modification of the diffusion coefficient (Iljin scheme). Since
we only wish to present a simple numerical scheme, we do not use such refined approx-
imations. For details, we refer to [31, Section 2.1].

Furthermore, we replace Ht by the explicit Euler discretization. Then the numerical
scheme reads as

1
τ
(wj

i − wj−1
i ) +

σ2R2
i

2h2 (wj
i+1 − 2wj

i + wj
i−1) +

1 − rRi

2h
(wj

i+1 − wj
i−1) = 0

for i = 1, . . . , n − 1, j = 1, . . . , m. The final and boundary conditions can be chosen as
follows:

wm
i = (1 − Ri/tm)

+, wj
n = 0,

1
τ
(wj

0 − wj−1
0 ) +

1
h
(wj

1 − wj
0) = 0.
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Observe that the discrete boundary condition at R = 0 is only of order one. In order
to match the second-order approximation of the differential equation, we aim to find a
discretization that is also of order O(h2). For this, we subtract the expansions

4H j
1 = 4H j

0 + 4hHR(0, tj) + 2h2HRR(0, tj) + O(h3),

H j
2 = H j

0 + 2hHR(0, tj) + 2h2HRR(0, tj) + O(h3)

to find that
HR(0, tj) =

1
2h

(4H j
1 − H j

2 − 3H j
0) + O(h2).

Thus, an improved version of the discrete boundary condition at R = 0 is

1
τ
(wj

0 − wj−1
0 ) +

1
2h

(4wj
1 − wj

2 − 3wj
0) = 0.

This scheme can be written more compactly in matrix form. For this, we set wj =

(wj
0, . . . , wj

n−1)
⊤. Then our explicit scheme reads as

(I − τM)wj = wj−1, where M =

(
M11 M12
M21 M22

)
and

M11 =
3

2h
, M12 =

1
2h

(−4, 1, 0, . . . , 0),

M21 =

(
− σ2

2h2 R2
1 +

1
2h

(1 − rR1)

)
(1, 0, . . . , 0)⊤,

M22 =
σ2

2h2

R2
1 0

. . .
0 R2

n−1

× diag(−1, 2, 1)

− 1
2h

1 − rR2
1 0

. . .
0 1 − rR2

n−1

× diag(−1, 0,−1).

Figure 6.2 shows H(R, t) as a function of time and the variable R = I/S, where
S is the stock price and I =

∫ T
0 Stdt/T is the average price. The option price V can

be computed from V(S, I, t) = SH(I/S, t). At t = T, we recover the payoff function
H(R, T) = (1 − R/T)+.

In contrast to the above mentioned discretization, we have approximated only the
direction R by using central finite differences and then solved the resulting system of
ordinary differential equations by using the MATLAB function ode23s. The technique
of discretizing only the “non-time” variable and to obtain a system of differential equa-
tions is called the method of lines. Since the system matrix M is sparse (most of its ele-
ments are zero), it is preferable to store only the nonzero elements. This is realized by
the MATLAB command sparse.
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Figure 6.2: Premium of an arithmetic-
average floating-strike call option with 9
months to expiration, interest rate r =

0.05, and volatility σ = 0.3.
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6.3 Relation with the binomial method

We have shown in Section 4.2 that the price of a European option computed from the
binomial method is close to the Black-Scholes price, at least for small time step sizes.
In this section, we discuss the relation between the binomial and the finite-difference
method, i.e., we show that an explicit Euler finite-difference scheme can be interpreted
as a binomial method. We proceed as in [16, Section 6.2.5].

Consider the Black-Scholes equation (3.4) after having performed the transformation
x = ln(S/K) and v(x, t) = V(S, t). We deduce from

Vt +
1
2

σ2S2VSS + rSVS − rV = 0

by using

SVS = S
∂v
∂x

dx
dS

= vx, S2VSS = S(SVS)S − SVS = vxx − vx

that

vt +
σ2

2
vxx +

(
r − σ2

2

)
vx − rv = 0, x ∈ R, 0 < t < T.

We introduce the grid points xi = ih and tj = τ j and the approximations wj
i of v(xi, tj).

Replacing vt by the explicit Euler scheme and the derivatives vxx, vx by central finite
differences (as in the previous subsection), we obtain the following scheme:

1
τ
(wj

i − wj−1
i ) +

σ2

2h2 (w
j
i+1 − 2wj

i + wj
i−1) +

(
r − σ2

2

)
1

2h
(wj

i+1 − wj
i−1)− rwj−1

i = 0.

(6.7)
This scheme is implicit in the last term. We compute backwards in time, i.e., wj

i is given
and we determine wj−1

i . This can be done explicitly by combining the terms wj−1
i /τ and

rwj−1
i , which leads to

wj−1
i =

1
1 + rτ

(
a1wj

i+1 + bwj
i + a2wj

i−1

)
, (6.8)
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where a1/2 =
σ2τ

2h2 ∓ σ2τ

4h
± rτ

2h
, b = 1 − σ2τ

h2 .

The identification of the finite-difference scheme with the binomial method is based
on the condition

σ2τ

2h2 =
1
2

.

We have proved in Lemma 6.3 that the explicit Euler scheme with θ = 0 is stable when
γ = τ/h2 ≤ 1/2. Taking into account the diffusion coefficient σ2/2, this inequality
becomes (σ2/2)(τ/h2) ≤ 1/2. Choosing the maximal value for the time step, we obtain
σ2τ/(2h2) = 1/2, which is exactly the aforementioned condition. As a byproduct, b
vanishes and (6.8) can be formulated as

wj−1
i =

a1wj
i+1 + a2wj

i−1
1 + rτ

, a1/2 =
1
2
± r − σ2/2

2σ

√
τ. (6.9)

Recall the price (4.1) of a European call option in the one-period binomial model:

V j−1
i = e−rτ

(
p∗V j

i+1 + (1 − p∗)V j
i−1

)
, where p∗ =

erτ − d
u − d

. (6.10)

The up-state factor u and down-state factor d are chosen as in Section 4.2, namely
u = exp(σ

√
τ) and d = 1/u = exp(−σ

√
τ). In the proof of Theorem 4.4, we have

approximated p∗ according to

p∗ =
σ + (r − σ2/2)

√
τ + O(τ)

2σ
+ O(τ) =

1
2
+

r − σ2/2
2σ

√
τ + O(τ).

Taking into account the definition of a1/2, we can write

p∗ = a1 + O(τ), 1 − p∗ = a2 + O(τ) as τ → 0.

Then, using the expansion exp(−rτ) = 1/(1 + rτ) + O(τ2), formula (6.10) becomes

V j−1
i =

1
1 + rτ

(
a1V j

i+1 + a2V j
i−1

)
+ O(τ).

This corresponds to the finite-difference scheme (6.9) up to the error O(τ). We summa-
rize these computations.

Proposition 6.5. Let σ2τ/h2 = 1, u = exp(σ
√

τ), and d = exp(−σ
√

τ). Then the
finite-difference scheme (6.7) can be interpreted up to the error O(τ) as a binomial method.
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6.4 Pricing American options

In Section 4.3, we have shown how the price of American options can be determined
from the binomial method. The goal of this section is to derive a continuous model for
American options. Recall that American and European call options have the same value
when no dividend is paid (see Section 2.1). Therefore, we consider American options
with continuous dividend payments δ > 0. We proceed similarly as in [16, Chapter 7].

• Free-boundary problems. We claim that there exists a stock price S f such that it
is worth to exercise the put option for S < S f but one should wait if S ≥ S f . First, the
bound S f < K holds. Indeed, otherwise, there exists S ∈ [K, S f ] such that we excercise
the option. But then P = (K − S)+ = 0, and the exercise did not make sense. Second,
consider the portfolio π = P + S, consisting of the put option and the underlying. We
should exercise the option as soon as P = (K − S)+ = K − S, since we may invest
π = (K − S) + S = K until time T. However, if P > (K − S)+, we will not exercise the
option, since the portfolio has the value π > (K − S)+ + S ≥ K before the exercise but
π = (K − S) + S = K after the exercise. This shows that there exists a price S f = S f (t)
which distinguishes the two cases. We call S f (t) a free boundary and summarize:

S ≤ S f (t) : P(S, t) = (K − S)+ = K − S,

S > S f (t) : P(S, t) > (K − S)+.

This behavior is illustrated in Figure 6.3. Similarly, there exists for American call options
(with dividend payments) a number S f = S f (t) > K such that

S ≥ S f (t) : C(S, t) = (S − K)+ = S − K,

S < S f (t) : C(S, t) > (K − S)+.

The free boundary S f complicates the pricing problem, since it needs to be determined
together with the option price. Such problems are called free-boundary problems.

Figure 6.3: Qualitative behavior of the put
price and free boundary S f .

Payoff

American put
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When we know the free boundary S f , we can in principle compute the option value.
Indeed, we know the option price for S ≤ S f (t), namely P(S, t) = K − S, while for
S > S f (t), the put option fulfills the Black-Scholes equation. The Black-Scholes equation
is solved in the interval [S f (t), ∞), and we need to find suitable boundary conditions.
Clearly, P(S, t) → 0 as S → ∞, since the option becomes worthless for very large values
of the underlying. Assuming that the option price depends continuously on S (other-
wise, there are arbitrage opportunities), we have P(S f (t), t) = K − S f (t). Similarly, for
a call option, we have C(0, t) = 0 and C(S f (t), t) = S f (t)− K.

These conditions are not sufficient to determine the option price uniquely. The rea-
son is that we also need to determine the free boundary S f (t), which requires another
condition. By an arbitrage argument, one can justify that also the mapping S 7→ ∂P/∂S
is continuous; see [36, Section 7.4]. Since PS = ∂P/∂S = ∂(K − S)/∂S = −1 for
S < S f (t), we infer that PS(S, t) = −1 also at S = S f (t). In a similar way, we obtain
CS(S, t) = 1 at S = S f (t). We summarize:

Proposition 6.6 (Free-boundary problem for American options). Let δ > 0 be the
continuous dividend yield. The value P(S, t) of an American put option is determined by

Pt +
1
2

σ2S2PSS + (r − δ)PS − rP = 0 for S > S f (t),

P(S, t) = K − S for 0 ≤ S ≤ S f (t),

final condition: P(S, T) = (K − S)+,
boundary conditions: lim

S→∞
P(S, t) = 0, P(S f (t), t) = K − S f (t), PS(S f (t), t) = −1.

The value C(S, t) of an American call option is computed from

Ct +
1
2

σ2S2CSS + (r − δ)CS − rC = 0 for 0 < S < S f (t),

C(S, t) = S − K for S ≥ S f (t),

final condition: C(S, T) = (S − K)+,
boundary conditions: C(0, t) = 0, C(S f (t), t) = S f (t)− K, CS(S f (t), t) = 1.

Remark. The free boundary S f is the optimal point for the writer of the option if she/he is
delta-hedging (i.e. hedging the position by trading the underlying). Therefore, S f is also
called the optimal exercise point. However, it is not the writer but the holder who exercises
the option or not. Thus, the writer is exposed to the exercise strategy of the holder. The
option price is calculated under the assumption that the holder exercises at the optimal point
S f although the holder may exercise at any point. In the worst case (worst for the writer),
the holder exercises at the optimal time, but this has already been priced into the option
premium.
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• Linear complementarity problems. The solution of the free-boundary problem is
challenging since it is unclear how to determine the free boundary. Therefore, we derive
another formulation in which the free boundary is eliminated. This leads to so-called
complementarity problems. In Section 3, we have derived the Black-Scholes equation
by investigating the riskless and self-financing portfolio π = c1(t)B + c2(t)S − V(S, t),
consisting of c1(t) shares of a bond B, c2(t) shares of the underlying S, and one short
American option with value V(S, t). Choosing c2 = VS, we obtain

dπ =

(
c1rB + δSVS − Vt −

1
2

σ2S2VSS

)
dt,

where Vt = ∂V/∂t (see Section 3.4). According to the previous remark, the holder of
the option may exercise in an optimal way or not. If not, the writer may make a better
profit compared to a riskless investment. Therefore, dπ ≥ rπdt. We deduce that

r(c1B + SVS − V)dt = rπdt ≤ dπ =

(
c1rB + δSVS − Vt −

1
2

σ2S2VSS

)
dt

and hence,

Vt +
1
2

σ2S2VSS + (r − δ)SVS − rV ≤ 0, S ∈ (0, ∞), t ∈ (0, T). (6.11)

We have seen in Proposition 6.6 that equality holds for all S > S f (t) (in case of put
options). We claim that we need to put the inequality sign “<” for all S < S f (t). To
simplify the argument, we assume that there are no dividend payments, δ = 0. The
argument for δ > 0 is more complicated and needs some additional bounds for S f (t);
we refer to [21, Theorem 9.4] for details. Now, if δ = 0 and S < S f (t), the put value is
P = K − S. We insert this expression into the Black-Scholes equation:

Pt +
1
2

σ2S2PSS + rSPS − rP = −rS − r(K − S) = −rK < 0.

We infer that if P(S, t) = (K − S)+, we put the less sign “<”, and if P(S, t) > (K − S)+,
we put the equality sign “=” in (6.11). This means that(

P − (K − S)+
)(

Pt +
1
2

σ2S2PSS + rSPS − rP
)
= 0

for all S > 0. A similar argument holds for American call options (with dividend pay-
ments). We summarize these statements.

Proposition 6.7 (Linear complementarity problem for American options). The value
V(S, t) of an American option is the solution of the system

(V − VT(S))
(

Vt +
1
2

σ2S2VSS + (r − δ)SVS − rV
)
= 0,
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−
(

Vt +
1
2

σ2S2VSS + (r − δ)SVS − rV
)
≥ 0, V − VT(S) ≥ 0,

together with the final and boundary conditions

put: V(0, t) = K, lim
S→∞

V(S, t) = 0, VT(S) = (K − S)+,

call: V(0, t) = 0, lim
S→∞

(V(S, t)− S) = 0, VT(S) = (S − K)+.

Remark. (Obstacle problems and variational inequality.) Free-boundary problems are related
to obstacle problems, where the solution u to a partial differential equation satisfies the con-
straint u ≥ f . The function f can be interpreted as an obstacle, and the solution u lies above
this obstacle. For instance, let us look for a solution u : [−1, 1] → R to the linear complemen-
tarity problem

−u′′ ≥ 0, u − f ≥ 0, u′′(u − f ) = 0 in (−1, 1) (6.12)

with the boundary conditions u(±1) = 0. Generally, we cannot expect that u is twice dif-
ferentiable, so we need to interpret −u′′ ≥ 0 in the sense of distributions or in the weak
sense. For this, consider the Sobolev space H1(−1, 1), consisting of square integrable func-
tions whose weak derivative is square integrable, and choose a test function v − f ∈ K,
where

v ∈ K =
{

v ∈ H1(−1, 1) : v ≥ f in (−1, 1), v(±1) = 0
}

.

This means that we multiply −u′′ ≥ 0 by v − f ≥ 0, integrate over (−1, 1), add u′′(u − f ) =
0, and integrate by parts:

0 ≤ −
∫ 1

−1
u′′(v − f )dx +

∫ 1

−1
u′′(u − f )dx = −

∫ 1

−1
u′′(v − u)dx =

∫ 1

−1
u′(v − u)′dx.

Thus, we are looking for a solution u ∈ K to the variational inequality∫ 1

−1
u′(v − u)′dx ≥ 0 for all v ∈ K.

One can show that conversely, if u ∈ C2(−1, 1)∩C0([−1, 1]) solves the variational inequality,
then also the linear complementarity problem (6.12).

• Numerical solution. We wish to solve the linear complementarity problem in
Proposition 6.7 numerically using finite differences. For this, we first transform the
problem using, as in Section 3, the variables x = ln(S/K) and τ = σ2(T − t)/2. Then
the transformed option price

u(x, τ) =
1
K

exp
(

1
2
(kδ − 1)x +

1
4
(kδ − 1)2τ + k0τ

)
V(S, t),

where kδ = 2(r − δ)/σ2 for δ ≥ 0, solves

(uτ − uxx)(u − f ) = 0, uτ − uxx ≥ 0, u − f ≥ 0 (6.13)
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for x ∈ R and t ∈ (0, T). The function

f (x, τ) = exp
(

1
2
(kδ − 1)x +

1
4
(kδ − 1)2τ + k0τ

)
VT(Kex)

K
(6.14)

is the transformed constraint. The initial and boundary conditions read as

u(x, 0) = f (x, 0), x ∈ R,
put: lim

x→−∞
(u(x, τ)− f (x, τ)) = 0, lim

x→∞
u(x, τ) = 0,

call: lim
x→−∞

u(x, τ) = 0, lim
x→∞

(u(x, τ)− f (x, τ)) = 0.

For the numerical discretization, we restrict ourselves to the interval [−L, L] instead
of the whole line R and require that the boundary conditions are satisfied at x = ±L
instead at x → ±∞. Let xi = −L + ih for i = 0, . . . , n and tj = j∆t for j = 0, . . . , m with
h = 2L/n, ∆t = T/m be the grid points. We approximate uτ − uxx ≥ 0 as in Section 6.1
by the θ-method, i.e., the approximations wj

i of u(xi, tj) solve

1
∆t

(wj+1
i − wj

i)−
1 − θ

h2 (wj
i+1 − 2wj

i + wj
i−1)−

θ

h2 (w
j+1
i+1 − 2wj+1

i + wj+1
i−1) ≥ 0.

Setting γ = ∆t/h2, we can formulate this inequality more compactly in matrix form:

Awj+1 ≥ Bwj + dj,

where
A = diag(−γθ, 1 + 2γθ,−γθ),
B = diag(γ(1 − θ), 1 − 2γ(1 − θ), γ(1 − θ)),

(6.15)

and the vector dj contains the boundary conditions:

dj = γ


(1 − θ)u(−L, tj) + θu(−L, tj+1)

0
...
0

(1 − θ)u(L, tj) + θu(L, tj+1)

 . (6.16)

Let bj = Bwj + dj and f j = ( f (x1, tj), . . . , f (xn−1, tj))
⊤. Then we need to solve the

following discrete linear complementarity problem

(Awj+1 − bj) · (wj+1 − f j+1) = 0, Awj+1 − bj ≥ 0, wj+1 − f j+1 ≥ 0. (6.17)

In the following, we omit the indices j and j + 1. For later use, we remark that the
complementarity problem can be written as a minimum problem.
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Lemma 6.8. The problem

(Aw − b) · (w − f ) = 0, Aw − b ≥ 0, w − f ≥ 0 (6.18)

is equivalent to min{Aw − b, w − f } = 0.

Proof. Let min{Aw − b, w − f }i = 0 for all i. This implies that (Aw − b)i ≥ 0 and
(w − f )i ≥ 0 for all i. Moreover, (Aw − b)i = 0 or (w − f )i = 0, which gives (Aw − b) ·
(w − f ) = 0.

Conversely, let (6.18) hold. Fix some index i. Then either (Aw − b)i > 0 or (Aw −
b)i = 0. In the former case, by the first equation in (6.18), we must have (w − f )i = 0
and hence, min{Aw − b, w − f }i = 0. In the latter case, min{Aw − b, w − f }i = 0. □

We infer that for given i ∈ {1, . . . , n − 1}, either wi = fi or (Aw)i = bi. Assume for
the moment that (Aw)i = bi for all i. Then, writing this equation as

aiiwi = −∑
j<i

aijwj − ∑
j>i

aijwj + bi,

we may use the following iteration (called the Gauß-Seidel iteration):

w(k+1)
i =

1
aii

(
− ∑

j<i
aijw

(k+1)
j − ∑

j>i
aijw

(k)
j + bi

)
, k ∈ N,

where w(0)
i is given. This iteration is motivated from the fact that at step i, we have al-

ready calculated the iterations w(k+1)
1 , . . . , w(k+1)

i−1 , thus it makes sense to use them when

computing w(k+1)
i . A more compact formulation is given as follows: We decompose

A = D − L − U, where D = diag(a11, . . . , an−1,n−1), −L is the lower triangular matrix,
and −U is the upper triangular matrix. Then

w(k+1) = D−1(Lw(k+1) + Uw(k) + b
)
.

This idea can be refined by employing the SOR method (SOR = successive overrelax-
ation): Compute for i = 1, . . . , n − 1,

z(k)i = a−1
ii
(

Lw(k+1) + Uw(k) + b
)

i,

w(k+1)
i = w(k)

i + ω(z(k)i − w(k)
i ).

We recover the Gauß-Seidel iteration when ω = 1. When 0 < ω < 1, the new iteration is
a linear combination between the old and new Gauß-Seidel iteration. This corresponds
to a damped iteration. The idea of the SOR method is to choose ω > 1 and thus to
“overshoot”. This works well for 1 < ω < 2 in the sense that the iterations converge to
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a solution to Aw = f and that for an optimally chosen ω, less iteration steps are needed
than for the Gauß-Seidel method.

Generally, we do not have the equality (Aw)i = fi but we can exploit the property
min{Aw − b, w − f } = 0. Indeed, decomposing again A = D − L − U, we obtain

0 = min{Aw − b, w − f } = min
{

Dw − (Lw + Uw + b), w − f
}

= min
{

w − D−1(Lw + Uw + b), w − f
}
= w − max

{
D−1(Lw + Uw + b), f

}
.

The third equality is possible, since we only distinguish between positivity and zero,
so we can multiply the first argument of the minimum componentwise by the matrix
elements (D−1)ii = a−1

ii . This motivates the projection SOR method: Compute for i =
1, . . . , n − 1,

z(k)i = a−1
ii
(

Lw(k+1) + Uw(k) + b
)

i,

w(k+1)
i = max

{
w(k)

i + ω(z(k)i − w(k)
i ), fi

}
.

(6.19)

Theorem 6.9 (Cryer). Let A ∈(n−1)×(n−1) be a symmetric, positive definite matrix and let
b ∈ Rn−1, f ∈ Rn−1, and 1 < ω < 2. Let w(k) for k ∈ N be a solution to (6.19). Then

lim
k→∞

w(k)
i = wi, i = 1, . . . , n − 1,

where w is a the unique solution to the linear complementarity problem (6.18).

Proof. As the proof is rather technical, we give only a sketch. The idea is first to show
that the problem (6.18) is equivalent to the minimization problem: Find w ∈ M such
that

J(w) = min
v∈M

J(v), where J(v) =
1
2

v⊤Av − b⊤v

and M = {v ∈ Rn−1 : vi ≥ fi for all i}; see [16, Lemma 7.6] for a proof. Second, define
the sequence

w(k,i) =
(
w(k+1)

1 , . . . , w(k+1)
i , w(k)

i+1, . . . , w(k)
n−1

)⊤
and show that Jj = J(w(k,i)) with j = (n − 1)(k − 1) + i is decreasing (for this step, we
need that ω < 2). Since A is symmetric and positive definite, (Jj)j∈N is bounded from
below. Therefore, (Jj)j∈N is convergent. Third, using the convergence of (Jj)j∈N, show

that (w(k)
i )k∈N is convergent to some wi. Finally, the limit k → ∞ in (6.19) gives

zi = lim
k→∞

z(k)i = a−1
ii (Lw + Uw + b)i = a−1

ii (Dw − Aw + b)i = wi − a−1
ii (Aw − b)i,

wi = max
{

wi + ω(zi − wi), fi
}
= max

{
wi − ωa−1

ii (Aw − b)i, fi
}

.
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This is equivalent to
min

{
(Aw − b)i, wi − fi

}
= 0

and thus to the linear complementarity problem (6.18). □

The algorithm for the computation of the price of an American option reads as fol-
lows. Let wj−1

i be given from the previous time step. For all time steps j = 1, . . . , m,

▶ Define f j
i = f (xi, tj) according to (6.14).

▶ Compute the boundary values w0 = f j
0, wn = f j

n.
▶ Define bi = (Bw + d)i according to (6.15) and (6.16).

▶ Compute zj
i and wj

i according to

zj
i =

1
1 + 2γθ

(
γθ(wj

i+1 + wj
i−1) + bi

)
,

wj
i = max

{
wj

i + ω(zj
i − wj

i), f j
i
}

until convergence is reached.
▶ Transform back to the original variables.
Figure 6.4 shows the prices of an American put option in comparison with a Euro-

pean put with the same parameters. It is clear that the price for the American option is
larger than the corresponding one for the European option, since the American option
allows for early exercise, thus giving more rights. The free boundary can be estimated
from the numerical values yielding S f ≈ 67.

Figure 6.4: Comparison of an American
and European put option price with exer-
cise price K = 100, 18 months to expira-
tion, interest rate r = 0.05, and volatility
σ = 0.3.
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Remark. So far, we have not discussed the convergence of the solution to the discrete linear
complementarity problem (6.18) towards the solution to the continuous complementarity
problem (6.13). The reason is that solutions to such problems generally do not possess suf-
ficient regularity to estimate the truncation error by means of a Taylor expansion, as done
in Section 6.1. A way out is the discretization of the complementarity problem using finite
elements. Then the convergence can be proved by means of Sobolev space techniques; see,
for instance, [15, Chapter 8].
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6.5 Application: Pricing swing options in electricity markets

Electricity prices are subject to the principle of supply and demand. The risk of very
high electricity prices may be hedged by derivatives. One exampe are so-called swing
options which are supply contracts for power. They give the holder the right to exercise
a certain right multiple times over a specified period but only one right per time inter-
val (like once per day). The right might be to receive the payoff of a call option or a
forward contract which supplies the holder with a certain amount of energy to a fixed
predetermined price. In this section, we explain the spot price dynamics of the elec-
tricity price and present a free-boundary problem to determine the swing option price.
Interestingly, swing options can be interpreted as a portfolio of American options with
a waiting period between two exercises and consequently, they can be mathematically
formulated as a sequence of free-boundary problems, one for each right to exercise. We
proceed as in [7].

We assume that the electricity price St is given by the stochastic process

St = exp
(

f (t) + X̃t + Yt
)
,

where f (t) is a deterministic function modeling the seasonality, X̃t is the zero mean-
reverting process

dX̃t = −αX̃tdt + σdWt,

where α > 0, σ > 0, and Wt is a Wiener process. The process (X̃t)t≥0 describes the fluc-
tuations in the energy demand. Combining the seasonality and stochastic component,
we set Xt = f (t) + X̃t. Finally, (Yt)t≥0 is another zero mean-reverting process, given by

dYt = −βYtdt

for some β > 0.
Remark. Often, Yt includes jump components to incorporate price peaks, dYt = −βYtdt +

JtdNt, where Jt are the jump sizes and (Nt)t≥0 is a Poisson process. Here, we only consider
models without jumps. Jump-diffusion models lead to partial integro-differential equations
(PIDE), which are nonlocal partial differential equations. The following considerations are
still valid, we just have to include the nonlocal integral in the differential operator L defined
below. For details, we refer to [6].

With these definitions, we can write St = MtNt, where Mt = exp(Xt) and Nt =
exp(Yt). The spot price dynamics is then defined by the following set of stochastic
differential equations.

Lemma 6.10. The process (St)t≥0 is an Itô process satisfying

dSt = MtdNt + NtdMt, where
dMt = α(µ(t)− ln Mt)Mtdt + σMtdWt, dNt = −βNt ln Ntdt,

and µ(t) = f (t) + (1
2 σ2 + f ′(t))/α.
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Proof. The result follows from Itô’s formula (Theorem 2.12) and Itô’s product rule (Lem-
ma 2.14). Indeed, applying Itô’s formula to Mt = F(X̃t, t) := exp( f (t) + X̃t) and recall-
ing that X̃t = Xt − f (t), we find that

dMt =

(
∂F
∂t

− αX̃t
∂F
∂X

+
1
2

σ2 ∂2F
∂X2

)
dt + σ

∂F
∂X

dWt

=

(
f ′(t)− α( Xt︸︷︷︸

=ln Mt

− f (t)) +
1
2

σ2
)

Mtdt + σMtdWt

=

(
f ′(t) + α( f (t)− ln Mt) +

1
2

σ2
)

Mtdt + σMtdWt,

dNt = exp(Yt)dYt = − exp(Yt)βYtdt = −βNt ln Ntdt.

By definition of µ(t), this finishes the proof. □

Next, let Vt = V(Mt, Nt, t) be a function of the stochastic factors Mt and Nt. The
function V is considered here as a generic function, but we may interpret it as the value
of an option. The goal is to derive a partial differential equation for V(M, N, T) with
the variables M, N, and t using a dynamic hedging argument. Since we cannot directly
hedge the risk, we proceed as in Section 3.6.

Proposition 6.11. Neglecting the market price of risk, the function V(M, N, T) solves the
equation

Vt +
1
2

σ2M2VMM + α(µ(t)− ln M)MVM − βN ln NVN − rV = 0

for M, N ∈ (0, ∞) and t ∈ (0, T). The final condition is given by V(M, N, T) = VT(MN).

Proof. We build the riskfree and self-financing portfolio π = V − ∆Ṽ by buying one
asset V with maturity T1 and selling ∆ shares of the asset Ṽ with maturity T2. Applying
Itô’s formula to V gives

dV =

(
Vt + α(µ(t)− ln M)MVM − βN ln NVN +

1
2

σ2M2VMM

)
dt + σMVMdW,

and the analogous equation for Ṽ. Since the portfolio is assumed to be self-financing,
we infer that

dπ = dV − ∆dṼ

=

(
Vt + α(µ(t)− ln M)MVM − βN ln NVN +

1
2

σ2M2VMM

)
dt
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− ∆
(

Ṽt + α(µ(t)− ln M)MṼM − βN ln NṼN +
1
2

σ2M2ṼMM

)
dt

+ σM(VM − ∆ṼM)dW.

We eliminate the stochastic component by setting ∆ = VM/ṼM. With this choice, the
terms with the factor VM cancel, and we end up with

dπ =

(
Vt − βN ln NVN +

1
2

σ2M2VMM

)
dt

− ∆
(

Ṽt − βN ln NṼN +
1
2

σ2M2ṼMM

)
dt.

Since the portfolio is riskless, we have dπ = rπdt = r(V − ∆Ṽ)dt, and we find that

1
VM

(
Vt − βN ln NVN +

1
2

σ2M2VMM − rV
)

=
1

ṼM

(
Ṽt − βN ln NṼN +

1
2

σ2M2ṼMM − rṼ
)

.

The left-hand side only depends on V, while the right-hand side only depends on Ṽ.
Since we can choose any assets V and Ṽ, both sides must be independent of the contract
type:

γ0(M, N, t) =
1

VM

(
Vt − βN ln NVN +

1
2

σ2M2VMM − rV
)

.

We set γ = α(µ(t)− ln M)M + γ0. Then

Vt +
1
2

σ2M2VMM − βN ln NVN − rV = −α(µ(t)− ln M)MVM + γVM.

Similarly as in the derivation of the Heston-Black-Scholes model (see Theorem 3.8), the
function γ is not specified. It may be interpreted as the market price of risk, and we set
it to zero, γ = 0. □

Swing options can be modeled as financial products with multiple exercises like
for American options. However, after one exercise one has to wait for the constant
refracting period δ > 0. This period avoids the exercise of all rights at once, which
would be optimal when δ = 0. In other words, if δ = 0, the pricing of swing option can
be reduced to the valuation of multiple American options. We have seen that American
options can be modeled by linear complementarity problems; see Section 6.4. We will
formulate the swing option problem as a number of such problems. For this, we reverse
the time by introducing τ = T − t and u(M, N, τ) = V(M, N, T − τ). Furthermore, we
define the differential operator

L(V) = Vt +
1
2

σ2M2VMM + α(µ(t)− ln M)MVM − βN ln NVN − rV.
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Let p ≥ 1 denote the number of exercise rights. We start from V0(M, N, t) = 0 for t ∈
(0, δ). We can write the model as p complementarity problems for the price up(M, N, τ) =
Vp(M, N, T − τ) of a swing option with p exercise rights:

− L(up)(up − gp) = 0, −L(up) ≥ 0, up ≥ gp,

up(0) = gp(0) in R2
+,

where the reward obstacle function gp is given by (recall that S = MN)

gp(M, N, τ) =

{
VT(S, T − τ) + wτ,p−1(M, N, δ) for τ ∈ [δ, T],
VT(S, T − τ) for τ ∈ [0, δ).

The function wτ,p−1 is the value of the swing option with one exercise right less, and it
is determined for p = 1 by wτ,0(M, N, t) = 0 for t ∈ [0, δ] and for p ≥ 2 by

L(wτ,p−1) = 0 for t ∈ (0, δ), wτ,p−1(0) = up−1(τ − δ) in R2
+.
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