Entropy dissipation methods for diffusion equations

Ansgar Jüngel

Vienna University of Technology, Austria

www.jungel.at.vu

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Contents

Introduction

- 3 Fokker-Planck equations
 - Bakry-Emery approach
 - Extensions
 - Systematic integration by parts
- 5 Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
 - Uniqueness of weak solutions
- 7 Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Literature

Main references

- A. Jüngel. Entropy dissipation methods for nonlinear partial differential equations. Lecture Notes, Bielefeld, 2012.
- A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. *Nonlinearity* 28 (2015), 1963-2001.
- D. Matthes. Entropy methods and related functional inequalities. Lecture Notes, 2008.
- A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. *Commun. PDEs* 26 (2001), 43-100.
- J.A. Carrillo, A. Jüngel, P. Markowich, G. Toscani, and A. Unterreiter. Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. *Monats. Math.* 133 (2001), 1-82.
- L. Evans. Entropy & partial differential equations. Lect. Notes, 2001.

What mathematics skills are needed?

Entropy methods are intradisciplinary!

- Partial differential equations: Fokker-Planck equations, parabolic equations, Sobolev spaces
- Functional analysis: Lemma of Lax-Milgram, fixed-point theorems, compactness
- Stochastics: Markov processes, Markov chain theory
- Numerics: Finite-difference methods, finite-volume methods
- Differential geometry: Geodesic convexity of entropy (not convered in these lectures)

Entropy in physics

- Entropy = measure of molecular disorder or energy dispersal
- Introduced by Clausius (1865) in thermodynamics (measure of irreversibility)
- Statistical definition by Boltzmann, Gibbs, Maxwell (1870s)

 $S = -k_B \sum_i p_i \log p_i, \quad p_i$: probability of *i*th microstate

- Von Neumann (1927): Quantum mechanical entropy
- Bekenstein, Hawking (1970s): Black hole entropy (to satisfy second law of thermodynamics), entropy \sim radius²: description of volume encoded on its boundary

Ansgar Jüngel (TU Wien)

Entropy in information theory

- Shannon 1948: Concept of information entropy (measure of information density)
- Information content: $I(p) = -\log_2 p$, p: probability of event
- Rationale: I(1) = 0: no information content of sure events, $I(p_1p_2) = I(p_1) + I(p_2)$: information of independent events additive
- Entropy = expected information content

$$S = \sum_{i \in \Sigma} p_i I(p_i) = -\sum_{i \in \Sigma} p_i \log_2 p_i$$

• Applications: Redundancy in language structure, data compression (entropy coding, idea: minimize entropy)

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Entropy in mathematics

- Mathematical entropy is nonincreasing, i.e. negative physical entropy
- Hyperbolic conservation laws (Lax 1971):

$$\partial_t u + \partial_x f(u) = 0, \quad u \in \mathbb{R}^n$$

h is an entropy if $\exists q : q'(u) = f'(u)h'(u)$ and entropy inequality: $\partial_t h(u) + \partial_x q(u) \leq 0$

- Kinetic equations: entropy $h(f) = \int_{\mathbb{R}^d} f \log f \, dx$ gives a priori estimates for Boltzmann equation (DiPerna/Lions 1989), large-time behavior of solutions (Desvillettes/Villani 1990, Mouhot 2006)
- Large-time behavior for stochastic processes (Bakry/Emery 1985) and parabolic equations (Toscani 1997)
- Regularity for parabolic equations (Nash 1958)
- Relations to gradient flows in metric spaces (Ambrosio, Otto, Savaré...), functional inequalities (Gross, Arnold et al., Dolbeault...)

Entropy in literature

Entropy and partial differential equations

Generally: Entropy $S(E, X_1, ..., X_n)$ is function of internal energy E and state variables X_i (e.g. density, volume) such that

S is concave, $\frac{\partial S}{\partial E} > 0$, *S* homogeneous of order one. Def. temperature $\frac{1}{\theta} = \frac{\partial S}{\partial E}$, chem. potential $\mu = -\theta \frac{\partial S}{\partial \rho}$ (ρ : mass density) • Euler equations in thermodynamics:

$$\begin{array}{l} \partial_t \rho + \operatorname{div}(\rho v) = 0, \\ \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v - T) = 0, \\ \partial_t(\rho e) + \operatorname{div}(\rho v e + q) = T : \nabla v \end{array}$$

where v: velocity, T: stress tensor, e: internal energy, q: heat flux

• Energy balance:

$$\frac{d}{dt}\int_{\mathbb{R}^d}\left(\frac{\rho}{2}|v|^2+\rho e\right)dx=0$$

• Monoatomic ideal gas: energy density $\rho e = \frac{3}{2}\rho\theta$, entropy density $\rho s = -\rho \log(\rho/\theta^{3/2}) \Rightarrow \frac{\partial(\rho s)}{\partial(\rho e)} = \frac{1}{\theta} > 0$

Aims of lecture course

- To introduce into several entropy methods for partial differential equations (PDEs)
- To use entropy methods to prove the qualitative behavior of solutions to PDEs (large-time asymptotics, existence analysis, L[∞] bounds)
- To prove functional inequalities (convex Sobolev inequalities)
- To relate entropy methods to physical principles and the theory of stochastic processes
- To introduce into the theory of cross-diffusion systems

Overview

- Introduction
- 2 Entropies
- Fokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- O Uniqueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Example: Heat equation

 $\partial_t u = \Delta u, \quad u(0) = u_0 \ge 0 \quad \text{in } \mathbb{T}^d \text{ (torus)}, \ t > 0$

• Steady state:
$$u_{\infty} = \int_{\mathbb{T}^d} u_0 dx = \int_{\mathbb{T}^d} u(t) dx$$
, meas $(\mathbb{T}^d) = 1$

- Question: $u(t)
 ightarrow u_\infty$ as $t
 ightarrow \infty$ in which sense and how fast?
- Define the functional $H_2[u] = \int_{\mathbb{T}^d} (u u_\infty)^2 dx$
- Compute time derivative:
 entropy production

$$\frac{dH_2}{dt}[u] = 2\int_{\mathbb{T}^d} (u - u_\infty)\partial_t u dx = -2 \quad \int_{\mathbb{T}^d} |\nabla u|^2 dx \quad \leq 0$$

- Poincaré inequality: $H_2[u] = \|u u_\infty\|_{L^2}^2 \le C_P \|\nabla u\|_{L^2}^2$
- Combining expressions:

$$\frac{dH_2}{dt} = -2\|\nabla u\|_{L^2}^2 \le -2C_P^{-1}H_2[u]$$

• By Gronwall's inequality, $\|u(t) - u_{\infty}\|_{L^{2}}^{2} \leq e^{-2C_{P}^{-1}t} \|u_{0} - u_{\infty}\|_{L^{2}}^{2}$

Example: Heat equation

 $\partial_t u = \Delta u, \quad u(0) = u_0 \ge 0 \quad \text{in } \mathbb{T}^d \text{ (torus)}, \ t > 0$

- Conclusion: $\|u(t) u_{\infty}\|_{L^2} \le e^{-C_P^{-1}t} \|u_0 u_{\infty}\|_{L^2}$
- Same result with spectral theory: $C_P^{-1} =$ first eigenvalue of $-\Delta$
- Since spectral analysis gives the same result: What is the benefit?

First answer: Different "distances" admissible

• Entropy functional $H_1[u] = \int_{\mathbb{T}^d} u \log(u/u_\infty) dx \ge 0$

$$\frac{dH_1}{dt}[u] = \int_{\mathbb{T}^d} \left(\log \frac{u}{u_{\infty}} + 1 \right) \partial_t u dx = -4 \int_{\mathbb{T}^d} |\nabla \sqrt{u}|^2 dx$$

• Logarithmic Sobolev ineq.: $\int_{\mathbb{T}^d} u \log(u/u_\infty) dx \le C_L \int_{\mathbb{T}^d} |\nabla \sqrt{u}|^2 dx$ • By Gronwall inequality,

$$\frac{dH_1}{dt}[u] \le -4C_L^{-1}H_1[u] \quad \Rightarrow \quad H_1[u(t)] \le e^{-4C_L^{-1}t}H_1[u_0], \quad t \ge 0$$

Example: Heat equation

Second answer: Method applicable to nonlinear equations

- Quantum diffusion equation: $\partial_t u = -\operatorname{div}(u \nabla \frac{\Delta \sqrt{u}}{\sqrt{u}})$ in \mathbb{T}^d
- Occurs in quantum semiconductor modeling, u: electron density
- Entropy functional: $H_1[u] = \int_{\mathbb{T}^d} u \log(u/u_\infty) dx$
- Entropy production:

$$\begin{aligned} \frac{dH_1}{dt}[u] &= -\int_{\mathbb{T}^d} \operatorname{div}\left(u\nabla\frac{\Delta\sqrt{u}}{\sqrt{u}}\right) \log u dx = -\int_{\mathbb{T}^d} \frac{\Delta\sqrt{u}}{\sqrt{u}} \Delta u dx \\ &\leq -\kappa \int_{\mathbb{T}^d} (\Delta\sqrt{u})^2 dx \leq -\frac{\kappa}{C_P} \int_{\mathbb{T}^d} |\nabla\sqrt{u}|^2 dx \leq -\frac{\kappa}{C_P C_L} H_1[u] \end{aligned}$$

• Exponential decay of u(t) to u_{∞} with explicit rate:

$$H_1[u(t)] \leq e^{-\kappa t/(C_P C_L)} H_1[u_0], \quad t \geq 0$$

Strategy

$$\partial_t u + A(u) = 0, \quad t > 0, \quad u(0) = u_0$$

Strategy:

- Given an entropy H[u], compute entropy production: $-dH/dt = \langle A(u), H'[u] \rangle$
- Find relation between entropy and entropy production: $H[u] \leq C \langle A(u), H'[u] \rangle \Rightarrow dH/dt \leq -CH$
- By Gronwall's inequality, conclude exponential decay: $H[u(t)] \leq e^{-Ct}H[u_0]$

Entropy methods can do much more:

- Self-similar asymptotics
- A priori estimates and global-in-time existence analysis
- Proof of functional inequalities (like logarithmic Sobolev ineq.)
- Positivity of solutions and L^{∞} bounds (no maximum principle!)
- Uniqueness of weak solutions
- Stability of numerical discretizations (structure-preservation)

Entropies

Definitions

Setting:

- $A: D(A) \subset X \to X'$ operator, consider $\partial_t u + A(u) = 0$, t > 0, $u(0) = u_0$
- Steady state: $u_\infty \in D(A)$ solves $A(u_\infty) = 0$

Definitions:

- Lyapunov functional: $H: D(A) \to \mathbb{R}$ such that $\frac{dH}{dt}[u(t)] \leq 0, t \geq 0$
- Entropy: H : D(A) → ℝ convex Lyapunov functional such that
 ∃ Φ ∈ C⁰(ℝ): Φ(0) = 0 and
 - $d(u, u_{\infty}) \leq \Phi(H[u] H[u_{\infty}])$ for $u \in D(A)$ and some metric d.
- Entropy production: $EP[u(t)] = -\frac{dH}{dt}[u(t)]$
- Entropy of *k*th order: contains *k*th-order partial derivatives No clear definition of (mathematical) entropy in the literature!
- Examples: F_1 : Fisher information

$$H_{\alpha}[u] = \int_{\Omega} (u^{lpha} - u^{lpha}_{\infty}) dx, \quad F_{\alpha}[u] = \int_{\Omega} |\nabla u^{lpha/2}|^2 dx, \quad lpha \ge 1$$

Entropies

Heat equation revisited

 $\partial_t u = \Delta u, \quad u(0) = u_0 \ge 0 \quad \text{in } \mathbb{T}^d \text{ (torus)}, \ t > 0$

Claim: $H_1[u] = \int_{\mathbb{T}^d} u \log(u/u_\infty) dx$ is an *entropy* for the heat equation Proof:

- Lyapunov functional: $\frac{dH_1}{dt}[u] = -\int_{\mathbb{T}^d} |\nabla \sqrt{u}|^2 dx \leq 0$
- Convexity: $u \mapsto H_1[u]$ is convex
- Csiszár-Kullback inequality for $\Phi(s) = C_{\phi}\sqrt{s}$, $d(f,g) = ||f g||_{L^1}$: $d(u, u_{\infty}) \leq C_{\phi}(H_1[u] - H_1[u_{\infty}])^{1/2}$ using $H_1[u_{\infty}] = 0$

Lemma (Csiszár-Kullback-Pinsker)

Let $\phi \in C^2(\mathbb{R})$ be strictly convex, $\phi(1) = 0$, and $\int_{\mathbb{T}^d} f dx = \int_{\mathbb{T}^d} g dx = 1$. Then, for some $C_{\phi} > 0$, $\|f - g\|_{L^1}^2 \leq C_{\phi} \int_{\mathbb{T}^d} \phi\left(\frac{f}{g}\right) g dx$

Proof: Taylor expansion of ϕ around 1

Overview

- Introduction
- 2 Entropies
- Sokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- Oniqueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Linear Fokker-Planck equation

$$\partial_t u = \operatorname{div}(\nabla u + u \nabla V) \quad \text{in } \mathbb{R}^d, \ t > 0, \quad u(u) = u_0 \ge 0$$

- Assumptions: $\int_{\mathbb{R}^d} u_0 dx = 1$, $\lim_{|x| \to \infty} V(x) = \infty$ (confinement)
- Steady state: $0 = \nabla u_{\infty} + u_{\infty} \nabla V = u_{\infty} \nabla (\log u_{\infty} + V) \Rightarrow u_{\infty} = ce^{-V}$, where c is such that $\int_{\mathbb{R}^d} u_{\infty} dx = 1$

• Entropy: Let $\phi \in C^4$ be convex $H_{\phi}[u] = \int_{\mathbb{R}^d} \phi\left(\frac{u}{u_{\infty}}\right) u_{\infty} dx - \phi\left(\int_{\mathbb{R}^d} u dx\right)$

Theorem (Bakry/Emery '85, Arnold/Markowich/Toscani/Unterreiter '01) Let $u_0 \log u_0 \in L^1(\mathbb{R}^d)$, $\nabla^2 V \ge \lambda > 0$, $1/\phi''$ concave. Then $\|u(t) - u_\infty\|_{L^1} \le e^{-\lambda t} C_{\phi}^{1/2} H_{\phi}[u_0]^{1/2}$, t > 0

Example **1**: $\phi(s) = s(\log s - 1) + 1$, $\phi(s) = s^{\alpha} - 1 - \alpha(s - 1)$ $(1 < \alpha \le 2)$ Example **2**: $\phi(s) = s \log s$, $V(x) = \frac{1}{2}|x|^2$ then $\lambda = 1$ (optimal!)

Proof: First time derivative

$$\partial_t u = \operatorname{div}(\nabla u + u \nabla V) = \operatorname{div}\left(u_{\infty} \nabla \frac{u}{u_{\infty}}\right), \quad u_{\infty} = c e^{-V}$$

First time derivative: $H_{\phi}[u] = \int_{\mathbb{R}^d} \phi(u/u_{\infty}) u_{\infty} dx - \phi(1)$, set $\rho := \frac{u}{u_{\infty}}$

$$\frac{dH_{\phi}}{dt} = \int_{\mathbb{R}^d} \phi'(\rho) \partial_t u dx = -\int_{\mathbb{R}^d} \phi''(\rho) |\nabla \rho|^2 u_{\infty} dx \leq 0$$

Second time derivative: (key idea!)

$$\frac{d^2 H_{\phi}}{dt^2} [u] = -\int_{\mathbb{R}^d} \left(\phi^{\prime\prime\prime}(\rho) \partial_t u |\nabla \rho|^2 + 2\phi^{\prime\prime}(\rho) \nabla \rho \cdot \nabla \partial_t \rho u_{\infty} \right) dx = -I_1 - I_2$$

First integral:

$$I_{1} = -\int_{\mathbb{R}^{d}} \nabla (\phi'''(\rho) |\nabla \rho|^{2}) \cdot (u_{\infty} \nabla \rho) dx$$
$$= -\int_{\mathbb{R}^{d}} (\phi''''(\rho) |\nabla \rho|^{4} + 2\phi'''(\rho) \nabla \rho \nabla^{2} \rho \nabla \rho) u_{\infty} dx$$

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Proof: Second time derivative

$$\frac{d^2 H_{\phi}}{dt^2}[u] = -I_1 - I_2, \ I_1 = -\int_{\mathbb{R}^d} \left(\phi^{\prime\prime\prime\prime}(\rho) |\nabla \rho|^4 + 2\phi^{\prime\prime\prime}(\rho) \nabla \rho \nabla^2 \rho \nabla \rho\right) u_{\infty} dx$$

Second integral: compute $\nabla \partial_t \rho = \nabla \Delta \rho - \nabla^2 \rho \cdot \nabla V - \nabla^2 V \nabla \rho$, $\rho = \frac{u}{u_{\infty}}$

$$\begin{split} h_{2} &= 2 \int_{\mathbb{R}^{d}} \phi''(\rho) \nabla \rho \cdot \nabla \partial_{t} \rho u_{\infty} dx \\ &= 2 \int_{\mathbb{R}^{d}} \phi''(\rho) \left(\nabla \rho \cdot \nabla \Delta \rho - \nabla \rho \nabla^{2} \rho \nabla V - \overleftarrow{\nabla \rho \nabla^{2} V \nabla \rho} \right) dx \\ &\leq 2 \int_{\mathbb{R}^{d}} \phi''(\rho) \left(\operatorname{div}(\nabla^{2} \rho \nabla \rho) - |\nabla^{2} \rho|^{2} - \nabla \rho \nabla^{2} \rho \nabla V - \lambda |\nabla \rho|^{2} \right) u_{\infty} dx \\ &= 2 \int_{\mathbb{R}^{d}} (-\phi''' \nabla \rho \nabla^{2} \rho \nabla \rho u_{\infty} - \phi'' \nabla \rho \nabla^{2} \rho \overleftarrow{(\nabla u_{\infty} + u_{\infty} \nabla V)} - \phi'' |\nabla^{2} \rho|^{2} u_{\infty} dx \\ &- 2\lambda \int_{\mathbb{R}^{d}} \phi''(\rho) |\nabla \rho|^{2} u_{\infty} dx, \quad \text{note:} \quad \int_{\mathbb{R}^{d}} \phi''(\rho) |\nabla \rho|^{2} u_{\infty} dx = \frac{dH_{\phi}}{dt} \end{split}$$

Proof: Second time derivative

Add both integrals \textit{I}_1 and \textit{I}_2 and use ϕ convex, $1/\phi''$ concave:

$$\frac{d^{2}H_{\phi}}{dt^{2}}[u] = \int_{\mathbb{R}^{d}} \left(\phi^{\prime\prime\prime\prime\prime} |\nabla\rho|^{4} + 4\phi^{\prime\prime\prime} \nabla\rho\nabla^{2}\rho\nabla\rho + 2\phi^{\prime\prime} |\nabla^{2}\rho|^{2}\right) u_{\infty} dx - 2\lambda \frac{dH_{\phi}}{dt}$$

$$= \int_{\mathbb{R}^{d}} \left(2 \frac{\phi^{\prime\prime}}{|\nabla^{2}\rho + \frac{\phi^{\prime\prime\prime}}{\phi^{\prime\prime}} \nabla\rho \otimes \nabla\rho|^{2}} + \underbrace{\left(\phi^{\prime\prime\prime\prime} - 2 \frac{(\phi^{\prime\prime\prime})^{2}}{\phi^{\prime\prime}}\right)}_{= -(\phi^{\prime\prime})^{2}(1/\phi^{\prime\prime})^{\prime\prime} \geq 0} |\nabla\rho|^{4}\right) u_{\infty} dx$$

$$- 2\lambda \frac{dH_{\phi}}{dt} \Rightarrow \frac{d^{2}H_{\phi}}{dt^{2}}[u] \geq -2\lambda \frac{dH_{\phi}}{dt}$$
Integrate over (t, ∞) :
$$\underbrace{\lim_{s \to \infty} \frac{dH_{\phi}}{dt}[u(s)]}_{=0} - \frac{dH_{\phi}}{dt}[u(t)] \geq -2\lambda \underbrace{\lim_{s \to \infty} H_{\phi}[u(s)]}_{=0} + 2\lambda H_{\phi}[u(t)]$$
Gronwall lemma and Csiszár-Kullback inequality:

$$\|u(t) - u_{\infty}\|_{L^{1}}^{2} \leq C_{\phi}H_{\phi}[u(t)] \leq C_{\phi}e^{-2\lambda t}H[u_{0}]$$

Bakry-Emery: Remarks

Theorem (Bakry/Emery '85, Arnold/Markowich/Toscani/Unterreiter '01) Let $u_0 \log u_0 \in L^1(\mathbb{R}^d)$, $\nabla^2 V \ge \lambda > 0$, ϕ convex, $1/\phi''$ concave. Then $\|u(t) - u_\infty\|_{L^1} \le e^{-\lambda t} C_{\phi}^{1/2} H_{\phi}[u_0]^{1/2}$

- Exponential L^1 decay with (optimal) rate λ
- Difficult part of proof: justify computations for weak solutions
- Proof yields convex Sobolev inequality for all (smooth) u ($\rho = \frac{u}{u_{\infty}}$):

$$H_{\phi}[u] = \int_{\mathbb{R}^d} \phi(\rho) u_{\infty} dx - \phi(1) \leq -\frac{1}{2\lambda} \frac{dH_{\phi}}{dt}[u] = \frac{1}{2\lambda} \int_{\mathbb{R}^d} \phi''(\rho) |\nabla \rho|^2 u_{\infty} dx$$

• Example: $V(x) = \frac{1}{2}|x|^2$, $\phi(s) = s(\log s - 1) + 1$, then $\lambda = 1$

$$\int_{\mathbb{R}^d} u \log u dx + \frac{d}{2} \log(2\pi) + d \leq \frac{1}{2} \int_{\mathbb{R}^d} \frac{|\nabla u|^2}{u} dx, \quad \int_{\mathbb{R}^d} u dx = 1$$

• Benefit: Simultaneous proof of deacy rate and convex Sobolev ineq.

Bakry-Emery for Markov processes

Given Markov process (X_t)_{t>0}, semigroup S_tf(x) = E[f(X_t)|X₀ = x], infinitesimal generator Lf = lim_{t→0}(S_tf - f)/t Example: Lf = Δf - x · ∇f on ℝ^d (Fokker-Planck-type), S_tf₀ is solution to ∂_tf = Lf, f(0) = f₀
Assume: ∃ invariant measure π: ∫ fdπ = ∫ S_tfdπ
Carré-du-champ operator: Γ(f,g) = ½(L(fg) - fLg - gLf)
Example: Γ(f,g) = ∇f · ∇g
Gamma-deux operator: Γ₂(f,g) = ½(LΓ(f,g) - Γ(Lf,g) - Γ(f,Lg))
Example: Γ₂(f, f) = |∇²f|² + |∇f|² ⇒ Γ₂(f, f) ≥ Γ(f, f)

Theorem (Bakry/Emery 1985)

Let $\phi \in C^2$ be convex, $1/\phi''$ concave, and $\exists \lambda > 0$: $\Gamma_2(f, f) \ge \lambda \Gamma(f, f)$ for all $f \ge 0$. Then for probability density functions ρ ,

$$\int_{\mathbb{R}^d} \phi(\rho) d\pi - \phi \bigg(\int_{\mathbb{R}^d} \rho d\pi \bigg) \leq \frac{1}{2\lambda} \int_{\mathbb{R}^d} \phi''(\rho) \mathsf{\Gamma}(\rho, \rho) d\pi$$

Bakry-Emery for Markov processes

Example: Fokker-Planck-type equation

- We have $\Gamma(
 ho,
 ho)=|
 abla
 ho|^2$ and $d\pi=u_\infty dx$ with $u_\infty=ce^{-V}$
- Choose $ho = u/u_\infty$: $\int_{\mathbb{R}^d}
 ho d\pi = \int_{\mathbb{R}^d} u dx$
- Relation to previous convex Sobolev inequality:

$$\int_{\mathbb{R}^d} \phi(\rho) \underbrace{d\pi}_{=u_{\infty} dx} - \phi \bigg(\int_{\mathbb{R}^d} \underbrace{\rho d\pi}_{=u dx} \bigg) \leq \frac{1}{\lambda} \int_{\mathbb{R}^d} \phi''(\rho) \underbrace{\Gamma(\rho, \rho)}_{=|\nabla \rho|^2} \underbrace{d\pi}_{=u_{\infty} dx}$$

Example **1**: $\phi(s) = s(\log s - 1)$ gives logarithmic Sobolev inequality

$$\int_{\mathbb{R}^d} \rho \log \rho d\pi - \int_{\mathbb{R}^d} \rho d\pi \log \int_{\mathbb{R}^d} \rho d\pi \leq \frac{1}{2\lambda} \int_{\mathbb{R}^d} \frac{\Gamma(\rho,\rho)}{\rho} d\pi$$

Example **2**: $\phi(s) = s^2$ gives Poincaré inequality

$$\int_{\mathbb{R}^d} \left(
ho - \int_{\mathbb{R}^d} u dx
ight)^2 d\pi \leq rac{1}{\lambda} \int_{\mathbb{R}^d} \Gamma(
ho,
ho) d\pi$$

Benefit: Abstract framework for convex Sobolev inequalities

Ansgar Jüngel (TU Wien)

Extensions of the Bakry-Emery method

- More on convex Sobolev inequalities: Compare Poincaré, logarithmic Sobolev, and Beckner inequalities
- Isoperimetric inequality for entropy: Relation to information theoretical approach (entropy power)
- Relaxation to self-similarity: Analyze intermediate asymptotics of solution of heat equation
- **4** Linear Fokker-Planck equations with variable diffusion matrix
- In Nonlinear Fokker-Planck equations

More on convex Sobolev inequalities

$$\int_{\mathbb{R}^d} \phi(\rho) u_{\infty} dx - \phi \left(\int_{\mathbb{R}^d} \rho u_{\infty} dx \right) \leq \frac{1}{2\lambda} \int_{\mathbb{R}^d} \phi''(\rho) |\nabla \rho|^2 u_{\infty} dx$$

• Logarithmic Sobolev inequality: $\phi(s) = s \log s$ (for $\int_{\mathbb{R}^d} \rho u_\infty dx = 1$)

$$\int_{\mathbb{R}^d} \rho \log \rho u_\infty dx \leq \frac{2}{\lambda} \int_{\mathbb{R}^d} |\nabla \rho^{1/2}|^2 u_\infty dx$$

• Poincaré inequality: $\phi(s) = s^2$

$$\int_{\mathbb{R}^d} \rho^2 u_\infty dx - \left(\int_{\mathbb{R}^d} \rho u_\infty dx\right)^2 \leq \frac{1}{\lambda} \int_{\mathbb{R}^d} |\nabla \rho|^2 u_\infty dx$$

• Beckner inequality: $\phi(s) = s^{\alpha}$, $1 < \alpha < 2$

$$\frac{1}{\alpha-1}\left(\int_{\mathbb{R}^d}\rho^{\alpha}u_{\infty}dx-\left(\int_{\mathbb{R}^d}\rho u_{\infty}dx\right)^{\alpha}\right)\leq\frac{2}{\alpha\lambda}\int_{\mathbb{R}^d}|\nabla\rho^{\alpha/2}|^2u_{\infty}dx$$

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Relations between functional inequalities

$$\frac{1}{\alpha - 1} \left(\int_{\mathbb{R}^d} \rho^{\alpha} u_{\infty} dx - \left(\int_{\mathbb{R}^d} \rho u_{\infty} dx \right)^{\alpha} \right) \le \frac{2}{\alpha \lambda} \int_{\mathbb{R}^d} |\nabla \rho^{\alpha/2}|^2 u_{\infty} dx$$

• lpha
ightarrow 1 in Beckner gives logarithmic Sobolev inequality since

$$\frac{1}{\alpha-1}\int_{\mathbb{R}^d} (\rho^{\alpha-1}-1)\rho u_{\infty}dx \to \int_{\mathbb{R}^d} \rho \log \rho u_{\infty}dx$$

• $\alpha \rightarrow 2$ in Beckner gives Poincaré inequality

• Logarithmic Sobolev implies Poincaré (use $\rho = 1 + \varepsilon g$ with $\int_{\mathbb{R}^d} g u_{\infty} dx$ and $\varepsilon \to 0$) and Beckner (Latala/Oleszkiewicz 2000)

2 Isoperimetric inequality for entropy

Aim: Relation between logarithmic Sobolev ineq. and isoperimetric ineq.

- Entropy: $H[u] = \int_{\mathbb{R}^d} u \log u dx$
- Fisher information: $I[u] = 4 \int_{\mathbb{R}^d} |\nabla u^{1/2}|^2 dx$
- Entropy power: $N[u] = \exp(-\frac{2}{d}H[u])$

Theorem (Isoperimetric inequality for entropy)

For all probability density functions u, $N[u]I[u] \ge 2\pi ed$.

- Equivalent formulation: $4\pi \exp(rac{2}{d}H[u]) \leq rac{8}{ed} \int_{\mathbb{R}^d} |\nabla u^{1/2}|^2 dx$
- Compare with isoperimetric inequality on ℝ²: 4πA ≤ L² for closed curve with length L and enclosed area A
- Approximating $e^z \ge z$ gives logarithmic Sobolev inequality:

$$\frac{2}{d}\int_{\mathbb{R}^d} u \log u dx = \frac{2}{d}H[u] \le \frac{2}{\pi ed}\int_{\mathbb{R}^d} |\nabla u^{1/2}|^2 dx$$

Isoperimetric inequality for entropy

Theorem (Isoperimetric inequality for entropy) For all probability density functions u, $N[u]I[u] \ge 2\pi ed$.

Proof:

• N[u] is concave (Costa 1985, Villani 2000) since

$$\frac{d^2N}{dt^2} = \left(\frac{2}{d}\right)^2 N\left(\left(\frac{dH}{dt}\right)^2 - \frac{d}{2}\frac{d^2H}{dt^2}\right) \le 0$$

• Let v solve $\partial_t v = \Delta v$, v(0) = u:

$$\frac{d}{dt}(N[v]I[v]) = \frac{2}{d}N\left(I^2 + \frac{d}{2}\frac{dI}{dt}\right) = \frac{2}{d}N\left(\left(\frac{dH}{dt}\right)^2 - \frac{d}{2}\frac{d^2H}{dt^2}\right) \le 0$$

- N[v(t)]I[v(t)] reaches minimum as $t \to \infty \Rightarrow N[v(t)]I[v(t)] \ge m$
- Scaling argument: m = N[M]I[M], where $M(x) = \frac{1}{(2\pi t)^{d/2}} \exp(-\frac{|x|^2}{2t})$
- Conclusion: $N[u]I[u] = N[v(0)]I[v(0)] \ge N[M]I[M] = 2\pi ed$

8 Relaxation to self-similarity

Consider heat equation in whole space:

 $\partial_t u = \Delta u$ in \mathbb{R}^d , t > 0, $u(0) = u_0$, $\int_{\mathbb{R}^d} u_0 dx = 1$

• Explicit solution:

$$u(x,t) = (4\pi t)^{-d/2} \int_{\mathbb{R}^d} \exp(-|x-y|^2/(4t))u_0(y)dy$$
, thus $u(t) o 0$ in L^∞ as $t \to \infty$

• Entropy is decreasing but

$$\mathcal{H}_1[u(t)] = \int_{\mathbb{R}^d} u \log u dx \leq \int_{\mathbb{R}^d} u(t) dx \log \|u(t)\|_{L^\infty} \to -\infty \quad (t \to \infty)$$

- Entropy method fails! Problem: $u_{\infty} = 0$ has not unit mass
- Solution: Analyze $u(t) U(t) \rightarrow 0$, where self-similar solution

$$U(x,t) = rac{1}{(2\pi(2t+1))^{d/2}} \exp\left(-rac{|x|^2}{2(2t+1)}
ight)$$

• Idea: Transform variables to make U stationary: $y = x/\sqrt{2t+1}$, $s = \log \sqrt{2t+1}$, and $v(y,s) = e^{ds}u(e^sy, \frac{1}{2}(e^{2s}-1))$

Ansgar Jüngel (TU Wien)

Relaxation to self-similarity

$$\partial_t u = \Delta u \quad \text{in } \mathbb{R}^d, \quad v(y,s) = e^{ds} u(e^s y, \frac{1}{2}(e^{2s}-1))$$

- Function v solves $\partial_s v = \operatorname{div}_y(\nabla_y v + yv)$ in \mathbb{R}^d
- Self-similar solution becomes $M(y) = (2t+1)^{d/2}U(x,t) = (2\pi)^{-d/2}\exp(-|y|^2/2)$
- Bakry-Emery shows:

$$\|v(s) - M\|_{L^1}^2 \le 2e^{-2s}H_1[u_0], \quad s > 0$$

• Back-transformation:

$$\|v(s) - M\|_{L^1}^2 = \|u(t) - U(t)\|_{L^1}^2, \quad 2e^{-2s} = 2(2t+1)^{-1}$$

Theorem

Let
$$\int_{\mathbb{R}^d} u_0 dx = 1$$
, u solves $\partial_t u = \Delta u$ in \mathbb{R}^d , $u(0) = u_0$, and
 $U(x, t) = (2\pi(2t+1))^{-d/2} \exp(-|x|^2/(2(2t+1)))$. Then
 $\|u(t) - U(t)\|_{L^1} \le (2t+1)^{-1/2} (2H_1[u(0)])^{1/2} \sim t^{-1/2} \ (t \to \infty)$

4 Variable diffusion matrix

 $\partial_t u = \operatorname{div}(D(x)(\nabla u + u\nabla V)) = \operatorname{div}(D(x)u_{\infty}\nabla\rho) \quad \text{in } \mathbb{R}^d, \quad D(x) \in \mathbb{R}^{d \times d}$

• Steady state:
$$u_{\infty}=ce^{-V}$$
, $ho=rac{u}{u_{\infty}}$

- Assumptions: D(x) pos. definite, $\lim_{|x|\to\infty} V(x) = \infty$, $\int_{\mathbb{R}^d} u_\infty dx = 1$
- Entropy: $H[u] = \int_{\mathbb{R}^d} \phi(\rho) u_{\infty} dx$, ϕ convex, $\phi(1) = 0$, $1/\phi''$ concave

• Entropy production:

$$\frac{dH}{dt}[u] = -\int_{\mathbb{R}^d} \phi''(\rho) \nabla \rho^\top \mathbf{D} \nabla \rho u_\infty dx \leq 0$$

Theorem (Arnold/Markowich/Toscani/Unterreiter 2001)

Assume
$$H[u(0)] < \infty$$
 and
 $D(x) = const., \quad \nabla^2 V \ge \lambda D^{-1}$ or
 $D(x) = a(x)I, \quad \left(\frac{1}{2} - \frac{d}{4}\right)\frac{1}{a}\nabla a \otimes \nabla a + \frac{1}{2}(\Delta a - \nabla a \cdot \nabla V)I + a\nabla^2 V + \frac{1}{2}(\nabla V \otimes \nabla a + \nabla a \otimes \nabla D) \ge \lambda D$

тпеп

$$H[u(t)] \le e^{-2\lambda t} H[u(0)], \quad t \ge 0$$

Ansgar Jüngel (TU Wien)

Nonsymmetric Fokker-Planck equations

$$\partial_t u = \operatorname{div}[D(x)(\nabla u + u(\nabla V + F(x)))] \quad \text{in } \mathbb{R}^d,$$

- Assume: div $(DFu_\infty) = 0$ in $\mathbb{R}^d \Rightarrow u_\infty = c e^{-V}$ is still steady state
- Operator div $(D(\nabla u + u \nabla V)) = div(Du_{\infty} \nabla(u/u_{\infty}))$ symm. in $L^{2}(u_{\infty}^{-1})$
- Operator div(DuF) is skew-symmetric in L²(u_∞⁻¹)
 ⇒ evolution = symmetric + skew-symmetric
- Entropy production: (some computations needed)

$$\frac{dH}{dt}[u] = -\int_{\mathbb{R}^d} \phi(\rho) \nabla \rho^\top D \nabla \rho u_\infty dx - \int_{\mathbb{R}^d} \phi(\rho) \underbrace{\operatorname{div}(DFu_\infty)}_{=0} dx$$

- Entropy and entropy production are independent of F
- Prove as before that $\frac{d^2H}{dt^2} + 2\lambda \frac{dH}{dt} \ge 0$
- Implies exponential decay for non-symmetric equation
- Bolley/Gentil 2010: Assumption div(DFu_\infty) = 0 not necessary

Degenerate Fokker-Planck equations

$$\partial_t u = \operatorname{div}(D\nabla u + Cxu) \quad \text{in } \mathbb{R}^d, \quad u(0) = u_0$$

- Matrix $D \in \mathbb{R}^{d imes d}$ constant and degenerate, $C \in \mathbb{R}^{d imes d}$
- Assumption •: $\forall v: C^{\top}v = \lambda_C v \Rightarrow v \notin ker(D)$ Consequence: $u_0 \in L^1 \Rightarrow u \in C^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$ (hypoellipticity)
- Assumption 2: ∀λ_C eigenvalues of C^T: Re(λ_C) > 0
 Consequence: Drift towards x = 0 due to confinement potential

Theorem (Erb/Arnold 2014)

Let assumptions hold,
$$\mu = \min\{\text{Re}(\lambda_C)\}$$
. Then $\exists c_0 > 0$:

$$H[u(t)] \le c_0 e^{-2\mu t} H[u_0], \quad t > 0$$

if all $\lambda \in \sigma(C)$ with $Re(\lambda) = \mu$ are non-defective (i.e. geometric = algebraic multiplicity), otherwise reduced rate $2(\mu - \varepsilon)$, $\varepsilon > 0$.

Idea of proof: $\frac{dH}{dt}[u] = 0$ for $u \neq u_{\infty}$ possible, thus use modified functional $I[u] = \int_{\mathbb{R}^d} \phi''(\rho) \nabla \rho^\top P \nabla \rho u_{\infty} dx$, P positive definite

Ansgar Jüngel (TU Wien)

Generalized Beckner inequalities

$$\frac{1}{\alpha-1}\left(\int_{\mathbb{R}^d} u^{\alpha} \mu dx - \left(\int_{\mathbb{R}^d} u \mu dx\right)^{\alpha}\right) \leq \frac{2}{\alpha\lambda} \int_{\mathbb{R}^d} D(x) |\nabla u^{\alpha/2}|^2 \mu dx$$

- Valid for $u^{\alpha/2} \in H^1(\mathbb{R}^d; \mu) \cap L^{2/\alpha}(\mathbb{R}^d; \mu), 1 < \alpha \leq 2$
- If $\mu(x) = e^{-|x|^2/2}$, D(x) = 1 then $\lambda = 1$ for all $1 < \alpha \le 2$
- Question: Determine λ for $D(x) \neq \text{const.}$? (Matthes/A.J./Toscani '11)

Example: Linearized fast-diffusion eq. $\partial_t u = D(x)\Delta u - x \cdot \nabla u$

• $D(x) = \alpha^2 + \beta^2 |x|^2$ • $u(x) = C(\alpha^2 + \beta^2 |x|^2)^{-1 - 1/(2\beta^2)}$

•
$$\mu(x) = C(\alpha^2 + \beta^2 |x|^2)^{-1 - 1/(2\beta^2)}$$

- $\beta > 0$: no Sobolev inequality and $\lambda \to 0$ as $\alpha \to 1$
- Pointwise Bakry-Emery approach $(\Gamma_2 \ge \lambda \Gamma)$ does not work
- Idea: Use integral expressions

• Figure:
$$p = 2/\alpha$$
, $C_p = 2/(\alpha \lambda)$

 $\frac{1}{2d}$

O Nonlinear Fokker-Planck equations

Aim: Extend Bakry-Emery method to

 $\partial_t u = \operatorname{div}(\nabla f(u) + u \nabla V) \quad \text{in } \Omega, \ t > 0, \quad u(0) = u_0 \ge 0$

where $\Omega = \mathbb{R}^d$ or Ω bounded (with no-flux boundary cond.). Assume • $f \in C^3$ strictly increasing, f(0) = 0, $f(s) \leq \frac{d}{d-1}sf'(s)$, f''(0) > 0• Ω convex, $\nabla^2 V \geq \lambda > 0$, $\inf_{\Omega} V = 0$ Example: $f(s) = s^m \ (m \geq \frac{d}{d-1})$, $V(x) = \frac{\lambda}{2}|x|^2$ for $x \in \mathbb{R}^d$ • Steady state: $u_{\infty}(x) = (N - \frac{m-1}{2m}|x|^2)^{1/(m-1)}_+$, N > 0• Relative entropy: $H^*[u] = H[u] - H[u_{\infty}]$, where $H[u] = \int_{-\infty}^{\infty} (\Phi(u) + uV(x)) dx = \Phi''(u) = \frac{f'(u)}{2m}$

$$H[u] = \int_{\mathbb{R}^d} (\Phi(u) + uV(x)) dx, \quad \Phi''(u) = \frac{F'(u)}{u}$$

Theorem (Carrillo/A.J./Markowich/Toscani/Unterreiter 2001)

Let $H[u_0] < \infty$. Then, for t > 0, $||u(t) - u_{\infty}||_{L^1} \le e^{-\lambda t} C(H^*[u_0])$.

Proof $(f(u) = u^m, V(x) = \frac{\lambda}{2}|x|^2)$

Theorem (Carrillo/A.J./Markowich/Toscani/Unterreiter 2001) Let $H[u_0] < \infty$. Then, for t > 0, $||u(t) - u_{\infty}||_{L^1} \le e^{-\lambda t} C(H^*[u_0])$.

• Step 1. First time derivative (entropy production)

$$\frac{dH^*}{dt}[u]=-\int_{\mathbb{R}^d}u|\nabla(h(u)+V)|^2dx\leq 0,\quad h(u)=\frac{m}{m-1}u^{m-1}$$

• Step 2. Second time derivative

$$\begin{aligned} \frac{d^2 H^*}{dt^2} [u] &= -2\lambda \frac{dH^*}{dt} [u] - 2R(t) \\ R(t) &= \int_{\mathbb{R}^d} u^m ((m-1)(\Delta(h(u)+V))^2 + |\nabla^2(h(u)+V)|^2) dx \ge 0 \\ &\Rightarrow \quad \frac{d^2 H^*}{dt^2} [u] \ge -2\lambda \frac{dH^*}{dt} [u] \end{aligned}$$

Proof $(f(u) = u^m, V(x) = \frac{\lambda}{2}|x|^2)$

$$\frac{d^2H^*}{dt^2}[u] \ge -2\lambda \frac{dH^*}{dt}[u]$$

• Step 3. Functional inequality: integrate, use $\lim_{t\to\infty} \frac{dH^*}{dt}[u(t)] = 0$ $\frac{dH^*}{dt}[u(t)] < 0$

$$\frac{dH}{dt}[u(t)] \leq -2\lambda H^*[u_0] \Rightarrow H^*[u(t)] \leq e^{-2\lambda t} H^*[u_0]$$

• Step 4. Csiszár-Kullback inequality: introduce $\hat{u} = \alpha u \mathbb{1}_{\{|x| \le R\}}$

$$\|u - u_{\infty}\|_{L^{1}} \leq \underbrace{\|u - \widehat{u}\|_{L^{1}}}_{\leq H^{*}[u]^{1/2}} + \underbrace{\|\widehat{u} - u_{\infty}\|_{L^{1}}}_{Ce^{-\lambda t}} \leq Ce^{-\lambda t}$$

Question: Does entropy production ineq. relate to functional ineq.? Yes:

Gagliardo-Nirenberg inequality: Let $1 , <math>u \in H^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$: $\|u\|_{L^{p/2+1}} \leq C \|\nabla u\|_{L^1}^{\theta} \|u\|_{L^p}^{1-\theta}, \quad \theta = \frac{d(2-p)}{(2+p)(d(2-p)+2p)}$

Proof: Show $\int_{\mathbb{R}^d} v^m dx \le A \int_{\mathbb{R}^d} |\nabla v^{m-1/2}|^2 dx + B(\int_{\mathbb{R}^d} v dx)^{\gamma}$, $m = \frac{p+2}{2p}$

Extensions

Summary

Let u(t) solve $\partial_t u + A(u) = 0$, let u_{∞} solve $A(u_{\infty}) = 0$. Define entropy H[u]. Entropy method:

- Compute dH/dt and d^2H/dt^2
- Show that $d^2H/dt^2 + \kappa dH/dt > 0 \Rightarrow H[u(t)] < e^{-\kappa t}H[u(0)]$
- Csiszár-Kullback inequality gives exponential L¹ decay rate:

$$\|u(t) - u_{\infty}\|_{L^{1}} \leq e^{-(\kappa/2)t} C(H[u(0)]), \quad t > 0$$

• Also yields convex Sobolev inequality with explicit constant:

entropy = $H[u] \leq \kappa^{-1}(-\frac{dH}{dt}[u]) = \kappa^{-1} \times$ entropy production

- Applies to Markov processes (see book of Bakry/Gentil/Ledoux '14)
- Also yields intermediate asymptotics of type $||u(t) U(t)||_{1} < Ct^{-\gamma}$
- Very robust for nonsymm./degenerate/nonlinear diffusion equations

Problem: Many integration by parts are needed – make them systematic!

Extensions

Overview

- Introduction
- 2 Entropies
- Sokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- Onigueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Systematic integration by parts: Motivation

Second time derivative d^2H/dt^2 requires well chosen integrations by parts. Aim: Make the integrations by parts systematic. Motivation: Consider thin-film equation

 $\partial_t u = -(u^{\beta} u_{xxx})_x$ in \mathbb{T} (torus), t > 0, $u(0) = u_0 \ge 0$

• Models the flow of thin liquid along surface with film height u(x, t)

• Entropy $H_{\alpha}[u] = \frac{1}{\alpha(\alpha-1)} \int_{\mathbb{T}} u^{\alpha} dx$: For which $\alpha > 1$ is H_{α} an entropy?

$$\begin{aligned} \frac{dH_{\alpha}}{dt}[u] &= \frac{1}{\alpha - 1} \int_{\mathbb{T}} u^{\alpha - 1} \partial_t u dx = \int_{\mathbb{T}} u^{\alpha + \beta - 2} u_{\mathsf{x}\mathsf{x}\mathsf{x}} u_{\mathsf{x}} dx \\ &= -(\alpha + \beta - 2) \int_{\mathbb{T}} u^{\alpha + \beta - 3} u_{\mathsf{x}}^2 u_{\mathsf{x}\mathsf{x}} dx - \int_{\mathbb{T}} u^{\alpha + \beta - 2} u_{\mathsf{x}\mathsf{x}}^2 dx, \ u_{\mathsf{x}}^2 u_{\mathsf{x}\mathsf{x}} &= \frac{1}{3} (u_{\mathsf{x}}^3)_{\mathsf{x}} \\ &= -\frac{1}{3} (\alpha + \beta - 2) (\alpha + \beta - 3) \int_{\mathbb{T}} u^{\alpha - \beta - 4} u_{\mathsf{x}}^4 dx - \int_{\mathbb{T}} u^{\alpha + \beta - 2} u_{\mathsf{x}\mathsf{x}}^2 dx \le \mathbf{0} \end{aligned}$$

if $2 \le \alpha + \beta \le 3$ but $\frac{3}{2} \le \alpha + \beta \le 3$ is optimal!

Idea of method

Example: Thin-film equation $\partial_t u = -(u^{\beta}u_{xxx})_x$ on torus \mathbb{T}

• Entropy production for $H_{\alpha}[u] = \frac{1}{\alpha(\alpha-1)} \int_{\mathbb{T}} u^{\alpha} dx$

$$\frac{dH_{\alpha}}{dt}[u] = \frac{1}{\alpha - 1} \int_{\mathbb{T}} u^{\alpha - 1} \partial_t u dx = \int_{\mathbb{T}} u^{\alpha + \beta - 2} u_x u_{xxx} dx =: -EP[u] \leq 0?$$

• Standard integration by parts:

$$EP[u] = -\int_{\mathbb{T}} u^{\alpha+\beta-2} u_x u_{xxx} dx = \int_{\mathbb{T}} \frac{u^{\alpha+\beta-1}}{\alpha+\beta-1} u_{xxxx} dx$$

• Formalization of integration by parts:

$$I_{3} = \int_{\mathbb{T}} u^{\alpha+\beta} \left((\alpha+\beta-1)\frac{u_{x}}{u}\frac{u_{xxx}}{u} + \frac{u_{xxxx}}{u} \right) dx$$
$$= \int_{\mathbb{T}} (u^{\alpha+\beta-1}u_{xxx})_{x} dx = 0$$

 \Rightarrow *EP*[*u*] = *EP*[*u*] + *cI*₃ with $c = \frac{1}{\alpha + \beta - 1}$

Integration-by-parts rules

$$EP[u] = -\int_{\mathbb{T}} u^{\alpha+\beta-2} u_x u_{xxx} dx \ge 0$$
?

Question: How many independent rules of integration by parts?

$$\begin{split} I_1 &= \int_{\mathbb{T}} u^{\alpha+\beta} \left(\left(\alpha+\beta-3\right) \left(\frac{u_x}{u}\right)^4 + 3\left(\frac{u_x}{u}\right)^2 \frac{u_{xx}}{u} \right) dx = 0\\ I_2 &= \int_{\mathbb{T}} u^{\alpha+\beta} \left(\left(\alpha+\beta-2\right) \left(\frac{u_x}{u}\right)^2 \frac{u_{xx}}{u} + \left(\frac{u_{xx}}{u}\right)^2 + \frac{u_x}{u} \frac{u_{xxx}}{u} \right) dx = 0\\ I_3 &= \int_{\mathbb{T}} u^{\alpha+\beta} \left(\left(\alpha+\beta-1\right) \frac{u_x}{u} \frac{u_{xxx}}{u} + \frac{u_{xxxx}}{u} \right) dx = 0 \end{split}$$

Aim: Prove that $\exists c_1, c_2, c_3 \in \mathbb{R}$: $EP[u] = EP[u] + c_1I_1 + c_2I_2 + c_3I_3 \ge 0$ New idea: Identify $\xi_1 = \frac{u_x}{u}$, $\xi_2 = \frac{u_{xx}}{u}$ etc. and formulate using polynomials

$$\begin{array}{ll} {\it EP}[u] & {\it corresponds to} & S(\xi) = -\xi_1\xi_3 \\ {\it I}_1 & {\it corresponds to} & T_1(\xi) = (\alpha + \beta - 3)\xi_1^4 + 3\xi_1^2\xi_2 \\ {\it I}_2 & {\it corresponds to} & T_2(\xi) = (\alpha + \beta - 2)\xi_1^2\xi_2 + \xi_1\xi_3 + \xi_2^2 \\ {\it I}_3 & {\it corresponds to} & T_3(\xi) = (\alpha + \beta - 1)\xi_1\xi_3 + \xi_4 \end{array}$$

Integration-by-parts rules

 $\begin{array}{ll} P[u] & \text{corresponds to} & S(\xi) = -\xi_1\xi_3 \\ I_1 & \text{corresponds to} & T_1(\xi) = (\alpha + \beta - 3)\xi_1^4 + 3\xi_1^2\xi_2 \\ I_2 & \text{corresponds to} & T_2(\xi) = (\alpha + \beta - 2)\xi_1^2\xi_2 + \xi_1\xi_3 + \xi_2^2 \\ I_3 & \text{corresponds to} & T_3(\xi) = (\alpha + \beta - 1)\xi_1\xi_3 + \xi_4 \end{array}$

 T_i = integration-by-parts polynomials = shift polynomials

Nonnegativity of entropy production follows

 $\exists c_1, c_2, c_3 \in \mathbb{R}: P[u] = P[u] + c_1 l_1 + c_2 l_2 + c_3 l_3 \ge 0$

... from solution of decision problem:

 $\exists c_1, c_2, c_3 \in \mathbb{R} : \forall \xi : \ (S + c_1 T_1 + c_2 T_2 + c_3 T_3)(\xi) \ge 0$

- Calculate $EP[u] = -\frac{dH}{dt}$, gives polynomial S
- Determine shift polynomials T_i (depends on differential order of eq.)
- Solve decision problem
- Show that $\exists \kappa > 0$: $EP[u] \kappa Q[u] \ge 0$, Q[u] contains $|\nabla^2 u^{\gamma}|^2$ etc.

Solution of decision problem

 $\exists c_1, c_2, c_3 \in \mathbb{R} : \forall \xi : \ (S + c_1 T_1 + c_2 T_2 + c_3 T_3)(\xi) \ge 0$

- Tarski 1930: Polynomial decision problems can be reduced to a quantifier-free statement in an algorithmic way
- Problem well known in real algebraic geometry
- Implementations in Mathematica, QEPCAD (Collins/Hong 1991) available, give complete and exact answer
- Algorithms are doubly exponential in number of c_i , ξ

Reductions:

- Not all integration-by-parts rules are needed: reduces number of c_i
- Write polynomial as sum of squares: many algorithms available, quickly solvable, but only numerical results (relation to Hilbert's 17th problem), and ∃ polynomial P ≥ 0 with P ≠ sum of squares
- Several dimensions: symmetry reduction, use scalar variables $|\nabla u|$, Δu , $|\nabla^2 u|$ etc.

Entropies for thin-film equation

$$\partial_t u = -(u^\beta u_{\mathsf{xxx}})_{\mathsf{x}}, \quad S(\xi) = -\xi_1 \xi_3$$

• Shift polynomials:

$$T_1(\xi) = (\alpha + \beta - 3)\xi_1^4 + 3\xi_1^2\xi_2,$$

$$T_2(\xi) = (\alpha + \beta - 2)\xi_1^2\xi_2 + \xi_2^2 + \xi_1\xi_3$$

$$T_3(\xi) = (\alpha + \beta - 1)\xi_1\xi_3 + \xi_4$$

• Decision problem:

 $\exists c_1, c_2, c_3 \in \mathbb{R} : \forall \xi \in \mathbb{R}^3 : (S + c_1 T_1 + c_2 T_2 + c_3 T_3)(\xi) \ge 0$

- Eliminate $\xi_4 \Rightarrow c_3 = 0$; eliminate $\xi_1 \xi_3 \Rightarrow c_2 = 1$
- Reduced decision problem: $\exists c_1 \in \mathbb{R} : \forall \xi \in \mathbb{R}^2$:

$$(\alpha + \beta - 3)c_1\xi_1^4 + (\alpha + \beta - 2 + 3c_1)\xi_1^2\xi_2 + \xi_2^2 \ge 0$$

• Solution: $9(c_1 + \frac{1}{9}(\alpha + \beta))^2 + \frac{8}{9}(\alpha + \beta - \frac{3}{2})(\alpha + \beta - 3) \le 0$

• Choose
$$c_1 = -\frac{1}{9}(\alpha + \beta) \Rightarrow$$
 positive if and only if $\frac{3}{2} \le \alpha + \beta \le 3$

Bakry-Emery revisited

 $\partial_t u = \operatorname{div}(\nabla u + u \nabla V)$ in \mathbb{R}^d

Aim: Show $\frac{d^2H_{\alpha}}{dt^2} + \kappa \frac{dH_{\alpha}}{dt} \ge 0$ with systematic integration by parts • Assume: $\nabla^2 V > \lambda$, one-dimensional case

- Multi-dimensional case: see Matthes/A.J./Toscani 2011
- Entropy:

$$H_{\alpha}[u] = \frac{\alpha}{4(\alpha - 1)} \bigg(\int_{\mathbb{R}} \bigg(\frac{u}{u_{\infty}} \bigg)^{\alpha} u_{\infty} dx - \bigg(\int_{\mathbb{R}} u dx \bigg)^{\alpha} \bigg), \ 1 < \alpha \le 2$$

• Set $w = u^{\alpha/2}$ and compute

$$\frac{d^2 H_{\alpha}}{dt^2} = \frac{2}{\alpha} \int_{\mathbb{R}} w^2 \left[\alpha \left(\frac{w_{xx}}{w} \right)^2 + (2 - \alpha) \left(\frac{w_x}{w} \right)^2 \frac{w_{xx}}{w} - 2\alpha \frac{w_x}{w} \frac{w_{xx}}{w} V_x - (2 - \alpha) \left(\frac{w_x}{w} \right)^3 V_x + \alpha \left(\frac{w_x}{w} \right)^2 V_x^2 \right] u_{\infty} dx$$

• Integrand formulated as polynomial: $S_2(\xi) = \alpha \xi_2^2 + (2 - \alpha) \xi_1^2 \xi_2 - 2\alpha \xi_1 \xi_2 V_x - (2 - \alpha) \xi_1^3 V_x + \alpha \xi_1^2 V_x^2$

Shift polynomials

 $S_2(\xi) = \alpha \xi_2^2 + (2 - \alpha) \xi_1^2 \xi_2 - 2\alpha \xi_1 \xi_2 V_x - (2 - \alpha) \xi_1^3 V_x + \alpha \xi_1^2 V_x^2$

First time derivative: dH_α/dt = ∫_ℝ w_x² u_∞ dx ⇒ S₁(ξ) = ξ₁²
Shift polynomials: (recall that u_{∞,x} = -u_∞ V_x)

$$0 = \int_{\mathbb{R}^d} (w_x^2 V_x u_\infty)_x dx = \int_{\mathbb{R}^d} (2w_x w_{xx} V_x + w_x^2 V_{xx} - w_x^2 V_x^2) u_\infty dx$$

$$T_1(\xi) = 2\xi_1 \xi_2 V_x + \xi_1^2 V_{xx} - \xi_1^2 V_x^2$$

$$0 = \int_{\mathbb{R}^d} (w^{-1} w_x^3 u_\infty)_x dx = \int_{\mathbb{R}^d} w^{-1} (3w_x^2 w_{xx} - w^{-1} w_x^4 - w_x^3 V_x) u_\infty dx$$

$$T_2(\xi) = 3\xi_1^2 \xi_2 - \xi_1^4 - \xi_1^3 V_x$$

• Decision problem: $\exists c_1, c_2 \in \mathbb{R}, c > 0 : \forall \xi \in \mathbb{R}^3$:

$$S^*(\xi) = (S + c_1 T_1 + c_2 T_2 - cS_1)(\xi) \ge 0$$

Solution of decision problem

$$\begin{split} S^*(\xi) &= \alpha \xi_2^2 + (2 - \alpha + 3c_2) \xi_1^2 \xi_2 + 2(-\alpha + c_1) \xi_1 \xi_2 V_x \\ &- (2 - \alpha + c_2) \xi_1^3 V_x + (\alpha - c_1) \xi_1^2 V_x^2 - c_2 \xi_1^4 + (c_1 V_{xx} - c) \xi_1^2 \\ \bullet \text{ Eliminate } \xi_1 \xi_2 V_x: \ c_1 &= \alpha, \text{ eliminate } \xi_1^3 V_x: \ c_2 &= -(2 - \alpha) \\ \bullet \text{ Since } V_{xx} &\geq \lambda: \text{ choose } c = \alpha \lambda \\ \bullet \text{ This gives with } x &= \xi_1^2, \ y &= \xi_2: \\ S^*(\xi) &\geq \alpha \xi_2^2 - 2(2 - \alpha) \xi_1^2 \xi_2 + (2 - \alpha) \xi_1^4 = \alpha y^2 - 2(2 - \alpha) xy + (2 - \alpha) x^2 \\ \bullet \ S^*(\xi) &\geq 0 \text{ if and only if } \alpha (2 - \alpha) \geq (2 - \alpha)^2 \text{ or } 2(2 - \alpha)(\alpha - 1) \geq 0 \\ &\Rightarrow 1 \leq \alpha \leq 2 \end{split}$$
We have shown:
$$\frac{d^2 H_\alpha}{dt^2} + \alpha \lambda \frac{dH_\alpha}{dt} \geq 0 \text{ for } 1 < \alpha \leq 2 \end{split}$$

Theorem

Let $\nabla^2 V \ge \lambda$. Then the solution of $\partial_t u = \operatorname{div}(\nabla u + u \nabla V)$ in \mathbb{R}^d satisfies $H_{\alpha}[u(t)] \le e^{-\alpha \lambda t} H_{\alpha}[u(0)], \quad 1 < \alpha \le 2$

Summary

Systematic integration by parts

- Formulate $\int_{\Omega} (\cdots) dx \ge 0$ as polynomial $S(\xi)$
- Determine shift polynomials $T_1(\xi), \ldots, T_n(\xi)$
- Solve decision problem $\exists c_1, \ldots, c_n \in \mathbb{R} : \forall \xi \in \mathbb{R}^m$:

$$(S+c_1T_1+\cdots+c_nT_n)(\xi)\geq 0$$

• Can be solved by quantifier elimination in an algorithmic way

What comes next? Entropy methods are also useful for

- Structural information for diffusion systems (gradient flows)
- Gradient estimates and existence analysis for cross-diffusion systems
- Positivity, L[∞] bounds, uniqueness of weak solutions, structure-preserving numerical discretizations

Overview

- Introduction
- 2 Entropies
- Fokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- O Uniqueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Cross-diffusion systems

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

- Meaning: div $(A(u)\nabla u)_i = \sum_{j=1}^n \text{div}(A_{ij}(u)\nabla u_j), A \in \mathbb{R}^{n \times n}, u \in \mathbb{R}^n$
- Diagonal diffusion matrix: $A_{ij}(u) = 0$ for $i \neq j$
- Cross-diffusion matrix: generally $A_{ij}(u) \neq 0$ for $i \neq j$

Why study cross-diffusion systems?

- They arise in many applications from physics, biology, chemistry...
- Diffusion-induced instabilities may arise
- Cross-diffusion may allow for pattern formation
- They may exhibit an unexpected gradient-flow/entropy structure

Example 1: Cross-diffusion population dynamics

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

u = (u₁, u₂) and u_i models population density of *i*th species
Diffusion matrix:

$$A(u) = \begin{pmatrix} a_{10} + a_{11}u_1 + a_{12}u_2 & a_{12}u_1 \\ a_{21}u_2 & a_{20} + a_{21}u_1 + a_{22}u_2 \end{pmatrix}$$

- Suggested by Shigesada-Kawasaki-Teramoto 1979: models population segregation
- Lotka-Volterra functions: $f_i(u) = (b_{i0} - b_{i1}u_1 - b_{i2}u_2)u_i$
- Diffusion matrix is not symmetric, generally not positive definite

Example 2: Ion transport through nano-pores

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

(u₁,..., u_N) ion concentrations, u_N = 1 − ∑_{j=1}^{N-1} u_j
Diffusion matrix for N = 4:

$$A(u) = \begin{pmatrix} D_1(1-u_2-u_3) & D_1u_1 & D_1u_1 \\ D_2u_2 & D_2(1-u_1-u_3) & D_2u_2 \\ D_3u_3 & D_3u_3 & D_3(1-u_2-u_3) \end{pmatrix}$$

- Derived by Burger-Schlake-Wolfram 2012 from lattice model
- Electric field neglected to simplify
- Diffusion matrix generally not positive definite – expect that 0 ≤ u_i ≤ 1

Example **3**: Tumor-growth modeling

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

- Volume fractions of tumor cells u₁, extracellular matrix u₂, nutrients/water u₃ = 1 - u₁ - u₂
- Diffusion matrix: (β , θ : pressure parameters)

$$A(u) = \begin{pmatrix} 2u_1(1-u_1) - \beta\theta u_1 u_2^2 & -2\beta u_1 u_2(1+\theta u_1) \\ -2u_1 u_2 + \beta\theta u_2^2(1-u_2) & 2\beta u_2(1-u_2)(1+\theta u_1) \end{pmatrix}$$

- Derived by Jackson-Byrne 2002 from continuum fluid model
- Describes avascular growth of symmetric tumor
- Diffusion matrix generally not positive definite – expect that 0 ≤ u_i ≤ 1

Example **4**: Multicomponent gas mixtures

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

- Volume fractions of gas components u_1 , u_2 , $u_3 = 1 u_1 u_2$
- Diffusion matrix: $\delta(u) = d_1 d_2 (1 u_1 u_2) + d_0 (d_1 u_1 + d_2 u_2)$

$$egin{aligned} \mathcal{A}(u) &= rac{1}{\delta(u)} egin{pmatrix} d_2 + (d_0 - d_2) u_1 & (d_0 - d_1) u_1 \ (d_0 - d_2) u_2 & d_1 + (d_0 - d_1) u_2 \end{pmatrix} \end{aligned}$$

- Application: Patients with airway obstruction inhale Heliox (helium-oxygen mixture) to speed up diffusion
- Proposed by Maxwell 1866/Stefan 1871
- Duncan/Toor 1962: Fick's law (J_i ~ ∇u_i) not sufficient, include cross-diffusion terms
- Uphill diffusion possible
- Boudin/Grec/Salvarani 2013: Derivation from Boltzmann equation for simple mixtures

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Derivation of cross-diffusion models

Starting models:

- Random-walk lattice model
- Continuum fluid model
- System of Boltzmann equations
- Stochastic differential equations describing many-particle system

• Random-walk lattice model:

Single species: one space dimension to simplify

• Master equation: time variation = incoming - outgoing

$$\partial_t u(x_i) = p(u(x_{i-1}) + u(x_{i+1})) - 2pu(x_i)$$

• Taylor expansion: (h = grid size)

$$u(x_{i\pm 1}) - u(x_i) = \pm h \partial_x u(x_i) + \frac{1}{2} h^2 \partial_x^2 u(x_i) + O(h^3)$$

Derivation from on-lattice model

Taylor expansion: u(x_{i±1}) - u(x_i) = ±h∂_xu(x_i) + ½h²∂²_xu(x_i) + O(h³)
Diffusion scaling: t → t/h² ⇒ ∂_t → h²∂_t

$$h^{2} \partial_{t} u(x_{i}) = p(u(x_{i-1}) - u(x_{i})) + p(u(x_{i+1}) - u(x_{i}))$$

= $ph^{2} \partial_{x}^{2} u(x_{i}) + O(h^{3})$

- Limit $h \to 0$ gives $\partial_t u(x) = p \partial_x^2 u(x)$ (heat equation)
- Rigorous limit: De Masi, Lebowitz, Sinai, Spohn etc. (from 1980s on) Multiple species:
 - Master equation for particle number $u_i(x_i)$ at *i*th cell:

$$\partial_t u_j(x_i) = p_{j,i}^+ u_j(x_{i-1}) + p_{j,i+1}^- u_j(x_{i+1}) - (p_{j,i}^+ + p_{j,i}^-) u_j(x_i)$$

- Taylor expansion, diffusion scaling and limit h→ 0 leads to system of diffusion equations ∂_tu_j = ∂_x(∑_k A_{jk}(u)∂_xu_k)
- Multi-dimensional case analogous

Derivation from continuum fluid model

Example: two-species system

- Transition rates $p_j(u) = a_{j0} + a_{j1}u_1 + a_{j2}u_2$, j = 1, 2
- Diffusion matrix $A = (A_{jk}(u)) \rightsquigarrow$ population model

$$A = \begin{pmatrix} a_{10} + 2a_{11}u_1 + a_{12}u_2 & a_{12}u_1 \\ a_{21}u_2 & a_{20} + a_{21}u_1 + 2a_{22}u_2 \end{pmatrix}$$

Ontinuum fluid model:

• Mass and force balance equations:

$$\begin{aligned} \partial_t \rho_i + \operatorname{div}(\rho_i v_i) &= 0, \ \varepsilon (\partial_t (\rho_i v_i) + \operatorname{div}(\rho_i v_i \otimes v_i)) - \operatorname{div} T_i - p \nabla \rho_i = f_i \\ f_i &= \sum_{j=1}^N k_{ij} (v_j - v_i) \rho_i \rho_j, \quad i = 1, \dots, N \end{aligned}$$

- Properties: $\sum_{i=1}^{N} \rho_i = 1$, $\sum_{i=1}^{N} \rho_i v_i = 0$, $\sum_{i=1}^{N} f_i = 0$
- Interphase pressure: $p\nabla \rho_i$, *p*: phase pressure (Drew/Segel 1971)
- Assumptions: inertia approximation ($\varepsilon = 0$), $k := k_{ij}$, stress tensor: $T_i = -\rho_i(p \text{Id} + P_i)$, P_i : isotropic pressures, $P_N = 0$

Derivation from continuum fluid model

$$\partial_t \rho_i + \operatorname{div}(\rho_i v_i) = 0, \quad -\operatorname{div} T_i - p \nabla \rho_i = f_i = \sum_{j=1}^N k_{ij} (v_j - v_i) \rho_i \rho_j$$

...

- Consequence of $k := k_{ij}$: $f_i = -k\rho_i v_i$
- Consequence of pressure: $-\operatorname{div} T_i p \nabla \rho_i = \rho_i \nabla p + \operatorname{div}(\rho_i P_i)$
- Add all force balance equations:

$$0 = \sum_{i=1}^{N} f_i = \sum_{i=1}^{N} \left(\rho_i \nabla p + \operatorname{div}(\rho_i P_i) \right) = \nabla p + \sum_{i=1}^{N-1} \operatorname{div}(\rho_i P_i)$$

• Replace ∇p and expand div $P_i = \sum_{j=1}^{N-1} \frac{\partial P_i}{\partial \rho_j} \nabla \rho_j$:

$$\partial_t \rho_i + \sum_{j=1}^{N-1} \operatorname{div}(A_{ij}(\rho) \nabla \rho_j) = 0, \quad i = 1, \dots, N-1$$

Example: N = 3, $P_1 = \rho_1$, $P_2 = \beta \rho_2 (1 + \theta \rho_1) \rightsquigarrow$ tumor-growth model

$$A(\rho) = \begin{pmatrix} 2\rho_1(1-\rho_1) - \beta\theta\rho_1\rho_2^2 & -2\beta\rho_1\rho_2(1+\theta\rho_1) \\ -2\rho_1\rho_2 + \beta\theta\rho_2^2(1-\rho_2) & 2\beta\rho_2(1-\rho_2)(1+\theta\rho_1) \end{pmatrix}$$

Cross-diffusion systems

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u_0, \quad \text{no-flux b.c.}$

Main features:

- Diffusion matrix A(u) non-diagonal
- Matrix A(u) may be neither symmetric nor positive definite
- Variables *u_i* may be bounded from below and/or above

Objectives:

- Global-in-time existence of weak solutions
- Positivity and boundedness of weak solutions
- Large-time asymptotics

Mathematical difficulties:

- No general theory for diffusion systems available
- Generally no maximum principle, no regularity theory
- \bullet Lack of positive definiteness \rightarrow local existence nontrivial

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Previous results

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0$

Global existence if ...

- Growth conditions on nonlinearities (Ladyženskaya ... 1988)
- Control on L^{∞} and Hölder norms (Amann 1989)
- Invariance principle holds (Redlinger 1989, Küfner 1996)
- Positivity, mass control, diagonal A(u) (Pierre-Schmitt 1997)

Unexpected behavior:

- Finite-time blow-up of Hölder solutions (Stará-John 1995)
- Weak solutions may exist after L^{∞} blow-up (Pierre 2003)
- Cross-diffusion may lead to pattern formation (instability) or may avoid finite-time blow-up (Hittmeir/A.J. 2011)

Special structure needed for global existence theory: gradient-flow or entropy structure

Abstract gradient flows

Definition: Gradient flow if $\partial_t u = -\operatorname{grad} H|_u$ on differential manifold

• Example: \mathbb{R}^n with Euclidean structure, $\partial_t u = -\nabla H(u)$, $H : \mathbb{R}^n \to \mathbb{R}$

$$\frac{d}{dt}H(u) = \nabla H(u) \cdot \partial_t u = -|\nabla H(u)|^2 \Rightarrow H \text{ is Lyapunov functional}$$

- Can be generalized to $\partial_t u \in \nabla H(u)$ on Hilbert space (Brézis 1973)
- Heat equation is gradient flow for $H(u) = \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u|^2 dx$ in $L^2(\mathbb{R}^d)$:

grad
$$H(u)\xi = \int_{\mathbb{R}^d} \nabla u \cdot \nabla \xi dx = -\int_{\mathbb{R}^d} \Delta u\xi dx \Rightarrow \partial_t u = \Delta u$$

- Otto 2001: Heat eq. is gradient flow for $H(u) = \int_{\mathbb{R}^d} u \log u dx$ in Wasserstein space (= probability measures with Wasserstein metric)
- Advantage: allows for geometric interpretation
- Reference for abstract gradient flows: Ambrosio/Gigli/Savaré 2005 Our formal definition: Gradient flow if $\partial_t u = \operatorname{div}(B\nabla \operatorname{grad} H(u))$

Gradient flows: Cross-diffusion systems

Main assumption

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u)$ possesses formal gradient-flow structure

$$\partial_t u - \operatorname{div} (B \nabla \operatorname{grad} H(u)) = f(u),$$

where *B* is positive semi-definite, $H(u) = \int_{\Omega} h(u) dx$ entropy

Equivalent formulation: grad $H(u) \simeq h'(u) =: w$ (entropy variable)

$$\partial_t u - \operatorname{div}(B\nabla w) = f(u), \quad B = A(u)h''(u)^{-1}$$

Consequences:

• *H* is Lyapunov functional if f = 0:

$$\frac{dH}{dt} = \int_{\Omega} \partial_t u \cdot \underbrace{h'(u)}_{=w} dx = -\int_{\Omega} \nabla w : B\nabla w dx \le 0$$

• L^{∞} bounds for u: Let $h': D \to \mathbb{R}^n$ $(D \subset \mathbb{R}^n)$ be invertible \Rightarrow $u = (h')^{-1}(w) \in D$ (no maximum principle needed!)

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Example **1**: Population-dynamics model

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = 0 \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

u = (u₁, u₂) and u_i models population density of *i*th species
Diffusion matrix:

$$A(u) = \begin{pmatrix} a_{10} + a_{11}u_1 + a_{12}u_2 & a_{12}u_1 \\ a_{21}u_2 & a_{20} + a_{21}u_1 + a_{22}u_2 \end{pmatrix}$$

- Entropy: $H[u] = \int_{\Omega} h(u) dx = \int_{\Omega} \left(\frac{u_1}{a_{12}} (\log u_1 - 1) + \frac{u_2}{a_{21}} (\log u_2 - 1) \right) dx$
- Entropy production:

$$\begin{aligned} \frac{dH}{dt}[u] &= \int_{\Omega} \left(\frac{\log u_1}{a_{12}} \partial_t u_1 + \frac{\log u_2}{a_{21}} \partial_t u_2 \right) dx \\ &= -2 \int_{\Omega} \left(\frac{2}{a_{12}} (a_{10} + a_{11} u_1) |\nabla \sqrt{u_1}|^2 + \frac{2}{a_{21}} (a_{20} + a_{22} u_2) |\nabla \sqrt{u_2}|^2 \right. \\ &+ |\nabla \sqrt{u_1 u_2}|^2 \right) dx \le 0 \end{aligned}$$

Example **1**: Population-dynamics model

$$h(u) = \frac{u_1}{a_{12}}(\log u_1 - 1) + \frac{u_2}{a_{21}}(\log u_2 - 1)$$

Question: Does the model allow for a gradient-flow/entropy structure?

$$\partial_t u - \operatorname{div}(B(w) \nabla w) = 0, \quad B(w) = A(u) h''(u)^{-1}$$

Answer: Yes!

• Entropy variable
$$w = h'(u)$$
:

$$w_1 = \frac{\partial h}{\partial u_1} = \frac{\log u_1}{a_{12}}, \quad w_2 = \frac{\partial h}{\partial u_2} = \frac{\log u_2}{a_{21}} \quad \Rightarrow u_2 \sim e^{a_{21}w_2} \text{ positive!}$$

• New diffusion matrix:

i

$$B(w) = \begin{pmatrix} (a_{10} + a_{11}a_{21}^{-1}e^{w_1} + e^{w_2})e^{w_1} & e^{w_1 + w_2} \\ e^{w_1 + w_2} & (a_{20} + a_{21}a_{12}^{-1}e^{w_2} + e^{w_1})e^{w_2} \end{pmatrix}$$

$$\det B(w) \ge a_{10}e^{w_1} + a_{20}e^{w_2} > 0$$

• Matrix B(w) is symmetric, positive definite (not uniform in $w \in \mathbb{R}^2$!)

Example 2: Ion-transport model

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = 0 \text{ in } \Omega, \ t > 0, \quad u(0) = u^0, \quad \text{no-flux b.c.}$

- $u = (u_1, u_2, u_3)$ and u_i models the *i*th ion concentration
- Diffusion matrix:

$$A(u) = \begin{pmatrix} D_1(1-u_2-u_3) & D_1u_1 & D_1u_1 \\ D_2u_2 & D_2(1-u_1-u_3) & D_2u_2 \\ D_3u_3 & D_3u_3 & D_3(1-u_2-u_3) \end{pmatrix}$$

• Entropy: $H[u] = \int_{\Omega} h(u) dx$, $u_4 = 1 - \sum_{i=1}^{3} u_i$

$$h(u) = \sum_{i=1}^{3} u_i (\log u_i - 1) + \frac{u_4}{\log u_4} - 1) + \sum_{i=1}^{3} \log(D_i) u_i$$

• Entropy production:

$$\frac{dH}{dt}[u] = \int_{\Omega} \left(\sum_{i=1}^{3} \partial_t u_i \log u_i - \sum_{i=1}^{3} \partial_t u_i \log \frac{u_4}{u_i} + \sum_{i=1}^{3} \partial_t u_i \log D_i \right) dx$$

Example 2: Ion-transport model

$$h(u) = \sum_{i=1}^{3} u_i (\log u_i - 1) + \frac{u_4}{\log u_4} - 1) + \sum_{i=1}^{3} \log(D_i) u_i$$

• Entropy production:

$$\frac{dH}{dt}[u] = \int_{\Omega} \sum_{i=1}^{3} \log\left(\frac{D_{i}u_{i}}{u_{4}}\right) \partial_{t}u_{i}dx$$
$$\leq -C \int_{\Omega} \left(u_{4}^{2} \sum_{i=1}^{3} |\nabla\sqrt{u_{i}}|^{2} + |\nabla\sqrt{u_{4}}|^{2}\right) dx$$

- Difficulty: degeneracy at $u_4 = 0!$
- New diffusion matrix:

$$B(w) = \frac{u_4}{u_4} \operatorname{diag}(D_1 u_1, D_2 u_2, D_3 u_3)$$

• Entropy structure: $w_i = \partial h / \partial u_i = \log(u_i / u_4)$, back-transformation:

$$u_i = rac{e^{w_i}}{1 + e^{w_1} + e^{w_2} + e^{w_3}} \in (0, 1) \; \Rightarrow \; L^{\infty} \; ext{bounds!}$$

Relation to nonequilibrium thermodynamics

- Chemical potential: $\mu_i = -\frac{\partial s}{\partial \rho_i}$, s: physical entropy density, ρ_i : mass density of *i*th species
- Entropy variables: $w_i = \frac{\partial h}{\partial \rho_i}$, h = -s: mathematical entropy
- Mixture of ideal gases: $\mu_i = \mu_i^0 + \log \rho_i$, $\mu_i^0 = \text{const.} \Rightarrow$

$$w_i = -\frac{\partial s}{\partial \rho_i} = \mu_i^0 + \log \rho_i \quad \text{or} \quad \rho_i = e^{w_i - \mu_i^0}$$

- Non-ideal gases: $\mu_i = \log a_i$, $a_i = \gamma_i \rho_i$: thermodynamic activity
- Example: volume-filling case, $\gamma_i = 1 + \sum_{j=1}^{n-1} a_j$

$$\rho_{i} = \frac{a_{i}}{\gamma_{i}} = \frac{a_{i}}{1 + \sum_{j=1}^{n-1} a_{i}} = \frac{\exp(\mu_{i})}{1 + \sum_{j=1}^{n-1} \exp(\mu_{i})}$$

 \rightarrow exactly the expression for the ion-transport model!

• Open problem: Include nonconstant temperature

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Boundedness-by-entropy method

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u_0, \quad \text{no-flux b.c.}$ Assumptions:

- **③** ∃ entropy density $h \in C^2(D; [0, \infty))$, h' invertible on $D \subset \mathbb{R}^n$ Example: $h(u) = u \log u$ for $u \in D = (0, \infty)$, $(h')^{-1}(w) = e^w \in D$
- Solution A continuous on D, ∃C > 0 : ∀u ∈ D: $f(u) \cdot h'(u) ≤ C(1 + h(u))$ needed to control reaction term f(u)

Problem: h''(u)A(u) semidefinite not sufficient, need gradient estimate! Solution: Assume $D \subset (a, b)^n$, $a_i^* > 0$, $m_i > 0$, and

$$z^{ op} h''(u) A(u) z \ge \sum_{i=1}^{n} a_i(u)^2 z_i^2$$

where $a_i(u) = a_i^*(u_i - a)^{m_i-1}$ or $a_i(u) = a_i^*(b - u_i)^{m_i-1}$ \rightarrow Can probably be generalized to arbitrary increasing functions a_i

Boundedness-by-entropy method

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \text{ in } \Omega, \ t > 0, \quad u(0) = u_0, \quad \text{no-flux b.c.}$ Assumptions:

③ ∃ convex entropy $h \in C^2(D; [0, \infty))$, h' invertible on $D \subset \mathbb{R}^n$

Solution Assume
$$D \subset (a, b)^n$$
, $a_i^* > 0$, $m_i > 0$, and

$$z^{ op} h''(u) A(u) z \geq \sum_{i=1}^{m} a_i(u)^2 z_i^2, \quad a_i(u) \sim u_i^{m_i-1}$$

③ A continuous on D, $\exists C > 0$: $\forall u \in D$: $f(u) \cdot h'(u) \leq C(1 + h(u))$ Consequence of ②: $\nabla u^{\top} h''(u) A(u) \nabla u \geq C(|\nabla u_1^{m_1}|^2 + |\nabla u_2^{m_2}|^2)$

Theorem (A.J. 2014)

Let the above assumptions hold, let $D \subset \mathbb{R}^n$ be bounded, $u_0 \in L^1(\Omega) \cap \overline{D}$. Then \exists global weak solution such that $u(x, t) \in \overline{D}$ and $u \in L^2_{loc}(0, \infty; H^1(\Omega)), \quad \partial_t u \in L^2_{loc}(0, \infty; H^1(\Omega)')$
Boundedness-by-entropy method

Theorem (A.J. 2014)

Let the above assumptions hold, let $D \subset \mathbb{R}^n$ be bounded, $u_0 \in L^1(\Omega) \cap \overline{D}$. Then \exists global weak solution such that $u(x, t) \in \overline{D}$ and $u \in L^2_{loc}(0, \infty; H^1(\Omega)), \quad \partial_t u \in L^2_{loc}(0, \infty; H^1(\Omega)')$

Remarks:

- Result valid for rather general model class
- Yields L^{∞} bounds without using a maximum principle
- Boundedness assumption on *D* is strong (can be weakened in some cases; see examples below)
- Main assumption: existence of entropy h and invertibility of h' on D
- How to find entropy functions h? Physical intuition, trial-and-error
- Theorem can be generalized for degenerate problems

What's next? Proof of existence result, concrete examples, extensions

Proof of existence theorem

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u)$ or $\partial_t u(w) - \operatorname{div}(B(w)\nabla w) = f(u(w))$ Key ideas:

- Discretize in time: replace $\partial_t u(w)$ by $\frac{1}{\tau}(u(w^k) u(w^{k-1}))$ Benefit: Avoid issues with time regularity
- Regularize in space by adding "εΔ^mw^k"
 Benefit: Since div(B(w)∇w) is not uniformly elliptic; yields solutions w^k ∈ H^m(Ω) ⊂ L[∞](Ω) if m > d/2
- Solve problem in w^k by fixed-point argument
 Benefit: Problem in w-formulation is elliptic (not true for u-formulation)
- Perform limit (ε, τ) → 0, obtain solution u(t) = lim u(w^k)
 Benefit: Compactness comes from entropy estimate; L[∞] bounds coming from u(w^k) ∈ D ⇒ u ∈ D

Strategy: Problem in $u \rightarrow$ Solve in $w \rightarrow$ Limit gives problem in u

Proof of existence theorem

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u) \quad \text{or} \quad \partial_t u(w) - \operatorname{div}(B(w)\nabla w) = f(u(w))$

More details:

- Implicit Euler: Replace $\partial_t u(t_k)$ by $\frac{1}{\tau}(u(w^k) u(w^{k-1}))$, $t_k = k\tau$ to obtain elliptic problems, w: entropy variable
- Regularization: Add $\varepsilon(-1)^m \sum_{|\alpha|=m} D^{2\alpha}w + \varepsilon w$, where $H^m(\Omega) \subset L^{\infty}(\Omega) \rightsquigarrow$ uniform ellipticity
- Solve approximate problem using Leray-Schauder fixed-point theorem
- Derive estimates uniform in (au, arepsilon) from entropy production estimate
- Use compactness to perform the limit (au,arepsilon) o 0

Approximate problem: Given $w^{k-1} \in L^{\infty}(\Omega)$, solve

$$\frac{1}{\tau} \int_{\Omega} (u(w^{k}) - u(w^{k-1})) \cdot \phi dx + \int_{\Omega} \nabla \phi : B(w^{k}) \nabla w^{k} dx + \varepsilon \int_{\Omega} \left(\sum_{|\alpha|=m} D^{\alpha} w^{k} \cdot D^{\alpha} \phi + w^{k} \cdot \phi \right) dx = \int_{\Omega} f(u(w^{k})) \cdot \phi dx$$

Step **1**: Lax-Milgram argument

Define S : L[∞](Ω) × [0, 1] → L[∞](Ω), S(y, δ) = w^k and w^k solves linear problem:

$$\begin{aligned} \mathsf{a}(w^{k},\phi) &= \int_{\Omega} \nabla \phi : B(\mathbf{y}) \nabla w^{k} dx + \varepsilon \int_{\Omega} \bigg(\sum_{|\alpha|=m} D^{\alpha} w^{k} \cdot D^{\alpha} \phi + w^{k} \cdot \phi \bigg) dx \\ &= -\frac{\delta}{\tau} \int_{\Omega} (u(\mathbf{y}) - u(w^{k-1})) \cdot \phi dx + \delta \int_{\Omega} f(u(\mathbf{y})) \cdot \phi dx = F(\phi) \end{aligned}$$

- Lax-Milgram lemma gives solution $w^k \Rightarrow S$ well defined
- Properties: S(y, 0) = 0, S compact (since $H^m \hookrightarrow L^\infty$ compact)

Theorem (Leray-Schauder)

Let B Banach space, $S : B \times [0,1] \rightarrow B$ compact, S(y,0) = 0 for $y \in B$, $\exists C > 0 : \forall y \in B, \ \delta \in [0,1] : S(y,\delta) = y \Rightarrow ||y||_B \leq C$. Then $S(\cdot,1)$ has a fixed point.

Step **2**: Leray-Schauder argument

• Discrete entropy estimate: choose test fct. w^k , $au \ll 1$, use h convex

$$\delta \int_{\Omega} h(u(w^{k}))dx + \tau \int_{\Omega} \nabla w^{k} : B\nabla w^{k} dx + \varepsilon \tau C ||w^{k}||_{H^{m}}^{2}$$

$$\leq \underbrace{C\tau}_{<1} \delta \int_{\Omega} (1 + h(u(w^{k}))) dx + \underbrace{\delta}_{\leq 1} \int_{\Omega} h(u(w^{k-1})) dx$$

- Yields ||w^k||_{L[∞]} ≤ C||w^k||_{H^m} ≤ C(ε, τ) ⇒ estimate uniform in (w^k, δ)
 Leray-Schauder: ∃ solution w^k ∈ H^m(Ω)
- Sum discrete entropy estimate (*slightly simplified*):

$$\int_{\Omega} h(u(w^k)) dx + C\tau \sum_{j=1}^{k} \sum_{i=1}^{n} \int_{\Omega} |\nabla u_i(w^k)^{m_i}|^2 dx$$
$$+ \varepsilon \tau C \sum_{k=1}^{k} ||w^j||_{H^m}^2 \leq C$$

• Idea: Derive estimates for u = u(w), not for w

Step **3**: Uniform estimates

• Estimates uniform in (τ, ε) : set $u^{(\tau)}(\cdot, t) = u(w^k)$, $t \in ((k-1)\tau, k\tau]$

$$\begin{aligned} \|(u_i^{(\tau)})^{m_i}\|_{L^2(0,T;H^1)} + \sqrt{\varepsilon} \|w^{(\tau)}\|_{L^2(0,T;H^m)} &\leq C \\ \tau^{-1} \|u^{(\tau)}(t) - u^{(\tau)}(t-\tau)\|_{L^2(\tau,T;(H^m)')} &\leq C \end{aligned}$$

Theorem (Nonlinear Aubin-Lions lemma, Chen/A.J./Liu 2014) Let $(u^{(\tau)})$ be piecewise constant in time, $k \in \mathbb{N}$, $s \ge \frac{1}{2}$, and $\tau^{-1} \| u^{(\tau)}(t) - u^{(\tau)}(t-\tau) \|_{L^{1}(\tau, T; (H^{k})')} + \| (u^{(\tau)})^{s} \|_{L^{2}(0, T; H^{1})} \le C$ Then exists subsequence $u^{(\tau)} \rightarrow u$ strongly in $L^{2s}(0, T; L^{2s})$

Remarks:

- Generalization of standard Aubin-Lions lemma (s = 1)
- Result can be generalized to $(u^{(\tau)})^s \in L^p(0, T; W^{1,q})$ and $\phi(u^{(\tau)}) \in L^2(0, T; H^1)$ if $(u^{(\tau)})$ bounded in L^{∞} , ϕ monotone

Ansgar Jüngel (TU Wien)

Step $\boldsymbol{\Phi}$: Limit $(\tau, \varepsilon) \rightarrow \mathbf{0}$

$$\frac{1}{\tau} \int_0^T \int_\Omega (u^{(\tau)}(t) - u^{(\tau)}(t - \tau)) \cdot \phi dx dt + \int_0^T \int_\Omega \nabla \phi : A(u^{(\tau)}) \nabla u^{(\tau)} dx dt + \varepsilon \int_0^T \int_\Omega \left(\sum_{|\alpha|=m} D^{\alpha} w^{(\tau)} \cdot D^{\alpha} \phi + w^{(\tau)} \cdot \phi \right) dx dt = \int_0^T \int_\Omega f(u^{(\tau)}) \cdot \phi dx dt$$

• Nonlinear Aubin-Lions lemma:

$$\begin{split} u^{(\tau)} &\to u \quad \text{strongly in } L^2(0, T; L^2) \\ \varepsilon w^{(\tau)} &\to 0 \quad \text{strongly in } L^2(0, T; H^m) \\ A(u^{(\tau)}) \nabla u^{(\tau)} &\rightharpoonup A(u) \nabla u \quad \text{weakly in } L^2(0, T; L^2) \end{split}$$

• Limit $(\tau, \varepsilon) \rightarrow 0$ in weak formulation $\Rightarrow u$ solves diffusion system

- *u* satisfies initial datum: Show that linear interpolant of $(u^{(\tau)})$ is bounded in $C^0([0, T]; (H^m)') \Rightarrow u(\cdot, 0) = u_0$ defined in $H^m(\Omega)'$
- Boundary conditions: Contained in weak formulation

Summary

Theorem (A.J. 2014)

Let the above assumptions hold, let $D \subset \mathbb{R}^n$ be bounded, $u_0 \in L^1(\Omega) \cap \overline{D}$. Then \exists global weak solution such that $u(x, t) \in \overline{D}$ and $u \in L^2_{loc}(0, \infty; H^1(\Omega)), \quad \partial_t u \in L^2_{loc}(0, \infty; H^1(\Omega)')$

Strategy of the proof:

- Implicit Euler discretization and Δ^m regularization
- Entropy formulation gives a priori estimates and L^∞ bounds
- Compactness from nonlinear Aubin-Lions lemma

Benefits:

- General global existence theorem
- Yields bounded weak solutions without a maximum principle

Limitations:

- Boundedness of domain *D*, how to find entropy density *h*?
- Particular positive definiteness condition on h''(u)A(u)

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Extensions

• Population model of Shigesada-Kawasaki-Teramoto

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = 0 \text{ in } \Omega, \ t > 0, \quad u(0) = u_0, \quad \text{no-flux b.c.}$

- Entropy defined on unbounded domain $D = (0,\infty)^2$
- Entropy-dissipation inequality:

$$\begin{aligned} \frac{dH}{dt}[u] &= -2 \int_{\Omega} \left(\frac{2}{a_{12}} (a_{10} + a_{11}u_1) |\nabla \sqrt{u_1}|^2 \right. \\ &+ \frac{2}{a_{21}} (a_{20} + a_{22}u_2) |\nabla \sqrt{u_2}|^2 + |\nabla \sqrt{u_1}u_2|^2 \right) dx \end{aligned}$$

- Yields estimate for $(\sqrt{u_i})$ in $H^1(\Omega)$: Previous proof applies
- Main difference: We do not have (u_i) bounded in L[∞](Ω) but only (u_i) bounded in L⁶(Ω) (if space dimension ≤ 3)
- Assumption: Transition rates $p_i(u) = a_{i0} + a_{i1}u_1 + a_{i2}u_2$
- What about more general transition rates?

General population models

• General systems derived from on-lattice model can be written as

 $\partial_t u_i = \operatorname{div}(A(u) \nabla u)_i = \Delta(u_i p_i(u)), \quad p_i$: transition rates

- Population model of Shigesada-Kawasaki-Teramoto: $p_i(u) = a_{i0} + a_{i1}u_1 + a_{i2}u_2, i = 1, 2$
- Nonlinear transition rates: $p_i(u) = a_{i0} + a_{i1}u_1^s + a_{i2}u_2^s$, s > 0
- Desvillettes/Lepoutre/Moussa 2014: 0 < s < 1
- A.J. 2014: 0 < s < 4, $(1 \frac{1}{s})a_{12}a_{21} \le a_{11}a_{22}$ (weak cross-diffusion)
- Desvillettes/Lepoutre/Moussa/Trescases 2015: s > 1 and $(\frac{s-1}{s+1})^2 a_{12} a_{21} \le a_{11} a_{22}$ (less restrictive than above)
- Key idea: Exploit extra regularity using duality method for $\Delta(u_i p_i(u))$

Further generalization: $n \ge 3$ equations

Existence result only under conditions on a_{ij} , related to detailed balance principle (Daus/A.J., in progress)

Ansgar Jüngel (TU Wien)

Entropy production: recall that $u_4 = 1 - u_1 - u_2 - u_3$ $H[u^{(\tau)}(t)] + C \int_0^t \int_\Omega \left(u_4^{(\tau)} \sum_{i=1}^3 |\nabla(u_i^{(\tau)})^{1/2}|^2 + |\nabla(u_4^{(\tau)})^{1/2}|^2 \right) dxds \le H[u^0]$ • Problem: degeneracy at $u_4^{(\tau)} = 0$, no estimate for $\nabla(u_i^{(\tau)})^{1/2}$ • Consequence **1**: $\left| \nabla \left((u_4^{(\tau)})^{1/2} u_i^{(\tau)} \right) \right|^2 \le 8 u_4^{(\tau)} (u_i^{(\tau)})^{1/2} \left| \nabla (u_i^{(\tau)})^{1/2} \right|^2 + 2 (u_1^{(\tau)})^2 \left| \nabla (u_4^{(\tau)})^{1/2} \right|^2 \le C$ $\Rightarrow \nabla \left((u_4^{(\tau)})^{1/2} u_i^{(\tau)} \right) \to \nabla z$ weakly in L^2 but z = ?• Consequence **2**: By nonlinear Aubin-Lions lemma,

$$\tau^{-1} \left\| u_4^{(\tau)}(t) - u_4^{(\tau)}(t-\tau) \right\|_{L^2(\tau,T;(H^m)')} + \left\| (u_4^{(\tau)})^{1/2} \right\|_{L^2(0,T;H^1)} \le C$$

$$\Rightarrow \quad u_4^{(\tau)} \to u \quad \text{strongly in } L^1(0,T;L^1)$$

Consequence ③: L[∞] bound: u_i^(τ) → u_i weakly* in L[∞]
strong × weak = weak: (u₄^(τ))^{1/2}u_i^(τ) → u₄^{1/2}u_i = z weakly in L¹

On-transport model

$$\begin{split} \mathbf{w}_{i}^{(\tau)} &:= (u_{4}^{(\tau)})^{1/2} u_{i}^{(\tau)} \rightharpoonup u_{4}^{1/2} u_{i} \\ \mathbf{y}^{(\tau)} &:= (u_{4}^{(\tau)})^{1/2} \rightarrow u_{4}^{1/2} \\ \nabla (u_{4}^{(\tau)})^{1/2} \rightharpoonup \nabla u_{4}^{1/2} \end{split}$$

weakly in $L^2(0, T; H^1)$ strongly in $L^2(0, T; L^2)$ weakly in $L^2(0, T; L^2)$

• Aim: Perform limit in

$$(A(u^{(\tau)})\nabla u^{(\tau)})_{i} = D_{i} \underbrace{y^{(\tau)}}_{\text{strong}} \underbrace{\nabla w_{i}^{(\tau)}}_{\text{weak}} - 3D_{i} \underbrace{w_{i}^{(\tau)}}_{\text{weak}} \underbrace{\nabla y^{(\tau)}}_{\text{weak}}$$

Problem: weak × weak ≠ weak. Solution: Use lemma below
Gives global existence of bounded weak solutions (u₁, u₂, u₃)

Let $(y^{(\tau)})$, $(u^{(\tau)})$ piecewise constant, bounded, $y^{(\tau)} \to y$ in $L^2(0, T; L^2)$, $\|y^{(\tau)}\|_{L^2(0,T;H^1)} \leq C$ $\|y^{(\tau)}u^{(\tau)}\|_{L^2(0,T;H^1)} + \tau^{-1}\|u^{(\tau)}(t) - u^{(\tau)}(t-\tau)\|_{L^2(\tau,T;(H^1)'} \leq C$ Then \exists subsequence: $w^{(\tau)} = y^{(\tau)}u^{(\tau)} \to yu$ strongly in $L^2(0,T; L^2)$.

General ion-transport model

- Existence result valid for n = 4 species and transition rate $q_i(u_4) = u_4$
- Generalizes result by Burger/DiFrancesco/Pietschmann/Schlake 2010
- Extension: Let $q_i(u_n) = \beta_i q(u_n)$, $\beta_i > 0$ (Zamponi/A.J. 2015)

$$A_{ij}(u) = \delta_{ij}\beta_i q_i(u_n) + u_i q_i'(u_n)$$

• Entropy density:

$$h(u) = \sum_{i=1}^{n-1} u_i (\log u_i - 1) + \int_0^{u_n} \log q(s) ds + \log(\beta_i) u_i$$

- Extension: Transition rates $T_i = p_i(u_i)q(u_n)$ (Zamponi/A.J. 2015)
- Also other choices possible, e.g. $T_i = p_i(u_i) + q_i(u_n)$ (Painter 2009)

Open problems:

- General functions $q_i(u_4)$ or general transition rates T_i
- How to determine entropy for general T_i ? $\forall T_i : \exists$ entropy?

Ansgar Jüngel (TU Wien)

O Tumor-growth model

 $\partial_t u - \operatorname{div}(A(u)\nabla u) = f(u)$ in Ω , t > 0, $u(0) = u_0$, no-flux b.c.

- Volume fractions of tumor cells u_1 , extracellular matrix (ECM) u_2 , nutrients/water $u_3 = 1 - u_1 - u_2$, in one space dimension
- Diffusion matrix: (β , θ : pressure parameters)

$$A(u) = \begin{pmatrix} 2u_1(1-u_1) - \beta\theta u_1 u_2^2 & -2\beta u_1 u_2(1+\theta u_1) \\ -2u_1 u_2 + \beta\theta u_2^2(1-u_2) & 2\beta u_2(1-u_2)(1+\theta u_1) \end{pmatrix}$$

• Entropy:
$$H[u] = \int_{\Omega} h(u) dx$$
, where
 $h(u) = u_1(\log u_1 - 1) + u_2(\log u_2 - 1) + (1 - u_1 - u_2)(\log(1 - u_1 - u_2) - 1)$

• Entropy production inequality:

$$\frac{dH}{dt}[u] + C_{\theta} \int_{\Omega} \left((\partial_{x} u_{1})^{2} + (\partial_{x} u_{2})^{2} \right) dx \leq C(f)$$

and $C_{\theta} > 0$ if and only if $\theta < \theta^* := 4/\sqrt{\beta}$

O Tumor-growth model

Theorem (A.J./Stelzer 2012)

Let $\theta < 4/\sqrt{\beta}, \ H[u_0] < \infty \Rightarrow \exists$ bounded weak solution with $0 \le u_1, u_2 \le 1$

Question: What happens for $\theta > \theta^*$? Partial answer: Numerical results show "peaks" in ECM fraction

O Multicomponent gas mixtures

$$\partial_t u_i - \operatorname{div} J_i = f_i(u), \quad \nabla u_i = \sum_{i \neq i} c_{ij}(u_j J_i - u_i J_j), \quad i = 1, \dots, n$$

- No-flux boundary conditions, $u(0) = u_0$ in Ω
- Assume: Isothermal ideal gas mixture, equal molar masses
- Volume fractions u_i , fluxes J_i
- Problem: ∇u_i depends on J_j not vice versa, need to invert relation
- Solution: Use linear algebra (Perron-Frobenius theorem)

Theorem (Perron-Frobenius, special case)

Let $C = (C_{ij})$ be quasi-positive $(C_{ij} > 0 \text{ for } i \neq j)$, irreducible, $\sum_j C_{ij} = 0$. Then spectrum $\sigma(C) \subset \{0\} \cap \{z \in \mathbb{C} : \operatorname{Re}(\lambda) < 0\}$

Matrix analysis

$$\partial_t u_i - \operatorname{div} J_i = f_i(u) \quad \nabla u_i = \sum_{j \neq i} c_{ij}(u_j J_i - u_i J_j), \quad \text{no-flux b.c.}$$

• Formulate:
$$\nabla u = -C(u)J$$
, $u = (u_1, \dots, u_n)$, $J = (J_1, \dots, J_n)$
 $C_{ij} = c_{ij}u_i$ for $i \neq j$, $C_{ii} = -\sum_{i \neq i} c_{ij}u_j$, $\sum_{i=1}^n J_i = 0$

• $\sum_{j} C_{ij} = 0 \Rightarrow C$ has eigenvalue zero $\Rightarrow C$ not invertible • Perron-Frobenius: Matrix is quasi-positive, irreducible \Rightarrow spectrum $\sigma(-C) \subset \{0\} \cup [\delta, \infty)$ with $\delta = \min_{i,j} c_{ij} > 0$, eigenvalue 0 simple • Reduction to n - 1 eqs.: Because of zero eigenvalue, $\exists X \in \mathbb{R}^{n \times n}$:

$$-X^{-1}CX = \begin{pmatrix} C_0 & b \\ 0 & 0 \end{pmatrix}, \quad C_0 \in \mathbb{R}^{(n-1) \times (n-1)}$$

• Matrices $-X^{-1}CX$ and -C are similar:

$$\sigma(C_0) \cup \{0\} = \sigma(-X^{-1}CX) = \sigma(-C) \subset \{0\} \cup [\delta, \infty)$$

• Consequence: $\sigma(C_0) \subset [\delta,\infty)$ and C_0 is invertible

Ansgar Jüngel (TU Wien)

Extensions

Entropy structure

$$\partial_t u - \operatorname{div} J = f(u), \quad \nabla u = -C(u)J$$

- Let $u' = (u_1, ..., u_{n-1})$: $\nabla u' = C_0 J' \Rightarrow J' = C_0^{-1} \nabla u'$
- Solve $\partial_t u' \operatorname{div}(C_0^{-1} \nabla u') = f'(u)$

Entropy structure: $h(u') = \sum_{i=1}^{n} u_i (\log u_i - 1), u_n = 1 - \sum_{i=1}^{n-1} u_i$

- Entropy variables: $w_i = \partial h / \partial u_i$ (i = 1, ..., n 1)
- New diffusion matrix: $B(w) = C_0^{-1} (\nabla^2 h)^{-1}$ symm., positive definite

$$\partial_t u'(w) - \operatorname{div}(B(w)\nabla w) = f'(u'(w)), \ u(w(0)) = u_0, \ \text{no-flux b.c.}$$

• Boundedness-by-entropy method applies with $D = (0, 1)^n$

Theorem (A.J./Stelzer 2014)

Let (c_{ii}) symmetric, $\sum_{i=1}^{n} f_i(u) \log u_i \leq 0$. Then \exists global weak solution $u_i^{1/2} \in L^2_{loc}(0,\infty; H^1), \ 0 \le u_i \le 1, \ \sum_{i=1}^{n-1} u_i \le 1$

Extensions of Maxwell-Stefan models

Limitations: zero barycentric velocity, equal molar masses, isothermal More realistic models: (see Bothe/Dreyer 2015)

• Include barycentric velocity v:

$$\partial_t \rho_i + \operatorname{div}(\rho_i \mathbf{v} - J_i) = 0, \quad i = 1, \dots, n$$

$$\partial_t \rho + \operatorname{div}(\rho \mathbf{v}) = 0, \quad \partial_t(\rho \mathbf{v}) + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{v}) + \nabla \mathbf{p} = \rho f + \nu \Delta \mathbf{v}$$

where $\rho:$ total mass density, p: pressure

- Include molar masses m_i : $\rho_i = m_i c_i$ with number densities c_i
- Include pressure in driving forces:

$$-
ho_i
abla \log rac{c_i}{c} +
abla p = \sum_{j=1}^n c_{ij} (
ho_j J_i -
ho_i J_j), \quad i = 1, \dots, n$$

where $c = \sum_{i=1}^{n} c_i$: total number density

Mathematical difficulties and open problems:

- Pressure in compressible Navier-Stokes eqs. not a function of ρ
- Maxwell-Stefan relations include ∇p (regularity issues)

Summary

Extensions of boundedness-by-entropy method:

- Population model: Transition rates $p_i(u) = a_{i0} + a_{i1}u_1^s + a_{i2}u_2^s$ with s < 1 or s > 1, the case $n \ge 3$ being work in progress
- ② Ion-transport model: Transition rates $q_i(u_n) = \beta_i u_n$ or nonlinear, valid for all *n* ∈ N, yields bounded weak solutions
- Tumor-growth model: Entropy structure only for pressure coefficients $\theta < \theta^*$, the case $\theta > \theta^*$ being not well understood
- Maxwell-Stefan model: Needs matrix inversion, extension to more general cases (Navier-Stokes coupling) delicate

Further extensions/questions:

- Different boundary conditions: Dirichlet or Robin conditions
- Drift terms in cross-diffusion systems (e.g. due to electric forces)
- Include general reaction terms (Fischer 2015: renormalized solutions)
- Are weak solutions to population models bounded?

Extensions

Supplement: Energy-transport equations

Motivation: All models so far depend on particle densities. What about models including temperature?

• Equations: particle density $\rho(x, t)$, temperature $\theta(x, t)$

 $\partial_t \rho = \Delta(\rho \theta^{1/2-\beta}), \quad \partial_t(\rho \theta) = \kappa \Delta(\rho \theta^{3/2-\beta}) + \frac{\rho}{\tau}(1-\theta) \text{ in } \Omega$

• Parameters:
$$-\frac{1}{2} \leq \beta \leq \frac{1}{2}$$
, $\kappa = \frac{2}{3}(2-\beta)$

- Dirichlet-Neumann boundary conditions, $\rho(0) = \rho^0$, $\theta(0) = \theta^0$
- Parameter β related to elastic scattering rate, relaxation term: $\frac{\rho}{\tau}(1-\theta)$ with relaxation time $\tau > 0$
- Electric field neglected; to simplify, we ignore boundary conditions

Special case: $\beta = \frac{1}{2}$ leads to uncoupled heat equations Physical cases: $\beta = 0$ and $\beta = -\frac{1}{2}$

Entropy structure

 $\partial_t \rho = \Delta(\rho \theta^{1/2-\beta}), \quad \partial_t(\rho \theta) = \kappa \Delta(\rho \theta^{3/2-\beta}) + \frac{\rho}{\tau}(1-\theta)$

Mathematical difficulties:

- Equations are not in divergence form (loss of regularity)
- Equations are strongly coupled and degenerate at $\theta = 0$

Entropy structure: $H[\rho, \theta] = \int_{\Omega} \rho \log(\theta^{-3/2}\rho) dx$

- Entropy variables: $w_1 = \log(\theta^{-3/2}\rho)$, $w_2 = -1/ heta$
- New diffusion matrix:

$$B(w) = \theta^{1/2-\beta} \rho \begin{pmatrix} 1 & (2-\beta)\theta \\ (2-\beta)\theta & (3-\beta)(2-\beta)\theta^2 \end{pmatrix} \Rightarrow \text{ pos. semi-def.}$$

• Entropy-dissipation inequality: constants C_1 , $C_2 > 0$

$$\frac{dH}{dt} + C_1 \int_{\Omega} \theta^{1/2-\beta} \big(\rho^{-1} |\nabla \rho|^2 + \theta^{-1} |\nabla \theta|^2 \big) \leq C_2$$

Problem: Estimate is not helpful near $\theta = 0$

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Entropy structure

$$\partial_t \rho = \Delta(\rho \theta^{1/2-\beta}), \quad \partial_t(\rho \theta) = \kappa \Delta(\rho \theta^{3/2-\beta}) + \frac{\rho}{\tau}(1-\theta)$$

Key ideas:

• New variables $u = \rho \theta^{1/2-\beta}$, $v = \rho \theta^{3/2-\beta} \Rightarrow \theta = v/u$:

$$\partial_t \left(\left(\frac{u}{v} \right)^{1/2-\beta} u \right) = \Delta u, \quad \partial_t \left(\left(\frac{v}{u} \right)^{1/2+\beta} u \right) = \Delta v + R(u, v)$$

• Nonlogarithmic entropies:

$$\frac{d}{dt}\int_{\Omega}\rho^{2}\theta^{b}dx+C_{1}\int_{\Omega}\left|\nabla\left(\rho\theta^{2b+1-2\beta\right)/4}\right)\right|^{2}dx\leq C_{2}$$

• Special choices of $b \in \mathbb{R}$ yields estimates

$$\int_{\Omega} \left(|\nabla \rho|^2 + |\nabla u|^2 + |\nabla v|^2 \right) dx \le C_3$$

• Implicit Euler scheme (u^k, v^k) : apply maximum principle

$$u^k \ge m(u^{k-1}, v^{k-1}) > 0, \quad v^k \ge m(u^{k-1}, v^{k-1}) > 0$$

Global existence

$$\partial_t \rho = \Delta(\rho \theta^{1/2-\beta}), \quad \partial_t(\rho \theta) = \kappa \Delta(\rho \theta^{3/2-\beta}) + \frac{\rho}{\tau}(1-\theta)$$

Theorem (Zamponi/A.J. 2015)

Let $d \leq 3$, $-\frac{1}{2} \leq \beta < \frac{1}{2}$. Then \exists weak solution $\rho > 0$, $\rho\theta > 0$ in Ω , t > 0 ρ , $\rho\theta^{b} \in L^{2}_{loc}(0, \infty; H^{1}), \quad b \in \{1, \frac{1}{2} - \beta, \frac{3}{2} - \beta\}$

- Proof highly technical: truncate $\theta^k = v^k/u^k$, show that $\theta^k \ge m(\theta^{k-1}) > 0$, include boundary cond., use different entropies
- Open problem: Existence with electric field term

$$\partial_t \rho = \operatorname{div} \left(\nabla (\rho \theta^{1/2 - \beta}) + \rho \theta^{-1/2 - \beta} \nabla \mathbf{V} \right)$$

• Equilibration to constant steady state (ρ_D, θ_D) :

$$\|n(t) - n_D\|_{L^2} + \|\theta(t) - \theta_D\|_{L^2} \le \frac{C_1}{(1 + C_2 t)^{1/2}}$$

• Open problem: Prove exponential decay rate (numerical evidence)

Extensions

Overview

- Introduction
- 2 Entropies
- Sokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- O Uniqueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Uniqueness of weak solutions

Entropy methods useful for ...

- Large.time asymptotics (Bakry-Emery method)
- Understanding the structure of diffusion systems (gradient flows)
- Existence analysis, L^{∞} bounds for the solutions

Surprisingly, entropy concept may help to prove uniqueness of solutions

Example: $\partial_t u = \operatorname{div}(\nabla u + u\nabla V)$ in Ω , $u(0) = u_0$, no-flux b.c., V given

- Assume that u_1 , $u_2 \in L^2(0, T; H^1)$ are nonnegative weak solutions, take difference of corresponding equations
- Use test function $u_1 u_2$:

$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} (u_1 - u_2)^2 dx = \int_{\Omega} \partial_t (u_1 - u_2) (u_1 - u_2) dx$$

= $-\int_{\Omega} |\nabla (u_1 - u_2)|^2 dx - \int_{\Omega} \underbrace{(u_1 - u_2) \nabla (u_1 - u_2)}_{=\frac{1}{2} \nabla ((u_1 - u_2)^2)} \cdot \nabla V dx$

Example

First idea: Integration by parts $\frac{1}{2}\frac{d}{dt}\int_{\Omega}(u_1 - u_2)^2 dx + \int_{\Omega}|\nabla(u_1 - u_2)|^2 dx = -\int_{\Omega}(u_1 - u_2)\nabla(u_1 - u_2)\cdot\nabla V dx$ $= -\frac{1}{2}\int_{\Omega}\nabla((u_1 - u_2)^2)\cdot\nabla V dx = \frac{1}{2}\int_{\Omega}(u_1 - u_2)^2\Delta V dx$

If $\Delta V \in L^{\infty}$: apply Gronwall $\Rightarrow u_1 - u_2 = 0$, but strong condition on V!

Second idea: Cauchy-Schwarz inequality

$$\begin{split} &\frac{1}{2} \frac{d}{dt} \int_{\Omega} (u_1 - u_2)^2 dx + \int_{\Omega} |\nabla (u_1 - u_2)|^2 dx \\ &\leq \frac{1}{2} \int_{\Omega} |\nabla (u_1 - u_2)|^2 dx + \|\nabla V\|_{L^{\infty}}^2 \int_{\Omega} (u_1 - u_2)^2 dx \end{split}$$

If $\nabla V \in L^{\infty}$: apply Gronwall $\Rightarrow u_1 - u_2 = 0$, but still strong condition! Third idea: Entropy method (Gajewski 1994)

Ansgar Jüngel (TU Wien)

Example

Third idea: Entropy method, $\phi(s) = s(\log s - 1) + 1 \ge 0$

$$d(u_1, u_2) = \int_{\Omega} \left(\phi(u_1) + \phi(u_2) - 2\phi\left(\frac{u_1 + u_2}{2}\right) \right) dx$$

• Convexity of ϕ gives $d(u_1, u_2) \geq \frac{1}{8} \|u_1 - u_2\|_{L^2}^2$

- Assumption: $u_i \in L^{\infty}(0, T; L^{\infty})$ but only $V \in L^2(0, T; H^1)$
- Differentiate $d(u_1, u_2)$ and insert $\partial_t u_i = \operatorname{div}(\nabla u_i + u_i \nabla V)$

$$\begin{split} \frac{d}{dt}d(u_1, u_2) &= \sum_{i=1}^2 \int_{\Omega} \left(\phi'(u_i) - \phi'\left(\frac{u_1 + u_2}{2}\right) \right) \partial_t u_i dx \\ &= -4 \int_{\Omega} \left(|\nabla u_1^{1/2}|^2 + |\nabla u_2^{1/2}|^2 - |\nabla (u_1 + u_2)^{1/2}|^2 \right) dx \le 0 \end{split}$$

Integrate over t:

$$\frac{1}{8} \|u_1 - u_2\|_{L^2}^2 \leq d(u_1(t), u_2(t)) \leq d(u_1(0), u_2(0)) = 0 \ \Rightarrow \ u_1 = u_2$$

• Drawback: Possibly not very robust (see Gajewski-Skrypnik 2004)

Ansgar Jüngel (TU Wien)

A cross-diffusion example

$$\partial_t u - \operatorname{div}(A(u)\nabla u) = 0$$
 in Ω , $A_{ij}(u) = \delta_{ij}q_i(u_n) + u_iq'_i(u_n)$

- Homogeneous Neumann boundary conditions, initial condition
- $u = (u_1, \ldots, u_n)$: vector of concentrations, $u_n = 1 \sum_{i=1}^{n-1} u_i$
- Models ion transport with volume filling and transition rate q_i
- Simplification: $q := q_i$ for i = 1, ..., n, q monotone
- Yields equations in drift-diffusion form:

 $\partial_t u_i = \operatorname{div}(q(u_n)\nabla u_i - u_i\nabla q(u_n)), \quad i = 1, \dots, n-1$

Step 1: Uniqueness for u_n

- Idea: H^{-1} method
- Sum equations for $i = 1, \ldots, n-1$:

$$\partial_t u_n = \operatorname{div}(q(u_n) \nabla u_n + (1 - u_n) \nabla q(u_n)) = \Delta Q(u_n),$$

 $Q'(s) = q(s) + (1 - s)q'(s) \ge 0$

• Let u_n , v_n be two weak solutions with same initial data

H^{-1} method for u_n

$$\partial_t u_n = \Delta Q(u_n)$$
 in Ω , $\nabla u_n \cdot \nu = 0$ on $\partial \Omega$, $u_n(0) = u_n^0$

• Use test function ξ solving $-\Delta \xi = u_n - v_n$ and homogeneous b.c.

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int_{\Omega} |\nabla \xi|^2 dx &= \int_{\Omega} \nabla \partial_t \xi \cdot \nabla \xi dx = -\int_{\Omega} \partial_t \Delta(\xi) \xi dx \\ &= \int_{\Omega} \partial_t (u_n - v_n) \xi dx = -\int_{\Omega} \nabla (Q(u_n) - Q(v_n)) \cdot \nabla \xi dx \\ &= -\int_{\Omega} (Q(u_n) - Q(v_n)) (u_n - v_n) dx \le 0 \end{split}$$

• Implies that $|\nabla \xi| = \text{const.}$ and $u_n - v_n = -\Delta \xi = 0$

Step **2**: Uniqueness for u_1, \ldots, u_{n-1}

$$\partial_t u_i = \operatorname{div}(q(u_n) \nabla u_i - u_i \nabla q(u_n)), \quad i = 1, \dots, n-1$$

• Idea: entropy method, let $\phi(s) = s(\log s - 1) + 1$

Entropy method for u_i

$$d(u,v) = \sum_{i=1}^{n-1} \int_{\Omega} \left(\phi(u_i) + \phi(v_i) - 2\phi\left(\frac{u_i + v_i}{2}\right) \right) dx$$

• It holds $d(u,v) \geq rac{1}{8} \|u-v\|_{L^2}^2$ and

$$\frac{d}{dt}d(u,v) = -4\sum_{i=1}^{n-1}\int_{\Omega} \left(|\nabla u_i^{1/2}|^2 + |\nabla v_i^{1/2}|^2 - |\nabla (u_i + v_i)^{1/2}|^2 \right) dx \le 0$$

•
$$d(u(0), v(0)) = d(u^0, u^0) = 0 \Rightarrow d(u(t), v(t)) = 0 \forall t \Rightarrow u = v$$

Difficulty: As $u_i, v_i \ge 0$, $\log((u_i + v_i)/2)$ may be undefined

Solution: Use $\phi_{\varepsilon}(s) = (s + \varepsilon)(\log(s + \varepsilon) - 1) + 1$ and let $\varepsilon \to 0$

Theorem (Zamponi/A.J. 2015)

Let q be nondecreasing. Then there exists at most one weak solution to

$$\partial_t u - \operatorname{div}(A(u)\nabla u) = 0$$
 in Ω , $A_{ij}(u) = \delta_{ij}q_i(u_n) + u_iq'_i(u_n)$

with $\nabla u_i \cdot \nu = 0$ on $\partial \Omega$, $u_i(0) = u_i^0$, $i = 1, \ldots, n$.

Overview

- Introduction
- 2 Entropies
- Fokker-Planck equations
 - Bakry-Emery approach
 - Extensions
- Systematic integration by parts
- Cross-diffusion systems
 - Examples from physics and biology
 - Derivation, gradient flows
 - Boundedness-by-entropy method
 - Extensions
- Oniqueness of weak solutions
- Towards discrete entropy methods
 - Time-continuous Markov chains
 - Time-discrete entropy methods

Towards discrete entropy methods

Aims:

- Extend entropy methods to the discrete setting
- Goal: Develop structure-preserving numerical schemes (stable, highly efficient, higher-order accurate)

Main difficulties:

- Proofs need integration by parts and chain rules
- Integration by parts → summation by parts
- Extension of chain rule to discrete case is challenging:

$$abla f(u) = f'(u) \nabla u \iff f(u_i) - f(u_{i-1}) = \frac{f(u_i) - f(u_{i-1})}{u_i - u_{i-1}} (u_i - u_{i-1})$$

Problem: many choices for approx. of f'(u), multi-dimens. case? Possible solutions:

- Design numerical discretizations satisfying particular chain rules
- Minimize use of integrations by parts and chain rules
- Exploit finite-state Markov chain theory

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Discrete-time Markov chains

Markov chain: Describes change of state from time t to t + 1 of stochastic process X_t , $t \in \Sigma$ (finite or countable state space)

- Markov property: transition probability depends on t only
- Transition probability: $p_{ij} = P(X_{t+1} = s_j | X_t = s_i)$

• Transition matrix:
$$P = (p_{ij}), \sum_j p_{ij} = 1$$

- Markov chain irreducible if any state reachable from any state
- Markov chain is positive recurrent if first return time is finite
- π is stationary distribution (invariant measure) if $\pi P = \pi$ (row vector)

Theorem: If Markov chain is irreducible, positive recurrent, and aperiodic then $\lim_{n\to\infty} P^n = (\pi, \dots, \pi)^{\top}$, π stationary

Time-continuous Markov chains

- Let Σ be finite or countable state space, X_t time-homogeneous Markov process (i.e. jump probabilities depend on elapsed time)
- Transition probability: $p_t(\xi,\eta) = \delta_{\xi}(\eta) + tQ(\xi,\eta) + o(t) \ (t \to 0)$
- Semigroup S_t : $(S_t f)(x) = E[f(X_t)|X_0 = x]$ for $f \in L^2(\Sigma)$
- Generator L: operator on $L^2(\Sigma)$ such that $S_t = e^{tL}$

Example 1: Let Q be a (finite or infinite) matrix, $\sum_{\eta} Q(\xi, \eta) = 0$

- Generator: $(Lf)(\xi) = \sum_{\eta} Q(\xi, \eta) f(\eta)$ can be identified with Q
- Semigroup: $S_t f = e^{tQ} f$ solves ODE system $\partial_t u = Qu$, $u_0 = f$
- Relation to transition probabilities: $(S_t f)(\xi) = \sum_{\eta} p_t(\xi, \eta) f(\eta)$

Example 2: Let $Lu = div(\nabla u + xu)$ be Fokker-Planck operator in \mathbb{R}^d

- Semigroup: $S_t f = e^{tL} f$ solves PDE $\partial_t u = Lu$, $u_0 = f$
- Relation to Markov chain: discretize PDE, then $L \rightsquigarrow$ matrix

Time-continuous Markov chains

- Dual semigroup S^*_t : defined by $\int S_t f d\mu = \int f d(S^*_t \mu)$ for measures μ
- Given $\pi > 0$, S_t^* can be identified with ρ_t via $S_t^* \mu = \rho_t \pi$, where ρ_t solves $\partial_t \rho = L^* \rho$ and L^* is adjoint of L in $L^2(\pi)$
- Invariant measure π : $S_t^*\pi = \pi$ or $\int_{\Sigma} Lfd\pi = 0 \quad \text{or} \quad \int_{\Sigma} S_t fd\pi = \int_{\Sigma} fd\pi \quad \text{for all } f$
- Detailed balance or reversible measure: \exists measure π such that $\pi(\xi)Q(\xi,\eta) = \pi(\eta)Q(\eta,\xi)$ for all $\xi, \eta \in \Sigma \Leftrightarrow L^* = L$ on $L^2(\pi)$

Example **1**: ODE system $\partial_t u = Qu$

- Dual semigroup: $S_t^* = e^{tL^*}$, where L^* adjoint to L = Q in $L^2(\pi)$
- Invariant measure:

$$0 = \sum_{\xi} (Lf)(\xi)\pi(\xi) = \sum_{\xi,\eta} Q(\xi,\eta)f(\eta)\pi(\xi) = \sum_{\eta} \left(\sum_{\xi} \pi(\xi)Q(\xi,\eta)\right)f(\eta)$$

- $\Rightarrow \pi Q = 0$ or $\pi = P\pi$, where $P = (p(\xi, \eta))$
- π reversible measure satisfies $\pi(\xi)Q(\xi,\eta) = \pi(\eta)Q(\eta,\xi)$
Time-continuous Markov chains

- Dual semigroup S_t^* : defined by $\int S_t f d\mu = \int f d(S_t^*\mu)$ for measures μ
- Given $\pi > 0$, S_t^* can be identified with ρ_t via $(S_t^*\mu) = \rho_t \pi$, where ρ_t solves $\partial_t \rho = L^* \rho$ and L^* is adjoint of L in $L^2(\pi)$

• Invariant measure π : $S_t^*\pi = \pi$ or $\int_{\Sigma} Lfd\pi = 0$ or $\int_{\Sigma} S_t fd\pi = \int_{\Sigma} fd\pi$ for all f

• Detailed balance or reversible measure: \exists measure π such that $\pi(\xi)Q(\xi,\eta) = \pi(\eta)Q(\eta,\xi)$ for all $\xi, \eta \in \Sigma \Leftrightarrow L^* = L$ on $L^2(\pi)$

Example 2: Fokker-Planck operator $Lu = \operatorname{div}(\nabla u + xu)$ in \mathbb{R}^d

• *L* symmetric with respect to $d\pi = e^{|x|^2/2} dx$:

$$\int_{\mathbb{R}^d} Luv e^{|x|^2/2} dx = -\int_{\mathbb{R}^d} (\nabla u + xu) \cdot (\nabla v + xv) e^{|x|^2/2} dx = \int_{\mathbb{R}^d} u Lv e^{|x|^2/2} dx$$

 $\Rightarrow \pi$ is reversible measure

• Invariant measure $d\pi = \rho dx$ solves $0 = \int_{\mathbb{R}^d} Lf \rho dx = \int_{\mathbb{R}^d} fL' \rho dx \Rightarrow 0 = L'\rho = \Delta \rho - x \cdot \nabla \rho \Rightarrow \rho = \text{const.}$

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Entropy and entropy production

Relative entropy: H[μ|π] = ∫_Σ ρ log ρdπ, where ρ = dμ/dπ
 Entropy for functions: For f log f ∈ L¹(π),

$$\operatorname{Ent}_{\pi}[f] = \int_{\Sigma} f \log f d\pi - \int_{\Sigma} f d\pi \log \int_{\Sigma} f d\pi$$

If $f = \frac{d\mu}{d\pi}$ then $\operatorname{Ent}_{\pi}[f] = H[\mu|\pi]$ (π is probability measure) • $\rho_t = \frac{dS_t^*\mu}{d\pi}$ solves $\partial_t \rho = L^* \rho$, where L^* is adjoint of L in $L^2(\pi)$

• Entropy production:

$$\frac{dH}{dt}[S_t^*\mu|\pi] = \int_{\Sigma} \partial_t \rho_t \log \rho_t d\pi = \int_{\Sigma} L^*\rho_t \log \rho_t d\pi = \int_{\Sigma} \rho_t L \log \rho_t d\pi$$

• Under detailed balance (i.e. $L = L^*$), $\rho_t = \frac{dS_t^*\mu}{d\pi} = S_t \frac{d\mu}{d\pi} =: S_t f$:

$$\frac{dH}{dt}[S_t^*\mu|\pi] = \int_{\Sigma} S_t f L \log S_t f d\pi =: -\mathcal{E}(S_t f, \log S_t f)$$

Ansgar Jüngel (TU Wien)

Exponential decay

$$\frac{dH}{dt}[S_t^*\mu|\pi] = -\mathcal{E}(S_t f, \log S_t f), \quad S_t f = \frac{dS_t^*\mu}{d\pi}$$

• Exponential decay: If $\operatorname{Ent}_{\pi}[f] \leq \kappa^{-1} \mathcal{E}(f, \log f)$ then

$$\frac{dH}{dt}[S_t^*\mu|\pi] \le -\kappa \operatorname{Ent}_{\pi}[S_t f] = -\kappa H[S_t^*\mu|\pi] \Rightarrow H[S_t^*\mu|\pi] \le e^{-\kappa t} H[\mu|\pi]$$

- Question: How to prove $\operatorname{Ent}_{\pi}[f] \leq \kappa^{-1} \mathcal{E}(f, \log f)$?
- Dai Pra/Posta 2014: Compute second time derivative

$$\frac{d^2}{dt^2} \operatorname{Ent}_{\pi}[S_t f] = \int_{\Sigma} \left(L^2 S_t f \log S_t f + \frac{(LS_t f)^2}{S_t f} \right) d\pi$$
$$\geq \kappa \mathcal{E}(S_t f, \log S_t f) = -\kappa \frac{d}{dt} \operatorname{Ent}_{\pi}[S_t f]$$

 \bullet Integration from 0 to ∞ yields

$$-\mathcal{E}(S_0f,\log S_0f) = \frac{d}{dt}\operatorname{Ent}_{\pi}[S_0f] \leq -\kappa \operatorname{Ent}_{\pi}[S_0f]$$

 \Rightarrow Desired estimate $\operatorname{Ent}_{\pi}[S_0 f] = \operatorname{Ent}_{\pi}[f] \leq \kappa^{-1} \mathcal{E}(f, \log f)$

Verification of inequality

It remains to prove:

$$\kappa \mathcal{E}(f, \log f) \leq \int_{\Sigma} (L^2 f \log f + f^{-1} (Lf)^2) d\pi$$

• Generator: $Lf(\xi) = \sum_{\eta} Q(\xi, \eta)(f(\xi) - f(\eta))$, Q: jump rates

Under detailed balance,

$$\mathcal{E}(f,\log f) = -rac{1}{2}\sum_{\xi,\eta}Q(\xi,\eta)(f(\xi)-f(\eta))(\log f(\xi)-\log f(\eta))\geq 0$$

and thus, $\frac{dH}{dt}[S^*_t\mu|\pi] = -\mathcal{E}(f,\log f) \leq 0, \ f = \frac{d\mu}{d\pi}$

• Computation of $L^2 f \log f + f^{-1} (Lf)^2$ much more involved!

Approach 1: Caputo/Dai Pra/Posta 2009

- Employ certain (Bochner) identity and convexity of log terms
- Involves $R(\xi, \eta)$, can to be determined in special cases

Approach 2: Mielke 2013

Write Markov chain as a gradient flow, apply gradient-flow techniques

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Discretized Fokker-Planck equation

One-dimensional Fokker-Planck equation: $u_{\infty}(x) = e^{-V(x)}$ (Mielke 2013)

$$\partial_t u = \partial_x (\partial_x u + u \partial_x V) = \partial_x \left(u_\infty \frac{u}{u_\infty} \partial_x \left(\log \frac{u}{u_\infty} \right) \right)$$
 in Ω , no-flux b.c.

Finite-volume approx.: $u_i(t) = h^{-1} \int_{x_{i-1}}^{x_i} u(x, t) dx$, $x_i = hi$, $\rho_i = \frac{u_i}{u_{\infty,i}}$ $\partial_t u = -D^{\top} LD \log \rho$, $L = \text{diag}(\kappa_i L_i)$, $L_i = \frac{\rho_{i+1} - \rho_i}{\log \rho_{i+1} - \log \rho_i}$

 \rightarrow gives Markov chain model with Q: tridiagonal matrix

- Discrete gradient: $(Du)_i = -h^{-1}(u_{i+1} u_i)$
- Approximations: $\kappa_i = u_{\infty,i+1}^{1/2} u_{\infty,i}^{1/2}$ approximates $u_{\infty,i}$, L_i approx. ρ_i
- Choice of *L* allows for nonlinear chain rule $\rho \nabla \log \rho = \nabla \rho$:

$$(LD \log \rho)_i = \sum_j L_{ij} (D \log \rho)_j$$

= $-\kappa_i \frac{\rho_{i+1} - \rho_i}{\log \rho_{i+1} - \log \rho_i} h^{-1} (\log \rho_{i+1} - \log \rho_i) = \kappa_i (D\rho)_i$

Discretized Fokker-Planck equation

 $\partial_t u = -D^\top L D \log \rho$

- Discrete entropy: $H[u] = \sum_{i} u_i \log(u_i/u_{\infty,i}) =: \langle u, \log \rho \rangle$
- Discrete entropy production:

$$\frac{dH}{dt}[u] = \langle \partial_t u, \log \rho \rangle = -\langle D^\top L D \log \rho, \log \rho \rangle = -\langle D \log \rho, L D \log \rho \rangle$$

- Second time derivative: $\frac{d^2H}{dt^2}[u] = \langle D\log\rho, MD\log\rho \rangle$
- Show that $M \ge 2\mu L \Rightarrow \frac{d^2H}{dt^2} \ge -2\mu \frac{dH}{dt} \Rightarrow$ exponential decay

Theorem (Mielke 2013)

Let
$$V_{i+1} - 2V_i + V_{i-1} \ge \lambda h^2$$
. Then $H[u(t)] \le e^{-2\mu t} H[u(0)]$, where

$$\mu = \frac{2}{h^2} \Phi\left(\frac{h^2}{8}\lambda\right) \to \lambda \quad \text{as } h \to 0, \quad \Phi(s) = \frac{3 \operatorname{Erf}(s^{1/2}) - \operatorname{Erf}(3s^{1/2})}{2 \operatorname{Erf}(s^{1/2})}$$

Error function: $\operatorname{Erf}(s) = 2\pi^{-1/2} \int_0^s \exp(-t^2) dt$

Time-discrete entropy methods

Open problems:

- Markov chain approach only possible for linear equations
- Mielke 2013: restricted to one-dimensional eq., quasi-uniform grids
- Erbar-Maas 2014: porous-medium equation, but no exponential decay

New idea: Time discretization instead of space discretization Motivation: Implicit Euler scheme for $u_k = u(t_k)$

$$\tau^{-1}(u_k - u_{k-1}) = L(u_k), \quad \langle L(u), \phi'(u) \rangle \le 0, \quad \phi \text{ convex}$$

• Example
$$L = \Delta$$
 on \mathbb{R}^d : $\langle -L(u), \phi'(u) \rangle = \int_{\mathbb{R}^d} \phi''(u) |\nabla u|^2 dx \ge 0$

- Entropy: $H[u_k] = \int_{\mathbb{R}^d} \phi(u_k) dx$
- Multiply equation by $\phi'(u_k)$, assume that ϕ is convex:

$$\int_{\mathbb{R}^d} (\phi(u_k) - \phi(u_{k-1})) dx \leq \int_{\mathbb{R}^d} (u_k - u_{k-1}) \phi'(u_k) dx = \tau \langle L(u_k), \phi'(u_k) \rangle \leq 0$$

• Entropy-dissipative scheme: $H[u_k] + \tau \langle -L(u_k), \phi'(u_k) \rangle \leq H[u_{k-1}]$

Time-discrete BDF-2 discretization

Aim: Derive entropy-dissipative higher-order schemes Continuous equation:

$$\frac{2}{\alpha}u^{1-\alpha/2}\partial_t(u^{\alpha/2}) = \partial_t u = L(u) \text{ in } \Omega, \quad u(0) = u_0, \quad \text{no flux b.c.}$$

- Assume: \exists smooth solution $u(t) \ge 0$
- Entropy: $H[u] = \int_{\Omega} u^{\alpha} dx$
- Entropy production: if $\langle L(u), u^{lpha-1}
 angle \leq$ 0,

$$\frac{dH}{dt}[u] = 2\int_{\Omega} u^{\alpha/2} \partial_t (u^{\alpha/2}) dx = \frac{\alpha}{2} \int_{\Omega} L(u) u^{\alpha-1} dx \leq 0$$

BDF-2 method: BDF = backward differentiation formula

$$\frac{2}{\alpha\tau}v_k^{2/\alpha-1}\left(\frac{3}{2}v_{k+2}-2v_{k+1}+\frac{1}{2}v_k\right)=L(u_{k+2}), \quad v_k:=u_k^{\alpha/2}$$

• Entropy production: $H[u_{k+2}] + \frac{\alpha \tau}{2} \langle -L(u_k), u_k^{\alpha-1} \rangle \leq H[u_0]$

Only entropy stability, not entropy dissipation

Time-discrete BDF-2 discretization

$$\frac{2}{\alpha} v_{k+2}^{2/\alpha-1} \left(\frac{3}{2} v_{k+2} - 2v_{k+1} + \frac{1}{2} v_k \right) = L(u_{k+2}), \quad v_k := u_k^{\alpha/2}$$

- Redefine entropy: $H_G[u_{k+2}, u_{k+1}] = \frac{1}{2} \int_{\Omega} (u_{k+2}^{\alpha} + (2u_{k+2}^{\alpha/2} u_{k+1}^{\alpha/2})^2) dx$
- Entropy production: (Bukal-Emmrich-A.J. 2014)

$$H_G[u_{k+2}, u_{k+1}] + \frac{\alpha \tau}{2} \langle -L(u_{k+2}), u_k^{\alpha-1} \rangle \leq H_G[u_{k+1}, u_k]$$

- Questions: Why is this working? Can it be generalized?
- Answer 1: Use inequality

$$2\left(\frac{3}{2}a - 2b + \frac{1}{2}c\right)a \ge \frac{1}{2}(a^2 + (2a - b)^2) - \frac{1}{2}(b^2 + (2b - c)^2)$$

• Answer 2: Yes, use G-stability theory of Dahlquist

One-leg multistep methods and G-stability

$$\tau^{-1}\rho(E)\mathbf{v}_k = L(\sigma(E)\mathbf{v}_k), \quad \rho(E)\mathbf{v}_k = \sum_{j=0}^{p} \alpha_j \mathbf{v}_{k+j}, \ \sigma(E)\mathbf{v}_k = \sum_{j=0}^{p} \beta_j \mathbf{v}_{k+j}$$

- Implicit Euler p = 1: $(\alpha_0, \alpha_1) = (-1, 1), (\beta_0, \beta_1) = (\frac{1}{2}, \frac{1}{2})$
- BDF-2 p = 2: $(\alpha_0, \alpha_1, \alpha_2) = (\frac{1}{2}, -2, \frac{3}{2}), (\beta_0, \beta_1, \beta_2) = (0, 0, 1)$
- A-stability: Numer. solution (v_k) of $v' = \lambda v$ decreasing if $\text{Re}(\lambda) < 0$
- G-stability: $\exists G \in \mathbb{R}^{p \times p}$ symmetric, positive definite: $\forall (v_k) \in \mathbb{R}^p$:

$$(\rho(E)v_k, \sigma(E)v_k)_2 \ge \frac{1}{2} \|V_{k+1}\|_G^2 - \frac{1}{2} \|V_k\|_G^2$$

where $(\cdot, \cdot)_2$ scalar product on \mathbb{R}^d , $\|V_k\|_G^2 = \sum_{i,j=0}^{p-1} G_{ij}(v_{k+1}, v_{k+j})_2$, and $V_k = (v_k, \dots, v_{k+p-1})$

- Dahlquist 1963: A-stable scheme (ρ, σ) is at most of second order
- Dahlquist 1978: (ρ, σ) coprime polynomials: A-stable \Leftrightarrow G-stable
- Consequence: G-stable one-leg method is at most of second order!

One-leg multistep methods and G-stability

 $\rho(E)\mathbf{v}_k = \tau B(\sigma(E)\mathbf{v}_k), \quad B(u) = \frac{\alpha}{2}u^{1-2/\alpha}L(u^{2/\alpha}), \quad \mathbf{v}_k = u_k^{\alpha/2}$

Claim: G-stability implies discrete entropy dissipation

- Assumption: $\langle L(u), u^{\alpha-1} \rangle \leq 0 \Rightarrow \langle B(v), v \rangle \leq 0$ for $v = u^{\alpha/2}$
- G-stability: $(\rho(E)v_k, \sigma(E)v_k)_2 \ge \frac{1}{2} \|V_{k+1}\|_G^2 \frac{1}{2} \|V_k\|_G^2$

• Multiply discrete scheme by $\sigma(E)v_k$:

$$\begin{split} \frac{1}{2} \|V_{k+1}\|_{\mathcal{G}}^2 &- \frac{1}{2} \|V_k\|_{\mathcal{G}}^2 \leq (\rho(E)v_k, \sigma(E)v_k)_2 \\ &= \tau \langle B(\sigma(E)v_k), \sigma(E)v_k \rangle \leq 0 \end{split}$$

• Entropy dissipation: G-stable scheme dissipates $H[V_k] = \frac{1}{2} ||V_k||_G^2$

• Remark:
$$H[V_k] \sim V_k^2 \sim U_k^{lpha}$$

• Convergence rate: Let (ρ, σ) be G-stable, of second order, p = 2, $B + \kappa \operatorname{Id} \ge 0 \ (\kappa > 0) \Rightarrow ||v_k - u(t_k)^{\alpha/2}|| \le C\tau^2$

Runge-Kutta methods

Question: Re-definition of H[u] unsatisfactory – Can we do better? Answer: Use Runge-Kutta methods

$$\partial_t u = L[u], \quad H[u] = \int_{\Omega} \phi(u) dx$$

• Runge-Kutta discretization (uniform time step τ):

$$u_{k+1} = u_k + \tau \sum_{i=1}^{s} b_i K_i, \quad K_i = L \left[u_k + \tau \sum_{j=1}^{s} a_{ij} K_j \right]$$

- Goal: $H[u_k] H[u_{k-1}] \le 0$
- Idea: Fix $u := u_k$, interpret $v(\tau) := u_{k-1}$ as function of τ
- Define $G(\tau) = H[u] H[v(\tau)]$

$$G(\tau) = \underbrace{G(0)}_{=0} + \tau \underbrace{G'(0)}_{\leq 0} + \frac{1}{2}\tau^2 \underbrace{G''(\xi)}_{\leq 0} \leq \tau G'(0), \quad 0 < \xi < \tau$$

ullet To show: $G'(0)\leq 0$ and G''(0)< 0 (then $G''(\xi)\leq 0$ for $au\ll 1$)

Runge-Kutta methods

 $\int_{\Omega} (\phi(u_k) - \phi(u_{k-1})) dx = H[u] - H[v(\tau)] = G(\tau) = \tau G'(0) + \frac{1}{2}\tau^2 G''(\xi)$

• Solvability for $v(\tau) = u_{k-1}$, given $u = u_k$: implicit function theorem

To show:

$$G'(0) = \int_{\Omega} \phi'(u) L[u] dx \le 0, \quad C_{\mathsf{RK}} = 2 \sum_{i=1}^{s} b_i \left(1 - \sum_{j=1}^{s} a_{ij} \right)$$
$$G''(0) = -\int_{\Omega} \left(C_{\mathsf{RK}} \phi'(u) DL[u] (L[u]) + \phi''(u) L[u]^2 \right) dx < 0$$

where DL[u]: Fréchet derivative of L at u

• Runge-Kutta constant C_{RK}:

 $C_{RK} = 2$ (explicit Euler), 1 (Runge-Kutta ≥ 2), 0 (implicit Euler)

Example **1**: Diffusion equation

 $\partial_t u = L[u] = \operatorname{div}(a(u)\nabla u) \text{ in } \Omega, \quad a(u)\nabla u \cdot \nu = 0 \text{ on } \partial\Omega$

- Entropy: $H[u] = \int_{\Omega} \phi(u) dx$, $\phi(u) = \frac{1}{\alpha(\alpha+1)} u^{\alpha+1}$, $\alpha > 0$
- Derivative: $DL[u](w) = div(a'(u)w\nabla u + a(u)\nabla w) = \Delta(a(u)w)$

$$\begin{aligned} G'(0) &= \int_{\Omega} \phi'(u) \operatorname{div}(a(u) \nabla u) dx = -\int_{\Omega} \phi''(u) a(u) |\nabla u|^2 dx \leq 0 \\ G''(0) &= \int_{\Omega} \left(C_{\mathsf{RK}} \phi'(u) \Delta(a(u) L[u]) - \phi''(u) L[u]^2 \right) dx \\ &= -\int_{\Omega} \left((C_{\mathsf{RK}} + 1) \phi''(u) \mu(u)^2 \xi_L^2 + (C_{\mathsf{RK}} + 2) \mu'(u) \mu(u) \xi_L \xi_G^2 \right) \\ &+ \frac{\mu(u)^2}{\phi''(u)} \xi_G^4 \right) dx, \qquad \mu(u) = \frac{a(u)}{\phi''(u)} \end{aligned}$$

Polynomial variables: ξ_L = Δφ'(u), ξ_G = |∇φ'(u)|
Solve by systematic integration by parts

Ansgar Jüngel (TU Wien)

Entropy dissipation methods

Example **1**: Diffusion equation

• Integration-by-parts formulas:

$$0 \leq \int_{\Omega} \operatorname{div} \left(A(u) (\nabla^2 \phi'(u) - \Delta \phi'(u) I) \cdot \nabla \phi'(u) \right) dx, \text{ since } \Omega \text{ convex}$$
$$0 = \int_{\Omega} \operatorname{div} \left(B(u) |\nabla \phi'(u)|^2 \nabla \phi'(u) \right) dx$$

- How to find A(u) and B(u)? Leads to nonlinear ODE system
- Idea: Special solutions or more specific diffusion equations
- Choose $A'(u) = -\frac{2}{3}(C_{RK} + 2)\mu(u)\mu'(u)\phi''(u)$, $B(u) = \frac{1}{3}(C_{RK} + 2)\mu(u)\mu'(u)$ to cancel mixed terms
- Discrete entropy dissipation if $A(u) \ge 0$ and

$$igg(1-rac{1}{d}igg) A(u) + (C_{\mathsf{RK}}+1)\phi''(u)\mu(u)^2 \leq 0 \ (C_{\mathsf{RK}}+2)\mu(u)\mu''(u) + (C_{\mathsf{RK}}-1)\mu'(u)^2 < 0$$

Example 1: Diffusion equation

Theorem (A.J./Schuchnigg 2015)

Let Ω be convex, $k \in \mathbb{N}$, u_k Runge-Kutta solution (\neq steady state). Let

$$egin{aligned} \mathcal{A}(u) &= rac{2}{3}(\mathcal{C}_{RK}+2)\int_{u_0}^u \mu(s)\mu'(s)\phi''(s)ds \geq 0, \ & \left(1-rac{1}{d}
ight)\mathcal{A}(u) + (\mathcal{C}_{RK}+1)\phi''(u)\mu(u)^2 \leq 0 \ & \left(\mathcal{C}_{RK}+2)\mu(u)\mu''(u) + (\mathcal{C}_{RK}-1)\mu'(u)^2 < 0 \end{aligned}$$

Then there exists $\tau_k > 0$ such that for all $0 < \tau \le \tau_k$, $H[u_k] + \tau \int_{\Omega} \phi''(u_k) a(u_k) |\nabla u_k|^2 dx \le H[u_{k-1}]$

- Same conditions as in Liero-Mielke 2013
- Gives local entropy-dissipation estimate, possibly $au_k
 ightarrow 0$ as $k
 ightarrow \infty$
- Numerical experiments indicate that ∃ τ*: τ_k ≥ τ* > 0
- If $\int_{\Omega} \phi''(u) a(u) |\nabla u|^2 dx \ge \kappa H[u]$ then $H[u_k] \le (1 + \tau^* \kappa)^{-k} H[u_0]$

Example **2**: Porous-medium equation

 $\partial_t u = \Delta(u^\beta)$ in Ω

- Compute A(u) and B(u) for $a(u) = \beta u^{\beta-1}$, $\phi(u) = \frac{u^{\alpha}}{\alpha(\alpha+1)}$
- Top figure: Admissible region
 (α, β) for d = 2
- Yields entropy dissipation
- Admissible region not optimal
- Ansatz: $A(u) = c_A u^{2\beta \alpha 1}$, $B(u) = c_B u^{2\beta - 2\alpha - 1}$
- Solve decision problem by computer algebra system
- Bottom figure: Admissible region (α, β) for d = 2

Summary

Time-continuous Markov chains

- Entropy dissipation for logarithmic entropy
- Exponential decay for special cases: Caputo/Dai Pra/Posta 2009 (discrete Bochner identity) and Mielke 2013 (matrix analysis)
- Heavy computations, so far only for linear situations

Space-discrete diffusion equations:

- Only one result by Mielke 2013 for linear Fokker-Planck equation
- Porous-medium equation: work in progress (A.J.-Yue)

Time-discrete diffusion equations:

- One-leg multistep: Entropy stability for BDF-2, entropy dissipation for schemes of order $p \le 2$, but only for G-matrix entropy
- Runge-Kutta: entropy dissipation using systematic integr. by parts

Many open problems for discrete entropy methods!

Total summary

Bakry-Emery approach

- Exponential time decay for diffusion equations, very flexible method, applicable to nonlinear equations, non-constant coefficients etc.
- Yields convex Sobolev inequalities, sometimes with optimal constants
- Systematic integration by parts by solving polynomial decision problems

Cross-diffusion systems

- Formal gradient-flow or entropy structure
- Global existence analysis, L^∞ bounds, uniqueness of weak solutions

Discrete entropy methods

- Spatial discretization: Markov-chain approach of Caputo et al., Mielke
- Time discretization: BDF methods, Runge-Kutta methods

Open problems

Around Fokker-Planck:

- Large-time asymptotics for nonsymmetric Fokker-Planck-type eqs.
- Exploiting techniques from information theory (entropy power)
- Optimality of systematic integration by parts

Around cross-diffusion:

- Bakry-Emery approach for (cross-) diffusion systems
- Finding entropies for general cross-diffusion systems
- Entropy structure for diffusion systems with temperature
- Coupling Maxwell-Stefan and Navier-Stokes models
- Uniqueness of weak solutions to cross-diffusion systems

Around discrete methods:

- Discrete analogue to Bakry-Emery approach
- Field is widely open for nonlinear equations

Thank you for your attention!

