A CONVERGENT ENTROPY-DISSIPATING BDF2 FINITE-VOLUME
SCHEME FOR A POPULATION CROSS-DIFFUSION SYSTEM

ANSGAR JUNGEL AND MARTIN VETTER

ABSTRACT. A second-order backward differentiation formula (BDF2) finite-volume dis-
cretization for a nonlinear cross-diffusion system arising in population dynamics is studied.
The numerical scheme preserves the Rao entropy structure and conserves the mass. The
existence and uniqueness of discrete solutions and their large-time behavior as well as
the convergence of the scheme are proved. The proofs are based on the G-stability of the
BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suit-
able a priori estimates. The novelty is the extension of this inequality to the system case.
Some numerical experiments in one and two space dimensions underline the theoretical
results.

1. INTRODUCTION

The design of structure-preserving finite-volume schemes for parabolic equations is fun-
damental to describe accurately the behavior of the numerical solutions to these equations.
In the literature, usually implicit Euler time discretization are used to derive such schemes;
see, e.g., [2, 3, 6, 9, 26]. However, implicit Euler schemes are only first order accurate in
time, while finite-volume implementations often show second-order accuracy in space [9, 27]
(also see [17] for an analytical result). In order to match the convergence rates in space and
time, there is the need to design second-order time approximations, which lead to structure-
preserving and convergent schemes. Some works suggest higher-order time discretizations
(e.g. [8, 15, 19, 24, 29]), but they are only concerned with semidiscrete equations or dif-
ferent numerical methods, or they do not contain any numerical analysis. In this paper,
we propose a second-order BDF two-point flux approximation finite-volume scheme, which
conserves the mass and dissipates the Rao entropy, for a nonlinear cross-diffusion system
arising in population dynamics. The quadratic structure of the Rao entropy allows us
to extend the G-stability theory of Dahlquist to the system case, leading to existence,
uniqueness, and convergence results.
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The dynamics of the population density wu;(x,t) of the ith species is modeled by the
cross-diffusion equation

(1)  Owy = div(yVu; + u;Vpi(u)), pi(u) == Zaijuj inQ, t>0,i=1,...,n,

Jj=1

where Q C R? (d > 1) is a bounded domain and u = (uy, ..., u,). This model was derived
rigorously from a moderately interacting stochastic particle system in a mean-field-type
limit [11]. The parameter v > 0 is related to the stochastic diffusion of the particle system,
and a;; € R describes the strength of the repulsive or attractive interaction between the
1th and the jth species. We impose initial and no-flux boundary conditions,

(2) u;(0) =u! inQ, Vu-v=0 ondQ, t>0,i=1,...,n,

where v is the exterior unit normal vector to 0€). In the absence of the diffusion parameter
7, (1) can be interpreted as a mass conservation equation with the partial velocity Vp;(u),
which is determined according to Darcy’s law by the partial pressure p;(u). System (1) in
one space dimension for two species, v = 0, and det(a;;) = 0 was first studied in [4], proving
the global existence of segregated solutions (i.e., the supports of u; and uy do not intersect
for all times if this holds true initially). This result was generalized to arbitrary space
dimensions in [5], still for two species. For an arbitrary number of species, the existence
of global weak solutions to (1)—(2) was shown in [25, Appendix B] if det(a;;) > 0 and the
existence of local strong solutions was proved in [18] if det(a;;) = 0.

The matrix A = (a;;) € R™™ does not need to be symmetric nor positive definite so that
the diffusion matrix associated to (1) is generally neither symmetric nor positive definite
too. A minimal requirement for local solvability at the linear level is the parabolicity in
the sense of Petrovskii, which is satisfied if all eigenvalues of A have a positive real part
[1]. Global solvability is guaranteed under the detailed-balance condition, i.e., there exist
Ty,..., T, > 0 such that ma;; = ma;; for all ¢ # j [25, Theorem 17]. This condition also
appears in the theory of time-continuous Markov chains generated by A, and (7, ..., 7,)
is the associated invariant measure. We assume this condition throughout this paper. It
implies that u; := m;u; solves the system

T

j=1 7

with a symmetric positive definite matrix (a;;/7;). Consequently, we may assume, without
loss of generality, that the matrix A in (1) is already symmetric and positive definite.
Due to the nonlinear cross-diffusion structure, the analysis of (1) is highly nontrivial.
The key idea of the analysis is to exploit the entropy structure of (1). This means that
there exist Lyapunov functionals, called entropies, that are nonincreasing in time along
solutions to (1)—(2) and that provide gradient estimates. In the present situation, these
functionals are given by the Boltzmann (or Shannon) entropy Hp and the Rao entropy
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- 1
= Z/ u;(logu; — 1)dx, Hg(u) = 5 / u” Audz,
i=1 79

Q

giving formally the entropy equalities

dH
(3) d—tBJr/ <4’YZ‘V\/U_1|2+ZGUVW Vua>d$—0

i,7=1

dHg n
(4) T +/Q (7 Z a;;Vu; - Vuj + ;UJV]?Z(U)P) dz = 0,

ij=1
and thus providing gradient bounds for u;. The Boltzmann entropy is related to the
thermodynamic entropy of the system, while the Rao entropy measures the functional
diversity of the species [30].

Since the Boltzmann entropy Hpg is convex, the implicit Euler scheme preserves the
entropy inequality (3) (see, e.g., [27] for a related system). The logarithmic structure of
Hp, seems to prevent entropy stability in higher-order schemes like BDF or Crank—Nicolson
approximations [22]. However, thanks to the quadratic structure of the Rao entropy Hg,
we are able to prove stability of Hg for the BFD2 approximation. To explain the idea, let
T be a triangulation of €2 into control volumes K C Q with measure m(K) and let At be
the time step size. Furthermore, let uf , be an approximation of u;(zk,t), where zx € K
and ty = kAt. We write the BDF2 discretization of (1) as

m(K) ('3
(5) At 2“5K_2u KT 2%[( Z
c€EK
where €k is the set of the edges (or faces) of K and F}y , is the numerical flux, defined in
(18) below. The usual idea to derive a priori bounds is to choose the test function uf K in

(5) and to use the inequality

3 1 K
(6) <2 w g — 2UZK+QU”LK) uf o > ho(ul g, u ZK) ho(u fK17uiK2)7

where .
1 1 /a 5 =2 a
ho(a,b) = Z(5a2 — 4ab+b*) = 1 <b) <_2 ) ) (b) . a,beR,

is a positive definite quadratic form. Assuming that F} ,u; ;- can be bounded from below,
this gives a priori bounds for (uf )% Inequality (6) can be explained in the framework of
Dahlquist’s G-stability theory [23].

In our case, we need the test function p;(u%) to derive the discrete analog of (4). Then
the question is whether there exists a functional h(u,v) such that

02 (o2 G o) > bk ) — k)
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Note that we need to sum over all species in this inequality. The main novelty of this
paper is the observation that the scalar inequality (6) can be extended to inequality (7)
for vectors u, v € R™. Indeed, we show in Lemma 7 that (7) holds for

1 1(u\" (54 —2A\ (u
(8) h(u,v) = Z(5uTAu —du" Av + 0" Av) = 2 (v) (—2A N > <v)

with u,v € R". Introducing the discrete Rao entropy by H(u,v) = > o7 m(K)h(u,v)
for piecewise constant functions u and v, this yields the BDF2 analog of the Rao entropy
inequality

H(uP u* ) + eAt|u*], 7 < HW* ' u*72) for k> 2,

where | - |1 2,7 is the discrete H'(€2) norm, defined in Section 2.3, and ¢ > 0 depends on the
smallest eigenvalue of A and on . This inequality is the key for proving our main results:

e Existence and uniqueness of discrete solutions: There exists a solution u¥ to the
BDF2 finite-volume scheme (5), which conserves the mass Y o7 m(K)ul ; of the
1th species and dissipates the discrete Rao entropy. Moreover, the solution is unique
if At/(Az)?*? is sufficiently small, where Az is the size of the mesh (Theorem 3).
This unusual quotient comes from an inverse inequality needed to bound higher-
order norms.

e Large-time behavior: The discrete solution uf converges for large times k — oo
to the constant steady state @; = m(Q)~" [, u)dz with a quasi-explicit exponential
rate (Theorem 4). The proof uses the well-established relative entropy (or energy)
method, but the two-step scheme requires an iteration of this argument.

e Convergence of the discrete scheme: The fully discrete solution converges to a solu-
tion to the semidiscrete problem if Ax — 0, and the semidiscrete solution converges
to a weak (nonnegative) solution to (1)—(2) as At — 0 (up to subsequences; see
Theorem 5).

e Convergence rate: If the solution to (1)—(2) is sufficiently smooth, the semidiscrete
solution converges with order two, as expected for the BDF2 scheme (Theorem 6).

The paper is organized as follows. The numerical scheme and our main results are
detailed in Section 2. In Section 3, we prove the existence and uniqueness of a discrete
solution, while its large-time behavior is analyzed in Section 4. Section 5 is devoted to
the convergence of the full scheme, and the second-order convergence in time is verified in
Section 6. Finally, we present in Section 7 some numerical examples in one and two space
dimensions.

2. NUMERICAL SCHEME AND MAIN RESULTS

We need some simple auxiliary results and some notation before formulating the numer-
ical scheme and the main results.

2.1. Some linear algebra. We denote by | - | the Euclidean norm on R™. Given a sym-
metric positive matrix A € R™" we introduce the weighted norm |u|% := u” Au and the
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weighted inner product (u,v)s := u? Av for u,v € R™. With this notation, the discrete
Rao entropy density can be written as

9) h(u,v) = %(5|u|i — 4(u,v) 4+ |v[4) for u,v € R
Denoting by A,, > 0 the smallest and by Ay; > 0 the largest eigenvalue of A, it holds that
(10) Anlu? < July < Aarlul®  for u € R™.
Let A1,..., A, > 0 be the eigenvalues of A. Then the eigenvalues of the matrix in (8) equal
(3£ V8)\; for i =1,...,n. This shows that for u,v € R”,

1 E
(11) A 1

3= VEn([ul’ + o) < h(u,v) < 3+ V&M (Juf* + [vf).

(3 = V8)(Jufi + [vf%) < hlu,v) < (3 +VE)(lul} + [vf2),

2.2. Spatial domain and mesh. Let d > 1 and let Q C R be a bounded polygonal (if
d = 2) or polyhedral (if d > 3) domain. We associate to this domain an admissible mesh,
given by (i) a family 7T of open polygonal or polyhedral control volumes, which are also
called cells, (ii) a family £ of edges (or faces if d > 3), and (iii) a family of points (xx) ket
associated to the control volumes and satisfying [21, Definition 9.1]. This definition implies
that the straight line Tz between two centers of neighboring cells is orthogonal to the
edge (or face) o = K|L between two cells. For instance, triangular meshes with acute
angles, Delaunay meshes, rectangular meshes, and Voronoi meshes satisfy this condition
[21, Example 9.2]. The size of the mesh is given by Az = maxger diam(K). The family
of edges £ is assumed to consist of interior edges &, satisfying o C €2 and boundary edges
0 € Eext satisfying o C 0. For a given K € T, £k denotes the set of edges of K with
Ex = Eint,k U Eext, - For any o € £, there exists at least one cell K € T such that o € Ek.
For given o € £, we define the distance

4 = {d(:pK,xL) if o = K|L € &k,
7 d(zk,0) it 0 € Eext k>
where d is the Euclidean distance in R?, and the transmissibility coefficient
m(c)
P
where m(c) denotes the (d — 1)-dimensional Lebesgue measure of 0. We suppose the

following mesh regularity condition: There exists 0 < ¢ < 1/2 such that for all K € T and
o € &k,

(13) d(zx,0) > (do.

(12) Ty =

This is equivalent to
d(zk,0)

< —2 for all o0 = K|L
n < A(2,.0) or all o |L,
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where n = (/(1—¢) € (0, 1]. The statement follows by observing that d(zk,o)+d(zp,0) =
d(zk,xp) holds, which is a consequence of the orthogonality of 0 = K|L and Txxy. Hence,
the mesh regularity (13) means that the mesh is locally quasi-uniform. A consequence of
the mesh regularity is the following estimate

(14) Z C Z d(zg, o ):%lm(K) for K €T,

Uegint,}{ Uegmt K

where we used in the last step the formula for the volume of a (hyper-)pyramid.

2.3. Function spaces. Given a triangulation 7, let 7' > 0, Ny € N and introduce the
time step size At = T/Nr and the time steps t, = kAt for £k = 0,..., Np. We set
Qr =Q x (0, 7). The space of piecewise constant functions is defined by

VT:{U Q= R:3(vg)ker CR, v(z ZvKlK }

where 1 is the indicator function on K. To define a norm on this space, we define for
KeT, o€k,

Vg, if o = K|L € gint,K7
VKo = { Dk v = vk, — vk, Dov:=|Dg,vl.

Vi if 0 € Eext ki

Let 1 < ¢ < oo and v € V7. The discrete W4(2) norm on Vi is given by
1/
[Wlliar = (Ioll§q 7 +[vligr) ™ where

lld,r = > m(E)|oxl?, i, 7= m(o)d,

KeT o€€int
When ¢ = oo, we define |v|1 07 = maxyes,

q

D,v
ds

for v € Vr.

o | Dov]/dy. If v = (v1,...,0,) € VP is a
vector-valued function, we write for notational convenience

n n
[ollogr =Y llvillogr:  Vollogr =D Vuillogr
i=1 i=1
We associate to the discrete W14 norm a dual norm with respect to the L? inner product:

|0]| 21,47 = sup { / vwdz : w € Vr, |wll1g7 = 1}‘
Q

Finally, we introduce the space Vi a; of piecewise constant functions with values in V7,

Nr
VT,At = {U : QT — R . H(Uk)kzl,...,NT C VT, ’U(I,t) = ka(l’)l[tk_htk)(t)},
k=1
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equipped with the L?(0,7; H'(Q)) norm

Ny 1/2
vl L2070 (02)) = (Z At|]ka%727T> for all v € Vi as.
k=1

2.4. Discrete gradient. The discrete gradient is defined on a dual mesh. For this, we
define the cell Tk, of the dual mesh for K € T and o0 € Eg:

e “Diamond”: Let 0 = K|L € &y k. Then Tk, is that cell whose vertices are given
by z, xr, and the end points of the edge . In higher dimensions, they might be
(double) (hyper-)pyramids.

o “Triangle”: Let 0 € e k. Then Tk, is that cell whose vertices are given by xx
and the end points of the edge o.

The union of all “diamonds” and “triangles” Tk, equals the domain € (up to a set of
measure zero). The property that the straight line Zx 7z is orthogonal to the edge o = K|L
implies that
m(o)d(zg,zr) =dm(Tk,) forall o = K|L € Ey.
The approximate gradient of v € Vi a; is then defined by
m(o)
m(TKJ)

where vk , is the unit vector that is normal to ¢ and points outwards of K.

V7To(z,t) = Dio(v")vky for o € Txg, t € (ti_1,ts],

2.5. Numerical scheme. The initial functions are approximated by their L?(2)-orthogo-
nal projection on Vi

1
15 vk = — | u(z)dx forall KeT,i=0,...,n
( ) uz,K m([{)/}{uz(x) z or a 7-7 ? ) y TV
Let ub-t = (ulf}(l, . ,uﬁ}%) for K € T be given. Since the BDF2 scheme is a two-step

method, we need a first time step which is computed from the implicit Euler method. The
following time steps are determined from the BDF2 method. The finite-volume scheme
reads as

m(K)
(16) Tt(u’le - U?,K) + Z ]:il,K,a =0,
o€k
K) /3 1
(17) %t) (ﬁuﬁK —2uf it + 5u§ﬁ;§) + ) Fl,=0 k>2
o€€K
fori=1,...,n, K € T, and the numerical fluxes are given by
(18) ‘F;]?K,J = —Ts (W/DKyUu? + (uia)+DK,Upi(uk))’

where 7, is defined in (12) and 2™ = max{0, z} denotes the positive part of z € R. Finally,
the so-called mobility is given by

(19) uf, = M(uf,uf ) foro=K|L, uf,=0 else,

1,0 7
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where M is a general mean function satisfying

(i) M :[0,00)* — [0,00) is Lipschitz continuous, satisfies M (u,u) = u (consistency),
and has linear growth in the sense M (u,v) < |u| + |v| for u,v > 0.
(ii) There exists C' > 0 such that |M(u,v) — u| < Clu — v| for all u,v > 0.

Examples for M are M(u,v) = (u+v)/2 or M(u,v) = max{u,v}. Note that we do not
need logarithmic mean functions like in [27], since we do not use the chain rule in the
cross-diffusion part, so that we can use simpler expressions.

Remark 1 (Nonnegativity). We truncate the mobility by (uf,)" in the numerical flux
(18) to ensure the discrete Rao entropy inequality (see (21) below). Indeed, when testing
(17) with p;(u*), we need that the sum Y . 7,(uf,)"|Dg,opi(u")|* is nonnegative. Un-
fortunately, the quadratic Rao entropy does not allow us to prove the nonnegativity of the
discrete solution, and standard maximum principle arguments do not apply here, so that
the truncation cannot be removed. A positivity-preserving BDF2 finite-difference scheme
was proposed in [13], but the proof relies on discrete L>(£2) bounds for ©*~!, which are not
available in our case. Also the Shannon entropy does not help (as in [27]), since it is not
compatible with the BDF2 discretization. Indeed, when we wish to derive a discrete analog
of (3), we need a finite continuous functional h(u,v) satisfying h(u,u) = > u;(logu; —1)
(consistency condition) such that

(3 1
Z <§ufK — Zuﬁ}{l + §ufj(2) log ufK > h(ub, ubt) — h(ubt uk?).
i=1

If uf K= uﬁ}l — 0 and uf;f > 0 for all i € {1,...,n}, the previous inequality converges
to —oco > —h(0,uk?), which is absurd. At least, we obtain nonnegative solutions in the
limit (Az, At) — 0; see Theorem 5 below.

Remark 2 (Discrete integration by parts). The fluxes ]:sza are consistent approximations
of the exact fluxes through the edges if we impose the conservation F; i » + F; 1, = 0 for
all edges 0 = K|L, requiring that they vanish on the Neumann boundary edges, i.e.,
Firko = 0 for all 0 € Ex k. In particular, for v = (vk) € Vi, the following discrete
integration-by-parts formulas hold:

(2()) Z Z ]:i,K,crUK = - Z ‘E,K,O’DK,UU’ Z Z TO'<DK,O'U)UK - _|U‘%,2,7—'

KeT océi g€&int KeT oe€i
o=K|L

2.6. Main results. We impose the following hypotheses.

(H1) Data: Q C R? with d > 1 is a bounded polygonal (d = 2) or polyhedral (d > 3)
domain, T > 0, and u° € L*(Q;R"). We set Qr = Q x (0,7).

(H2) Discretization: 7 is an admissible discretization of €2 satisfying (13) and ¢, = kAt
for k=1,..., Np.

(H3) Coefficients: Let v > 0, and A = (a;;) € R™*" is symmetric and positive definite.
Let A\, > 0 and A\j; > 0 be the smallest and largest eigenvalue of A, respectively.
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The positivity of + is not needed for the existence analysis but for the convergence
result, where we need higher-order integrability that is deduced via the discrete Gagliardo—
Nirenberg inequality from the gradient bound. As mentioned in the introduction, the
symmetry and positive definiteness of A can be replaced by the positivity of the real parts
of the eigenvalues of A and the detailed-balance condition.

Recall the discrete BDF2 Rao entropy (see (9))

Hu,0) = 3 m(E)h(ur, vg) = 411 S () (3l — A, vx0) 4 + fox)

KeT KeT

for u,v € V. If u = v, this expression reduces to the usual discrete Rao entropy, used for
the implicit Buler scheme, H(u) := H(u,u) = § > pcqr m(K)|ugl3. Our first result is the
existence of a discrete solution.

Theorem 3 (Existence and uniqueness of discrete solutions). Let Hypotheses (H1)-(H3)

hold, let k € N, and let u*=1 € V2! be given. Then there exists a solution u* = (uf, ..., uk) €
VE to scheme (15)—(19) satisfying the discrete entropy inequality

(21) H(uF ub=1) 4+ yAt| AV 20k %7277— < H@W o2 for k> 2,

(22) H(u") + 7 AAV W, 7 < H(u),

and the scheme preserves the mass, Y ccqrm(K)uf o = [ ud(x)de fori=1,... ,n, k> 1.

These results also hold if v = 0. Furthermore, the solution is unique if v > 0, min, g, d, >

EAx for some & >0, and

int

At Cd &0,
(Az)d+2 A2, L2H (u0) ’
where ¢ is defined in (13) and L is the Lipschitz constant of the mean function M, defined
in (19).

The existence of a discrete solution is proved by a fixed-point argument using the Brouwer
degree theorem. Uniform estimates are obtained from the discrete Rao entropy inequality
(21), where the BDF2 time approximation is estimated according to (7). This inequality,
which is the key of our analysis, is proved in Lemma 7.

The uniqueness of solutions is proved by using the relative entropy method, which is
equivalent to the energy method in the present case, since the Rao entropy is quadratic. In
other words, we use the test function p;(u*) — p;(v*) in the difference of the equations (17)
satisfied by two discrete solutions u* and v*. The cross-diffusion part contains cubic ex-
pressions, which turn into quadratic ones if | AY/?v¥|; . 7 is bounded (similar as in [12]). By
an inverse inequality, this norm is bounded, up to some factor, by (Az)~%271|| AY20k g 5.7,
and ||AY?v¥||g97 is bounded because of (21)—(22). The remaining quadratic expression
is estimated by using the gradient bounds (which requires v > 0) and the discrete L?(QQ)
bound coming from the time discretization (and introducing the factor At). The condition
min, g, dr < Az is discussed in Remark 8.

For the next result, we set @, = m(Q)™" [, uldz and recall the discrete Poincaré-
Wirtinger inequality ||[v — 9]jo27 < Cp(V2?v|1 97 for v € Vi [7, Theorem 3.6]. Then,
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in view of (10),

Ao\ 12
(23) |AY2 (0 — 0)]jpar < Cp (A—MJ |AY?y| 7 for v e Vi
Theorem 4 (Large-time behavior). Let u* be a solution to scheme (15)—(19). Then, for

k> 2,
JAY2(uF — a)[loar < V2IAY2 (W — @)oo (1 + sAE)~FD/,

where k& = 4yAnC/((3 +V8)C2An) and Cp > 0 is the constant of the Poincaré-Wirtinger
inequality (23).

The theorem states that u* converges exponentially fast to the constant steady state .
Indeed, setting Aa; := log(1 + kAt)/(At) ' k as At — 0, we have

A2 = Dlloar < VEIA(0 = @)loar exp(-Aniti), k> 2.

The proof of Theorem 4 is based on the discrete entropy inequality for the discrete relative
Rao entropy H (u*—u,u* ! —u), similar to (21). Indeed, by the discrete Poincaré-Wirtinger
inequality, the discrete gradient term is bounded from below by the discrete L*(2) norm
of u* —u. As H(uF — i, uF~* — @) can be estimated in terms of the discrete L?(£2) norms of
u* — 1 and uF~! — @, we need to iterate the entropy inequality a second time. Then, using
(11), we arrive at the inequality

Hu" —a,u" ' —a) < (1 + A H@W? —a,u" 3 — 1),

and solving this recursion shows the result.

The numerial convergence of the scheme is proved in two steps. First, we show that the
fully discrete solution u € V7, indexed with the space grid size Az, — 0 as m — o0,
converges, up to a subsequence, to a solution u* € H'(Q2) to the semidiscrete system

1
(i — ) = div(y:Vu; +u; Vpi(u')),

At
1 /3 1
Y <§uf —2uft 4 §uf_2> = div(1;Vuf + (ub)TVpi(u®) in Q,
with no-flux boundary conditions Vu? - v =0 on 9, i = 1,...,n. Second, we prove that

a subsequence of the sequence of semidiscrete solutions converges to a weak solution to
(1)-(2) as At — 0. Both steps may be summarized as follows (the precise convergence
statements can be found in Propositions 9 and 11).

Theorem 5 (Convergence of the scheme). Let Hypotheses (H1)-(H3) hold and let (Tm)men
be a sequence of admissible discretizations of Q0 satisfying (13) uniformly in m and Ax,, —
0, At,, — 0 as m — oo. Then the solution (u,,) to (15)—(19), constructed in Theorem 3,
converges, up to a subsequence, as m — oo to a function u = (uy, ..., u,) satisfying u; > 0
in Qp fori=1,...,n, u; € L*(0,T; H'(Q)), du; € L**+(0,T; WH+4(Q)"), and u is a
weak solution to (1)—(2).
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The proof is based on suitable estimates uniform with respect to Az,, and At,,, derived
from the entropy inequality (21). For the limit Az, — 0, we follow the strategy of [10].
The compactness argument is different, since we still keep the time discretization. The limit
At,, — 0 is based on a higher-order integrability property derived from the Gagliardo—
Nirenberg inequality and on the Aubin-Lions compactness lemma in the version of [16].

We need the condition v > 0 since the application of the discrete Gagliardo—Nirenberg
inequality requires discrete gradient bounds. However, the term involving p;(u) only pro-
vides a bound for the discrete kinetic energy »- o g( uf ) ¥ D opi(u)]?, from which we
are unable to conclude gradient bounds. For the Euler scheme, this issue can be overcome
by using the Boltzmann entropy inequality, which provides bounds in L?*(0,7T; H'()) and
L>®(0,T; LY(2)) (see (3)), and consequently in L?+?/¢(Qy), which is the required higher-
order integrability bound. As mentioned in the introduction, this entropy is not compatible
with the BDF2 discretization. Therefore, the restriction v > 0 seems to be unavoidable
with our approach.

Finally, we verify that the convergence of the semidiscrete system is of second order.

Theorem 6 (Second-order convergence). Let u* be a solution to (31) and assume that the
solution to (1)—(2) satisfies u € C3([0,T]; L*(2)) N L>(0,T; W>°(Q)). Furthermore, let
e > 0 be arbitrary and assume that

4(3 — V8)yA

At < .
AVl Zo ) + 47Ame

Then there exists C() > 0, which is of order e~'/? as ¢ — 0 but independent of At, such
that
max || AY2(uf — wi(tp) |22 < C(e)(AY)? fori=1,...,n
k=1,....Np

We allow for the parameter € > 0 to minimize the time step size constraint; however,
optimizing this constraint gives large constants C'(¢). The theorem is proved by analyzing
the relative entropy H (u(ty) — u*, u(ty_1) — u*~1), using a Taylor expansion for u; up to
order (At)? (which requires a bound for 93u;), and iterating the entropy inequality once
more. The resulting recursive inequality for the relative entropy can be solved, leading to
the desired second-order bound.

3. PROOF OF THEOREM 3

First, we make precise inequality (7). Recall definition (8) of h(u,v) and let H(u,v) =
> xer M(K)h(u,v) be the discrete Rao entropy.

Lemma 7 (BDF2 inequality). [t holds for u,v,w € R" that

3 1\ 1 )
§u—20+§w Au:h(u,v)—h(v,w)+1|u—2v+w|A.
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In particular, for u*, u*=', w*=2 € VI,

1
Z Z (2 uik = 2ujy +2ulK)aw uf o > H(u" o) — Hu" ' u*?),

i,j=1 KET

Proof. The proof follows by a direct computation. O

3.1. Definition and continuity of the fixed-point operator. We assume that £ > 2,
since the existence of a solution u' € V* to the Euler scheme (17) satisfying (22) follows
from [26, Theorem 1]. Let u*~* € V. be given and let R > 0, § > 0. We set

ZR:{w:(wl,.. Jwy) €V |lwilligr < Rfori=1,. n},

and let w € Zi. We consider the linear regularized problem

m(K) /3 1
20) (3 Dot~ ) = 0 S+ 12 + T et

oefk ocelk

fori=1,...,n, K €T, where
fj_KU(w) =T (VDK,awi + wZ_JDK,api(w))-

The e-regularization guarantees the coercivity of the associated bilinear form, while the
truncation w;;_ is needed to obtain the nonnegativity of the entropy dissipation (see the
estimate of Iz below).

We claim that (24) has a unique solution w® € V. Indeed, since the mapping g(w®) =
€(Dges, ToDrowi — m(K)ws i) is linear and acting on finite-dimensional spaces, we only
need to verify its injectivity. Let w® be in the kernel of this mapping. Multiplying g(w®) = 0
by wf j, summing over K € T, and using the discrete integration-by-parts formula (20)

gives
0= 3 7 Orewf)ui, — Y mE)(wig)? = —

KeT o€l KeT

This yields w® = 0 and proves the claim.

Next, we show that the fixed-point mapping F' : Zr — V7!, F(w) = w®°, is continuous.
For this, we multiply (24) by —w§;, sum over K € 7, and use discrete integration by
parts and the Cauchy-Schwarz inequality:

1 3 1
Vil =~ 30wl (G = 25+ 0k Jutse+ B F w)Dicout
KeT

Jegmt
oc=K|L
1,
(25) > AtH W; — Quk T+ §Uf 2 wa|’0,2,’r+’Y|wi\1,2,T|wﬂl,2,T
0,2, 7
- Z Ta(wi,a) DK,api(w)DK,awf'
Uegint

o=K|L
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For the last term, we use the Cauchy—Schwarz inequality and the fact that any norm on
V7 is equivalent:

- Z Ta(wi70)+DK,apz( DKO'w Z Z Taan DKO'wZDKO'w

0€Ent Jj=1 o€&int
oc=K|L o=K|L
n 1/2 1/2
€12 2 + \2 2
< (X woautP) (X el D)
7=1 o€Eint €&t
o=K|L oc=K|L

n
< C(A)wlloser Y wflarlwshor < CA R) w127,

J=1

where we took into account the linear growth of w;, with respect to w; x and w; 1, (see (19))
and the definition of Zp. Inserting these estlmates into (25) and dividing by ||wZ 1,27, it
follows that e||wi||127 < C(A, R).

This bound allows us to verify the continuity of F. Indeed, let w* — w as ¢ — oo
and set w** = F(w’). Then (w®%)sey is uniformly bounded in the discrete H'(£2) norm.
Therefore, there exists a subsequence, which is not relabeled, such that w® — w® as
¢ — oo. Passing to the limit ¢ — oo in scheme (24), we see that w® is a solution of
the scheme and consequently w® = F(w). Since the solution to the linear scheme (24) is
unique, the entire sequence (w**)sey converges to w®, which shows the continuity of F'.

14

3.2. Existence of a fixed point. According to the Brouwer degree fixed-point theorem,
it is sufficient to show that for all (w®,p) € Zg x [0,1] such that w® = pF(w®), it holds
that w® € 0Zp or, equivalently, ||w®|j;27 < R. We claim that this is true for sufficiently
large R > 0. Indeed, let w® be such a fixed point. It satisfies

(3 meDut — ()

o€k

p 3 . 1 e
= Em(K) (gwl’K - 2uf’K1 + QUZK) +P Z ‘E‘TK,U(U) )

cefk

We multiply this equation by —(At)p;(w®) and sum over i = 1,...,n, K € T. Then
0 =1 + Iy + I35, where

I, = —eAt Zn: Z ( Z TO'DK,O'w;: - m(K)wze,K) aijwj,K7

1,j=1 KET “o€fk

1 g
P sz Z al]( —2u1K + 2ukK2)wj7K,

i,j=1 KET
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:—pAtZ Z '/TzKa DKopz( )

i=1 0€&nt
oc=K|L

By discrete integration by parts,

I = eAt Z ( Z T @i Dk o0 D oW + Z m(K)aijwin;K)

ivjzl Uegint KeT
oc=K|L

> eAnAt([w7 i 7+ 0° 15 27) = XAt w?][1 5 7,

and by Lemma 7,
L > H(w®, v — Hu ! b2,

For the third term, we obtain

n n n 2
I3 = pAt Z Z To70ij D ow; D gw§ + pAl Z Z To (Wi ,)" ( Z aijDK,a“ﬁ)

1,J=1 0E€Ent =1 o€&nt 7j=1
o=K]|L o=K]|L
1/2 €2 1/2, €2
> pAt Y 1oAY Dicow|? = yp At AVl 1
Jegint
o=K|L

Collecting these estimates gives
(26) eAt|wf||T 57 + H(w", uF Y At p| AV 6|12T<H( 1 b2y,

Setting R = (eAt)™/2H (uF~ uk=2)1/2 4 1, we infer that ||wf||2,; < (R —1)* < R?* and
thus w® &€ 0ZR, which shows the claim. Hence, there exists a fixed point w® to F', which is
a solution to

c . m(K) /3
(27) 5( Z Ta’DK,owi _m(K>w1,K> - %(211%]( 2uzK+ U > Z ‘EKO’

oeli cefk

3.3. Limit ¢ — 0. The solution w*® to (27) satisfies the regularized entropy inequality
(26) with p = 1, and the right-hand side is independent of € and M. It follows from the
Bolzano—Weierstrafl theorem that there exists a subsequence of w®, which is not relabeled,
such that w® — w as ¢ — 0. In particular, e'/?w® — 0. Since the problem is finite
dimensional, we can pass to the limit ¢ — 0 in (27). Consequently, u* := w is a solution
o0 (17)—(19). The same limit in (26) with p = 1 leads to the discrete entropy inequality of
Theorem 3, which finishes the proof.

3.4. Uniqueness of solutions. Let u*,v* € VI be two solutions to (15)-(19) with the

same initial data ©® = v°. We take the difference of the equations satisfied by u* and

v*, multiply the resulting equation by p;(uk.) — pi(vh) = > i ag(uf g — v ), sum over
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1=1,...,n, K € T, and use discrete integration by parts. This leads to 0 = I + I5 + I,
where

I, = A Z Z K)aij(u; g — UﬁK)(“ﬁK - UJkK)

i,j=1 KET

I = Z Z ToYaij Do (uf — vf)DKﬂ(u? — vf)

1,j=1 0€&ns
oc=K|L

ls = Z Z Tots; (4} ) Dicottf — (vf) Doy asDrc o (uf — vf).

]Z 1 UEEmt
o=K|L

By the definition of the weighted norm, Iy = (3/(2At))[|AY2(u* — v*)||2 7. Furthermore,

L2y Y ml(A D — oF)]P = A2 — o),

Uegint
oc=K|L

We add and subtract the term (u} )*D K, av in Ig and apply the Cauchy—Schwarz inequal-
ity:

Z Z Taawaw( o) Do (uf —ovh)

7] [ 1 Uegmt
o=K|L

(k) = (05, ) Dic ot ) Do (uf = of)

n

=Y > k)t (Z%Dmu — v} )(ZWDKJ —vﬁ)

=1 Uegint
o=K]|L

— Y 7 (ADg )" [diag ((uf,)* = (vf,)T)AV?] (A D o (u — 0*))

0€Eint
o=K|L

1/2
_< Z Tg|ADK7gvk|2| diag ((ufg)+ _ (U£U)+)Al/2’2>

0€E€int
oc=K|L

1/2
X ( > T(,|A1/2DK,(,<uk—vk)|2) ,

Uegint
o=K|L

v

where diag((uf,)" — (vf,)") denotes the diagonal matrix with the entries (uf,)™ — (vf,)*

1,0 ) )

fort=1,...,n. Together with
|AD g ,0*| < |AY2[|AV?D g 0| < AP Dk ov|4 and
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| diag ((uf,)" — (vF,)")AV?| < | diag ((uf,)" —

k )+)||A1/2|
<A max [(uf,) " = (0F,) | < AW max |uf, — ol |,
we find that
Is > =AY ]1007 max ( Z m(o)d, |uw—vw|2) |AY2 (uF — k)] o7
Uegmt
oc=K|L

It remains to estimate the term involving the difference |u
continuity of the mean function M (u?

k
U; KO uz L)
mesh regularity (14),

Z m(o)dg|uf’a—vﬁo|2 Z Z o)d, |u
0€Ent

KGT O’Ggmt K
o=K|L

<ZY 3w

— vf,|. By the Lipschitz
» with Lipschitz constant L > 0 and the

— v,

2
|uzK 5K| + |UfL - 'U?iLl)
KeT Uegmt
oc=K|L
2dL?
<2LQZ Z o)ds ‘%K‘%K‘Z — m(K)’uf,K_UiKQ
KeT o€&int KeT
oc=K|L
uF — o < 205 AV2 (g — k|12 7
c | 16.2,7 G [ AY=( Moz
This shows that
AL (2d
Is = _1—/2(?) |AMY 20k o || AY2 (P — o) [l 2,7 | A2 (WP — 0F) |1 27

Collecting the estimates for Iy, I5, and Is and using Young’s inequality gives
(28)

AVt = o) Ry A = )R g

ML 24\ V2
< ﬁ (f) |AY 20k o || AV (b — o)

3 At dN\2,L?
< S AV — Ry + S

DL 20 A = )
Now, the inverse inequality |AY20%|; o 7 < C'(d)(Az)~¥2(~12| AV20k], 5 7 [14, Prop. 3.10]
and condition d, > {Ax imply that

1/2 (uk . Uk) ‘172’7_

C'(d)?
A ey < (A:(U)ZIC > 2 (A

d
Uegint 7
o=K|L
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< dc Z 52 Ko(AP)P.

o= K\L

It follows from (14) and |Dy . (AY20%)[2 < 2(|ok |4 + |[0k|4) that

C'(d d
|A1/2 k|2 T < (Ag;)gl—+)2§2<' Z Em(K>|DK,U<A1/2Uk)|2
KeT

2dC"(d)” vz k2 _ Cd&C) viye ke
< (Az)IP2 (0 > m(K)APui ] = By )d+2 AV 0" |5 0,7
KeT
Using this inequality as well as the bound
(3 = VB A0S o < 4H (01,0°) <203+ VB)(H(v!) + H(v")) < 4(3 + V8)H(u'),
obtained from (21)—(22), we deduce from (28), for another constant C(d, ¢, () that
A2, L2 At
A (Az)dt2

Then our smallness condition on At/(Az)*? implies that |AY2(uF — v¥)|; 57 = 0 and
consequently, u* = v*, finishing the proof.

YA (W = F)[F 7 < O(d€,Q) H(u)| AV (u* = o")} 5

Remark 8. The quasi-uniform condition min,eg,, d, > £Ax > 0 implies condition (23) in
[20], since the mesh regularity (13) gives minge7 mingeg, d(xg, o)/ diam(K) > (d,/Azx >
¢€ > 0. It also implies the mesh regularity condition diam(K)/d(zk,0) < & in [20, (9)],
since, because of (13) again, diam(K)/d(zk,0) < Az/((d,) < 1/(£C) =: &. It can be
seen by considering quadratic cells that the quasi-uniform condition minyeg, , d, > Az >

0 generally does not imply the mesh regularity condition (13) and vice versa, so both
conditions are independent from each other.

4. PROOF OF THEOREM 4

We infer from mass conservation, ZKGTm(K)ufK =Y wer m(K)uf o = m(Q)a,, that

Hu" —a,u" —a) = H(u" Zm (Jal% — 3(uf, @) a + (uj ', w)4)
KGT
— H(db b — %m(Q)m@.
Then the entropy inequality (21) shows that
(29) Hu" —a,u™ —a) + 7At|A1/2ukﬁ72’T < H(wF ™ —a,u"? — a)

for k > 2. Another iteration gives, for k > 3,
H(u" —a,u"" —a) + yAt (| A Sor+ \Al/zuk71|i2;r) < Hu"? —a,u" % — a).
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Hence, taking into account the discrete Poincaré—Wirtinger inequality (23),
YAmG
3y
< HWF 2 —a,u"3 — a),

H(u" —a,u™ —a) +

At(J[AY2(u® = @)[IF 5.7 + A2 (! = D)5 7)

and the norm equivalence (10),
Ay N, CAL
(3+V8)CEAy

This can be written as
Hu" —a,u" ' —a) < (1+ kA THW 2 — a,u*3 — a),

where x = 49\, (/((3 + V/8)C%A ). Depending on whether k is odd or even, we resolve
this iteration as follows:

H@* " —a,u® —a) < (1+ kA H(u' — a,4° — 1),
HWu*™? —a,u*™ — 1) < (1+rA) " H(u? — a,u" —a)

where we used (29) in the last step. As in both cases ¢ > (k — 2)/2, we conclude that

(30) Hu* —a,u* ' —a) < 1+ sAt) " D2Hw! —a,u° — a).
We want to express this inequality in terms of the ||AY2() o2+ norm. We observe that,
by Young’s inequality, ||AY2(u* — @)||2, 7 < 4H (u* — @, """ — @) and, in view of (22),

H(u' —a,u’ —u) = Hu") — H(w) < Hu) — H(a)
1
= H(u’ =) = S| A2 (’ = 0)[5 2,7
Then we deduce from (30) that

JAY2(uf — @) |2 < 4H (ub —a,u* " — @) < 41+ kA~ F2PH (! — a,0° - a)
< 2(1 + kAL TE=D/2| AV2 ()0 — )52

which concludes the proof.

5. PROOF OF THEOREM 5

We split the proof into two parts. We first prove the convergence in the space variable
and then the convergence in the time variable. An alternative is to show the convergence
in both variables simultaneously; see, e.g., [27].
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5.1. Convergence in space. We show the following result for Az — 0.

Proposition 9 (Convergence in space). Let the assumptions of Theorem 5 hold and let
(uk)) be the sequence of solutions to (15)—(19) constructed in Theorem 3 associated to an
admissible mesh T,, with mesh size Ax,, for m € N satisfying Ax,, — 0 as m — oco. Then
there exists a subsequence which is not relabeled such that uﬁm — u¥ strongly in L*(Q) as

m — oo and u¥ solves for all ¢; € W24 () j=1,... n,
1 3 1

(31) —/ up = 2uf "+ suf 7 dida +/ (YVuk + (uf) Vpi(uh)) - Vdz = 0.
At Jq 2 N

Proof. For fixed At, the discrete entropy inequality in Theorem 3 provides a uniform
bound for ||uF, |1 2.7, . Then, by the discrete Rellich-Kondrachov compactness theorem [21,

k k

Lemma 5.6], there exists a subsequence of (uy,) = (uf ,,,...,uy ), which is not relabeled,

such that u”, —> uk strongly in L?(2) as m — oo. Moreover, the sequence of discrete
gradients (Vm k) converges weakly in L%(€2) to some function which can be identified by
Vuk; see [10, Lemma 4.4]. Let ¢; € C%(Q) and set ¢; x := ¢;(vx) for K € T. Then the
limit Az,, — 0 in the BDF2 approximation becomes

1 3 1 1 3 41
At Zm(K>(§u§,K_2uzK + 2U1K>¢1K A (§uf—2uf 1+§U5>¢idl’-
KeT
Next, we set F'™ = F|" + F;" + F3", where

"= —v Z Z TUDK,an,m@',m

KeT o€l
m k + k
F'=— Z Z TU(ui,m,K) DK,opi(Um)¢i,Ka
KeT o€l
an == Z Z TU zmcr - (uim,K)+)DK,0pi(ufn)¢i,K‘
KeT oe€k

We introduce the intermediate integral " = Fj + F{;, where

Fgf:v/ﬂvmuﬁw-V@dx, Fgg:/ﬁ( F IV (ul) - Vda.

It follows from the weak convergence of the discrete gradients and the strong convergence
in L?(Q) that F{" — F as m — oo, where

F = 7/ Vuk - Vi + /(uf)JerZ(uk) - Voda.
Q Q

Thus, if we can show that Fj* — F'™ — 0, then |[F™ — F| < |F™ — FJ'| + |F{" — F| — 0,
proving the claim.
By discrete integration by parts and the definition of the discrete gradient,

F"=v > 7,Dxouf,Diodi.

Uegint
o=K|L
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m k
Fl =~ E T DK,an,m Vi - vk de.
Uegmt KO— TKvo'
o=K|L

Using the Taylor expansion (here we need ¢; € C?(Q))

DK,U¢Z’ _ (bi,L - ¢z’,K
da d(l‘K, iL‘L)

where we have taken into account the property zx — z; = d(2k, 21)Vk 5, We obtain

=V¢, vk, + O(Ax,,) for o= K]|L,

1 Dg o9
|Fot — F'| <~ ]DKgufm _ Vo, viodr — ———
01 Ueglnt m(TK,U) TK,O‘ do’

o=K|L
< CyAzy, Y m(0)| Dot
Uegint

where C' > 0 depends on the L> norm of D?¢;. We apply the Cauchy-Schwarz inequality
and use the mesh property (14) to find that

F™ — M| < O~yA 20) kP v d v
| For '] < CyAzy, Z q IDotti | Zm(a)a

0€Eint o€&int
d

< CyAZy Ul 12,75, <—

1/2
Cm(Q)> — 0 asm — oo.

Similar arguments lead to

|Fs — B3| < CAzyy Y m(0)(uf i) [Dreopiluly)|

KeTm Uegint,K

1/2
<08 T ki P X mio)ds) b,

KeTm Uegint,K
d 1/2
< CAwm(g > m<K>|<ui-im,K>+|2) P () 2.7
KeTm

< C(OAZ Ul o2 pi(ul)]1,2.7,. -

The right-hand side converges to zero since

n 2
) = 3 To(zauDK,UUf,m> < O, <O

Gegint ]:1
o=K|L

Finally, using |Dg »¢i| < C(¢;)Ax,, and property (ii) of the mean function,
F' <Y Talul g — 0 sl IDicopi (ul)[[Dic o]

Uegint
o=K|L
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C($)AZm Y To|Dotuf | Dicopi(us,)|

0€Eint
o=K|L
1/2 , n 1/2
C(6s, A)Axm(ZTU|DUuﬁm’2) (Z ZTU|DJU§M|2) 0.
cel j=1 oe&
This shows that Fj" — F' — 0 as m — oo, concluding the proof. U

5.2. Convergence in time. We wish to perform the limit At — 0 in (31). For this, we
need an estimate in a better space than L?*(Q27), provided by the following lemma.

Lemma 10 (Higher-order integrability). Let (u(™) be a family of solutions to (31) associ-
ated to the time step size T := At, constructed in Proposition 9. Then there exists C' > 0
independent of T such that

||U(T)||LP(QT) <C forp=2+4/d.

Proof. The lemma follows from the discrete entropy inequalities (21)—(22) and the Gagliar-
do—Nirenberg inequality. Indeed, we infer from the entropy inequalities after summation
over k =2,..., Ny that

™ || poo.riz20) + 147 20,1301 (0)) < C-

Then it follows from the Gagliardo—Nirenberg inequality with 6 = d/2 — d/p that
T
) ([P0 (1-6
I o < € [ Il

< CHU(T)HPOO (0,T;L2(0 ))/0 Hu(T)Hfrfl(Q)dt <C,
since pf = 2. This finishes the proof. 0

Proposition 11 (Convergence in time). Let (u(™) be a family of solutions to (31) with
7= At. Then u'?) converges to a weak solution u to (1)~(2) satisfying

w; € L*(0,T; HY(Q)) N L>=(0,T; L*(2)), 0w, € L"(0, T; WH+4(Q)),
where r = (2d +4)/(2d + 3) > 1.

Proof. We estimate the discrete time derivative D, u( )(t) = guf — 2ut 4 %uf_2 for

t € [k, (k+1)7) for k > 2. Let ¢; € L*+4(0,T; Wt 2d+4(Q)). Then

Lt (r)
— / ‘(DTuiT 7¢¢>w1,d+2(9)/
2T

T

r

T T

SVTC/ /|Vu§7)~v¢i|’“dxdt+0/ /|(U§T))+Vpi(u(7))~V(bi|rdxdt
21 JQ 21 JQ

< VTCHVUZ(‘T)HZ?(QT)||V¢z‘||22d+4(ﬂT)

+ Ol aaenaapy VP () 12 IV il 20450
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S OHCbi||Tde+4(0,T;W1,2d+4(Q)),

where we used the fact that p;(u(”) is a linear combination of all ug-T) for j =1,...,n.
This implies the bound T‘l||DTuET)||LT(277T;W1,zd+4(Q)/) <C.

Let mu™(t) = u(t — 7) be a shift operator. We relate the implicit Euler scheme and
the BDF2 scheme by

273 1 1
uf —ubt = 3 (—uf —2u; ! + éuf_Q) + g(uf_l —u?).
Then
2 1
(r) _ (1) = ||= () - (r) _ (r)
||u T U ||Lr(27—7T;W1,2d+4(Q)/) = H?)DTU + 37TT(U T U )‘ L (27, T;W2d+4(Q))

2 1
S g HDTU(T) ||LT(27,T;W1»24+4(Q)’) —|— g HU(T) _ TI'TU(T) ”LT(T,T*T;W1’2d+4(Q)/) .

Adding |[u™ — 7 u™|| Lr2rrwi2aragyy < C1 from the first Euler step (proved in a similar
way as above) to the left-hand side and absorbing the last term on the right-hand side by
the left-hand side, we find that

2 2

3—7_ ||U(T) — WTU(T) ||LT(2T,T;W172d+4(Q)’) S 3—7_ ||D7—u(7) ||LT(2T,T;W1’2d+4(Q),) S C
Together with the uniform L?(0,T; H'(Q2)) bound for u(”, we can apply the Aubin-Lions
compactness lemma in the version of [16] to conclude that, up to a subsequence, as 7 — 0,

u™ — u  strongly in L*(Qp).

In view of the higher-order estimate of Lemma 10, this convergence also holds in L9(€r)
for all ¢ < 24 4/d. Furthermore, again up to a subsequence,

D,u — du  weakly in L"(27, T; WH24+4(Q)').
These convergences are sufficient to pass to the limit 7 — 0 in (31) for test functions
sz' c L2d+4(27', T; W1’2d+4(Q>/). 0
6. SECOND-ORDER CONVERGENCE

As in the previous section, we set Da,u¥ = 2uf — 20~ + %uf’Q and write (31) as

= 3u}
1
(32) E/ Dacuf ¢pda + / (vVul + (uf) T Vpi(u¥)) - Veidz = 0.
Q Q
A Taylor expansion shows that, for some &, € (0,7,
3 1 At)?
DAtui(tk) = §Uz(tk) — QUZ’(tk_l) + §Ui<tk_2) = (At)@tu,(tk) — ( 3) 8f’uz(§k)

Then, using a test function ¢; € H*(€) in (1),

(AL)?

(33) é /Q Dastts () didlz + /Q (Vi + Vi) (1) - Ve = /Q OPus (&) dudlz.
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We take the difference of (32) and (33), choose the test function ¢; = p;(u(t)) — p;(u¥) =
(A(u(ty) — u*));, and sum over i = 1,...,n:

1

(34) A

DAt( (ty) — uF)TA(u(ty) — u®)de = I; + Iy, where,

- Z /Q YV (ui(t) — ul) + ui(te) Vi (u(ty)) — (uf) " Vi (u¥)]

xV(A( (t) — uF))da,
At

P (&) (A(u(ty) — Uk)) dz.

Set v* = u(ty) — uf It follows from the BDF2 inequality in Lemma 7, applied to the
left-hand side, that

1 1

At At
For the terms I; and Ig, we use the definition p;(u*) = (Au*);, the Lipschitz continuity of
2z — 2T, the nonnegativity of u;, and Young’s inequality:

— Z/ YV (AY2pR); - V(AY20k),dx

DAt( (tr) — u) T Alu(ty) — uF)de > = (H (", 0" 1) — H@* !, 072)).

—Z / wilty) — (uF) )V (Aulte)); + (b)Y (Aulty) — ub));) - V(Avk)dz
<—7HV(A1/QU’“)HL )+ AL AY2OR | 2y A V() | o () |V (AY208) | 2

)\3
—Z/ VAPl < DAVl |47 [y and

At)?
b= ;)\1/)2 107 ull o 0,520 | A *0" | 220

Summarizing, we obtain from (34)
(35)  HE oY) = HEE L0 2) < AL AY gy + Co( AP A0 2o
A3 1
where €y = M—fmﬂvuniw(m)’ Cr = W||3?U||L°°(0,T;L2(Q))-

We iterate this inequality once more and use the inequality a +b < \/2(a? + b?) as well as
the norm equivalence (11):

H(0,01) = B2, 05 < G (A2 2y + A2 [2ay)
+ 02(At>3(HAl/2UkHL2(Q) + HAl/ZUkilHL?(Q))
< C1At(||A1/ZUkH%2(Q) + HAl/QUk_lﬂiz’(Q))
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1/2

+ \/502(At)3(|’141/20k|’%2(9) + HAl/QkalH%%Q))
< 4C1 At 4\/§CQ(A75)3H(UIC’ kal)l/Z‘
T 3-8 3-8
We apply Young’s inequality for ¢ > 0:
4 2 5
(1 4G +e) At>H(Uk’Uk—l) < H(uF2,05%) ¢ 2C3(At) ’
3-8 (3—VB)e
and assume that At < (3 —/8)/(4(Cy + ¢)). This recursion is of the form a; < bag_s +
be(At)S, where ap, = H(v¥, v*!) and
4 - 2C3(At)°
o (140 ) e
3-8 (3 —8)e

and it can be resolved explicitly depending on whether k is odd or even:

H(" 0" 1) +

/-1 -1
2041 S bzal —+ C(At)s Z bj, ag¢4+2 S bz(lg —+ C(At)s bj

J=0 J

~

Il
=)

The sum can be estimated according to

-1 —0+1

| ANt -
Z Y = < (1= (Cy +¢) i,
=0 b—1 3 — \/g 4At(01 —+ 5)

Since ¢ = t,/At < T /At, the bracket approximates the exponential function and can be
bounded by a constant depending only on C} + ¢ and 7'. This shows that there exist
constants K7, Ky > 0 such that

H<U2Z+1’,U2€) < Kl(cla €,T)H(U1, U0> + K2(Ol, 027871,T>(At)47
H(u* 2 0¥ < K (Ch e, TYH (02, 01) + Ko(Ch, Co et T) (AL,

Going back to inequality (35) for k& = 2, we can argue in a similar way as before that
H(v* v!) is bounded by K3H (vt v") + K4(At)® for some constants K3, K, > 0, which are
independent of At. Furthermore, since v = 0, we have H(v',v°) = (5/4)||AY?(u(t,) —
u')|| 220y < K5(At)* for some K5 > 0 independent of A¢. This shows that H(v*, vF71) <
Kg(At)?*, where Kg depends on C, Cy, €71, and T. Taking the square root and using (11)
shows the result.

7. NUMERICAL EXAMPLES

The finite-volume scheme (15)—(19) is implemented in Matlab, using the mobility M (u, v)
= %(u + v). As the numerical scheme is implicit, we have solved the nonlinear system of
equations at each time step by using the Matlab routine fsolve, based on Newton’s method
with trust regions. The optimality tolerance was chosen as 1074,
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7.1. First example: one-dimensional domain, three species. We choose the domain
2 = (0,1), the parameter v = 1/2, as well as the positive definite matrix A and the initial
data u° according to

2 1 1)/2 cos(mz) + 2
A= 1 3 3/2], u’x)= |2~ cos(2rx)
1/2 3/2 1 2

The numerical parameters are Az = 1/12800 and At = 1/128. The numerical solution is
illustrated in Figure 1 at various times. All components converge to the constant steady
state u = 2. Interestingly, although initially equal to the steady state, the density wus
becomes nonconstant for positive times before it tends to the constant steady state for
large times. Such a phenomenon is sometimes called uphill diffusion, which typically
appears in thermodynamic multicomponent systems due to cross diffusion [28].

25 R 25 -

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 1. Densities u;(t) (darker blue line), us(¢) (lighter green line), us(t)
(dashed black line) at times ¢ = 0,0.01,0.1 (from left to right) versus space.

7.2. Second example: two-dimensional domain, two species. We take Q = (0,1)2,
Az =+/2-275~0.0044, At = 1/256, v = 1/2, and

A=z ) e = ()

Figure 2 shows the evolution of u = (u;, ug) at various times. Although being discontinuous
and segregated initially, the solution becomes smooth and mixes the densities for positive
times. This is not surprising, as full segregation (i.e., the supports of u; and uy do not
intersect) is expected only when v = 0 and det A = 0. The numerical scheme preserved
the nonnegativity in all our experiments, even for the initial data of this example. The
numerical solutions are the same with or without the cutoff used in (18).

7.3. Third example: exponential time decay. We choose the one-dimensional domain
Q=(0,1),y=01, Az =277 At = (10-27)7!, and

A= (2) v (2o,
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FIGURE 2. Density u;(t) (upper row) and us(t) (lower row) at times ¢ =
0,0.02,0.2 (from left to right) versus space.

where 8 > 4. The distance ||A/?(u*—@)||r2(q) presented in Figure 3 for 3 = 5 and 8 = 4.01
shows that the time decay behaves exponentially, as predicted by Theorem 4. The decay
rates (excluding the initial decay) are —4.37 for § = 5 and —1.03 for 8 = 4.01, and they
decrease for smaller values of det A. We have also observed an exponential decay when
v = 0 with smaller decay rates.

—Logarithm of distance
—Reference line

—Logarithm of distance
-1 F —Reference line

4t
5 \
1 1 1 1 _6 L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 04 0.6 0.8 1 1.2
Time Time

FIGURE 3. Semilogarithmic plot for || AY2(uf — @)||12(q) versus time .

7.4. Fourth example: Convergence rate in time. We choose the values for A and u° as
in the previous example as well as v = 0, Az = 279 and At = (10-2°)"! withp =1,...,8.
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The reference solution wu.s is computed with the time step size At = (10 - 2%)71.  As
expected, the convergence rate at time 7' = 0.02, shown in Figure 4 for two different values
of 3, is about two, even in the case det A = 0.

[1]

-22 ; ; T i i " -24
G —e— ogarithmic L2-error at end time T —e— ogarithmic L2-error at end time T
247 ——Reference with slope -2 1 -26 —— Reference with slope -2
-26 o8t
-28 ¢
=30+
-30
=32
-32
341
-34
36 -36
38 -38 1
40 . . . . . . 40
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Time-step size 7= 2P Time-step size 7=2P

FIGURE 4. Discrete L?(12) error [|AY2(u®) —ue)(T) || 12() versus time step
size At = (10-2°)" ' for p=1,...,8 for =5 (left) and 5 = 4 (right).
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