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Abstract. The existence of weak solutions and upper bounds for the blow-up time for
time-discrete parabolic-elliptic Keller-Segel models for chemotaxis in the two-dimensional
whole space are proved. For various time discretizations, including the implicit Euler,
BDF, and Runge-Kutta methods, the same bounds for the blow-up time as in the contin-
uous case are derived by discrete versions of the virial argument. The theoretical results
are illustrated by numerical simulations using an upwind finite-element method combined
with second-order time discretizations.

1. Introduction

This paper is concerned with the derivation of upper bounds for the blow-up time in
semi-discrete Keller-Segel systems in R

2. The (Patlak-) Keller-Segel model describes the
evolution of the cell density of bacteria or amoebae that are attracted by a chemical
substance [24, 35]. Under simplifying assumptions, the cell density n(x, t) and the density
of the chemo-attractant c(x, t) satisfy the parabolic-elliptic equations

(1) ∂tn = div(∇n− n∇c), −∆c+ αc = n in R
2,

where α ≥ 0 measures the degradation rate of the chemical substance. Denoting by Bα

the Bessel potential if α > 0 and the Newton potential if α = 0 (see the appendix for the
definitions), this system can be formulated more compactly as a single equation,

(2) ∂tn = div
(
∇n− n(∇Bα ∗ n)

)
in R

2

with the initial condition
n(·, 0) = n0 in R

2.

1.1. Blow-up properties. The coupling in equations (1) is a positive feedback: The cells
produce a signal that attracts other cells. The cell aggregation is counterbalanced by
diffusion, but if the cell density is sufficiently large, the chemical interaction dominates
diffusion and may lead to finite-time blow-up of the cell density.
System (1) exhibits a dichotomy. Consider first the case without degradation, α = 0.

If the initial mass satisfies M :=
∫
R2 n0dx < 8π, no aggregation takes place and the cells
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just diffuse for all times [6]. On the other hand, if the mass is supercritical, M > 8π, and
the second moment I0 :=

∫
R2 n0|x|2dx is finite, the solutions blow up in finite time. In the

limit case M = 8π, there is blow-up in infinite time with constant second moment [5]. We
remark that the critical space is Ld/2(Rd) in space dimensions d ≥ 2 [16]. When the signal
degradates, α > 0, a similar criterium holds: The solutions exist for all time for subcritical
initial masses M < 8π, and they blow up in finite time for supercritical masses M > 8π
and sufficiently small second moment I0 [10]. The blow-up time Tmax can be estimated
from above by

(3) Tmax ≤ T ∗ :=
2πI0

M(M − 8π − 2
√
αMI0)

.

The upper bound for the system with degradation becomes larger than that one without
degradation, indicating that blow-up happens later than without degradation, which is
biologically reasonable. The idea of the proof is a virial argument: The second moment
I(t) =

∫
R2 n(·, t)dx solves the differential inequality

(4)
dI

dt
≤ −M

2π
(M − 8π) +

√
α

π
M3/2

√
I.

If α = 0, this expression becomes an identity. Now, if t > T ∗, we infer that I(t) < 0,
contradicting n(·, t) ≥ 0.
Very detailed numerical simulations of the collapse phenomenon in the parabolic-parabol-

ic system have been performed in, e.g., [9]. The asymptotic profile of blow-up solutions in
the parabolic-elliptic model was studied in [17]. Numerical blow-up times were computed,
for instance, in [19] using a kind of H2 norm indicator; in [9] using the moving-mesh
method; and in [18] using discontinuous Galerkin approximations.
The aim of this paper is to prove the existence of weak solutions to various versions

of time-discrete equations and to derive discrete versions of inequality (4). We analyze
the implicit Euler and higher-order schemes, including BDF (Backward Differentiation
Formula) and Runge-Kutta schemes. Our goal is not to design efficient numerical schemes
but to continue our program to “translate” mathematical techniques from continuous to
discrete situations [28, 29, 30].
The proof of inequality (4) is based on three properties: nonnegativity of n(x, t), mass

conservation, and a symmetry argument in the nonlocal term in (2). The implicit Euler
scheme satisfies all these properties, while the nonnegativity cannot be proved for higher-
order schemes, although it seems to hold numerically (see Section 4). We discuss this issue
below.

1.2. State of the art. The literature on the analysis and numerical approximation of
Keller-Segel models is enormous. Therefore, we review only papers concerned with the
analysis of numerical schemes and the blow-up behavior of the discrete solutions, in par-
ticular possessing structure-preserving features. We do not claim completeness and refer
to the introduction of [1] for more references.
Most of the numerical schemes for the Keller-Segel model utilize the implicit Euler

method for the time discretization and aim to preserve some properties of the continuous
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equations, like (local) mass conservation, positivity (more precisely, nonnegativity) preser-
vation, or energy dissipation. These schemes use (semi-implicit) finite-difference methods
[13, 32, 40]; an upwind finite-element discretization [37]; an Eulerian-Lagrangian scheme
based on the characteristics method [42]; a Galerkin method with a diminishing flux limiter
[45]; and finite-volume methods [20, 49]. A finite-volume scheme was also studied in [1] but
with a first-order semi-exponentially fitted time discretization. Finally, a mass-transport
steepest descent scheme was analyzed in [4]. All these schemes are based on first-order
discretizations.
Only few results are concerned with higher-order time integrators. Strongly A(θ)-stable

Runge-Kutta finite-element discretizations were analyzed in [34], and the convergence of
the discrete solution was shown. However, mass conservation or positivity preservation
was not verified. As A-stable time integrators are computationally very costly, often split-
ting methods are used. A third-order strong stability preserving (SSP) Runge-Kutta time
discretization for the advection term and the second-order Krylov IIF (implicit integra-
tion factor) method for the reaction-diffusion term, together with a positivity-preserving
discontinuous Galerkin approximation in space, was suggested in [48], but without any
analysis.
A number of papers are concerned with the preservation of the nonnegativity of the

cell density. An example is [14], where a semi-discrete central-upwind scheme was pro-
posed. Moreover, in [15], a hybrid finite-volume finite-difference method was combined
with SSP explicit Runge-Kutta schemes (for the parabolic-parabolic case) or the explicit
Euler scheme (for the parabolic-elliptic case). Clearly, a CFL condition is needed to en-
sure the stability of the explicit schemes. Another approach was used in [47] for a related
tumor-angiogenesis model, where a Taylor series method in time allows for higher-order
but still explicit schemes.
We remark that there do not exist SSP implicit Runge-Kutta or multistep methods of

higher order [22, Section 6]. Moreover, SSP for such methods is guaranteed only under
some finite time step condition [7, 43] (also see the recent work [25]). In view of these
results, positivity preservation of our higher-order schemes cannot be expected.
We do not aim to preserve the free energy of the Keller-Segel system since such schemes

usually destroy the symmetry property needed for the blow-up argument; see Remark 3 for
details. An exception is the work [4], where the virial blow-up argument could be used for
an implicit Euler steepest descent scheme, which also provides the decay of the gradient-
flow energy. Some estimates on the discrete free energy in an implicit Euler finite-volume
approximation were shown in [49]. A numerical scheme that dissipates the free energy
numerically was suggested in [12] using a gradient-flow formulation of the energy functional
with respect to a quadratic transportation distance. It is shown in [40] that the dissipation
of the discrete free energy may fail in an upwind finite-difference scheme. The dissipation
of the discrete entropy in a finite-volume modified Keller-Segel system was proved in [3].
The novelty of this paper is the derivation of the critical initial mass and an upper

bound for the blow-up time for various time discretizations, where the values are the same
as in the continuous case. This shows that the “continuous” methods carry over to the
semi-discrete case. Because of the virial argument, the extension to spatial discretizations
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is more delicate. A possible direction is to extend the virial argument to a discrete Bessel
potential, but we leave details to a future work.

1.3. Main results. Our main results can be sketched as follows (details will be given in
sections 2 and 3). Let nk be an approximation of n(·, kτ), where τ > 0 is the time step and
k ∈ N. We recall the definitions M =

∫
R2 n0dx of the initial mass and I0 =

∫
R2 n0|x|2dx of

the initial second moment.

• Existence of solutions to the implicit Euler scheme (Theorem 1): For given nk−1 ≥ 0
and sufficiently small time step τ , there exists a unique weak solutions nk to the
semi-discrete equations. Moreover, the scheme preserves the positivity, conserves
the mass, and has finite second moment.

• Finite-time blow-up for the implicit Euler scheme (Theorem 2): Let M > 8π and
let I0 be finite (if α = 0) or I0 and τ be sufficiently small (if α > 0). Then the
semi-discrete solution exists only up to discrete times kτ ≤ T ∗, where T ∗ is defined
in (3).

• BDF schemes: For sufficiently small τ > 0, there exists a unique weak solution
to the BDF-2 and BDF-3 scheme, conserving the mass and having finite second
moment. Moreover, under the same assumptions as for the implicit Euler scheme,
the solution blows up and kτ ≤ T ∗ (Theorem 5 for BDF-2 and α ≥ 0, Theorem 7
for BDF-3 and α = 0).

• Runge-Kutta schemes (Theorem 9): If α = 0 and under the same assumptions as
for the implicit Euler scheme, the solution blows up and kτ ≤ T ∗. The same result
holds for the implicit midpoint and trapezoidal rule if α > 0.

The interesting fact is that the upper bound T ∗ is the same for both the continuous and
semi-discrete equations. Observe that the existence results do not require the condition
M < 8π, since they are local. In particular, the smallness condition on τ is natural, and
the time step needs to be chosen smaller and smaller when the blow-up time is approached.
The paper is organized as follows. Section 2 is concerned with the analysis of the implicit

Euler scheme, while some higher-order schemes (BDF, Runge-Kutta) are investigated in
section 3. In section 4 we provide some numerical examples to illustrate our theoretical
statements. Finally, the appendix collects some auxiliary results.

2. Implicit Euler scheme

We show the existence of weak solutions to the implicit Euler approximation of the
Keller-Segel system (2) and their finite-time blow-up, where

(5)
1

τ
(nk − nk−1) = div

(
∇nk − nk∇Bα ∗ nk

)
in R

2.

Here, τ > 0 is the time step and Bα is the Bessel potential if α > 0 and the Newton
potential if α = 0 (see the appendix). First, we study the existence of solutions. For this,
let X := L1(R2) ∩ L∞(R2) with norm ‖u‖X = max{‖u‖L1(R2), ‖u‖L∞(R2)} for u ∈ X.
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Theorem 1 (Existence for the implicit Euler scheme). Let nk−1 ∈ X and

τ <
1

(π + 1/2)2
1

(‖nk−1‖X + 1)4
.

Then there exists a unique weak solution nk ∈ X ∩H1(R2) to (5) such that

• nonnegativity: if nk−1 ≥ 0 then nk ≥ 0 in R
2,

• conservation of mass:
∫
R2 nkdx =

∫
R2 nk−1dx,

• control of second moment: if
∫
R2 nk−1|x|2dx <∞ then

∫
R2 nk|x|2dx <∞.

Proof. The strategy is to prove first the existence of a unique very weak solution nk ∈ X
to the truncated problem

(6)
1

τ

∫

R2

(nk − nk−1)φdx =

∫

R2

nk∆φdx+

∫

R2

n+
k (∇Bα ∗ nk) · ∇φdx

for all φ ∈ H1(R2), where n+
k = max{0, nk}. The second step is to show that nk ∈ H1(R2).

Then we can use n−
k = min{0, nk} as a test function in the weak formulation and prove

that nk ≥ 0.
Step 1: Solution to (6). To simplify the notation, we write n := nk and n0 := nk−1. We

introduce the operator ∇c : X → L∞(R2)2, ∇c[n] = ∇Bα ∗n. We claim that this operator
is well-defined and continuous. Indeed, set for α ≥ 0,

(7) gα(r) :=

∫ ∞

0

e−s−αr2/(4s)dx ≤ 1 for r > 0.

Then, after the substitution s = |x|2/(4t), we can write

(8) ∇Bα(z) = − 1

2π

z

|z|2 gα(|z|), z ∈ R
2,

and it follows that

|∇c[n](x)| =
∣∣∣∣
1

2π

∫

R2

x− y

|x− y|2 gα(|x− y|)n(y)dy
∣∣∣∣

≤ 1

2π

∫

|x−y|≤1

|n(y)|
|x− y|dy +

1

2π

∫

|x−y|>1

|n(y)|
|x− y|dy

≤ ‖n‖L∞(R2) +
1

2π
‖n‖L1(R2) ≤ b‖n‖X .(9)

where b := 1 + 1/(2π). This shows the continuity of ∇c.
Next, for given ñ ∈ X, the linear problem

−∆n+ τ−1(n− n0) = − div(ñ+∇c[ñ])
has a unique solution in H1(R2). Indeed, since we have ñ+ ∈ L2(R2), ∇c[ñ] ∈ L∞(R2)2,
and therefore f := ñ+∇c[ñ] ∈ L2(R2)2, we can apply Lemma 16 in the appendix yielding
the unique solvability of the linear problem. The solution is given by

(10) n =
1

τ
B1/τ ∗ n0 −∇B1/τ ∗ (ñ+∇c[ñ]).
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Hence, we can define the fixed-point operator T : X → X by T [ñ] := n, and n is given by
(10). Clearly, any fixed point of T is a solution to (6). We apply the Banach fixed-point
theorem to T on the set S := {n ∈ X : ‖n‖X ≤ ‖n0‖X + 1}. For this, we need to show
that T : S → S is a contraction.
For the proof of T (S) ⊂ S, we use Lemma 14, the Young inequality with p = q = r = 1

(see the appendix), and (9):

‖T [n]‖L1(R2) ≤
1

τ
‖B1/τ ∗ n0‖L1(R2) + ‖∇B1/τ ∗ (n+∇c[n])‖L1(R2)

≤ 1

τ
‖B1/τ‖L1(R2)‖n0‖L1(R2) + ‖∇B1/τ‖L1(R2)‖∇c[n]‖L∞(R2)‖n‖L1(R2)

≤ ‖n0‖L1(R2) +
π

2
τ 1/2b‖n‖2X .

Similarly, we obtain

‖T [n]‖L∞(R2) ≤ ‖n0‖L∞(R2) +
π

2
τ 1/2b‖n‖2X .

Combining the previous two estimates, we conclude that

‖T [n]‖X ≤ ‖n0‖X +
π

2
τ 1/2b‖n‖2X .

Then choosing τ < (πb)−2(‖n0‖X +1)−4, we see that ‖T [n]‖X ≤ ‖n0‖X +1/2, which shows
that T [n] ∈ S.
To show the contraction property, let n, m ∈ S. Then, estimating as above,

‖T [n]− T [m]‖X ≤
∥∥∇B1/τ ∗

(
n+∇c[n]−m+∇c[m]

)∥∥
X

≤ ‖∇B1/τ‖L1(R2)

∥∥(n+ −m+)∇c[n] +m+(∇c[n]−∇c[m])
∥∥
X

≤ π

2
τ 1/2

(
‖n+ −m+‖X‖∇c[n]‖L∞(R2) + ‖m‖X‖∇c[n−m]‖L∞(R2)

)

≤ πτ 1/2b
(
‖n0‖X + 1

)
‖n−m‖X .

Since πτ 1/2b(‖n0‖X + 1) < 1, T is a contraction. By the Banach fixed-point theorem, T
has a fixed point nk ∈ X, which is a solution to (6).
Step 2: Regularity of the solution to (6). We prove that for any α ≥ 0, nk ∈ H1(R2)

solves

(11)
1

τ

∫

R2

(nk − nk−1)φdx = −
∫

R2

∇nk · ∇φdx+
∫

R2

n+
k (∇Bα ∗ nk) · ∇φdx

for all φ ∈ H1(R2) and satisfies

(12) ‖nk‖H1(R2) ≤ C0‖nk−1‖L2(R2)

for some positive constant C0 which depends on τ and ‖nk−1‖X .
Again, we set n := nk and n0 := nk−1. Since n ∈ X ⊂ L2(R2), we have n+∇c[n] ∈

L2(R2)2. Therefore, by Lemma 16, n ∈ H1(R2) is the unique solution to (11). We take n
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as a test function in that equation and use the Young inequality:

1

2τ

∫

R2

(n2 − n2
0)dx ≤ 1

τ

∫

R2

(n− n0)ndx = −‖∇n‖2L2(R2) +

∫

R2

n+∇c[n] · ∇ndx

≤ −1

2
‖∇n‖2L2(R2) +

1

2
‖n‖2L2(R2)‖∇c[n]‖2L∞(R2).

By (9) and ‖n‖X ≤ ‖n0‖X + 1, we find that

1

τ

∫

R2

(n2 − n2
0)dx+ ‖∇n‖2L2(R2) ≤ b2‖n‖2X‖n‖2L2(R2) ≤ b2

(
‖n0‖X + 1

)2‖n‖2L2(R2).

Then, since β := 1− b2(‖n0‖X + 1)2τ > 0, we infer that

‖n‖2L2(R2) ≤
1

β
‖n0‖2L2(R2),

and the claim follows with C0 = 1/
√
β.

Step 3: Nonnegativity of nk. Let nk−1 ≥ 0 in R
2. We use n−

k = min{0, nk} ∈ H1(R2) as
a test function in (11):

1

τ

∫

R2

(n−
k )

2dx ≤ 1

τ

∫

R2

(nk − nk−1)n
−
k dx

= −
∫

R2

|∇n−
k |2dx+

∫

R2

n+
k ∇c[nk] · ∇n−

k dx ≤ 0,

since nk−1n
−
k ≤ 0 and the last integral on the right-hand side vanishes. This shows that

nk ≥ 0 in R
2, and n+

k = nk in (11).
Step 4: Mass conservation. The statement follows immediately if we could use φ(x) = 1

as a test function in (6). Since this function is not integrable, we need to approximate.
As in [26], we introduce the radially symmetric cut-off function φR(x) = φ(|x|/R), where
R ≥ 1 and

(13) φ(r) =





1 for 0 ≤ r ≤ 1,

1− 2(r − 1)2 for 1 < r ≤ 3/2,

2(2− r)2 for 3/2 < r ≤ 2,

0 for r ≥ 2.

The following properties hold:

(14)

φR ∈ H2(R2), lim
R→∞

φR(x) = 1 for all x ∈ R
2,

|∇φR(x)−∇φR(y)| ≤
C1

R2
|x− y|, |∆φR(x)| ≤

C2

R2
for all x, y ∈ R

2,

for some constants C1, C2 > 0. Let 0 ≤ ρε ∈ C∞
0 (R2) be a standard mollifier and set

φε
R = φR ∗ ρε. Then φε

R → φR in H2(R2) as ε→ 0 [27, Lemma 1.8.2]. Consequently, up to
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a subsequence, which is not relabeled, φε
R → φR, ∇φε

R → ∇φR, and ∆φε
R → ∆φR a.e. in

R
2. We use φε

R as a test function in (6) and insert (8):
∣∣∣∣
1

τ

∫

R2

(nk − nk−1)φ
ε
Rdx

∣∣∣∣ =
∣∣∣∣
∫

R2

nk∆φ
ε
Rdx+

∫

R2

nk(∇Bα ∗ nk) · ∇φε
Rdx

∣∣∣∣

≤ C2

R2
‖nk‖L1(R2) +

1

2π

∣∣∣∣
∫

R2

∫

R2

nk(x)nk(y)gα(|x− y|) x− y

|x− y|2 · ∇φε
R(x)dxdy

∣∣∣∣.

By symmetry and (14), the second integral can be estimated as

1

2π

∣∣∣∣
∫

R2

∫

R2

nk(x)nk(y)gα(|x− y|) x− y

|x− y|2 · ∇φε
R(x)dxdy

∣∣∣∣

=
1

4π

∣∣∣∣
∫

R2

∫

R2

nk(x)nk(y)gα(|x− y|) x− y

|x− y|2 ·
(
∇φε

R(x)−∇φε
R(y)

)
dydx

∣∣∣∣

≤ C1

4πR2

∫

R2

∫

R2

nk(x)nk(y)dydx =
C1

4πR2
‖nk‖2L1(R2).

These estimates allow us to apply the dominated convergence theorem, which leads, in the
limit ε→ 0, to

1

τ

∫

R2

(nk − nk−1)φRdx =

∫

R2

nk∆φRdx+

∫

R2

nk(∇Bα ∗ nk) · ∇φRdx.

The same estimates as before show that both integrals on the right-hand side can be
estimated by a multiple of 1/R2 such that the limit R → ∞ leads to

1

τ

∫

R2

(nk − nk−1)dx = 0,

which gives mass conservation.
Step 5: Control of the second moment. Similarly as in step 4, we approximate |x|2

by setting ψR(x) = |x|2φR(x), where φR is defined in (13). Then ψR ∈ H2(R2), ∇ψR is
Lipschitz continuous on R

2, and ∆ψR is bounded. Taking a standard mollifier ρε ≥ 0, we
set ψε

R = ψR ∗ ρε ∈ C∞
0 (R2). Using ψε

R as a test function in (6) and passing to the limit
ε→ 0 and then R → ∞, it follows that

(15)
1

τ

∫

R2

(nk − nk−1)|x|2dx = 4

∫

R2

nkdx+ 2

∫

R2

nk(∇Bα ∗ nk) · xdx.

Young’s inequality and estimate (9) for ∇c[nk] = ∇Bα ∗ nk show that

2

∣∣∣∣
∫

R2

nk(∇Bα ∗ nk) · xdx
∣∣∣∣ ≤ 2b‖nk‖X

∫

R2

nk|x|dx

≤ b‖nk‖X
∫

R2

nkdx+ b‖nk‖X
∫

R2

nk|x|2dx.

Therefore, with ‖nk‖X ≤ ‖nk−1‖X + 1, (15) gives

(
1− τb(‖nk−1‖X + 1)

) ∫

R2

nk|x|2dx ≤
∫

R2

nk−1|x|2dx+ τ(4 + b‖nk‖X)
∫

R2

n0dx.
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Since 1 − τb(‖nk−1‖X + 1) > 0, we infer that the second moment of nk is bounded if the
second moment of nk−1 does so. �

Next, we turn to the finite-time blow up of semi-discrete solutions. Set, for α > 0,

(16) I∗ :=
(M − 8π)2

4αM
, τ ∗ :=

π(M − 8π)

2αM2
.

Theorem 2 (Blow-up for the implicit Euler scheme). Assume that

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) ⊂ L1(R2)∩H1(R2) be a sequence of nonnegative weak solutions to (5). Then this
sequence is finite with maximal index kmax, where, if α = 0,

(17) kmax ≤
2πI0

τM(M − 8π)
.

In case α > 0, if additionally I0 ≤ I∗ and τ < τ ∗ then

(18) kmax ≤
2πI0

τM(M − 8π − 2
√
αMI0)

.

Proof. Let first α = 0 and let nk be a weak solution to (5) with k > 2πI0/(τM(M − 8π)),
i.e., we assume that (17) does not hold. We set Ik =

∫
R2 nk|x|2dx. Then, by (15), for any

j ≤ k,

Ij − Ij−1 = 4τ

∫

R2

njdx+ 2τ

∫

R2

nj(∇B0 ∗ nj) · xdx

= 4τM − τ

π

∫

R2

∫

R2

nj(x)
x · (x− y)

|x− y|2 nj(y)dydx,

where we used the conservation of mass and the definition of ∇B0 ∗ nk. A symmetry
argument leads to

Ij − Ij−1 = 4τM − τ

2π

∫

R2

∫

R2

(x− y) · (x− y)

|x− y|2 nj(x)nj(y)dydx

= 4τM − τ

2π
M2 =

τM

2π
(8π −M).

Summing this identity over j = 1, . . . , k and taking into account the choice of k gives

Ik = I0 −
kτM

2π
(M − 8π) < 0,

which is a contradiction to nk ≥ 0.
Next, let α > 0. For the proof, we follow the lines of [10, Section 6] but the end of the

proof is different. Let nk ≥ 0 be a weak solution to (5) such that (18) is not true. Similarly
as above, we find that

Ik − Ik−1 = 4τ

∫

R2

nkdx+ 2τ

∫

R2

nk(∇Bα ∗ nk) · xdx
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= 4τM − τ

2π

∫

R2

∫

R2

gα(|x− y|)nk(x)nk(y)dydx

=
τM

2π
(8π −M) +

τ

2π

∫

R2

∫

R2

(
1− gα(|x− y|)

)
nk(x)nk(y)dydx,(19)

where we recall definition (7) of gα.
We need to estimate 1− gα(r). For this, let z ∈ R

2, r = |z| ∈ (0, 1/
√
α). We compute

d

dr
(1− gα(r)) =

αr

2

∫ ∞

0

1

s
e−s−αr2/(4s)ds = 2πα|z|B1(

√
αz) ≤

√
αK,

where K = 2π sup|x|<1 |x|B1(|x|). It is known that B1(x) behaves asymptotically as
− log |x| as |x| → 0, so K is finite. A numerical computation shows that sup|x|<1 |x|B1(|x|)
≈ 0.0742 and K ≈ 0.4662. We conclude that

0 ≤ 1− gα(|z|) ≤
√
αK|z| for 0 <

√
α|z| < 1.

This bound, together with 1 − gα(|z|) ≤ 1, shows that the last integral in (19) can be
estimated as follows:

τ

2π

∫ ∫

{√α|x−y|<1}

(
1− gα(|x− y|)

)
nk(x)nk(y)dydx

+
τ

2π

∫ ∫

{√α|x−y|≥1}

(
1− gα(|x− y|)

)
nk(x)nk(y)dydx

≤ τ

√
α

2π
max{1, K}

∫

R2

∫

R2

|x− y|nk(x)nk(y)dydx

≤ τ

√
α

π
M

∫

R2

|y|nk(y)dy ≤ τ

√
α

π
M3/2I

1/2
k ,(20)

where we have applied the Cauchy-Schwarz inequality in the last step. We infer from (19)
that

Ik − Ik−1 ≤
τ

2π
M(8π −M) + τ

√
α

π
M3/2I

1/2
k .

Now, the argument differs from that one used in [10]. Set β =
√
αM3/2/π and γ =

M(M − 8π)/(2π). Then we need to solve the recursive inequality

(21) Ik − Ik−1 ≤ τf(Ik) := τ
(
βI

1/2
k − γ

)
.

By definition of I∗, we have f(I∗) = 0. Since f is increasing and I0 ≤ I∗, it holds that
f(I0) ≤ 0. We proceed by induction. Let f(Ik−1) ≤ 0. We suppose that f(Ik) > 0 and
show that this leads to a contradiction. Inequality (21) is equivalent to

I
1/2
k − I

1/2
k−1

I
1/2
k − γ/β

I
1/2
k + I

1/2
k−1

β
≤ τ,
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Since f(Ik−1) ≤ 0, the first factor is larger than or equal to one, and taking into account

f(Ik) > 0 or I
1/2
k > γ/β, we deduce that

γ

β2
<
I
1/2
k

β
≤ I

1/2
k + I

1/2
k−1

β
≤ τ,

which contradicts the smallness condition τ < τ ∗ = γ/β2. We infer that f(Ik) ≤ 0.
Then, summing (21) from k = 1, . . . , j,

Ij ≤ I0 + τ

j∑

k=1

f(Ik) ≤ I0 + τjf(I0).

We deduce that Ij becomes negative for j > −I0/(τf(I0)) which contradicts nk ≥ 0. This
completes the proof. �

Remark 3 (Semi-discrete energy dissipation). It is possible to design semi-discrete schemes
that dissipate the discrete free energy

Ek =

∫

R2

(
nk(log nk − 1)− 1

2
cknk

)
dx

(and conserve the mass and preserve the positivity). An example, taken from [40], is the
semi-implicit scheme

(22) τ−1(nk − nk−1) = div(nk − nk∇ck−1), −∆ck−1 + αck−1 = nk−1 in R
2.

Indeed, by the convexity of s 7→ s log s, we obtain
∫

R2

(
nk(log nk − 1)− nk−1(log nk−1 − 1)

)
dx

≤
∫

R2

(nk − nk−1) log nkdx = τ

∫

R2

(
− |∇nk|2

nk

+∇ck−1 · ∇nk

)
dx.

Furthermore, translating the computation in [36, Section 5.2.1] to the semi-discrete case,

1

2

∫

R2

(nkck − nk−1ck−1)dx =
1

2

∫

R2

(
(nk − nk−1)ck + nk−1(ck − ck−1)

)
dx

=
1

2

∫

R2

(
(nk − nk−1)ck +

(
−∆(ck − ck−1) + α(ck − ck−1)

)
ck−1

)
dx

=

∫

R2

(nk − nk−1)ck−1dx = −τ
∫

R2

(
∇nk · ∇ck−1 + nk|∇ck−1|2

)
dx.

Subtracting the latter from the former expression, we conclude that

Ek − Ek−1 ≤ −τ
∫

R2

nk|∇(log nk − ck−1)|2dx ≤ 0.

Unfortunately, scheme (22) does not allow us to apply the symmetrization argument used
in the proof of Theorem 2, since the drift part depends on two different time steps. The
question whether (22) admits solutions that blow up in finite time remains open. �
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3. Higher-order schemes

We investigate BDF and general Runge-Kutta schemes.

3.1. BDF-2 scheme. The scheme reads as

(23)
1

τ

(
3

2
nk − 2nk−1 +

1

2
nk−2

)
= div

(
∇nk − nk(∇Bα ∗ nk)

)
in R

2

for k ≥ 2, where n0 is given and n1 is computed from n0 using the implicit Euler scheme.

Lemma 4 (Existence for the BDF-2 scheme). Let α ≥ 0, nk−2, nk−1 ∈ L1(R2) ∩ L∞(R2),
and

τ ≤ 3

2

1

(π + 1/2)2
1

(1 + ‖2nk−1 − 1
2
nk−2‖X)4

.

Then there exists a weak solution nk ∈ L1(R2)∩L∞(R2)∩H1(R2) to (23) with the following
properties:

• conservation of mass:
∫
R2 nkdx =

∫
R2 nk−1dx,

• control of second moment: if
∫
R2 nk−1|x|2dx <∞ then

∫
R2 nk|x|2dx <∞.

Proof. The proof is exactly as for Theorem 1 since we can formulate scheme (23) as

−∆nk +
3

2τ
nk =

1

τ

(
2nk−1 −

1

2
nk−2

)
− div(nk∇Bα ∗ nk),

and the first term on the right-hand side plays the role of nk−1 in the implicit Euler scheme.
The only difference to the proof of Theorem 1 is that we replace n+

k in (6) by nk, since
the truncation was only needed to show the nonnegativity of nk, which we are not able to
show for the BDF-2 scheme. �

Theorem 5 (Blow-up for the BFD-2 scheme). Assume that α ≥ 0 and

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) ⊂ L1(R2)∩H1(R2) be a sequence of nonnegative weak solutions to (23). Then this
sequence is finite with maximal index kmax, where kmax is bounded from above according to
(17) (if α = 0) or (18) (if α > 0 and additionally I0 ≤ I∗ and τ ≤ τ ∗, where I∗ and τ ∗ are
defined in (16)).

Proof. The proof is similar to that one of Theorem 2 but the iteration argument is different.
First, let α = 0. We know from the proof of Theorem 2 that

(24) I1 − I0 = −τγ,
where we recall that γ = M(M − 8π)/(2π). Using the same approximation of |x|2 as in
step 5 of the proof of Theorem 2, we can justify the weak formulation (see (15))

∫

R2

(nj − nj−1)|x|2dx =
1

3

∫

R2

(nj−1 − nj−2)|x|2dx+
8

3
τ

∫

R2

njdx
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+
2

3
τ

∫

R2

nk(∇Bα ∗ nk) · xdx.

The last integral can be calculated as in the proof of Theorem 2 and we end up with

Ik − Ik−1 =
1

3
(Ik−1 − Ik−2) +

2

3

τ

2π
M(8π −M).

We iterate this identity and insert (24):

Ik − Ik−1 =
1

3k−1
(I1 − I0)−

2

3
τγ

k−1∑

j=1

1

3j
= − τγ

3k−1
− τγ

(
1− 1

3k−1

)
= −τγ.

As in the proof of Theorem 2, this leads to a contradiction for large values of k.
Next, let α > 0. As the first step is computed with the implicit Euler scheme, the proof

of Theorem 2 gives the estimate

I1 − I0 ≤ τf(I1),

where f(s) = β
√
s − γ and β =

√
αM3/2/π. Moreover, since f(I0) ≤ 0, we know that

I1 ≤ I0, and this gives f(I1) ≤ 0.
For the following time steps, we obtain

(25) Ik − Ik−1 ≤
1

3
(Ik−1 − Ik−2) +

2τ

3
f(Ik), k ≥ 2.

Let us assume, by induction, that Ik−1 ≤ Ik−2 and f(Ik−1) ≤ 0 for k ≥ 2. We will prove
that Ik ≤ Ik−1 and f(Ik) ≤ 0. Assume by contradiction that f(Ik) > 0, which is equivalent

to I
1/2
k > γ/β. Then, using Ik−1 − Ik−2 ≤ 0, we reformulate (25) as

I
1/2
k − I

1/2
k−1

I
1/2
k − γ/β

I
1/2
k + I

1/2
k−1

β
≤ 2τ

3
.

Since f(Ik−1) ≤ 0, the first factor is larger than or equal to one, so

I
1/2
k + I

1/2
k−1

β
≤ 2τ

3
,

and τ ≤ γ/β2 leads to

I
1/2
k

β
≤ I

1/2
k + I

1/2
k−1

β
≤ 2τ

3
≤ 2

3

γ

β2

or I
1/2
k < γ/β, which contradicts f(Ik) > 0. We conclude that f(Ik) ≤ 0 and therefore, by

(25), Ik ≤ Ik−1 ≤ 0, showing the claim.
We infer that f(Ik) ≤ f(Ik−1) ≤ · · · ≤ f(I0), since f is nondecreasing. Hence, again

from (25) and using I1 − I0 ≤ τf(I0),

Ik − Ik−1 ≤
1

3
(Ik−1 − Ik−2) +

2τ

3
f(I0) ≤

1

3k−1
(I1 − I0) + 2τ

k−1∑

j=1

1

3j
f(I0)
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≤ τ

3k−1
f(I0) + τ

(
1− 1

3k−1

)
f(I0) = τf(I0).

Thus, Ik ≤ I0 + τ
∑k

j=1 f(I0) = I0 + τkf(I0), and this leads to the contradiction Ik < 0 for
sufficiently large k ∈ N, completing the proof. �

3.2. BDF-3 scheme. The finite-time blow-up can be also shown for solutions to higher-
order BDF schemes, at least in the case α = 0. As an example, let us consider the BDF-3
scheme

(26)
1

6τ
(11nk − 18nk−1 + 9nk−2 − 2nk−3) = div(∇nk − nk∇B0 ∗ nk) in R

2,

where nk−1, nk−2, and nk−3 are given. The existence of solutions can be shown as in Lemma
4. First, we prove that the scheme preserves the mass.

Lemma 6 (Conservation of mass). Let n0, n1, and n2 be given and having the same mass
M . Then the solution nk has the same mass,

∫
R2 nkdx =M , for k ≥ 3.

Proof. We proceed by induction. Employing the mollified version of the cut-off function
(13) as a test function in (26) and passing to the limits ε→ 0 and R → ∞, we arrive at

1

6τ

∫

R2

(11nk − 18nk−1 + 9nk−2 − 2nk−3)dx = 0.

If k = 3, this is equivalent to
∫

R2

n3dx =

∫

R2

(
18

11
n2 −

9

11
n1 +

2

11
n0

)
dx =M,

since n2, n1, and n0 have the same massM . For the induction step, if nk−1, nk−2, and nk−3

for k > 4 have the same mass, the same argument as above shows that
∫
R2 nk =M . �

We recall that Ik =
∫
R2 nk|x|2dx for k ∈ N0 and γ =M(M − 8π)/(2π).

Theorem 7 (Blow-up for the BDF-3 scheme). Assume that α = 0, I2−I1 = I1−I0 = −τγ,
and

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) ⊂ L1(R2)∩H1(R2) be a sequence of nonnegative weak solutions to (26). Then this
sequence is finite with maximal index kmax, where kmax is bounded from above according to
(17) (if α = 0) or (18) (if α > 0 and additionally I0 ≤ I∗ and τ ≤ τ ∗, where I∗ and τ ∗ are
defined in (16)).

Proof. We claim that Ik − Ik−1 = −τγ. To prove this, we proceed by induction. Let
k = 3. We take an approximation of |x|2 as a test function in (26). Then, arguing as in
the previous sections, we find that

11

6
(I3 − I2)−

7

6
(I2 − I1) +

1

3
(I1 − I0)

=
1

6
(11I3 − 18I2 + 9I1 − 2I0) =

τ

2π
M(8π −M) = −τγ.
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Since I2 − I1 = I1 − I0 = −τγ, it follows that
11

6
(I3 − I2) = −7

6
τγ +

1

3
τγ − τγ = −11

6
τγ.

For the induction step, we assume that Ik−1 − Ik−2 = Ik−2 − Ik−3 = −τγ for k > 3. Then,
as above,

11

6
(Ik − Ik−1)−

7

6
(Ik−1 − Ik−2) +

1

3
(Ik−2 − Ik−3) = −τγ.

which shows that Ik − Ik−1 = −τγ. As in the proof of Theorem 2, this leads to a contra-
diction for large values of k. �

The previous proof can be generalized to all BDF-m methods

1

τ

m∑

i=0

aink−i = div(∇nk −∇Bα ∗ nk),

where ai ∈ R satisfy
∑m

i=0 ai = 1. Note, however, that only the BDF-m schemes with
m ≤ 6 are A(α)-stable, while they are instable for m > 6.

3.3. Runge-Kutta schemes. The Runge-Kutta scheme reads as follows:

(27)

1

τ
(nk − nk−1) =

s∑

i=1

biKi, Ki = div(∇mi −mi∇Bα ∗mi),

mi = nk−1 + τ
s∑

j=1

aijKj, i = 1, . . . , s,

where s ∈ N is the number of stages, bi ≥ 0 are the weights, and aij are the Runge-Kutta
coefficients. We assume that

∑s
i=1 bi = 1. The existence of solutions is only shown for two

particular Runge-Kutta schemes; see below.
First, we claim that the mass is conserved in the following sense.

Lemma 8 (Conservation of mass). Let nk ∈ L1(R2) be a solution to (27) such that mi ∈
L1(R2) and

1

τ

∫

R2

(nk − nk−1)φdx =
s∑

i=1

∫

R2

bi
(
mi∆φ+m(∇Bα ∗m) · ∇φ

)
dx

for all φ ∈ C∞
0 (R2). Then

∫

R2

midx =

∫

R2

nkdx =

∫

R2

nk−1dx, i = 1, . . . , s.

Note, however, that we do not know whether mi ≥ 0 in R
2. Although we expect

physically that nk is nonnegative, this cannnot be generally expected for mi.



16 ANSGAR JÜNGEL AND OLIVER LEINGANG

Proof. Using the mollifier ρε and the cut-of function φR(x) = φ(|x|/R), where φ is defined
in (13), as a test function in the weak formulation of the equation for Ki and performing
the limit ε→ 0, we find that

∫

R2

KiφRdx =

∫

R2

mi∆φRdx+

∫

R2

mi(∇Bα ∗mi) · ∇φRdx.

According to (14), the first term on the right-hand side can be estimated as
∣∣∣∣
∫

R2

mi∆φRdx

∣∣∣∣ ≤
C2

R2
‖mi‖L1(R2).

For the second term, we use formulation (8) of ∇Bα, the symmetry argument, and the
Lipschitz estimate (14) for ∇φR, which leads to

∣∣∣∣
∫

R2

mi(∇Bα ∗mi) · ∇φRdx

∣∣∣∣

=
1

2

∣∣∣∣
∫

R2

mi(x)

∫

R2

(
∇φR(x)−∇φR(y)

)
· x− y

|x− y|gα(|x− y|)mi(y)dydx

∣∣∣∣

≤ C1

2R2

∫

R2

|mi(x)|
∫

R2

|mi(y)|dydx =
C1

2R2
‖mi‖2L1(R2).

We deduce that for R → ∞,
∫
R2 Kidx = 0. Hence,

∫

R2

midx =

∫

R2

nk−1dx+ τ

s∑

j=1

aij

∫

R2

Kjdx =

∫

R2

nk−1dx,

∫

R2

nkdx =

∫

R2

nk−1 + τ
s∑

i=1

bi

∫

R2

Kidx =

∫

R2

nk−1dx,

which concludes the proof. �

We are able to show finite-time blow-up for all Runge-Kutta schemes if α = 0.

Theorem 9 (Blow-up for Runge-Kutta schemes). Let α = 0. Assume that

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) ⊂ L1(R2) ∩ H1(R2) be a sequence of nonnegative weak solutions to (27). Then
this sequence is finite with maximal index kmax defined in (17).

Proof. Using an approximation of |x|2 as a test function in (27) and passing to the de-
regularization limit (see step 5 of the proof of Theorem 2), we find that

Ik − Ik−1 = τ
s∑

i=1

bi

(
4

∫

R2

midx−
1

π

∫

R2

mi(x)

∫

R2

x · (x− y)

|x− y|2 mi(y)dydx

)
.
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By Lemma 8, the symmetry argument, and
∑s

i=1 bi = 1,

Ik − Ik−1 = τ
s∑

i=1

bi

(
4M − 1

2π

∫

R2

mi(x)

∫

R2

mi(y)dydx

)

= τ
s∑

i=1

bi

(
4M − M2

2π

)
=
M

2π
(8π −M).

Now, we argue as in the proof of Theorem 2 to conclude. �

The case α > 0 is more delicate since mi ≥ 0 is generally not guaranteed. Indeed, it
follows that (see (19) and (20))

Ik − Ik−1 = τ

s∑

i=1

bi

(
M

2π
(8π −M) +

1

2π

∫

R2

∫

R2

(
1− gα(|x− y|)

)
mi(x)mi(y)dydx

)

≤ τ

s∑

i=1

bi

(
− γ +

√
α

2π
M

∫

R2

|y||mi(y)|dy
)
,

where we recall that γ =M(M − 8π)/(2π). By the Cauchy-Schwarz inequality,

Ik − Ik−1 ≤ τ

s∑

i=1

bi

{
− γ +

√
α

2π
M

(∫

R2

|mi(y)|dy
)1/2(∫

R2

|y|2|mi(y)|dy
)1/2}

,

and this cannot be estimated further as mi ≥ 0 may not hold. However, for the midpoint
and trapezoidal rule, we are able to give a result. The reason is that these schemes can
be reformulated in terms of nk, nk−1, etc. without the use of mi. Clearly, we still need to
assume that nk ≥ 0 but this is expected physically.

Implicit midpoint rule. The implicit midpoint rule is defined by s = 1, a11 = 1/2, and
b1 = 1. Then (27) becomes

1

τ
(nk − nk−1) = div(∇m1 −m1∇Bα ∗m1),

m1 = nk−1 +
τ

2
div(∇m1 −m1∇Bα ∗m1),

and since m1 =
1
2
(nk + nk−1), this can be rewritten as

(28)
1

τ
(nk − nk−1) = div

(
∇
(
nk + nk−1

2

)
− nk + nk−1

2
∇Bα ∗ nk + nk−1

2

)
.

Lemma 10 (Existence for the midpoint scheme). Let α ≥ 0, nk−1 ∈ W 1,1(R2)∩W 1,∞(R2),
and

τ ≤ 2

(π + 1
2
)2

1

(‖nk−1‖X + πb
2
‖nk−1‖2X + π

2
‖∇nk−1‖X + 1)4

.

Then there exists a unique weak solution nk ∈ L1(R2)∩L∞(R2)∩H1(R2) to (28) with the
following properties:

• conservation of mass:
∫
R2 nkdx =

∫
R2 nk−1dx,
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• control of second moment: if
∫
R2 nk−1|x|2dx <∞ then

∫
R2 nk|x|2dx <∞.

Moreover, if α > 0 and nk−1 ∈ Y := W 1,1(R2) ∩W 1,∞(R2) ∩H3(R2), then nk ∈ Y .

Note that our technique of proof requires higher regularity for nk−1 compared to the
implicit Euler scheme. For general Runge-Kutta schemes, the regularity requirement be-
comes even stronger, which is the reason why we show existence results only in special
cases.

Proof. We set n := nk and n0 := nk−1. For given ñ ∈ X, we solve the linear problem
(
−∆+

2

τ

)
n =

2

τ
n0 + div

(
∇n0 −

1

2
(ñ+ n0)∇Bα ∗ (ñ+ n0)

)
in R

2.

By Lemma 16, this problem has a unique solution n ∈ H1(R2), and it can be represented
by

(29) T [ñ] := n =
2

τ
B2/τ ∗ n0 +∇B2/τ ∗ ∇n0 −

1

2
∇B2/τ ∗

(
(ñ+ n0)∇c[ñ+ n0]

)
,

writing ∇c[n] = ∇Bα ∗ n as in section 2. This defines the fixed-point operator T : S → S,
where S = {n ∈ X : ‖n‖X ≤ CB} and

CB = ‖n0‖X +
πb

2
‖n0‖2X +

π

2
‖∇n0‖X + 1.

It holds T (S) ⊂ S since, using similar arguments as in the proof of Theorem 1 and the
smallness condition on τ ,

‖T [n]‖X ≤ 2

τ
‖B2/τ‖L1(R2)‖n0‖X + ‖∇B2/τ‖L1(R2)‖∇n0‖X

+
1

2
‖∇B2/τ‖L1(R2)‖n+ n0‖X‖∇c[n+ n0]‖X

≤ ‖n0‖X +
π
√
τ

2
√
2
‖∇n0‖X +

πb
√
τ

4
√
2
‖n+ n0‖2X

≤ CB.

We claim that T : S → S is a contraction. Indeed, let n, m ∈ S. Then

‖T [n]− T [m]‖X ≤ 1

2

∥∥∥∇B2/τ ∗ (n+ n0)∇Bα ∗ (n+ n0)

−∇B2/τ ∗ (m+ n0)∇Bα ∗ (m+ n0)
∥∥∥
X

≤ π
√
τ

4
√
2

∥∥(n+ n0)∇Bα ∗ (n+ n0)− (m+ n0)∇Bα ∗ (m+ n0)
∥∥
X

≤ π
√
τ

4
√
2

(
‖n∇Bα ∗ n−m∇Bα ∗m‖X

+ ‖n0∇Bα ∗ (n−m)‖X + ‖(n−m)∇Bα ∗ n0‖X
)
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≤ πb
√
τ√
2

(CB + 1)‖n−m‖X ,

and we have πb
√
τ(CB+1)/2 < 1. The Banach fixed-point theorem now implies that there

exists a unique fixed point n ∈ X.
By the same arguments used in step 2 of the proof of Theorem 1, we infer that nk ∈

H1(R2). Steps 4 and 5 show the conservation of mass and the finiteness of the second
moment.
It remains to show that if nk−1 ∈ Y then nk has the same regularity. By Lemma 14,

nk ∈ H1(R2) implies that ∇Bα ∗ nk ∈ H2(R2). Therefore,
(
−∆+

2

τ

)
nk =

2

τ
nk−1 +∆nk−1 − div

(
(nk + nk−1)∇c[nk]

)
∈ L2(R2).

Elliptic regularity then gives nk ∈ H2(R2). We bootstrap this argument to find that
nk ∈ H3(R2) →֒ W 1,∞(R2). Taking the L1 norm of the gradient of n = nk in (29) shows
that ‖∇nk‖L1(R2) can be estimated in terms of the H3 norms of nk, nk−1, and c[nk]. We
conclude that nk ∈ W 1,1(R2), finishing the proof. �

Lemma 11 (Blow-up for the midpoint scheme). Let α > 0. Assume that

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) ⊂ L1(R2) ∩H1(R2) be a sequence of nonnegative weak solutions to (28). Suppose
that I0 ≤ I∗ and τ ≤ 2τ ∗ (see (16)). Then this sequence is finite with maximal index kmax

defined in (18).

Proof. Approximating |x|2 as in step 5 of the proof of Theorem 2 and using the nonnega-
tivity of nk and nk−1, we can estimate as

Ik − Ik−1 =

∫

R2

(nk − nk−1)|x|2dx

= 4τM − τ

2

∫

R2

(nk + nk−1)∇Bα ∗ (nk + nk−1)dx

= −τγ +
τ

4π

∫

R2

∫

R2

(
1− gα(|x− y|)

)
(nk + nk−1)(x)(nk + nk−1)(y)dydx

≤ −τγ +
τ

4π

√
α

∫

R2

∫

R2

|x− y|(nk + nk−1)(x)(nk + nk−1)(y)dydx

≤ −τγ +
τ

4π

√
α(2M)M1/2

(
I
1/2
k + I

1/2
k−1

)
= −τγ +

β

2

(
I
1/2
k + I

1/2
k−1

)
.

Setting again f(s) = β
√
s− γ, it follows that

Ik − Ik−1 ≤
τ

2

(
f(Ik) + f(Ik−1)

)
.
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Again, since f(I∗) = 0 and f is increasing, we have f(I0) ≤ 0. Let f(Ik−1) ≤ 0. Then

Ik − Ik−1 ≤
τ

2
f(Ik),

and we can proceed as in the proof of Theorem 2. �

Trapezoidal rule. The (implicit, two-stage) trapezoidal rule is defined by s = 2, a11 =
a12 =

1
2
, b1 = b2 =

1
2
, which gives the scheme

(30)
1

τ
(nk − nk−1) =

1

2
div

(
∇(nk + nk−1) + nk∇Bα ∗ nk + nk−1∇Bα ∗ nk−1

)
.

The existence of weak solutions can be shown exactly as in the proof of Lemma 10, therefore
we leave the details to the reader.

Proposition 12 (Finite-time blow-up for the trapezoidal rule). Let α > 0. Assume that

n0 ≥ 0, I0 :=

∫

R2

n0(x)|x|2dx <∞, M :=

∫

R2

n0dx > 8π.

Let (nk) be a sequence of nonnegative weak solutions to (30). Suppose that I0 ≤ I∗ and
τ ≤ τ ∗ (see (16)). Then this sequence is finite with maximal index kmax defined in (18).

Proof. Arguing as in the previous blow-up proofs, we obtain

Ik − Ik−1 = 4τM − τ

2

∫

R2

nk∇Bα ∗ nkdx−
τ

2

∫

R2

nk−1∇Bα ∗ nk−1dx

≤ −τγ +
τ

4π

√
α

∫

R2

∫

R2

|x− y|nk(y)nk(x)dydx

+
τ

4π

√
α

∫

R2

∫

R2

|x− y|nk−1(y)nk−1(x)dydx

≤ −τγ +
τ

4π

√
αM3/2

(
I
1/2
k + I

1/2
k−1

)
.

Now, we proceed as in the proof of Proposition 11. �

Remark 13 (Explicit schemes). One may ask to what extent explicit schemes may be
considered too. The implicit Euler schemes provides the nonnegativity of the cell density
nk, which generally cannot be proven for the explicit Euler scheme. Clearly, we assumed
nonnegativity of nk for higher-order implicit schemes, so, this argument does not apply
to higher-order explicit schemes. In fact, the virial argument can be applied to explicit
Runge-Kutta schemes as well, with the same blow-up conditions (for α = 0), since the
analysis applies to all (explicit or implicit) Runge-Kutta schemes. On the other hand,
BDF schemes are always implicit. Practically, implicit schemes help to handle the stiff
part of the differential equation; recall, however, that there do not exist SSP implicit
higher-order Runge-Kutta or multistep methods. �
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4. Numerical examples

The numerical experiments are performed by using the finite-element method introduced
by Saito in [37] and analyzed in [39]. In contrast to [37], we choose higher-order temporal
approximations. The scheme uses a first-order upwind technique for the drift term, the
lumped mass method, and a decoupling procedure. We take α = 1 in (1) and consider
bounded domains only. Equations (1) are supplemented with no-flux boundary conditions.
In the first example, the domain is large enough to avoid effects arising from boundary
conditions. The second example, on the other hand, illustrates blow-up at the boundary.

4.1. Numerical scheme. Let Th be a triangulation of the bounded set Ω ⊂ R
2, where

h = max{diam(K) : K ∈ Th}, and let Di be the barycentric domain associated with the
vertex Pi; see [37, Section 2] for the definition. Let χi be the characteristic function on Di

and let Yh be the span of all χi. Furthermore, let Xh be the space of linear finite elements.
The lumping operator Mh : Xh → Yh is defined by Mhvh =

∑
i vh(Pi)χi, where vh ∈ Xh,

and the mass-lumped inner product is given by

(vv, wh)h = (Mhvh,Mhwh)2, vh, wh ∈ Xh,

where (·, ·)2 is the L2 inner product.
For the discretization of the drift term, we define the discrete Green operator Gh : Xh →

Xh as the unique solution vh = Ghfh ∈ Xh to

(∇vh,∇wh)2 + (vh, wh)2 = (fh, wh)2 for wh ∈ Xh.

(Recall that α = 1.) The drift term is approximated by the trilinear form bh : X3
h → R,

bh(uh, vh, wh) =
∑

i

wh(Pi)
∑

Pj∈Λi

(
vh(Pi)β

+
ij (uh)− vh(Pj)β

−
ij (uh)

)
,

where Λi is the set of vertices Pj that share an edge with Pi. For the definition of β±
ij , we

first introduce the set Sij
h of all elements K ∈ Th such that Pi, Pj ∈ K and the exterior

normal vector νij to ∂Di ∩ ∂Dj with respect to Di. Then

β±
ij (uh) =

∑

K∈Sij
h

meas
(
(∂Di ∩ ∂Dj)|K

)[
(∇Ghuh)|K · νij|K

]
±,

where [s]± = max{0,±s} for s ∈ R. It is explained in [37] that the trilinear form approx-
imates the integral

∫
Ω
v∇(Gu) · ∇wdx, where Gu is the Green operator associated with

−∆+ 1 on L2.
Equation (2) is solved in a semi-implicit way. This means, for the BDF-2 scheme and

for given uh, that we solve the linear problem

(31)
1

τ

(
3

2
nk
h − 2nk−1

h +
1

2
nk−2
h , wh

)

h

+ (∇nk
h,∇wh)2 + bh(uh, n

k
h, wh) = 0

for all wh ∈ Xh. Here, n
k
h is an approximation of n(·, τk). This defines the solution operator

N(uh) = nh and the scheme is completed by chosing uh. Saito has taken uh = nk−1
h , giving

the usual semi-implicit scheme of first order. For higher-order schemes, we need to iterate.



22 ANSGAR JÜNGEL AND OLIVER LEINGANG

For this, we introduce the iteration u
(0)
h := nk−1

h and u
(m)
h := N(u

(m−1)
h ) for m ≥ 1. The

iteration stops when ‖u(m)
h − u

(m−1)
h ‖L∞(R2) < ε for some tolerance ε > 0 or if m ≥ mmax

for a maximal number mmax of iterations. For later reference, we write scheme (31) as

(32)
1

τ
Mh(3n

k
h − 4nk−1

h + nk−2
h ) = 2(Ah + Bh(n

k
h))n

k
h,

where Mh is the lumped mass matrix, Ah the stiffness matrix, Bh(n
k
h) the upwind matrix,

and nk
h is the solution vector at time step k after the Picard iteration has terminated.

In a similar way, we define the scheme with the midpoint discretization:

1

τ
(nk

h − nk−1
h , wh)h +

1

2
(∇(nk

h + nk−1
h ),∇wh)2 +

1

4
bh(uh + nk−1, n

k
h + nk−1

h , wh) = 0

for all wh ∈ Xh. The resulting linear systems are computed by using MATLAB. We choose
the domain Ω = (0, 1)2, which is triangulated uniformly by 2a2 triangles with maximal size
h =

√
2/a. The numerical parameters are a = 64, τ = 5 · 10−5, ε = 10−4, and mmax = 500

if not stated otherwise. (In all presented simulations, the maximal number of iterations
was m = 17, i.e., mmax was never reached.)

4.2. Numerical results. To illustrate the behavior of the solutions, we choose the initial
data as a linear combination of the shifted Gaussians

Wx0,y0(x, y) =
M

2πθ
exp

(
− (x− x0)

2 + (y − y0)
2

2θ

)
,

where (x0, y0) ∈ (0, 1)2, M > 0, and θ > 0. Clearly, the mass of Wx0,y0 equals M . For the
first example, we choose θ = 1/500, M = 6π, and

n0 = W0.33,0.33 +W0.33,0.66 +W0.66,0.33 +W0.66,0.66.

The initial mass is 24π > 8π and thus, we expect the solutions to blow up in finite time.
Figure 1 shows the cell density n(x, t) at various time instances computed from the BDF-

2 scheme. As expected, the solution blows up in finite time in the center of the domain.
Note that the numerical solution is always nonnegative and conserve the total mass.
A nonsymmetric situation is given by the initial data

n0 =
1

3
W0.33,0.66 +

1

2
W0.33,0.33 +W0.66,0.66,

taking θ = 1/500, M = 6π, and the same numerical parameters as above. The total mass
of n0 is 11π, so we expect again blow up of the solutions. This is illustrated in Figure 2.
The solution aggregates, moves to the boundary and blows up. Again, the discrete solution
stays nonnegative and conserves the mass.
We remark that boundary blow-up was analyzed in [41]; also see the presentation in [46,

Theorem 5.1]. The proof uses a localized symmetrization argument, which possibly can be
extended to a semi-discrete implicit Euler scheme.
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Figure 1. Cell density computed from the BDF-2 scheme at times t = 0
(top left), t = 0.005 (top right), t = 0.007 (bottom left), t = 0.02 (bottom
right).

4.3. Convergence rate. To calculate the temporal convergence rates and to show that
the schemes are indeed of second order, we compute a reference solution nref with the very
small time step τ = 10−6 and compare it in various Lp norms with the solutions nτ using
larger time step sizes τ . We choose the same initial datum as in the first example with
M = 24π. Figure 3 shows the Lp error

ep = ‖nτ (·, T )− nref(·, T )‖Lp(Ω),

where the end time T = 0.01 is chosen such that the density already started to aggregate
but blow up still did not happen. As expected, the Lp errors are approximately of second
order.

4.4. Numerical blow-up. We demonstrate that the bound for the blow-up time T ∗ =
τkmax derived in the time-discrete situation can serve as a bound for the numerical blow up.
It is well known that the computation of the numerical blow-up time is rather delicate. For
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Figure 2. Cell density computed from the BDF-2 scheme at times t = 0
(top left), t = 0.005 (top right), t = 0.02 (bottom left), t = 0.1001 (bottom
right).

instance, Chertock et al. [15] use the L∞ norm of the density as a measure of the numerical
blow-up time, since ‖n‖L∞(Ω) is proportional to h

2 (recall that h is the spatial grid size).
Numerical blow-up may be reached, for instance, when the numerical solution becomes
negative [14, 44] or when the second moment becomes negative [23]. However, since our
scheme conserves the mass and the grid is finite, the numerical solution cannot blow up
in the L∞ norm. Instead, the solution converges to a state where the mass concentrates
at certain points and no further growth is possible. Moreover, the second moment cannot
become negative, provided nonnegativity is preserved (also see below). A lower bound for
the blow-up time was derived in, for instance, [19, Theorem 2.2] in two space dimensions
(but with a nonexplicit bound) and in [11, Prop. 3.1] in three space dimensions.
For the numerical test, we choose the initial datum n0 = W1,1 on the domain Ω = (0, 2)2

with parameters θ = 1/500, M = 30π, and τ = 10−5. The grid sizes are h = 0.02, 0.04,
0.08. The initial density and the density at k = 44 are displayed in Figure 4. The density
almost does not change for time steps k > 44.
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Figure 3. Lp error ep for p = 1, 2, 4,∞ at time T = 0.01 for various time
step sizes τk = τ (left: BDF-2 discretization; right: midpoint discretization).

Figure 4. Cell density at time step k = 0 (left) and k = kmax = 44. The
mesh size is h = 0.02.

It seems that the solution to the fully discrete semi-implicit scheme exists numerically
for all time. Saito observed in [38, p. 144] that his finite-element solution never blows up
in finite time, and he argued that this is because of the preservation of the L1 norm. Note
that he employed scheme (31) with uh = nk−1

h , while we used a Picard iteration in order to
achieve second-order convergence. In fact, the solution in Figure 4 (right) seems to be the
steady state of the discrete nonlinear system (32). This is indicated by the behavior of the
residuum Rk = 2‖Ahn

k
h+Bh(n

k
h)n

k
h‖ℓ∞ , illustrated in Figure 5. The residuum tends to zero

for increasing time steps k. This behavior is in contrast to the analytical results, where
finite-time blow up occurs for semi-discrete solutions. Figure 6 illustrates the evolution of
‖nk‖L∞(Ω) and Ik. The vertical line marks the bound kmax from (18). We observe that the
L∞ norm and the second moment reach a limit close to kmax.
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Figure 5. The residuum Rk for time steps 1 to 81 (left) and time steps 30
to 81 (right) versus time steps k.
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Figure 6. L∞ norm ‖nk‖L∞(Ω) (left) and second moment Ik (right) versus
time. The vertical line marks the upper bound kmax defined in (18).

For coarse meshes or large time steps, the numerical scheme may produce solutions with
negative values. As an example, we take τ = 10−3 and h = 0.02 and choose an initial
datum with steep gradients,

n0(x, y) =

{
250π for 1

3
< x, y < 2

3
,

0 else;
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see Figure 7 (top left). For small times, the solution becomes negative around the steep
gradient, but the regions with negative values disappear for larger times. This is confirmed
in the plot L1 norm over time, where the L1 norm is larger than the total mass in a
certain time interval due to the negative values (note that ‖n‖L1(Ω) 6=

∫
Ω
ndx for functions

n : Ω → R). The total mass stays constant over time. It seems to be natural to obtain
negative values, since higher-order in time schemes usually require a CFL-type condition
to remain nonnegative [8]. However, after some time, the L1 norm stabilizes and equals
the total mass again.

0 5 10 15 20

84.6

84.8

85

time step k

||
n
k
||
L

1
(Ω

)

Figure 7. Cell density computed from the BDF-2 scheme with a coarse
mesh at times t = 0 (top left), t = 0.006 (top right), t = 0.021 (bottom left)
and the L1 norm of nk (bottom right).

Appendix A. Some auxiliary results

We recall that the function

Bα(x) =

{
− 1

2π
log |x| for α = 0,

1
(4π)n/2

∫∞
0
t−n/2e−αt−|x|2/(4t)dt for α > 0,
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defined for x ∈ R
n, is called the Newton potential if α = 0 and the Bessel potential if

α 6= 0. We need the following properties of the Bessel potential.

Lemma 14 (Bessel potential). Let α > 0 and k ∈ N0. Then Bα is a fundamental solution
of the operator −∆+α. For given f ∈ Hk(Rn), the function u = Bα ∗f ∈ Hk+2(Rn) solves

−∆u+ αu = f in R
n.

Furthermore, it holds that Dβ(Bα ∗ f) = Bα ∗ Dβf for all multi-indices β ∈ N
n, |β| ≤ k

and

Bα ≥ 0, ‖Bα‖L1(Rn) =
1

α
,(33)

‖∇Bα‖L1(Rn) =
C(n)

π(n−1)/2α1/2
, ‖∇Bα‖L1(R2) =

π

2α1/2
,(34)

where the constant C(n) > 0 only depends on n.

Proof. We only prove (34), since the other properties are standard; see, e.g., Theorem 1.7.1,
Corollary 1.7.2, and Examples 12.5.8 in [27]. By Fubini’s theorem and the substitution
u = x/

√
4t, we find that

‖∇Bα‖L1(Rn) =
1

2(4t)n/2

∫ ∞

0

tn/2+1e−αt

∫

Rn

e−|x|2/(4t)|x|dxdt

=
1

πn/2

∫ ∞

0

t−1/2e−αtdt

∫

Rn

e−|u|2 |u|du =
1

π(n−1)/2
α−1/2C(n),

where C(n) =
∫
Rn e

−|u|2 |u|du. In particular, when n = 2, we obtain

C(2) =

∫ ∞

0

∫ 2π

0

e−r2r2dφdr =
π3/2

2
,

ending the proof. �

Lemma 15 (Young’s inequality). Let g ∈ Lq(Rn), h ∈ Lr(Rn) for 1 ≤ q, r ≤ ∞, and
1/q + 1/r = 1/p+ 1. Then g ∗ h ∈ Lp(Rn) and

‖g ∗ h‖Lp(Rn) ≤ ‖g‖Lq(Rn)‖h‖Lr(Rn).

Lemma 16 (Elliptic problem). Let τ > 0, f ∈ L2(R2)2, and g ∈ L2(R2). Then there
exists a unique weak solution n ∈ H1(R2) to

(35) −∆n+ τ−1(n− g) = − div f in R
2,

and this solution can be represented as

(36) n =
1

τ
B1/τ ∗ g −∇B1/τ ∗ f in R

2.

Equation (35) correspond to the implicit Euler discretization of a parabolic problem with
n being the solution at the actual time step and g being the solution at the previous time
step. Although the result is standard, we give proof for the sake of completeness.
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Proof. Let fk ∈ C∞
0 (R2)2 be such that fk → f in L2(R2)2 as k → ∞. By Lemma 14, there

exists a unique solution nk ∈ H1(R2) to

(37) −∆nk + τ−1nk = τ−1g − div fk,

and, by the variation-of-constants formula and integration by parts,

(38) nk(x) =
1

τ
(B1/τ ∗ g)(x)−

∫

R2

(∇B1/τ )(x− y) · fk(y)dy.

Taking the test function nk − nℓ in the difference of the weak formulations for nk, nℓ

corresponding to fk, fℓ, respectively, it follows that

‖∇(nk − nℓ)‖2L2(R2) +
1

τ
‖nk − nℓ‖2L2(R2) =

∫

R2

(fk − fℓ) · ∇(nk − nℓ)dx

≤ 1

2
‖fk − fℓ‖2L2(R2) +

1

2
‖∇(nk − nℓ)‖2L2(R2).

Since (fk) is a Cauchy sequence, (nk) is a Cauchy sequence in H1(R2) and hence there
exists a ñ ∈ H1(R2), such that nk → ñ strongly in H1(R2) as k → ∞. Therefore, we can
perform the limit k → ∞ in the weak formulation of (37) leading to (35).
It remains to show (36). Let n = (1/τ)B1/τ ∗ g −∇B1/τ ∗ f . Then, by Lemma 15 and

(38),

‖ñ− n‖L2(R2) ≤ ‖ñ− nk‖L2(R2) + ‖nk − n‖L2(R2)

≤ ‖ñ− nk‖L2(R2) + ‖∇B1/τ‖L2(R2)‖fk − f‖L2(R2).

The right-hand side can be made arbitrarily small by choosing k sufficiently large. This
shows that ñ = n in R

2. �

References

[1] M. Akhmouch and M. Amine. A time semi-exponentially fitted scheme for chemotaxis-growth models.
Calcolo 54 (2017), 609-641.

[2] B. Andreianov, M. Bendahmane, and M. Saad. Finite volume methods for degenerate model. J.

Comput. Appl. Math. 235 (2011), 4015-4031.
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