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1. Introduction

We consider the following system of two nonlinear Schrödinger equations:

i∂tψ1 = −1

2
∆ψ1 +

γ2

2
|x|2ψ1 + β11|ψ1|αψ1 + β12|ψ2|2ψ1 + λψ2, (1.1)

i∂tψ2 = −1

2
∆ψ2 +

γ2

2
|x|2ψ2 + β12|ψ1|2ψ2 + β22|ψ2|αψ2 + λψ1, (1.2)

where x ∈ R
N (N ≤ 3) and t > 0, with the initial conditions

ψ1(·, 0) = ψ0
1 , ψ2(·, 0) = ψ0

2 in R
N . (1.3)

The parameters are the mean-field exponent α > 0, the magnetic trapping strength

γ > 0, the external driven field constant λ ∈ R, the intraspecific scattering lengths
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βjj , the interspecific scattering length β12, and the space dimension N ≤ 3. The

wave functions ψ1 and ψ2 describe two components of a quantum system. They

are coupled through the mean-field expressions |ψ1|2ψ2, |ψ2|2ψ1 and through the

linear coupling terms λψ2, λψ1. If βjj is negative (positive), the self-interaction is

attractive (repulsive). Similarly, if β12 < 0 (β12 > 0), the interspecies interaction is

attractive (repulsive).

When α = 2 and λ = 0, the above system models, for instance, a two-component

beam in Kerr-like nonlinear optical media (see Formulas (1)-(2) in Ref. 1) or a mix-

ture of Bose-Einstein condensates consisting of two different hyperfine spin states

of Rubidium atoms below the critical temperature (see Formula (1) in Ref. 6). In

the latter example, the two components of the condensate are placed in the same

harmonic trap. By applying a weak magnetic (driven) field with the Rabi frequency

λ, the two components are coupled in the overlap region. This coupling realizes

a Josephson-type junction and gives rise to nonlinear oscillations in the relative

populations.27

Non-cubic nonlinearities α 6= 2 occur, for instance, in lower dimensional mean-

field models describing cigar-shaped Bose-Einstein condensates; see Section 2.4 in

Ref. 13. Cubic-quintic nonlinear terms arise in the modeling of Bose-Einstein con-

densates trapped in an optimal lattice, where the quintic term (α = 4) represents

three-body collisions.15 We allow for general nonlinearities also for mathematical

reasons. Indeed, we wish to study the possible blow-up behavior of strong solutions

in the presence of at least one focusing nonlinearity.

More precisely, we analyze under which conditions on the model parameters the

global existence of solutions or the finite-time blow-up of the above system can be

proved. Furthermore, the influence of the Rabi frequency λ on the blow-up behavior

is studied. Some of our results may be summarized as follows:

• Let λ = 0. If the interspecies interaction is attractive, blow-up may occur

even when the self-interaction is repulsive (see Theorem 3.1). This result is

known in the literature (see, e.g., Refs. 18, 29) but our conditions are more

general in certain cases (see Remark 3.1).

• The Rabi frequency may trigger or delay blow-up in the following sense.

We observe numerically that blow-up in the case of one focusing component

seems to occur for appropriately chosen λ even when the corresponding

initial mass is subcritical (the total initial mass has to be supercritical).

On the other hand, numerical experiments indicate that certain values of

λ may avoid or delay blow-up (see Section 5).

• If α = 2, we derive a semi-explicit formula for the time evolution of the

masses of the components. The mass exchange is quasi-periodic, perturbed

by the interaction coefficients. If all βjk are equal, the evolution of the

masses is exactly periodic with frequency 2λ (see Section 4).
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It is well known that the strong solution of the nonlinear Schrödinger equation

i∂tψ = −1

2
∆ψ − |ψ|αψ in R

N

blows up in finite time (i.e. the L2 norm of |∇ψ| becomes infinite) if α ≥ 4/N

(L2-critical and supercritical case) and the initial data is sufficiently large in the

H1 norm. We refer to the monograph Ref. 9 for more details. When an external

potential is included in the L2-critical nonlinear Schrödinger equation (α = 4/N),

Carles showed that the blow-up rate does not change, and only the blow-up time is

affected.7,8

Let us comment on related results in the literature for coupled nonlinear

Schrödinger systems. Most of the papers are concerned with system (1.1)-(1.2)

with α = 2 and λ = 0. For focusing nonlinearities, βjk < 0, Chen and Wei11 proved

the global-in-time existence of solutions in the energy space Σ = {ψ ∈ H1(RN ) :

|xψ| ∈ L2(RN )} if the initial datum in Σ is smaller than the L2 norm of a certain

ground-state solution. Simultaneous blow-up of the two components (without con-

finement, γ = 0) was shown by Lin and Wei18 if β11, β22 < 0, and β12 <
√
β11β22.

A similar result, but including harmonic confinement, was proved by Zhongxue and

Zuhan.28 The two-dimensional case N = 2 of a special system without confinement,

assuming β11 = β22 = 0 and β12 < 0, was treated by Ma and Schulze.19 Finally, we

mention the work of Pyrtula et al.24 in which a coupled system of M ≥ 2 nonlin-

ear Schrödinger equations was studied and conditions on the initial data and the

parameters βjk for finite-time blow-up were found.

Schrödinger systems with general parameter α have been examined in the math-

ematical literature as well. These systems, arising in nonlinear optics, have typically

the structure

i∂tψ1 = −1

2
∆ψ1 + β11|ψ1|2pψ1 + β12|ψ2|p+1ψ1,

i∂tψ2 = −1

2
∆ψ2 + β22|ψ2|2pψ2 + β12|ψ1|p+1ψ2 in R

N ,

where p > 0 and β11, β22, β12 < 0, i.e., all the nonlinearities are focusing. When

p = 1, we recover (1.1)-(1.2) with α = 2. Fanelli and Montefusco12 proved that

there exists a global strong solution if p < 2/N . In the critical case p = 2/N , there

exist initial data such that the solutions blow up in finite time. These results were

improved by Li, Wu, and Lai17 who derived sharp blow-up thresholds. Chen and

Guo10 assumed that only the interspecific term is attractive, β12 < −
√
β11β22. They

show that there exist global solutions if p < 2/N , whereas the solutions blow up in

finite time if p > 2/N and either the initial energy is negative or the time derivative

of the variance, I ′(t) = ∂t

∫
RN |x|2(|ψ1|2 + |ψ2|2)dx, is sufficiently negative initially.

In the critical case p = 2/N , the solutions blow up like the Dirac δ distribution.

Systems of more than two equations were examined by Ma and Zhao21 and Song.25

Only a few papers are concerned with Schrödinger systems involving the Rabi

frequency λ (and always α = 2). One of the first papers seems to be due to Williams
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et al.27 examining the nonlinear oscillations in the relative populations of the two

components by numerical experiments. Oscillations were also predicted by Park and

Eberly.23 Kim and Liu16 have shown that a strong external driven field causes vortex

filaments. The creation and stability of dark solitons was investigated by Öhberg

and Santos.22 From a more mathematical point of view, ground-state solutions were

numerically computed by Bao2 and Bao and Cai.4 Finally, Zhongxue and Zuhan29

proved finite-time blow-up of solutions for “large” initial data when all coefficients

βjk are negative. The results seem to be valid in the two-dimensional case only.

The originality of the present paper consists in the fact that we consider (1.1)-

(1.2) for general α > 0 and λ ∈ R and that we present a thorough global existence

and blow-up analysis allowing for various combinations of the signs of the coefficients

βjk. Moreover, we present numerical simulations in one and two space dimensions

using a time-splitting sine-spectral method which underlines and complements the

analytical findings.

The paper is organized as follows. In Section 2 we prove the local-in-time and

global-in-time existence of strong solutions. Sufficient conditions for the finite-time

blow-up of solutions are given in Section 3. The role of the Rabi frequency λ is

examined in Section 4. Section 5 is devoted to numerical examples. We conclude in

Section 6.

2. Local and global existence of solutions

First we introduce some definitions. For functions Ψ = (ψ1, ψ2) : R
N → C

2, we

define the norms

‖Ψ‖p =




2∑

j=1

∫

RN

|ψj(x)|pdx




1/p

, ‖∇Ψ‖p =




2∑

j=1

∫

RN

|∇ψj(x)|pdx




1/p

for 1 ≤ p <∞ with the corresponding Banach spaces Lp(RN ) and H1(RN ) = {Ψ ∈
L2(RN ) : |∇Ψ| ∈ L2(RN )}. We write the coupled Schrödinger equations as the

system

i∂tΨ = HΨ + g(Ψ) +BΨ in R
N , t > 0, Ψ(·, 0) = Ψ0, (2.1)

where Ψ0 = (ψ0
1 , ψ

0
2),

H =

(
− 1

2∆ + 1
2γ

2|x|2 0

0 − 1
2∆ + 1

2γ
2|x|2

)
, B =

(
0 λ

λ 0

)
,

and the nonlinearity is given by the matrix

g(Ψ) =

(
β11|ψ1|αψ1 + β12|ψ2|2ψ1

β12|ψ1|2ψ2 + β22|ψ2|αψ2

)
.

It is not difficult to show that g and B are locally Lipschitz continuous. In particular,

the assumptions of Theorem 3.3.9 in Ref. 9 are satisfied, showing the local well-

posedness of (2.1). More precisely, we introduce the energy-type space

Σ = {Ψ ∈ H1(Rn) : |xΨ| ∈ L2(RN )}. (2.2)
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Furthermore, let N ≤ 3, 0 ≤ α < 4/(N − 2) (α < ∞ if N ≤ 2), and Ψ0 ∈ Σ. Then

there exists a unique maximal solution Ψ = (ψ1, ψ2) ∈ C0((−Tmin, Tmax); Σ) ∩
C1((−Tmin, Tmax); Σ

∗) to (1.1)-(1.2). Moreover, the total mass

M(t) = M1(t) +M2(t) =

∫

RN

|ψ1(x, t)|2dx+

∫

RN

|ψ2(x, t)|2dx

and the total energy E(t) = E1(t)+E2(t)+E12(t), consisting of the energies of the

components,

Ej(t) =

∫

RN

(1

2
|∇ψj |2+

γ2

2
|x|2|ψj |2+

2βjj

α+ 2
|ψj |α+2+

β12

2
|ψ1|2|ψ2|2

)
(x, t)dx, (2.3)

and the interaction energy,

E12(t) = 2λ

∫

RN

ℜ(ψ∗
1ψ2)(x, t)dx, (2.4)

are conserved quantities, M(t) = M(0) and E(t) = E(0) for all t ≥ 0. Here, ℜ(ψ)

denotes the real part of ψ and ψ∗ its complex conjugate.

Next, we wish to specify conditions on the data under which global existence

holds. First, we prove the following lemma which generalizes an idea used in Section

2.4 of Ref. 24.

Lemma 2.1. Let δ > 2 and a0, a2, aδ > 0. Furthermore, let F (x) = aδx
δ −a2x

2 +

a0, x ≥ 0, and let v : [0,∞) → R be a continuous function satisfying F (v(t)) ≥ 0

for all t ≥ 0. If

v(0) ≤
√
a0

a2
, a0 < (δ − 2)

( 4aδ
2

δδa2
δ

)1/(δ−2)

, (2.5)

then there exists C > 0 such that v(t) ≤ C for all t ≥ 0.

Proof. The function F has a local maximum at x1 = 0 (since F ′(x) < 0 for

small x ≥ 0) and a global minimum at x2 = (2a2/δaδ)
1/(δ−2) (since F ′′(x2) =

2(δ − 2)a2 > 0). Condition (2.5) on a0 implies that F (x2) < 0. Thus, if v(0) ≤ x3

for some x3 > 0 which is smaller than the first root of F , v(t) is bounded for t ≥ 0.

We choose x3 =
√
a0/a2. This choice gives F (x3) = aδ(a0/a2)

δ/2 > 0, and condition

(2.5) yields

a
(δ−2)/2
0 <

2(δ − 2)(δ−2)/2a
δ/2
2

δδ/2aδ
<

2δ(δ−2)/2a
δ/2
2

δδ/2aδ
=

2a2

δaδ
a
(δ−2)/2
2

which implies that x3 < x2. We infer that v(t) ≤ x2 for t ≥ 0.

We also need the Gagliardo-Nirenberg inequality

‖ψ‖α+2
α+2 ≤ Cα,N‖∇ψ‖αN/2

2 ‖ψ‖α+2−αN/2
2 , ψ ∈ H1(RN ), (2.6)

where Cα,N > 0. Furthermore, for any solution (ψ1, ψ2) to (1.1)-(1.2), we set

G(t) = ‖∇ψ1(·, t)‖2
2 + ‖∇ψ2(·, t)‖2

2
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and x+ = max{0, x} ≥ 0 for x ∈ R. Our main result on the global existence of

solutions reads as follows.

Theorem 2.1. Let N ≤ 3, 0 ≤ α < 4/(N − 2) (α < ∞ if N ≤ 2), and set

β = max{(−β11)
+, (−β22)

+}. Then there exists a global-in-time strong solution to

(1.1)-(1.2) in the following cases:

(1) min{β11, β22} ≥ 0, β12 ≥ 0;

(2) min{β11, β22} ≥ 0, β12 < 0:

(a) N = 1,

(b) N = 2 and M(0) < 2/(C2,2|β12|),
(c) N = 3, G(0) ≤ 2(E(0) + |λ|M(0)), and

M(0)(E(0) + |λ|M(0)) <
8

27C2
2,3β

2
12

;

(3) min{β11, β22} < 0, β12 ≥ 0:

(a) α < 4/N ,

(b) α = 4/N and M(0) < ((N + 2)/(2NCα,Nβ))N/2,

(c) α > 4/N , G(0) ≤ 2(E(0) + |λ|M(0)), and

M(0)α+2−αN/2(E(0) + |λ|M(0))(αN−4)/2 <
4(αN − 4)(αN−4)/2(α+ 2)2

(2αN)αN/2C2
α,Nβ

2
;

(4) min{β11, β22} < 0, β12 < 0:

(a) N = 1: α < 4 or (α = 4 and M(0) < (3/(2C4,1β))1/2),

(b) N = 2:

α < 2 and M(0) < 2/(C2,2|β12|),
α = 2 and M(0) < 4/(C2,2(2β + |β12|)),

α > 2, a2 :=
1

2
− 1

4
C2,2|β12|M(0) > 0, and

(E(0) + |λ|M(0))α−2M(0)2 <
(α− 2)α−2(α+ 2)2aα

2

ααC2
α,2β

2
;

(c) N = 3: G(0) ≤ 2(E(0) + |λ|M(0)) and

α = 2, M(0)(E(0) + |λ|M(0)) <
8

27C2
2,3(2β + |β12|)2

,

α =
4

3
, a2 :=

1

2
− 3

5
C4/3,3βM(0)2/3 > 0,

M(0)(E(0) + |λ|M(0)) <
64a3

2

27C2
2,3β

2
12

,

α 6= 4

3
, 2, M(0) sufficiently small.
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Proof. We can write the energy conservation as

1

2
G(t) = E(0) − γ2

2

∫

RN

|x|2(|ψ1|2 + |ψ2|2)dx−
2∑

j=1

2βjj

α+ 2
‖ψj‖α+2

α+2

− β12

∫

RN

|ψ1|2|ψ2|2dx− 2λ

∫

RN

ℜ(ψ∗
1ψ2)dx

≤ E(0) +
2

α+ 2

2∑

j=1

(−βjj)
+‖ψj‖α+2

α+2 + (−β12)
+‖ψ1‖2

4‖ψ2‖2
4

+ 2|λ| ‖ψ1‖2‖ψ2‖2.

Applying the Gagliardo-Nirenberg inequality (2.6), this becomes

1

2
G(t) ≤ E(0) +

2Cα,N

α+ 2

2∑

j=1

(−βjj)
+‖∇ψj‖αN/2

2 ‖ψj‖α+2−αN/2
2

+ C2,N (−β12)
+‖∇ψ1‖N/2

2 ‖ψ1‖2−N/2
2 ‖∇ψ2‖N/2

2 ‖ψ2‖2−N/2
2

+ |λ|
(
‖ψ1‖2

2 + ‖ψ2‖2
2

)

= E(0) + I2 + I3 + I4. (2.7)

We estimate the right-hand side term by term.

If βjj ≥ 0 for j = 1, 2, the second term I2 vanishes. Otherwise, we employ the

Hölder inequality:

I2 ≤ 2Cα,Nβ

α+ 2




2∑

j=1

‖∇ψj‖αpN/2
2




1/p 


2∑

j=1

‖ψj‖q(2α+4−αN)/2
2




1/q

=
2Cα,Nβ

α+ 2




2∑

j=1

(‖∇ψj‖2
2)

αpN/4




1/p 


2∑

j=1

(‖ψj‖2
2)

q(2α+4−αN)/4




1/q

,

where 1/p + 1/q = 1. We distinguish the cases αN/4 < 1 and αN/4 ≥ 1. If

αN/4 < 1, we choose p = 4/(αN) > 1 and q = 4/(4 − αN) > 1. Then, with

r = q(2α+ 4 − αN)/4 = 1 + 2α/(4 − αN) > 1,




2∑

j=1

(‖∇ψj‖2
2)

αpN/4




1/p 


2∑

j=1

(‖ψj‖2)
q(2α+4−αN)/4
2




1/q

≤




2∑

j=1

‖∇ψj‖2
2




1/p 


2∑

j=1

‖ψj‖2r
2




1/q

≤




2∑

j=1

‖∇ψj‖2
2




αN/4 


2∑

j=1

‖ψj‖2
2




r/q

,

using xr + yr ≤ (x+ y)r for all x, y ≥ 0, since r > 1.

Next, let αN/4 ≥ 1. If N ≤ 2, we choose any 1 < p, q <∞ satisfying 1/p+1/q =

1. If N = 3, we take p = 4/α and q = 4/(4 − α). Since α < 4/(N − 2) = 4 by

assumption, it holds that p > 1. Furthermore, 1/p + 1/q = 1. Therefore, applying
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the inequality xr + yr ≤ (x + y)r to r = αpN/4 and r = q(2α + 4 − αN)/4 ≥ 1,

respectively, we obtain



2∑

j=1

(‖∇ψj‖2
2)

αpN/4




1/p

≤




2∑

j=1

‖∇ψj‖2
2




αN/4

,




2∑

j=1

(‖ψj‖2)
q(2α+4−αN)/4
2




1/q

≤




2∑

j=1

‖ψj‖2
2




(2α+4−αN)/4

.

Summarizing, we infer that

I2 ≤ 2Cα,Nβ

α+ 2




2∑

j=1

‖∇ψj‖2
2




αN/4 


2∑

j=1

‖ψj‖2
2




(2α+4−αN)/4

=
2Cα,Nβ

α+ 2
G(t)αN/4M(0)(2α+4−αN)/4.

The term I3 is estimated by using Young’s inequality, xy ≤ 1
2 (x2 + y2) for x,

y ≥ 0, and mass conservation, M(t) = M(0):

I3 = C2,N (−β12)
+
(
‖∇ψ1‖2‖∇ψ2‖2

)N/2(‖ψ1‖2‖ψ2‖2

)2−N/2

≤ C2,N

4
(−β12)

+
(
‖∇ψ1‖2

2 + ‖∇ψ2‖2
2

)N/2(‖ψ1‖2
2 + ‖ψ2‖2

2

)2−N/2

=
C2,N

4
(−β12)

+G(t)N/2M(0)2−N/2.

Finally, we write I4 = |λ|M(0). Hence, (2.7) becomes

1

2
G(t) ≤ E(0) + |λ|M(0) +

2Cα,Nβ

α+ 2
G(t)αN/4M(0)(2α+4−αN)/4

+
C2,N

4
(−β12)

+G(t)N/2M(0)2−N/2. (2.8)

Now, we consider the various cases of the signs of min{β11, β22} and β12.

1. When min{β11, β22} ≥ 0 and β12 ≥ 0, it holds that β = 0 and (−β12)
+ = 0.

Hence, (2.8) shows that G(t) is uniformly bounded for all t ≥ 0. This implies the

global existence of strong solutions.9

2. Let min{β11, β22} ≥ 0 and β12 < 0. Then (2.8) reduces to

1

2
G(t) ≤ E(0) + |λ|M(0) +

C2,N

4
|β12|G(t)N/2M(0)2−N/2,

and we have to distinguish the space dimension. If N = 1, G(t) remains bounded

uniformly in t ≥ 0. If N = 2, the coefficient of G(t) has to be positive,

1

2
− C2,2

4
|β12|M(0) > 0,

which leads to the condition in case (2b). Finally, if N = 3, we apply Lemma 2.1 to

v(t) =
√
G(t), δ = 3, a0 = E(0)+ |λ|M(0), a2 = 1/2, and aδ = C2,3|β12|M(0)1/2/4,

which gives the conditions in case (2c).
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3. Let min{β11, β22} < 0 and β12 ≥ 0. Inequality (2.8) writes as

1

2
G(t) ≤ E(0) + |λ|M(0) +

2Cα,Nβ

α+ 2
G(t)αN/4M(0)(2α+4−αN)/4.

If αN/4 < 1, it is clear that G(t) is uniformly bounded. If αN/4 = 1, the coefficient

of G(t) has to be positive,

1

2
− 2Cα,Nβ

α+ 2
M(0)2/N > 0,

which equals the condition in case (3b). If αN > 4, we apply again Lemma 2.1

to v(t) =
√
G(t), now with δ = αN/2 > 2, a0 = E(0) + |λ|M(0), a2 = 1/2, and

aδ = 2Cα,Nβ ×M(0)(2α+4−αN)/4/(α+ 2).

4. Finally, let min{β11, β22} < 0 and β12 < 0. First, let N = 1 and α < 4. Then

the exponents of G(t) on the right-hand side of (2.8) are smaller than one, and thus,

G(t) is uniformly bounded. If N = 1 and α = 4, we find from (2.8) that

(1

2
− C4,1

3
βM(0)2

)
G(t) ≤ E(0) + |λ|M(0) +

C2,1

4
|β12|M(0)3/2G(t)1/2,

and G(t) is uniformly bounded if M(0)2 < 3/(2C4,1β), which is the condition in

case (4a).

When N = 2, α < 2, or N = 2, α = 2, the coefficient of G(t) in (2.8) has to be

positive, which leads to the conditions in case (4b). When N = 2, α > 2, we write

(2.8) as

(1

2
− C2,2

4
|β12|M(0)

)
G(t) ≤ E(0) + |λ|M(0) +

2Cα,2β

α+ 2
G(t)α/2M(0)

and apply Lemma 2.1 to v(t) =
√
G(t) with δ = α > 2, a0 = E(0) + |λ|M(0),

a2 = 1/2 − C2,2|β12|M(0)/4, and aδ = 2Cα,2βM(0)/(α + 2). The assumptions of

the lemma and a2 > 0 correspond to the conditions in case (4b).

In the case N = 3, (2.8) rewrites as

1

2
G(t) ≤ E(0)+ |λ|M(0)+

2Cα,3β

α+ 2
G(t)3α/4M(0)(4−α)/4 +

C2,3

4
|β12|G(t)3/2M(0)1/2.

This inequality simplifies in the cases α = 2 and α = 4/3. If α = 2, both exponents of

G(t) on the right-hand side equal 3/2, and we can apply Lemma 2.1 to v(t) =
√
G(t)

with δ = 3, a0 = E(0) + |λ|M(0), a2 = 1/2, and aδ = C2,3(2β + |β12|)M(0)1/2/4. If

α = 4/3, (2.8) becomes

(1

2
− 3C4/3,3β

5
M(0)2/3

)
G(t) ≤ E(0) + |λ|M(0) +

C2,3

4
|β12|M(0)1/2G(t)3/2.

If the coefficient of G(t) is positive, we can apply Lemma 2.1 to v(t) =
√
G(t),

which leads to the conditions in case (4c). In the general case, (2.8) is an inequality

of the type

F (v(t)) = a0 − v(t)2 + aαv(t)
3α/2 + a3v(t)

3 ≥ 0, t ≥ 0,
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where v(t) =
√
G(t) and a0, aα, a3 are some positive parameters satisfying aα → 0

and a3 → 0 as M(0) → 0, since α < 4. For sufficiently small aα and a3, the function

F (x) has a global minimum at some point x1 > 0 and F (x1) < 0. The proof of

Lemma 2.1 can be generalized to the above function, showing that if additionally

v(0) is sufficiently small, F (v(t)) ≥ 0 implies that v(t) is uniformly bounded. In

fact, it is sufficient to require that M(0) is small enough to conclude this result.

Remark 2.1. The conditions in Theorem 2.1 roughly mean that ψ1(0) and ψ2(0)

have to be sufficiently small in certain Lp norms to achieve global existence of solu-

tions. In cases (4b) and (4c), we have to assume additionally that E(0) is sufficiently

small since the exponent of M(0) on both sides of the respective inequality is the

same.

When only one of the coefficients β11 or β22 is negative, say β11 < 0, case

(3) of Theorem 2.1 can be improved. Indeed, it is sufficient to impose constraints

on ‖∇ψ1‖2 only instead on G(t). More precisely, the condition G(0) ≤ 2(E(0) +

|λ|M(0)) in (3c), α > 4/N can be replaced by the weaker condition ‖∇ψ1(0)‖2
2 ≤

2(E(0) + |λ|M(0)).

Moreover, for λ = 0 we can modify the condition in cases (3b) and (3c) to

(3b’) α = 4/N and

‖ψ1(0)‖2
2 <

( N + 2

2NCα,Nβ

)N/2

,

(3c’) α > 4/N , ‖∇ψ1(0)‖2
2 ≤ 2E(0), and

‖ψ1(0)‖2α+4−αN
2 E(0)(αN−4)/2 <

4(αN − 4)(αN−4)/2(α+ 2)2

(2αN)αN/2C2
α,Nβ

2
.

Remark 2.2. For critical power nonlinearities α = 4/N , the best constant in the

Gagliardo-Nirenberg inequality can be computed by solving the equation ∆u− u+

uα+1 = 0 in R
N and setting Cα,N = (α+ 2)/(2‖u‖α

2 ).26

Slightly sharper constraints can be derived by using a vector-valued Gagliardo-

Nirenberg inequality, see, e.g., Corollary 6 in Ref. 20. This result applies to our

situation for α = 2, leading to an improved constant C2,2/4 instead of C2,2.

3. Blow-up of solutions

In this section, we give sufficient conditions yielding finite-time blow-up of the so-

lutions. We set

I(t) =

∫

RN

|x|2
(
|ψ1|2 + |ψ2|2

)
(x, t)dx. (3.1)
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Theorem 3.1. Let Ψ0 ∈ Σ (see (2.2)) and 0 < α < 4/(N − 2) (α <∞ if N ≤ 2).

If one of the two sets of conditions

E(0) + |λ|M(0) <
γ2

2
I(0), or (3.2)

I ′(0) < 0, E(0) + |λ|M(0) < −γ
2
I ′(0) (3.3)

is satisfied, the solution Ψ = (ψ1, ψ2) to (1.1)-(1.2) blows up at time t∗ ≤ π/(2γ)

or t∗ ≤ π/(4γ), respectively, i.e.

lim
t→t∗

‖∇Ψ‖2 = +∞,

if additionally one of the following conditions is fulfilled:

(1) β11 ≥ 0, β22 ≥ 0:

(a) N = 2: α ≤ 2,

(b) N = 3: α ≤ 4/3 and β12 ≤ 0;

(2) β11 ≥ 0, β22 < 0, or β11 < 0, β22 ≥ 0:

(a) N = 1: α = 4 and β12 ≥ 0,

(b) N = 2: α = 2,

(c) N = 3: α = 4/3 and β12 ≤ 0;

(3) β11 < 0, β22 < 0:

(a) N = 1: α ≥ 4 and either β12 ≥ 0, or β12 < 0 and both min{|β11|, |β22|} and

1/|β12| are sufficiently large,

(b) N = 2: α ≥ 2,

(c) N = 3: either α ≥ 4/3, β12 ≤ 0, or α ≥ 2, β12 > 0, and both

min{|β11|, |β22|} and 1/|β12| are sufficiently large.

Notice that the first condition, I ′(0) = 0, is satisfied if the initial data are real.

Proof. The idea of the proof is to employ the classical method of Glassey14 which

consists in calculating the time derivatives of the variance I(t), defined in (3.1), and

to prove that I(t0) < 0 for some t0 > 0, contradicting I(t) ≥ 0. The unboundedness

of the gradient than follows from the inequality (see p. 573 in Ref. 26)

‖ψ0
j ‖2

2 = ‖ψj(·, t)‖2
2 ≤ 2

N
‖∇ψj(·, t)‖2‖xψj(·, t)‖2.

A tedious but straightforward calculation shows that

I ′(t) = 2ℑ
∫

RN

ψ∗
1(x, t)x · ∇ψ1(x, t)dx+ 2ℑ

∫

Rn

ψ∗
2(x, t)x · ∇ψ2(x, t)dx,

I ′′(t) = 2‖∇ψ1(·, t)‖2
2 + 2‖∇ψ2(·, t)‖2

2 − 2γ2I(t) +
2αNβ11

α+ 2
‖ψ1(·, t)‖α+2

α+2

+
2αNβ22

α+ 2
‖ψ2(·, t)‖α+2

α+2 + 2Nβ12

∫

RN

|ψ1(·, t)|2|ψ2(·, t)|2dx.
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These computations can be made rigorous using the techniques of Ref. 9; see Propo-

sition 6.5.1 and Remark 9.2.10. Since mass and energy are conserved, the second

derivative can be formulated as

I ′′(t) = 4E(0) − 4γ2I(t) +
2(αN − 4)β11

α+ 2
‖ψ1(·, t)‖α+2

α+2

+
2(αN − 4)β22

α+ 2
‖ψ2(·, t)‖α+2

α+2 + 2(N − 2)β12

∫

RN

|ψ1(x, t)|2|ψ2(x, t)|2dx

− 8λℜ
∫

RN

ψ∗
1(x, t)ψ2(x, t)dx.

Using |ψ1 + ψ2|2 + |ψ1 − ψ2|2 = 2(|ψ1|2 + |ψ2|2), we obtain for the last integral:

−8λℜ
∫

RN

(ψ∗
1ψ2)(x, t)dx = −2λ

∫

RN

(
|ψ1 + ψ2|2 − |ψ1 − ψ2|2

)
(x, t)dx

= −4|λ|
∫

RN

(
|ψ1 + sign(λ)ψ2|2 − (|ψ1|2 + |ψ2|2)

)
(x, t)dx

= −4|λ| ‖ψ1 + sign(λ)ψ2‖2
2 + 4|λ|M(0).

Therefore, I ′′ solves

I ′′(t) = 4(E(0) + |λ|M(0)) − 4γ2I(t) +R(t), t > 0,

where

R(t) =
2(αN − 4)β11

α+ 2
‖ψ1(·, t)‖α+2

α+2 +
2(αN − 4)β22

α+ 2
‖ψ2(·, t)‖α+2

α+2

+ 2(N − 2)β12

∫

RN

|ψ1(x, t)|2|ψ2(x, t)|2dx− 4|λ| ‖ψ1 + sign(λ)ψ2‖2
2.

The solution of the above differential equation is given by

I(t) = cos(2γt)I(0) +
1

2γ
sin(2γt)I ′(0) +

1

γ2
(E(0) + |λ|M(0))(1 − cos(2γt))

+
1

2γ

∫ t

0

sin(2γ(t− τ))R(τ)dτ, t ≥ 0.

We claim that, if either (3.2) or (3.3) holds and if R(τ) ≤ 0 for all 0 ≤ τ ≤ t,

I(t) becomes negative. Indeed, if (3.2) and R(τ) ≤ 0 hold,

I
( π

2γ

)
≤ −I(0) +

2

γ2
(E(0) + |λ|M(0)) < 0,

and if (3.3) and R(τ) ≤ 0 hold,

I
( π

4γ

)
≤ I ′(0)

2γ
+

1

γ2
(E(0) + |λ|M(0)) < 0.

Thus, it remains to determine conditions under which R(τ) ≤ 0 holds for all τ > 0.

This is the case if (Nα − 4)β11 ≤ 0, (Nα − 4)β22 ≤ 0, and (N − 2)β12 ≤ 0, which

leads to the conditions stated in the theorem except the restrictions on |β12| in the

case β11 < 0, β22 < 0.
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Thus, let β11 < 0, β22 < 0, and αN − 4 ≥ 0. The idea is to control the integral

involving β12 by the Lα+2 norms,

2|(N − 2)β12|
∫

RN

(|ψ1|2|ψ2|2)(x, t)dx ≤ 2(αN − 4)

α+ 2

2∑

j=1

|βjj | ‖ψj‖α+2
α+2, (3.4)

which implies that R(t) ≤ 0. For this, we assume that α ≥ 2 and employ the

Cauchy-Schwarz and interpolation inequalities:

2|(N − 2)β12|
∫

RN

|ψ1|2|ψ2|2dx ≤ 2|(N − 2)β12| ‖ψ1‖2
4‖ψ2‖2

4

≤ 2|(N − 2)β12| ‖ψ1‖(α−2)/2
2 ‖ψ1‖(α+2)/2

α+2 ‖ψ2‖(α−2)/2
2 ‖ψ2‖(α+2)/2

α+2 .

Under the condition

2|(N − 2)β12| ≤
2|αN − 4|
α+ 2

|β11β22|1/αM(0)(2−α)/α (3.5)

and employing the Young inequality as well as the Hölder inequality for sums, we

find that

2|(N − 2)β12|
∫

RN

(|ψ1|2|ψ2|2)(x, t)dx

≤ |αN − 4|
α+ 2

M(0)(2−α)/α‖ψ1‖(α−2)/α
2

(
|β11| ‖ψ1‖α+2

α+2

)1/α

× ‖ψ2‖(α−2)/α
2

(
|β22| ‖ψ2‖α+2

α+2

)1/α

≤ 2|αN − 4|
α+ 2

M(0)(2−α)/α
2∑

j=1

‖ψj‖2(α−2)/α
2

(
|βjj | ‖ψj‖α+2

α+2

)2/α

≤ 2|αN − 4|
α+ 2

M(0)(2−α)/α




2∑

j=1

‖ψj‖2p(α−2)/α
2




1/p

×




2∑

j=1

(
|βjj | ‖ψj‖α+2

α+2

)2q/α




1/q

,

where 1/p + 1/q = 1. If α = 2, (3.4) follows immediately. For α > 2, we choose

p = α/(α− 2) and q = α/2. Then, by mass conservation,

2|(N − 2)β12|
∫

RN

(|ψ1|2|ψ2|2)(x, t)dx

≤ 2|αN − 4|
α+ 2

M(0)(2−α)/α




2∑

j=1

‖ψj‖2
2




(α−2)/α 


2∑

j=1

|βjj | ‖ψj‖α+2
α+2




2/α

=
2|αN − 4|
α+ 2




2∑

j=1

|βjj | ‖ψj‖α+2
α+2




2/α

.
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Now, if αN − 4 ≥ 0 and

2∑

j=1

|βjj | ‖ψj‖α+2
α+2 ≥ 1, (3.6)

our claim (3.4) follows. In order to prove (3.6), we argue that there exists a bounded

set B ⊂ R
N such that

∫

B

(
|ψ(x, t)|2 + |ψ2(x, t)|2

)
dx ≥ M(0)

2
for 0 ≤ t ≤ t∗.

In order to prove this assertion, we observe that
∫

RN

(|ψ1(x, t)|2 + |ψ2(x, t)|2)dx = M(0),

and we let 0 ≤ t ≤ t∗. Because of Ψ(t) ∈ Σ, we have

‖xψ1(t)‖2
2 + ‖xψ2(t)‖2

2 ≤ Ct∗ <∞ for all t ∈ [0, t∗],

where Ct∗ > 0 does not depend on t. Let k be a positive constant. Then

Ct∗

k2
≥ 1

k2

∫

RN

(
|xψ1(x, t)|2 + |xψ2(x, t)|2

)
dx

≥ 1

k2

( ∫

|x|>k

(
|xψ1(x, t)|2 + |xψ2(x, t)|2

)
dx

)

≥ 1

k2

( ∫

|x|>k

k2
(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx

)

=

∫

|x|>k

(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx.

Thus, choosing k > 0 such that Ct∗/k
2 ≤ M0/2 and B = {|x| ≤ k}, the result

follows since∫

B

(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx = M(0) −

∫

|x|>k

(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
dx

≥ M(0)

2
for 0 ≤ t ≤ t∗.

We continue with the proof of (3.6):

2∑

j=1

|βjj | ‖ψj‖α+2
α+2 =

2∑

j=1

|βjj |
∫

B

|ψj(x, t)|α+2
α+2dx

≥ min{|β11|, |β22|}
(∫

B

|ψ1(x, t)|α+2dx+

∫

B

|ψ2(x, t)|α+2dx

)
.

Since B is bounded, the embedding Lα+2(B) →֒ L2(B) is continuous and

‖f‖L2(B) ≤ meas(B)α/(α+2)‖f‖Lα+2(B). We infer that

2∑

j=1

|βjj | ‖ψj‖α+2
α+2 ≥ min{|β11|, |β22|}meas(B)−α/2

(
‖ψ1‖α+2

2 + ‖ψ2‖α+2
2

)
.
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With the inequality (x+y)(α+2)/2 ≤ 2α/2(x(α+2)/2+y(α+2)/2) for x, y ≥ 0, it follows

that
2∑

j=1

|βjj | ‖ψj‖α+2
α+2 ≥ min{|β11|, |β22|}(2meas(B))−α/2

(
‖ψ1‖2

2 + ‖ψ2‖2
2

)(α+2)/2

≥ min{|β11|, |β22|}(2meas(B))−α/2
(M(0)

2

)(α+2)/2

=
min{|β11|, |β22|}
2α+1meas(B)α/2

M(0)(α+2)/2.

Therefore, (3.6) holds if

M(0)(α+2)/2 ≥ 2α+1meas(B)α/2

min{|β11|, |β22|}
. (3.7)

This shows that R(t) ≤ 0 for all t > 0. The initial mass has to satisfy conditions

(3.5) and (3.7):

22(α+1)/(α+2)meas(B)α/(α+2)

min{|β11|, |β22|}2/(α+2)
≤M(0) ≤ (αN − 4)α/(α−2)|β11β22|1/(α−2)

(α+ 2)α/(α−2)|(N − 2)β12|α/(α−2)
,

and we recall that we have assumed that α ≥ 2, αN − 4 ≥ 0, and (N − 2)β12 ≥ 0.

(If (N−2)β12 = 0, the right-hand side of the chain of inequalities becomes infinite.)

The above inequalities are satisfied if min{|β|11, |β22|} is sufficiently large and either

N = 2 or |β12| is sufficiently large. This concludes the proof.

Remark 3.1. Similar conditions as in Theorem 3.1 were derived by Lin and Wei

(see Theorem 1.1 in Ref. 18) without an external driven field, assuming that α = 2,

all βjk are negative, and β12 <
√
β11β22 if N = 3. We need only the condition β12 ≤

0 and can allow for nonnegative values for the coefficients βjk, thus generalizing the

results of 18 in this situation.

4. The Rabi frequency of the external driven field

In this section we examine the role of the Rabi frequency λ. We introduce the mass

of each component:

M1(t) =

∫

RN

|ψ1(x, t)|2dx, M2(t) =

∫

RN

|ψ2(x, t)|2dx.

The total mass equals M = M1 +M2 and, by mass conservation, it is constant for

all time. We also define

M12(t) = ℑ
∫

RN

ψ1(x, t)ψ
∗
2(x, t)dx,

recalling that ℑ(z) denotes the imaginary part of z ∈ C.

Lemma 4.1. The quantities M2 and M12 satisfy the following differential equa-

tions:

∂tM2(t) = 2λM12(t), ∂tM12(t) = λM(0) − 2λM2(t) −Q(t), t > 0, (4.1)
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where

Q(t) = ℜ
∫

RN

ψ1ψ
∗
2

(
β11|ψ1|α − β22|ψ2|α − β12(|ψ1|2 − |ψ2|2)

)
(x, t)dx.

Proof. Multiplying (1.2) by ψ∗
2 , integrating over R

N , and taking the imaginary

part leads to

∂tM2 = ∂t

∫

RN

|ψ2|2(x, t)dx = 2ℜ
∫

RN

(∂tψ2ψ
∗
2)(x, t)dx = 2ℑ

∫

RN

(i∂tψ2ψ
∗
2)(x, t)dx

= 2λℑ
∫

RN

(ψ1ψ
∗
2)(x, t)dx = 2λM12(t).

For the derivative of M12, we multiply (1.1) and (1.2) by ψ∗
2 and ψ∗

1 , respectively,

integrate with respect to x ∈ R
N , and take the real part:

−ℑ
∫

RN

(∂tψ1ψ
∗
2)(x, t)dx = ℜ

∫

RN

(1

2
∇ψ1 · ∇ψ∗

2 +
γ2

2
|x|2ψ1ψ

∗
2 + β11|ψ1|αψ1ψ

∗
2

+ β12|ψ2|2ψ1ψ
∗
2 + λ|ψ2|2

)
(x, t)dx,

−ℑ
∫

RN

(∂tψ2ψ
∗
1)(x, t)dx = ℜ

∫

RN

(1

2
∇ψ2 · ∇ψ∗

1 +
γ2

2
|x|2ψ2ψ

∗
1 + β22|ψ2|αψ2ψ

∗
1

+ β12|ψ1|2ψ2ψ
∗
1 + λ|ψ1|2

)
(x, t)dx.

Since ℑ(z∗1z2) = −ℑ(z1z
∗
2) and ℜ(z∗1z2) = ℜ(z1z

∗
2) for z1, z2 ∈ C, the difference of

the above equations becomes

−∂tM12(t) = −∂tℑ
∫

RN

(ψ1ψ
∗
2)(x, t)dx = Q(t) + λ

∫

RN

(|ψ2|2 − |ψ1|2)(x, t)dx

= Q(t) − λM(t) + 2λM2(t).

Then mass conservation M(t) = M(0) gives the differential equation for M12.

The functions M2(t) and M12(t) can be computed explicitly from the linear

system (4.1). Then M1(t) = −M2(t) +M(0). The solution reads as

M1(t) = − sin(2λt)M12(0) + cos(2λt)M1(0) +
1

2
(1 − cos(2λt))M(0)

+

∫ t

0

sin(2λ(t− s))Q(s)ds, (4.2)

M2(t) = sin(2λt)M12(0) + cos(2λt)M2(0) +
1

2
(1 − cos(2λt))M(0)

−
∫ t

0

sin(2λ(t− s))Q(s)ds. (4.3)

These functions show the role of the Rabi frequency λ. Indeed, the components

exchange their mass periodically. In the special case α = 2 and β11 = β22 = β12,

this exchange occurs actually with the frequency 2λ. In the general case, the periodic

structure is perturbed by the inhomogeneity Q(t). Notice that for λ = 0, the mass
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of each component is constant in time, i.e., mass exchange is only possible for

nonvanishing Rabi frequencies.

One might ask if a similar relation as above also holds for the energies of each

component. Unfortunately, this is not the case since the time derivative ∂tEj (see

(2.3) for the definition of Ej), cannot be easily expressed in terms of E1, E2, and

the interaction energy E12 (see (2.4)).

The case α = 2 and β := β11 = β22 = β12 can also be understood by observing

that system (1.1)-(1.2) can be transformed into a system without λ-term. Indeed,

if (ψ1, ψ2) solves (1.1)-(1.2), the transformed functions

φ1 =
1√
2
eiλt(ψ1 + ψ2), φ2 =

1√
2
e−iλt(ψ1 − ψ2)

solve in R
N the system

i∂tφ1 = −1

2
∆φ1 +

γ2

2
|x|2φ1 + β(|φ1|2 + |φ2|2)φ1,

i∂tφ2 = −1

2
∆φ2 +

γ2

2
|x|2φ2 + β(|φ1|2 + |φ2|2)φ2.

Thus, since the masses of φj are conserved, both components will blow up simulta-

neuously if there is blow up. There is a mass exchange between the two components,

and the individual masses M1(t) and M2(t) oscillate with frequency 2λ according

to (4.2)-(4.3) with Q(t) = 0 for all t > 0. The finite-time blow-up of solutions to

this system was studied in, e.g., Ref. 11, 18, 24. By Theorem 3.1, the solution blows

up in finite time if β < 0.

5. Numerical simulations

We solve system (1.1)-(1.2) in one and two space dimensions by employing the time-

splitting sine-spectral method.5 We choose this explicit method since it is uncondi-

tionally stable, time reversible, of spectral-order accuracy in space and second-order

accuracy in time, and it conserves the discrete total mass.2 For simplicity of nota-

tion, we introduce the method in one space dimension only. The extension to two

space dimensions is straightforward.

5.1. Numerical scheme

The equations are solved on a bounded interval I = (a, b), where a < b. We use a

uniform spatial grid with mesh size h > 0 and grid points xj = x0+jh, j = 0, . . . ,K,

where K + 1 ∈ N is the (odd) number of grid points. Then h = (b − a)/K. The

time grid is given by tn = nτ , n ∈ N0, where τ > 0 is the time step size. We set

(ψk)n
j := ψk(xj , tn), where k = 1, 2, j = 0, . . . ,K, and n ∈ N0. We split system



September 13, 2012 10:44 WSPC/INSTRUCTION FILE p11weishaeupl
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(1.1)-(1.2) into the three subsystems

i∂tψ1 =
γ2

2
|x|2ψ1 + β11|ψ1|αψ1 + β12|ψ2|2ψ1, (5.1)

i∂tψ2 =
γ2

2
|x|2ψ2 + β22|ψ2|αψ2 + β12|ψ1|2ψ2, (5.2)

i∂tψk = −1

2
∆ψk, k = 1, 2, (5.3)

i∂tψ1 = λψ2, i∂tψ2 = λψ1, (5.4)

considered on [tn, tn+1] and subject to some initial data. These subsystems are

solved as follows:

Step 1 The quantity |ψk|2, computed from the evolution of (5.1)-(5.2), remains

unchanged. Therefore, we “freeze” these values at time tn and solve the resulting

linear ODEs exactly in the interval [tn, tn + τ/2], giving at time tn + τ/2:

(ψ1)
∗
j = exp

(
−i τ

2

(γ2

2
x2

j + β11|(ψ1)
n
j |α + β12|(ψ2)

n
j |2

))
(ψ1)

n
j , (5.5)

and analogously for (ψ2)
∗
j .

Step 2 We solve (5.3) for k = 1, 2 in the interval [tn, tn + τ/2], discretized in space

by the Fourier spectral method and solved exactly in time:

(ψk)∗∗j =
1

K

K/2∑

m=−K/2

exp
(
−i τ

2

µm

2

)
(ψ̂k)∗m exp

(
iµj(xj−x0)

)
, k = 1, 2, (5.6)

where µm = 2πm/(xK − x0) and

(ψ̂k)∗m =
K−1∑

j=0

(ψk)∗j exp
(
− iµm(xm − x0)

)
, m = −K

2
, . . . ,

K

2
− 1.

Step 3 Equations (5.4) are solved on [tn, tn+1] exactly, yielding

(ψ1)
∗∗∗
j = cos(λτ)(ψ1)

∗∗
j + i sin(λτ)(ψ2)

∗∗
j ,

(ψ2)
∗∗∗
j = i sin(λτ)(ψ1)

∗∗
j + cos(λτ)(ψ2)

∗∗
j .

Step 4 We solve (5.3) on [tn + τ/2, tn+1] using the discretization of Step 2 with

(ψk)∗∗∗j instead of (ψk)∗j and obtain (ψk)∗∗∗∗j .

Step 5 We solve (5.1)-(5.2) on [tn + τ/2, tn+1] using the discretization of Step 1

with (ψk)∗∗∗∗j instead of (ψk)n
j and obtain (ψk)n+1

j .

In the numerical tests below, we have solved system (1.1)-(1.2) in the interval

I = [−4, 4] with periodic boundary conditions and initial conditions corresponding

to the ground state of the harmonic oscillator,

ψk(x, 0) = κ
( 1

γπ

)1/4

exp
(
− γ

2
|x|2

)
, k = 1, 2,
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τ ‖Ψ − Ψτ‖ p

0.0025 1.450 · 10−4 −
0.005 5.802 · 10−4 2.001

0.01 2.321 · 10−3 2.005

Table 1. Temporal accuracy of the scheme.

K ‖Ψ(·, t0) − ΨK(·, t0)‖2 p

32 4.494 · 10−4 −
64 1.276 · 10−8 15.167

128 9.429 · 10−13 13.725

Table 2. Spatial accuracy of the scheme.

where κ > 0 is a normalization constant. The initial functions are normalized to

one if κ = 1. The numerical parameters are K = 1024 and τ = 10−5 if not stated

otherwise.

5.2. Temporal and spatial accuracy

First, we report the temporal accuracy of the numerical solutions in the

L∞(0, T ;L2(I)) norm ‖ · ‖ with T = 20. The model parameters are N = 1, α = 4,

β11 = β12 = β22 = 1, γ = 4, and λ = −5. The numerical solution Ψτ = (ψτ
1 , ψ

τ
2 )

with time step size τ will be compared to the reference solution Ψ = (ψ1, ψ2), com-

puted with the parameters K = 1024 and τ = 10−5. For the errors, we expect an

expansion of the type

‖Ψ(·, tj) − Ψτ (·, tj)‖2 = τ∗(tj)τ
p,

where τ∗(tj) depends on the time step tj . Then

p = log2

‖Ψ − Ψτ‖
‖Ψ − Ψτ/2‖ .

The numerical results are reported in Table 1, showing the expected second-order

time accuracy.

Next, we test the spatial accuracy by reporting the error ‖Ψ(·, t0)−ΨK(·, t0)‖2,

where ΨK(·, t0) is the numerical solution at time t0 = 0.1 with grid number K and

Ψ(·, t0) is the reference solution with 214 = 16 384 grid points and τ = 10−5. We

consider the spatial error at the beginning of the evolution since at later times, the

temporal error dominates. The model parameters are as above. Table 2 illustrates

the spatial accuracy. For grid points K ≥ 256, the absolute L2 error is of the order

10−12, which is close to machine precision.

Before we present the numerical experiments, we define the numerical blow-up
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K 256 512 1024 2048 4096

t∗ 0.103 0.103 0.103 0.104 0.104

Table 3. Blow-up time t∗ as a function of the grid number K.

time t∗. We set

t∗ = min
T>0

max
t∈[0,T ]

log(‖∇Ψ(·, t)‖2
2) > 9.21 = log(10 000), (5.7)

and we say that blow-up occurs if t∗ ≤ T = 200. Table 3 shows that the numerical

blow-up time t∗ varies only slightly with the grid number K (the model parameters

are as in Experiment 5a with λ = −5 below).

5.3. Experiment 1: One focusing component, blow up

The intention of this experiment is to verify the blow-up condition (2a) in Theorem

3.1. The model parameters are chosen as follows: N = 1, α = 4, β11 = −1, β12 =

β22 = 1, γ = 4, and λ = 0, i.e., we have one focusing nonlinearity and mass

conservation in every component. The initial masses are normalized to ‖ψ1(·, 0)‖2
2 =

3 and ‖ψ2(·, 0)‖2
2 = 0.5. Since the initial data are real, we have I ′(0) = 0. Our choice

guarantees that the sufficient condition (3.3) is satisfied:

E(0) − γ2

2
I(0) = −1.8885 < 0.

Figure 1 illustrates the values of ‖∇ψ1(·, t)‖2
2 and ‖∇ψ2(·, t)‖2

2 versus time in loga-

rithmic scale. As expected, the gradient of the first component becomes very large,

and its position density seems to approach the Dirac δ distribution (Figure 2).
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Fig. 1. Experiment 1: ‖∇ψ1(·, t)‖2

2
(thin line) and ‖∇ψ2(·, t)‖2

2
(bold line) versus time.
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Fig. 2. Experiment 1: Position densities |ψ1(x, t)|2 (thin line) and |ψ2(x, t)|2 (bold line) at times
t = 0.001, 0.05 (upper row) and 0.1, 0.115 (lower row).

5.4. Experiment 2: Two focusing components, blow up

In this experiment, we consider two focusing nonlinearities in two space dimensions,

choosing N = 2, α = 2, β11 = β12 = β22 = −1, γ = 4, and λ = −3. We solve

the system on [−4, 4] × [−4, 4] using 512 × 512 grid points. The initial masses are

normalized to ‖ψ1(·, 0)‖2
2 = 4.5 and ‖ψ2(·, 0)‖2

2 = 3.5. Again, we have I ′(0) = 0.

The sufficient condition of Theorem 3.1, case (3b), is satisfied since

E(0) + |λ|M(0) − γ2

2
I(0) = −4.1941 < 0.

As expected, the position density |ψ1(x, t)|2 seems to approach a Dirac δ distribution

at time t∗ ≈ 0.21 (Figure 3). The second component behaves in a similar way.

5.5. Experiment 3: One focusing component, global existence

We wish to check the conditions for global existence of solutions with small initial

data.

(a) First, we choose the same parameters as in Experiment 1 but different initial

masses: M1(0) = ‖ψ1(·, 0)‖2
2 = 1.5 and M2(0) = ‖ψ2(·, 0)‖2

2 = 1.5. This corresponds
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Fig. 3. Experiment 2: Surfaces of the position density |ψ1(x, t)|2 at times t = 0, 0.1 (upper row)

and 0.2, 0.21 (lower row).

to case (3b) in Theorem 2.1 (observing Remark 2.1) since

M1(0) < Mcrit :=
( N + 1

2|β11|C4,1

)1/2

=
( 3

2 · 0.40529921 . . .

)1/2

= 1.9238 . . .

The optimal Gagliardo-Nirenberg constant C4,1 was computed by minimizing the

energy functional corresponding to the elliptic problem in Remark 2.2. For this,

we employed the numerical method of Ref. 3. The theory predicts global existence.

Indeed, the numerical results show that our blow-up condition (5.7) is never satisfied

until times T = 200 (Figure 4).

(b) A similar result is obtained for the α-supercritical case (3c) in Theorem 2.1.

The parameters are as above except α = 6 (in order to have supercriticality) and

λ = 1. The initial masses are normalized such that M1(0) = 0.5 and M2(0) = 0.25.

Then the sufficient conditions

G(0) ≤ 2(E(0) +M(0)), M(0)5(E(0) +M(0)) <
8

27C6,1
,

where C6,1 = 0.5134 . . ., are satisfied. Figure 5 illustrates the gradient of the wave

functions in the L2 norm, confirming the global existence result of Theorem 2.1,

case (3c).
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Fig. 4. Experiment 3a: Position densities |ψ1(x, t)|2 (thin line) and |ψ2(x, t)|2 (bold line) at times
t = 0, 10, 25 (upper row), 50, 100, 125 (middle row), and 150, 175, 200 (lower row).
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Fig. 5. Experiment 3b: ‖∇ψ1(·, t)‖2

2
(thin line) and ‖∇ψ2(·, t)‖2

2
(bold line) at times t = 0, . . . , 10

(left) and t = 190, . . . , 200 (right).

5.6. Experiment 4: Two defocusing components, global existence

In Section 4, we have derived explicit formulas for the masses M1(t) and M2(t).

We check the observations numerically by choosing N = 2, α = 2, β11 = β12 =
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β22 = 1, γ = 4, and λ = −3. The exchange of the mass components occurs with a

frequency depending on the Rabi frequency λ, and there are no “perturbations” in

the amplitude (Figure 6).
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Fig. 6. Experiment 4: Masses M1(t) (thin line) and M2(t) (bold line) versus time.

5.7. Experiment 5: Rabi frequency and blow-up

Finally, we want to examine the effect of the Rabi frequency λ on the blow-up

behavior. We choose the set-up of Experiment 1, i.e. the case of one focusing non-

linearity. In the following, we vary the initial masses and the Rabi frequency. We

observe that, if the initial mass of the first (focusing) component is smaller than the

critical mass Mcrit = 1.9238 . . . (see Experiment 3a), there is no blow-up for λ = 0,

independently of the initial mass of the second component. However, for λ 6= 0, the

total initial mass is crucial (see Theorem 2.1, case (3b)).

The numerical blow-up times t∗ are presented in Figure 4. The grid number

equals K = 2048 except for the values marked with ∗ for which we have chosen

K = 8192. A hyphen “−” means that we did not observe blow-up (in the sense

defined above) up to T = 200. If λ = 0, blow-up occurs only if the initial mass

M1(0) of the focusing component is larger than the critical mass Mcrit (see Remark

2.1). This is the case for cases (a) and (d). In cases (b), (c), and (e) there is no

blow-up when λ = 0. If λ 6= 0, blow-up depends on the total initial mass. We discuss

these cases now.

In case (a), we have blow-up for all λ since, as explained above, the initial mass

of the focusing component is larger than Mcrit. Blow-up also occurs in case (b) for

λ 6= 0 although the initial mass M1(0) is smaller than Mcrit. The reason is that

the Rabi coupling causes an exchange of mass in such a way that the mass of the

first component becomes supercritical and blow-up occurs. The blow-up times are

larger than in case (a). Both initial masses are smaller than the critical mass in case

(c). Still, we observe blow-up until T = 200 (except for λ = 5). Possibly, blow-up
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λ Case (a) Case (b) Case (c) Case (d) Case (e)

M1(0) = 3.0 M1(0) = 1.0 M1(0) = 1.5 M1(0) = 2.0 M1(0) = 0.1

M2(0) = 1.0 M2(0) = 3.0 M2(0) = 1.5 M2(0) = 0.1 M2(0) = 2.0

−5 0.104 0.262 0.319 − 29.666

−4 0.105 0.295 0.327 − −
−3 0.107 0.341 0.354 5.948 1.925∗

−2 0.109 0.414 0.384 0.387∗ 0.783

−1 0.111 0.576 0.479 0.306 31.409

0 0.117 − − 0.319 −
1 0.126 73.576∗ 5.350∗ 0.957 84.724

2 0.142 2.271 15.410∗ 132.773∗ −
3 0.393 1.485 1.912 1.054 −
4 0.980 2.133 25.220 − −
5 1.037 37.597 − − −

Table 4. Experiment 5: Blow-up times t∗. The values marked with ∗ have been computed with

grid number K = 8192, otherwise with K = 2048.

λ 1.0 1.5 1.9 2.0 2.1 2.5 3.0

t∗ 0.957 7.002 9.131 132.773 − 2.735 1.054

Table 5. Experiment 5d: Blow-up times t∗.

λ -2 -1.5 -1 0 0.5 1 1.5

t∗ 0.783 2.476 31.409 − − 84.724 12.764

Table 6. Experiment 5e: Blow-up times t∗.

also occurs for λ = 5; in this sense, the Rabi coupling “delays” blow-up. In case

(d), the total mass is slightly larger than the critical mass. If λ = −4, the mass

M1(t) exceeds the critical value at certain times. However, it seems that the first

component cannot concentrate since, after some time, the mass exchange leads to

a decrease of M1(t) (Figure 7, upper row). Therefore, no blow-up occurs although

the critical mass is exceeded locally in time. In case (e) for λ = 2, we observe

numerically that the mass M1(t) of the first component is always smaller than the

critical mass, and we do not expect blow-up (Figure 7, lower row).

The results of Table 4 may lead to the conjecture that the blow-up time depends

continuously on λ. This seems to be evident for cases (a)-(c) but it is less clear in

case (d), in particular around λ = 2. Table 5 shows the blow-up times for some

intermediate values of λ, which seem to support our conjecture. Similar results are

obtained also in case (e) (Table 6).

Summarizing, it seems that we can distinguish three cases. First, if the total
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Fig. 7. Experiment 5: Mass M1(t) of the first component versus time for case (d), λ = −4 (upper

row) and case (e), λ = 2 (lower row). The bold line indicates the critical mass. The right figure
shows details of the time evolution.

mass is much larger than the critical mass (cases (a) and (b)), we observe blow-up

for all values of λ ∈ [−5, 5], independently of the values of the respective initial

masses M1(0) and M2(0). Second, if the total initial mass is larger than the critical

mass but the initial mass of the focusing component is smaller than the critical

mass (cases (c) and (e)), the Rabi coupling may “induce” blow-up. Third, it may

happen that there is no blow-up (in the sense defined above) even if the total initial

mass and the initial mass of the focusing component exceed the critical mass.

6. Conclusions

We have proved, under some assumptions on the data, the global existence of strong

solutions to the nonlinear Schrödinger system with external driven field by standard

energy estimates. As expected, the solutions are global if both components are

defocusing, or if at least one component is focusing and the initial mass and energy

are sufficiently small. Furthermore, sufficient conditions of finite-time blow-up of

solutions are given using the method of Glassey. We derived a semi-explicit formula

describing the mass evolution, indicating the role of the Rabi frequency λ.

Although the Rabi coupling is linear, the mass evolution is nonlinear, which
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complicates the proof of sharp conditions for the blow-up behavior. We have shown

analytically and confirmed numerically that in the mass critical case, it is sufficient

to choose a total initial mass smaller than a critical value in order to have global

existence of solutions. When the Schrödinger equations decouple (i.e. λ = 0), blow-

up is determined by the value of the critical mass. The Rabi coupling (i.e. λ 6= 0)

induces a mass transport between the two components of the system, and new

effects occur. For instance, in the case of one focusing component and a total initial

mass larger than the critical mass, we cannot prove global existence of solutions

analytically although this seems to be true numerically. The Rabi coupling mixes

the mass components in such a way that mass cannot be accumulated in the focusing

component, thus possibly avoiding blow-up.
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